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Abstract

In this dissertation, a methodical approach is presented that quantifies how well model

parameters need to be known or by how much they can vary in order that the performance

of a controller in closed loop is maintained. Unique in the formulation of this parametric

approach is the ability to include parameters that are coupled together. This methodical

skew µ approach with real parametric uncertainty is applied to the coupled yaw-roll vehicle

model. An analysis of the µ-sensitivity of the yaw-roll vehicle model with full parametric

uncertainty is also analyzed to ascertain which parameters are the most sensitive and which

parameters can be most logically grouped together in the varying subset of the skew µ

uncertainty block. A comparison between the vehicle model and high-fidelity simulation

model is provided to show the potential limitations of the approach.

Typically, robust control design techniques are used to ensure a system has guaranteed

performance within certain margins of operation. However, it is often required to know which

parameters and by how much these parameters affect the closed loop performance. In order to

achieve guaranteed robustness, robust design techniques tend to broaden the output response

often at the cost of a reduction in the performance of closed loop response characteristics.

In this dissertation, the method presented seeks to determine how accurate the parameters

of system model need to be in order to maintain the performance of an existing controller

without broadening the original model response. In effect, a quantification of parameter

variance allowed is calculated for a given system model with an existing controller and

initial parametric variance assumptions and measurement specifications.

To accomplish this quantification of allowable uncertainty, the infinite norm concept

(H∞) and the extension to the structured singular value or µ value is utilized. Typically, µ

analysis and structured uncertainty are used to account for various types of uncertainty for
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the synthesis of a controller. The µ analysis, however, is shown to also be useful in analyzing

the allowable uncertainty of a closed loop system for a previously designed controller. Addi-

tionally, the linear fractional transformation (LFT) is leveraged to formulate a system model

that incorporates uncertainty on the parameters while maintaining the effects of parameter

coupling.

With a closed loop around the yaw rate of the coupled yaw-roll vehicle it is shown that

the parametric eigenvalue analysis may not reveal accurate sensitivity information about the

closed loop system. The µ sensitivity analysis indicates that the center of gravity height and

weight split parameters are the most sensitive parameters for the coupled vehicle model. The

vehicle system is also understandably sensitive to velocity. Initial uncertainties representative

of typical variances and measurement capabilities are applied to the vehicle model for several

cases of fixed and varying subsets within the uncertainty block. The skew µ for these

cases is then calculated. It is shown that the specific parameters in the fixed subset affect

the additional variance allowed on the parameters in the varying subset. Finally, spectral

analysis using a CarSim high fidelity vehicle model is performed to confirm the validity of

the additional allowable variance on the center of gravity height and weight split parameters

that was found via the skew µ based analysis.

In summary, the skew µ analysis is used to calculate the remaining “space” that each

parameter can vary given an initial uncertainty for each parameter. If the initial uncertainty

is increased for some or all of the parameters then there is less space remaining for further

variation of the parameters in the varying subset. Additionally, µ sensitivity and skew

µ analysis are shown to be a helpful tool to determine which parameters to focus on for

estimation as well as how much the parametric terms of the model can vary for a given

controller. With the assumption that a given model is accurate representation of the system

a designer determine how much uncertainty is allowable for each parameter in the closed

loop under specific initial uncertainty conditions.
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Chapter 1

Introduction & Motivation

1.1 Introduction

Typically in the controller design process, assumptions are made about the system in

the form of a system model. In the classical control approach, model parameter values

are assumed constant and a closed loop controller is designed to meet certain performance

specifications. In practice these parameters may change or be inaccurately acquired or

modeled. Thus, certain classical robust design techniques have been developed and used to

allow for small changes in the model and to account for imperfect modeling.

1.2 Robust Design & Model Uncertainty

In the advancements from modern control techniques, uncertainties in the model have

been incorporated directly in the robust design process. There is a relationship between

the allowable uncertainty and the resulting performance of the system such that as the

uncertainty is increased the resulting performance bounds increase. The question posed

here is not can a controller be designed such that some measure of robust performance is

guaranteed? Rather, the questioned posed is how good does my model need to be? Or

framed more specifically, what is the allowable uncertainty for a given system and controller

in the closed loop?

1



1.3 Prior Art

To answer this question of model accuracy, techniques from modern robust design can

be leveraged. Specifically the H∞ techniques for suboptimal design and controller synthesis

is to be utilized.

In brief, the H∞ technique makes use of the infinite norm as a design constraint across

a range of frequency responses. Additionally, the formulation is well suited for design of

multi-input multi-output systems and thus has been used in chemical and industrial pro-

cess systems such as the distillation column referenced heavily in [1] and analyzed with a

parametric uncertainty technique in [2]. The H∞ technique has since been picked up by the

aerospace industry. Interestingly, the handling of parametric uncertainty has been used to

narrow focus on system parameters that most affect the stability of the flight envelope [3].

The parametric H∞ approach has also been applied to ground vehicles.

Using a multiplicative perturbation approach, the neglected dynamics of the bicycle

model were accounted for in [4], where sidewind was treated as an additive output dis-

turbance. Unique to the H∞ approach, the author extended the D-K iteration method of

controller synthesis to also optimize the uncertainty models. The author makes the case that

this D-K-W iteration scheme allows for the inclusion of information of unstable (saturated)

experiments. In [5], parametric uncertainty was incorporated into the bicycle model. Mass

and inertia were treated as independent variations though they are physically linked. Addi-

tionally, the variations of cornering stiffness were used to “capture” the effect of nonlinear

tire dynamics. In [6], the H∞ controller synthesis process is used on a non-dimensional form

of the bicycle model and the effects of velocity on uncertainty are explored and the operating

regions where robust control is not achievable is defined.

