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Abstract 

 
 
 Hydrology influences vegetation composition, species richness, primary productivity, 

accumulation of organic material, and nutrient availability and cycling in wetlands. Any 

alteration to wetland hydrology can change the biogeochemistry of wetlands and the dominant 

nutrient removal pathways. A better understanding of wetland hydrologic processes offers 

valuable insights into the study and modeling of wetland nutrient removal and cycling. This 

study, performed in four stages, was undertaken to advance the current knowledge of wetland 

hydrologic modeling by introducing various models.  

In Chapter 2, two artificial neural network (ANN)-based models were developed and 

validated for predicting hourly water levels (WLs) in wetlands characterized by water tables at or 

near the surface that respond rapidly to precipitation. The first method makes use of hourly 

precipitation data and WL data from nearby sites. The second method is a combination of ANN, 

recursive digital filter, and recession curve method and does not require any nearby site. The 

proposed methods were tested at two headwater wetlands in coastal Alabama. Site 17 had two 

nearby sites whose WLs were highly correlated with Site 17’s. The root-mean-square error and 

Nash–Sutcliffe efficiencies were 2.9 cm and 0.98, respectively, when the first method was 

applied to Site 17. The second method was tested at Site 32. A combination of ANN and base-

flow separation methods proved to be very efficient for WL prediction at this site, especially 

when the duration of quick-response components of individual events was less than 6 h. The 

proposed methodologies, therefore, proved useful in predicting WLs in wetlands dominated by 
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both surface water and groundwater. This chapter has been published in Journal of Hydrologic 

Engineering. 

In Chapter 3, we built on the previous stage of the study by eliminating the need for WL 

data from nearby wetlands as inputs to the model. A hybrid modeling approach was developed 

for improved WL predictions in wetlands, by coupling the watershed model SWAT with ANNs. 

To demonstrate the utility of this approach, the developed model was used to assess the potential 

impacts of climate change on WL fluctuations at the headwater wetland site 17. Model results 

forecast potential increase in medium  (20th-80th percentile) WLs and a decreasing trend for low 

(0th-20th percentile) and high (80th-100th percentile) WLs. Water levels predicted with this hybrid 

model were also used to explore possible teleconnections between El Niño Southern Oscillation 

(ENSO) and WLs in the study wetland. Results showed that both precipitation and the variations 

in WLs were partially affected by ENSO. The findings suggested wetter conditions in winter 

during El Nino in Coastal Alabama. However, WL reduction in spring during El Nino is 

expected. Hence, understanding the hydrologic processes in wetlands going through wetting and 

drying cycles and the biochemical and ecological implications of those cycles is a critical task. A 

manuscript written from this chapter is currently under review in Hydrological Sciences. 

In wetlands going through wetting/drying cycles, simulation of nutrient processes and 

biogeochemical reactions in both ponded and unsaturated wetland zones are needed for an 

improved understanding of wetland functioning for water quality improvement. Sharifi et al. 

(2017) extended the ponded version of WetQual model (Hantush et al. 2013, Kalin et al. 2013, 

Sharifi et al. 2013) by adding a soil moisture accounting module and biogeochemical 

relationships for improved N and C cycles in variably saturated zones of wetlands. He used 

Richards’ Equation (RE) to calculate soil moisture dynamics. This resulted in an unnecessarily 
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complex model because not only RE equation is notoriously complex and numerically difficult 

to deal with, but also WetQual only needs average moisture content (it is a lumped model). In 

Chapter 4, a depth-averaged solution to the RE (called DARE) for one-dimensional vertical 

unsaturated flow is presented to predict the temporal variation of the average moisture content of 

the root zone and the layer below it in unsaturated parts of wetlands. This will make Sharifi et al. 

(2017) version of WetQual more practical and computationally efficient. The DARE model was 

verified versus Hydrus-1D which utilizes the full RE, using field data from the Hupselse Beek 

watershed in the Netherlands. Gravity drainage version of DARE works well with a comparison 

to Hydrus-1D, under all the assigned atmospheric boundary conditions of varying fluxes for all 

examined soil types including sandy loam, loam, sandy clay loam, and sand. A full-term version 

of DARE offers reasonable accuracy dominantly in the root zone.  

The focus of Chapter 5 was adding a flow routing module to ponded version of WetQual 

and creating a graphical user interface (GUI) that brings the hydrologic and water quality 

modeling under one umbrella. Earlier versions of WetQual required users take care of wetland 

hydrology independently. The developed GUI also provides opportunities for processing and 

visualization of input/outputs and helps the users identify any source of error in inputs or model 

simulations. In addition, the WetQual GUI was equipped with powerful post-processing and 

sensitivity analysis modules. The GUI performs Generalized Likelihood Uncertainty Estimation 

(GLUE) and Bayesian Monte Carlo simulation and Maximum Likelihood estimation (BMCML) 

analyses. The utility of the WetQual GUI was demonstrated through a case study in a small 

restored wetland called Barnstable wetland, located in Kent Island, Maryland. This GUI can be 

used as a learning tool for hydrology and water quality processes in wetlands. 
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Chapter 1 : Introduction 

Wetlands are areas in the landscape that are fully or partially saturated at least part of the 

year. They are transitional between terrestrial and open-water aquatic ecosystems. Wetlands 

provide many important ecosystem services including water quality improvement through 

filtering, water storage and providing habitat to many animals and plants. Wetlands can function 

as a sink, source, or transformer for nutrients. They act as transformers through processes such as 

denitrification, methanogenesis, and the microbial breakdown of organic matter (Reddy and 

Delaune, 2008).  Wetlands also contribute to flood mitigation and they recharge aquifers, 

allowing stored groundwater to sustain base flow in streams during dry periods (Hantush et al. 

2013).  

It is widely accepted that wetlands have a significant influence on the hydrologic cycle. 

Studies of chemical input-output relationships in wetlands are heavily dependent on hydrologic 

data (LaBaugh, 1986). Any alteration to wetland hydrology can change biogeochemistry of 

wetlands and dominant nutrient removal pathways (Kalin et al. 2017). Hence, wetland hydrology 

is of more importance when nutrient cycling/removal and their modeling are the ultimate goals 

of a study. Hydrology influences the physiochemical environment by transporting sediments, 

nutrients, and even toxic materials into wetlands (Mitsch and Gosselink, 2007). As a result, any 

significant changes in hydrologic conditions can lead to considerable disturbances in the wetland 

functionality.  

Hydrologic signature of a wetland (or hydroperiod) is the result of the balance between 

inflows and outflows of the water (called water budget), the wetland basin geomorphology and 

the subsurface conditions (Mitsch and Gosselink, 2000). In most wetland systems, water levels, 

as one of the most important hydrologic indices, are generally not constant and fluctuate 



2 
 
 

seasonally (riparian wetlands), daily or semi-daily (various types of tidal wetlands/marshes) or 

unpredictably (wetlands in low-order streams and coastal wetlands with wind-driven tides) 

(Mitsch and Gosselink, 2000). Constructed treatment wetlands, on the other hand, typically have 

some forms of water level control structure, thus there is little or no variation in the water level, 

except in stormwater treatment wetlands (Kadlec and Wallace, 2009). Wetlands in arid and semi-

arid areas are especially sensitive to hydrology. Interruption of a wetland’s inflow in such 

environments not only affects its hydrological regime, but can also significantly harm its 

ecological functions (Sarhadi and Soltani 2013).  

Alteration to wetland hydrology as a result of changes in the land use and land cover 

(LULC) of the watersheds draining to wetlands can include reduced groundwater recharge and 

increased surface runoff. These changes have been shown to cause increased flashiness, flow 

velocities, soil erosion and storm-flow frequencies while reducing baseflow levels (Ehrenfeld et 

al. 2003; Barksdale et al. 2014). For instance, if the watershed of a wetland urbanizes, the 

wetland in time can become channelized and turn into a flow-through system. This will reduce 

the retention time and change how the wetland filters pollutants. Also, the potential for 

hydrological export of particulate organic matter increases as a result of increase in magnitude 

and frequency of floods due to LULC changes (Barksdale et al. 2014). There is also considerable 

evidence that watersheds that drain wetland regions export more organic material but retain more 

nutrients than do watersheds that do not have wetlands (Mitsch and Gosselink, 2015). 

Furthermore, the impacts of climate change and variability on the hydrology of wetlands and the 

related alterations must be considered because those alterations can lead to a large shift in 

wetland distribution, extent and functioning. Accurately modeling the hydrology of wetlands can 

help better understand the potential impacts of any alterations to these important ecosystems. 
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Depending on the availability of data and understanding of the underlying processes, 

wetland hydrology studies can be performed through either data-driven or physically-based 

models. Data-driven modeling is focused on computational intelligence and machine learning 

techniques that can be utilized to construct models for complementing or replacing physically-

based models (Solomatine et al. 2008). Two types of modeling approaches can be distinguished 

in physically-based wetland hydrology modeling; one is developing wetland hydrology/hydraulic 

models, and the other is utilizing available watershed models by adding a wetland hydrology 

module or modifying their available modules. The first approach is limited in its application to 

natural wetlands because inflows to the wetlands, such as surface runoff, and groundwater 

discharge need to be provided by the user, which is usually done by running a watershed model. 

 Hydrology is the main driving force for many physical, chemical and biological 

processes in wetlands. To account for biogeochemical processes and their cycling in wetlands, 

two aspects of wetland hydrology should be considered; i) the effects of groundwater 

fluctuations on wetland soil moisture, and ii) the effects of seasonal water level patterns in 

wetlands and the rise and fall of wetland surface and subsurface water (Sharifi, 2013). In the 

latter, wetland soil transitions between saturated and unsaturated conditions, which requires 

consideration of soil moisture dynamics to capture the effects of unsaturated zones on the 

wetland hydrology and eventually wetland biogeochemistry.  

 

1. Problem Definition and Objectives of the Study 

Headwater wetlands are the source of many of our rivers and streams. Although not often 

displayed on maps, small headwater streams may account for more than 70% of the overall 

stream channel length in the United States (Lowe and Likens, 2005). Headwater wetlands are 
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also considered as one of the most important subclasses of wetlands located in coastal plains of 

the Southeastern U.S. They are critical components to the landscape because they occur at the 

interface of uplands and coastal creeks. Headwater wetlands have both ground and surface water 

dynamics. Quantifying the groundwater component of a wetland water budget is a very difficult 

endeavor (McKillop et al. 1999). To have a better understanding of groundwater/surface water 

contributions to headwater systems, there is a need to assess long-term WL data. WL prediction 

and assessment are of great importance especially in headwater wetlands because of their 

susceptibility to (i.e., more frequent, rapid, substantial changes in WL) changes in catchment 

land use/cover. When there is insufficient knowledge of the soil physical properties and 

hydrogeologic characteristics of the system, and accurate prediction is more important than 

understanding the physical processes, physically-based modeling may not be feasible; instead, 

data-driven models can replace physically-based models to obtain important hydrologic 

components of wetlands such as water level dynamics.  Despite the widespread applications of 

data-driven models, especially ANNs in hydrology and water resources field, very few studies 

have been reported on ANN applications to wetlands, particularly in headwater wetlands. None 

of them attempted to predict WLs at sub-weekly time scale. 

Given the facts above, the first objective of this study was to develop models to predict 

hourly WLs in wetlands characterized by water tables at or near the surface that respond rapidly 

to rainfall events. Consequently, two ANN-based methodologies are proposed for wetlands 

whose WLs show (i) high correlation, and (ii) low to no correlation with WLs from nearby sites. 

Unlike most previous studies, the first methodology does not require antecedent WL. Instead, 

this method benefits from the WL data from nearby sites and can be used to predict time series of 

WLs. The second method, on the other hand, requires antecedent WLs. It is a combination of 
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ANN, recursive digital filter and recession curve method and is more useful for predicting WL 

response to individual rain events or for filling short period data gaps under the absence of highly 

correlated nearby site. Development, application, and validation of such models are explained in 

Chapter 2.  

It is now widely accepted that climate is changing and by the end of this century, altered 

temperature and precipitation patterns can have considerable implications for all ecosystems, 

especially wetlands, whose ecological characters rely heavily on their hydrological regime 

(Acreman et al. 2009). Changes in wetland water balance due to climate change could alter 

wetland extent or cause wetland loss (Records et al. 2014). Wetlands are responsible for 20 to 25 

percent of global methane emissions to the earth’s atmosphere, yet they also have the best 

capacity of any ecosystem to retain carbon through permanent burial (sequestration); both 

processes have implications for climate change (Mitsch and Gosselink 2015). Among all eco-

hydrologic indices, WL plays a key role in controlling CH4 emissions by determining the 

interface between aerobic and anaerobic processes (above- vs. below-ground, respectively) 

(Kang et al. 2012). WL also determines the degree of CO2 production (Daulat and Clymo 1998; 

Chimner and Cooper 2003). Hence, having knowledge about WL changes under the future 

projected climate can provide the researchers with valuable insight into the probable CH4 and 

CO2 dynamics in wetlands. Climate variability is also known to have a significant impact on 

wetland CH4 emissions. Hodson et al. (2011) showed that global wetland CH4 variability is 

strongly related to El Niño Southern Oscillation (ENSO) variability. The large-scale response of 

wetland CH4 emissions to ENSO variability using satellite retrievals was reported by Pandey et 

al. (2017). To the best of my knowledge, there are limited number of studies that considered the 

global climate models (GCMs) in evaluating climate change effects on wetland hydrology; most 



6 
 
 

studies rely on scenario-based definition of climate change (i.e., degree changes in temperature 

or/and percentages of changes in precipitation). For instance, van der Valk et al. (2015) 

performed a scenario-based evaluation of climate change impacts on the Florida Everglades. 

Scenario-based modeling of climate change lacks capturing the variations in temperature and in 

particular the precipitation patterns.  

To build a predictive model capable of capturing physical processes to some levels, 

coupling a watershed model with ANN would be useful for wetland water level prediction. By 

running a watershed model, the hydrologic inputs from the contributing watershed to the wetland 

(i.e., slow and quick flow components) can be simulated. Input combinations to ANN play a 

crucial role in developing a robust model. In that sense, importing the baseflow and stormflow 

simulated by a watershed model as inputs to ANN can improve the accuracy of ANNs. To the 

best of my knowledge, no study has considered combining a watershed model with ANN to 

predict wetland WL, although there are studies that coupled watershed models and ANNs for 

streamflow prediction. 

The second objective of my dissertation was to develop a coupled SWAT-ANN model to 

predict WLs in headwater wetlands. The model was applied to a headwater wetland in coastal 

Alabama, USA to predict the WL dynamics of the wetland. The coupled model of this study 

overcomes some of the limitations of the two previously developed WL prediction models 

(which are explained in Chapter 2), which either required WL data from nearby wetlands or 

antecedent WL data from the target wetland itself as input. None of those models are suited for 

long-term predictions, which is needed to explore impacts of climate change and variability on 

wetland hydrology. The utility of the developed model was demonstrated with two applications. 

In the first application, potential impacts of future climate change on WLs were assessed. The 
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second application is related to climate variability rather than change where we explored the 

potential teleconnections between El Niño Southern Oscillation (ENSO) and WL fluctuations in 

the study wetland. This study is the first attempt, to the best of my knowledge, at evaluating the 

hydrologic function of a headwater wetland in Coastal Alabama under varying ENSO conditions. 

Chapter 3 explains the methodology behind coupled SWAT-ANN model and those two 

applications. The potential impacts of climate change and variability could have considerable 

implications on the wetland water budget and could make a flooded wetland become a non-

flooded wetland or vice versa. 

In wetlands going through wetting and drying cycles, simulation of nutrient removal and 

cycling in both ponded and unsaturated section of wetlands are needed. Sharifi et al. (2017) 

extended the ponded version of WetQual model to account for soil moisture dynamics in vadose 

zone of wetlands and consequently updated the N and C relationships for an improved wetland 

water quality modeling. They utilized a numerical solution of highly non-linear Richards’ (1931) 

Equation (RE). They reported frequent crashes in the numerical solution, specifically when a soil 

is close to saturation due to the hyperbolic nature of RE and high non-linearity of soil hydraulic 

functions. Hence, numerical solution of RE for the infiltration-redistribution cycle is extremely 

challenging and is not recommended for vadose zone hydrological processes in wetlands. 

Furthermore, Sharifi et al. (2017) considered a head-controlled boundary condition for the 

bottom node, assuming the existence of a non-fluctuating perched water table at the bottom of 

the soil column. There is a need for a model of less computationally intensive with a simpler 

mathematical representation that can account for soil moisture dynamics in the unsaturated zone 

of wetlands.  
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 The third objective of this study was to utilize a depth-averaged solution to RE for 

vertical unsaturated flow to develop a less computationally intensive solution for unsaturated 

flow conditions which can be used in WetQual model. This model is more efficient in 

computation time because of its simpler mathematical representation compared to the RE. This 

depth-averaged solution can also be a reliable replacement for highly non-linear RE utilized in 

some watershed scale models such as Gridded Surface Subsurface Hydrological Analysis 

(GSSHA) and MIKE SHE. A two-layer Depth-Averaged RE, called DARE was utilized and 

examined in this study. This method considers impact of groundwater level fluctuations. To that 

end, a gravity drainage condition, which assumes a uniform, vertical unit-gradient and ignores 

suction force was first considered. In the next step, negative pressure head component was added 

which led to the full version of DARE. The two layers include the root zone and the zone 

between roots and the water table. Heun’s method was adopted to discretize and solve the 

equations numerically. The methodology, verification of the model and the related case study are 

presented in Chapter 4. 

Although most of the commonly used hydrology and water quality models were initially 

developed using programming languages such as FORTRAN, they have some types of graphical 

user interfaces to help the users apply those models to their projects within a user-friendly 

environment. Over the years with the emerging of object-oriented languages (such as C++, and 

C#), user-friendly versions of those models have been developed. For instance, two well-known 

watershed hydrology and water quality models, SWMM and HSPF, were initially prepared in the 

FORTRAN environment, but they also have Windows-based (written in C/C++ languages) 

versions developed in the last two decades which give the user greater flexibility and more 

advanced interactive capabilities. A Graphical User Interface (GUI) can also be used for training 
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and educational purposes. Visualizing inputs/outputs, importing and exporting the data from/to 

other platforms, which include the outputs from other models to be used in the target model or 

vice versa, are some of the capabilities of the user interfaces developed for those models. Soil 

and Water Assessment Tool (SWAT; which is written originally in FORTRAN), as an example, 

has a user interface called ArcSWAT which was developed based on Geographic Information 

System (GIS) in Visual Basic (VB) (Olivera et al. 2004) which help divide watershed into 

subbasins and further into hydrologic response units. 

  The ponded version of WetQual does not include a hydrology component which limits its 

application. Hydrologic information (flow in and out of the wetland, depth-area-volume time 

series, etc.) needs to be provided as an input, which could be observed data or modeled. Adding 

a hydrology component is required in case the users do not have the pre-defined/measured 

hydrologic inputs for the wetland which is mostly the case. By solving continuity equation 

through a flow routing module, a hydrology component should read in the incoming time series 

(i.e., inflow, evapotranspiration (ET), precipitation and subsurface/groundwater flow), and 

geometry table (i.e., depth-area-volume-outflow relationship), to calculate the times series of 

outflow, wetland water level, surface area, and volume. An inclusion of the hydrology 

component in the WetQual will help conduct a smoother water quality modeling by providing the 

users with a better understanding of hydrologic processes in the study wetland. Furthermore, the 

users do not need to perform wetland hydrologic modeling individually outside the WetQual.  

  A better representation of physics and natural processes comes with a higher complexity 

in the model and consequently more uncertainties, and that is why a robust wetland water quality 

model can benefit from uncertainty and sensitivity analyses embedded into its graphical 

interface. WetQual as a process-based model includes a large number of parameters, and those 
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have to be estimated from a limited information or data available from wetland hydrology and 

water quality measurements. For a proper application of WetQual model, a Monte Carlo (MC) 

simulation of 50,000 or 100,000 runs are highly recommended. Generating an ensemble of 

WetQual outputs by conducting MC simulations is the first step in conducting uncertainty 

analyses. With the current format, the users have to do random parameter generation for a 

successful Monte Carlo simulation, uncertainty and sensitivity analyses outside of the WetQual 

in other software such as Excel. They also need to export their data to other platforms for 

qualitative and quantitative assessment of their results. It has text-based input/output interactions 

with no visualization interface which makes its application more complicated. A GUI would help 

to extend the model’s accessibility for public use.  

The fourth objective of this study was adding a flow routing module to ponded version 

of WetQual and creating a GUI that bring the hydrologic and water quality modeling under one 

umbrella. The process-based WetQual model simulates the water quality including nitrogen, 

phosphorous, carbon and sediment cycles in natural and constructed wetlands. WetQual can be 

used in continuously flooded environments or wetlands going through wetting and drying cycles. 

The GUI is being developed to handle flooded type of wetlands. The GUI is written in the 

C#.NET environment (within Visual Studio 2015). “C# is an elegant and type-safe object-

oriented language that enables developers to build a variety of secure and robust applications that 

run on the Microsoft .NET Framework” (MSDN 2015). The developed WetQual GUI has a 

hydrologic component that can calculate wetland outflow, depth, area and volume time series 

through flow routing. The GUI also simplifies the input/output transfer and provides users with a 

powerful visualization and post processing tool which include uncertainty and sensitivity 

analyses. By utilizing this GUI, users can perform the Generalized Likelihood Uncertainty 
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Estimation (GLUE) and Bayesian Monte Carlo simulation and maximum likelihood estimation 

(BMCML) analyses. GUI in its post processing module provides a tool for model predictive 

uncertainty analysis. By conducting GLUE, it provides estimate for the 95% prediction interval. 

Through BMCML it can provide 95% confidence limits. Sensitivity analysss based on 

Kolmogorov-Smirnov (K-S) test and dotty plots are also available in the GUI. The development 

of the GUI and its demonstration through a case study are explained in Chapter 5.  

 

2. Dissertation organization 

This dissertation is organized based on the following structure. Chapter 1 provides an 

introduction on the motivations behind this research and presents the research objectives. 

Chapter 2 describes the methodology and the application of ANN-based models for wetland WL 

predictions in response to objective 1. This chapter has already been published in “special issue: 

Advances in Wetland Hydrology and Water Quality Processes Modeling” in Journal of 

Hydrologic Engineering. Chapter 3 explains the methodology behind the coupled SWAT-ANN 

model, its verification, and two applications in response to the second objective of the study. In 

the first application, potential impacts of future climate change on WLs are assessed. The second 

application is related to climate variability rather than change. This chapter has been submitted to 

Hydrological Sciences Journal and it is currently under review. Chapter 4 explains the 

development and verification of depth-averaged Richards’ equation and the associated case 

study, in response to the third objective of the study. The target journal for chapter 4 is Journal 

of Hydrology. Chapter 5 provides the details on the development of WetQual GUI, and the 

structure of the GUI is explained in depth with a case study. We hope we can publish this chapter 

in Environmental Modeling & Software. Chapter 6 presents a summary of the entire research and 
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provides a conclusion with major findings of this study. It also provides suggestions for relevant 

research in the future. 
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Appendix 

A Review on Wetland Hydrology/Hydraulic Modeling 
 

Introduction 

Studies of chemical input-output relationships in wetlands are heavily dependent on 

hydrologic data (LaBaugh, 1986). Even slight changes in wetland hydrologic conditions can 

affect soil biogeochemistry and consequently nutrient cycles; the biota may respond with 

considerable changes in species composition and richness and in ecosystem productivity (Mitsch 

and Gosselink, 2000). The flow rate across a wetland is controlled by topography and ground 

slope, water depths, vegetation type and density, and the degree and type of channelization 

(Hammer and Kadlec, 1986). Hence, hydrology and hydraulics of wetlands need to be 

understood well for modeling wetland biogeochemical processes as well as for defining 

hydrologic connectivity of wetlands and their functionality at a broader scale, (e.g., watershed 

scale). In this section, by focusing on the philosophical progression of modeling approaches, we 

review various types of wetland hydrology/hydraulic models and approaches with various levels 

of complexity. 

The history of contemporary wetland hydrology modeling goes back to the 1980s when 

the wetland vegetation effects on overland flow were explicitly taken into account by Kadlec et 

al. (1981) and Hammer and Kadlec (1986). Before that, hydrologic modeling in wetlands were 

limited to ecosystem and regional models for general water budget calculation purposes, and 

hydrodynamic transport models to simulate streamflow and storm runoff. However, none of 

these models were truly capable of describing overland flow of a thin water sheet impeded by 

wetland vegetation (Hammer and Kadlec, 1986). Generally, two types of modeling approaches 
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can be simply distinguished; one is developing wetland hydrology/hydraulic models, and the 

other is utilizing available watershed models by adding a wetland hydrology module or 

modifying their available modules. The first approach is limited in its application to natural 

wetlands because inflow to the wetland, such as surface runoff, groundwater discharge, etc., 

needs to be provided by the user, which is usually done by running a watershed model.   

 

Wetland hydrology/hydraulics 

Hydrologic signature of a wetland (or hydroperiod) is the result of the balance between 

inflows and outflows of the water (called water budget), the wetland basin geomorphology and 

the subsurface conditions (Mitsch and Gosselink, 2000). In most wetland systems water levels, 

as one of the most important hydrologic indices, are generally not constant and fluctuate 

seasonally (riparian wetlands), daily or semi-daily (various types of tidal wetlands/marshes) or 

unpredictably (wetlands in low-order streams and coastal wetlands with wind-driven tides) 

(Mitsch and Gosselink, 2000). Constructed treatment wetlands, on the other hand, typically have 

some forms of water level control structure, thus there is little or no variation in the water level, 

except in stormwater treatment wetlands (Kadlec and Wallace, 2009). However, many have 

climatic or seasonal variations that result in WL changes. Wetlands in arid and semi-arid areas 

are especially sensitive to hydrology. Interruption of a wetland’s inflow in such environments not 

only affects its hydrological regime, but also can significantly harm its ecological functions 

(Sarhadi and Soltani 2013).  

Water can enter a wetland via streamflow, overland runoff, groundwater discharge and 

precipitation. Similarly, wetlands can lose water via streamflow, groundwater recharge, and 

evapotranspiration. Being stochastic in nature, the inflows and outflows could be extremely 
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variable in most wetlands (Kadlec and Wallace, 2009). Surface flow routing in a wetland system 

can be described using a simple flow continuity equation (Hantush et al. 2013) with adding tidal 

effects: 

𝜙𝜙𝑤𝑤 
𝑑𝑑𝑑𝑑𝑤𝑤
𝑑𝑑𝑑𝑑

= 𝑄𝑄𝑖𝑖 ± 𝑄𝑄𝑔𝑔 − 𝑄𝑄𝑜𝑜 − 𝐴𝐴𝑃𝑃𝑇𝑇 + 𝐴𝐴𝑖𝑖𝑃𝑃 ± 𝑄𝑄𝑇𝑇    (1) 

where, Vw is the water volume of wetland surface water (L3); A is the wetland surface area (L2); 

Qi is the volumetric surface inflow rate (including flooding streams) (L3T-1), Qg is groundwater 

discharge or recharge (L3T-1), Qo is wetland discharge (outflow) rate (L3T-1), ip is precipitation 

rate (LT-1), ET is evapotranspiration rate (LT-1), QT is tidal inflow or outflow and 𝜙𝜙𝑤𝑤 is effective 

porosity of wetland surface water (since biomass occupies a part of the submerged wetland 

volume). The terms in the equation vary in importance depending on the type of wetland. 

Furthermore, not all the terms in the above hydrologic budget equation apply to all wetlands.  

Wetlands can be highly heterogeneous systems. Therefore, when modeling movement of 

the surface water, there may be a need to compartmentalize the wetland into small homogenous 

units or cells. Often, the major factor in deciding whether to compartmentalize or not is the 

available knowledge or the lack of knowledge about the wetland characteristics and the data 

availability. In the single compartment case, the movement of water is modeled with a simple 

water budget, similar to Eq. (1), to quantify the changes in average water depth and volume in 

time. When heterogeneity cannot be ignored, efficiency can be increased by subdividing the 

wetland into a number of cells that interact with each other. A dynamic water mass balance 

model calculates the water level at each cell. In the water balance calculations flow exchanges 

among the cells should be considered, which can be expressed by Eq (2). Two examples of 

compartmental wetland model are Dall’O’ et al. (2001) and Sharifi (2013), which will be 

scrutinized in detail later on.  



16 
 
 

𝜙𝜙𝑤𝑤 
𝜕𝜕𝑑𝑑𝑤𝑤
𝜕𝜕𝑑𝑑

= ∑𝑄𝑄𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑎𝑎𝑎𝑎𝑔𝑔𝑒𝑒 + ∑𝑄𝑄𝑏𝑏𝑜𝑜𝑏𝑏𝑎𝑎𝑑𝑑𝑎𝑎𝑏𝑏𝑏𝑏 + (𝑄𝑄𝑖𝑖 + 𝑄𝑄𝑔𝑔 − 𝑄𝑄𝑜𝑜 − 𝐴𝐴𝑃𝑃𝑇𝑇 + 𝐴𝐴𝑖𝑖𝑃𝑃 ± 𝑄𝑄𝑇𝑇)               (2) 

where, Qexchange is the flow exchanged between neighboring cells and Qboundary is the flow across 

the cell boundary.  

 

Mathematical Representation of developed/applied wetland Hydrology/Hydraulics 

models/modules 

Several mathematical models have been developed within the past three to four decades 

for modeling hydrology and hydraulics of wetlands. Table 1.1 provides a summary of some of 

the promising wetland hydrology/hydraulic models and modules (i.e., a new component added to 

an existing model). In the table information about the type or dimension of the developed/applied 

models, specific wetland types for which these models have been developed for and the study 

area where the models were applied to are also given. A water balance (budget) equation, as 

discussed earlier, is usually the first step in almost all models. Zero-dimensional water balance 

models cannot represent spatial variability and multiscale hydrological processes (Moffett et al. 

2012). Examples to the zero-dimensional, lumped wetland hydrology/hydraulic modeling are 

Konyha et al. (1995), Zhang and Mitsch (2005), Dadaser-Celik et al. (2006), Liu et al. (2008), 

Villa and Tobon (2012), Feng et al. (2013) and Hughes et al. (2014). Dall’O’ et al. (2001) 

developed a zero-dimensional model, but the model allows for multiple compartments in 

horizontal and vertical directions. Sharifi (2013) also provided a zero-dimensional but 

compartmentalized model in horizontal direction. Since the inflows and outflows at many 

wetlands sites have been observed in more than one direction (Kazezyilmaz-Alhan et al. 2007), 

the zero-dimensional models may not be the best viable option to accurately capture the water 

depth changes in space and time.    
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Vegetation mats present an obstruction to flow, comprising a doubly porous medium, 

with plant stems and litter forming fine-scale porosity, while hummocks, islands, and channels 

resulting in a coarse-scale porosity (Hammer and Kadlec, 1986). To account for the effects of 

vegetation density and bed-shape irregularities (hummocks and depressions) on the flow and 

from hydraulic standpoint, the general approach is the utilization of continuity of mass, and 

momentum conservation equations, coupled with an equation for frictional resistance. The earlier 

studies on overland flow in wetlands mainly adapted open channel flow formulas (Kadlec and 

Wallace 2009). Manning’s equation is the most widely used flow equation for uniform open 

channel and overland flows. However, there is a fundamental problem with the utilization of the 

Manning’s equation to wetland surface water flows. Manning’s equation requires flow to be 

turbulent, whereas free water surface (FWS) wetlands are almost always in a laminar or 

transitional flow regime (based on the open channel flow criteria of Re<2000) (Kadlec and 

Wallace, 2009). The other difficulty in the application of open channel concepts to wetlands is 

that the frictional effects in open channels are associated primarily with drag exerted by channel 

bottom and sides while the resistance to flow in wetlands is dominated by drag exerted by the 

stems and litters (Kadlec and Wallace, 2009). As a result of the difficulties inherent in the 

application of the Manning equation to wetland systems, Kadlec’s (1990) proposed the following 

power law equation for overland flow in wetlands: 

𝑞𝑞𝑖𝑖 = 𝐾𝐾𝑑𝑑𝛽𝛽𝑆𝑆𝑓𝑓,𝑖𝑖
𝛼𝛼       (3) 

where 𝑞𝑞𝑖𝑖 is specific discharge (m/s), with three constants: a depth component β, a slope 

component α, and a premultiplier (or conductance coefficient of equation) K (m(1- β)s-1). In the 

equation d is the average depth of water in meters and Sf,i is the friction slope in direction i. The 

values of α, β and K are ranging from 0.7 to 1.0, 2.5 to 3.75 and 0.37*108 to 28.5*108, 
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respectively, according to Kadlec (1990). More information regarding these values can be found 

in Kadlec (1990) while to the best of author’s knowledge, these values have been reported from 

very limited studies and there is a need to gather more information from different types of 

wetlands having various vegetation densities. Therefore, modelers must be cautious in their 

applications with these range of values.   

The transient surface water flow can be modeled by the equations of continuity and 

momentum (Restrepo et al. 1998). For wetlands, where ground-surface slopes are gentle, the 

acceleration terms in Saint Venant equations are likely to be very small and can be neglected 

(Weinmann and Laurenson, 1979; McKillop et al. 1999). Thus, the “diffusive wave” 

approximation works well in most wetlands. The diffusion wave equation is obtained by 

combining the continuity and momentum equations and neglecting the local and convective 

acceleration terms. With the frictional and gravity effects in balance, flows through a wetland 

environment can be modeled using an appropriate mass balance and a relationship between 

velocity and hydraulic gradient (as an expression of power law) (Hammer and Kadlec, 1986). 

Hammer and Kadlec (1986) adapted the friction (or power) and Darcy’s laws into the 1-D 

diffusion wave equation to model surface and subsurface flows. Another application of friction 

law by using 1-D diffusion-based model is the work of McKillop et al. (1999). For the sake of 

clarity, a clean version of the equations mixing power law with diffusion wave equation can be 

expressed as  

                   𝜙𝜙𝑤𝑤 
𝜕𝜕ℎ
𝜕𝜕𝑑𝑑

= 𝜕𝜕
𝜕𝜕𝑒𝑒

(𝐾𝐾𝑑𝑑𝛽𝛽+1 𝜕𝜕ℎ
𝜕𝜕𝑒𝑒

) ± (𝐹𝐹)                                          (4)  

where, F is the inflow/outflow fluxes (LT-1) (precipitation, evapotranspiration, etc.). 

When no terms in the Saint Venant equation are ignored, it becomes dynamic wave 

equation. Several wetland hydrology models implemented the full dynamic wave equation in one 
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dimension. For instance, the Wetland Dynamic Water Budget Model (WDWBM) developed by 

Walton et al. (1996) utilized 1-D dynamic wave for surface water flow and Darcy's law for the 

variably-saturated horizontal groundwater flow. As presented in Table 1.1, Kazezyilmaz-Alhan 

et al. (2007) used 1-D diffusion wave equation for water quantity and 1-D advection-dispersion-

reaction equations for water quality modeling. Kazezyilmaz-Alhan et al. (2007) utilized Darcy’s 

law to quantify the groundwater recharge/discharge where the unsaturated layer is thin and 

groundwater levels are close to the wetland elevations (shallow water table).  

Flows in wetlands can be characterized as shallow flow where the horizontal dimensions 

are dominant compared to the vertical extent. This is because the vertical component of water 

particle acceleration is negligible and the pressure variations can be assumed hydrostatic. In 

shallow flows horizontal mixing is of particular importance (Arega 2013). Wetlands are usually 

subject to periodic flooding (pulsing water levels) and drying events, which cause dynamic 

changes in water surface elevation, and as a response to this variation, the boundary lines 

between the water body and the land surface change position with time. Thus, one must deal with 

a so-called ‘moving boundary problem’ (Feng and Molz, 1997). Yuan et al. (2008) also 

emphasized that the moving boundary problem is a very important phenomenon in shallow water 

flows over wetlands and floodplains, particularly with regard to flooding. Hence, 2-D modeling 

is often needed to capture the horizontal mixing effects and to deal with the moving boundary 

conditions. 

Few studies on overland flow in wetlands have utilized the diffusive wave equations in 2-

D (e.g., Restrepo et al. 1998; Feng and Molz, 1997; Wilsnack et al., 2001; Min et al., 2010; 

Bolster and Saiers, 2002). The application of dynamic wave equations was also reported by 

Guardo and Tomasello (1995) and Thompson et al. (2004). Another examples is Arega (2013), 
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who coupled depth-integrated continuity and momentum equations with Lagrangian particle 

tracking for a tidal wetland.  

In the most complex case, a 2-D surface flow model is coupled with a 3-D subsurface 

flow model. These types of applications are the most computationally demanding ones and 

require a high level of expertise. For instance, Thompson et al. (2004) combined the 2-D Saint-

Venant (dynamic wave) equation for surface flow with the 1-D Richards’ equation for 

unsaturated flow and 3-D saturated subsurface flow. 

 

Quantifying the Effects of Groundwater in Wetlands 

As mentioned before, hydrology is the main driving force for many physical, chemical 

and biological processes in wetlands. To account for biogeochemical processes and their cycling 

in wetlands,  two aspects of wetland hydrology should be considered; i) the effects of 

groundwater fluctuations on wetland soil moisture and ii) the effects of seasonal pattern of water 

level in wetlands and the rise and fall of wetland surface and subsurface water (Sharifi, 2013). In 

the latter, the wetland soil transitions between saturated or unsaturated conditions, which require 

consideration of soil moisture dynamics to capture the effects of unsaturated zone in wetland 

modeling.  

A new compartmentalization scheme can be employed in wetlands exhibiting wetting and 

drying cycles following Sharifi (2013). In this scheme the wetland is divided into ponded and 

unponded compartments. To track the mass exchange between these two compartments, a 

temporary, transition compartment is needed, also called dummy compartment (Sharifi, 2013). 

Furthermore, to address wetland soil heterogeneity, non-linearity of physical properties in 

wetland soil and non-uniform root water uptake of wetland plants, a numerical solution of 
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Richards’s equation (Richards, 1931) was found to be useful and it was an example of 1-D 

modeling (in vertical direction) of unsaturated zone in WetQual model (Sharifi 2013). Thompson 

et al. (2004) had already reported the utilization of 1-D Richards’ equation for unsaturated flow 

and 3-D saturated subsurface flows using Boussinesq equation but they had used an existing 

model, MIKE SHE. These two studies, in theory are superior to those that utilized Darcy’s law in 

their 1-D mass balance equations (Hammer and Kadlec 1986; Kazezyilmaz-Alhan et al. 2007) 

because of the better representation of the physics. However, a key component, plant uptake 

effects on soil moisture redistribution, is missing in Thompson et al. (2004). On the contrary, the 

multidimensional WETLANDS model developed by Mansell et al. (2000) uses the 2-D surface 

flow equations and the Richards’s equation for subsurface porous media by considering the 

effects of plant uptake.  

It is necessary to mention that depending on the hydrogeologic formations of the study 

area beneath the wetland, utilization of non-linear and computationally demanding equations 

such as the Richard’s may not always be the best viable option. For example, application of the 

Richard’s equation to regional hydrologic systems that encompass hundreds to thousands of 

square kilometers will not result in a proper understanding of the surface/groundwater 

interaction.  