Instead of using model uncertainty and performance specifications to design and syn-

thesize a robust control implementation, the H∞ techniques in this work are used to uncover

the allowable uncertainty. Details of this idea are presented in the latter half of Chapter

2. This approach to uncertainty and sensitivity is similar to that presented by [3] however,
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instead of analyzing the state coefficients, an approach that accounts for the uncertain on

physical parameters like mass and inertia is implemented.

Parameter sensitivity is a concern that arises out of the parametric approach. Work has

been done relatively recently in the area of sensitivity for parametric uncertainty. In [7], the

author examines the effect of parameter uncertainty on the output uncertainty across the

average output response. Specifically, the analysis is carried out on a tractor and single axle

grain cart system and the cornering stiffness parameter is altered via changes to the tire. In

[8], the author confirms the differences in stability of an open loop system response and the

closed loop control response. A tractor and single axle towed implement system was used

experimentally and the need for a high fidelity model at large velocities was additionally

confirmed.

To address the sensitivity concerns, an offline approach is presented in [3]. Using the

µ analysis of the H∞ approach the author develops a skewed-µ tool for sensitivity measure-

ment. This skewed µ analysis is used to determine which uncertain parameter coefficients are

the most important for a flight model. The limitations of a traditional open loop sensitivity

analysis applied to the closed loop flight system is discussed and the sensitive parameter co-

efficients identified in open loop analysis are not always the same as the sensitive parameters

identified in the closed loop control system.

This skewed-µ method for flight model coefficients from [3] is leveraged and modified

in this work to determine the allowable uncertainty for real and repeated parameters using

cascaded and parallel connection properties of the linear fractional transformation (LFT)

[9].

1.4 Contributions

This dissertation makes the following contributions to the research in the robust control

field listed below:
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• A methodical approach based on parametric uncertainty for determining how accurate

a system model needs to be is presented.

– Specifically, the approach provides information on how well do model parameters

need to be known to maintain the performance of the controller in closed loop.

– Unique in the formulation of this parametric approach to allowable uncertainty

is the ability to include parameters that are coupled together. Prior work [3] in

the field does not cover this coupling of parameters when exploring the allowable

uncertainty.

• This methodical skew µ approach with real parametric uncertainty is applied to the

coupled yaw-roll vehicle model.

• An analysis of the µ-sensitivity of the yaw-roll vehicle model with full parametric

uncertainty is also analyzed to ascertain which parameters are the most sensitive and

which parameters can be most logically grouped together in the varying subset of the

skew µ uncertainty block.

• A comparison between the vehicle model and high fidelity simulation model is provided

to show the potential limitations of the approach.

1.5 Outline

The outline of this dissertation is as follows: a review of the classical control concepts is

presented in the first part of Chapter 2. Then, a transition to the more modern based robust

control concepts rounds out the middle portion with the introduction of the linear fraction

transformation (LFT) and the “µ” concept. Finally at the end of the chapter the concept of

model uncertainty is covered. Chapter 3 covers the derivation of the coupled yaw-roll vehicle

model complete with road bank disturbances. A comparison of the coupled yaw-roll vehicle
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model with CarSim high fidelity simulation is presented to show limitations of the model

and potential issues with the parametric analysis.

In Chapter 4 two methods by which parametric uncertainty is incorporated into a model

is covered with the less complex lateral vehicle model for ease of presentation. A method

relying primarily on the classical block diagram signal routing rules and a method that treats

parameters as LFT subsystems are compared and the advantages of each are discussed. The

chapter ends with the incorporation of uncertainty for all parameters for the coupled yaw-roll

model. Next, Chapter 5, gets at the heart of the initial question of how well does a model

need to be known. The allowable uncertainty for the coupled yaw-roll model is analyzed

with respect to a given controller.

Chapter 6 then covers which parameters of coupled yaw-roll vehicle model most in-

fluence the performance via µ-sensitivity analysis of all the uncertainty parameters. The

sensitivity information ascertained from the µ-sensitivity analysis is used in Chapter 7 to

develop a practical set of uncertainty models. A more meaningful set of initial uncertainties

is prescribed based off of operating characteristics, and several cases for the terms that are

grouped based on influence and µ sensitivity level are developed. These uncertainty models

are then used to better assess what the operating maximum uncertainty is with respect to

the fixed subset and the extra variance found from the varying subset of parameters. Fi-

nally, Chapter 8 consolidates the conclusions from preceding chapters and highlights areas

of future work.
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Chapter 2

Stepping from Classical Robust Control concepts to the Modern Formulations

2.1 Introduction

This chapter covers some of the basic principles behind the modern robust control

synthesis. Specifically, the H∞ method is addressed. Some examples of the technique used

on ground vehicles and the dynamic systems are highlighted.

2.2 Robust Control Design

The goal of the robust design approach has been to handle unknown disturbances to

the system and to handle minor modeling errors and imperfect parameter identification.

For uncertain systems, the robust approach can result in a controller design that accepts a

wide range of variations but this accommodation often comes at the cost of the reduction of

desired performance specifications. In effect, opening up the “space”, measured in terms of

open loop frequency response, of the model can result in the need for the loosening of the

performance specifications of the closed loop in practice for uncertain systems.

At times it maybe desired to keep tight performance specifications and simply under-

stand by how much a model can vary for the given design; not to expressly design a a closed

loop system for some assumed variances. This is the primary motivation for determining

the parameter variations allowable of a closed loop system. First, however, a review of the

robust control design techniques is useful. An overview of the classical concepts and the

formulation of the modern control theories are presented below and are sourced primarily

from [1] and [10].
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2.2.1 Classical

Classical approaches to robust design are based off the small gain theorem. There are

two types of objectives in the classical control formulation. These objectives are embodied by

the regulator problem and the servo problem. For a given system with output, y, the plant

input, u, can be manipulated to force the system output to behave in a desired fashion. The

regulator serves to counteract the effect of a disturbance, d. The servo formulation serves

to drive the output to a desired reference response, r. For both cases the controller error,

defined as e = r − y, is desired to be small or near zero. The algorithm or control law that

adjusts the input u is called the controller K. A good controller requires information on

the expected disturbances, reference inputs and the models of the plant , G, and the the

disturbance, Gd. The linear formulation is thus:

y = Gu+Gdd (2.1)

At issue is the fact that the plant and disturbance models may not be well known and/or

may also change with time. A good approach to handling these unknowns is to leverage the

concept of model uncertainty and study the behavior of a class of models. More specifically

the single model G can be setup as the perturbation model

Gp = G+ E (2.2)

where E is the uncertain perturbation. This uncertain perturbation E is assumed to be

bounded. Typically E is expressed as a set of weighting functions, w (s) and normalized

perturbations, ∆. For the normalized perturbations the magnitude is less than or equal to

1.

The following terms defined below are useful classifications of the closed loop feedback

behavior:

• Nominal stability (NS): The system is stable with no model uncertainty.
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• Nominal Performance (NP): The system satisfies the performance specifications with

no model uncertainty.

• Robust stability (RS): The system is stable for all perturbed plants about the nominal

model up to the worst-case model uncertainty.

• Robust performance (RP): The system satisfies the performance specifications for all

perturbed plants about the nominal model up to the worst-case model uncertainty.

Uncertainty is handled more easily in the frequency domain. Specifically, two systems with

similar frequency responses can be described as behaving similarly whereas two systems in

a state space representation may exhibit large behavioral differences for a small change in a

parameter. Thus it is desirable to work with uncertain systems via transfer functions, G (s),

in the frequency domain where G (jω) yields the response to a sinusoidal input of frequency

ω. For linear, time-invariant systems where the input-output responses are governed by

linear ordinary with constant coefficients the transfer function G (s)takes the form:

G (s) = y (s)
u (s) = βnzs

nz + . . .+ β1 + β0

sn + an−1sn−1 + . . .+ a1s+ a0
(2.3)

where β and a are independent of time and correlate to the input and output respectively.

Also, in Eq. (2.3) n is the order of the denominator (number of pole polynomials) and is

known as the order of the system, while nz is the order of the numerator (the number of

zero polynomials). The difference of poles from zeros is referred to as the number of excess

poles also known as the relative order. Note, that for multivariable systems, G (s) takes the

form of a matrix of transfer functions.

Given a proper system with more poles than zeros, n > nz, G (s) may be expressed by

a state space description of the form:

ẋ = Ax+Bu

y = Cx+Du
(2.4)
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The transfer function G (s)then becomes

G (s) = C (sI − A)−1B +D (2.5)

Sometimes the transfer function G (s) may be represented in a compact expression of the

state space form

G (s) s=

 A B

C D

 (2.6)

where the partitions delineate the “sub-blocks” of the A, B, C and D matrices.

Recall that a system is strictly proper if the gain of G (jω) approaches zero as the

frequency ω approaches infinity. Additionally, a semi-proper system is characterized by the

gain G (jω)approaching a nonzero value, D, as the frequency approaches infinity. Finally a

system which is strictly proper or semi-proper is proper.

Note all realistic systems tend to have a zero gain at a sufficiently high frequency and

are thus strictly proper. However, a non-zero D-term is often used to model certain high

frequency effects. Certain derived functions used for analysis such as the sensitivity function

S = (I +GK)−1 are also semi-proper.

2.2.2 Classical Feedback

The classical frequency-response techniques have been heavily studied and used in in-

dustry for single-input single-output (SISO) feedback control systems. The classical loop

shaping methods were formalized in the 1980’s. This formalization of the shaping of the

closed-loop transfer functions allowed for the extension of the techniques to the multivari-

able or multi-input multi-output (MIMO) control systems. The formalization of the loop

shaping is presented here in this section. The next section will cover some of the multivariable

characteristics.
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The primary concept used for analysis of feedback systems is the system response to

varying sinusoids of frequency inputs. For a stable system of the form y = G (s)u, a

sinusoidal input, u (t), is used with the frequency ω in units of rad/s and with a magnitude

u0 where

u (t) = u0 sin (ωt+ α) (2.7)

For this input u (t), the output signal then takes the form

y (t) = y0 sin (ωt+ β) (2.8)

where y0 represents the magnitude of the output. The phase difference in frequencies φ,

defined as φ , β − α, and ratio of the output to the input, y0/u0, are used to draw meaning

and characterize the system. In the Laplace domain the gain ratio, y0/u0, and the phase

angle shift, φ, can be calculated directly from G (s) at each frequency ω by inserting the

imaginary number s = jω. The term G (jω) is the frequency response of the system G (s)

and describes how the system responds to persistent sinusoidal inputs of frequency ω. The

magnitude of the frequency response, |G (jω)|, is termed the system gain. The frequency

response is comprised of a real and imaginary component at each frequency.

G (jω) = a+ jb (2.9)

where a represents the real part and b represent the imaginary part.

a = <G (jω) (2.10)

b = =G (jω) (2.11)

The magnitude of system gain is then calculated as
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y0(ω)/u0(ω) = |G (jω)|

=
√
a2 + b2 (2.12)

and the phase shift is calculated as

φ = ∠G (jω) [rad]

= arctan (b/a) (2.13)

Being that both |G (jω)| and ∠G (jω) depend on the frequency ω these two measures of the

system are plotted explicitly in Bode plots (with ω as the independent variable) and also in

a Nyquist plot, a type of phase plane plot that is more implicit in its nature. For the Bode

plot, a log-scale for frequency and gain and a linear scale for the phase is most often used.

The log-scale is usefully for visual identification of poles and zeros and to asymptotically

hand sketch the Bode system response. The Bode response is the base from which a lot

of the classical loop shaping control concepts are built and from which the modern control

concepts expand from.

Feedback control is the primary structure for most practically implemented systems.