 

Wetland Hydrology/hydraulic modeling and its impact at the watershed scale 

Wetlands are one of the most important watershed microtopographic features that alter 

hydrologic processes (e.g., routing) and the fate and transport of various water quality 

constituents (e.g., sediment and nutrients) (Wang et al. 2010). Only a handful of watershed 

models consider wetlands in their computations, and they mostly do so by simply considering 
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zero-dimensional water balance equations. For instance, the SWAT (Soil and Water Assessment 

Tool) model treats wetlands and ponds similar and allows for only one wetland within each 

subbasin (Neitsch et al. 2011). Clearly, representation of wetland processes in SWAT is not 

sufficient, and has to be improved (Krysanova and Arnold, 2008). Hattermann et al. (2008) 

added a wetland module to the SWIM (Soil and Water Integrated Model) model, which is an 

adaptation of SWAT (Krysanova and Arnold, 2008). Hattermann et al. (2008) present two 

approaches which allow integration of the most important wetland processes in the SWIM 

model. Both approaches consider water and nutrient fluxes, but have different levels of 

complexity. The first (and simpler) approach considers seasonal river discharge and nutrient 

loads in catchments with wetlands. The second, more advanced approach is introduced at the 

level of hydrologic response units (HRUs), and takes into account fluctuations of groundwater 

table (Krysanova and Arnold, 2008). The Hydrological Simulation Program–Fortran (HSPF), 

although does not have a wetland module, some applications has been reported representing 

wetlands either as pervious landforms or as reach reservoirs with storage-attenuation 

characteristics. The former allows groundwater levels and the interaction between the saturated 

and unsaturated zones to be modeled where groundwater can rise through the original 

unsaturated zone and inundate the surface which is subject to evaporation and surface runoff 

(Said et al. 2007). The latter approach allows stage-dependent flow from the wetlands and 

interaction with the shallow groundwater system. Similar to HSPF, another widely used 

watershed model MIKE-SHE although does not have an individual wetland module, it has been 

used to model water movement in wetlands by coupling it with MIKE-11 (Thompson et al. 

2004). It’s worth noting that there is an option of “Two-layer water balance” for unsaturated flow 

calculations in MIKE-SHE for shallow water tables (such as swamps or wetlands areas) (MIKE 
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SHE, DHI, 2007). Fossey et al. (2015) is another good example to efforts integrating wetland 

hydrology modules into watershed models, in which they modified the HYDROTEL watershed 

model to better represent impacts of wetlands on the watershed hydrology. Through building the 

hydrologic equivalent wetlands (HEWs) using HYSITEL (a geographic information system), 

isolated and riparian wetlands are defined in HYDROTEL by a zero-dimensional, lumped water 

budget model, very similar to wetland modeling work of Liu et al. (2008). 

To the best of our knowledge, limited studies have tried to address the aggregate impacts 

of wetlands at watershed level and they mostly did this with lumped water budget models (e.g., 

Liu et al. 2008; Feng et al. 2013). Furthermore, quantifying the hydrologic functions of wetlands 

at the watershed scale cannot be achieved without assessing the surface water/groundwater 

interactions. Coupled surface water-groundwater models are important for assessing complex 

watershed scale questions because they consider feedbacks among the various water balance 

components (e.g. surface runoff, evapotranspiration and groundwater flows) (Golden et al. 

2014). In a watershed with a sufficiently dense distribution of geographically isolated wetlands 

(GIW), their hydrologic connections and the hydrologic functions they provide, could have 

important implications for flood regulation and mitigation of the future effects of climate and 

land use change; while quantifying the extent to which GIWs are measurably linked to surface 

water via surface and/or groundwater connections remains a fundamental research gap for 

informing unresolved science and policy questions (Golden et al. 2014). Golden et al. (2014) 

reported several watershed models that could be readily adapted to answer questions concerning 

geographically isolated wetland hydrologic connectivity which include SWAT, HSPF, 

DRAINMOD for Watershed (DRAINWAT) (Skaggs, 1978; Amatya, 1993; Amatya et al., 1997), 

TOPMODEL (Beven and Kirkby, 1979), Grid Based Mercury Model (GBMM) (Dai et al., 2005; 
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Tetra Tech, 2006) and Visualizing Ecosystems for Land Management Assessment (VELMA) 

(Abdelnour et al., 2011). 

 

Summary of Discussion/Future Outlook 

Several significant challenges that pose difficulties in wetland hydrology/hydraulic 

studies are non-linearity of soil characteristics in horizontal and vertical directions, impacts of 

vegetation communities on flow of water and nutrient cycling in water and soil (aerobic and 

anaerobic) columns. One of the most appreciable efforts related to soil moisture redistribution 

was done by Sharifi (2013). He reported frequent crashes in the numerical solution, specifically 

when soil is close to saturation due to the hyperbolic nature of Richard’s equation and high non-

linearity of soil hydraulic functions. Hence, numerical solution of Richard’s equation for the 

infiltration-redistribution cycle is extremely difficult and is not recommended for wetland 

modeling at watershed scale. There is a need for introducing a simplified model that can account 

for soil moisture redistribution in unsaturated zone and can be linked with watershed scale 

models such as SWAT (Arnold et al. 1998). 

The stochastic and dynamic nature of the water table in certain type of wetlands, such as 

tidal wetlands and ones with significant groundwater-surface water interaction, makes the 

problem more complicated. Bullock and Acreman (2003) reported that there is strong evidence 

that wetlands evaporate more water than other land types such as forests, savannah grassland or 

arable land. The other gap that can be addressed here is regarding evapotranspiration (ET) 

estimations especially when the water table falls below the ground surface. It seems that the 

previously developed wetland hydrology models have not utilized a dynamic procedure for ET 
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calculations based on shallow and deep water table. A stochastic description of water table 

fluctuations can be considered (Tamea et al. 2010; Laio et al. 2009; Tamea et al. 2009). 

The aggregate effect of wetlands in landscapes where many wetlands are hydrologically 

connected is particularly challenging. The connectivity of various hydrologic systems and the 

groundwater/surface water interactions at the watershed scale are influenced by many factors 

such as topology, topography, geology, and the climate of the region. Such interactions in 

wetlands are complex and an understanding of basic principles and physical laws governing 

exchange between groundwater and surface water is needed for modeling the interactions at 

multiple scales (Hantush et al. 2011). However, to deal with such complexities and to capture 

their relevant effects, utilization of the fully-integrated approaches or 3-D modeling efforts may 

not always be the best option, because of the need for detailed understanding of hydrogeology of 

underlying geologic formations of the wetlands and hydro-climatic forcings. Physically-based 

watershed models vary in complexity in handling surface water/groundwater interactions. 

Although Golden et al. (2014) have listed SWAT, HSPF, etc. as examples of watershed models 

that can be readily adaptable to address GIWs and their hydrologic connectivity, the lack of more 

detailed wetland hydrology modules and accordingly water quality components for wetland 

processes and nutrient cycling, limit their capabilities to accurately address this issue. 

Furthermore, one big challenge in incorporating a comprehensive wetland module to such 

watershed models is the complexity issue. Any wetland module should be consistent with their 

philosophy. Artificial intelligence (AI) models such as artificial neural networks (ANNs) can be 

viable options where observed hydrologic data (e.g. inflow, outflow, water depth, etc.) exists but 

there are no/lack of information on soil and hydrogeology of the system. Two examples of ANN 
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applications in wetland hydrology studies are Dadaser-Celik and Cengiz (2013) and 

Rezaeianzadeh et al. (2015).   

As discussed in this review, there is still a gap regarding the development of wetland 

hydrology models/modules that can be linked with large-scale watershed models. Because, 

watershed responses are partly controlled by the number of wetlands, area, and distribution, as 

well as connection paths (i.e., surface vs. subsurface). Furthermore, watershed discharge 

integrates the entire continuum of hydrological connectivity, not just rapid or surface-connected 

flow paths (Cohen et al. 2016). Most of the reported studies have treated the wetlands as a 

geographically isolated wetland (GIW) without any hydrologic connectivity, whereas the eco-

hydrological effects of wetlands and their hydrologic connectivity via surface and/or 

groundwater (Golden et al. 2014) should be considered at watershed scale. The study by 

McLaughlin et al. (2014) clearly shows GIWs can have significant nexus to navigable waters 

through wetland-groundwater interactions. Furthermore, existing watershed models often use 

zero-dimensional water balance equations that may not sufficiently capture inflow/outflow 

to/from the wetlands. Golden et al. (2016) for instance clearly showed the relative attenuating 

impacts of GIWs on streamflow through a watershed-scale analysis. To understand the aggregate 

impacts of GIWs, Rains et al. (2016) suggested the development of a classification system as the 

first step to defining regions or conditions under which GIWs have expected behaviors that can 

be studied in aggregate. They emphasized on regional-scale data collection and improving the 

resolution of remote-sensing datasets, and finally improving the sensitivity and accessibility of 

modelling/analytical tools that can be used to evaluate the aggregate effects of the portfolio of 

GIWs that emerge at the watershed scale. Eventually, although not discussed here, the impacts of 

climate change on the hydrology of wetlands and the related alterations must be considered 
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because those alterations as discussed by can lead to a large shift in wetland distribution, extent 

and functioning.  
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Table 1.1: Sample of wetland hydrology/hydraulic models/modules 
  

Model name/title Dimension/Scale Author(s) year *Remarks 

Dynamic Hydrologic Model of the 

Örtülüakar Marsh in Turkey 
Zero/monthly Dadaser-Celik et al. (2006) Lumped model, Marsh, Turkey, MATLAB software 

FEUWAnet Zero/daily Dall’O’ et al. (2001) 
Multi-box model, Riparian wetlands, Germany, C 

language 

A wetland module incorporated into 

SWAT model 
Zero/monthly Feng et al. (2013) Lumped in 1HRUs, Marsh, China 

MODFLOW Wetlands Package 2-D/daily Wilsnack et al. (2001) Diffusion-wave equation, Florida Everglades, USA 

A Model for Wetland Surface Water 

Dynamics 
1-D/daily Hammer and Kadlec (1986) 

Friction law in conjunction with mass balance,  
Peatland (also constructed wetlands), Michigan, USA  

Wetland water balance sub-model 

incorporated into Pitman monthly 

rainfall–runoff model 

Zero/monthly Hughes et al. (2014) 

Lumped model, wetlands, southern Africa where the 

downstream impacts of wetland storage are expected 

to be evident at the monthly time scale 

Wetland Solute Transport Dynamics 

(WETSAND) for both water quantity 

and quality modeling 

1-D/flexible Kazezyilmaz-Alhan et al. (2007) 

Diffusion wave equation for water quantity model, 

advection-dispersion-reaction (ADV) equations for 

water quality model, restored wetland system at 

Duke University,  North Carolina, USA 

Riparian wetland hydrologic module 

for embedding in SWAT 
Zero/daily Liu et al. (2008) 

Lumped model,  riparian wetlands,  southern Ontario 

of Canada, FORTRAN 

Modeling the rainfall-runoff response 

of a headwater wetland 
1-D/hourly McKillop et al. (1999) 

Friction law in conjunction with mass balance, 

headwater wetland,  southern Ontario, Canada 

Regional Simulation Model (RSM) 2-D/daily Min et al. (2010) 

Mass and momentum conservation (St. Venant 

equations), spatially distributed,  Florida Everglades, 

USA,  C++ 
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STELLA  Zero/daily Zhang and Mitsch (2005) 
Lumped model, created freshwater wetlands in Ohio, 

USA 

STELLA Zero/hourly Villa and Tobon (2012) Lumped model, created wetland, Colombia 

A coupled hydraulic–hydrologic 

modelling approach using MIKE21 

and a water balance model 

**2-D and Zero/daily Rayburg and Thoms (2009) 

Reynolds-averaged Navier–Stokes equations in 

hydraulic model and a lumped model for hydrology,  
floodplain–lake–wetland complex, New South 

Wales, Australia 

SWAMPMOD  Zero/daily Konyha et al. (1995) 

Lumped model, hypothetical stormwater wetland 

design located  at the outlet of a 20-ha watershed 

in central Illinois, USA, MicroSoft QuickBASIC. 

Wetlands Dynamic Water Budget 

Model (WDWBM) 
1-D/daily Walton et al. (1996) 

Momentum conservation equation, Swamp wetlands,  
Arkansas, USA 

2-D hydrodynamic model 

2-D/hourly interpolated 

probably based on daily 

time scale 

Arega (2013) 
depth-integrated continuity and momentum 

equations, tidal wetlands, South Carolina, USA 

Coupled MIKE SHE/MIKE 11  Multi-dimension/daily Thompson et al. (2004) 

2-D overland flow using full Saint-Venant (dynamic 

wave) equation, 1-D Richards’ equation for 

unsaturated flow and 3-D saturated subsurface flows 

using Boussinesq equation, grassland wetlands,  
southeast England 

WetQual 1-D/daily Sharifi (2013) 
1-D Richards’s equation for unsaturated flow, 

restored wetland,  Maryland, USA, FORTRAN 

WETLANDS Multi-dimension/daily Mansell et al. (2000) 
2-D Richards’s equation for subsurface flow, cypress 

pond, Florida, USA 

WETFLOW 2-D/flexible Feng and Molz (1997) 
Diffusion-based continuity, together with momentum 

equations for surface flow, upland wetland, 
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1Hydrologic response unit 
*Remarks: Three or four types of information are provided in this column; 1) the types of equations they are utilizing in one or higher dimensions, 

2) the type of wetland where the models have been applied 3) the country of study 4) the language/software of programming/developing the 

models (was not available for all studies). Note: lumped models refer to utilization of mass balance water budget equation without 

compartmentalization.  
** Two and zero-dimension for hydraulic and hydrology models.  
*** One and zero-dimension for hydraulic and hydrology models. 

 

 

 

 

 

 

 

 

Moundville, Alabama, USA 

A Wetland Simulation Module for the 

MODFLOW 
2-D/flexible Restrepo et al. (1998) 

Diffusion equation,  hypothetical isolated wetland, 

South Florida Water Management District 

(SFWMD), USA 

SHEET2D 2-D/flexible Guardo and Tomasello (1995) 
Continuity and momentum ( Saint Venant) equations,  

Florida Everglades, USA  

A surface-water flow model in 

wetlands 
2-D/daily Bolster and Saiers (2002) 

Diffusion-based continuity/momentum equations 

considering friction law,  Florida Everglades, USA 
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Chapter 2 : Wetland Water Level Prediction using ANN in Conjunction with 

Baseflow Recession Analysis 

Abstract 

This study introduces two artificial neural network (ANN) based methodologies to predict hourly 

water levels (WLs) in wetlands characterized by water tables at or near the surface that respond 

rapidly to precipitation. The first method makes use of hourly precipitation data and WL data 

from nearby sites. The second method is a combination of ANN, recursive digital filter and 

recession curve method and does not require any nearby site. The proposed methods were tested 

at two headwater wetlands in coastal Alabama. Site 17 had two nearby sites whose WLs were 

highly correlated to site 17’s. The RMSE and Nash-Sutcliffe efficiencies were 2.9 cm and 0.98, 

respectively when the first method was applied to site 17. The second method was tested at site 

32. For this the WL time series was separated into quick and slow response components. A 

combination of ANN and baseflow separation methods proved to be very efficient for WL 

prediction at this site, especially when the duration of quick response components of individual 

events were less than 6 hours. The proposed methodologies, therefore, proved useful in 

predicting WLs in wetlands dominated by both surface and groundwater.  
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1. Introduction 

Coastal wetlands are among the most important ecosystems in terms of the services they 

provide (e.g., water quality improvement, water storage, habitat), but they are also among the 

most vulnerable. One of the most important subclass of wetlands located in coastal plains of the 

southeastern U.S. are headwater wetlands because of their importance in protecting downstream 

aquatic resources by acting as natural filters for water quality (Savage and Baker 2007). 

Headwater wetlands are critical components to the landscape because they occur at the interface 

of uplands and coastal creeks. They are characterized by water tables at or near the surface that 

respond rapidly to precipitation (direct and/or return flow) and evapotranspiration (ET) (Noble et 

al. 2007). Conversion of forested land for urban development or agricultural production can 

result in significant alterations to streams, wetlands and other aquatic systems (DeLaney 1995; 

Messina and Conner 1998; Faulkner 2004; Barksdale et al. 2014). Changes in wetland hydrology 

as a result of modifications in watershed land use/cover can include reduced groundwater 

recharge, increased surface runoff and flashy behavior (Ehrenfeld et al. 2003; Barksdale et al. 

2014).  

Water levels (WL) in most wetlands are generally not constant and fluctuate seasonally 

(riparian wetlands), daily or semi-daily (various types of tidal wetlands/marshes) or 

unpredictably (wetlands in low-order streams and coastal wetlands with wind-driven tides) 

(Mitsch and Gosselink 2000). Headwater wetlands have both ground and surface water 

dynamics. Thus, WLs can be above or below the ground at any given time depending on the 

season and climatic conditions. The role of groundwater in maintaining the wetland character is a 

vital element of its support for wetland ecological functions, managing wildlife habitat (Taylor 

and Alley 2001) and maintaining the physical and chemical characteristics/conditions in the root 
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zone (Hunt et al. 1999). However, quantifying the groundwater component of a wetland water 

budget is a very difficult endeavor (McKillop et al. 1999). To have a better understanding of 

groundwater/surface water contributions to headwater systems, there is a need to assess long-

term WL data. WL prediction and assessment are of great importance especially in headwater 

wetlands because of their susceptibility to change (i.e., more frequent, rapid, large changes in 

WL) caused by changes in catchment land use/cover.   

Models can be used to simulate WLs when there is a need to assess wetlands under 

various conditions (Dadaser-Celik and Cengiz 2013). WLs can be predicted through physically-

based or data-driven models. Developing a physically-based model for assessing WL 

fluctuations requires proper characterization and synthesis of the aquifer parameters to describe 

the spatial variability of the subsurface hydrogeology and soil. (Taormina et al. 2012; Dadaser-

Celik and Cengiz 2013). When there is insufficient knowledge of the soil and hydrogeologic 

characteristics of the system, and accurate prediction is more important than understanding the 

physical processes, black-box type models can be viable options (Nourani and Mano 2007). 

Artificial neural networks (ANNs) are among the black-box type models that can be applied to 

capture non-linear behavior of complex systems. ANN models have been used in rainfall-runoff 

processes (Hsu et al. 1995; Dawson and Wilby 1998; Kumar et al. 2005; Rezaeian Zadeh et al. 

2010), streamflow forecasting (Kisi 2007; Yonaba et al. 2010; Isik et al. 2013), water quality 

(Singh et al. 2009; Kalin et al. 2010), and evaporation estimation (Kisi 2009; Tabari et al. 2010).  

Due to the complexity of hydrogeological systems, modeling groundwater levels using 

data-driven methods has been an attractive option to researchers lately. Previous studies have 

focused on predicting groundwater levels at monthly (Nayak et al. 2006; Nourani et al. 2008; 

Jalalkamali et al. 2011; Shirmohammadi et al. 2013), weekly (Mohanty et al. 2010; Karthikeyan 
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et al. 2013; Mohanty et al. 2013), daily (Sahoo and Jha 2013; Shiri and Kisi 2011; Shiri et al. 

2013) and six-hourly time intervals (Yoon et al. 2011). To the best of the authors’ knowledge, 

the only study on predicting hourly groundwater levels using ANN models is Taormina et al. 

(2012). They developed feed forward neural networks for long term simulation (up to several 

months) of hourly groundwater levels in a coastal unconfined aquifer near the Lagoon of Venice, 

Italy.  

Since headwater wetlands are dynamic systems, hourly WL data (which could again be 

below or above ground surface at a given moment, i.e. both surface and groundwater hydrology 

play key roles in WL fluctuations) are crucial in understanding the behavior of these systems 

under varying conditions. When they transition from more stable to flashier hydroperiods, they 

may lose their functioning capabilities. For instance, variations in WL within a given day were 

detected in wetlands influenced by varying levels of surrounding land use (Barksdale et al. 

2014). These variations are partially responsible for differences detected in amphibian habitat 

(Alix et al. 2014), forest connectivity composition and soil conditions (Barksdale and Anderson 

2014). The studies listed in the previous paragraph have all relied upon antecedent WL data as 

input to predict groundwater levels only. Therefore, they are not suitable for predicting WLs in 

wetlands impacted by surface and groundwater at hourly time scale. 

Despite the widespread applications of data-driven models, especially ANNs in 

hydrology and water resources field, very few studies on ANN applications to wetlands have 

been reported, particularly in headwater wetlands. One such study was carried out by 

Karthikeyan et al. (2013), who evaluated weekly time series of groundwater levels of a well in 

the uplands of a tropical coastal wetland. They used four and eight variables including rainfall, 

streamflow, evaporation and water level of the well with one-week lag (case one) and one-and 
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two-week lags (case two) as inputs to the ANNs and concluded that the model with four inputs 

(case one) outperformed the other combination. In another study, Dadaser-Celik and Cengiz 

(2013) developed a multi-layer perceptron (MLP) scheme to model monthly average WLs at the 

Sultan Marshes wetland in Turkey. The model inputs consisted of climatic (precipitation, air 

temperature, evapotranspiration) and hydrologic data (groundwater levels, spring flow rates, and 

preceding water levels). They concluded that ANN models have the potential to simulate 

monthly WLs in wetlands. Another example of data-driven method application for WL of 

wetlands is the study performed by Ali (2009). A dynamic multivariate Nonlinear Auto 

Regressive network with eXogenous inputs (NARX) combined with principal component 

analysis (PCA) was developed to predict weekly WLs in the Florida Everglade’s wetland 

systems. None of these studies attempted to predict WL at sub-weekly time scale. 

The objective of this study was to develop models to predict hourly WLs in wetlands 

characterized by water tables at or near the surface that respond rapidly to precipitation events. 

Consequently, two ANN-based methodologies are proposed for wetlands whose WLs show (i) 

high correlation, and (ii) low to no correlation with WLs from nearby sites. Unlike most previous 

studies, the first methodology does not require antecedent WL. Instead this method benefits from 

the WL data from nearby sites and can be used to predict time series of WLs. The second 

method, on the other hand, requires antecedent WLs. It is a combination of ANN, recursive 

digital filter and recession curve method and is more useful for predicting WL response to 

individual rain events or for filling short period data gaps under the absence of highly correlated 

nearby site. 
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2. Study Area and Data Sets 

The study wetlands are located in coastal Alabama in Southeast USA (Figure 2.1). This 

region is characterized by mild winters and hot and humid summers with mean annual 

temperatures ranging from 15 to 21˚C, and annual precipitation ranging from 125 to 180 cm 

which is fairly evenly distributed throughout the year (Noble et al. 2007). Headwater wetlands in 

coastal Alabama are groundwater driven and are usually located at the headwater reaches of first 

order streams (Noble et al. 2007). They tend to be fairly flat, however they normally occupy 

gradual slopes and often have hummock/hollow microtopography. These wetlands are typically 

comprised of alluvial soils that are classified as “wet loamy alluvial lands”, while the uplands are 

generally sandy soils derived from marine deposits (McBride and Burgess 1964). As part of a 

previous study to assess the impact of upland land use/cover on the behavior of headwater 

wetlands and their associated functions (Barksdale et al. 2014), hourly WLs in 15 headwater 

wetlands were monitored for 1 year (Figure 2.1). All the headwater wetlands were naturally 

groundwater driven, represented the upstream origin of local creeks and had no natural channel 

inflows. Historically, they were all fed primarily by shallow groundwater (except under more 

severe rain events). With development and other land use changes, the drainage has become 

enhanced into these wetlands and this has made many of the wetlands much more responsive to 

precipitation. In all cases, the small size and proximity of the catchments to these wetlands make 

them respond quickly to rainfall events as was evident in the monitoring data. Wetland water 

levels (relative to ground surface) were monitored in shallow wells using In-Situ Mini-Troll 500 

pressure transducers from February 2011 to March 2012 (Barksdale et al. 2014). Wells were 

located in the interior to best approximate conditions throughout the wetland. During the summer 



  

37 
 

and fall (June through November) of 2011, drought conditions persisted across the study area 

with the driest period occurring May–June (National Climatic Data Center, 2012). 

Most of the sites had periods of omitted data caused by pressure sensor drift or potential 

sensor fouling, varying from less than one to several months. In order to have a better 

understanding of the hydrology in these wetlands and relate them to the land use/cover 

conditions of their watersheds, the missing WLs needed to be predicted. The two models, which 

are discussed later, were tested at two sites: 17 and 32. Information regarding wetland sites and 

contributing watersheds are provided in Barksdale (2013) and detailed briefly here. Sites 17 and 

32 were both small wetlands (<1.0 ha) located in the southern portion of Baldwin County, 

Alabama (Figure 2.1). Wetlands typically occupied gradual slopes eventually draining to first 

order streams. Sweet bay (Magnolia virginiana) was the most common canopy tree species in 

these wetlands with other common species included red maple (Acer rubrum) and swamp tupleo 

(Nyssa biflora). Site 17 was located in the Fish River drainage basin in the southwest portion of 

the county. Watershed size draining to the wetland was 78 ha with mixed land use. Over half of 

watershed cover (54.7%) consisted of pine and mixed forest. Site 32 was located in the southeast 

portion of the county draining to Perdido Bay. Contributing watershed for this wetland was 128 

ha in size and also had mixed land use with 41.2% in forest and 27.3% in agriculture. These sites 

had no long period of missing data, thus provided a good opportunity to test the proposed 

models.  

Hourly prediction of WL data in headwater wetlands is a challenging task. Since the 

studied wetland systems respond quickly to rainfall events (see Figure 2.2 as an example), 

shorter duration (compared to the previous studies), i.e. hourly data was considered in this study. 
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Figure 2.2 clearly shows the instantaneous response of the WL at site 17 to a typical rainfall 

event that occurred on 07/22/2011.  

 

3. Model Development 

 As mentioned in the study objectives, two distinct models were developed for hourly WL 

predictions in headwater wetlands. Both models rely on ANN. Below we first provide a brief 

background about ANNs and then describe the two models. The models are applied to sites 17 

and 32 to demonstrate their usefulness. 

 

3.1 Artificial Neural Networks 

 An artificial neural network is made up of a number of interconnected nodes (called 

neurons) arranged into three basic layers (input, hidden and output). The input nodes represent no 

computations but distribute the inputs to the network. This kind of network is called multilayer 

feed forward, which is the most common ANN network, since the information passes one way 

through the network from the input layer to hidden and finally to the output layers (Dawson and 

Wilby, 1998). Mathematically, an ANN can be represented as: 
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where, wi represents the weight vector; pi is the input vector (i=1,…, n); b is the bias,  f  is the 

transfer function; and y is the output. By developing a multilayer feed forward back-propagation 

network, the network’s weights are modified by minimizing the error between the simulated 

output and the target. As described in the following sections, two different models were used in 

this study. For each model and depending on the site where the models were applied, inputs and 
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outputs varied. In general inputs were some combinations of water levels from nearby sites, 

antecedent water level and hourly precipitation. Model outputs were always the water levels at 

different lead times. A simple trial and error procedure was carried out to test tangent sigmoid 

and logistic sigmoid transfer functions for hidden layer. The tangent sigmoid transfer function 

performed better and thus was implemented for training and testing of the proposed networks. 

Other studies (e.g. Rezaeian Zadeh et al. 2010, Yonaba et al. 2010) also found similar results. 

The same procedure was carried out to find the best training algorithm and finally scaled 

conjugate gradient (scg) training algorithm was chosen (Rezaeian-Zadeh et al. 2013c). Readers 

are referred to Rezaeian Zadeh et al. (2010), Rezaeianzadeh et al. (2013a, b) and Rezaeian-Zadeh 

et al. (2012) for details about artificial neural networks (ANNs), transfer functions and scaled 

conjugate gradient (scg) training algorithm. A three-layered network was developed and 

considered to best fit the data. Before applying the ANN models, the data were normalized to 

[0.05, 0.95] using a linear transformation (Rezaeian Zadeh et al. (2010); Rezaeianzadeh et al. 

(2013a, b) : 
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where, Xn and Xr are the normalized and the original inputs and Xmin and Xmax are the minimum 

and maximum of input data, respectively. 

 One of the steps in finding the best network architecture is determining the optimum 

number of neurons in the hidden layer. The networks resulting in the smallest error were selected 

for WL prediction. One neuron in the output layer was selected. The target error for the training 

of networks was set to 10-4 (dimensionless). The training of networks was stopped when their 

performances reached the target error. Tansig (i.e., tangent sigmoid) and purelin (linear) transfer 

functions were used in the hidden and output layers, respectively. The normalized data were 
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employed to train each of the models, all of which being three-layered networks. The model 

outputs were then transformed back to the original scale and then the root mean square error 

(RMSE), coefficient of determination (R2), Nash-Sutcliffe coefficient (NS) (Nash and Sutcliffe, 

1970) and Akaike’s information criterion (AIC) (Qi and Zhang 2001; Kalin et al. 2010) 

performance indices were computed for the training and test data sets. Program codes were 

written in MATLAB language for the ANN simulations (MathWork, Inc. 2010).  

Depending on the availability of data (length or number of data) and the scales (hourly, 

daily, monthly, etc.) of modeling, various types of splitting the whole dataset have been 

considered in training and testing phases of ANN models by different researchers. To the best of 

our knowledge, there are no precise guidelines for splitting the dataset into training and testing 

phases. For instance, Kisi (2009) used 80% of the whole data for training and the remaining 20% 

for testing in monthly scale and Isik et al. (2013) used 60% of data for training and the rest (40% 

of data) for testing and validation phases in daily scale. Generally, 50% to 50% (Kisi 2007), 60% 

to 40% (Sarangi and Bhattacharya 2005), 70% to 30% (Mutlu et al. 2008) and 80% to 20% (Kisi 

2011; Kisi 2009 ) are the most common splitting portions in the application of ANN models in 

hydrology when the aim is to divide the dataset into two parts. In this study, roughly 70% of the 

data was used for training and the remaining 30% was used for testing. 

 

3.1.1 Continuous Simulation Model (CSM) 

In this model, nearby sites having WLs highly-correlated with those from the target site 

are selected and WL data from those sites are considered as inputs to the ANN model along with 

hourly precipitation data from target site at various lags. Spearman's rank correlation ( sr ) was 

used to decide on the inputs to construct the ANN models, which is given by (Press et al. 1996): 
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where, id is the difference between each rank of corresponding values of WL at each site and 

those values of target site and n is the number of observations. The value of sr  lies between ─1 

and +1. Values closer to ±1 indicate close association between two variables. A negative sign 

indicates inverse association. In this study, sites having sr >0.9 were subjectively assumed to be 

highly-correlated sites. Anything with sr  below 0.7 would explain no more than 50% (𝜃𝜃𝑠𝑠2 of 0.7 

→ 0.49) of the variation in data. Thus, those sites were deemed not highly-correlated. 

Accordingly, an ANN-based prediction model was developed that utilize precipitation of the 

target site and WL data from two to three nearest sites whose WLs are highly-correlated with the 

target site’s WLs. 

 

3.1.2 Event-based Model (EBM) 

Sometimes there are no nearby sites or WLs of the existing ones are weakly correlated 

with the target site’s WLs. In those cases, an alternative method is needed. For this purpose, the 

hydrographs of the WLs are first split into high and low frequency (quick and delayed response) 

components using a digital filter. Quick response component only exists during rain events. An 

ANN model was then developed based on antecedent WLs and hourly precipitation data to 

predict the WLs (high+low frequency) for the high frequency periods. The WLs during rainless 

periods were estimated using the recession curve method.  

 

 

 



  

42 
 

3.1.2.1 Recursive Digital Filter  

Despite the importance of groundwater flows in the budget of many wetlands, there is a 

poor understanding of groundwater hydraulics in wetlands, particularly in those that have 

organic soils (Mitsch and Gosselink, 2000), meaning that distinguishing between surface and 

groundwater is not a simple task. In this study, the recursive digital filter technique was used to 

1) separate the high and low frequency components of WLs, which are sometime only 

groundwater, sometime groundwater + surface water; and 2) to help estimate the recession 

constant (Kr) needed for the recession curve method (see below) in estimating low frequency 

components. It should be mentioned that this technique is commonly used in separating 

streamflow hydrographs into baseflow and direct runoff components, while its application for 

WL data will be discussed here. This procedure is based upon a recursive digital filter commonly 

used in signal analysis and processing (Lyne and Hollick, 1979; Nathan and McMahon, 1990). 

The filter is of the simple form: 

                                              )(
2
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+
+= kkkk yyff αα                                                    (4) 

where, kf is the filtered quick response at the thk sampling instant, ky  is the original data, and α 

is the filter parameter. The filtered slow response component is thus kkk fys −= . Nathan and 

McMahon (1990) suggested that α typically varies from 0.90 to 0.95. In this study the filter was 

applied to site 32 using various filter parameter values within and outside this proposed range. 

The optimum value for α was determined by trial and error. As a starting point, the WL time 

series and the corresponding low frequency component time series generated with α=0.90 were 

plotted on the same graph. At the optimal value of α, the inflection points on the WL time series 

should correspond to the separation points of the two time series. The α parameter was 
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progressively updated so that most inflection points coincided with the separation points. The 

point of inflection is located where the curvature vanishes. This point is the onset of a linear line 

on the recession limb of WL hydrograph in semi-logarithmic scale.  

 

3.1.2.2 Recession Curve Method 

The recursive digital filter method is only useful in separating the WL time series into 

high and low frequency components. It cannot be used for predictive purposes. Therefore, the 

recession curve method, which is another technique normally used with streamflows, was 

adopted to predict the WLs during no-rain periods (i.e. no high frequency component). Recession 

curve, which is part of the hydrograph that gradually decays during rainless periods, can be 

estimated by streamflow recession analysis of historic streamflow measurements (Linsley et al., 

1958; Burnash et al., 1973; Leavesley et al., 1983). The recession curve is described by:   

                                                                          t
r

Koqtq *=                                                     (5) 

where, qt = flow at time t with respect to an initial flow qo and Kr is the recession constant. It’s 

not feasible to have individual Kr values for the recession constant for each storm event. An 

optimal, representative Kr value is needed to predict WLs. This value was obtained again by trial 

and error so that most inflection points coincided with the separation points obtained from the 

recursive digital filter. In this study, WLs replaced flow. Equation (5) is then used to estimate the 

recession limbs (periods with no high frequency component) of the WL time series.  

  

4. Results and Discussion 

The CSM and EBM were evaluated at sites 17 and 32, respectively. Recall that CSM 

requires nearby sites where there is a strong correlation between their WL data and the modeled 
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site’s WL data, while EBM does not have such a requirement and as a matter of fact does not use 

any WL data from other sites. Site 17 was selected to test the CSM because it meets the 

condition of having highly correlated nearby sites. Site 32 was selected to test the EBM, because 

the correlation between its WLs and nearby site’s WLs are not too strong. However, CSM was 

applied to site 32 too to demonstrate the need for EMB model when the nearby site’s WLs are 

not highly correlated to the target site’s WLs. 

 

4.1 Continuous Simulation Model (CSM)  

The Spearman's rank correlation (which does not assume any relationship between 

variables) of WL values of site 17 with those values from site 26 and 9 were equal to 0.93 and 

0.90, respectively, which indicates a very strong correlation. The correlation of WL from site 17 

with hourly precipitation values with one- and two-hour lag (P17(t-1), P17(t-2)) were equal to 

0.10 and 0.11 respectively. Table 2.1 summarizes the input combinations used in Eq. (1) and the 

model performances with the train and test data. The best model (#4 in Table 2.1) has 

RMSE=2.92 cm, NS=0.98, and R2=0.99 in test phase. It also has the lowest AIC, confirming that 

it is also the most parsimonious model for site 17. Although there is very small correlation 

between WL values of site 17 and hourly precipitation values, according to the results of 

developed models from Table 2.1, it is obvious that addition of precipitation values appreciably 

reduced the RMSE. The time series and WL exceedance curve (similar to flow duration curve) of 

simulated and observed WL data in the testing phase for site 17 is shown in Figure 2.3 for the 

best model. It is apparent that the proposed model is very effective when there are nearby sites 

with highly correlated WL data. Note that addition of more sites, which had lower correlations 

than 26 and 9, did not improve the model performance any further.  
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The model was also tested at site 32, the WLs of which do not have very high 

correlations with the WLs of nearby sites. The results of Spearman's rank correlation for WL of 

site 32 with those values from site 40, 9 and 17 were equal to 0.51, 0.45 and 0.54, respectively. 

The correlation of WL data from site 32 with hourly precipitation values of site 32 with one- and 

two-hour lags (P32(t-1), P32(t-2)) were almost the same, equal to 0.13. Table 2.2 presents the 

various input combinations and the corresponding model performances. Although model 

performances shown in Table 2.2 are good (RMSE=3.34 cm, NS=0.80), the simulated versus 

observed time series and the WL exceedance curve have periods with large errors (Figure 2.4). 

The WL exceedance curve also shows consistent overestimation, especially during low WL 

conditions (Figure 2.4). Systematic errors most of the time are easier to fix. These types of errors 

are related to model structure and could be stemming from ignoring some of the processes or due 

to use of some redundant variables [Kalin et al. 2010]. The overestimation (systematic) error 

here may have originated from lack of information regarding having no site highly-correlated 

with site 32.  

To check if the proposed methodology (CSM) works well with site 32, comparison of the 

flashiness may also be useful. A modified version of the Richard-Baker flashiness index (RB) 

(Baker et al. 2004) proposed by Barksdale et al. (2014) is as follows:  
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The RB values for simulated and observed WLs were 11.63 and 7.80, respectively. The 

model predicts a 50% more flashy system. In spite of the differences in RB and discrepancies 
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between observed and simulated times series as well as WL exceedance curves (Figure 2.4), 

depending on the expectations, CSMs can still be a viable option. The maximum error in the 

predicted WL was never higher than 10.0 cm in Figure 2.4. Further, as long as highly correlated 

neighboring sites have long records, CSM can be used to generate more accurate time series 

compared to EBM.  

 

4.2 Event-based Model 

 This model was tested at site 32, the WLs of which have low correlations with the WLs 

of its nearby sites. The optimal values of the filter parameter α and the recession constant Kr 

were both 0.97 at this site. One needs to be careful in this model when the data is split into 

training and testing datasets. After separating the WL hydrograph into high and low frequency 

components, there will be far less data in the former category. Therefore, it may not be wise to 

select for example the first 70% of data for training and the rest for testing phases. Further, when 

there are distinct dry and wet periods, the trained network may not capture both wet and dry 

conditions, and thus cannot be considered as an optimally trained network. Note that existence of 

long dry and/or wet periods is not an issue with CSM, because nearby sites providing WL data 

into the model will have signatures of those climatic conditions.  

To remedy this problem, Bartlett’s test and t-test (Rezaeian-Zadeh et al. 2010) were used 

to obtain the optimal datasets for training and testing phases of high frequency components. The 

homogeneity of variances for two populations can be determined by using Bartlett’s (or 

Levene’s) test. According to the results of Bartlett’s test (p-value = 0.42), the t-test must be 

performed based on the equal variances assumption. The p-value for t-test was equal to 0.12, 

which is higher than α=5% meaning there is no statistically significant difference between 
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training and testing datasets, and both include high, mean and low values of data. Figure 2.5 

shows the boxplots for training and testing datasets.   

Twelve separate event-based ANN models were developed to predict one- to six-hour 

ahead WLs (i.e. WL (t+1), WL (t+2),…, WL (t+6)) during periods when there is a rain event. In 

each model only precipitation and the WL corresponding to the time of rainfall onset were used 

as inputs to the Eq. (1). The only differences were time lags. Table 2.3 presents the input 

combinations of these twelve event-based models (EBMs). Models are divided into two sets. The 

first set uses hourly precipitation values, whereas the second set relies on aggregate precipitation 

values from the onset to the prediction time step (Table 2.3). The ANN models were trained and 

tested using those optimally split datasets. Figure 2.6 shows the scatter plots of observed and 

simulated WLs using EBMs with the first set of inputs. The RMSE, NS and R2 values for the one-

hour ahead WL prediction are 1.4 cm, 0.98 and 0.98, respectively. For 6 hour ahead predictions, 

those values are 2.7 cm, 0.92 and 0.92, respectively. Figure 2.6 and the performance metrics 

clearly indicate the ability of EBMs with separately-included precipitation data in predicting 

WLs up to six hours lead time during rain events. As expected, the skill of the model diminishes 

gradually from one- to six-hour lead time.  