The structure for a one degree-of-freedom controller is represented by the block diagram

shown in Figure 2.1. Observe that the input to the controller K (s) is r− ym, the difference

of the measured output ym from the reference r. The measured output consists of the sum of

the actual system output y and any measurement noise n and is thus expressed as ym = y+n.

The input to the plant is then formulated as

u = K (s) (r − y − n) (2.14)
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Figure 2.1: Negative Feedback, One Degree-of-Freedom Block Diagram

The objective of control is to design K (s) such that any control error is small with respect

to system disturbances d. The control error is then defined as the difference of the output

from the reference

e = y − r (2.15)

Note that the input to the controller K, the difference r − ym, is often referred to as the

control error. The true measure of error should be in reference to the actual output y (not

the measured output ym) and the desired reference r.

The plant model is formulated as

y = G (s)u+Gd (s) d (2.16)

and for one degree-of-freedom feedback control the input, Eq. (2.3), is substituted into Eq.

2.16 to yield

y = GK (r − y − n) +Gdd (2.17)
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Collecting the output terms the equation becomes

(I +GK) y = GKr +Gdd−GKn (2.18)

and dividing through by (I +GK) produces

y = (I +GK)−1GK︸ ︷︷ ︸
T

r + (I +GK)−1︸ ︷︷ ︸
S

Gdd− (I +GK)−1GK︸ ︷︷ ︸
T

n (2.19)

The control error is then
e = y − r

= Tr + SGdd− Tn− Ir

= (T − I) r + SGdd− Tn

= −Sr + SGdd− Tn

(2.20)

Note the fact that T − I = −S or more explicitly:

T − I =
(
(I +GK)−1GK

)
− I

= GK
I+GK −

I(I+GK)
I+GK

= GK−I(I+GK)
I+GK

= GK−I2−GK
I+GK

= −I2

I+GK

= − (I +GK)−1

= −S

(2.21)

The corresponding input signal to the plant then becomes

u = KSr −KSGdd−KSn (2.22)
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Descriptively, the term S is the sensitivity, T is defined as the complimentary sensitivity

function and L is the loop transfer function. In summary, the terminology is:

L = GK loop trasnfer function

S = (I +GK)−1

= (I + L)−1
sensitivity function (y(s)/Gdd(s))

T = (I +GK)−1GK

= (I + L)−1 L
complementary sensititivty function (y(s)/r(s))

From the above relationships the following observations can be made:

• The sensitivity function, S, is the closed-loop transfer function from the output dis-

turbances to the outputs.

• The complementary sensitivity, T , is the closed-loop transfer function from the refer-

ence signals to the outputs.

The complementary sensitivity is termed as such due to the relation

S + T = I (2.23)

The sensitivity name makes intuitive sense in observation of Eq. 2.19, but the term was

originally created by Bode from the differentiation (at each frequency ω) of the closed-loop

transfer function T with respect to the plant model G

dT/T
dG/G

= S (2.24)

Bode termed the result of this differential sensitivity because it gives the relative sensitivity

of the closed-loop transfer function T to the relative plant model error. It is also important to

note that the equations above are written in matrix form for application to MIMO systems.

This matrix representation allows for a more general expression and manipulation that is
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presented in a later section. Recall that the generalization for SISO systems with negative

feedback is the “forward path” divide by “one plus the loop transmission” or

Output = "forward path"
1 + "loop transmission" · Input (2.25)

(The “forward path” term is also referred to as the “direct” transmission.) A more general

rule form that relates to the multivariable systems is presented later.

Also recall that the reason for feedback is that a perfect feedforward controller is not

feasible in practice due to modeling errors, signal noises, system disturbances and also varying

system parameters. Additionally, a plant that is unstable is in practice also only stabilizable

via a feedback structure due to the same imperfect knowledge. In summary, feedback is used

when any of the following are present in the system:

• Signal uncertainty or unknown disturbances (d)

• Model uncertainty (δ)

• Unstable plant

In this work the ability of feedback to reduce the effect of model uncertainty is the primary

focus.

2.2.3 Stability

Recall that for closed loop stability the system is stable “if and only if” all the closed-

loop poles reside in the left-half plane (LHP) of the Real-Imaginary graph of the poles.

Specifically, the roots of the loop transmission, 1 + G (s)K (s) = 0, are calculated and

plotted and can also be written as 1 + L (s) = 0. These poles are equal to the eigenvalues

of the closed loop state-space A-matrix, (A−BK). The frequency response of L (jω) can

also be plotted in the complex plane and the number of encirclements of the critical point -1

counted. The number of encirclements is equal to the number of open-loop unstable poles
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(RHP-poles). This encirclement method is called the Nyquist stability criterion. Open-loop

stable systems are characterized by a phase that falls (with respect to frequency) such that

the phase crosses -180 deg only once from above. For a closed-loop system, the the system

is stable if and only if the loop gain |L| is less than 1 at the crossover frequency of −180 deg.

Stability is then defined as

Stability ⇐⇒ |L (jω180) < 1| (2.26)

where ω180 is the phase crossover frequency defined by ∠L (jω180 = −180 deg).

While stability is important for a system, the overall performance is ultimate objective

of control. That is, to design the closed loop output to behave in a desirable manner. But,

under the feedback scheme it is possible to induce instability into the system and it is against

this tradeoff that performance improvements are evaluated.

In the time domain, performance is evaluated via the step response with such metrics

as rise time, settling time, overshoot, decay ratio and steady-state offset. These measures

can be categorized into either speed of the response or quality of the response. For more on

the time domain refer to the classical control literature [11, 12, 1]. However, the frequency

domain performance metrics are of greater importance to this work.

The advantage of the frequency response is the inclusion of many signals, sinusoids over

a range of frequencies. In addition to the frequency response of the loop transfer function,

L (jω), the responses of the sensitivity, S (jω), and complementary sensitivity, T (jω), are

also analyzed. If L (s) denotes the loop transfer function, then a typical Bode plot represents

the phase and magnitude of L (jω) and contains the gain margin and phase margin, GM

and PM respectively. The gain margin is defined as

GM = 1/|L(jω180)| (2.27)
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where the phase crossover frequency, ω180, is defined as

∠L (jω180) = −180 (2.28)

If more than one crossing of the phase angle ∠L (jω180) exists, then the largest value of the

gain magnitude at the crossover, max (|L (jω180)|), is taken. The GM is the factor by which

the loop gain can be increased before the closed-loop system becomes unstable. By this

relation the GM is a safeguard against steady state uncertainty in the plant gain. Typically,

a GM greater than 2 is desired.

The phase margin is defined as

PM = ∠L (jωc) + 180 deg (2.29)

where the gain crossover frequency, ωc, is the frequency at which the magnitude of the loop

transfer response, |L (jωc)|, crosses one from above; expressly written that is

|L (jωc)| = 1 (2.30)

The PM discloses how much negative phase, also known as phase lag, can be added to the

loop transfer function L (s) at the crossover frequency ωc before the phase at this frequency

becomes −180 deg. Recall that the system is stable if and only if |L (jω180)| < 1. Phase lag

can be thought of as a system delay. Therefore the PM is a measure of the safeguard against

time delay uncertainty. Typically, a PM larger than 30 deg is desired.

Thus, it is clear how the gain and phase margins provide a metric for evaluating the

margin of stability for gain and delay uncertainty. The gain and phase margins are closely

related to the peak values of the sensitivity and complimentary sensitivity gain magnitudes,

|S (jω)|and |T (jω)|. Relating the disturbance-to-output and the reference-to-output, respec-

tively, these two sensitivity terms are useful measures of performance, and the correlation
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to the phase and gain margins yield a metric to evaluate the appropriate tradeoff between

performance and stability criteria.

The maximum peaks of the sensitivity and complementary sensitivity functions are

defined respectively as

Ms = max
ω
|S (jω)| (2.31)

MT = max
ω
|T (jω)| (2.32)

This type of maximum is actually the infinite norm, H∞, and the peaks can be expressed

also as Ms = ‖S (jω)‖∞ and MT = ‖T (jω)‖∞. The H∞ norm is addressed and discussed

more in Section 2.2.5. Because the sum of sensitivities is equal to one, S + T = 1, at any

frequency the following must be satisfied

||S| − |T || ≤ |S + T |

||S| − |T || ≤ 1
(2.33)

This implies that the peak sensitivities differ by 1 at the most. Additionally, it means that

a large value of Ms occurs if and only if MT is large. Usually for stable plants Ms > MT but

not always. Note that a large peak value for either sensitivity or complimentary sensitivity

indicates poor performance as well as poor robustness. The bound on the complimentary

sensitivity is synonymous to the M-encirclements criteria of the Nyquist plot.

Justification for the bounding of the sensitivity peak is found in observations made on

the error equations. Referring back to Eq. 2.14-2.20 and removing the control input (set

u = 0) the control error, e = y − r, then becomes

e = Gdd− r (2.34)

and with feedback accounted for the control error is then

e = S (Gdd− r) (2.35)
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From this relation, it is easy to see that feedback control improves performance by reducing

the magnitude of the control error, |e| , at all frequencies when the magnitude of the sensi-

tivity is less than one, |S| < 1. Because real systems are strictly proper at high frequencies

the loop transmission approaches zero, (L→ 0), which conversely means that the sensitiv-

ity approaches one, (S → 1) . At low frequencies, the magnitude of the sensitivity is quite

small, especially if a system contains an integrator. A peak sensitivity value larger than

one, (Ms > 1), is in practice unavoidable at intermediate frequencies where feedback may

actually degrade performance. In these respects Ms is a measure of performance.

Additionally, Ms also acts as a robustness measure. By the Nyquist plot criteria, for

closed-loop stability to be maintained, the number of encirclements of the critical point by

L (jω) must not change; therefore, it is desired that L stay away from the critical point. The

minimum distance between L (jω) and the critical point at -1 on the real axis is in fact the

inverse of the peak sensitivity, 1/Ms. Thus for robustness a smallerMs is desired to maximize

the distance from the critical point. In total, since the peak sensitivity, Ms, is a measure of

both stability and performance, it is desired that Ms be close to 1.

Note that maximum peaks of the sensitivity and complimentary sensitivity are closely

related to the gain and phase margins. Specifying the maximum peaks of Ms and MT make

it unnecessary to specify the gain and phase margins. Additionally, the maximum peaks can

be related to bandwidth and crossover frequency specifications as well as to time domain

peaks via the total variation metric. Refer to [1] for further explanation of these relations and

also the formulas that relate the maximum peaks to the gain and phase margins discussed

above. The important takeaway is that the maximum peaks of sensitivity and complementary

sensitivity relate to the more commonly used classical control design techniques. These peaks

are crucial to the loop shaping design techniques presented next.
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2.2.4 Loop Shaping

There are three broad methods for controller design: Shaping of transfer functions, signal

based approaches and numerical optimization. The last, numerical optimization, involves

direct optimization of objectives such as rise times and stability margins and includes the on-

line techniques such as model predicative control (MPC). The signal based approach includes

state-space methods such as the Linear Quadratic Gaussian (LQG) where input signals are

assumed to be stochastic. But, by considering sinusoidal signals via a frequency-by-frequency,

scheme a signal based, infinite norm, optimal control methodology can be derived. This

complex approach to robust performance has produced what is called µ-synthesis and will

be discussed in a later section. First, the transfer function shaping method is covered. In

the classical approach, the basic loop shaping seeks to shape the open loop transfer function

L (jω). Typically, the designer’s goal is to obtain |L (jω)| with some desired bandwidth

slope. This shaping of the loop transfer function is difficult for complicated systems. The

more modern approach is the shaping of the closed loop transfer functions, S and T , as well

as KS, presented above. Optimizations such as the infinite norm approaches are leveraged

to solve mixed weight sensitivity conditions.