Note that the discussed event-based ANN models were trained and tested based on the 

inclusion of precipitation values separately. The other version of event-based ANN models 

(using the second set of inputs) were developed to see how accurate they can work in comparison 

to the aforementioned version (see Table 2.3). In this version, in addition to WL data, a 

summation of precipitation values up to the target time step was imported into the model as 

input, meaning that there is only one precipitation value imported to this version of EBMs. This 

exercise could be helpful in cases only total rainfall depth is available. Figure 2.7 displays the 
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scatter plots of observed and simulated WLs for these six event-based ANN models. It is evident 

that this version works well up to three hours ahead WL prediction compared to the previous 

version of the EBMs (see Figure 2.6). On the other hand, the differences in model performances 

are quite discernable from four to six-hour ahead WL prediction. The EBMs with hourly 

precipitation data inputs outperformed the other one. A comparison of AIC values from Figure 

2.6 and Figure 2.7 for each time step demonstrates this fact. Roughly, all six models that rely on 

hourly precipitation data are the more parsimonious compared to their counterparts, which use 

cumulative precipitation.  

For estimating the recession limb of WL hydrographs, the recession curve method was 

used with Kr = 0.97. Recession parts of eight WL hydrographs were randomly selected from site 

32 (based on the inflection points of WL hydrograph on semi-logarithmic plot). The results of 

the proposed method for recession hydrographs are presented in Table 2.4. According to this 

table, the maximum and the average of error for these randomly selected recession hydrographs 

were 7.2 % and 2.7 %, respectively. This shows that the proposed method can be efficient when 

splitting the hydrograph into two high and low frequency components. Two recession 

hydrographs among those randomly selected recession limbs are displayed in Figure 2.8 for 

demonstration purposes.    

 

5. Summary and Conclusions 

In this study two different methodologies were proposed for hourly WL prediction in 

headwater wetlands and applied to wetlands in south Alabama. A correlation analysis was 

employed to find the associations between/among the target wetland site and nearby site(s). In 

the case of having high correlation between WLs of target and nearby sites, CSM (used WL data 
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from nearby sites and hourly precipitation data as input) is advised. Otherwise, EBM is 

recommended which require partitioning of the WL hydrographs into high and low frequency 

components. One of the advantages of CSM is that it does not require any antecedent WL data 

from the target site while almost all the previous studies relied upon antecedent WL data in 

developing their models. Twelve separate event-based ANN models were developed to predict 

one- to six-hour ahead WLs using antecedent WL and precipitation as inputs. In six out of the 

twelve models, hourly precipitation values were used and the rest used cumulative precipitation. 

Note that in CSMs, WL data from neighboring wetland sites were imported to the ANN models, 

while in EBMs antecedent WLs were one of the drivers of the developed ANN models. 

Eventually, a combination of recursive digital filter (to separate the high and low frequency 

components and to find the optimal recession constant) and the recession curve methods was 

employed to estimate the low frequency components.  

Water level in wetlands, which is one of the most important hydrologic indices, can be 

simulated through physically-based models or empirical methods (black-box models). 

Physically-based models consider the ground/surface water interactions and doing so requires 

proper characterization and synthesis of the surficial aquifer parameters to describe the spatial 

variability of the subsurface hydrogeology and soil. For instance, groundwater flow patterns and 

their interactions with surface water at the watershed scale are influenced by topography, 

geology, and the climate of the region. Furthermore, physically-based watershed models vary in 

complexity in handling the surface water groundwater interactions (Hantush et al. 2011). Such 

interactions in wetlands are complex and an understanding of basic principles and physical laws 

governing exchange between groundwater and surface water is needed for modeling the 

interactions at multiple scales (Hantush et al. 2011). In this study, accurate prediction was more 
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important than understanding the physical processes. In the first method, CSM tried to 

continuously capture water level fluctuations without paying attention to the surface water 

groundwater interaction. The second method, which is a combination of EBM, recursive digital 

filter and recession curve methods, distinguishes between high and low frequency components of 

water level hydrograph and provides some level of understanding about the groundwater 

contribution (low frequency component) to the wetland system. Since the headwater wetland 

systems studied in this paper are naturally groundwater driven, recursive digital filter and the 

recession curve analyses reveal the groundwater contribution to these headwater wetlands. On 

the other hand, EBM captures the contribution of both surface water and groundwater 

components. 

The following conclusions can be drawn from this study: 

1. The use of WL data from nearby sites highly correlated with those from the target site 

can help prediction of hourly WL fluctuations with high accuracy (CSM).  

2. Although Spearman's rank can be employed to find the sites with high level of 

correlation, those results cannot be considered as the ultimate input combinations. For 

example, adding hourly precipitation data having low correlation with WLs considerably 

improved the accuracy of the CSM.  

3. In cases with low to no correlation between WL data from target site and those from 

nearby sites, partitioning the WL hydrograph into two high and low frequency 

components is proposed. Application of recursive digital filter can be an effective method 

in separating continuous hydrographs and finding the optimal recession constant.  

4.  Bartlett’s test and t-test are prominent tools for finding the optimal training and testing 

datasets in the cases of developing event-based ANN model.  
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5. EBMs showed the ability to accurately predict WLs up to six hours lead time during rain 

events.  

This study showed that ANN models can effectively be used to predict WL data in 

headwater wetlands that respond quickly to rainfall events. The results showed that the 

methodologies introduced in this study are capable of capturing the oscillations in WL at hourly 

resolution especially in the headwater sites located in southeastern US. Having the ability to 

predict WL in the headwater wetlands with flashy behavior, the proposed methods in this study 

should be applicable to other systems/locations with various (low to high) oscillations. The 

results of this study and the proposed methods can be useful to eco-hydrologists, wetland 

researchers as well as decision makers to fill the missing data and/or predict WL several steps 

ahead of time.  

 

Acknowledgment: This study was partially funded by Mississippi-Alabama Sea Grant 

Consortium (MASGC), U.S. Environmental Protection Agency (EPA) and Auburn University 

Center for Environmental Studies at the Urban-Rural interface (CESURI).  

 

 

 

 

 

 

 

 



  

52 
 

Table 2.1: Performances of continuous simulation model (CSM) with various input combinations 
for predicting water levels (WL) at site 17. 

Note: ANN (α, β, γ): α= number of inputs; β and γ are the number of neurons in the hidden and output 

layers of ANNs, respectively. ST=site; WL= water level, 

 

 

 

 

Table 2.2: Performances of continuous simulation model (CSM) with various input combinations 
for predicting water levels (WL) at site 32. 

 
   Training phase  Testing phase  

Model 
no. Input combinations ANN         

(α, β, γ) 
RMSE 
(cm) NS R2 AIC RMSE 

(cm) NS R2 AIC 

1 WLST-40 (1,8,1) 6.96 0.60 0.60 1.686 7.42 0.54 0.56 1.742 
2 WLST-40, WLST-9 (2,8,1) 6.88 0.61 0.61 1.676 5.91 0.72 0.72 1.545 
3 WLST-40, WLST-9, WLST-17 (3,8,1) 6.40 0.66 0.66 1.614 3.66 0.85 0.89 1.130 
4 WLST-40, WLST-9, WLST-17, P32(t-1) (4,8,1) 5.41 0.76 0.76 1.468 3.34 0.80 0.91 1.052 
5 WLST-40, WLST-9, WLST-17, P32(t-1), P32(t-2) (5,8,1) 5.48 0.75 0.75 1.480 3.36 0.72 0.91 1.058 

Note: ANN (α, β, γ): α= number of inputs; β and γ are the number of neurons in the hidden and output 

layers of ANNs, respectively. ST=site; WL= water level. 

 

 

 

 

 

 

 

 

   Training phase  Testing phase  
Model 

no. Input combinations ANN         
(α, β, γ) 

RMSE 
(cm) NS R2 AIC RMSE 

(cm) NS R2 AIC 

1 WLST-26  (1,8,1) 8.12 0.93 0.93 1.820 4.96 0.96 0.97 1.392 
2 WLST-26, WLST-9  (2,8,1) 8.15 0.93 0.93 1.823 3.70 0.98 0.98 1.139 
3 WLST-26, WLST-9, P17(t-1)  (3,8,1) 7.53 0.94 0.94 1.755 3.96 0.97 0.98 1.199 
4 WLST-26, WLST-9, P17(t-1), P17(t-2)  (4,8,1) 6.88 0.95 0.95 1.676 2.92 0.98 0.99 0.932 
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Table 2.3: Input combinations of event-based ANN models to predict one- to six-hour ahead 
WLs at site 32. 

Prediction 
lead time Models that use hourly precipitation  

Models that use 
cumulative 

precipitation 
WL  (t+1) WL(t), P(t), P(t+1) WL(t), Psum(t: t+1) 
WL  (t+2) WL(t), P(t), P(t+1), P(t+2) WL(t), Psum(t: t+2) 
WL  (t+3) WL(t), P(t), P(t+1), P(t+2), P(t+3) WL(t),*Psum(t: t+3) 
WL  (t+4) WL(t), P(t), P(t+1), P(t+2), P(t+3), P(t+4) WL(t), Psum(t: t+4) 
WL  (t+5) WL(t), P(t), P(t+1), P(t+2), P(t+3), P(t+4), P(t+5) WL(t), Psum(t: t+5) 
WL  (t+6) WL(t), P(t), P(t+1), P(t+2), P(t+3), P(t+4), P(t+5), P(t+6) WL(t), Psum(t: t+6) 

           *Psum(t: t+3)= P(t) + P(t+1) + P(t+2) + P(t+3) 

 

 

Table 2.4: Performances of the recession curve method for predicting the recession limb of WL 
hydrograph. 

Start date Initial WL (cm) Ending WL 
(cm) 

Estimated ending WL 
(cm) Error (%) 

03/06/2011 26.08 24.72 25.04 1.30 
03/11/2011 26.30 24.28 25.35 2.18 
03/20/2011 18.89 18.52 18.79 1.49 
07/24/2011 31.01 30.24 30.38 0.47 
09/04/2011 47.65 44.46 46.81 5.29 
12/07/2011 11.89 11.19 11.33 1.25 
02/25/2012 41.38 40.95 41.01 0.15 
03/18/2012 32.32 28.16 30.17 7.17 
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Figure 2.1: Location of study sites (data from Esri, HERE, DeLorme, TomTom, Intermap, 
increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, 
Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, MapmyIndia, 
OpenStreetMap contributors, and the GIS User Community) 
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Figure 2.2: Observed water level (WL) response to a rainfall event on 07/22/2011 at site 17 as an 
example to the flashy behavior of headwater wetland systems. 
 

 

 

 

 

 

 

 

 

 

Figure 2.3: (a) Time series of simulated and observed WLs in the testing phase of site 17 with 
the Continuous Simulation Model (CSM) in 2012; (b) corresponding WL exceedance curves 
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Figure 2.4: (a) Time series of simulated and observed WLs of site 32 in the testing phase using 
the Continuous Simulation Model (CSM) in 2012, (b) corresponding WL exceedance curves. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Boxplot for optimal training and testing datasets of WLs from the periods with rain 
events (i.e., they have high frequency components). 
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Figure 2.6: Scatter plots for predicted WLs of site 32 in testing phase using the Event Based 
Model (EBM); this model uses hourly precipitation values as opposed to cumulative 
precipitation values (see Figure 2.7). 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Scatter plots for predicted WLs of site 32 in testing phase using the Event Based 
Model (EBM); the summation of precipitation values up to target time step was considered in 
this model. 
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Figure 2.8: Recession WL hydrograph estimation using recession curve method from (a) March 
6, 2011; to March 7, 2011; (b) from December 7, 2011; to December 17, 2011, at site 32. 
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Chapter 3 : An Integrated Approach for Modeling Wetland Water Level 
Prediction: Application to Headwater Wetlands in Coastal Alabama 

 

Abstract 

A hybrid modeling approach was developed in this paper for improved water level (WL) 

predictions in wetlands, by coupling a watershed model with artificial neural networks (ANNs). 

In this approach, baseflow and stormflow estimates from the watershed draining to a wetland are 

first estimated using an uncalibrated Soil and Water Assessment Tool (SWAT). These estimates 

are then combined with meteorological variables and utilized as inputs to an ANN model for 

predicting daily WLs in wetlands. Application of the developed methodology to a typical 

headwater wetland in coastal Alabama, USA, showed great promise. To demonstrate the utility 

of this approach, the developed model was used to assess the potential impacts of climate change 

on WL fluctuation in this headwater wetland. Historical observations (1951-2005, representing 

baseline period) and future projections from 11 downscaled, and bias-corrected global climate 

model (GCM) outputs of precipitation and temperature (2006-2060, representing future period) 

were used to predict WLs over 1951-2060. Trend analysis shows both increasing and decreasing 

trends in the predicted WLs for the future period compared to the baseline period. The 

decreasing trends are dominant particularly in low and high WLs whereas the medium WLs 

show increasing trends. Water levels predicted with this hybrid model were also used to explore 

possible teleconnections between El Niño Southern Oscillation (ENSO) and WLs in the study 

wetland. Results show that both precipitation and the variations in WLs were partially affected 

by ENSO. The findings suggest wetter conditions in winter regarding precipitation during El 

Niño in Coastal Alabama. However, WL reduction in spring during El Niño is expected. 

Precipitation and WLs are also correlated to ENSO with up to two-month lag time. The findings 
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of this study and the developed methodology/tools are useful to predict long-term WLs in 

wetlands, identify the probable future trends of wetlands’ hydro-climatic components and 

eventually construct more accurate restoration plans under climate change.  

 

 

1. Introduction 

Headwater wetlands are among one of the most important types of wetlands located in 

coastal plains of southeastern U.S. Since they are often the source of first and second order 

perennial streams, they act as natural filters for water quality improvements and therefore are 

crucial in protecting downstream aquatic systems (Savage and Baker 2007). Headwater wetlands 

are characterized by water tables at or near the surface that respond rapidly to rainfall events 

(Noble et al. 2007). Driven by both groundwater and surface water inputs, water levels (WLs) 

can be above or below the ground at any given time depending on the season and climatic 

conditions (Rezaeianzadeh et al. 2015); this dynamic behavior creates a complex ecosystem. The 

seasonal patterns of WL in a wetland (i.e., hydroperiod) exhibit annual variation in response to 

climatic and antecedent conditions (Mitsch and Gosselink, 2015). Hence, long-term WL 

predictions can be a valuable source for evaluating these year to year variabilities. Furthermore, 

WL prediction and assessment are of great importance especially in headwater wetlands since 

changing climate and land use/cover in watersheds draining to the wetlands affect WLs.  

It is now widely accepted that climate is changing and by the end of this century 

temperature and precipitation patterns will be altered (Acreman et al. 2009), which can have 

considerable implications for all ecosystems, especially wetlands, whose ecological characters 

are highly dependent on their hydrological regime. Changes in wetland water balance due to 
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climate change could alter wetland extent or cause wetland loss (Records et al. 2014). For 

instance, van der Valk et al. (2015) reported that a 25–30 cm increase or decrease in inter-annual 

WLs of Florida Everglades can lead to changes in the number and composition of vegetation 

communities. Wetlands are responsible for 20 to 25 percent of global methane emissions to the 

Earth’s atmosphere, yet they also have the best capacity of any ecosystem to retain carbon 

through permanent burial (sequestration); both processes have implications for climate change 

(Mitsch and Gosselink 2015). Among all eco-hydrologic indices, WL plays a key role in 

controlling CH4 emissions by determining the interface between aerobic and anaerobic processes 

(above- vs. below-ground, respectively) (Kang et al. 2012). WL also determines the degree of 

CO2 production (Daulat and Clymo 1998; Chimner and Cooper 2003). Hence, having knowledge 

about WL changes under the future projected climate can provide the researchers with valuable 

insight into the probable CH4 and CO2 dynamics in wetlands.  

All wetlands have both intra-annual (i.e., seasonal) and inter-annual (i.e., variation from 

year to year) WL fluctuations (McVoy et al. 2011). Such WL fluctuations have direct control on 

the composition of plants and animal communities/assemblages in wetlands (van der Valk et al. 

2015). Hodson et al. (2011) demonstrated that climate variability has a significant impact on 

wetland CH4 emissions. Studies have shown that rainfall and streamflow in the southeastern US 

are influenced by El Niño Southern Oscillation (ENSO). ENSO is a periodic fluctuation in sea 

surface temperature (El Niño) and the air pressure of the overlying atmosphere (Southern 

Oscillation) across the equatorial Pacific Ocean. In the Southeast US, large seasonal to 

interannual climate variability results in frequent droughts and is majorly influenced by ENSO. 

These ENSO-induced droughts cause severe water shortages that get exacerbated by increased 

urbanization and irrigation (Singh et al. 2015). Headwater wetlands provide many benefits to 
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Coastal Alabama and it is highly likely that their functioning (i.e., pollution reduction/ water 

quality improvement, water storage and providing habitat to many animals and plants) are 

impacted by ENSO, which has not been investigated before. Thus, the potential impacts of 

climate change and variability on wetlands and their eco-hydrological characters are of great 

importance. Utilizing the entire WL dataset from 15 headwater wetlands of coastal Alabama, 

Barksdale et al. 2014 observed that WLs were normally several decimeters below the ground 

surface.  

WL in wetlands can be simulated by physically-based models (e.g., FEUWAnet by 

Dall’O’ et al. 2001; SWATRE by Spieksma and Schouwenaars, 1997; MIKE SHE by House et 

al. 2016) or empirical methods (e.g. Rezaeianzadeh et al. 2015). While the former need 

information regarding soil, geomorphology, and hydrogeology of the system (draining watershed 

and wetland), which makes their development and application difficult particularly in data-scarce 

watersheds, the latter rely heavily on the hydro-climatic forcing (and their fluctuations) to the 

system. Artificial intelligence-based models such as artificial neural networks (ANNs) can be 

viable options where observed hydro-climatic data (e.g. inflow, outflow, water depth, 

precipitation, and temperature, etc.) exists but there is a lack of information on soil and 

hydrogeology of the system. Two examples of ANN applications in wetland hydrology studies 

predicting WLs are Dadaser-Celik and Cengiz (2013) and Rezaeianzadeh et al. (2015).  

Transition in a watershed’s land use and land cover (LULC) can alter groundwater 

recharge and surface runoff regimes. If the abutting uplands drain to a wetland, which is the case 

in headwater wetlands, these changes can adversely impact wetland’s hydrology (Barksdale et al. 

2014). Because of the land-use developments and increases in imperviousness in the watersheds 

draining to wetlands, headwater wetlands in time can become more of a flow-through system. 
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Consequently, the retention time and the performance of the wetland in filtering pollutants can 

be altered. Evidence of such impacts and alterations of wetland hydrology have been reported by 

Barksdale (2013) and Barksdale et al. (2014) in headwater wetlands of coastal Alabama. Nilsson 

et al. (2013) pointed out that understanding the cumulative effects of wetlands at the watershed 

scale needs a good understanding of WL fluctuations. The need for incorporating 

groundwater/surface water components from contributing watersheds in wetland WL prediction 

studies is very clear. 

To build a predictive model capable of capturing physical processes to some extent, 

coupling a watershed model with ANN would be useful. By running a watershed model, the 

hydrologic inputs from the contributing watershed to the wetland (i.e., slow and quick flow 

components) can be simulated. Input combinations to ANN play a crucial role in developing a 

robust model. In that sense, importing the baseflow and stormflow simulated by a watershed 

model as inputs to ANN can improve the accuracy of ANNs. To the best of authors’ knowledge, 

no study has considered combining a watershed model with ANN to predict wetland WL, 

although there are studies that coupled watershed models and ANNs for streamflow prediction. 

For instance, Loukas and Vasiliades (2014) coupled the University of British Columbia (UBC) 

watershed model with ANN to predict streamflow. Noori and Kalin (2016) showed that 

combining ANN and watershed models can help overcome the limitations of each model and 

result in a stronger model for streamflow prediction.  

I developed a coupled SWAT-ANN model in this paper to predict WLs in headwater 

wetlands. I then apply the model to a headwater wetland in coastal Alabama, USA to predict the 

WL at the deepest point of the wetland. The study wetland is a typical headwater wetland in 

coastal Alabama and is representative of many in the region since this wetland is one of those 15 
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selected by Barksdale et al. (2014) to properly represent the surrounding LULC of the region. 

Also, groundwater discharge (from surrounding uplands) is a major hydrologic input to these 

headwater wetlands (Noble et al. 2007). Baseflow and stormflow estimates from the SWAT 

model are fed into the ANN model as forcing data to capture slow and quick flow components 

from the contributing watershed to the study wetland. Observed WL data are then used to train 

and test the ANN model. The coupled model of this paper overcomes some of the limitations of 

the two previously developed WL prediction models by Rezaeianzadeh et al. (2015), which 

either required WL data from nearby wetlands (continuous model) or antecedent WL data from 

the target wetland itself (event based model) as input. None of those models are suited for long 

term predictions, which is needed to explore impacts of climate change and variability on 

wetland hydrology. The utility of the developed model is demonstrated with two applications. In 

the first application, potential impacts of future climate change on WLs are assessed. The second 

application is related to climate variability rather than change where we explore the potential 

teleconnections between El Niño Southern Oscillation (ENSO) and WL fluctuations in the study 

wetland. This study is the first attempt to the best of our knowledge looking at the hydrologic 

function of a headwater wetland in coastal Alabama under varying ENSO conditions. 

 

2. Study Area and Data Sets 

The study wetland is located in Baldwin County, Alabama, USA (Figure 3.1). Mild 

winters and hot and humid summers are the main climatic characteristics of the region. Mean 

annual temperature and precipitation are 19.5˚C and 1650 mm, respectively. Headwater wetlands 

in coastal Alabama are groundwater driven and are usually located in the headwater reaches of 

first order streams (Noble et al. 2007). Hummock/hollow microtopography and gradual slopes 
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are the terrain characteristics. The soils of these wetlands are classified as “wet loamy alluvial 

lands” (McBride and Burgess 1964). The study wetland is a representative of the headwater 

wetlands throughout the southern Alabama. Figure 3.1a shows the 15 headwater wetlands that 

have been originally studied by Barksdale et al. (2014). The minimum and maximum elevation 

of the study wetland is 7.12 m and 10.24 m, respectively. Those values are 7.12 and 24.84 m for 

the contributing watershed. The study wetland is located within the Fish River watershed in the 

southwest portion of the county, which drains into Weeks Bay, a sub-estuary of Mobile Bay. The 

delineated watershed area (based on the outlet of the wetland) draining to the wetland is 83.57 ha 

with a mixed land use/cover (Figure 3.1b). Pasture/hay and evergreen forests are the dominant 

land uses in the watershed (Figure 3.1c). The dominant hydrologic soil groups are C (i.e., slow 

infiltration rate covering 41.3% of the area) and A (with high infiltration rate and 40% of the 

area), respectively. According to the information derived from National Wetlands Inventory 

(NWI), the study wetland is comprised of three sections which includes PFO1C (0.737 ha), 

PFO4C (0.485 ha) and PFO1C (0.314 ha) classification codes. These three sections are called 

Freshwater Forested/Shrub Wetland types by NWI which are classified as inland wetlands. 

Precipitation, minimum and maximum temperature data were obtained from the NOAA 

Robertsdale (USC00016988) climatic station. Wetland WLs (relative to the ground surface) were 

monitored at hourly time scale at the deepest point of the wetland in shallow wells using In-Situ 

Mini-Troll 500 pressure transducers from February 2011 to March 2012 (see Barksdale et al. 

2014). 
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3. Methodology 

3.1 Soil and Water Assessment Tool (SWAT)  

SWAT is a semi-distributed, process-based watershed model that operates on a daily 

basis (Arnold et al. 1998). Division of a watershed into a number of subbasins is needed and 

done when different parts of the watershed are dominated by land uses or soils dissimilar enough 

to impact hydrology (Neitsch et al. 2011). Hydrologic response units (HRUs) are lumped land 

areas within the subbasin that consist of unique land cover, soil and management combinations 

(Neitsch et al. 2011). In this study, the thresholds for land use, soil and slope overlay, were all set 

to 10%, and the number of subbasins and HRUs were 5 and 74, respectively. Soil data from 

SURRGO, and land use/cover data from 2011 NLCD were used. Lu et al. (2005) recommended 

Hamon method (Hamon 1961) for regional applications of potential evapotranspiration (PET) 

estimations in the southeastern United States. This method was used for PET calculation, which 

utilizes the daily mean air temperature. Daily average temperatures were obtained by simply 

averaging daily minimum and maximum temperatures. A three-year warm-up period was 

considered for SWAT run, and the baseflow and stormflow estimates generated from SWAT (no 

calibration) were regarded as two hydrologic inputs to the ANN model. Observed flow data 

(outflow from the watershed or inflow to the wetland) were not available for model calibration, 

which is the case for many natural wetlands. Natural headwater wetlands may not have surface 

inflow.  
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3.2 Artificial Neural Networks (ANNs) 

An ANN consists of a number of neurons organized into three basic layers (input, hidden 

and output). Multilayer feed forward is one of the most common ANN which is utilized in this 

study. Input combinations, the number of neurons in the hidden layer, transfer function and 

training algorithms are the most important components of an ANN structure. Input combinations 

and transfer function are discussed in the following sections. For this study, with the available  

hourly WL data from February 2011 to March 2012, we obtained the best architecture to be (8, 6, 

1) where those values refer to the number of inputs, and the number of neurons in hidden and 

output layers, respectively. A simple trial and error procedure was carried out to find the best 

training algorithm and Levenberg–Marquardt training algorithm was chosen for this study. 

Before applying the ANN models, the observed data were normalized to [0.05, 0.95] using a 

linear transformation (Rezaeian Zadeh et al. 2010; Rezaeianzadeh et al. 2015):  

                                                 
minmax

min9.005.0 XX
XX

nX −
−

+=                                        (1) 

where, Xn and X are the normalized and original inputs and Xmin and Xmax are the minimum and 

maximum values of the original data, respectively. 

The normalized data were employed to train the ANN model. The model outputs were 

then transformed back to the original scale and then the performance indices were computed for 

the training and test data sets. In this study, roughly 70% of the data was used for training and 

the remaining 30% was used for testing. To distribute the high, mean and low WL values into 

both training and testing datasets, the data were randomly selected (Rezaeianzadeh et al. 2015). 

This randomization eliminates potential biases that may arise when there are distinct dry and wet 

periods. The randomization is done by randomly distributing the data into training and testing 

datasets until the p-value in t-test is above 5%, i.e. there is no statistically significant difference 
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between the means from the training and testing datasets. Note that the t-test is performed based 

on the equal variances assumption by conducting a Levene’s test. The methodology is described 

in detail in Rezaeianzadeh et al. (2015), therefore it is not repeated here. Previous exercises by 

Rezaeian-Zadeh et al. (2010) and Rezaeianzadeh et al. (2015) showed the efficiency of this 

method to optimally train the ANNs. Codes were written in MATLAB for the ANN simulation 

(MathWork, Inc. 2010). 

 

3.3 SWAT-ANN coupling 

To enhance WL predictions by the ANN model, a coupled SWAT-ANN model was 

developed. To that end, baseflow and stormflow components of streamflow are first simulated at 

the watershed outlet by the SWAT model without calibration (i.e., default SWAT parameter 

values were used). This is achieved by picking the outlet of the wetland and delineating the 

watershed draining to that point as if there is no wetland there. Then, we generated streamflow at 

that point with SWAT using default model parameters. No calibration was carried out because 

streamflow data was not available. In addition to streamflow, SWAT also provides model 

outputs to help partition the streamflow into stormflow and baseflow components. We note that 

in many instances the wetland WLs are below the ground surface whereby groundwater bypasses 

the wetland surface and discharges directly to the main channel as baseflow. The simulated 

values for baseflow and stormflow at day t are then fed into ANN to predict WL on day t. A trial 

and error procedure was utilized to examine various input combinations, and their accuracies 

were evaluated with the Nash-Sutcliffe (ENS) and root mean square error (RMSE) performance 

metrics. Eventually, to predict WL on day t, this combination was identified: 

 𝑊𝑊𝑊𝑊(𝜃𝜃) = 𝑓𝑓{𝑄𝑄𝑏𝑏(𝜃𝜃),𝑄𝑄𝑏𝑏(𝜃𝜃 − 1),𝑄𝑄𝑠𝑠(𝜃𝜃),𝑄𝑄𝑠𝑠(𝜃𝜃 − 1),𝑃𝑃(𝜃𝜃),𝑃𝑃(𝜃𝜃 − 1),𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃),𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃 − 1)}   (2) 
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where, WL(t) is water depth at deepest point in the wetland at time t; and 𝑄𝑄𝑏𝑏, 𝑄𝑄𝑠𝑠, 𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃 

denote baseflow (i.e., groundwater contribution to streamflow), stormflow (or quick flow, i.e., 

surface runoff+interflow), precipitation and potential evapotranspiration, respectively. These 

variables were found to serve as the best input combinations and were imported into ANN to 

predict WLs at deepest point in the wetland for baseline and future periods. Figure 3.2 shows a 

flowchart describing the developed methodology of this study.   

 

3.4 Climate Change Application: WL prediction for baseline and future periods  

Because long-term observations are not available to study the impacts of climate change 

and variability, the developed SWAT-ANN model was used to generate WLs in the study 

wetland. Historical observations (1951-2005, representing baseline period) and future projections 

from 11 downscaled, and bias-corrected global climate model (GCM) outputs of precipitation 

and temperature (2006-2060, representing future period) were used to predict WLs over 1951-

2060. By predicting WLs for the baseline period, a benchmark is created, first, to evaluate any 

probable trends in future WL (compared to the baseline period) and, second, to explore any 

teleconnections between WLs and ENSO phases. To predict WL for the baseline period, 

observed data from Fairhope 2 station (USC00012813) which is the nearest climatic station (<10 

Km) with long-term historical data from 1948 to 2005 were used to run the SWAT model. 

SWAT model was run with a three-year warm-up period (1948-1950) from 1951 to 2005 to 

prepare the input data required for the trained ANN model. By importing baseflow and 

stormflow from the SWAT model, as well as precipitation and potential evapotranspiration to the 

trained ANN, WLs were predicted for the baseline period (i.e., 1951-2005).  
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To predict WLs for the future period, downscaled Coupled Model Intercomparison 

Project Phase 5 (CMIP5) climate projections were used for daily precipitation and max/min 

temperature data (downloaded and accessed on 04/24/2015 from http://gdo-

dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html). For this study, data from 11 

climate models with 4 emission scenarios (Representative Concentration Pathways; RCPs 2.6, 

4.5, 6.0, 8.5) were gathered from the website mentioned above (total 44 ensembles). The GCM 

models used in this study are: bcc-csm1.1, ccsm4, gfdl-esm2g, gfdl-esm2m, ipsl-cm5a-lr, ipsl-

cm5a-mr, miroc-esm, miroc-esm-chem, miroc5, mri-cgcm3 and noresm1-m. This corresponds to 

44 SWAT runs for the bias-corrected future projections, and they were performed for the period 

2000-2060 with the first five years being warm-up period.  

 

3.4.1. Bias correction using Quantile Mapping technique 

Comparison of simulated historic climate data by GCMs to observed data (i.e., daily 

precipitation, minimum and maximum air temperatures) often shows that simulations tend to be 

biased: wetter, drier, cooler, and/or warmer, with biases varying by locations, season and 

variables (Reclamation 2013). Hence, to extend the WL prediction for the future period (2006-

2060 as explained above), there was a need to correct the biases on the GCM outputs. To enable 

an efficient application of methodology, downscaled climate models with the finest resolutions 

available, which is 1/8 degree (12 Km), were selected. Bias-correction using Quantile Mapping 

technique is explained below. Altogether, three major datasets were gathered and prepared for 

bias correction through quantile mapping technique: (1) observed historical data (i.e., daily 

precipitation, minimum and maximum air temperatures) from Fairhope 2 station 

(USC00012813) from 1950 to 1999; (2) simulated historical conditions from each GCM, which 

http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html
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comes under the name “1/8 degree Observed data (1950-1999)”; (3) the GCM’s simulated future 

projections. The next step was to identify biases. To that end, a bias-identification period of 

common overlap in datasets (1) and (2) was adopted. In CMIP5 applications, this period is 

usually chosen to be 1950-1999 (Reclamation, 2013). Quantile mapping technique was used for 

bias correction of daily precipitation, and maximum and minimum temperature values 

(Reclamation, 2013). For a given variable, all the daily observations in month m over the 50-year 

period are lumped into one pool and a cumulative distribution function (CDF) is created for that 

month. The same is done for all historical values simulated by GCMs (dataset 2). The paired 

CDFs combine to form a “quantile map” where at each rank probability one can assess the bias 

between dataset (1) and (2) (observations minus historical GCM values). By fitting a 3rd order 

polynomial function between the historical GCM data (as x) and the biases (as y), GCM 

simulated daily values are bias corrected. By providing any new x (which could be either 

historical GCM values or GCM’s simulated future projections, regardless of their order) for a 

particular month and a specific variable, the corresponding correction value (y) is achieved. 

Then, the returned value (y) of the polynomial fit is added to the historical GCM data (or GCM’s 

simulated future projections) to construct the bias corrected GCM data. Readers are referred to 

Drusch et al. (2005) and Maurer et al. (2010) to find more about the details of bias correction.  

In the next step, dataset (3) were adjusted based on the quantile maps produced in the 

previous step. For bias correction of future projections of GCMs, two assumptions are 

considered: (i) bias structure for future simulations are same as historical ones, and (ii) bias in 

future projections should be corrected for future trends. To fulfill the second assumption, for 

minimum and maximum air temperatures, the linear trend is removed before bias correction and 
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added back afterward. Readers are referred to Thrasher et al. (2012) for more information 

regarding the bias correction of minimum and maximum air temperatures.  

To identify the probable long-term changes in the calculated WLs under climate change, 

the 1951-2005 was selected as the baseline period to compare with the 2006-2060 period. The 

most commonly used trend identification techniques, such as Mann-Kendall (MK) and 

Spearman’s rho (SR) tests are valid under a set of restrictive assumptions. Those assumptions 

include independency of the structure of time series (refers to auto- or serial correlation), 

normality of distribution of the variable, and rather long data sets. Although the Mann-Kendall 

trend test does not require normality assumption, the time series should be independent without 

any serial correlation (Şen, 2012). To overcome all those restrictions, the trend analysis 

introduced by Şen (2012) was applied in this study. The basis of the approach rests on the fact 

that if two time series are identical to each other, their plots against each other should show 

scatter of points along the 1:1 line on the Cartesian coordinate system (Şen, 2012). Depending on 

the fall of scatter points onto the upper or lower triangular area of the scatter region, there is a 

monotonic increasing or decreasing trend. In the case of the composition of various trends in the 

time series (non-monotonic trends), the scatter points fall on a curve.  

 

3.5. Climate Variability Application: El Niño Southern Oscillation (ENSO) Effects on WL 

variations 

Since rainfall and streamflow are influenced by ENSO in the southeastern US (Singh et 

al. 2015), one can also expect ENSO affecting WLs in wetlands. The WLs predicted by the 

SWAT-ANN model over the period 1951-2005 were associated with ENSO indices to explore 

the existence of such a teleconnection at the study wetland. Several correlation methods are 
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available to assess the strength of the relationship between large-scale atmospheric circulation 

patterns (such as ENSO) and hydro-climatic variables, but the two most commonly applied ones 

are Pearson’s correlation and Spearman’s rank correlation. Pearson’s correlation needs both 

variables to be normally distributed while no such assumption is necessary for the application of 

Spearman’s rank correlation (Hosseinzadeh Talaee et al. 2014). For this study, Spearman’s 

correlation coefficient between the Niño 3.4 index (as an indicator of ENSO strength) and the 

hydro-climatic variables precipitation and WL were examined. The Niño 3.4 index represents the 

sea-surface temperature (SST) anomalies in the Niño 3.4 region (5˚N–5˚S, 120–170˚W) and is 

based on a 3-month running average (Singh et al. 2015). The Niño 3.4 indices for the period 

1951 to 2005 (to capture approximately 10 ENSO cycles) were obtained from the National 

Weather Service Climate Prediction Center: 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml).  

When Niño 3.4 index is between -0.5 ˚C and 0.5 ˚C, it is considered to be Neutral phase, and 

indices above 0.5 ˚C and below -0.5 ˚C are listed as El Niño and La Niña phases of ENSO, 

respectively.  

 

4. Results and Discussion 

4.1 SWAT-ANN Model Performance  

Figure 3.3 displays the simulated and observed WLs for the training and testing phases in 

scatter plots and exceedance curve (i.e., probability of exceedance of “depth below ground 

surface”) formats. According to the training results of Figure 3.3, except for a few extreme high 

WLs the model has captured the observed WL fluctuations. Despite model’s poor estimations of 

some extreme high WLs, the testing phase of Figure 3.3 also confirms the ability of the model to 

http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ensoyears.shtml
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predict WLs accurately. WL exceedance curve in Figure 3.3 regarding training phase illustrates 

that in general model slightly overestimated WLs below -70 cm. On the contrary, it slightly 

underestimated WLs above -60 cm. Despite the results of the model in the training phase, the 

model in testing phase overestimated the extreme high WLs. Similar to the training phase, WLs 

below -70 cm were overestimated in the testing phase, too. ENS and RMSE values were equal to 

0.73, 14.5 cm, and 0.52, 17.8 cm, respectively, for the training and testing phases. Both 

performance indices showed better results in training phase compared to the testing phase. Better 

results regarding performance metrics were achieved too, but taking into the consideration of the 

generalization and overfitting problems, the reported performances and the related model was the 

best and the most reliable.   

 To utilize the developed model for the climate change application, we elaborate on the 

generalization ability of the model. In making future projections, some extreme values may be 

observed beyond the range of available time series used for model training, which would require 

paying attention to the generalization ability of the ANNs. The generalization ability including 

both interpolations and extrapolations is defined as the model’s skill to perform well on a dataset 

that is not utilized for its calibration (Cheng and Titterington, 1994). Although it is generally 

accepted that the ANNs cannot extrapolate beyond the range of the training data (Maier and 

Dandy, 2000), utilization of sigmoidal-type and linear transfer functions in hidden and output 

layers, respectively has been recommended for extrapolation purposes (see Kaastra and Boyd, 

1995; Karunanithi et al., 1994). For instance, Rezaeian-Zadeh et al. (2012) successfully tested 

the generalization ability of ANNs to predict hourly air temperatures by using the same type of 

transfer functions. The other successful example of the extrapolation ability of ANNs (compared 

to multi non-linear regression) was reported by Cigizoglu (2003) on daily river flow data. Hence, 
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in the current study, logistic sigmoid and linear transfer functions were utilized in hidden and 

output layers, respectively. Logistic sigmoid transfer function is defined for a variable s as: 

                                 𝑙𝑙𝑙𝑙𝑙𝑙𝜃𝜃𝑖𝑖𝑙𝑙(𝜃𝜃) = 1
(1+𝑒𝑒−𝑠𝑠)

                                                                  (3) 

Generalization ability is also defined as a function of the ratio of the number of training 

samples to the number of connection weights. If this ratio is too small, continued training can 

result in overfitting of the training data (Maier and Dandy, 2000). Overfitting (i.e., having high 

variance) can happen when there are too many features (i.e., inputs) but  insufficient amount of 

observed data; in which case the learned hypothesis may fit the training set very well, but fail to 

generalize to new datasets. For this study, we obtained the best architecture to be (8, 6, 1) where 

those values refer to the number of inputs, and the number of neurons in hidden and output 

layers, respectively. Hence, we had 8× 195 (=1560) training patterns (samples), 54 weights and 

(6+1=7) “bias” weights which constitute a total of 61 connection weights (i.e., free model 

parameters). The ratio for the developed model in this study was >25 which confirms a reliable 

ANN with regard to generalization ability and overfitting problem. To ensure a good 

generalization ability, various ratios have been suggested by researchers such as 2 to 1 (Masters, 

1993) or 10 to 1 (e.g. Weigend et al., 1990). Amari et al. (1997) suggested that overfitting does 

not occur if the above ratio exceeds 30.  

 

4.2. Climate Change Application Results 

Before simulating the WLs for the baseline and future periods, bias corrections were 

performed for all 44 GCM datasets using the quantile mapping technique explained earlier. To 

demonstrate how bias corrections improved the GCM outputs (i.e., precipitation and temperature 

data), one out of 44 ensembles was selected as an example and the results are displayed in Figure 
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3.4a (for precipitation) and Figure 3.4b (for maximum temperature) for two selected months. As 

can be seen in both figures, the bias corrected CDFs of GCM outputs closely follow the observed 

CDFs.  