Specifically, what is meant by the loop shape is the magnitude of the loop transfer

function GK (or L) as a function of frequency. The manner in which the selection ofK affects

the loop gain is important to understand as it provides insight into the modern multivariable

techniques. Recall the control error for the closed loop from Eq. 2.20, e = Sr+ SGdd+ Tn.

The desire is to reduce all sources of errors. The perfect control would then be

e ≈ 0 · r + 0 · d+ 0 · n (2.36)

It is easy to see the conflict in requirements here. For disturbance rejection and reference

tracking the sensitivity must approximately equal 0 which means the complimentary sen-

sitivity is approximately one (or identity): S ≈ 0 → T ≈ I to min d & min r. Indirectly
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this means the the loop transfer function must be large in magnitude because S = 1/(I+L).

However, in order to drive the noise transmission to zero, the complementary sensitivity

must be approximately 0 which means the sensitivity conversely must be approximately 1

(or identity): T ≈ 0 → S ≈ I to minn. Similarly, the indirect relation is that the loop

transmission must be small for the complimentary sensitivity to be small: L ≈ 0 because

T = L/(I+L). Thus, T and S are in tension with each other and trade-offs are required in

the allowable control, disturbance and noise errors. Additionally, it is often desired that

the control input u be small due to energy and actuator hardware concerns. Here, a small

u corresponds to small controller gains as evident in the control equation u = K (r − ym).

This small controller gain in turn implies a small loop transfer as L−GK.

It would seem that the conflicting design objectives would make anything close to perfect

impossible. But sometimes, these objectives occur in different frequency ranges. In practice

large loop gains are implemented at low frequencies below crossover and small gains are

specified at the higher frequencies above crossover. Typically, a large gain is one such that the

loop transfer function is greater than one and a small gain is such the loop transfer function

is less than one or |L| > 1 and |L| < 1, respectively. So, fundamentally loop shaping involves

shaping the magnitude of the loop transfer function, |L (jω)|. However, while shaping the

loop works well for simple problems, significant effort is required for more complex systems

causing achieving stability becomes increasingly difficult. For specific details on the basics

of shaping the loop |L (jω)|, refer to [1].

A better approach to shaping is found by considering directly the closed-loop transfer

functions which determine the final response. The sensitivity and complementary sensitivity,

S and T , are well suited closed loop transfer functions for this approach. Approximations of

these sensitivities in relation to the loop transfer function are used to design for the small

and large gain criteria with respect to the loop transfer function as it’s easier to see how
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modifying the loop transfer function will affect the controller K. The approximations are

|L (jω)| � 1⇒


S ≈ L−1

T ≈ 1

|L (jω)| � 1⇒


S ≈ 1

T ≈ L−1

(2.37)

But even here the crossover region becomes problematic because |L (jω)| is close to 1 and

very little can be inferred about S and T from the magnitude of the loop shape |L (jω)|.

Alternatively, direct shaping of the magnitude of the closed loop transfer functions S (s)

and T (s) can be carried out. This is possible via the formulation of an H∞ optimal control

problem. This setup allows the control designer to be concerned only with the selection of

reasonable bounds, or weights, on the desired closed loop transfer functions.

2.2.5 Peak Value and the Norm

First an explanation or review of both the H2 and H∞ norm concept is needed. The

H∞ norm (read as the “H-infinity norm” or simply the “infinite norm”) is best understood

as the peak value. More specifically, for a stable scalar transfer function f (s) the H∞ norm

is the peak value of the magnitude of the system as a function of frequency |f (jω)|. A

stable transfer function is specified because the magnitude approaches zero as the frequency

approaches infinity. An unstable transfer function may have an unrealizable peak, the mag-

nitude approaches infinity as the frequency approaches infinity. The formal expression for

the definition of the infinite norm is then

‖f (s)‖∞ , max
ω
|f (jω)| (2.38)
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Note that for engineering purposes the “maximum” is used to define the infinite norm. In

the stricter mathematical terms “sup” or supremum is the more technical term to be used

instead of the maximum. This is because the supremum is the least upper bound while the

maximum is only approached as the frequency approaches infinity. In practice, an infinite

frequency is not achievable.

The main purpose of the infinite norm is to characterize the peaks(s) of one or more

transfer functions. With a characterization of the peaks, establishing a control method can

then be established that seeks to “press down” the peak(s) of the transfer function(s). This

method is termed H∞ control and will be discussed later.

It may be helpful to understand the infinite norm better by delving deeper into the

maximum magnitude which is formally defined as the integral

max
ω
|f (jω)| = lim

p→∞

(∫ ∞
−∞
|f (jω)|p dω

)1/p

(2.39)

By raising the transfer function magnitude |f | to an infinite power, the peak value can

be easily determined. Also, the limit shown in Eq. 2.39 is effectively what is known as

a “Hardy space”. The symbol H represents the “Hardy space”. Thus the term H∞, in

controls terminology, is the set of transfer functions with a bounded∞-norm. Recall transfer

functions bounded in this fashion are simply the set of stable and proper transfer functions.

The “two norm” or H2 norm can now better understood as it too is a Hardy space of

transfer functions but these functions are instead bounded by the “2-norm”. These 2-norm

bounded functions are a set of stable and strictly proper transfer functions. The H2 norm

is then defined as

‖f (s)‖2 ,
( 1

2π

∫ ∞
−∞
|f (jω)|2 dω

)1/2

(2.40)

Note that the H2 norm of a semi-proper transfer function (a transfer function that has

nonzero magnitude as frequency approaches infinity) is infinite but the H∞ norm is finite.
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The sensitivity function S = (I +GK)−1 is one such semi-proper transfer function that has

an infinite H2 norm and a finite H∞ norm.

2.3 Modern Control Concepts

The H∞ robust approach takes into account both model uncertainties and performance

specifications. Used initially in the chemical industry, the matrix based approach is capa-

ble of handling multi-input multi-output systems (MIMO). The system of interest can be

rearranged into a single compact matrix, denoted M , and a corresponding matrix of uncer-

tainties, denoted ∆. A technique called linear fraction transformation (LFT) handles the

rearrangement. Refer to [9] for information on the LFT. Note, the LFT is sometimes also

referred to as the linear fractional representation (LFR). A block representation of a system

M and uncertainties ∆ is shown in Figure 2.2.

Figure 2.2: Left: M-∆ Upper LFT; Right: M-K Lower LFT

The LFT is a formulation that methodically combines blocks with feedback. It is a re-

organized form of the state space system matrices augmented with uncertainty relationships.

To represent a system in compact LFT form, the state space equations are rearranged such

that input u is mapped to the output y and the input to uncertain block is z and the output

from uncertain block is w. This linear feedback mapping from input to output is represented

by

y =
[
M22 +M21∆ (I −M11∆)−1M12

]
u (2.41)
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where systemM is partitioned into sub-sets correlating to the inputs u and z and the outputs

y and w as

M =

 M11 M12

M21 M22

 (2.42)

A system with state vector x and matrices A, B, C, D that includes uncertainty is then

described by the set of relations

ẋ = Ax+B∆w +Bu

z = Fx+Gw + Ju

y = Cx+Hw +Du

(2.43)

Writing this set of equations in a compact matrix form yields


ẋ

z

y

 =


A B∆ B

F G J

C H D




x

w

u

 (2.44)

where the partitions correspond to Mij subsets of Eq. 2.42. The uncertain perturbation ∆

consists of n uncertain parameters, and its structured form is described by

w =


δ1 0 0

0 . . . 0

0 0 δn

 z (2.45)

The mapping that the compact matrix form provides is formally defined as the upper

LFT

FU (M,∆) = M22 +M21∆ (I −M11∆)−1M12 (2.46)

An upper LFT is characterized by a system block and a second block positioned above and

connected via feedback as shown on the left in Figure 2.2. Note that in the nomenclature
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FU (M,∆), the subscript U specifies an upper transformation and the first variable, M ,

inside parenthesis represents the primary matrix in which the input signal u is passed in and

the output signal y transmits out of. The second variable, ∆, represents the secondary block

that is fed back in either an upper transformation or lower transformation. In other words,

the transformation is written as an upper LFT of M in terms of the parameter ∆ [1].

A lower LFT is constructed similarly and is given by the equation

FL (M,K) = M11 +M12K (I −M22K)−1M21 (2.47)

Here K is used in place of ∆ because the lower LFT is used most commonly to describe

closed loop control connections for synthesis of K. The right most block formation in Figure

2.2 represents the signal structure of lower LFT.

Once the system is represented in the general form of the LFT, the modern robust

control design and analysis tools can be easily applied. One such concept within the modern

robust approach is the structured singular value or µ. The µ term is used to evaluate the

robustness of complex uncertainty systems. Expressly written, the term is µ∆ (M) which

is the structured singular value of a system M with respect the uncertain matrix ∆ and is

defined as

µ∆ (M) = 1
min∆ {σ̄ (∆) : det (I −∆M) = 0} (2.48)

where σ̄ is the maximum singular value decomposition of the uncertain matrix ∆. Note that

if there is no ∆ that satisfies the determinate condition, then µ∆ (M) = 0. The system M

is within the n× n complex domain, i.e. M ∈ Cn×n. In general, it is difficult to calculate µ

directly, therefore upper and lower bounds of µ are calculated in practice.

A special case of the structured singular value is the skewed-mu or ν. For the skewed-mu

case, a subset of the uncertain parameters are fixed, ∆f , while the remaining uncertainties

are allowed to vary, ∆v. The whole uncertain matrix is thus ∆s = diag (∆v,∆f ). The

skewed-mu is then defined as
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ν∆s (M) = 1
min∆s {σ̄ (∆v) : det (I −∆sM) = 0} (2.49)

where the magnitude of the fixed uncertainties must be less than one, i.e. |∆f | < 1. Similar

to the earlier definition, if there is no uncertain matrix ∆s that satisfies the determinate

condition det (I −∆sM) = 0, then the skewed-mu is zero, i.e. ν∆s (M) = 0.

Additionally, the mu-sensitivity can be used to identify the uncertain parameters that

are primarily responsible for the amount of robustness of the system. This sensitivity is

defined as the change in µ with respect to the incremental change in a specific parameter

Senµpj = ∂µ (M)
∂pj

≈ |µ∆ (M)− ν∆s (Mε)|
δpj

(2.50)

where Mε is the perturbed system such that only the jth varying parameter pj within the

uncertain matrix is perturbed. The µ sensitivity can also be defined with respect to the

skewed-mu. For more details on the µ sensitivity and the relationship to skewed-mu refer

to [3, 13, 14] There are some guidelines for the composition of the fixed and varying uncer-

tain parameters in the general case. It is normally required that the dimension of ∆f be

maximized with respect to ∆v and that the uncertain parameters with large µ sensitivities

should be place in the fixed ∆f sub-block of uncertainties. For the exploration of paramet-

ric uncertainty in this work, the former requirement is generally easily met. Note that the

implication of fixing certain parameters means that the bounds on the varying subset of

uncertain parameters is relative to the specific fixed subset as well as the level of uncertainty

on each within the fixed subset. The later requirement may at times be purposely violated

if a single parameter is placed in the varying subset ∆v.

2.4 Model Uncertainty

It is generally assumed that the uncertainty in a system is structured meaning that

the uncertainties are independent of one another. This uncertain block ∆, for structured

27



uncertainty, is represented by a diagonal matrix where the terms on the diagonal correspond

to a respective uncertain channel. There are several types of uncertainties: multiplicative,

additive and parametric. The uncertainties can be applied to either the input or the output

of a block.