Figure 3.5a shows the annual precipitation time series for the baseline period and the 

future period based on bias corrected GCM outputs. No clear increasing or decreasing trend in 

the future is distinguishable according to this figure. Figure 3.5b displays Sen’s trend analysis for 

annual precipitation to provide a better insight to the potential trend. As can be seen from the 

figure, no considerable change in annual precipitation is expected during dry and normal 

precipitation years (P<1650 mm). However, wet years are clearly expected to get wetter. Figure 

3.5c shows the mean annual temperature time series for the baseline period and the future period 

based on bias corrected GCM outputs. There is a clear warming trend in the future (about 0.021 

°C/year). Figure 3.5d also indicates a clear increasing trend in the future temperature suggested 

by various GCMs.  

 

4.2.1 Baseline vs Future WLs 

Baseline and future WLs were predicted by utilizing the hybrid SWAT-ANN model. 

Predicted WLs for the baseline and future periods were compared by employing trend analysis 

and WL exceedance curves. Note that WL exceedance curve refers to the probability of 

exceedance of “depth below ground surface”. Figure 3.6 displays the trend analysis of annual 

mean WLs and WL exceedance curves at daily scale. Trend analysis shows both increasing and 

decreasing trends projected by various GCMs. In terms of ensemble median of annual mean WL, 

which represents the median of future projections, increasing trends are dominant in medium 

WLs while decreasing trends are dominant in low and high WLs. WL exceedance curve gives us 
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an insight into the probable future changes in various WL clusters (i.e., low, medium and high 

WLs) and it has a high degree of uncertainty. This uncertainty is in its highest degree for the 

calculated WLs ranging from 100 to 300 cm below the ground (about 40% of the time). 

According to the ensemble median of WL exceedance curve, future daily WLs are predicted to 

be deeper than 100 cm below the ground for ~55% of the time. This was 59% for the baseline 

period. Furthermore, future ensemble median depicts that about 7.8% of the time, daily WLs will 

be above the ground surface (i.e., where ponding starts) while this was about 9.4% for the 

baseline period. WLs were calculated higher than 100 cm above the ground for about 1.5% and 

2% of the time, respectively, regarding future ensemble median and baseline period.  

From the WL exceedance curve in Figure 3.6, although it does not seem to be a 

considerable difference between the calculated WL for baseline period and the ensemble median 

of future scenarios, a two-sample t-test (at the 5% significance level) declared that there is a 

statistically significant difference between the means (p<0.05) of those two ordered-values 

intervals. To provide more insights on various parts of the daily WL exceedance curve, both 

baseline and future ensemble median ordered-values intervals were split into different parts 

based on quantiles. We compared the ordered-values intervals for 0th-10th, 10th-20th, 80th-90th and 

90th-100th percentiles (e.g., the 10th percentile refers to WLs which is exceeded 90% of the time). 

Two-sample t-test was performed for these partial ordered-values intervals. Results showed that 

there is a statistically significant difference between the means (-360.7 cm and -369.7 cm, 

respectively for baseline and future ensemble median) of the 0th-10th percentile. The same 

analysis resulted in a significant difference between means (-342.6 cm and -349.0 cm, 

respectively, for baseline and ensemble median) for 10th-20th percentile. Significant differences 

between the means of 80th-90th percentile and 90th-100th percentile ordered-values intervals were 
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also obtained. 12.0 cm versus 3.4 cm, and 61.7 cm versus 46.2 cm correspond to the means of 

80th-90th percentile and 90th-100th percentile ordered-values intervals, respectively, for baseline 

and future ensemble median. Hence, at least 40 percent of the time, representing low and high 

daily WLs are expected to have a statistically significant reduction. WL fluctuations can impact 

biodiversity and vegetation communities of these flashy systems which are altered by any major 

future declines in extreme WLs.  

 

4.3. Climate Variability Results 

Figure 3.7 displays the Spearman’s correlation coefficient between Niño 3.4 index (as an 

indicator of ENSO strength) and monthly precipitation and WLs from 1951 to 2005. In August, 

September and October, monthly precipitations are negatively correlated with Niño 3.4 index in 

all three phases, but not at a statistically significant level (α=5%). From November to July, the 

correlations between monthly precipitations and Niño 3.4 index are positive for almost all 

months and phases. However, only January in neutral phase (p-value=0.036) and February in La 

Niña phase (p-value=0.030) had statistically significant correlations (approximately r=0.28 for 

both cases). Average monthly WLs in March and April have a statistically significant negative 

correlation with Niño index in both El Niño and La Niña phases, with a stronger correlation with 

the former. WLs in May also showed significant negative correlation with Niño index in El Niño 

phase. There are no statistically significant correlations between monthly WLs and Niño index 

during the neutral phase.  

Figure 3.8 displays Spearman correlation coefficients between Niño index and 

precipitation/WL at seasonal level. Correlations between Niño index representing various ENSO 

phases and seasonal precipitations are non-significant except for a positive correlation in winter 
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during El Niño phase. This also aligns with what others reported (e.g. Sharda et al. 2012; Mo and 

Schemm 2008). Correlations between Niño index and seasonal WLs are non-significant except 

for spring during El Niño phase, which has a negative correlation. Hence, lower WLs can be 

expected during El Niño phase in spring. In late spring, Alabama is anomalously dry during the 

resurgence phase of El Niño. In late spring of a developing El Niño, low-level winds that bring 

moist air from the Gulf of Mexico to the U.S. shift westward (Lee et al. 2014) which again 

confirms having less precipitation (than normal). Mearns et al. (2003) found that precipitation 

over the southeastern U.S. shows different seasonality over the region.  

Having statistically significant positive correlation between Niño index and precipitation 

in winter and negative correlation with WLs in spring (Figure 3.8), although appears to be 

contradicting at the first glance, is a potential sign for lag effect. To explore this, sample cross-

correlation between monthly precipitation and ENSO and monthly WLs and ENSO were 

evaluated. Determining significant lag correlations can be useful in forecasting. Lags up to 12 

months were evaluated. Figure 3.9 displays the cross-correlation graphs between Niño 3.4 Index 

and precipitation and WL. There are statistically significant positive correlations (at 95% 

confidence level) between monthly precipitation and zero, one- and two-month lag ENSO index 

time series. Cross-correlation between WL time series and ENSO index time series showed 

significant negative correlations at zero-month and one-month time lags. Furthermore, Figure 

3.10 displays cross-correlations between monthly WLs and precipitations with time lags. The 

graph confirms the existence of a significant negative correlation between WL and one-month 

lag time in precipitation. It also shows a positive correlation between WLs and five- to seven-

month lag precipitation time series. Note that the statistically significant positive correlation was 

observed with 6-month lag in precipitation which was the peak of the correlations. The negative 
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correlation between Niño index and precipitation in the months of August, September, and 

October during El Niño phase (Figure 3.7) along with the significant 6-month lag positive 

correlation between WLs and precipitation imply that on average WLs in the wetland would 

respond by decreasing around March to May during this phase of ENSO.  The peak value in the 

cross-correlation at time lag 6 months (Figure 3.10) may be attributed to the typical lagged 

response of subsurface hydrology and groundwater recharge to precipitation (McCuen, 2002). 

All the aforementioned results guide us to the dominant contribution of groundwater in the study 

wetland. To elaborate more on this, spring precipitation and WL can be a typical example of the 

situation. There is a (low) positive correlation between spring precipitation and Niño index in El 

Niño phase and while one can expect to see an increase (although insignificant) in the spring 

WLs,  this is not the case here. Headwater wetlands of coastal Alabama have two distinct aspects 

which can shed light on this subject: i) they respond quickly to rainfall events which represent 

the stormflow component and ii) they are groundwater driven in which this component 

apparently plays a crucial rule in these ecosystems. Figure 3.6b in WL exceedance curve shows 

that WLs are below the ground surface more than 80% of the time (~90%) for this study 

wetland; hence groundwater component dominates the hydrology. Altogether, spring WLs have 

been probably affected more by the lagged response of subsurface hydrology and groundwater 

recharge to decreased precipitation at the end of summer during El Niño phase and early autumn 

than spring precipitation. Time-lagged correlation between ENSO index, precipitation and WLs 

confirmed that ENSO indicators can be used to predict precipitation and WLs with some success 

in headwater wetlands of coastal Alabama. This result is in good agreement with findings of Lȕ 

et al. (2011). 
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4.5 Potential Implications of WL Alteration 

The hydrology of wetlands is affected by climate change mostly through changes in 

precipitation and temperature regimes with significant global variability (Erwin 2009). Even 

slight changes in wetland hydrologic conditions can affect soil biogeochemistry and 

consequently nutrient cycles; biota may respond with considerable changes in species 

composition and richness and in ecosystem productivity (Mitsch and Gosselink, 2015). In 

forested wetlands, hydrologic changes can also have substantial effects on forest productivity 

and carbon cycling (Barksdale et al. 2014) directly through duration and intensity of flooding, 

and through changes in vegetation (Majidzadeh et al. 2015). Barksdale et al. (2014) found a 

strong correlation between WL and total carbon content at the soil surface using data from 15 

headwater wetlands (which included the wetland studied in this paper). According to their 

findings, wetlands with lower median groundwater levels showed surface soils with less organic 

matter and reduced carbon storage. High and low WLs are expected to drop in the study wetland 

and this will potentially lead to reduced organic material and carbon stock and the same impacts 

could be expected in the other headwater wetlands of Baldwin County, Alabama. Reduction in 

WLs could also result in changes in the vegetation communities since the depth and percentage 

of time a location remains inundated has been shown to have a direct influence on the vegetative 

communities (Todd et al. 2012). This could cause the establishment of invasive plant species 

which are major threats to local diversity and other ecosystem functions (Barksdale and 

Anderson, 2014). With lowered WLs and the consequent increase in oxygen availability, a 

reduction in CH4 emission and an increase in CO2 production will be the most probable 

scenarios expected. Hydrologic alteration of headwater wetlands has the potential to impact 
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some wildlife species, but the most severe impacts would be to amphibians since they are highly 

vulnerable to wetland drainage (Noble 2007).  

In this study, the potential impacts of climate change and variability on wetlands through 

alteration in one of the hydrologic indices (i.e., wetland water level) were discussed only. Other 

climate-related variables could have noticeable impacts such as increased temperature and 

altered evapotranspiration, altered biogeochemistry, altered amount and patterns of suspended 

sediment loadings and fire (Erwin, 2009). Note that the impact of altered temperature and 

consequently evapotranspiration were indirectly considered by importing potential 

evapotranspiration as an input to the developed model in this study. Also, human-induced 

alterations (which were beyond the scope of this study) including wetland drainage, 

filling/dredging, water diversions, introducing pollutants and unsustainable developments need 

to be taken into account in the evaluation of potential impacts on wetlands and to avoid the 

detrimental impacts of these significant stressors. An assessment of coastal LULC change from 

1974 to 2008 in southern Alabama showed that the expansion of urban landscape, especially in 

Baldwin County, is expected given the most recent population statistics that suggest future 

population growth. 34% of upland forest were converted to urbanized landscapes for Mobile and 

Baldwin counties over the studied period (Ellis et al. 2011). Considering the effects of LULC 

changes in wetland WL prediction studies is suggested for the future studies.  

 

5. Summary and Conclusions 

Acquiring knowledge about the probable changes in long-term WL fluctuations in 

wetlands and identifying their trends are challenging tasks because of the complexity of 

hydrological processes in these ecosystems. Rezaeianzadeh et al. (2015) developed two ANN-
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based methodologies by utilizing precipitation and WL values from the nearby sites as inputs to 

predict hourly WLs in headwater wetlands. In this study, we built upon the previous study by 

eliminating the need for WL data from nearby wetlands as inputs to the model. The new 

modeling approach couples SWAT and ANN by using baseflow and stormflow components 

simulated from SWAT as inputs to ANN. Although coupling data-driven models with semi-

distributed hydrologic models (such as SWAT) is not new, to the best of authors’ knowledge, the 

developed model for the prediction of daily WLs is a novel approach in wetland hydrology 

studies. The model requires only WL measurements over a period of time to train the ANN. 

The model was applied to a headwater wetland in coastal Alabama. After constructing the 

hybrid SWAT-ANN model, WLs were predicted for both long-term baseline (1951-2005) and 

future (2006-2060) periods. Regarding future projections, GCM outputs of precipitation and 

min/max air temperatures were bias corrected by using the quantile mapping technique prior to 

their utilizations into the model. The bias correction procedure was an important step in this 

study because finding the right distribution and variations in precipitation and temperature is 

very crucial in studying climate change impacts on wetlands. A recently introduced trend 

analysis having no restrictive assumption was utilized and the trends in WL dynamics were 

assessed. Finally, the teleconnection between ENSO and precipitation/WLs in the study wetland 

were also explored by using Spearman’s rank correlation and cross-correlation analyses. In 

summary, the following conclusions can be drawn from this study: 

1. Climate projections show a noticeable increase in temperature from 2006 to 2100. 

Furthermore, no considerable change in annual precipitation is expected during dry and 

normal precipitation years. However, wet years are clearly expected to get wetter.  
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2. Coupled SWAT-ANN model could be a viable tool to simulate WLs for wetlands at a 

daily scale. To develop this model, availability of at least yearlong WL data plays a 

crucial role. 

3. Simulated future WLs by utilizing different GCM ensembles showed both decreasing and 

increasing trends. However, the increasing trend was dominant in medium WLs and the 

decreasing trend was dominant in low and high WLs.  

4. The findings show that winter gets wetter in terms of precipitation and spring gets drier 

regarding the WLs over El Niño phase.  

5. Analyses on daily WLs demonstrated that at least 40 percent of the time indicating 

extreme low and high daily WLs are expected to have a drop.  

6. The results of this study suggested that expected climate change and variability could 

have a significant impact on the overall vegetation of the study wetland.  

The methodology proposed in this paper should be transferable to other wetlands and 

their draining watersheds within different geographic and climatic regions to evaluate probable 

WL fluctuations based on future climate projections or shorter term climatic variations. Studies, 

such as the one presented in this paper, are important in order to understand the potential 

hydrological changes associated with climate change and variability. Acreman et al. (2009) point 

out that a full assessment of the potential impacts of climate change on a specific wetland should 

assess the uncertainties in climate change projections by comparing various scenarios from a 

number of global or regional climate models. In the current study, although we did not directly 

discuss the uncertainty issue, by considering various GCM outputs as well as various emission 

scenarios, we provide a valuable insight on the potential impacts of climate change and also 
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climate variability on the study wetland. These findings are of interest to wetland scientists, eco-

hydrologist, wetlands managers as well as domestic/international policy makers.  
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Figure 3.1: Station 17 wetland with the delineated contributing watershed (a, b), and Hydrologic soil groups map and the land 
use/cover map based on 2011 NLCD for the study watershed (c) 

       (a)                                                                             (b)                                                                    (c) 
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Figure 3.2: Model development flowchart. 𝑄𝑄𝑏𝑏, 𝑄𝑄𝑠𝑠, 𝑃𝑃 and 𝑃𝑃𝑃𝑃𝑃𝑃 denote baseflow, stormflow, precipitation and potential 
evapotranspiration, respectively. Data were randomly selected in which Levene’s test and t-test (Rezaeianzadeh et al. 2015) were used 
to obtain the optimal datasets for training and testing phases. 
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Figure 3.3: Scatter plots and exceedance curves for training and testing phases   
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Figure 3.4: (a) Example Cumulative distribution functions (CDFs) for historical (observed) precipitation data, historical conditions of 
a GCM and the bias-corrected historical bcc-csm1.1 RCP 4.5. Note that this graph displays pool of daily precipitation values for May 
from 1950 to 1999; A closer look at the CDFs. The arrows illustrate how the historical GCM are bias corrected. (b) Cumulative 
distribution functions (CDFs) for historical (observed) maximum temperature data, historical conditions of bcc-csm1.1, RCP 4.5 and 
the bias-corrected historical GCM. Note that this graph displays pool of daily maximum temperature values for March from 1950 to 
1999. 
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Figure 3.5: (a) Annual precipitation time series for the baseline period (dashed line) and the future period based on bias corrected GCM outputs 
for all 44 ensembles; bold black line corresponds to the ensemble median. (b) Trend analysis of annual precipitation; Black line depicts the 
median. (c) Annual temperature time series for the baseline period and the future period based on bias corrected GCM outputs for all 44 
ensembles. (d) Trend analysis of annual mean temperature; Black line depicts the median. 

      (a)                                                                                                    (b) 

      (c)                                                                       (d) 
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Figure 3.6: (Left) Trend analysis of annual mean WLs in which black line corresponds to ensemble median; (Right) WL exceedance 
curve at daily scale. Note that WL exceedance curve refer to the probability of exceedance of “depth below ground surface”. Black 
and green dashed lines depict WL calculated for baseline period and ensemble median, respectively.     
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Figure 3.7: Spearman’s correlation coefficient between Niño 3.4 index and precipitation (top 
figure) and WL (bottom figure) in monthly scale. S indicates the significant correlations at 95% 
confidence level. 
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Figure 3.8: Spearman correlation coefficients between ENSO phases and precipitation/WL at 
seasonal scale 
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Figure 3.9: Cross-correlation between precipitation/WL time series and lag time of ENSO time 
series; blue lines represent 95% confidence levels. 
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Figure 3.10: Cross-correlation between WL and lag time of precipitation time series; blue lines 
represent 95% confidence levels. 

 

 

 

 

 

 

 

 

 

 



  

96 
 

Chapter 4 : A Physically-based Model for Predicting Soil Moisture Dynamics 
in Wetlands 

 

Abstract 

A depth-averaged version of the one-dimensional Richard’s equation (RE) was developed to 

predict the temporal variation of the average moisture content of the root zone and the layer 

below it in unsaturated parts of wetlands. This simplified solution for predicting average 

moisture content converts the partial differential equations (PDE) of the RE into ordinary 

differential equations (ODEs), thus computationally it is much more efficient. This method takes 

into account the plant uptake and groundwater table fluctuations, which are commonly 

overlooked in hydrologic models dealing with wetlands undergoing wetting and drying cycles. 

The Heun’s predictor-corrector method was adopted to discretize and solve the equations 

numerically. For verification purposes, the developed depth-averaged solutions were compared 

to Hydrus-1D model, which uses full RE, under gravity drainage only assumption and under full-

term equations. Model verifications were carried out under various top boundary conditions: no 

ponding at all, ponding at some point, and no rain. Results are presented in time series of soil 

water contents in each layer. Through hypothetical scenarios and actual atmospheric and 

groundwater level data from a field in the Hupselse Beek watershed in the Netherlands, the 

utility of the developed depth-averaged RE was demonstrated. Gravity drainage version of the 

depth-averaged model worked well in comparison to Hydrus-1D, under all the assigned 

atmospheric boundary conditions of varying fluxes for all examined soil types including sandy 

loam, loam, sandy clay loam, and sand. The full-term depth-averaged RE method offers 

reasonable accuracy compared to the full RE solutions from Hydrus-1D, with a significant 

reduction in computational time. The full-term version of the depth-averaged RE model 
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estimated the moisture content with better accuracy for the root zone by considering zero 

pressure head at a fixed groundwater depth as the bottom boundary condition. The accuracy of 

this model is lower for the second layer. The developed/evaluated model of this study for 

moisture accounting at the vadose zone not only applies to non-flooded wetlands but also is 

suitable for application to watersheds and can be utilized in watershed hydrology models.  

 

 

1. Introduction 

Hydrology is the main driving force for many physical, chemical and biological 

processes in wetlands. To account for biogeochemical processes and their cycling in wetlands, 

two aspects of wetland hydrology should be considered; i) the effects of groundwater 

fluctuations on wetland soil moisture and ii) the effects of seasonal water level patterns in 

wetlands and the rise and fall of wetland surface and subsurface water (Sharifi, 2013). Regarding 

the former, many wetland hydrology models use a simple water balance equation to simulate 

groundwater levels based on precipitation and ET loses (Sharifi et al. 2017). In other words, 

wetlands are considered to be wetted only from above in many large-scale models while the 

hydrologic representation of groundwater-fed wetlands (i.e., wetted from below by groundwater 

upwelling) is inadequate (Fan and Miguez-Macho, 2011). In the latter, wetland soil transitions 

between saturated and unsaturated conditions, which requires consideration of soil moisture 

dynamics to capture the effects of unsaturated zones on the wetland hydrology and eventually 

wetland biogeochemistry. Figure 4.1 displays a hypothetical seasonally flooded wetland which is 

flooded for extended periods. When water level falls and rises, the flooded section of the wetland 

shrinks and expands, respectively. 
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The WetQual model (Hantush et al. 2013; Kalin et al. 2013, Sharifi et al. 2013) and 

several other wetland models (e.g. Martin and Reddy 1997; van Dam et al. 2007) are unable to 

track the dynamics of geochemical reactions in the unsaturated sections of the wetland. Sharifi et 

al. (2017) recently extended the wetland water quality model, WetQual to account for the 

nutrient cycling in both ponded and unsaturated section of wetlands, however, as discussed in 

detail later, the hydrology component of their model is too complex causing numerical issues. 

Consequently, the applications of these models to simulate nutrient dynamics in wetlands going 

through wetting and drying cycles are limited.  

Wetlands are low-lying, regularly inundated ecosystems that can affect local/regional 

hydrology and the fate and transport of various water quality constituents (e.g., sediment and 

nutrients) (Wang et al. 2010). In a watershed with a considerable number of wetlands, their 

cumulative influences can strongly affect the magnitude, frequency, and duration of hydrologic 

and biogeochemical fluxes or transfers of water and materials to downstream aquatic systems 

(Kalin et al. 2017). Wetlands are usually connected to local and regional water bodies where 

wetland-groundwater interactions are important. Wetlands can recharge the groundwater, receive 

inflow from groundwater, or do both. In fact, considering wetland and groundwater connectivity 

is essential to understand the hydrological processes beyond the site scale at the broader 

watershed scale (Kalin et al. 2017). The soil moisture condition may vary from fully saturated, 

where wetland free water may or may not be hydraulically connected to the underlying aquifer, 

to partially saturated soil (Kalin et al. 2017). If the water table falls deep below the soil surface, 

or if the ponded water starts receding, unsaturated soil conditions will start developing (Kalin et 

al. 2017). Under such conditions, a variably saturated model such as the matric potential form of 

the RE is commonly used. The RE is the most complete equation to quantify movement of soil 
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moisture in the unsaturated soil. In the multidimensional WETLANDS model developed by 

Mansell et al. (2000), RE was coupled to a lumped pond water budget equation to model local 

hydrology for an individual cypress pond wetland system by considering the effects of plant 

uptake. However, the fact that RE is highly non-linear makes it very difficult to solve and 

computationally demanding, compared to other simpler equations such as Darcy’s equation. 

Solving RE for every node in a wetland hydrology model domain can be quite time-consuming 

and computationally demanding when performing long-term simulations.  

To address wetland soil heterogeneity, the nonlinearity of soil hydraulic characteristics, 

vertical variation of physical properties in the soil profile, and non-uniform root water uptake, a 

numerical solution of RE was found to be useful Sharifi et al. (2017). One-dimensional (1D) RE 

was then utilized to simulate soil moisture contents in the unsaturated zone of wetlands in 

WetQual model. Thompson et al. (2004) had reported the utilization of 1D RE for unsaturated 

flow, and 3D saturated subsurface flows using the Boussinesq equation in a wet grassland, the 

Elmley Marshes in southeast England, by a coupled MIKE SHE/MIKE 11 modeling system. 

These two studies, in theory, are superior to those that utilized Darcy’s law in their 1D mass 

balance equations (Hammer and Kadlec 1986; Kazezyilmaz-Alhan et al. 2007) because of the 

better representation of the physics. However, Sharifi et al. (2017) considered a head-controlled 

boundary condition (BC) for the bottom node, assuming the existence of a non-fluctuating 

perched water table at the bottom of the soil column. A key component, plant uptake effects on 

soil moisture redistribution, is missing in Thompson et al. (2004).  

One of the appreciable efforts related to simulating soil moisture dynamics in the 

unsaturated section of wetland soils was recently made by Sharifi et al. (2017). They adapted and 

slightly modified the van Dam and Feddes (2000) finite difference solution to solve 1D RE. 
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Following van Dam and Feddes (2000), for an implicit backward finite difference solution to RE, 

the active soil layer was divided into compartments with a thickness of ∆𝑧𝑧 with each 

compartment containing a node in the middle. The variably saturated compartment-averaged 

volumetric moisture content is obtained by depth-averaging of the solution of Richard’s equation 

over each of the unsaturated layer. Once the daily soil moisture profile of wetland soil was 

attained, WetQual model relationships were updated to simulate geochemical reactions and track 

concentrations of N and C related constituents in wetland soil. They reported frequent crashes in 

the numerical solution, specifically when a soil is close to saturation due to the hyperbolic nature 

of RE and high non-linearity of soil hydraulic functions. Multiple crashes of the numerical model 

forced them to run the soil moisture model deterministically. Hence, the numerical solution of 

RE for the infiltration-redistribution cycle is complicated and is not recommended for wetland 

hydrology modeling in the vadose zone. For a proper application of WetQual model, a Monte 

Carlo (MC) simulation of 50,000 or 100,000 runs are usually suggested. This is computationally 

demanding and solving RE can be quite challenging for the application of WetQual to non-

flooded wetlands. Since there is no guarantee that the numerical solutions of RE will converge, 

there is a risk in conducting MC simulations that a small percentage of RE solutions jeopardize 

the stability of the entire WetQual simulation. Furthermore, WetQual is a lumped model in need 

of average moisture content only. There is no reason to calculate moisture contents at multiple 

points in wetland soils.  

In this chapter, we aim to address the explained drawback of available wetland models by 

developing a depth-averaged solution to the RE for one-dimensional vertical unsaturated flow in 

WetQual model. This model will extend the WetQual model to unsaturated wetland soil and is a 

reliable replacement for extended WetQual model for the vadose zone developed by Sharifi et al. 
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(2017). To achieve this goal, a two-layer depth-averaged solution to RE was utilized and 

examined in this study. This method considers the effect of plant uptake and takes into account 

the groundwater level fluctuations. Because of a simpler mathematical representation of the 

depth-averaged RE (DARE) through defining ordinary differential equations (ODEs) instead of 

Richards’ partial differential equation (PDE), the problem of crashing model in the unsaturated 

flow calculation is no longer an issue with the application of WetQual to non-flooded wetlands. 

To that end, the gravity drainage condition, which assumes a uniform, vertical unit-gradient and 

ignores suction forces was first considered for numerical development and verification of DARE. 

In the next step of developing numerical solution/code, negative pressure head component was 

taken into consideration which resulted in the full-term version of the DARE. The two layers 

include root zone and the zone between roots and the water table. In DARE, groundwater table is 

assumed to be always below the root zone. We also assume that the unsaturated aerobic section 

of active sediment layer is the same as the depth to groundwater table. The methodology and 

verification of the model through a case study are presented in this chapter.  

 

2. Model Development 

2.1 WetQual Model 

The process-based WetQual model simulates hydrology and water quality of wetlands 

(Hantush et al. 2013; Kalin et al. 2013, Sharifi et al. 2013). Nutrient cycling in WetQual accounts 

for nitrogen (N), phosphorus (P), total suspended sediment (TSS) and carbon (C) cycles and their 

dynamics in wetlands. The model partitions a wetland into three basic compartments: (1) (free) 

water column, (2) wetland soil layer, which is further portioned into aerobic and anaerobic 

zones, and (3) plant biomass (Hantush et al., 2013). Processes in surface water and the bottom-



  

102 
 

active soil layer are described by a system of coupled ordinary differential equations (Hantush et 

al. 2013). The model runs on a daily time scale, while it internally divides the one-day time 

interval into a smaller time interval for numerical integration. Earlier versions of the model were 

applicable to permanently ponded wetlands (Hantush et al. 2013; Kalin et al. 2013, Sharifi et al. 

2013). Sharifi et al. (2017) extended the model to account for the variably saturated areas 

surrounding ponded soil using the 1D RE. The model lumps the mass of nutrients and tracks the 

biogeochemical transformation/exchanges within the ponded part of the wetland and the 

surrounding unsaturated soil (Sharifi et al. 2017). In this study, a new soil moisture accounting 

method was developed as a simpler but robust alternative to the unsaturated flow component of 

WetQual developed by Sharifi et al. (2017). 

 

2.2 Conceptualization of Ponded and Variably Saturated Compartments 

In the extended WetQual model, the wetland is divided into ponded and variably 

saturated compartments. The ponded compartment consists of a pool of standing water (W) at 

the top, a thin layer of aerobic soil in the middle (𝑆𝑆1), and a relatively thick column of anaerobic 

soil at the bottom (𝑆𝑆2) (Figure 4.2) (Sharifi et al. 2017). The variably saturated compartment has 

three layers of soil standing on top of each other (Figure 4.2). There is a column of unsaturated 

soil at the top extended from the soil surface down to the top of water table (𝑆𝑆0 in Figure 4.2), 

which is assumed to be entirely aerobic. Extending from the water table to some depth below 

represents a thin aerobic layer (𝑆𝑆1). Below this depth, where oxygen is practically negligible, the 

soil is saturated but anaerobic, with a thickness extending from the depth of zero oxygen 

concentration to the depth of the active sediment layer (𝑆𝑆2) (Sharifi et al. 2017). The model is 

fully mixed in each layer, where constituent concentrations are represented with average values 
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for each layer. Layer 𝑆𝑆0, which is the focus of this study, is further divided into two layers (i.e., 

root zone and the zone between roots and the water table) and soil moisture estimations are 

calculated for each of those layers. To track the mass exchange between the two compartments, a 

transitional compartment was introduced. At each time step, the transitional compartment will 

form and will adopt the concentrations of either ponded or variably saturated compartment 

(depending on whether water level is falling or rising) (Sharifi et al. 2017). 

 

2.3 Modeling Moisture Redistribution in Wetland Soil 

Wetland soil heterogeneity, the nonlinearity of physical properties in wetland soil and 

non-uniform root water uptake of wetland plants make the simulation of soil moisture dynamics 

a challenging endeavor. The key to a successful water quality model in wetlands with varying 

degree of saturation is an accurate simulation of soil moisture content. A proper soil moisture 

accounting model should consider the different sources of water to wetland soil (precipitation, 

groundwater upwelling, etc.) and sinks of water from the wetland soil (soil evaporation, plant 

water uptake, percolation, etc.). A robust soil moisture accounting model needs to handle 

different boundary conditions at the top and bottom of a soil column. To this end, a depth-

averaged version of RE was developed, and numerically solved for estimating average moisture 

content in the variably saturated zone of wetlands.  

 

2.4 Richards’ Equation 

1D RE for water movement in unsaturated non-swelling soil can be obtained by applying 

Buckingham’s continuity equation to Darcy’s law (Richards 1931): 

 𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

= 𝐶𝐶(𝜓𝜓)
𝜕𝜕𝜓𝜓
𝜕𝜕𝜃𝜃

=
𝜕𝜕
𝜕𝜕𝑧𝑧 �

𝐾𝐾(𝜓𝜓)(
𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧

+ 1)� − 𝑆𝑆(𝑧𝑧) (1) 
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where, θ is volumetric moisture content (dimensionless); K is soil hydraulic conductivity (LT–1); 

ψ is soil water pressure head (L); 𝜃𝜃 is time (T); S is plant transpiration rate per unit depth (T–1); z 

is depth below the soil surface (L, positive downward); C (=𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

) is specific water content 

capacity (L–1). The development of two-layer DARE is explained below. Dr. Mohamed Hantush 

derived the gravity drainage and full-term depth-averaged forms of the Richard Equation and 

contributed to Heun’s method numerical scheme.  I developed the dimensionless forms of the 

equations, the numerical discretization, and the coding. I also performed the model verification 

of the two-layer DARE.  

 

2.5 Two-layer Depth-Averaged Solution to Richards’ Equation 

Continuity Equation: 

 𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

= −
𝜕𝜕𝑞𝑞
𝜕𝜕𝑧𝑧

− 𝑆𝑆(𝑧𝑧, 𝜃𝜃) (2) 

Darcy’s Equation:   

𝑞𝑞 = 𝐾𝐾(𝜓𝜓)
𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧

+ 𝐾𝐾(𝜓𝜓) 

where, θ is volumetric moisture content (dimensionless); K is hydraulic conductivity (LT–1) 

under unsaturated flow condition; ψ is soil water pressure head (L); 𝜃𝜃 is time (T); S is plant 

transpiration rate per unit depth (T–1); z is depth below the soil surface (L, positive downward); ψ 

is soil water pressure head (L); K is hydraulic conductivity (LT–1) and q (LT–1) is Darcy’s flow. 

Let’s define �̅�𝜃1(𝜃𝜃) and �̅�𝜃2(𝜃𝜃) as 

�̅�𝜃1(𝜃𝜃) =
1
ℎ
�𝜃𝜃(𝑧𝑧, 𝜃𝜃) 𝑑𝑑𝑧𝑧
ℎ

0
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�̅�𝜃2(𝜃𝜃) =
1

𝐻𝐻 − ℎ
� 𝜃𝜃(𝑧𝑧, 𝜃𝜃) 𝑑𝑑𝑧𝑧
𝐻𝐻

ℎ

 

where, h is the depth of root zone, and H is the depth of the top of capillary fringe (saturated 

water at air-entry pressure). Figure 4.3 displays the schematic of soil profile for the two-layer 

depth-averaged solutions to Richards (1931).  

Integrating Eq. (2) from z = 0 to z = h  

�
𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

ℎ

0

𝑑𝑑𝑧𝑧 = −�
𝜕𝜕𝑞𝑞
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧
ℎ

0

− �𝑆𝑆(𝑧𝑧, 𝜃𝜃)
ℎ

0

𝑑𝑑𝑧𝑧 

 yields 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝑞𝑞|𝑧𝑧=ℎ + 𝑞𝑞|𝑧𝑧=0 − ℎ𝑆𝑆̅ (3) 

where, 

𝑆𝑆̅ =  
1
ℎ
�𝑆𝑆(𝑧𝑧, 𝜃𝜃) 𝑑𝑑𝑧𝑧
ℎ

0

 

Integrating Eq. (2) from z = h to z = H(t) and dropping the S term  

�
𝜕𝜕𝜃𝜃
𝜕𝜕𝜃𝜃

𝐻𝐻(𝑑𝑑)

ℎ

𝑑𝑑𝑧𝑧 = − �
𝜕𝜕𝑞𝑞
𝜕𝜕𝑧𝑧

𝑑𝑑𝑧𝑧

𝐻𝐻(𝑑𝑑)

ℎ

 

Thus, 

𝑑𝑑
𝑑𝑑𝜃𝜃

� 𝜃𝜃(𝑧𝑧, 𝜃𝜃)𝑑𝑑𝑧𝑧

𝐻𝐻(𝑑𝑑)

ℎ

− 𝜃𝜃(𝐻𝐻, 𝜃𝜃)
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= −𝑞𝑞|𝑧𝑧=𝐻𝐻 + 𝑞𝑞|𝑧𝑧=ℎ 

or 

 𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 𝑞𝑞|𝑧𝑧=ℎ (4) 

Note that  𝜃𝜃(𝐻𝐻, 𝜃𝜃) = 𝜃𝜃𝑠𝑠, and 𝑞𝑞|𝑧𝑧=𝐻𝐻 = 0. Adding Eq. (3) to (4) yields 
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 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2(𝜃𝜃)]− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 𝑞𝑞|𝑧𝑧=0 − ℎ𝑆𝑆̅ (5) 

The solution of Eqs (3) and (5) should be exactly that of (3) and (4). Either way, an expression 

for 𝑞𝑞|𝑧𝑧=ℎ is needed. We make the following approximation: 

 𝑞𝑞|𝑧𝑧=ℎ ≅ 𝑞𝑞� = 1
ℎ ∫ 𝑞𝑞(𝑧𝑧, 𝜃𝜃) 𝑑𝑑𝑧𝑧ℎ

0  

Thus, 

𝑞𝑞|𝑧𝑧=ℎ ≅
1
ℎ
�  �𝐾𝐾(𝜓𝜓)

𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧

+ 𝐾𝐾(𝜓𝜓)� 𝑑𝑑𝑧𝑧
ℎ

0

 

The integral can be approximated to yield 

𝑞𝑞|𝑧𝑧=ℎ ≅
1
ℎ
𝐾𝐾(𝜓𝜓)��������

𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧

 𝑑𝑑𝑧𝑧
ℎ

0

+ 𝐾𝐾(𝜓𝜓)������� 

 𝑞𝑞|𝑧𝑧=ℎ ≅
1
ℎ
𝐾𝐾(𝜓𝜓)�������(𝜓𝜓(ℎ, 𝜃𝜃) − 𝜓𝜓(0, 𝜃𝜃)) + 𝐾𝐾(𝜓𝜓)�������  (6) 

Taylor expansion of 𝐾𝐾(𝜓𝜓) around 𝜓𝜓� is 

𝐾𝐾(𝜓𝜓) = K(𝜓𝜓�) +
𝜕𝜕𝐾𝐾
𝜕𝜕𝜓𝜓

�
𝜕𝜕=𝜕𝜕�

(𝜓𝜓 − 𝜓𝜓�) +
1
2
𝜕𝜕2𝐾𝐾
𝜕𝜕𝜓𝜓2�

𝜕𝜕=𝜕𝜕�
(𝜓𝜓 − 𝜓𝜓�)2 + ⋯ 

 

To the first order, the integration of the R.H.S. from z = 0 to z = h and dividing by h can be 

approximated as: 

K(ψ)������� ≅ K(𝜓𝜓�) 

Assuming 𝜓𝜓(ℎ, 𝜃𝜃) ≅ 𝜓𝜓�1, equation (6) becomes: 

𝑞𝑞|𝑧𝑧=ℎ ≅
1
ℎ

K(𝜓𝜓�1)(𝜓𝜓�1 − 𝜓𝜓(0, 𝜃𝜃)) + K(𝜓𝜓�1) 

The remaining challenge is computing 𝜓𝜓(0, 𝜃𝜃) and q(0,t). First, we expand 𝜓𝜓(𝑧𝑧, 𝜃𝜃) around z = 0 

using Taylor series: 
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𝜓𝜓(z, t) = 𝜓𝜓(0, t) +
𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

𝑧𝑧 +
1
2
𝜕𝜕2𝜓𝜓
𝜕𝜕𝑧𝑧2

�
𝑧𝑧=0

𝑧𝑧2 + ⋯ 

Integrating from z = 0 to z = h and dividing by h 

𝜓𝜓� = 𝜓𝜓(0, t) +
1
2
𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

ℎ + ⋯ 

yields 

𝜕𝜕𝜓𝜓
𝜕𝜕𝑧𝑧
�
𝑧𝑧=0

= 2
𝜓𝜓� − 𝜓𝜓0
ℎ

 

Thus, 

 𝑞𝑞(0, 𝜃𝜃) = 2𝐾𝐾(𝜓𝜓0)
𝜓𝜓�1 − 𝜓𝜓0

ℎ
+ 𝐾𝐾(𝜓𝜓0) (7) 

in which 𝜓𝜓0 ≡ 𝜓𝜓(0, 𝜃𝜃). Before incipient ponding, 𝑞𝑞(0, 𝜃𝜃) = i and Eq. (7) becomes 

 𝑖𝑖 = 2𝐾𝐾(𝜓𝜓0)
𝜓𝜓�1 − 𝜓𝜓0

ℎ
+ 𝐾𝐾(𝜓𝜓0) (8) 

This boundary condition couples 𝜓𝜓0 with 𝜓𝜓�1. An iterative numerical scheme (Picard 

iteration) would be needed to solve Eqs. (3) and (5) subject to (8). Assuming gravity drainage 

(i.e., zero pressure gradient at the surface), a simpler, decoupled equation using any of the 

formulas for unsaturated K can be solved for 𝜓𝜓0: 

𝐾𝐾(𝜓𝜓0) = 𝑖𝑖 

Either way, Eqs. (3) and (5) become 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −
1
ℎ

K(𝛼𝛼 𝜓𝜓�1 + (1 − 𝛼𝛼) 𝜓𝜓� 2 − 𝜓𝜓0) − K(𝜓𝜓�1) + 𝑖𝑖 − ℎ𝑆𝑆̅ 

by ignoring 𝛼𝛼 (which is defined later): 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −
1
ℎ

K(𝜓𝜓�1)(𝜓𝜓�1 − 𝜓𝜓0) − K(𝜓𝜓�1) + 𝑖𝑖 − ℎ𝑆𝑆̅ (9) 

 
ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 𝑖𝑖 − ℎ𝑆𝑆̅ 
(10) 
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With Eq. (8), we have three equations with three unknowns, �̅�𝜃1, �̅�𝜃2, and 𝜓𝜓0. If ponding occurs at 

depth d, we have 𝜓𝜓0 = −𝑑𝑑 and  

 𝑞𝑞(0, 𝜃𝜃) = 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠)  (11) 

This equation and that for 𝑞𝑞|𝑧𝑧=ℎ can be substituted into Eq. (3) and (5) to yield 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −
1
ℎ

K(𝜓𝜓�1)(𝑑𝑑 + 𝜓𝜓�1) − K(𝜓𝜓�1) + 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ (12) 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ (13) 

 

 Note that  �̅�𝜃1 and 𝜓𝜓�1 are related using any of soil moisture characteristic curves. Also, 

note that Equations (12) and (13) assume that flow in the root zone is independent of that in the 

lower layer. The assumption of 𝜓𝜓(ℎ, 𝜃𝜃) ≅ 𝜓𝜓�1 made above is, therefore, a limiting one. A more 

general approach is to assume 𝜓𝜓(ℎ, 𝜃𝜃) equal to some weighted average of 𝜓𝜓�1 and 𝜓𝜓�2: 

 𝜓𝜓(ℎ, 𝜃𝜃) = 𝛼𝛼 𝜓𝜓�1 + (1 − 𝛼𝛼) 𝜓𝜓� 2    

 For example, an approach is assuming 𝛼𝛼 = ℎ
𝐻𝐻

 and 1- α = (H-h)/H. Alternatively, 𝛼𝛼 can be 

determined by calibration or comparison with full RE. In this case, Eq. (6) and (12) become: 

 𝑞𝑞|𝑧𝑧=ℎ ≅
1
ℎ

K(𝜓𝜓�1)(𝛼𝛼 𝜓𝜓�1 + (1 − 𝛼𝛼) 𝜓𝜓� 2 − 𝜓𝜓0) + K(𝜓𝜓�1) 

 
ℎ 𝑑𝑑𝜕𝜕�1

𝑑𝑑𝑑𝑑
= − 1

ℎ
K(𝜓𝜓�1)(𝛼𝛼 𝜓𝜓�1 + (1 − 𝛼𝛼) 𝜓𝜓� 2 + 𝑑𝑑) − K(𝜓𝜓�1) + 2𝐾𝐾(𝜃𝜃𝑠𝑠) 𝜕𝜕

�1+𝑑𝑑
ℎ

+

𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 
(14) 

Equation (4) becomes: 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ (15) 

 



  

109 
 

If there is no rain, a proper boundary condition would be 𝑞𝑞(0, 𝜃𝜃) = −𝜃𝜃𝑣𝑣; in which case, Eqs. (3) 

and (5) become: 

  ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −
1
ℎ

K(𝜓𝜓�1)(𝛼𝛼 𝜓𝜓�1 + (1 − 𝛼𝛼) 𝜓𝜓� 2 − 𝜓𝜓0) −  K(𝜓𝜓�1) − 𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅  (16) 

 ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻(𝜃𝜃) − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= −𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ (17) 

 

Equations (16) and (17) require additional information for 𝜓𝜓0: 

 𝜃𝜃𝑣𝑣 = −2𝐾𝐾(𝜓𝜓0)
𝜓𝜓�1 − 𝜓𝜓0

ℎ
− 𝐾𝐾(𝜓𝜓0)  (18) 

 

We implement the soil hydraulic functions of van Genuchten (1980) who used the 

statistical pore-size distribution model of Mualem (1976) to obtain a predictive equation for the 

unsaturated hydraulic conductivity function in terms of soil water retention parameters (Šimůnek 

et al. 2013). Soil hydraulic functions of 𝜃𝜃(𝜓𝜓), 𝐾𝐾(𝜓𝜓) and 𝐾𝐾(𝜃𝜃) could be described by the van 

Genuchten- Mualem model Genuchten (1980):  

 𝜃𝜃(𝜓𝜓) = 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠 +
𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑 − 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠

[1 + |𝛼𝛼𝜓𝜓|𝑎𝑎]𝑚𝑚 (19) 

 𝐾𝐾(𝜓𝜓) =
{(1 − (𝛼𝛼𝜓𝜓)𝑎𝑎−1)[1 + (𝛼𝛼𝜓𝜓)𝑎𝑎]−𝑚𝑚}2

[1 + |𝛼𝛼𝜓𝜓|𝑎𝑎]𝑚𝑚/2  (20) 

 𝐾𝐾(𝜃𝜃) = 𝐾𝐾𝑠𝑠𝑎𝑎𝑑𝑑𝑆𝑆𝑒𝑒𝑙𝑙�1 − (1 − 𝑆𝑆𝑒𝑒1/𝑚𝑚)𝑚𝑚�
2
 (21) 

 𝑆𝑆𝑒𝑒 =
𝜃𝜃 − 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠
𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑 − 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠

 (22) 

 𝑚𝑚 = 1 −
1
𝑛𝑛

 (23) 
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where, 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠 and 𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑 are, respectively, residual and saturated water content (dimensionless), 𝐾𝐾𝑠𝑠𝑎𝑎𝑑𝑑 

is the saturated hydraulic conductivity (LT–1), and 𝜓𝜓is the soil water pressure head (L).  

A pore-size distribution index 𝑛𝑛 (dimensionless), a pore connectivity parameter 𝜆𝜆 

(dimensionless) and 𝛼𝛼 (L–1) are fitting parameters, which can be extracted from soil databases 

(e.g., Kroes et al. 2008). The pore connectivity parameter  𝜆𝜆  in the hydraulic conductivity 

function was estimated (Mualem, 1976) to be about 0.5 as an average for many soils (Šimůnek et 

al. 2013).  

 

2.6 Dimensionless Equations and Numerical Solutions for Specific Cases 

The developed two-layer DARE was first evaluated under gravity drainage condition, 

which assumes a uniform, vertical unit-gradient and ignores negative pressure head (i.e., 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

=

0). Hydrus-1D which solves the full-term RE was chosen to serve as the benchmark in this study. 

Its merits are explained in “Model Assessment” section. Lower boundary condition of “Free 

Drainage” was considered in the Hydrus-1D model to keep these two models consistent as much 

as possible for verification purposes. The next two upcoming sections present the equations for 

gravity drainage condition. Development of the gravity drainage condition is required for 

wetlands where there is no groundwater table or groundwater table is very deep. Following the 

evaluation of the gravity drainage condition, the more complete version of the equations was 

evaluated. Numerical solutions were performed for gravity drainage condition using explicit 

scheme of finite difference and Heun’s method, and the results from these two numerical 

methods were compared. The solutions were compared for one scenario, i.e., “no rainfall and no 

ET” as the top BC. We found that there is no considerable difference between the results from 

explicit finite difference and those from Heun's method. Calculated moisture contents by the two 



  

111 
 

approaches have negligible differences (~1/10,000). Although there are certain cases where 

easily programmable techniques, such as Euler’s method, can be applied to advantage, the Heun 

and midpoint methods are superior and should be implemented if the problem objectives can be 

achieved (Chapra and Canale, 2010). We decided to continue with the Heun’s method to develop 

the numerical solutions for dimensionless depth-averaged equations for both gravity drainage 

conditions and full-term equations (i.e., by considering negative pressure head component). 

Heun’s method solutions to gravity drainage and full-term versions of DARE are explained 

following the development of dimensionless equations. Dimensionless forms of equations were 

developed to help generate monographs in the future, applicable to any geometry, soil and 

hydroclimate parameters. Although I did not have the time to fully benefit from these 

dimensionless equations in this dissertation, it will help future studies especially in developing 

monographs. To that end, we first came up with several dimensionless variables that best 

represent the gravity drainage version of DARE. The same procedure was followed for the full-

term DARE.  

 

2.6.1 Dimensionless Equations for Gravity Drainage Condition 

In the development of full-term DARE and accordingly the gravity drainage condition, 

the following three top boundary conditions were considered: “no ponding at all” (i<fc), 

“ponding at some point” (i>fc), and “no rain” (i=0), where i and fc are rainfall intensity and 

infiltration capacity, respectively. The infiltration rate at the soil surface 𝑞𝑞(0, 𝜃𝜃) is given by 

equation (7). This equation can be used to calculate 𝜓𝜓0 and accordingly 𝜃𝜃0 is obtained from 

equation (19). By comparing moisture content at the soil surface 𝜃𝜃0 with the saturated moisture 

content 𝜃𝜃𝑠𝑠 at each time step, we can determine if there is ponding during that time step. 
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However, a simplification was considered in this study in which the soil infiltration capacity (fc) 

was assumed to be equal to the saturated hydraulic conductivity (𝐾𝐾𝑠𝑠) of the soil. This actually 

comes from the assumption of 𝜓𝜓�1 = 𝜓𝜓0, with which equation (7) becomes 𝑞𝑞(0, 𝜃𝜃)= 𝐾𝐾(𝜓𝜓0). Since 

𝐾𝐾(𝜓𝜓0) = 𝐾𝐾𝑠𝑠 during ponding, this leads to 𝑞𝑞(0, 𝜃𝜃)= 𝐾𝐾𝑠𝑠. By doing so, we have increased 

consistency between DARE and Hydrus-1D for the verification purposes of this study. More 

information about the Hydrus-1D model comes later in this chapter. Dimensionless variables for 

gravity drainage conditions are defined as: 

      𝜃𝜃∗ =
𝜃𝜃 ∗ 𝐾𝐾𝑠𝑠
ℎ

 ,     𝐻𝐻∗ =
𝐻𝐻
ℎ

 ,    𝐾𝐾∗(�̅�𝜃1) =  
𝐾𝐾(�̅�𝜃1)
𝐾𝐾𝑠𝑠

 ,𝐾𝐾∗(�̅�𝜃2) =  
𝐾𝐾(�̅�𝜃2)
𝐾𝐾𝑠𝑠

,   𝑆𝑆∗ =  
(ℎ𝑆𝑆 �)
𝐾𝐾𝑠𝑠

=
(𝑆𝑆)
𝐾𝐾𝑠𝑠

,

𝑃𝑃𝑃𝑃∗ =  
(𝜃𝜃𝑒𝑒 + ℎ𝑆𝑆 �)

𝐾𝐾𝑠𝑠
   , 𝑖𝑖∗ =  

𝑖𝑖
𝐾𝐾𝑠𝑠

  

where 𝜃𝜃∗, 𝐻𝐻∗, 𝐾𝐾∗(�̅�𝜃1), 𝐾𝐾∗(�̅�𝜃2), 𝑆𝑆∗, 𝑃𝑃𝑃𝑃∗ and 𝑖𝑖∗ are dimensionless forms of 𝜃𝜃=time (T), 𝐻𝐻=depth 

to groundwater table (L), 𝐾𝐾(�̅�𝜃1)=hydraulic conductivity for the 1st layer (i.e., root zone) (LT–1), 

𝐾𝐾(�̅�𝜃2)=hydraulic conductivity for the 2nd layer (i.e., depth below root zone to groundwater table) 

(LT–1), 𝑆𝑆 �= average plant transpiration per unit depth (T–1),  𝑆𝑆=plant transpiration rate (LT–1), 

𝑃𝑃𝑃𝑃=evapotranspiration (LT–1) and 𝑖𝑖= rainfall intensity (LT–1), respectively. Note that ℎ and 𝜃𝜃𝑒𝑒 

are defined as depth of root zone (L) and soil evaporation (LT–1), respectively. We assume that 

soil evaporation is negligible during a rainfall event. Hence, evapotranspiration (𝑃𝑃𝑃𝑃 = 𝜃𝜃𝑣𝑣 + ℎ𝑆𝑆̅) 

is just defined for “no rain” boundary condition. Gravity drainage equations and their 

dimensionless forms for various top boundary conditions are given below: 

i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −K�θ�1� + 𝑖𝑖 − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝐾𝐾∗(�̅�𝜃1) + 𝑖𝑖∗ − 𝑆𝑆∗ 

1st layer: 
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ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+ (𝐻𝐻 − ℎ)
𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃

= −𝐾𝐾(�̅�𝜃2) + 𝑖𝑖 − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ (𝐻𝐻∗ − 1)
𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

= −𝐾𝐾∗(�̅�𝜃2) + 𝑖𝑖∗ − 𝑆𝑆∗ 

 

ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= 𝐾𝐾(𝜃𝜃𝑠𝑠) − K�θ�1� − ℎ𝑆𝑆̅ 

𝑑𝑑𝜕𝜕�1
𝑑𝑑𝑑𝑑∗

= 1 − 𝐾𝐾∗(�̅�𝜃1) − 𝑆𝑆∗ 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+ (𝐻𝐻 − ℎ)
𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃

= −𝐾𝐾(�̅�𝜃2) + 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ (𝐻𝐻∗ − 1)
𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

= −𝐾𝐾∗(�̅�𝜃2) + 1 − 𝑆𝑆∗ 

 

iii) 𝒊𝒊 = 𝟎𝟎 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −K�θ�1� − 𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝐾𝐾∗(�̅�𝜃1) − 𝑃𝑃𝑃𝑃∗ 

ℎ 𝑑𝑑𝜕𝜕�1
𝑑𝑑𝑑𝑑

+ (𝐻𝐻 − ℎ) 𝑑𝑑𝜕𝜕
�2
𝑑𝑑𝑑𝑑

= −𝐾𝐾(�̅�𝜃2) − 𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅                                

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ (𝐻𝐻∗ − 1)
𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

= − 𝐾𝐾∗(�̅�𝜃2) − 𝑃𝑃𝑃𝑃∗ 

 

2.6.2 Numerical Solutions of Dimensionless Gravity Drainage Equations by Heun’s 

Method 

i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

= −𝑲𝑲∗(𝜽𝜽�𝟏𝟏) + 𝒊𝒊∗ − 𝑺𝑺∗ 

 

For simplification purposes, 𝜃𝜃1 𝜃𝜃𝑛𝑛𝑑𝑑 𝜃𝜃2  are used below for θ�1 𝜃𝜃𝑛𝑛𝑑𝑑 θ�2, respectively.  

2nd layer: 

1st layer: 

2nd layer: 

1st layer: 

2nd layer: 

1st layer: 
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The slope or time derivative of the function 𝜃𝜃(𝜃𝜃) at the beginning of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗, 𝜃𝜃1𝑖𝑖� = −𝐾𝐾∗�𝜃𝜃1𝑖𝑖� + 𝑖𝑖𝑖𝑖∗ − 𝑆𝑆𝑖𝑖∗ 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� ∗ (∆𝜃𝜃∗) 

where, subscript 𝑖𝑖=time step and ∆𝜃𝜃∗ is the dimensionless form of ∆𝜃𝜃=length of each time step. 

𝜃𝜃01𝑖𝑖+1refers to the standard Euler method (predictor equation). The slope at the end of the time 

interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� = (−K�𝜃𝜃01𝑖𝑖+1�
∗

+ 𝑖𝑖𝑖𝑖+1∗ − 𝑆𝑆𝑖𝑖+1∗ ) 

Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

which is the corrector equation.  

 

𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

+ (𝑯𝑯∗ − 𝟏𝟏)
𝒅𝒅𝜽𝜽�𝟐𝟐
𝒅𝒅𝒕𝒕∗

= −𝑲𝑲∗(𝜽𝜽�𝟐𝟐) + 𝒊𝒊∗ − 𝑺𝑺∗ 

 

The slope at the beginning of the time interval: 

𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� − K�𝜃𝜃2𝑖𝑖�

∗
+ 𝑖𝑖𝑖𝑖∗ − 𝑆𝑆𝑖𝑖∗)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval: 

𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� − K�𝜃𝜃02𝑖𝑖+1�

∗
+ 𝑖𝑖𝑖𝑖+1∗ − 𝑆𝑆𝑖𝑖+1∗ )

𝐻𝐻𝑖𝑖+1∗ − 1
 

Eventually,  

2nd layer: 
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𝜃𝜃2𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

 

ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 

𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

= 𝟏𝟏 − 𝑲𝑲∗(𝜽𝜽�𝟏𝟏) − 𝑺𝑺∗ 

 

The slope at the beginning of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� = (−K�𝜃𝜃1𝑖𝑖�
∗

+ 1 − 𝑆𝑆𝑖𝑖∗) 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� = (−K�𝜃𝜃1𝑖𝑖+1�
∗

+ 1 − 𝑆𝑆𝑖𝑖+1∗ ) 

Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

which is the corrector equation.  

𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

+ (𝑯𝑯∗ − 𝟏𝟏)
𝒅𝒅𝜽𝜽�𝟐𝟐
𝒅𝒅𝒕𝒕∗

= −𝑲𝑲∗(𝜽𝜽�𝟐𝟐) + 𝟏𝟏 − 𝑺𝑺∗ 

The slope at the beginning of the time interval: 

𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� − K�𝜃𝜃2𝑖𝑖�

∗
+ 1 − 𝑆𝑆𝑖𝑖∗)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval: 

1st layer: 

2nd layer: 
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𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� − K�𝜃𝜃02𝑖𝑖+1�

∗
+ 1 − 𝑆𝑆𝑖𝑖+1∗ )

𝐻𝐻𝑖𝑖+1∗ − 1
 

Eventually,  

𝜃𝜃2𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

 

iii) 𝒊𝒊 = 𝟎𝟎 

 𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

= −𝑲𝑲∗(𝜽𝜽�𝟏𝟏) − 𝑬𝑬𝑬𝑬∗ 

 

The slope at the beginning of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� = (−K�𝜃𝜃1𝑖𝑖�
∗
− 𝑃𝑃𝑃𝑃𝑖𝑖∗) 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� = (−K�𝜃𝜃01𝑖𝑖+1�
∗
− 𝑃𝑃𝑃𝑃𝑖𝑖+1∗ ) 

Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

which is the corrector equation.  

 

 

𝒅𝒅𝜽𝜽�𝟏𝟏
𝒅𝒅𝒕𝒕∗

+ (𝑯𝑯∗ − 𝟏𝟏)
𝒅𝒅𝜽𝜽�𝟐𝟐
𝒅𝒅𝒕𝒕∗

= − 𝑲𝑲∗(𝜽𝜽�𝟐𝟐) − 𝑬𝑬𝑬𝑬∗ 

 

1st layer: 

2nd layer: 
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The slope at the beginning of the time interval: 

𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖� − K�𝜃𝜃2𝑖𝑖�

∗
− 𝑃𝑃𝑃𝑃𝑖𝑖∗)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval: 

𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� =
(−𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1� − K�𝜃𝜃02𝑖𝑖+1�

∗
− 𝑃𝑃𝑃𝑃𝑖𝑖+1∗ )

𝐻𝐻𝑖𝑖+1∗ − 1
 

Eventually,  

𝜃𝜃2𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖� + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1� 

2
∗ (∆𝜃𝜃∗) 

 

The next section explains the development of dimensionless form of full-term DARE. 

Following that, the numerical solutions by Heun’s method are presented for the developed 

dimensionless form of equations.  

 

2.6.3 Dimensionless Equations for the Full-term DARE 

Earlier we had the assumption of 𝜓𝜓(ℎ, 𝜃𝜃) ≅ 𝜓𝜓�1 for the matric suction at the interface of 

the two layers in the full-term depth-averaged equations. This assumption was later removed to 

have a better approximation of matric suction at the interface by considering depth-weighted 

average of matric suctions from both layers as follows: 

𝜓𝜓ℎ = 𝜓𝜓(ℎ, 𝜃𝜃) ≅
𝐻𝐻 − ℎ
𝐻𝐻

∗ 𝜓𝜓�1 +
ℎ
𝐻𝐻
∗ 𝜓𝜓�2 

Another assumption that was made in the original derivation of equations, besides that on the 

interfacial suction head, was that the flux from the first layer to the second one at the interface 
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(z=h) is equal to average flux in the first layer. This assumption about the interfacial flux was 

also modified as a weighted average of fluxes in both layers. 

The modified versions of equations are: 

𝑞𝑞�1 =
1
ℎ

K(𝜓𝜓�1)(𝛼𝛼𝜓𝜓�1 + (1 − 𝛼𝛼)𝜓𝜓�2 − 𝜓𝜓0) + K(𝜓𝜓�1) 

𝛼𝛼 =
𝐻𝐻 − ℎ
𝐻𝐻

         1 − 𝛼𝛼 =
ℎ
𝐻𝐻

 

𝑞𝑞�2 =
1

𝐻𝐻 − ℎ
K(𝜓𝜓�2)(−𝛼𝛼𝜓𝜓�1 − (1 − 𝛼𝛼)𝜓𝜓�2 + 𝜓𝜓𝑏𝑏) + K(𝜓𝜓�2) 

where, 𝜓𝜓𝑏𝑏 is the critical bubbling suction (i.e., air-bubbling capillary pressure) of the soils. 

Hence, for the first layer we eventually have:  

i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 + 𝑖𝑖 − ℎ𝑆𝑆̅ 

ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 + 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 

iii) 𝒊𝒊 = 𝟎𝟎 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 − 𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ 

The equations for the second layer were further modified to allow for upward flow from 

the capillary zone to the second layer. We had initially considered zero flux at z=H. The 

modified full-term depth-averaged equations for the second layer follow as: 

i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)]− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 𝑖𝑖 − ℎ𝑆𝑆̅ − 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(𝜓𝜓𝑏𝑏 − 𝜓𝜓�2) − 𝐾𝐾(𝜃𝜃𝑠𝑠) 

ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 
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ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

− 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(𝜓𝜓𝑏𝑏 − 𝜓𝜓�2) − 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 

 

iii) 𝒊𝒊 = 𝟎𝟎 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= −𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ − 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(𝜓𝜓𝑏𝑏 − 𝜓𝜓�2) − 𝐾𝐾(𝜃𝜃𝑠𝑠) 

 

Note that H was considered to be the depth to water table, not the depth to the top of 

capillary fringe. Hence, 𝜓𝜓𝑏𝑏 was replaced with 0. 

Dimensionless variables are defined as: 

      𝜃𝜃∗ =
𝜃𝜃 ∗ 𝐾𝐾𝑠𝑠
ℎ

 ,     𝐻𝐻∗ =
𝐻𝐻
ℎ

 ,    𝐾𝐾∗(�̅�𝜃2) =  
𝐾𝐾(�̅�𝜃2)
𝐾𝐾𝑠𝑠

,𝐾𝐾∗(�̅�𝜃1) =  
𝐾𝐾(�̅�𝜃1)
𝐾𝐾𝑠𝑠

 ,   𝑆𝑆∗ =  
(ℎ𝑆𝑆 �)
𝐾𝐾𝑠𝑠

 , 𝑖𝑖∗ =  
𝑖𝑖
𝐾𝐾𝑠𝑠

  

𝑃𝑃𝑃𝑃∗ =  
(𝜃𝜃𝑣𝑣 + ℎ𝑆𝑆 �)

𝐾𝐾𝑠𝑠
 ,𝜓𝜓�1

∗ =
𝜓𝜓�1
ℎ

,𝜓𝜓�2
∗ =

𝜓𝜓�2
ℎ

 ,𝜓𝜓�0
∗ =

𝜓𝜓�0
ℎ

 , d∗ =
d
ℎ

 , 𝑞𝑞�1∗ =
𝑞𝑞�1
𝐾𝐾𝑠𝑠

, 𝑞𝑞�2∗ =
𝑞𝑞�2
𝐾𝐾𝑠𝑠

  

𝜓𝜓∗
ℎ =

𝜓𝜓ℎ
ℎ

 

where 𝜃𝜃∗, 𝐻𝐻∗,  𝐾𝐾∗(𝜓𝜓�0),  𝐾𝐾∗(𝜓𝜓�1), 𝑆𝑆∗, 𝑃𝑃𝑃𝑃∗, 𝑖𝑖∗, 𝜓𝜓�0
∗, 𝜓𝜓�1

∗, d∗, 𝑞𝑞�1∗, 𝑞𝑞�2∗ and 𝜓𝜓∗
ℎare dimensionless 

forms of 𝜃𝜃=time (T), 𝐻𝐻=depth to groundwater table (L), 𝐾𝐾(𝜓𝜓�0)=hydraulic conductivity which 

corresponds to soil water pressure head at the soil surface (LT–1), 𝐾𝐾(𝜓𝜓�1)=hydraulic conductivity 

which corresponds to soil water pressure head in the 1st layer (i.e., root zone) (LT–1), 𝑆𝑆=plant 

transpiration (LT–1), 𝑃𝑃𝑃𝑃=evapotranspiration (LT–1), 𝑖𝑖= rainfall intensity (LT–1), 𝜓𝜓�0= soil water 

pressure head at the soil surface (i.e., 𝑧𝑧 = 0) (L), 𝜓𝜓�1 = soil water pressure head in the 1st layer 

(L), d = ponding depth (L), 𝑞𝑞�1 = average flux in the 1st layer (LT–1), 𝑞𝑞�2 = average flux in the 2nd 

layer (LT–1), and 𝜓𝜓ℎ= soil water pressure head at the interface of two layers (L). Note that ℎ and 

𝜃𝜃𝑣𝑣 are defined as depth of root zone (L) and soil evaporation (LT–1), respectively.  
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i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 + 𝑖𝑖 − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ + 𝑖𝑖∗ − 𝑆𝑆∗ 

Prior ponding, 𝜓𝜓0 is obtained by solving: 

𝑖𝑖∗ = 2𝐾𝐾∗(𝜓𝜓0)(𝜓𝜓�∗1 −  𝜓𝜓0∗𝑖𝑖) + 𝐾𝐾∗(𝜓𝜓0) 

 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 𝑖𝑖 − ℎ𝑆𝑆̅ − 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(−𝜓𝜓�2) − 𝐾𝐾(𝜃𝜃𝑠𝑠) 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= 𝑖𝑖∗ − 𝑆𝑆∗ + (

2 𝜓𝜓�2
∗

𝐻𝐻∗ − 1
)− 1 

 

ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 + 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

+ 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ + 2 ∗ (𝜓𝜓�1
∗ + d∗) + 1 − 𝑆𝑆∗ 

 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= 2𝐾𝐾(𝜃𝜃𝑠𝑠)
𝜓𝜓�1 + 𝑑𝑑
ℎ

− 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(−𝜓𝜓�2) − 𝐾𝐾(𝜃𝜃𝑠𝑠) − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= 2�𝜓𝜓�1

∗ + d∗� + �
2 𝜓𝜓�2

∗

𝐻𝐻∗ − 1
� − 1 − 𝑆𝑆∗ 

 

iii) 𝒊𝒊 = 𝟎𝟎 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

= −𝛼𝛼𝑞𝑞�1 − (1 − 𝛼𝛼)𝑞𝑞�2 − 𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ − 𝑃𝑃𝑃𝑃∗ 

1st layer: 

2nd layer: 

1st layer: 

1st layer: 

2nd layer: 
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During evaporation, 𝜓𝜓0 is obtained by solving: 

−𝜃𝜃𝑣𝑣∗ = 2𝐾𝐾∗(𝜓𝜓0)(𝜓𝜓�∗1 −  𝜓𝜓0∗𝑖𝑖) + 𝐾𝐾∗(𝜓𝜓0) 

 

ℎ
𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃

+
𝑑𝑑
𝑑𝑑𝜃𝜃

[(𝐻𝐻 − ℎ)�̅�𝜃2(𝜃𝜃)] − 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

= −𝜃𝜃𝑣𝑣 − ℎ𝑆𝑆̅ + 2
𝐾𝐾(𝜃𝜃𝑠𝑠)
𝐻𝐻 − ℎ

(𝜓𝜓�2 − 𝜓𝜓𝑏𝑏) − 𝐾𝐾(𝜃𝜃𝑠𝑠) 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= −𝑃𝑃𝑃𝑃∗ +

2
𝐻𝐻∗ − 1

(𝜓𝜓�2
∗ − 𝜓𝜓𝑏𝑏∗) − 1 

 

 

2.6.4 Numerical Solutions of Dimensionless Full-term DARE by Heun’s Method  

i) 𝒊𝒊 < 𝒇𝒇𝒄𝒄 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ + 𝑖𝑖∗ − 𝑆𝑆∗ 

For simplification purposes, Let  𝜃𝜃1,𝜃𝜃2 𝜃𝜃𝑛𝑛𝑑𝑑 𝜓𝜓1 denote θ�1, θ�2 𝜃𝜃𝑛𝑛𝑑𝑑 𝜓𝜓�1, respectively. The slope at 

the beginning of the time interval is written as: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗, 𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ ,𝜓𝜓0𝑖𝑖∗ � = −𝛼𝛼𝑞𝑞�1𝑖𝑖

∗ − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖
∗ + 𝑖𝑖𝑖𝑖∗ − 𝑆𝑆𝑖𝑖∗ 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ ,𝜓𝜓0𝑖𝑖∗ � ∗ (∆𝜃𝜃∗) 

𝜃𝜃01𝑖𝑖+1refers to the standard Euler method (predictor equation). Next, we need to compute 𝜓𝜓1∗𝑖𝑖+1
0 

and 𝜓𝜓0∗𝑖𝑖+1
0. 𝜓𝜓0∗𝑖𝑖+1

0 and 𝜓𝜓0∗𝑖𝑖 can be computed from the boundary algebraic equation given 

𝜓𝜓1∗𝑖𝑖+1
0and 𝜓𝜓1∗𝑖𝑖, respectively, using any root finding method such as the Bisection Method. The 

equation follows as: 

𝑖𝑖∗ = 2𝐾𝐾∗(𝜓𝜓0)(𝜓𝜓�∗1 −  𝜓𝜓0∗𝑖𝑖) + 𝐾𝐾∗(𝜓𝜓0) 

The slope at the end of the time interval is given by: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1∗𝑖𝑖+1

0,𝜓𝜓2∗𝑖𝑖+1
0,𝜓𝜓0∗𝑖𝑖+1

0� = −𝛼𝛼𝑞𝑞�1𝑖𝑖+1
∗ 0 − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖+1

∗ 0 + 𝑖𝑖𝑖𝑖+1∗ − 𝑆𝑆𝑖𝑖+1∗  

2nd layer: 

1st layer: 
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Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ ,𝜓𝜓2𝑖𝑖∗ ,𝜓𝜓0𝑖𝑖∗ � + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1∗𝑖𝑖+1

0,𝜓𝜓2∗𝑖𝑖+1
0,𝜓𝜓0∗𝑖𝑖+1

0� 
2

∗ (∆𝜃𝜃∗) 

which, is the corrector equation.  

 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= 𝑖𝑖∗ − 𝑆𝑆∗ + (

2 𝜓𝜓�2
∗

𝐻𝐻∗ − 1
)− 1 

 

The slope at the beginning of the time interval is written as: 

𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙 �𝜃𝜃1𝑖𝑖 , 𝜃𝜃2𝑖𝑖 ,𝜓𝜓1
∗
𝑖𝑖,𝜓𝜓2

∗
𝑖𝑖,𝜓𝜓0

∗
𝑖𝑖
�

=
�−𝑓𝑓 �𝜃𝜃1𝑖𝑖 ,𝜓𝜓1

∗
𝑖𝑖,𝜓𝜓2

∗
𝑖𝑖,𝜓𝜓0

∗
𝑖𝑖
� + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖� ∗ �

𝐻𝐻𝑖𝑖+1
∗ −𝐻𝐻𝑖𝑖

∗

∆𝑑𝑑∗
�+ 𝑖𝑖𝑖𝑖∗ − 𝑆𝑆𝑖𝑖∗ + (

2 𝜕𝜕�2𝑖𝑖
∗

𝐻𝐻𝑖𝑖
∗−1

) − 1)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑙𝑙 �𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1
∗
𝑖𝑖 ,𝜓𝜓2

∗
𝑖𝑖 ,𝜓𝜓0

∗
𝑖𝑖
� ∗ (∆𝜃𝜃∗) 

 

The slope at the end of the time interval is given by: 

𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙�𝜃𝜃1𝑖𝑖+1
0,𝜃𝜃2𝑖𝑖+1

0,𝜓𝜓1∗𝑖𝑖+1
0,𝜓𝜓0∗𝑖𝑖+1

0,𝜓𝜓�2𝑖𝑖+1
∗ �

=
(−𝑓𝑓�𝜃𝜃1𝑖𝑖+1

0,𝜓𝜓1𝑖𝑖+1
∗ 0,𝜓𝜓0𝑖𝑖+1

∗ 0� + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖+1
0) ∗ ((𝐻𝐻𝑖𝑖+1∗ − 𝐻𝐻𝑖𝑖∗)/∆𝜃𝜃∗) + 𝑖𝑖𝑖𝑖+1∗ − 𝑆𝑆𝑖𝑖+1∗ + (

2 𝜕𝜕2𝑖𝑖+1
∗ 0

𝐻𝐻𝑖𝑖+1
∗ −1

) − 1)

𝐻𝐻𝑖𝑖+1∗ − 1
 

Eventually,  

𝜃𝜃2𝑖𝑖+1 =
𝑙𝑙 �𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1

∗
𝑖𝑖 ,𝜓𝜓2

∗
𝑖𝑖 ,𝜓𝜓0

∗
𝑖𝑖
� + 𝑙𝑙�𝜃𝜃1𝑖𝑖+1

0,𝜃𝜃2𝑖𝑖+1
0,𝜓𝜓1∗𝑖𝑖+1

0,𝜓𝜓0∗𝑖𝑖+1
0,𝜓𝜓�2𝑖𝑖+1

∗ �
2

∗ ∆𝜃𝜃∗ 

 

 

2nd layer: 
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ii) 𝒊𝒊 > 𝒇𝒇𝒄𝒄 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ + 2 ∗ (𝜓𝜓�1
∗ + d∗) + 1 − 𝑆𝑆∗ 

The slope at the beginning of the time interval is given by: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ � = −𝛼𝛼𝑞𝑞�1𝑖𝑖

∗ − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖
∗ + 2�𝜓𝜓1𝑖𝑖

∗ + d∗� + 1 − 𝑆𝑆𝑖𝑖∗ 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ � ∗ (∆𝜃𝜃∗) 

 

The slope at the end of the time interval is written as: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1𝑖𝑖+1

∗ ,𝜓𝜓2𝑖𝑖+1
∗ � = −𝛼𝛼𝑞𝑞�1𝑖𝑖+1

∗ 0 − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖+1
∗ 0 + 2�𝜓𝜓1𝑖𝑖+1

∗ + d∗� + 1 − 𝑆𝑆𝑖𝑖+1∗  

 

Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗, 𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ ,𝜓𝜓2𝑖𝑖∗ � + 𝑓𝑓�𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1𝑖𝑖+1

∗ ,𝜓𝜓2𝑖𝑖+1
∗ � 

2
∗ (∆𝜃𝜃∗) 

which, is the corrector equation.  

During ponding 𝜓𝜓0 = −𝑑𝑑. To calculate depth of ponding (𝑑𝑑), for each time step, the 

calculated average moisture content of first layer at time 𝜃𝜃 (�̅�𝜃1𝑑𝑑) is compared to saturated 

moisture content (𝜃𝜃𝑠𝑠) and when �̅�𝜃1𝑑𝑑 is higher than 𝜃𝜃𝑠𝑠, the difference is added up to obtain 𝑑𝑑 by 

d=(�̅�𝜃1𝑑𝑑 − 𝜃𝜃𝑠𝑠) ∗ ℎ.  

 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= 2�𝜓𝜓�1

∗ + d∗� + �
2 𝜓𝜓�2

∗

𝐻𝐻∗ − 1
� − 1 − 𝑆𝑆∗ 

 

The slope at the beginning of the time interval is given by: 

1st layer: 

2nd layer: 
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𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙�𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ �

=
�−𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ � + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖� ∗ �
𝐻𝐻𝑖𝑖+1
∗ −𝐻𝐻𝑖𝑖

∗

∆𝑑𝑑∗
�+ 2�𝜓𝜓1𝑖𝑖

∗ + d∗� + �
2 𝜕𝜕2𝑖𝑖

∗

𝐻𝐻𝑖𝑖
∗−1
� − 1 − 𝑆𝑆𝑖𝑖∗)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑙𝑙�𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ � ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval is given by: 

𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙�𝜃𝜃1𝑖𝑖+1
0,𝜃𝜃2𝑖𝑖+1

0,𝜓𝜓1𝑖𝑖+1
∗ 0,𝜓𝜓2𝑖𝑖+1

∗ 0� 

=
�−𝑓𝑓�𝜃𝜃1𝑖𝑖+1

0,𝜓𝜓1𝑖𝑖+1
∗ 0� + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖+1

0� ∗ �𝐻𝐻𝑖𝑖+1
∗ −𝐻𝐻𝑖𝑖

∗

∆𝑑𝑑∗
� + 2�𝜓𝜓1𝑖𝑖+1

∗ 0 + d∗� + �
2 𝜕𝜕2𝑖𝑖+1

∗ 0

𝐻𝐻𝑖𝑖+1
∗ −1

� − 1 − 𝑆𝑆𝑖𝑖+1∗ )

𝐻𝐻𝑖𝑖+1∗ − 1
 

 

Eventually,  

𝜃𝜃2𝑖𝑖+1 =
𝑙𝑙�𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ ,𝜓𝜓2𝑖𝑖∗ � + 𝑙𝑙�𝜃𝜃01𝑖𝑖+1 ,𝜃𝜃02𝑖𝑖+1 ,𝜓𝜓1𝑖𝑖+1
∗ 0,𝜓𝜓2𝑖𝑖+1

∗ 0�
2

∗ ∆𝜃𝜃∗ 

iii) 𝒊𝒊 = 𝟎𝟎 

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

= −𝛼𝛼𝑞𝑞�1∗ − (1 − 𝛼𝛼)𝑞𝑞�2∗ − 𝑃𝑃𝑃𝑃∗ 

 

The slope at the beginning of the time interval is given by: 

𝑑𝑑𝜃𝜃1𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓2𝑖𝑖∗ ,𝜓𝜓0𝑖𝑖∗ � = −𝛼𝛼𝑞𝑞�1𝑖𝑖

∗ − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖
∗ − 𝑃𝑃𝑃𝑃𝑖𝑖∗ 

𝜃𝜃01𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 + 𝑓𝑓�𝜃𝜃𝑖𝑖∗,𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖
∗ ,𝜓𝜓0∗𝑖𝑖� ∗ (∆𝜃𝜃∗) 

 Then, we need to compute 𝜓𝜓1∗𝑖𝑖+1
0 and 𝜓𝜓0∗𝑖𝑖+1

0. 𝜓𝜓0∗𝑖𝑖+1
0 and 𝜓𝜓0∗𝑖𝑖 are computed using the 

Bisection method, from the boundary algebraic equation given 𝜓𝜓1∗𝑖𝑖+1
0and 𝜓𝜓1∗𝑖𝑖, respectively. The 

equation follows as: 

1st layer: 
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−𝜃𝜃𝑒𝑒∗ = 2𝐾𝐾∗(𝜓𝜓0)(𝜓𝜓�∗1 −  𝜓𝜓0∗𝑖𝑖) + 𝐾𝐾∗(𝜓𝜓0) 

The slope at the end of the time interval: 

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓�𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1𝑖𝑖+1

∗ 0,𝜓𝜓0𝑖𝑖+1
∗ 0� = −𝐾𝐾∗�𝜃𝜃1𝑖𝑖+1

0��𝜓𝜓1𝑖𝑖+1
∗ 0 − 𝜓𝜓0𝑖𝑖+1

∗ 0� − 𝐾𝐾∗�𝜃𝜃1𝑖𝑖+1
0� − 𝑃𝑃𝑃𝑃𝑖𝑖+1∗  

𝑑𝑑𝜃𝜃1𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑓𝑓 �𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1𝑖𝑖+1

∗ 0,𝜓𝜓2𝑖𝑖+1
∗ 0,𝜓𝜓0𝑖𝑖+1

∗ 0
� = −𝛼𝛼𝑞𝑞�1𝑖𝑖+1

∗ 0 − (1 − 𝛼𝛼)𝑞𝑞�2𝑖𝑖+1
∗ 0 − 𝑃𝑃𝑃𝑃𝑖𝑖+1∗  

 

Eventually,  

𝜃𝜃1𝑖𝑖+1 = 𝜃𝜃1𝑖𝑖 +
𝑓𝑓�𝜃𝜃𝑖𝑖∗, 𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ ,𝜓𝜓2𝑖𝑖∗ ,𝜓𝜓0𝑖𝑖∗ � + 𝑓𝑓 �𝜃𝜃𝑖𝑖+1∗ ,𝜃𝜃1𝑖𝑖+1
0,𝜓𝜓1𝑖𝑖+1

∗ 0,𝜓𝜓2𝑖𝑖+1
∗ 0,𝜓𝜓0𝑖𝑖+1

∗ 0
� 

2
∗ (∆𝜃𝜃∗) 

which is the corrector equation.  

𝑑𝑑�̅�𝜃1
𝑑𝑑𝜃𝜃∗

+ �̅�𝜃2
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
+ (𝐻𝐻∗ − 1)

𝑑𝑑�̅�𝜃2
𝑑𝑑𝜃𝜃∗

− 𝜃𝜃𝑠𝑠
𝑑𝑑𝐻𝐻∗

𝑑𝑑𝜃𝜃∗
= −𝑃𝑃𝑃𝑃∗ +

2
𝐻𝐻∗ − 1

(𝜓𝜓�2
∗) − 1 

 

The slope at the beginning of the time interval given by: 

𝑑𝑑𝜃𝜃2𝑖𝑖
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙 �𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1
∗
𝑖𝑖,𝜓𝜓2

∗
𝑖𝑖 ,𝜓𝜓0

∗
𝑖𝑖
�

=
�−𝑓𝑓�𝜃𝜃1𝑖𝑖 ,𝜓𝜓1𝑖𝑖

∗ ,𝜓𝜓0∗𝑖𝑖� + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖� ∗ �
𝐻𝐻𝑖𝑖+1
∗ −𝐻𝐻𝑖𝑖

∗

∆𝑑𝑑∗
� − 𝑃𝑃𝑃𝑃𝑖𝑖∗ + (

2 𝜕𝜕2𝑖𝑖
∗

𝐻𝐻𝑖𝑖
∗−1

) − 1)

𝐻𝐻𝑖𝑖∗ − 1
 

𝜃𝜃02𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 + 𝑙𝑙 �𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1
∗
𝑖𝑖 ,𝜓𝜓2

∗
𝑖𝑖 ,𝜓𝜓0

∗
𝑖𝑖
� ∗ (∆𝜃𝜃∗) 

The slope at the end of the time interval is written as: 

𝑑𝑑𝜃𝜃2𝑖𝑖+1
𝑑𝑑𝜃𝜃∗

= 𝑙𝑙�𝜃𝜃1𝑖𝑖+1
0,𝜃𝜃2𝑖𝑖+1

0,𝜓𝜓1∗𝑖𝑖+1
0,𝜓𝜓0∗𝑖𝑖+1

0,𝜓𝜓2𝑖𝑖+1
∗ 0�

=
(−𝑓𝑓�𝜃𝜃1𝑖𝑖+1

0,𝜓𝜓1𝑖𝑖+1
∗ 0,𝜓𝜓0𝑖𝑖+1

∗ 0� + (𝜃𝜃𝑠𝑠 − 𝜃𝜃2𝑖𝑖+1
0) ∗ ((𝐻𝐻𝑖𝑖+1∗ − 𝐻𝐻𝑖𝑖∗)/∆𝜃𝜃∗) − 𝑃𝑃𝑃𝑃𝑖𝑖+1∗ + (

2 𝜕𝜕2𝑖𝑖+1
∗ 0

𝐻𝐻𝑖𝑖+1
∗ −1

) − 1)

𝐻𝐻𝑖𝑖+1∗ − 1
 

2nd layer: 
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Eventually,  

𝜃𝜃2𝑖𝑖+1 = 𝜃𝜃2𝑖𝑖 +
𝑙𝑙 �𝜃𝜃1𝑖𝑖 ,𝜃𝜃2𝑖𝑖 ,𝜓𝜓1

∗
𝑖𝑖 ,𝜓𝜓2

∗
𝑖𝑖,𝜓𝜓0

∗
𝑖𝑖
� + 𝑙𝑙�𝜃𝜃1𝑖𝑖+1

0,𝜃𝜃2𝑖𝑖+1
0,𝜓𝜓1∗𝑖𝑖+1

0,𝜓𝜓0∗𝑖𝑖+1
0,𝜓𝜓2𝑖𝑖+1

∗ 0�
2

∗ ∆𝜃𝜃∗ 

 

 

3. Model Assessment 

To test the developed model in this study, Hydrus-1D was selected as the benchmark. 

HYDRUS-1D is a well-established model for the solution of RE. A mass-lumped linear finite 

elements scheme has been used in HYDRUS-1D for discretization of the mixed form of the RE 

which results in an equivalent and somewhat standard finite difference scheme (e.g., Vogel et al., 

1996). Comparison of RE-based models or simplified versions of RE to Hydrus-1D is a common 

practice in the literature (e.g., Zhu et al. 2012; Carbone et al. 2015; Ogden et al. 2015). Among 

Hydrus-1D’s example projects, one (i.e., “Water Flow in a Field Soil Profile under Grass”) 

appears to be suitable for model verification purposes. Hence, atmospheric data and observed 

groundwater levels from a field in the Hupselse Beek watershed in the Netherland were 

considered which provided the required BCs for the numerical model (Šimůnek et al. 2013). The 

depth of the root zone was 30 cm. Calculations and model verifications were performed for the 

period of April 1 to September 30 of the year 1982 (=183 days). Soil moisture contents obtained 

by DARE were compared with those generated by Hydrus-1D. Note that in this study, and for 

model verification purposes, a uniform soil for the entire depth was used. 

The soil surface (i.e., top) BC involved actual precipitation and potential 

evapotranspiration rates for a grass cover (Figure 4.4). However, to evaluate the performance of 

the developed model, other hypothetical scenarios were considered which are discussed in the 

next section. Model verification is more concerned with identifying and removing errors in the 
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model formulation that is typically achieved by comparing the numerical output from the model 

to analytical or other accurate benchmark solutions. The surface fluxes including rainfall and 

evapotranspiration rates were incorporated into both DARE and Hydrus-1D models by using 

average daily rates distributed uniformly over each day. The bottom BC consisted of a prescribed 

groundwater level (initially set at 55 cm below the soil surface). However, we started evaluating 

the developed model with a fixed groundwater level of 𝐻𝐻=2ℎ where ℎ refers to the depth of root 

zone, and 𝐻𝐻 is the depth of groundwater table. 

Calculated moisture contents by DARE for various (top) BCs were compared to those 

calculated by Hydrus-1D for four different soil textures: sandy loam, loam, sandy clay loam, and 

sand. Table 4.1 represents the soil hydraulic parameters for these four soils, derived from 

Hydrus-1D’s “Water Flow – Soil Hydraulic Parameters” window. The source for this 

information is Carsel and Parrish (1988).  

The developed code for DARE generates both sub-daily and average daily moisture 

contents for each layer. We compared the results of average daily moisture contents in each 

layer. A number of performance indices including coefficient of determination (R2), Nash-

Sutcliffe efficiency (Ens), root mean square error (RMSE), and normalized RMSE (NRMSE) were 

considered for quantitative comparison of DARE to Hydrus-1D. The equations of the 

performance indices are given below: 

 R2 =
�∑ (𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖 − �̅�𝜃ℎ𝑏𝑏𝑑𝑑)(𝜃𝜃𝑑𝑑𝑎𝑎,𝑖𝑖 − �̅�𝜃𝑑𝑑𝑎𝑎)m

i=1 �
2

�∑ (𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖 − �̅�𝜃ℎ𝑏𝑏𝑑𝑑)2m
i=1 ��∑ (𝜃𝜃𝑑𝑑𝑎𝑎,𝑖𝑖 − �̅�𝜃𝑑𝑑𝑎𝑎)2m

i=1 �
 

 

(24) 

  𝑃𝑃𝑁𝑁𝑁𝑁 = 1 − �
∑ (𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖 − 𝜃𝜃𝑑𝑑𝑎𝑎,𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

∑ (𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖 − �̅�𝜃ℎ𝑏𝑏𝑑𝑑)2𝑚𝑚
𝑖𝑖=1

� (25) 
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 NRMSE =
𝑅𝑅𝑅𝑅𝑆𝑆𝑃𝑃
�̅�𝜃ℎ𝑏𝑏𝑑𝑑

=
�1
𝑚𝑚
∑ (𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖 − 𝜃𝜃𝑑𝑑𝑎𝑎,𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

�̅�𝜃ℎ𝑏𝑏𝑑𝑑
 

 

(26) 

where, 𝜃𝜃ℎ𝑏𝑏𝑑𝑑,𝑖𝑖, 𝜃𝜃𝑑𝑑𝑎𝑎,𝑖𝑖 denote calculated moisture contents by Hydrus-1D and DARE at the ith day, 

respectively. �̅�𝜃ℎ𝑏𝑏𝑑𝑑 and �̅�𝜃𝑑𝑑𝜃𝜃 refer to the average of moisture contents calculated by Hydrus-1D and 

DARE, respectively, and m represents the number of days of simulation.  

 

4. Results  

4.1 Gravity Drainage Condition 

Results for “no rain/ET” top boundary condition; 𝒊𝒊,𝑬𝑬𝑬𝑬 = 𝟎𝟎 

We started evaluating the gravity drainage condition with a simple “no rainfall, no ET” 

top BC. Figure 4.5 displays the comparison graphs for various soil types for “no rainfall, no ET” 

BC. Results show high agreement between the calculated moisture contents from DARE and 

those from Hydrus-1D. The best and worst performances were related to sandy clay loam and 

sandy soils in the first layer where the calculated values for R2, ENS, RMSE, and NRMSE were 

equal to 1.0 (for sandy clay loam) and 0.97 (for sand), 0.98 and 0.95, 0 and 0.01, and 0.02 and 

0.09, respectively; all of which confirm a good performance of the developed model for this top 

BC in the root zone. In the figure, DARE captures the reduction rate in moisture content in time 

equally well. The rate of reductions are higher in earlier time periods and diminish gradually. As 

expected, sand is drying very fast, and sandy-clay-loam is drying much slower, and DARE 

captures these behaviors well in both soil layers. 
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Results for “no ponding at all”; 𝒊𝒊< 𝒇𝒇𝒄𝒄 

Various scenarios for the top boundary condition in which rainfall intensity is less than 

soil infiltration capacity (i.e., “no ponding at all”; 𝑖𝑖< 𝑓𝑓𝑒𝑒) were evaluated including “constant 

rainfall and constant ET”, “variable rainfall, variable ET”, “low initial moisture content with 

increasing (variable) rainfall and variable ET”, and “high-intensity variable rain and variable 

ET”. Figure 4.6 shows the results of comparison for the top BC of “constant rainfall and constant 

ET”. The assigned values of this scenario for rainfall intensity and evapotranspiration rates were: 

i=0.5 (cm/day), and ET=0.4 (cm/day). The comparison results illustrate that the calculated 

moisture contents by DARE for sandy loam and sandy soils are in great agreement with those 

calculated by Hydrus-1D. With the Ens values of 0.97 obtained for both layers, calculated 

moisture contents by DARE for sandy soils have the best match with those generated by Hydrus-

1D. Although the performance of the model for sandy clay loam soils is the worst regarding Ens 

values (=0.23, and 0.53, for the first and second layers, respectively), its performance is 

comparable to other soil types regarding other performance indices. DARE showed a high 

performance in comparison to the Hydrus’s output for the assigned scenario i.e., “constant 

rainfall and constant ET”. DARE and Hydrus-1D have shown the similar behavior in terms of 

the rate of reduction in soil moisture content. Note that eventually, they all have reached to a 

steady state condition.  

Figure 4.7 displays the results for the top BC of “variable rain and variable ET”. Figure 

4.4 illustrates the daily rainfall intensity and ET rates applied for evaluating this scenario which 

are the actual observed data from the study area. The performance of DARE for sandy soil was 

shown to be superior compared to other soil types. Calculated values for R2, ENS, RMSE, and 

NRMSE for sandy soil were almost the same for both layers, and those values for the 2nd layer 
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were equal to 0.89, 0.86, 0.01, and 0.09, respectively. Although the performances of the 

calculated moisture contents by DARE for sandy loam, loam and sandy clay loam are not very 

good just in terms of Ens values, i) they have captured the general trends of fluctuations in the 

calculated moisture contents by Hydrus-1D, and ii) have obtained very good results in terms of 

other performance indices. DARE and Hydrus-1D have shown an approximately same rate of 

reduction in the soil moisture contents  in earlier time periods and this behaviour is more evident 

for sand.   

Up to this point, all the hypothesized scenarios had high initial moisture contents. To 

evaluate the performance of the developed model under low antecedent moisture contents, top 

BC of “low initial moisture content with increasing (variable) rainfall and variable ET” was 

considered (it can also be called, “Buildup” scenario). Figure 4.8 shows the rainfall intensity 

assigned for this hypothesized scenario. Figure 4.9 illustrates the comparison results for the 

Buildup scenario. Loam and sandy clay loam soils have shown to be superior in terms of both R2 

and Ens values. Sandy loam has the 3rd rank in the model performance among all evaluated soil 

types while the calculated moisture content for the sandy soil showed the highest difference with 

those calculated by Hydrus-1D. The calculated moisture contents by the DARE have followed 

the same trends as those calculated by Hydrus-1D.  

Another hypothesized scenario considered to evaluate the performance of the model in 

capturing the moisture content fluctuations was the top BC of “high-intensity variable rain and 

variable ET”. Figure 4.10 depicts the rainfall pattern utilized for this scenario. Figure 4.11 shows 

the comparison results for this scenario. Similar to the findings of “variable rain, variable ET” 

scenario, sandy soil achieved the best performance in the comparison results for calculated 

moisture contents for this scenario. Despite the fact that all other three soil types have shown 
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acceptable results regarding R2, RMSE, and NRMSE, they all have negative Ens values. However, 

the overall performance of the model is acceptable because DARE has captured the general 

trends and fluctuations observed in Hydrus-1D outputs.  

 

Results for “Ponding at Some Point” (i.e., 𝒊𝒊 > 𝒇𝒇𝒄𝒄) 

To evaluate the performance of the developed DARE under “Ponding at some point” 

(i.e., 𝑖𝑖 > 𝑓𝑓𝑒𝑒) conditions, two scenarios were developed. Figure 4.12 displays the comparison 

results for the top BC of “low initial moisture and high rainfall intensity to reach ponding”. For 

the purpose of this top BC, various constant rainfall intensities were considered for different soil 

types. There is a high agreement between the calculated moisture contents from both DARE and 

Hydrus-1D.  

 In the second scenario for the evaluation of “Ponding at some point” where we started 

with a high initial moisture content, and a high constant rainfall intensity to keep saturation and 

then decrease the rainfall intensity. Figure 4.13 shows the rainfall intensity considered for 

constructing this scenario. Calculated moisture contents by DARE for various soil types are 

presented in Figure 4.14. Moisture contents simulated by the DARE for all soil types have 

proved to be close to those simulated by Hydrus-1D. Loam and sandy clay loam soils have had 

an increase in soil moisture, and they have reached saturation; then by a drop in rainfall intensity, 

there are reductions in the simulated moisture contents. In contrast, sandy loam and sandy soils 

have exhibited step-wise reductions in the simulated moisture content without reaching to a full 

saturation at the commencement of the simulations. The saturated hydraulic conductivity (Ks) for 

loam and sandy clay loam are 24.96 (cm/day), and 31.44 (cm/day), respectively; both of which 

are less than or very close to the starting (constant) rainfall intensity of 30 (cm/day). The DARE 
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has underestimated the moisture contents compared to Hydrus-1D’s simulated values. However, 

simulated moisture contents by the DARE have been consistent in general trend with Hydrus-1D. 

In Figure 4.14, for loamy soil simulated moisture contents by DARE starts dropping sharply at 

50 days following the sudden drop in rainfall intensity. However, HYDRUS-1D has a 10-day 

lag. These differences are not unexpected, because DARE was purely based on gravity drainage, 

and thus had omitted terms. Regardless of the bottom boundary condition of “Free Drainage” 

assigned in Hydrus-1D, Hydrus-1D solves RE for all the internal nodes. We ignored the negative 

pressure head effects in the development of gravity drainage version of DARE.  

 

4.2 Full-term DARE 

Results for “no rain” top boundary condition; 𝒊𝒊 = 𝟎𝟎 

To evaluate the full-term RE, the same scenarios used in assessing gravity drainage 

version of DARE were utilized. Bottom BC of zero pressure head at a fixed groundwater depth 

(i.e., H=2h=60 cm) was assumed for the evaluation of various scenarios performed in this study. 

The simple condition of “no rainfall, no ET” top BC was first examined. Figure 4.15 illustrates 

the comparison graphs for various soil types for the “no rainfall, no ET” top BC. Simulated soil 

moisture contents from the full-term DARE have a good agreement with those calculated by the 

Hydrus-1D. Results for sandy soil in the second layer display the highest discrepancies (NRMSE 

=0.23).  

 

Results for “no ponding at all”; 𝒊𝒊< 𝒇𝒇𝒄𝒄 

To evaluate the full-term DARE for the top boundary condition in which rainfall intensity 

is less than soil infiltration capacity (i.e., “no ponding at all”; 𝑖𝑖< 𝑓𝑓𝑒𝑒), a number of scenarios were 
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considered which include: “constant rainfall and constant ET”, “variable rainfall, variable ET”, 

“low initial moisture content with increasing (variable) rainfall and variable ET”, and “high-

intensity variable rain and variable ET”.  

 Figure 4.16 shows the comparison results for the top BC of “constant rainfall and 

constant ET”. 𝑖𝑖 = 0.5 (cm/day) and 𝑃𝑃𝑃𝑃 = 0.4 (cm/day) were, respectively, the assigned gain and 

loss fluxes to/from the soil surface for this scenario. The comparison results illustrate that the 

calculated moisture contents from the two models are in great agreement. The results for loam 

and sandy loam soils derived from the full-term DARE are very close to those calculated by 

Hydrus-1D. The discrepancy between two model results is higher for sandy clay loam, and it is 

at its highest value for sandy soil. However, the highest difference in the calculated moisture 

contents from two methods is slightly below 0.05 for the second layer in the sandy soil. 

Performance indices also confirm these findings; NRMSE equals zero for loam in both soil 

layers, and it has the worst values (=0.40 and 0.21) for sandy soil in the first and second layers, 

respectively.  

 Results for the top BC of “variable rain and variable ET” are displayed in Figure 4.17. 

Figure 4.4 illustrates the observed rainfall intensity and ET rates applied to this scenario too. The 

full-term DARE has captured soil moisture fluctuations in the first layer except for sandy soil. 

Results for the second layer are also close to those obtained by Hydrus-1D, however, DARE 

shows fewer fluctuations compared to Hydrus-1D.  

DARE exhibited a poor performance for simulating moisture content in sand. NRMSE 

values of 0.37 and 0.23, respectively for the first and second soil layers, show the weakness of 

full-term version of DARE for accurately simulating moisture content for sandy soil. Despite the 

other soil textures evaluated in this study, DARE has presented inconsistent fluctuations in 
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calculated moisture contents compared to those calculated by Hydrus-1D for sand. The DARE 

model has done a better job in predicting soil moisture contents for loamy soil in both layers 

compared to the other soil types.  

 Figure 4.18 displays the comparison results for the top BC of “high-intensity variable rain 

and variable ET”. The rainfall intensity illustrated in Figure 4.10 was used for the evaluation of 

this top BC. As can be seen from the Figure 4.18, the simulated moisture contents from the full-

term DARE for the root zone closely match those predicted by Hydrus-1D. For example, R2, Ens, 

RMSE, and NRMSE values are equal to 0.74, 0.61, 0.02, and 0.10, respectively for sandy loam 

soil in the first layer. The calculated moisture contents from DARE for the second layer, 

although were close to those simulated by Hydrus-1D, the DARE model shows less accurate 

simulations in capturing soil moisture fluctuations. However, the DARE model has partially 

captured fluctuations in the loamy soil in the second later. The full-term DARE has shown a poor 

performance in calculating mositure contents for sand compared to those calculated by hydrus-

1D. For instance, the NRMSE values for the first and the second soil layers are equal to 0.54 and 

0.17, respectively, confirming the inability of DARE for simulating mositure content in sandy 

soil. 

To evaluate the performance of the full-term DARE for starting points with low moisture 

contents, a top BC of “low initial moisture content with increasing (variable) rainfall and 

variable ET” was considered. This scenario is also called the “Buildup” scenario. Figure 4.8 

shows the daily rainfall intensity used in order to establish this scenario. Figure 4.19 depicts the 

comparison results for “Buildup” scenario. Results obtained from the full-term DARE show 

good agreement with those calculated by Hydrus-1D for all the evaluated soil textures except 

sandy soil. The DARE has calculated moisture contents for both layers for loam soil with the 
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highest performance indices. As an example, R2, ENS, RMSE and NRMSE values for the 

simulated moisture content for the loam soil in the root zone are 0.88, 0.65, 0.02, and 0.06, 

respectively. DARE has shown poor performance in calculating moisture contents for sandy soil 

particularly for the first layer with NRMSE value equal to 0.65.  

 

Results for “Ponding at Some Point” (𝒊𝒊 > 𝒇𝒇𝒄𝒄) 

Two different top BCs establishing two scenarios were considered to evaluate the 

performance of the full-term DARE model for “ponding at some point” condition (i.e., 𝑖𝑖 > 𝑓𝑓𝑒𝑒). 

Figure 4.20 displays the results for the top BC of “low initial moisture and high rainfall intensity 

to reach ponding”. To establish this top BC, various constant rainfall intensities were considered 

for various soil types. The assigned values for rainfall intensities were 𝑖𝑖𝑝𝑝 = 50 � 𝑒𝑒𝑚𝑚
𝑑𝑑𝑎𝑎𝑏𝑏

�, 𝑖𝑖𝑝𝑝 =

30 � 𝑒𝑒𝑚𝑚
𝑑𝑑𝑎𝑎𝑏𝑏

�, 𝑖𝑖𝑝𝑝 = 35 � 𝑒𝑒𝑚𝑚
𝑑𝑑𝑎𝑎𝑏𝑏

�, and 𝑖𝑖𝑝𝑝 = 500 � 𝑒𝑒𝑚𝑚
𝑑𝑑𝑎𝑎𝑏𝑏

�, respectively, for sandy loam, loam, sandy clay loam, 

and sandy soil. Results show that the calculated moisture contents from the DARE model for the 

first layer almost exactly match with those calculated by Hydrus-1D, except for sandy soil. 

Although the DARE-calculated moisture contents for the second layer are close to those 

calculated by Hydrus-1D (except for sandy soil), the DARE model has underestimated moisture 

contents for the second layer, with the highest difference between model results in sand with a 

NRMSE value of 0.42. The simulated moisture content by the DARE for the second layer in loam 

has the lowest NRMSE value of 0.06. DARE exhibits poor performances with large 

underestimations for sandy soil in both soil layers.  

To evaluate the “Ponding at some point” condition, another top BC was developed where 

we started with a high initial moisture content, and a high constant rainfall intensity to keep 

saturation and then decrease the rainfall intensity. Figure 4.13 displays the rainfall intensity 
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considered for establishing this scenario. Figure 4.21 shows the comparison results for this top 

boundary condition. Moisture contents simulated for the root zone by the full-term DARE model 

for all four soil types, except sandy soil, are in good agreement with those calculated by Hydrus-

1D. For instance, R2, ENS, RMSE and NRMSE values for sandy clay loam soil in the root zone are 

equal to 0.99, 0.90, 0.02 and 0.05, respectively. The accuracy of the calculated moisture contents 

in the second layer by the full-term DARE model are lower. The developed model was not able 

to accurately capture the average moisture contents in the second layer. However, in terms of 

NRMSE, the worst value was achieved for the second layer of sandy soil which was equal to 

0.15. This is a prediction error of about 15%. According to the results obtained by Hydrus-1D, 

loam and sandy clay loam have shown an increase in the soil moisture contents in both layers 

and have reached saturation. The full-term DARE has shown the same behavior in the root zone. 

However, we see a small reduction in soil moisture contents of the second layer calculated by the 

DARE model at the commencement of the simulation for loam and sandy clay loam. Sandy loam 

soil has shown a step-wise decrease in the moisture contents without reaching the saturation at 

the initial part of the simulation. The saturated hydraulic conductivity (Ks) for sandy loam, loam, 

sandy clay loam, and sand are 106.1 (cm/day), 24.96 (cm/day), 31.44 (cm/day), and 712.8 

(cm/day), respectively; the starting (constant) rainfall intensity of 30 (cm/day) was considered 

for this scenario. The full-term DARE has underestimated the moisture contents compared to 

Hydrus-1D’s simulated values. DARE has shown poor performance for simulating soil moisture 

content in sandy soil with this scenario, too. 

Table 4.2 to Table 4.5 summarize the performance metrics for the calculated moisture 

contents by DARE for sandy loam, loam, sandy clay loam and sand, respectively. In the 

evaluation of gravity drainage version of DARE, we reported a 10-day lag generated by Hydrus-
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1D in response to reduction in rainfall intensity (Figure 4.14). On the same figure, DARE had no 

such lag. However, as can be seen in Figure 4.21, the full-term DARE and Hydrus-1D have 

shown similar behavior in with no lag.  

 

5. Discussion 

Based on the developed scenarios in this study and the analyzed soil types, DARE for 

gravity flow condition showed excellent agreements with Hydrus-1D’s outputs for both soil 

layers. The full-term version of DARE was tested for zero pressure head at a fixed groundwater 

depth bottom boundary condition. Although same scenarios were considered for verification 

purposes, due to the differences in the assigned bottom boundary conditions, comparing the 

performance of the gravity drainage version of the DARE to the performance of the full-term 

version of DARE is not recommended. Therefore, one cannot reach to the conclusion that gravity 

drainage version of DARE is superior to the full-term version of DARE based on their 

performances. The full-term DARE proved to generate accurate estimations of soil moisture 

contents for the first soil layer (i.e., root zone) in comparison to calculated moisture contents by 

Hydrus-1D. However, there were some discrepancies between the calculated moisture contents 

from the full-term DARE with those calculated by Hydrus-1D for the second soil layer. DARE 

has shown poor performances in calculating soil moisture contents in sandy soil under some of 

assigned scenarios in this study. Although the performance of the full-term version of DARE 

was not acceptable under all scenarios for sandy soil, having wetlands in areas with sandy soil 

texture is not common. Hence, the application of full-term version of DARE in calculating 

moisture contents in unsaturated section of wetlands is not limited because of its weakness in 

sandy soil. However, in case of having wetlands with sandy soil, the gravity drainage version of 

DARE works well. We must bear in mind that each model comes with some assumptions and 
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limitations in application. The DARE has been an ongoing development/project, and as 

discussed earlier, we had a couple of revisions on the derived equations where we recently 

removed some initial simplifying assumptions. The challenge has been keeping the introduced 

model less computationally intensive by solving ODEs compared to the RE in PDE.  

In this study, the bottom boundary condition of zero pressure head (at a fixed 

groundwater depth) were considered for evaluating full-term DARE versus Hydrus-1D. Four 

different soil types including sandy loam, loam, sandy clay loam, and sand were examined. 

However, we tried to run Hydrus-1D with the same bottom boundary condition of zero pressure 

head for clay soil to have a quick understanding of the probable convergence issue of solving 

RE. We faced non-convergence issue for running Hydrus-1D for clay. Ogden et al. (2015) used a 

hodograph transformation, finite water-content discretization, and the method of lines to produce 

a set of three ODEs to calculate one-dimensional vertical flow in an unsaturated porous medium. 

The same issue was reported by Ogden et al. (2015) where they excluded clay and the other two 

fine soils (sandy clay and silty clay) from comparison because Hydrus-1D failed to converge on 

those soils unless they set the air entry pressure to be -2 cm in Hydrus-1D, a physically 

unrealistic value for those soils. Our solution to RE does not suffer from this problem (i.e., non-

convergence). Further analyses are needed to verify the application of the full-term DARE for 

other soil textures which have not been taken into consideration in this study.  

Although we did have the opportunity to take full advantage of the dimensionless forms 

of the equations developed in this dissertation. Those dimensionless equations can be utilized for 

further and future analyses. The developed dimensionless forms of equations and the related 

developed code have made the model ready for generating monographs during future studies, 
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where many more soil texture, rainfall/groundwater table/ET patterns, etc. can tested and under 

what soil, climatic and hydrologic patterns DARE works can be tabulated.  

 

5.1 Computational Efficiency  

To provide the readers with an idea about the computational efficiency of the developed 

model, the run times of the full-term DARE and Hydrus-1D for the “Ponding at some point” top 

boundary condition for sandy clay loam were compared (see Figure 4.21). The former took less 

than 2 seconds and the latter took about 644 seconds. However, this was not the case for all the 

scenarios. Any further modifications could impact this computational efficiency.  

 

6. Summary and Conclusions 

In this chapter, a new methodology was introduced, numerically solved and verified 

versus Hydrus-1D model which solves a highly nonlinear RE for soil moisture accounting in the 

vadose zone. The developed/evaluated model in this study is a two-layer depth-averaged solution 

(i.e., ODEs) to RE’s which is a PDE. Some hypothetical scenarios along with at least one 

scenario utilizing actual observed atmospheric fluxes were considered for the evaluation of 

DARE in both gravity drainage condition and full-term equations (i.e., by taking into account the 

negative pressure head). Dimensionless forms of equations were developed, and Heun’s method 

(with a comparison to explicit finite difference method) was utilized to discretize the solutions 

numerically. The following conclusions can be drawn from this study: 

1. Gravity drainage condition of the two-layer DARE showed great performance for all the 

assigned scenarios and all evaluated soil types in comparison to Hydrus-1D with “Free 

Drainage” bottom BC. 
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2. The full-term version of DARE performed well for the root zone with three soil types 

which include sandy loam, loam and sandy clay loam soil types. The full-term DARE 

showed a poor performance in simulating moisture contents in sandy soil. The full-term 

DARE for the second layer, although has calculated soil moisture contents close to those 

calculated by Hydrus-1D, it was not able to capture the fluctuations fully in the second 

layer, except for loam. Loam soil had the best results for the second soil layer with the 

full-term equations.  

The DARE proved to be less computationally intensive, and it does not suffer from the 

non-convergence problem, which is one of the most significant issues with the application of RE 

in fine textured soils. Ogden et al. (2015) also did not compare their results with Hydrus-1D for 

sandy clay, silty clay, and clay because Hydrus-1D utilizing RE failed to converge on those three 

soil textures.  Model comparison results showed that DARE is a reasonable approximation to full 

RE for estimating average moisture contents. However, further analyses on additional soil types, 

considering variable pressure heads for bottom boundary condition and variable groundwater 

table heights are needed to ensure the generalization of the developed model under any possible 

natural and real-world scenarios. Although the primary purpose of developing DARE for soil 

moisture accounting in unsaturated zone was to extend the WetQual model for the unsaturated 

section of wetlands, the developed model can be utilized in watershed-scale hydrologic models 

to serve as a robust solution to RE especially for cases when there is significant groundwater-

surface water interaction.  
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Table 4.1: Soil hydraulic parameters for various soil types evaluated in this study; 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠 and  
𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑 are, respectively, residual and saturated water content (dimensionless), and 𝐾𝐾𝑠𝑠𝑎𝑎𝑑𝑑 is the 
saturated hydraulic conductivity (cm/day); 𝑛𝑛 (dimensionless; a pore-size distribution index), 
 𝜆𝜆 (dimensionless; a pore connectivity parameter) and 𝛼𝛼 (L–1) are fitting parameters, which can 
be extracted from soil databases. 

Soil type 𝜃𝜃𝑏𝑏𝑒𝑒𝑠𝑠 𝜃𝜃𝑠𝑠𝑎𝑎𝑑𝑑 𝛼𝛼 (1/cm) 𝑛𝑛 
𝐾𝐾𝑠𝑠𝑎𝑎𝑑𝑑 

(cm/day)  𝜆𝜆  

Sandy loam 0.065 0.41 0.075 1.89 106.1 0.5 
Loam 0.078 0.43 0.036 1.56 24.96 0.5 

Sandy clay 
loam 

0.100 0.39 0.059 1.48 31.44 0.5 

Sand 0.045 0.43 0.145 2.68 712.8 0.5 
 

 

 

Table 4.2: Performance indices for the calculated moisture contents by DARE for sandy loam 
 

Scenarios First soil layer Second soil layer 
R2 ENS RMSE NRMSE R2 ENS RMSE NRMSE 

GD-1st 0.98 0.97 0.00 0.04 0.99 0.97 0.01 0.04 
GD-2nd 0.95 0.90 0.01 0.03 0.96 0.92 0.00 0.02 
GD-3rd 0.81 0.02 0.02 0.10 0.81 0.21 0.02 0.09 
GD-4th 0.97 0.52 0.03 0.12 0.91 0.61 0.04 0.13 
GD-5th 0.71 -0.20 0.03 0.13 0.66 -0.48 0.03 0.12 
GD-6th 1.00 0.66 0.01 0.03 0.99 0.83 0.01 0.02 
GD-7th 0.99 0.66 0.04 0.14 0.99 0.80 0.03 0.12 
FT-1st 0.99 0.70 0.01 0.05 0.98 -0.93 0.01 0.03 
FT-2nd 0.99 0.57 0.01 0.05 0.98 -1.24 0.01 0.04 
FT-3rd 0.65 0.06 0.02 0.11 0.92 -0.61 0.01 0.03 
FT-4th 0.91 0.63 0.03 0.12 0.80 -3.48 0.03 0.10 
FT-5th 0.74 0.61 0.02 0.10 0.50 -4.54 0.02 0.05 
FT-6th 1.00 0.98 0.00 0.01 1.00 -3.21 0.04 0.1 
FT-7th 0.99 0.93 0.02 0.09 0.89 -2.63 0.03 0.09 

GD and FT denote gravity drainage and full-term versions of DARE, respectively.1st = no 
rainfall, no ET; 2nd = constant rainfall and constant ET; 3rd = variable rain and variable ET; 4th = 
low initial moisture content with increasing (variable) rainfall and variable ET; 5th = high 
intensity variable rain and variable ET; 6th = low initial moisture and high rainfall intensity to 
reach ponding; 7th = scenario of “Ponding at some point” where we started with a high initial 
moisture content, and a high constant rainfall intensity to keep saturation and then decrease the 
rainfall intensity. 
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Table 4.3: Performance indices for the calculated moisture contents by DARE for loam 
  

Scenarios First soil layer Second soil layer 
R2 ENS RMSE NRMSE R2 ENS RMSE NRMSE 

GD-1st 1.00 0.96 0.01 0.03 1.00 0.98 0.00 0.02 
GD-2nd 0.97 0.52 0.01 0.02 0.98 0.70 0.01 0.02 
GD-3rd 0.84 0.22 0.02 0.07 0.69 0.21 0.02 0.07 
GD-4th 0.95 0.72 0.03 0.09 0.84 0.69 0.05 0.12 
GD-5th 0.74 -0.65 0.03 0.10 0.58 -1.74 0.03 0.09 
GD-6th 0.98 0.98 0.00 0.01 0.80 0.78 0.01 0.03 
GD-7th 0.96 0.64 0.04 0.11 0.96 0.66 0.04 0.10 
FT-1st 0.98 -4.06 0.02 0.06 0.63 -0.32 0.00 0.00 
FT-2nd 0.99 0.98 0.00 0.00 0.60 -1.73 0.00 0.00 
FT-3rd 0.84 0.14 0.01 0.05 0.53 -3.78 0.00 0.00 
FT-4th 0.88 0.65 0.02 0.06 0.92 0.48 0.01 0.03 
FT-5th 0.67 0.61 0.02 0.06 0.67 -14.42 0.01 0.02 
FT-6th 1.00 1.00 0.00 0.00 1.00 -0.76 0.03 0.06 
FT-7th 1.00 0.87 0.02 0.05 0.93 -6.06 0.01 0.04 

GD and FT denote gravity drainage and full-term versions of DARE, respectively.1st = no 
rainfall, no ET; 2nd = constant rainfall and constant ET; 3rd = variable rain and variable ET; 4th = 
low initial moisture content with increasing (variable) rainfall and variable ET; 5th = high 
intensity variable rain and variable ET; 6th = low initial moisture and high rainfall intensity to 
reach ponding; 7th = scenario of “Ponding at some point” where we started with a high initial 
moisture content, and a high constant rainfall intensity to keep saturation and then decrease the 
rainfall intensity. 
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Table 4.4: Performance indices for the calculated moisture contents by DARE for sandy clay 
loam 
 

Scenarios First soil layer Second soil layer 
R2 ENS RMSE NRMSE R2 ENS RMSE NRMSE 

GD-1st 1.00 0.98 0.00 0.02 1.00 0.98 0.00 0.02 
GD-2nd 0.94 0.23 0.01 0.02 0.97 0.53 0.00 0.02 
GD-3rd 0.81 0.22 0.02 0.06 0.64 0.04 0.02 0.06 
GD-4th 0.93 0.72 0.03 0.08 0.82 0.70 0.04 0.11 
GD-5th 0.70 -0.43 0.03 0.08 0.63 -1.29 0.02 0.08 
GD-6th 0.99 0.99 0.00 0.00 0.89 0.85 0.01 0.02 
GD-7th 0.99 0.67 0.03 0.09 0.99 0.68 0.03 0.08 
FT-1st 0.99 -1.04 0.01 0.04 0.32 -18.53 0.00 0.01 
FT-2nd 0.95 -3.13 0.01 0.03 0.26 -35.80 0.01 0.01 
FT-3rd 0.69 -0.32 0.02 0.08 0.24 -11.64 0.00 0.01 
FT-4th 0.83 0.08 0.03 0.08 0.79 -1.91 0.03 0.07 
FT-5th 0.70 0.70 0.02 0.06 0.46 -73.00 0.01 0.04 
FT-6th 1.00 0.99 0.00 0.00 1.00 -7.20 0.04 0.11 
FT-7th 0.99 0.90 0.02 0.05 0.85 -0.02 0.02 0.04 

GD and FT denote gravity drainage and full-term versions of DARE, respectively.1st = no 
rainfall, no ET; 2nd = constant rainfall and constant ET; 3rd = variable rain and variable ET; 4th = 
low initial moisture content with increasing (variable) rainfall and variable ET; 5th = high 
intensity variable rain and variable ET; 6th = low initial moisture and high rainfall intensity to 
reach ponding; 7th = scenario of “Ponding at some point” where we started with a high initial 
moisture content, and a high constant rainfall intensity to keep saturation and then decrease the 
rainfall intensity. 
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Table 4.5: Performance indices for the calculated moisture contents by DARE for sand 
 

Scenarios First soil layer Second soil layer 
R2 Ens RMSE NRMSE R2 Ens RMSE NRMSE 

GD-1st 0.97 0.95 0.01 0.09 0.98 0.96 0.00 0.07 
GD-2nd 0.97 0.97 0.00 0.03 0.97 0.97 0.00 0.03 
GD-3rd 0.89 0.85 0.01 0.10 0.89 0.86 0.01 0.09 
GD-4th 0.99 -0.03 0.02 0.13 0.99 0.22 0.02 0.12 
GD-5th 0.73 0.36 0.02 0.17 0.78 0.37 0.02 0.15 
GD-6th 1.00 0.74 0.01 0.03 1.00 0.98 0.00 0.01 
GD-7th 0.98 0.64 0.03 0.19 0.99 0.84 0.02 0.14 
FT-1st 0.95 0.72 0.01 0.17 0.99 -31.23 0.05 0.23 
FT-2nd 1.00 -5.17 0.04 0.40 0.99 -26.50 0.04 0.21 
FT-3rd 0.40 0.17 0.02 0.37 0.94 -31.67 0.05 0.23 
FT-4th 0.05 -94.55 0.10 0.65 0.34 -1.94 0.02 0.08 
FT-5th 0.18 -4.52 0.06 0.54 0.50 -19.59 0.04 0.17 
FT-6th 1.00 -81.77 0.13 0.31 1.00 -281.84 0.18 0.42 
FT-7th 0.02 -9.15 0.10 0.64 0.15 -6.30 0.04 0.15 

GD and FT denote gravity drainage and full-term versions of DARE, respectively.1st = no 
rainfall, no ET; 2nd = constant rainfall and constant ET; 3rd = variable rain and variable ET; 4th = 
low initial moisture content with increasing (variable) rainfall and variable ET; 5th = high 
intensity variable rain and variable ET; 6th = low initial moisture and high rainfall intensity to 
reach ponding; 7th = scenario of “Ponding at some point” where we started with a high initial 
moisture content, and a high constant rainfall intensity to keep saturation and then decrease the 
rainfall intensity. 
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Figure 4.1: Schematics of a hypothetical seasonally flooded wetland (Sharifi et al. 2017; 
reprinted “With permission from ASCE”) 
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Figure 4.2: Schematic representation of the wetland compartmentalization into ponded and 
variably saturated compartments; subscripts p and u refer to ponded and variably saturated 
compartments, respectively; ℎ(𝜃𝜃) and ℎ(𝜃𝜃 + ∆𝜃𝜃), respectively, represent water level in the 
ponded compartment at times 𝜃𝜃 and 𝜃𝜃 + ∆𝜃𝜃 (Sharifi et al. 2017; reprinted “With permission from 
ASCE”) 
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Figure 4.3: Schematic of soil profile for the two-layer depth-averaged solutions to Richards 
(1931) 
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Figure 4.4: Daily precipitation (top) and evapotranspiration (bottom) in the study area 
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Figure 4.5: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions; top boundary condition of “no rainfall and no ET” was considered. 
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Figure 4.6: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions; top boundary condition of “constant rainfall and constant ET” was considered. 
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Figure 4.7: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions; top boundary condition of “variable rain and variable ET” was considered. 
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Figure 4.8: Daily rainfall intensity used for the top boundary condition of “low initial moisture 
content with increasing (variable) rainfall and variable ET”. (Buildup Scenario) 
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Figure 4.9: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions. For this scenario, “low initial moisture content with increasing (variable) rainfall and variable 
ET” was considered. (“Buildup” scenario) 
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Figure 4.10: Daily rainfall intensity used for the top boundary condition of “high-intensity variable rain and variable ET” 
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Figure 4.11: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions; top boundary condition of “high intensity variable rain and variable ET” was considered. 
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Figure 4.12: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity 
drainage (bottom boundary) conditions; top boundary condition of “low initial moisture and high rainfall intensity to reach ponding” 
was considered; 𝑖𝑖𝑝𝑝 and (Ks) denotes rainfall intensity and soil saturated hydraulic conductivity. 
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Figure 4.13: Daily rainfall intensity used to establish the scenario of “Ponding at some point” where we started with a high initial 
moisture content, and a high constant rainfall intensity to keep saturation and then decrease the rainfall intensity. 
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Figure 4.14: Comparison of calculated soil moisture contents for the first and second layers by DARE and Hydrus-1D for gravity drainage (bottom 
boundary) conditions; scenario of “Ponding at some point” where we started with a high initial moisture content, and a high constant rainfall 
intensity to keep saturation and then decrease the rainfall intensity.; Figure 4.13 represents the rainfall intensity applied for establishing this 
scenario; 𝑖𝑖𝑝𝑝 and (Ks) denote rainfall intensity and soil saturated hydraulic conductivity, respectively. 
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Figure 4.15: Comparison of calculated soil moisture contents for the first and second layers by the full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth” and top BC of “no rainfall and no ET” were considered. 
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Figure 4.16: Comparison of calculated soil moisture contents for the first and second layers by the full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth” and top BC of “constant rainfall and constant ET” were considered. 
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Figure 4.17: Comparison of calculated soil moisture contents for the first and second layers by the full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth” and top BC of “Variable rainfall and variable ET” were considered. 
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Figure 4.18: Comparison of calculated soil moisture contents for the first and second layers by full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth” and top BC of “High intensity variable rain and variable ET” were 
considered. 
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Figure 4.19: Comparison of calculated soil moisture contents for the first and second layers by the full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth” and top BC of “low initial moisture content with increasing (variable) 
rainfall and variable ET” was considered. (“Buildup” scenario) 
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Figure 4.20: Comparison of calculated soil moisture contents for the first and second layers by the full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth”; top BC of “low initial moisture and high rainfall intensity to reach 
ponding” were considered; 𝑖𝑖𝑝𝑝 and (Ks) denotes rainfall intensity and soil saturated hydraulic conductivity. 
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Figure 4.21: Comparison of calculated soil moisture contents for the first and second layers by full-term DARE and Hydrus-1D; 
bottom BC of “zero pressure head at a fixed groundwater depth”; scenario of “Ponding at some point” where we started with a high 
initial moisture content, and a high constant rainfall intensity to keep saturation and then decrease the rainfall intensity.; 𝑖𝑖𝑝𝑝 and (Ks) 
denotes rainfall intensity and soil saturated hydraulic conductivity. 
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Chapter 5 : Graphical User Interface for the Wetland Water Quality Model, 
WetQual 

 

Abstract 

A Graphical User Interface (GUI) was developed for the Wetland Water Quality Model, 

WetQual which enables users with a basic knowledge of hydrology and water quality to easily 

apply the WetQual model to their wetland sites. The processes-based WetQual model can 

simulate the water quality including nitrogen, phosphorous, carbon and sediment cycles in 

natural and constructed wetlands. WetQual can be used in continuously flooded environments or 

wetlands going through wetting and drying cycles. This GUI has been developed to handle 

continuously ponded wetlands. The ponded version of WetQual does not include a hydrology 

component which limits its application. By solving the continuity equation through a flow 

routing module, a hydrology component was added to calculate the times series of outflow, 

wetland water level, surface area, and volume. The added hydrology component is useful in case 

users do not have the pre-defined/measured hydrologic inputs. The GUI allows the WetQual 

model to be run either in a deterministic or stochastic mode. In the stochastic model, users need 

to select the probability distributions (uniform, log-normal or triangular) and relevant statistics 

for model parameters. The GUI generates random parameter sets and performs Monte Carlo 

simulations to produce an ensemble of outputs. It provides an opportunity to visualize both 

deterministic and stochastic model outputs through series of graphs. With the latter, users can 

visualize the time series of various WetQual outputs for a particular parameter set. Alternatively, 

GUI can summarize the ensemble of model runs through prediction intervals. The GUI can 

perform Generalized Likelihood Uncertainty Estimation (GLUE) and Bayesian Monte Carlo 

simulation and Maximum Likelihood estimation (BMCML) analyses for uncertainty analyses. 
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The utility of the GUI was demonstrated through a case study in a small restored wetland called 

Barnstable wetland, located in Kent Island, Maryland. This GUI presents a tool to help wetland 

scientists, managers and water quality professionals have a better understanding of nutrient 

cycling/removal in the flooded wetlands. Hence, it can also help for better wetland restoration, 

enhancement, planning, and management.  

  

 

1. Introduction 

Most of the commonly used hydrology and water quality models have some types of 

graphical interfaces to provide the users with a user-friendly environment for 

visualization/interpretation of inputs/outputs and post processing of model outputs. Visualizing 

inputs/outputs, importing and exporting the data from/to other platforms, which include the 

outputs from other models to be used in the target model or vice versa, are some of the 

capabilities of the user interfaces developed for those models. A Graphical User Interface (GUI) 

can facilitate the application of vital hydrology and water quality models. GUIs provide an 

interactive and easy-to-use control of software application. A primary objective of GUIs is to 

present the modeling environment as transparent as possible to the user (Tim, 1995). Over the 

years, with the emerging of object-oriented languages (such as C++ and C#), user-friendly 

versions of hydrology and water quality models have been developed. Table 5.1 provides a 

summary of some of the hydrology and water quality models in this regard. Two well-known 

watershed hydrology and water quality models, Storm Water Management Model (SWMM) and 

Hydrological Simulation Program-Fortran (HSPF) were initially formulated in the FORTRAN 

environment, but they also have Windows-based (written in C/C++ languages, called WinHSPF) 
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versions, developed over the last two decades which give the users greater flexibility and more 

advanced interactive capabilities. The Windows interface to HSPF, known as WinHSPF (Duda et 

al., 2001), was created for BASINS and works with the USEPA-supported HSPF model (Duda et 

al. 2012). Olivera et al. (2004) developed a Geographic Information System (GIS) interface in 

Visual Basic (VB) for the Soil and Water Assessment Tool (SWAT; which is written originally 

in FORTRAN) called ArcSWAT (or ArcGIS-SWAT). The distributed Kinematic Runoff and 

Erosion model, KINEROS2, written originally in FORTRAN, has a GUI developed within 

Microsoft .NET framework within Visual Studio 2003, called Automated Geospatial Watershed 

Assessment (AGWA 2.x), which is an ArcView GIS extension (Goodrich et al. 2006; Burns et 

al. 2007). Recently, Dile et al. (2016) developed an open source GIS (QGIS) user interface (UI), 

called QSWAT, which performs similar functions as ArcSWAT, but with additional enhanced 

features such as merging small subbasins. Another watershed hydrology model, MIKE SHE was 

first written in FORTRAN, and then the related GUI was developed in C++ (Christensen 2004). 

GUIs can also be used for training and educational purposes. For example, AghaKouchak et al. 

(2013) developed a MATLAB GUI for ensemble streamflow simulation through which the user 

can get an insight into how hydrological processes are interconnected. These practical tools are 

needed to help the uptake of the advanced hydrology/water quality models for non-scientists.  

  The Wetland Water Quality Model, WetQual (Hantush et al. 2013; Kalin et al. 2013; 

Sharifi et al. 2013) has been developed in FORTRAN language, and the new modules will also 

be written in this environment. The ponded version of WetQual does not include a hydrology 

component which limits its application. Hydrologic information (flow in and out of the wetland, 

depth-area-volume time series, etc.) needs to be provided as an input, which could be observed 

data or modeled externally. Adding a hydrology component is required in case users do not have 
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the pre-defined/measured hydrologic inputs for the wetland which is mostly the case. By solving 

continuity equation through a flow routing module, a hydrology component should read in the 

hydrologic forcing time series (i.e., inflow, evapotranspiration (ET), precipitation and 

subsurface/groundwater flow), and geometry table (i.e., depth-area-volume-outflow 

relationship), to calculate the times series of outflow, wetland water level, surface area, and 

volume. An inclusion of the hydrology component in the WetQual will help conduct a smoother 

water quality modeling by providing the users with a better understanding of hydrologic 

processes in the study wetland. Furthermore, the users do not need to perform wetland 

hydrologic modeling individually outside the WetQual.  

 For a proper application of WetQual model, a Monte Carlo (MC) simulation of 50,000 or 

100,000 runs are highly recommended. Generating an ensemble of WetQual outputs by 

conducting MC simulations is the first step in conducting uncertainty analyses. With the current 

format, the users have to do uncertainty and sensitivity analyses outside of the WetQual in other 

software, such as Excel. They also need to transfer model outputs to other platforms to visually 

assess their results, which would be challenging when they set the model for high number of 

simulations, in which case the output files would be very big in size. The WetQual model has 

text-based input/output interactions with no visualization interface. A GUI would help extend the 

model’s accessibility for public use. A GUI can be an invaluable platform ready to employ other 

fundamental functionalities such as uncertainty and sensitivity analysis which are essential for 

any reliable hydrologic/water quality studies. 

Improved understanding of the physics and dynamics of hydrologic systems, and 

considerable growth in the computational power have considerably improved the hydrologic 

modeling (Liu and Gupta, 2007). This has resulted in the establishment of higher levels of 
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complexity into the hydrologic models and reflects our improved understanding. However, they 

have increased the need for robust methods to encounter the increased uncertainty associated 

with these models and the observations required for the development and evaluation of the 

models (Liu and Gupta, 2007). The same but important issue comes with the development and 

evaluation of process-based/physically-based water quality models. Uncertainty originates from 

various sources including the structure of the model, estimation of model parameter values, input 

forcing and boundary condition and errors in measurements (i.e., field observations) (Beven and 

Binley, 2014). A sufficient understanding of uncertainty sources is needed to reduce the total 

predictive uncertainty (Renard 2010); an estimation of model predictive uncertainty can establish 

a basis for environmental decision makers to select among alternative actions (Reckhow and 

Qian 1994). WetQual as a process-based model includes a large number of parameters that have 

to be estimated from a limited information or data available from wetland hydrology and water 

quality measurements. Table 5.2 represents some of WetQual model’s parameters used in the 

calculation of nitrogen (N), phosphorus (P) and total suspended sediment (TSS) cycles. For 

brevity, C parameters are not listed in the table. Readers are referred to Sharifi et al. (2013) 

regarding the carbon cycle and the related parameters in WetQual.  

A better representation of physics and natural processes comes with a higher complexity 

in the model and consequently more uncertainties, and that is why a robust wetland water quality 

model can benefit from post-processing and sensitivity analyses embedded into its graphical 

interface. The generalized likelihood uncertainty estimation (GLUE) (Beven and Freer, 2001) 

has been extensively used in water quality modeling and management studies (e.g., Zheng and 

Keller, 2007; Freni et al., 2008; Mannina, 2011; Zhang et al., 2015). The GLUE methodology 

rejects the concept of an optimum parameter set for a model and instead promotes the concept of 
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“equifinality” of different parameter sets and/or model structures (Kalin et al. 2013). The 

intention of equifinality thesis is to bring attention to the fact that there are many acceptable 

representations that cannot be easily rejected and that should be considered in assessing the 

uncertainty associated with predictions (Beven, 2006). Wagener et al. (2001) developed a 

Monte-Carlo Analysis Toolbox (MCAT) for regional sensitivity analysis which also performs 

GLUE analysis. The philosophy behind GLUE is to avoid a difficult full probabilistic model 

specification but to instead search regions in the parameter space where the model predictions are 

consistent with the observations (Nott et al. 2012). Huang et al. (2014) developed CV-GLUE 

uncertainty estimation tool for wetland water quality models which provides predictive 

uncertainty estimation in terms of a characteristic coefficient of variation (CV). Characteristic 

CV is a simple measure of uncertainty that can be used to represent the uncertainty within local 

data or the values of local parameters (Hakanson, 2000). The applied likelihood function in their 

tool is equivalent to a coefficient of determination or the Nash-Sutcliffe efficiency (ENS) (Nash 

and Sutcliffe, 1970) criterion. GLUE lacks rigorous statistical assumptions and uncertainty, and 

therefore is no longer expressed in terms of probabilities (Chaudhary and Hantush 2017).  

 As emphasized by Chaudhary and Hantush (2017), Bayesian frameworks have been 

recently utilized to link model calibration and uncertainty estimation to water quality risk 

assessment. In addition to the GLUE method and to obtain relatively more accurate probabilistic 

inferences, the wetland water quality model of this study (i.e., WetQual) was equipped with a 

novel approach presented by Hantush and Chaudhary (2014). This approach combines the 

Bayesian Monte Carlo (BMC) simulation (e.g., Dilks et al. 1992) with the maximum likelihood 

estimation, called BMCML, and borrows the concept of “equifinality” from the GLUE 

methodology, i.e. the emphasis is placed on the generated parameter sets (Hantush and 
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Chaudhary, 2014). BMCML method is inherently computationally intensive especially in highly 

parameterized hydrology and water quality models (Chaudhary and Hantush, 2017).  

  The objective of this study was adding a flow routing module to the ponded version of 

WetQual and creating a GUI that bring the hydrologic and water quality modeling under one 

umbrella. The developed WetQual GUI has a hydrologic component that can calculate wetland 

outflow, depth, area and volume time series through flow routing. The GUI also simplifies the 

input/output transfer and provides users with a powerful visualization and post processing tool 

which include uncertainty and sensitivity analyses. By utilizing this GUI, users can perform the 

GLUE and BMCML analyses. GUI in its post processing module provides a tool for model 

predictive uncertainty analysis. By conducting GLUE, it provides estimate for the 95% 

prediction interval. Through BMCML it can provide 95% confidence limits. Sensitivity analysss 

based on Kolmogorov-Smirnov (K-S) test and dotty plots are also available in the GUI. The 

utility of the GUI is demonstrated through its application to Barnstable wetland, located in Kent 

Island, Maryland.  

 

2. WetQual GUI development  

2.1. WetQual Model 

The process-based WetQual model simulates nitrogen (N), phosphorus (P), total 

suspended sediment (TSS) and carbon (C) cycles and their dynamics in wetlands. The model 

partitions a wetland into three basic compartments: (1) (free) water column, (2) wetland soil 

layer (which is further portioned into aerobic and anaerobic zones), and (3) plant biomass 

(Hantush et al., 2013). Processes in surface water and the bottom-active soil layer are described 

by a system of coupled ordinary differential equations. Figure 5.1 explains the internal 
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structures/steps and processes of WetQual model using a flowchart. The model runs on daily 

time scale, while it internally divides the one-day time interval into a smaller time interval for 

numerical integration. 

    

2.2. Design 

The GUI was written in the C#.NET environment within Visual Studio (VS) 2015. “C# is 

an elegant and type-safe, object-oriented language that enables developers to build a variety of 

secure and robust applications that run on the Microsoft .NET Framework” (MSDN 2015). 

Type-safe code accesses only the memory locations it is authorized to access. For example, type-

safe code cannot read values from another object's private fields (MSDN 2017). To that end, 

XAML language is employed by the Windows Presentation Foundation (WPF) to define the 

linkage of various interface elements. WPF graphic subsystem is used to build the UI of a 

window (like basic layout, data binding, and basic UI components). Note that NET Framework 

4.5.2 or higher version is required to install WetQual which comes with the install package. To 

better understand the development of WetQual GUI, the conceptual structure is shown in Figure 

5.2.  

WetQual GUI uses a suite of multiple modules to perform a successful visualization of 

inputs/outputs of WetQual accompanied with uncertainty and sensitivity analyses. Those 

modules include WetQual with Windows graphics, random parameter generation, post-

processing by likelihood calculations through GLUE and BMCML methods, and sensitivity 

analysis using Kolmogorov-Smirnov (K-S) test and dotty plots. Table 5.3 to Table 5.5 represent 

hydro-climate inputs, input concentrations, and the outputs of WetQual GUI, respectively. All 
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the parameters of the model are too many to be listed here, and readers are referred to Hantush et 

al. (2013), Kalin et al. (2013), and Sharifi et al. (2013)..  

WetQual GUI accepts TEXT files in “space delimited” format, visualizes inputs/outputs 

and gives editing capability for model inputs. Once the user provided the required data for 

WetQual GUI, they can view the time series of data in tables and graphs where they can edit and 

save any required (future) changes/revisions. The user needs to assign a starting date of 

simulation, hydro-climate data, fixed parameters, initial and input concentrations of constituents 

of interest for the project. “Save as” option gives the user the flexibility to move their project to 

another location, including other computers, without affecting their original project, and without 

its input files being lost. Note that the GUI has an option of opening an existing project. All 

these, along with the interactive and user-friendly windows for various inputs under “Input Files” 

header of the GUI, meet the objective of the smooth moving, copying and archiving the projects 

within and between computers. A project consists of i) a project file which controls the state of 

the UI and its functions and ii) the project directory where the project input/output files are 

stored. Main WetQual GUI components are 1) input files, 2) model parameters, 3) running and 

visualizing the results, 4) post-processing and sensitivity analyses which are explained in the 

following sections. Figure 5.3 shows the main headers and menus embedded in WetQual GUI.  

 

2.3. Input files 

WetQual GUI requires several level of inputs from the user. Assigning a start date for the 

project is the first step. WetQual needs the day number within a year (Julian days) for the 

equation governing rooted/benthic plant growth/death. Hence, having a starting day of 

simulation helps keep track of the Julian days for the plant-related calculations in the model. The 
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“Hydro-Climate Parameters” menu is either to upload “Pre-existing Data” or to run “Flow 

Routing” module to simulate the hydrologic data (i.e., times series of outflow, wetland water 

depth, area, and volume). Hydro-climate data includes 10 parameters which are inflow rate (Qin, 

m3/day), outflow rates (Qout, m3/day), volume of wetland (Vw, m3), wetland surface area (A, m2), 

Evapotranspiration rate (ET, cm/day), precipitation rate (ip, cm/day), reference depth of water 

(H, m), groundwater discharge (Qg, m3/day; negative for infiltration/recharge), wind speed (Uw, 

m/s) and daily water temperature (Twater, °C), respectively. More details about the definitions, 

symbols, and units are given in Table 5.3. The user has the option to select between pre-defined 

(measured/calculated) hydrologic data and “Flow Routing” module. The “Flow Routing” module 

works as an individual routing module that can be used in case the users do not have the pre-

defined/measured hydrologic inputs for the wetland which is mostly the case. The continuity 

equation is solved using the third-order scheme of Runge-Kutta method in the “Flow Routing” 

module of the WetQual GUI. Overall water budget for a wetland is defined as: 

 𝜙𝜙𝑤𝑤 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

= 𝑄𝑄𝑖𝑖 ± 𝑄𝑄𝑔𝑔 − 𝐴𝐴𝑃𝑃𝑇𝑇 + 𝐴𝐴𝑖𝑖𝑃𝑃 ± 𝑄𝑄𝑇𝑇 − 𝑄𝑄𝑜𝑜 (1) 

where, V is the water volume of wetland surface water (L3); A is the wetland surface area (L2); 

Qi is the volumetric inflow rate (including flooding streams) (L3T-1), Qg is groundwater 

discharge or recharge (L3T-1), Qo is wetland discharge (outflow) rate (L3T-1), ip is precipitation 

rate (LT-1), ET is evapotranspiration rate (LT-1), QT is tidal inflow or outflow and 𝜙𝜙𝑤𝑤 is effective 

porosity of wetland surface water (since biomass occupies a part of the submerged wetland 

volume). The terms in the equation vary in importance depending on the type of wetland. 

Furthermore, not all the terms in the above hydrologic budget equation apply to all wetlands.  
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The third-order scheme of Runge-Kutta involves breaking each time interval into three 

increments and calculating successive values of water surface elevation and wetland discharge 

for each increment. The continuity equation can also be described as: 

 

 𝜙𝜙𝑤𝑤 
𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃

= 𝐼𝐼(𝜃𝜃) − 𝑄𝑄(𝐻𝐻) (2) 

where  

 𝐼𝐼(𝜃𝜃) = 𝑄𝑄𝑖𝑖(𝜃𝜃) ± 𝑄𝑄𝑔𝑔(𝜃𝜃) − 𝐴𝐴𝑃𝑃𝑇𝑇(𝜃𝜃) + 𝐴𝐴𝑖𝑖𝑃𝑃(𝜃𝜃) ± 𝑄𝑄𝑇𝑇(𝜃𝜃) (3) 

where 𝑑𝑑 is the volume of water in storage in the wetland; 𝐼𝐼(𝜃𝜃) is the inflow into the wetland as a 

function of time; 𝑄𝑄(𝐻𝐻) is the outflow from the wetland, which is determined by elevation i.e., 

wetland water level (𝐻𝐻). The change in volume, 𝑑𝑑𝑑𝑑, due to the change in elevation, 𝑑𝑑𝐻𝐻, can be 

expressed as (Chow et al. 1988): 

 𝑑𝑑𝑑𝑑 = 𝐴𝐴(𝐻𝐻)𝑑𝑑𝐻𝐻 (4) 

where 𝐴𝐴(𝐻𝐻) is the water surface area at elevation 𝐻𝐻. The continuity equation is then rewritten as: 

 
𝑑𝑑𝐻𝐻
𝑑𝑑𝜃𝜃

=
𝐼𝐼(𝜃𝜃) − 𝑄𝑄(𝐻𝐻)
𝜙𝜙𝑤𝑤 𝐴𝐴(𝐻𝐻)

 (5) 

For third-order scheme, the slope, 𝑑𝑑𝐻𝐻
𝑑𝑑𝑑𝑑

, approximated by ∆𝐻𝐻
∆𝑑𝑑

 is first evaluated at (𝐻𝐻𝑗𝑗, 𝜃𝜃𝑗𝑗), then at 

(𝐻𝐻𝑗𝑗 + ∆𝐻𝐻1
3

, 𝜃𝜃𝑗𝑗 + ∆𝑑𝑑
3

), and finally at (𝐻𝐻𝑗𝑗 + 2∆𝐻𝐻2
3

, 𝜃𝜃𝑗𝑗 + 2∆𝑑𝑑
3

). In equations, ∆𝐻𝐻1, ∆𝐻𝐻2, and ∆𝐻𝐻3 are 

defined for the 𝑗𝑗-th interval as: 

 ∆𝐻𝐻1 =
𝐼𝐼�𝜃𝜃𝑗𝑗� − 𝑄𝑄(𝐻𝐻𝑗𝑗)
𝜙𝜙𝑤𝑤 𝐴𝐴(𝐻𝐻𝑗𝑗)

∆𝜃𝜃 (6) 

 ∆𝐻𝐻2 =
𝐼𝐼 �𝜃𝜃𝑗𝑗 + ∆𝑑𝑑

3
� − 𝑄𝑄(𝐻𝐻𝑗𝑗 + ∆𝐻𝐻1

3
)

𝜙𝜙𝑤𝑤 𝐴𝐴(𝐻𝐻𝑗𝑗 + ∆𝐻𝐻1
3

)
∆𝜃𝜃 (7) 
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 ∆𝐻𝐻3 =
𝐼𝐼 �𝜃𝜃𝑗𝑗 + 2∆𝑑𝑑

3
� − 𝑄𝑄(𝐻𝐻𝑗𝑗 + 2∆𝐻𝐻2

3
)

𝜙𝜙𝑤𝑤 𝐴𝐴(𝐻𝐻𝑗𝑗 + 2∆𝐻𝐻2
3

)
∆𝜃𝜃 (8) 

The value of 𝐻𝐻𝑗𝑗+1 is given by: 

 𝐻𝐻𝑗𝑗+1 = 𝐻𝐻𝑗𝑗 + ∆𝐻𝐻 (9) 

where  

 ∆𝐻𝐻 =
∆𝐻𝐻1

4
+

3∆𝐻𝐻3
4

 (10) 

This module reads in the incoming time series (i.e., inflow, evapotranspiration (ET), 

precipitation and groundwater inflow/outflow which constituete the 𝐼𝐼(𝜃𝜃)), geometry table (i.e., 

depth-area-volume-outflow relationship; h-A-V-Q), and temperature (for ET calculations through 

“ET” module if necessary) to calculate the times series of outflow, reference depth of water in 

wetland, wetland surface area and volume of wetland surface water. Not that users have an 

option for ET calculations based on Hamon method (Hamon 1961). In case the inflow to wetland 

is not measured, running a watershed model such as SWAT is a practical option. Groundwater 

inflow/outflow can be externally calculated using any of the groundwater flow models such as 

MODFLOW. In case the wetland surface water is hydraulically connected to subsurface water 

table, gravity drainage may be assumed and seepage from the flooded wetland area can be 

estimated as 𝑄𝑄𝑔𝑔 = 𝐾𝐾𝑠𝑠𝐴𝐴𝑤𝑤, where 𝐾𝐾𝑠𝑠 is saturated hydraulic conductivity (LT-1) and 𝐴𝐴𝑤𝑤 is daily 

inundated area (L2) (Sharifi et al. 2017). To obtain h-A-V relationship, using high-resolution 

Digital Elevation Model (DEM) generated from Light Detection and Ranging (LIDAR) data is 

suggested. Spatial Analyst Supplemental Toolbox in ArcGIS version 10.4 can also be utilized to 

establish h-A-V relationship. Wetlands usually do not have an outlet structures to have h-Q 

relationship, especially natural wetlands. By developing h-A-V relationship and knowing the 

volume at which the wetland can hold the maximum amount of water (𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒), for 𝑑𝑑 > 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒, the 
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𝑄𝑄𝑜𝑜𝑏𝑏𝑑𝑑 = 𝑑𝑑−𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚
𝑑𝑑

 can be used to establish the h-Q relationship. 𝑑𝑑 ≤ 𝑑𝑑𝑚𝑚𝑎𝑎𝑒𝑒 means no outflow from 

the wetland.  

The “Fixed Parameters” menu is used to assign the time-independent model parameters. 

It includes parameters like fraction of mineral nitrogen plant uptake in water column, soil aerobic 

and anaerobic layers, and some other control parameters such as the time step of simulations, 

number of simulations (for stochastic run), etc. The “Water Quality” menu is used to import 

“Initial Concentration” of N, P, TSS, and C, and to import and view “Input Concentrations” 

which is the time series of water quality constituents.  

 

2.4. Model parameters 

In this step, some of the WetQual parameters which are considered to be stochastic (some 

biogeochemical parameters and reaction rates) are introduced. They are called random 

parameters because we generate a set of random parameters for a stochastic run of the model. As 

can be seen from Figure 5.3, the GUI allows WetQual to be run either in deterministic or 

stochastic mode. The selected ranges (Min, Max) and distributions for the listed 

parameters/coefficients were extracted from literature and expert knowledge (e.g. Schnoor, 1996; 

Chapra, 1997; Di Toro, 2001; Reddy and Delaune, 2008; Cerco and Cole, 1995, and Ji, 2008). 

See Hantush et al. (2013), Kalin et al. (2013) and Sharifi et al. (2013) to find details about 

WetQual parameters. For Deterministic mode, the median of the selected range for each model 

parameter was chosen to serve as the default value. Users can change them. 

 Regarding the “Stochastic Model”, the user needs to choose the distribution type and 

relevant statistics. The default (probability) distribution types suggested from the literature are 

uniform, log-normal or triangular. Minimum and maximum range of parameters are required for 
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uniform distribution. In the case of log-normal distribution, min/max and (X0.1%, X99.9%), where 

X0.1% and X99.9% denote lower and upper percentiles for log-normal distribution, respectively, or 

mean (μ) and standard deviation are required. For the triangular distribution, the peak location 

(i.e., the peak of the data) is required in addition to Min and Max values. To have a WetQual run 

with “Stochastic Model”, we consider a Monte Carlo simulation. Monte Carlo type of 

uncertainty analysis is typically used for quantifying the predictive uncertainty of a model (Siade 

et al., 2015). The GUI generates random parameter sets and performs Monte Carlo Simulations 

to produce ensemble of outputs. Figure 5.4 represents the MATLAB scripts for random 

parameter generation as an example of the codes and the related modules that have been 

developed and utilized inside the GUI. WetQual GUI also summarizes the ensemble of model 

runs through prediction intervals. 

 

2.5. Running and visualizing the results 

After all the inputs and parameters have been assigned “Run Simulations” menu is used 

in which the GUI executes and exports the outputs of WetQual model. Since the deterministic 

model performs only one simulation, running it takes only seconds. However, depending on the 

number of the simulations assigned for the stochastic model, and the processor, it may take from 

couple of minutes to a couple of hours to complete and run the stochastic model. Note that 

having a system equipped with a solid state drive (SSD) could reduce the running time up to 4 

times less than the regular time required for a particular run.  

The current version of the WetQual model (i.e., WetQual executable by itself and without 

graphical user interface) does not include a visualization of the model inputs/outputs. To quickly 

identify any issues (in the simulation process) in need of further investigation, visualization of 
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the data through time series graphs and tables is required and is time-saving. “Analyze Output 

Files” provides an opportunity to visualize both deterministic and stochastic model outputs 

through series of graphs. The user can select the output of interest (out of 29 WetQual outputs for 

N, P, TSS and C, listed in Table 5.4) to view and evaluate the graphical output (i.e., time series 

graph). A “Time Series Table” represents the simulated values in time series. Furthermore, the 

user can print the graphs or save them in *.pdf and *.png formats. For the sake of simplicity and 

GUI performance efficiency, the WetQual outputs (in *.txt format) are stored in the same folder 

as inputs. Since the stochastic model results in an ensemble of outputs, an option was added to 

allow the user choose among the number of simulations in “Analyze Output Files”. Users can 

pick any simulation number and visualize their outputs. The graphs are dynamic, and the user 

can focus on any parts of the graph. Clicking on the graph will show the date and the value of the 

parameter. 

 

2.6. Post Processing  

In “Post Processing” window for deterministic model, the user can select the parameters 

for which the observations are available to evaluate the performance indices of the simulated 

versus observed values. On the upper right side of the window, the performance indices in terms 

of Nash-Sutcliffe efficiency (ENS), Mass Balance Error (MBE) and normalized root mean square 

error (NRMSE; RMSE values divided by the average of observed values) are presented for the 

selected output of interest. Furthermore, the simulated versus observed values are depicted in 

blue dashed line and red dots, respectively. Performance indices are given as: 

  𝑃𝑃𝑁𝑁𝑁𝑁 = 1 − �
∑ (𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖 − 𝑑𝑑𝑠𝑠𝑖𝑖𝑚𝑚,𝑖𝑖)2𝑚𝑚
𝑖𝑖=1
∑ (𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖 − 𝑑𝑑�𝑜𝑜𝑏𝑏𝑠𝑠)2𝑚𝑚
𝑖𝑖=1

� (11) 



  

181 
 

 𝑅𝑅𝑀𝑀𝑃𝑃 (%) = �
∑ (𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖 − 𝑑𝑑𝑠𝑠𝑖𝑖𝑚𝑚,𝑖𝑖)𝑚𝑚
𝑖𝑖=1
∑ (𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖)𝑚𝑚
𝑖𝑖=1

� ∗ 100 (12) 

 NRMSE =
�1
𝑚𝑚
∑ (𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖 − 𝑑𝑑𝑠𝑠𝑖𝑖𝑚𝑚,𝑖𝑖)2𝑚𝑚
𝑖𝑖=1

𝑑𝑑�𝑜𝑜𝑏𝑏𝑠𝑠
 

(13) 

where 𝑑𝑑𝑜𝑜𝑏𝑏𝑠𝑠,𝑖𝑖 and 𝑑𝑑𝑠𝑠𝑖𝑖𝑚𝑚,𝑖𝑖 denote observed and simulated values at the ith observation, respectively. 

𝑑𝑑�𝑜𝑜𝑏𝑏𝑠𝑠 refers to the average of observed values and m represents the number of observations.  

“Post Processing” for stochastic model performs GLUE and BMCML analyses. If 

observed data is available, GUI can carry out GLUE analysis (Beven and Freer 2001) where 

users can visualize graphs of behavior and non-behavior datasets, the posterior uncertainty band, 

and model performance metrics. To establish the GLUE procedure, Beven (1989) starts from the 

premise that, any model/parameter set combination that predicts the variable(s) of interest, must 

be considered as equally likely as a simulator of the system. Because all model structures must 

be in error and that all observations and measurements on which model calibration is based on 

must also be subject to error, we cannot expect that any one set of parameter values will 

represent a true parameter set to be found through calibration. Rather, it is suggested that it is 

only possible to make an assessment of the likelihood or probability of a particular parameter set 

being an acceptable simulator of the system (Beven and Binley, 1992). To that end, the 

likelihood function applied in this study uses a combination of ENS and MBE (Kalin and 

Hantush, 2006; Sharifi et al. 2013) such that: 

 𝑊𝑊𝑘𝑘 = 0.5 ∗ (𝑃𝑃𝑁𝑁𝑁𝑁 + exp �
−|𝑅𝑅𝑀𝑀𝑃𝑃|

100
�) (14) 

However, in the GLUE page, the user can select either Nash-Sutcliffe efficiency (ENS; 

“Nash” button) or the likelihood function (“likelihood” button). The user can update the results 

of likelihood calculations by changing the percentage of their behavioral simulations from 1 to 
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10. The user needs to select the desired value. In the next step, top (1-10)% of simulations with 

the highest likelihoods (or ENS values) are separated as behavioral (B) and the rest are selected as 

non-behavioral simulations (B′). Following this step, a graph for each model output is depicted 

which includes observed data, upper and lower limit of behavioral simulations, 95% prediction 

interval (P.I.) of BUB′, and the median for BUB′ simulations. The graph in the GLUE page also 

shows the performance indices (i.e., ENS, MBE, and NRMSE) for the best simulation which is 

the top simulation with the highest likelihood/ENS. In case there is no observation to calculate 

likelihoods, the user can see the 95% P.I. for the whole simulations as well as the median of the 

simulations. In the developed GUI for WetQual model, we considered both ENS and a likelihood 

function which combines Mass Balance Error (MBE) and ENS (Kalin and Hantush, 2006; Sharifi 

et al. 2013). 

“Post Processing” for the stochastic model in BMCML page conducts a Bayesian Monte 

Carlo simulation and maximum likelihood estimation analysis. For BMCML calculations in 

WetQual GUI, the methodology developed in Hantush and Chaudhary (2014) and Chaudhary 

and Hantush (2017) were utilized. Some useful information and the related important equations 

are provided here. In the context of the BMCML and according to Bayes theorem (Hantush and 

Chaudhary, 2014): 

 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂) = 𝑘𝑘𝑙𝑙(𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃𝑖𝑖) (15) 

where 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂) is the posterior probability mass of parameter set 𝜃𝜃𝑖𝑖 = (𝜃𝜃1𝑖𝑖 , 𝜃𝜃2𝑖𝑖 , … , 𝜃𝜃𝑏𝑏𝑖𝑖  )𝑇𝑇; 𝜃𝜃 = 

number of model parameters; 𝑖𝑖 = 1,2, … ,𝑛𝑛, where 𝑛𝑛 is the number of randomly sampled 

parameter sets; 𝑙𝑙(𝜃𝜃𝑖𝑖) is the likelihood of observations given 𝜃𝜃𝑖𝑖; 𝑃𝑃(𝜃𝜃𝑖𝑖) is the prior probability 

mass of parameter set 𝜃𝜃𝑖𝑖; 𝑘𝑘 is a normalizing factor such that ∑ 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂)𝑎𝑎
𝑖𝑖=1 = 1; that is 𝑘𝑘 =
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[∑ 𝑙𝑙(𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃𝑖𝑖)𝑎𝑎
𝑖𝑖=1 ]−1. We also assume equally likely parameter sets prior to the introduction of 

measurements, i.e., 𝑃𝑃(𝜃𝜃𝑖𝑖) = 1 𝑛𝑛�  (Chaudhary and Hantush, 2017).  

The model error is: 

 𝜀𝜀𝑘𝑘 = 𝜌𝜌𝜀𝜀𝑘𝑘−1 + 𝜇𝜇(1 − 𝜌𝜌) + 𝜔𝜔𝑘𝑘 = 𝑂𝑂𝑘𝑘 − 𝐶𝐶𝑘𝑘(𝜃𝜃𝑖𝑖) (16) 

where 𝜀𝜀𝑘𝑘 (i.e., residual error) is the difference between observed (𝑂𝑂𝑘𝑘) and model simulated 

(𝐶𝐶𝑘𝑘(𝜃𝜃𝑖𝑖)) values, 𝜇𝜇 is bias of overall error, 𝜌𝜌 is lag-one autocorrelation of the overall error, 𝜔𝜔𝑘𝑘 is 

zero-mean, independent and normally-distributed residual error (𝜔𝜔𝑘𝑘~𝑁𝑁(0,𝜎𝜎𝜔𝜔2)), and 𝜎𝜎𝜔𝜔2  is 

variance of residual errors (Hantush and Chaudhary 2014). The log-likelihood function is: 

 𝑙𝑙𝑛𝑛 𝑙𝑙 = −
𝑚𝑚
2
𝑙𝑙𝑛𝑛(2𝜋𝜋) −𝑚𝑚 𝑙𝑙𝑛𝑛 𝜎𝜎𝜔𝜔 −

1
2

 ��
𝜀𝜀𝑘𝑘 − 𝜌𝜌𝜀𝜀𝑘𝑘−1 − (1 − 𝜌𝜌)𝜇𝜇

𝜎𝜎𝜔𝜔
�
2𝑚𝑚

𝑘𝑘=1

 (17) 

Minimizing ln l with respect to 𝜎𝜎𝜔𝜔yields 

 𝜎𝜎�𝜔𝜔2 =
1
𝑚𝑚
�[(𝜀𝜀𝑘𝑘 − �̂�𝜇) − 𝜌𝜌�(𝜀𝜀𝑘𝑘−1 − �̂�𝜇)]2
𝑚𝑚

𝑘𝑘=1

 (18) 

Minimizing ln l is identical to minimizing the sum of squares of residual errors of 𝑑𝑑𝑑𝑑 = 𝜃𝜃𝑥𝑥𝑑𝑑 +

𝑄𝑄 + 𝜔𝜔𝑑𝑑 where 𝑑𝑑𝑑𝑑 = 𝜀𝜀𝑑𝑑, 𝑥𝑥𝑑𝑑 = 𝜀𝜀𝑑𝑑−1, 𝜃𝜃 = 𝜌𝜌, and 𝑄𝑄 = (1 − 𝜌𝜌)𝜇𝜇 and therefore the least-square 

estimates are (Ang and Tang, 2007):  

 (1 − 𝜌𝜌�)�̂�𝜇 =
1
𝑚𝑚
�𝜀𝜀𝑘𝑘

𝑚𝑚

𝑘𝑘=1

−
𝜌𝜌�
𝑚𝑚
�𝜀𝜀𝑘𝑘−1

𝑚𝑚

𝑘𝑘=1

= 𝜀𝜀𝑘𝑘� − 𝜌𝜌� 𝜀𝜀𝑘𝑘−1������ (19) 

 𝜌𝜌� =
∑ (𝜀𝜀𝑘𝑘−1 − 𝜀𝜀𝑘𝑘−1������)(𝜀𝜀𝑘𝑘 − 𝜀𝜀𝑘𝑘� )𝑚𝑚
𝑘𝑘=1
∑ (𝜀𝜀𝑘𝑘−1 − 𝜀𝜀𝑘𝑘−1������)2𝑚𝑚
𝑘𝑘=1

 (20) 

in which 𝜀𝜀𝑘𝑘� = 1
𝑚𝑚
∑ 𝜀𝜀𝑘𝑘𝑚𝑚
𝑘𝑘=1 , and 𝜀𝜀𝑘𝑘−1������ = 1

𝑚𝑚
∑ 𝜀𝜀𝑘𝑘−1𝑚𝑚
𝑘𝑘=1 . 

Evaluating (10) for 𝜌𝜌�, then �̂�𝜇 from (9), and finally (8) for 𝜎𝜎�𝜔𝜔2  gives the residual error 

estimates. Maximum likelihood value are obtained from 𝑙𝑙 (𝜃𝜃𝑖𝑖) = (2𝜋𝜋𝜃𝜃𝜎𝜎�𝜀𝜀𝑖𝑖2 )−
𝑚𝑚
2  where 𝜎𝜎�𝜀𝜀𝑖𝑖2  is the 
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variance of model structural error which is calculated by 𝜎𝜎𝜀𝜀2 = 𝜎𝜎𝑤𝑤2

1−𝜌𝜌2
. Users are referred to 

Hantush and Chaudhary (2014) and Chaudhary and Hantush (2017) for details about the 

BMCML method. 

Note that BMCML method was applied by sequentially conditioning each output of 

interest on other WetQual outputs based on their dependency in the WetQual model. For 

example, posterior probability mass for total ammonia-nitrogen (Naw) with implicit dependence 

on particulate organic nitrogen (Now), 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑁𝑁𝜃𝜃𝑎𝑎,𝑁𝑁𝑙𝑙𝑎𝑎) is calculated as: 

 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑁𝑁𝜃𝜃𝑎𝑎,𝑁𝑁𝑙𝑙𝑎𝑎) =
𝑙𝑙𝑁𝑁𝑎𝑎𝑤𝑤(𝜃𝜃𝑖𝑖) ∗ 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑁𝑁𝑙𝑙𝑎𝑎)

∑ [𝑃𝑃(𝜃𝜃𝑖𝑖|𝑁𝑁𝑙𝑙𝑎𝑎) ∗ 𝑙𝑙𝑁𝑁𝑎𝑎𝑤𝑤(𝜃𝜃𝑖𝑖)]𝑎𝑎
𝑖𝑖=1

 (1) 

where 𝑃𝑃(𝜃𝜃𝑖𝑖|𝑁𝑁𝑙𝑙𝑎𝑎) and 𝑙𝑙𝑁𝑁𝑎𝑎𝑤𝑤 refers to posterior probability mass for particulate organic nitrogen 

(Now) and maximum likelihood value for total ammonia-nitrogen (Naw).  

The Bayesian estimate of each model output concentration Y at any point in time is the 

conditional mean of Y given the observation O, 𝑃𝑃(𝑌𝑌|𝑂𝑂), which in discrete form can be 

approximated (assuming uniformly sampled parameter space) as (Hantush and Chaudhary 2014): 

 𝑃𝑃(𝑌𝑌|𝑂𝑂) = �𝑃𝑃(𝑌𝑌|𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂) = �𝐶𝐶(𝜃𝜃𝑖𝑖)𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂)
𝑎𝑎

𝑖𝑖=1

𝑎𝑎

𝑖𝑖=1

 (22) 

where 𝐶𝐶(𝜃𝜃𝑖𝑖) is model simulated output. The explicit expression for the posterior CDF of the 

model parameters and the expressions used to construct predictions (i.e., median and confidence 

limits) for future observed values of Y given the observed records, O, is (Hantush and Chaudhary 

2014): 

 𝑃𝑃(𝑌𝑌|𝑂𝑂) =
1
2

+
1
2
�𝜃𝜃𝜃𝜃𝑓𝑓 �

𝑑𝑑 − 𝐶𝐶(𝜃𝜃𝑖𝑖)
√2𝜎𝜎�𝜀𝜀

�𝑃𝑃(𝜃𝜃𝑖𝑖|𝑂𝑂)
𝑎𝑎

𝑖𝑖=1

 (23) 
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2.7. Sensitivity Analysis 

 In “Sensitivity Analysis” of the WetQual GUI, global sensitivity analysis (GSA) and 

dotty plots are considered to evaluate the sensitivity of the WetQual outputs to various 

parameters. By using the B and B′ datasets, GUI performs Kolmogorov-Smirnov (K-S) test in 

“Sensitivity Analysis” window, where the most sensitive parameters of the model are ranked 

based on their order of sensitivity in terms of maximum deviation (Dmax) between the cumulative 

distribution function (CDF) for behavioral and non-behavioral datasets. To that end, CDFs of the 

B and B′ are constructed for each WetQual parameter. Then, for each parameter, maximum 

deviation (Dmax) between the two CDFs are determined (Kalin et al. 2013):  

 𝐷𝐷𝑚𝑚𝑎𝑎𝑒𝑒 = 𝑚𝑚𝜃𝜃𝑥𝑥|𝐶𝐶𝐷𝐷𝐹𝐹𝐵𝐵(𝑥𝑥) − 𝐶𝐶𝐷𝐷𝐹𝐹𝐵𝐵′(𝑥𝑥)| (24) 

For a predetermined significance level of α, Dmax larger than K-S statistic, Dα, or p-

value<α indicates a sensitive parameter. For the sake of saving space, GUI displays the 20 most 

sensitive parameters by ranking Dmax values from largest to smallest. In addition to the K-S test, 

dotty plots were added to the “Sensitivity Analysis” window. Dotty plots provide information 

about sensitive parameters and most importantly depict the range in which the model is most 

sensitive to a given parameter. They also reveal the optimal ranges of the values of each 

parameter where the model performs best (Kalin et al. 2013).  

WetQual GUI has a modular structure and provides a unique advantage. The modular 

structure makes it easy to add/utilize new codes/modules or functions into the GUI either by 

utilizing executables developed in other programming environments or by using new modules 

developed directly in C#.Net. For the purpose of developing WetQual GUI, random parameter 

generation, K-S test, and BMCML methods were initially developed in MATLAB environment 

as prototype codes, and after evaluating their accuracy, they were transferred to the GUI in 
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C#.Net. The same procedure was carried out for flow routing and ET modules but by developing 

them in FORTRAN environment.  

 

3. Case Study 

3.1 Study area and the input data 

The WetQual GUI was demonstrated in a small restored wetland called Barnstable 

wetland, located in Kent Island, Maryland. Approximately two years of water flow and water 

quality data from May 9, 1995, through May 12, 1997, discussed thoroughly by Jordan et al. 

(2003), were available and were used for WetQual GUI demonstration purposes. During the two-

year sampling period, the study wetland and the watershed draining to it had an area of 1.3ha and 

14ha, respectively. The watershed was mainly covered with farmlands (82%), cultivated 

primarily for corn and soybean production, and the rest (18%) was covered by forest (Sharifi et 

al. 2016). Figure 5.5 shows the study wetland and the draining watershed. Weekly flow averaged 

nitrate-N, total ammonia-N, organic N, inorganic P, total suspended sediment (TSS) and total 

organic carbon (TOC) were available from Jordan et al. (2003). For the purposes of brevity, this 

demonstration is focused on the visualization and evaluation of the results for nitrogen 

constituents which include particulate organic nitrogen concentration in free water Now (mg/L), 

Total ammonia-nitrogen ([NH4+] + [NH3]) concentration in free water Naw (mg/L), and Nitrate-

nitrogen concentration in free water Nnw (mg/L). To obtain daily values from weekly average 

concentrations provided by Jordan et al. (2013), the concentrations were assumed to be constant 

over the given weekly period.  
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3.2 Project setup and visualization of input/outputs  

A new project was created by assigning a folder as the project directory. The starting date 

of the project was set to be 05/09/1995 according to data sampling period. By preparing the input 

data as earlier explained, the GUI reads in the input data and model parameters’ information 

under “Input Files” and “Model Parameters” windows; it gives the users the ability to visualize 

and modify input data and model parameters efficiently. Figure 5.6 shows an example of 

visualization tools employed in the GUI. To provide users with some examples, Figure 5.6 (a) 

displays “Hydro-climate” data table, and graph for volumetric inflow rate (Qin; m3/day); Figure 

5.6 (b) shows graph for reference depth of water in the wetland (H, m), and Figure 5.6 (c) depicts 

“Input concentration” data table and the graph of organic nitrogen concentration in incoming 

flow (Nowi; mg/L) 

 

4. Results  

4.1 Deterministic model 

For demonstration purposes, the default values (i.e., the median of the selected range for 

each model parameter) of “Model Parameters” for “Deterministic Model” were considered 

without any changes. The results of post-processing analysis for the calculated Now (mg/L), Naw 

and Nnw from the deterministic model are illustrated in Figure 5.7. ENS, MBE, and NRMSE values 

were computed to be -0.20, -5.46%, and 0.48, respectively, for particulate organic nitrogen 

concentration in free water. Those three performance indices were 0.24 and 0.69, 12.43% and 

31.11%, and 0.98 and 1.0, respectively, for Naw and Nnw which also depicted in Figure 5.7. 

WetQual has predicted total ammonia and nitrate concentrations (in free water) with higher 

accuracies compared to particulate organic nitrogen concentration, based on the assigned default 
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values for model parameters (i.e., median of the selected range for WetQual model parameters) 

in the deterministic model. Users can manually change those values to calibrate the model. 

 

4.2 Stochastic model 

To demonstrate the performance of WetQual GUI for the stochastic model, 50,000 

simulations were performed with randomly generated model parameters. The results of post-

processing analysis by the GLUE method, for Now, Naw, and Nnw are displayed in Figure 5.8 (a). 

The model appears to be doing a satisfactory job in predicting ammonia, and nitrate 

concentrations while the result was not good for particulate organic nitrogen. ENS, MBE (%) and 

NRMSE values of the best model simulation for ammonia and nitrate were equal to 0.52, 10.9, 

0.78 and 0.74, 35.9, 0.92, respectively. Those values for particulate organic nitrogen (i.e., Now) 

were equal to -0.13, -0.91 and 0.47 showing a poor simulation. However, regarding NRMSE 

values, the model in predicting particulate organic nitrogen outperformed both ammonia and 

nitrate predictions. The wide uncertainty band coincides with the prolonged dry period in the 

first year. Figure 5.8 (b) illustrates the 95% confidence limits and BMCML estimates by using 

the BMCML method. ENS, MBE (%) and NRMSE between observed values of particulate organic 

nitrogen and BMCML estimates were equal to -0.81, -39.82 and 0.60, respectively. Model 

predictions of ammonia and nitrate concentrations showed better performances regarding ENS 

values with those values reaching to 0.50 and 0.70, respectively. However, NRMSE values were 

higher for ammonia (=0.80) and nitrate (=1.17).  

Figure 5.9 shows the sensitivity analysis results regarding Dmax versus p-values and dotty 

plots for particulate organic nitrogen concentration. According to Dmax values, effective 

resuspension rate (vr; which is named “a_vr_o” in the GUI) and effective settling velocity 
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(cm/day) (vs; which is named “vels_o” in the GUI) appear to be the most sensitive parameters 

for Now. This result is in good agreement with the findings by Kalin et al. (2013). Regarding 

dotty plots, 𝑃𝑃𝑁𝑁𝑁𝑁 values are on vertical axes, and the model parameters are shown on horizontal 

axes. For instance, although it may not be very clear, the optimal range for vs seems to be in the 

[1, 5] (cm/day) range for particulate organic nitrogen.  

WetQual GUI runs only under Windows operating systems at this time. A user manual, 

which is a step by step guideline to apply the WetQual model, was also prepared and is published 

with the WetQual GUI executable (install package). Note that the user manual includes 

explanations and definitions for various types of inputs (i.e., hydro-climate, input concentrations, 

etc.) required for a successful run, parameters and outputs of WetQual model. It also gives the 

user the necessary knowledge and background regarding post-processing and sensitivity 

analyses. 

 

5. Conclusions 

WetQual GUI, a user-friendly graphical user interface for the WetQual model, was 

developed in C#.Net environment inside Visual Studio 2015 to provide users with both water 

quality as well as hydrology analyses. The ponded version of WetQual did not include the 

hydrology component, and a necessary flow routing tool was added in this study. WetQual GUI 

provides both tabular representations and graphical visualization of WetQual inputs/outputs and 

generates random parameter sets which are needed for a successful application of a process-

based wetland water quality model like WetQual. Visualization of the WetQual outputs is 

invaluable for interpretation of the large number/size of WetQual outputs. GUI simplifies the 
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input/output transfer. It performs post processing and sensitivity analysis of the model. Post 

processing option was equipped with two powerful uncertainty analyses of GLUE and BMCML.  

The GUI was successfully setup and applied to a small restored wetland located in Kent Island, 

Maryland. The model evaluation indicated a satisfactory performance of the WetQual in 

predicting various nitrogen constituents. Inputs/Outputs visualization, post-processing by 

conducting GLUE and BMCML analyses and sensitivity analysis helped us have a better 

understanding of the internal processes in the study wetland. WetQual GUI, therefore, is an 

invaluable tool in working with and applying WetQual model. WetQual GUI is a very 

informative source to be utilized as a training tool for hydrology and water quality modeling in 

wetlands. This GUI is a unique source of essential analyses (including uncertainty and sensitivity 

analyses) needed for a comprehensive water quality modeling in wetland studies that can be 

utilized for flooded wetlands in research-based and real-world projects. The GUI has the added 

advantage of conducting Bayesian probabilistic analysis for model predictive uncertainty 

estimation and risk assessment. Wetlands scientists and managers, eco-hydrologists and decision 

makers in water quality field can benefit from this GUI. WetQual GUI will be soon available to 

the public and can be easily applied to hydrology and water quality studies in flooded wetlands 

and the related projects. 
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 Table 5.1: Some examples of hydrology and water quality models written originally in FORTRAN equipped with GUIs 
 

Model 
Original 

Programming 
Environment 

Language of GUI Remarks Citations 

SWMM FORTRAN C/C++ SWMM 5 Shamsi (2005) 

HSPF FORTRAN C/C++ WinHSPF 
Duda et al. 

(2001) 

SWAT FORTRAN Visual Basic (VB) GIS interface for the SWAT 
model; ArcSWAT 

Olivera et al. 
(2004) 

SWAT FORTRAN Python 
Open source GIS (QGIS) UI 

for the SWAT model; 
QSWAT 

Dile et al. 
(2016) 

MIKE SHE FORTRAN C++ ----- Christensen 
(2004) 

HEC Software FORTRAN C/C++ HEC-1     HEC-HMS 
HEC-2      HEC-RAS 

Charley et al. 
(1995) 

KINEROS2 FORTRAN 
Microsoft .NET 

framework within 
Visual Studio 2003 

Automated Geospatial 
Watershed Assessment 

(AGWA 2.x), an ArcView 
GIS extension 

Goodrich et al. 
(2006); Burns 
et al. (2007) 
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Table 5.2: Nitrogen (N), phosphorus (P), total suspended sediment (TSS) parameters as examples of WetQual model parameters 
Symbol in 
publications 

Symbols in the model 
files 

Definition, Units 

l2 L2 Thickness of anaerobic soil layer (cm) 
θ theta Temperature coefficient in Arhenious equation 
Is Is Optimal light level (ly/day), range from about 100 to 400 ly/d (Chapra, 1997, p 611) 
fN fNup Fraction of total ammonia nitrogen in ionized form  
kd Kd  Ammonium ion distribution coefficient (mL/g) 
kga kga0 Growth rate of free-floating plant (1/day) 
kgb kgb0 Growth rate of benthic and rooted plant (1/day) 
kmr kmin1s First-order rapid mineralization rate in wetland soil (1/day) 
knw knw First-order nitrification rate in wetland free water (1/day) 
kmw kminw First-order mineralization rate in wetland free water (1/day) 
kns kns First-order nitrification rate in aerobic soil layer (1/day) 
kdn kden Denitrification rate in anaerobic soil layer (1/day) 
ρs rows Wetland soil particle density 
vso vels_o Effective settling velocity (cm/day) for organic material 
vss vels_s Effective settling velocity (cm/day) for sediment 
vb velb Effective burial velocity (cm/day) 
ana ana Gram of nitrogen per gram of chlorophyll-a in plant/algae (gN/gChl) 
rc,chl rChl Ratio of carbon mass to chlorophyll a mass in algae (gC/gChl) 
Ss Ss Oxygen removal rate per unit volume of aerobic layer by other processes (g/L/day) 
Sw Sw Volumetric oxygen consumption rate in water by other processes (gr/cm3/day) 
α c_uw Empirical parameter used for calculating volatilization mass transfer velocity (kv)   
fr frap Fraction of rapidly mineralizing particulate organic matter 
c1 c1 Used for calculating pK (Keq, equilibrium coefficient) 
c2 c2 Used for calculating pK (Keq, equilibrium coefficient) 
pH PH pH 
S S Rate of nitrogen fixation by microorganisms (mg-N/m3/hr) 
Kw Kw Phosphorus sorption coefficient in water (cm3/g) 
apa apa Ratio of phosphorus to Chlorophyll-a in algae (grP/grChl) 
Dpw Dpw Inorganic phosphorus free-water diffusion coefficient (cm2/day) 
Ksa Ksa Accounts for partitioning to phosphorus sorption site (cm3/g) 
Ksb Ksb Accounts for association with iron hydroxide precipitate (cm3/g) 
Ran1 Ran1 Random number used for calculating soil porosity (φ) and free-water oxygen diffusion coefficient 
fw fW Fraction of nitrogen fixation in water 
fact fact Vertical diffusion magnification factor 
Cro alfa_velr_o Coefficient for resuspension/recycling of organic material 
Crs alfa_velr_s Coefficient for resuspension/recycling of sediment 
φw porw Effective porosity of wetland surface water 
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Table 5.3: Hydro-Climate Inputs of WetQual  
 

Symbol Definition, Units 
Qin Volumetric inflow rate (m3/day) 
Qout Wetland discharge (outflow) rate (m3/day) 
Vw Water volume of wetland surface water (m3) 
A Wetland surface area (m2) 
ET Evapotranspiration rate (cm/day) 
ip Precipitation rate (cm/day) 
H Reference depth of water in wetland (m) 
Qg Groundwater discharge (negative for infiltration) (m3/day) 
Uw Wind speed (m/s) 
Twater Daily water temperature (°C) (note that the users have an option to calculate 

Twater if they have daily air temperature (Tair) available) 
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Table 5.4: Input Concentrations (“13_input_concentrations.txt” file) 
 

Symbol Definition, Units 
ONin Organic nitrogen concentration in incoming flow (mg/L) 
NO3in Nitrate-nitrogen concentration in incoming flow (mg/L) 
NWin Total ammonia-nitrogen ([NH4+] + [NH3]) concentration in incoming flow (mg/L) 
NO3g Nitrate-nitrogen concentration in groundwater discharge (mg/L) 
Ng Total ammonia-nitrogen concentration in groundwater discharge (mg/L)  
Owin Oxygen concentration in incoming flow (mg/L) 
PO4in Phosphate concentration in incoming flow (mg/L) 
Pg Total phosphorus concentration in groundwater discharge (mg/L) 
mwin Sediment concentration in incoming flow (mg/L) 
NH4air Ammonium concentration in precipitation (mg/L) 
NO3air Nitrate-nitrogen concentrations in precipitation (mg/L) 
Qa Dry depositional rates of total ammonia nitrogen (mg/m2/day) 
Qn Dry depositional rates of total nitrate-nitrogen (mg/m2/day) 
LPOCin Labile particulate organic carbon concentration in incoming flow (mg/L) 
RPOCin Refractory particulate organic carbon concentration in incoming flow (mg/L) 
DOCin Dissolved organic carbon concentration in incoming flow (mg/L) 
DOCatm Atmospheric deposition for total organic carbon (mg/m2/day) 
TOCgw Total organic carbon concentration in groundwater discharge (mg/L) 
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Table 5.5: Definitions for WetQual outputs 
 

Output file Name Symbol Definition, Units 
102_Onw Onw Particulate organic nitrogen concentration in free water (mg/L) 
104_Onsf Onsf Concentration of organic nitrogen in in aerobic sediment layer (mg/L) 
103_Onss Onss Concentration of organic nitrogen in in anaerobic sediment layer (mg/L) 
105_Nw Nw Total ammonia-nitrogen ([NH4+] + [NH3]) concentration in free water (mg/L) 
106_Ns1 Ns1 Total ammonia-nitrogen pore-water concentration in upper aerobic layer (mg/L) 
107_Ns2 Ns2 Total ammonia-nitrogen pore-water concentration in lower anaerobic layer (mg/L) 
108_NO3w NO3w Nitrate-nitrogen concentration in free water (mg/L) 
109_NO3s1 NO3s1 Nitrate-nitrogen pore-water concentration in upper aerobic layer (mg/L) 
110_NO3s2 NO3s2 Nitrate-nitrogen pore-water concentration in lower anaerobic layer (mg/L) 
111_Ow Ow Oxygen concentration in free water (mg/L) 
112_a a Mass of free floating plant (gr chlorophyll a) 
113_b b Mass of rooted plants (gr chlorophyll a) 
114_Pw Pw Total inorganic phosphorus concentration in free water (mg/L) 
115_Ps1 Ps1 Total phosphorus concentration in aerobic layer (mg/L) 
116_Ps2 Ps2 Total phosphorus concentration in anaerobic layer (mg/L) 
118_mw mw Sediment concentration in free water (mg/L) 
150_DOCw DOCw Concentrations of dissolved organic C in free water (mg/L) 
151_LPOCw LPOCw Concentrations of labile (fast reacting) particulate organic C in free water (mg/L) 
152_RPOCw RPOCw Concentrations of refractory (slow reacting) particulate organic C in free water (mg/L) 
153_DOCs1 DOCs1 Pore water concentrations of DOC in aerobic sediment layer (mg/L) 
154_LPOCs1 LPOCs1 Pore water concentrations of LPOC in aerobic sediment layer (mg/L) 
155_RPOCs1 RPOCs1 Pore water concentrations of RPOC in aerobic sediment layer (mg/L) 
156_DOCs2 DOCs2 Pore water concentrations of DOC in lower anaerobic sediment layer (mg/L) 
157_LPOCs2 LPOCs2 Pore water concentrations of LPOC in lower anaerobic sediment layer (mg/L) 
158_RPOCs2 RPOCs2 Pore water concentrations of RPOC in lower anaerobic sediment layer (mg/L) 
159_TOCw TOCw Concentrations of total organic C in free water (mg/L) 
160_CH4w CH4w Methane concentration in free water (mg/L) 
161_CH4s1 CH4s1 Methane concentration in aerobic sediment layer (mg/L) 
162_CH4s2 CH4s2 Methane concentration in anaerobic sediment layer (mg/L) 
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Figure 5.1: A flowchart representing the internal structure and processes of WetQual 
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Figure 5.2: Structure, flow of information and basic steps in developing the WetQual GUI 
  

 

 

 

 

 

 

 

 
Figure 5.3: Main WetQual GUI headers and menus; CDF refers to the cumulative distribution functions for behavioral (B) and non-
behavioral datasets (B′) 

K-S test 
Dotty plot 
CDF of B and B’ 



  

198 
 
 

 

% Random Parameter Generation (Uniform Distribution, Log Normal Distribution Triangular Distribution) 
 [m,n,k] = textread('input_control.txt','m=%f n=%f k=%f %*[^\n]',1,'whitespace','\n')                 
%m=input('m= Enter a number from 1 to 3 to choose among "Uniform=1", "Log Normal=2", "Triangular=3" 
%Distributions:'), %n=input('n= The number of random variables:') 
switch m 
    case 1  %Random data generation based on "Uniform Distribution" 
%         Xl=input('Min of the parameter range for Uniform Distribution:') 
%         Xu=input('Max of the parameter range for Uniform Distribution:') 
        [Xl,Xu] = textread('input_uniform_dist.txt','Xl=%f Xu=%f %*[^\n]',1, ... 
                                      'whitespace','\n') 
        r_uniform= (Xu-Xl).*rand(n,1) + Xl; 
         
    case 2  %Random data generation based on "Log Normal Distribution" 
%         Xl=input('Min of the parameter range for Log Normal Distribution:') 
%         Xu=input('Max of the parameter range for Log Normal Distribution:') 
%         Rl=input('Lower percentile for Log Normal Distribution:') 
%         Ru=input('Upper percentile for Log Normal Distribution:') 
          switch k % to select between two scenarios of having "mu" and "sigma" or not 
              case 1  
                  [mu,sigma] = textread('input_lognorm_dist_mu.txt','mu=%f sigma=%f %*[^\n]',1, ... 
                                       'whitespace','\n') 
                  r_lognorm= logninv(rand(n,1),mu,sigma);  %Lognormal inverse cumulative distribution function 
                   
              case 2 
                  [Xl,Xu,Rl,Ru] = textread('input_lognorm_dist.txt','Xl=%f Xu=%f Rl=%f Ru=%f %*[^\n]',1, ... 
                                       'whitespace','\n') 
                  Finv_Rl=norminv(Rl/100,0,1)%Normal inverse cumulative distribution function 
                  Finv_Ru=norminv(Ru/100,0,1) 
                  mu=(log(Xu)*Finv_Rl-log(Xl)*Finv_Ru)/(Finv_Rl-Finv_Ru)% Mean calculation 
                  sigma=log(Xu/Xl)/(Finv_Ru-Finv_Rl)% StD calculation 
                  r_lognorm= logninv(rand(n,1),mu,sigma);  %Lognormal inverse cumulative distribution function                    
          end; 
    case 3 %Random data generation based on "Triangular Distribution" 
%         a=input('input "a" as lower limit:');%lower limit 
%         c=input('input "c" as Peak Location:');%Peak Location 
%         b=input('input "b" as Upper limit:');%Upper limit 
        [a,c,b] = textread('input_triangular_dist.txt','a=%f c=%f b=%f %*[^\n]',1, ... 
                                       'whitespace','\n') 
        U=rand(n,1); 
        Fc=(c-a)/(b-a); 
        for i=1:length(U) 
            if U(i,1)<Fc 
               r_triangular(i,1)=a+sqrt(U(i,1)*(b-a)*(c-a)); 
            else 
               r_triangular(i,1)=b-sqrt((1-U(i,1))*(b-a)*(b-c)); 
            end; 
        end; 
end; 
 
Figure 5.4: An example of source codes developed for various functionalities of the GUI: 
MATLAB code for Random Parameter generation which was transferred to C#.Net inside Visual 
Studio 2015 
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Figure 5.5: Study wetland and its watershed outlined by dashed line (reprinted from Sharifi et al. 
2013, with permission from Elsevier and Copyright Clearance Center)   
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Figure 5.6: An example of visualization tools implemented in WetQual GUI for model inputs; (a) “Hydro-
climate” data table and the graph for volumetric inflow rate (Qin); (b) reference depth of water in the wetland, again 
from “Hydro-climate” data. (c) “Input concentration” data table and the graph of organic nitrogen concentration in 
incoming flow Nowi (mg/L) 

(a) 

(b) 

(c) 
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Figure 5.7: An example of visualization and post processing for deterministic model; the blue 
line and red circles represent simulated values and observations, respectively.  
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Figure 5.8: (a) Model generated 95% prediction interval (P.I.) from 50,000 MC simulations versus field observations.  The results displayed 
respectively for Now, Naw, and Nnw, from top to bottom. B exhibits behavioral datasets whereas B′ represents non-behavioral datasets. Dashed line 
presents the median values for BUB′; (b) BMCML estimates and 95% confidence limits (C.L.) of Now, Naw, and Nnw, from top to bottom. 

a                                                                                               b 
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Figure 5.9: Dmax versus p-value (top figure) and dotty plots (bottom figure) for the 20 most 
sensitive parameters for predicting particulate organic nitrogen. 
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Chapter 6 : Conclusions 

Wetlands provide many important ecosystem services including water quality improvement 

through filtering, water storage and providing habitat. Changing and variable climate can impact 

wetland hydrologic processes and consequently have considerable implications for wetland soil 

biogeochemistry and nutrient cycles. In wetlands going through wetting/drying cycles, 

simulation of nutrient processes and biogeochemical reactions in both ponded and unsaturated 

wetland zones are needed for an improved understanding of wetland functioning for water 

quality improvement. In this study, we aimed to advance the current wetland hydrology 

knowledge by developing various models. We started with developing data-driven models and 

eventually expanded it to a physically-based modeling approach to predict various wetland 

hydrologic components. Sharifi et al. (2017) extended the ponded version of WetQual model 

(Hantush et al. 2013, Kalin et al. 2013, Sharifi et al. 2013) by adding a soil moisture accounting 

module, which solves Richards’ Equation (RE), and improved biogeochemical relationships for 

N and C cycles in vadose zone of wetlands. The physically-based model of this dissertation was 

developed to make Sharifi et al. (2017) version of WetQual more practical and computationally 

efficient. Eventually, a flow routing module and a graphical user interface were added to ponded 

version of WetQual. In the first chapter, four primary objectives were presented. Each objective 

is summarized below, and following that, the most significant findings are listed.  

 

Objective 1: Develop ANN-based models to predict hourly water levels (WLs) in wetlands 

characterized by water tables at or near the surface that respond rapidly to rainfall events 
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Two artificial neural network (ANN)-based methodologies were developed for wetlands whose 

WLs show (i) high correlation, and (ii) low to no correlation with WLs from nearby sites. A 

correlation analysis was employed to find the associations between/among the target wetland site 

and nearby site(s). In the case of having high correlation between WLs of target and nearby sites, 

Continuous Simulation Model (CSM), which used WL data from nearby sites and hourly 

precipitation data as input, is advised. When there is no or very low correlation, Event-based 

Model (EBM) is recommended which require partitioning of the WL hydrographs into high- and 

low-frequency components. 

The two models were tested at two wetland sites named Site 17 and Site 32. Both sites 

are located in the southern portion of Baldwin County, Alabama. The following conclusion were 

drawn: 

1. The use of WL data from nearby sites highly correlated with those from the target site 

can help prediction of hourly WL fluctuations with very high accuracy using the CSM.  

2. Although Spearman's rank can be employed to find the sites with high level of 

correlation, those results cannot be considered as the ultimate input combinations. For 

example, adding hourly precipitation data having low correlation with WLs considerably 

improved the accuracy of the CSM.  

3. In cases with low to no correlation between WL data from the target site and those from 

nearby sites, application of recursive digital filter can be an efficient method for splitting 

continuous hydrographs into high- and low-frequency (quick and delayed response) 

components and finding the optimal recession constant.  
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4. Bartlett’s test and t-test are prominent tools for finding the optimal training and testing 

datasets in developing event-based ANN models.  

5. EBMs showed the ability to accurately predict WLs up to six hours lead time during rain 

events at the study wetlands. The 6-hour lead time likely depends on the characteristics of 

wetlands. 

 

Objective 2: Develop a coupled SWAT-ANN model to predict WLs in headwater wetlands 

The idea behind the coupled hybrid model was to capture the hydrologic inputs from the 

contributing watershed to the study wetland. This model requires neither WL data from nearby 

wetlands nor antecedent WL data from the target wetland itself as input, which makes it practical 

for long term predictions. 

The coupled SWAT-ANN model was applied to Site 17. The utility of the developed 

model was demonstrated with two applications, one of which assessed the potential impacts of 

future climate change on WLs, and the other explored the potential teleconnections between El 

Niño Southern Oscillation (ENSO) and WL fluctuations in the study wetland. The following 

conclusions were drawn:  

1. Coupled SWAT-ANN model could be a viable tool in predicting daily WLs in wetlands. 

Availability of at least year-long WL data is needed to develop a reliable model.  

2. Simulated future WLs by utilizing different global climate model (GCM) ensembles 

showed both decreasing and increasing trends. The increasing trend was dominant in 

medium WLs, and the declining trend was dominant in low and high WLs.  
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3. Winter will get wetter in terms of precipitation with statistically significant positive 

corellation with Niño index over El Niño phase. Winter WL also shows positive but non-

significant correlation. However, WL reduction in spring during El Nino is expected. 

4. The expected climate change and variability could have a significant impact on the 

overall vegetation of the study wetland. Understanding the ramifications of changes in 

WL on vegetation characteristics is beyond the scope of this dissertation. 

 

Objective 3: Develop and numerically solve a depth-averaged solution to highly non-linear 

Richards’ (1931) Equation (RE) to predict soil moisture dynamics in wetlands  

Sharifi et al. (2017) extended the ponded version of WetQual model to account for N and C 

cycles in the unsaturated sections of wetlands. The primary purpose of this phase of the study 

was to make Sharifi et al. (2017) version of WetQual more practical and less computationally 

intensive by introducing the depth-averaged RE (DARE). DARE was verified versus Hydrus-1D 

(as a benchmark) which solves full RE. This was done in two successive steps: (i) gravity 

drainage condition, (ii) full-term equations by considering pressure head component. It was 

found that: 

1. Gravity drainage version of DARE performed well compared to Hydrus-1D for all the 

assigned boundary conditions, climatic scenarios, and soil textures (sandy loam, loam, 

sandy clay loam, and sand). 

2. The full-term version of DARE proved to estimate the soil moisture contents reasonably 

well in the root zone for three soil textures (sandy loam, loam, and sandy clay loam) 

under various boundary and climatic conditions. The accuracy of this model is lower for 
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the second layer. This model has partially captured soil moisture fluctuations in the 

loamy soil in the second later. 

3. The non-convergence issue that often arises with the full-term RE no longer exists with 

the utilization of DARE. DARE is computationally efficient compared to Hydrus-1D 

which solves full RE. 

 

Objective 4: Add a flow routing module and develop a graphical user interface (GUI) for the 

ponded version of WetQual 

Earlier versions of WetQual required users take care of wetland hydrology independently. Users 

needed to either have pre-defined or measured hydrologic inputs or run a watershed model with a 

flow routing analysis outside the WetQual model. This GUI eliminated this issue by 

incorporating the hydrology and water quality under one umbrella. The GUI is also equipped 

with powerful post processing modules including Generalized Likelihood Uncertainty 

Estimation (GLUE), Bayesian Monte Carlo simulation and maximum likelihood estimation 

(BMCML) analyses, and Sensitivity Analysis modules. The utility of the developed GUI for 

WetQual model was demonstrated through a case study in a small restored wetland called 

Barnstable wetland, located in Kent Island, Maryland. It was found that: 

1. The developed GUI has proven to be an efficient tool for tabular and graphical 

representations of WetQual inputs/outputs. This helps the users of WetQual model to 

easily find and fix the potential source of errors in model inputs. The added capability of 

analyzing model outputs assists in determining any issues (in the simulation process) in 

need of further investigation.  
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2. Inputs/Outputs visualization, post processing analyses by conducting GLUE and 

BMCML, and sensitivity analysis helped us have a better understanding of the internal 

processes in the study wetland.  

3. The developed GUI has the capability of incorporating new modules to WetQual.  

 

1. Future research  

Several points can be further investigated which needs to be addressed in future studies. For the 

first objective of this study, we developed two ANN-based methods for predicting wetland water 

levels. There are other machine learning techniques that can be utilized for this purpose. For 

future research, I suggest conducting a comparison study between ANN and support vector 

machine (SVM) techniques to determine which model can better capture wetland WL 

fluctuations.  

Regarding the second objective of this study, baseflow and stormflow estimates from the 

watershed draining to a wetland were considered from an uncalibrated SWAT. Since the ANN 

parameters (i.e., weights and biases) are conditioned on SWAT simulated inputs, by generating 

an ensemble of different inputs, we can better determine the robustness of the developed model 

for use in future projections. To build upon the findings of this study, I suggest sampling most 

sensitive SWAT parameters from the uniform distribution and conducting a Monte Carlo 

simulation so that an ensemble of SWAT outputs which serve as inputs to ANN is built. Due to 

the lack of a prior distribution of a parameter, uniform distribution was suggested because of its 

simplicity (Shen et al. 2012). Eventually, by obtaining the ANN outputs, an uncertainty analysis 



  

210 
 
 

 

is needed to obtain 95% prediction interval (regarding GLUE) or confidence limits (by using 

BMCML).  

Concerning the third objective of this study, further analyses are needed to evaluate the 

full potential and applicability of the DARE. For future research, an evaluation of the developed 

model for different underlying soil layers is suggested. By performing that, the numerical 

stability of the model will be further assessed. Application of the developed model to other soil 

textures particularly to finer soil types such as clay are suggested. Utilization of DARE as a new 

module to WetQual for soil moisture accounting in the unsaturated section of wetlands is needed 

and should be considered for further development/application of WetQual model. By 

implementing this newly developed unsaturated flow module into WetQual as a part of its 

hydrology component, WetQual will also be ready for a broader development. I suggest an 

integration of the structurally-modified SWAT (i.e., SWAT+) with WetQual to represent wetland 

nutrient removal and cycling better at the watershed scale. Note that a short guideline for 

coupling SWAT+ with WetQual was prepared during working on this dissertation. It summarizes 

the main steps required for this coupling effort.  

The GUI developed in this study for the WetQual model has the added hydrology 

component to the original WetQual. The hydrology component consists of a flow routing module 

which has a simple evapotranspiration (ET) calculation module based on Hamon method 

(Hamon, 1961) inside. For future research, adding some other options for ET calculations such 

as Penman–Monteith FAO 56 (Allen et al., 1998) would be a useful improvement in the ET 

module. Implementing the newly developed unsaturated flow module to the hydrology 
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component of WetQual GUI is also suggested. This modification will enhance the chance of 

public willingness to apply WetQual to non-flooded wetlands.  
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