2.4.1 Parametric Uncertainty

Although this work is primarily concerned with parametric uncertainty, multiplicative

uncertainty can be used to account broadly for parameter variations. At the basic level,

the uncertainty in a parameter can be modeled quite easily with either the upper or lower

LFT. Take for example the uncertain longitudinal velocity parameter Vx which is comprised

of a nominal value V̄x and the relative perturbation pVxδVx such that Vx = V̄x (1 + pVxδVx).

The parameter pVx represents some percentage of uncertainty and the parameter δVx is the

perturbation step which is bounded from −1 < δVx < 1. By Eq. 2.46 the parameter can

be expressed as FU (MVx , δVx) = V̄x + pVx · δ (I − 0 · δVx)
−1 V̄x which then takes on compact

matrix form

Vx = MVx =

 0 V̄x

pVx V̄x

 (2.51)

This additive disturbance on velocity is represented in the block diagram in Figure 2.3 and

the upper LFT of the additive disturbance is shown in Figure

Figure 2.3: Additive Block Diagram of the Uncertain Vx Parameter

Figure 2.4: Upper LFT of the Uncertain Vx Parameter

28



Each uncertain parameter modeled in this LFT fashion has the advantage of being able

to be combined using the standard interconnection rules specified by the upper and lower

LFT definitions in Eq. 2.46 - Eq. 2.47 respectively. This is advantageous because the result of

the interconnected LFT is a single but larger size LFT. Refer to [1] for a more practical study

on the implementation of the H∞ and LFT. The articles by [15] and [16] are recommended

tutorials for the structured singular value and mixed sensitivity topics respectively. For more

theoretical concerns refer to [17, 18]. For an introduction to nonlinear H∞ control refer to

[19]. Also, [9] and [20] contain for further details on the interconnection of LFTs. Lastly, note

that when dealing with real parametric variations a small amount of complex uncertainty

from 1-10% is often added to ensure that a solution to the search for µ can be found [20].

2.5 Conclusion

An overview of the robust classical control theory was presented as review and to easily

transition to the sensitivity and complimentary sensitivity concepts that are used in the

loop shaping control synthesis techniques. The infinite norm or “H-infinity norm” was also

covered as it is the mathematical measure by which the peak value of a system response

is characterized. The modern control theory topic was then introduced. First the linear

fractional transformation (LFT) was explained. The benefit in this work of the LFT is

primarily the formal structure to the system representation that LFT provides. But, the

LFT is also extremely useful for multi-input multi-output systems (MIMO). The structured

singular value µ term was then discussed. The µ value is the means by which the infinite norm

is analyzed at each frequency point of a system. Next, the skew µ concept was presented

whereby a subset of varying uncertainties within a block of system uncertainties can be

analyzed with respect to a subset of fixed uncertainties. This skew µ concept concept is highly

utilized in this dissertation in the proceeding chapters. Finally, the method of modeling real

parametric uncertain in the LFT model structure was presented, which is again a concept

relied on heavily in this dissertation.
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Chapter 3

Vehicle Models

3.1 Introduction

This chapter presents and describes the vehicle models that are used later on as the

system of interest. The relationship between the sprung and unsprung mass of the vehicle

and the effects of road bank on each mass is discussed. The chapter concludes with a practical

discussion on the process by which the uncertainty of parameters are incorporated into the

vehicle model.

3.2 Modeling Methodology

Figure 3.1 represents the roll model of the vehicle. In this model the sprung mass rotates

about the roll center. The road bank is described by the angle φr that exist between the

road surface and the horizontal plane. The angle φs describes the suspension roll, or relative

roll, that is due to the suspension deflections caused by the dynamics of the vehicle. The

sum of the road bank and the relative roll is the total roll indicated by φv. The center of

gravity is denoted by CG and the gravity vector points downward and is denoted by g. The

distance from the ground surface to the roll center is hrc, the distance from the roll center to

the center of gravity is hrg and the distance between the two wheels is track width, denoted

as tw.

30



Figure 3.1: Roll Model

Coordinate frames and the transformations between various frames and intermediate

frames are used to describe the rotations and rotation rates for the vehicle axle and vehicle

body (i.e. the unsprung and sprung masses of the vehicle respectively). The angles and

angular rates will then be incorporated into a coupled roll and yaw rate vehicle model. The

vehicle model uses steer angle as an input and equations of motion that are functions of

velocity. This model is then incorporated into an observer architecture to estimate states

not directly measured or generated from the model.

3.2.1 Vehicle Fixed Frames

The vehicle model in this chapter builds off the more detailed roll model in Figure 3.1.

The notation a represents the axle frame of the vehicle that originates at the unsprung mass.

The notation b still represents the body frame however the body frame is now specified as
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originating on the sprung mass of the vehicle. The Euler angle rotation is given by

Ca
n =


1 0 0

0 cosφv sinφv

0 − sinφv cosφv




cos θv 0 − sin θv

0 1 0

sin θv 0 cos θv




cosψv sinψv 0

− sinψv cosψv 0

0 0 1

 (3.1)

= Ca
2C2

1C
1
n

Note that this rotation is the inverse of the body to navigation frame rotation matrix used

commonly in GNSS filters. Here, the sub and superscript 1 denote the intermediate coor-

dinates given by the rotation about the z axis from the navigation coordinates n. The sub

and superscript 2 represent the intermediate coordinates given the rotation about the y axis

from the intermediate coordinate 1.

The angular velocity vector of the fixed vehicle axle frame from the navigation frame to

the body frame and expressed in the body frame is defined as

ωa
an =


φa

θa

ψa

 (3.2)

By using the angular rate of the Euler angles, the axle frame fixed velocity vector can be

written as

ωa
an =


φ̇a

θ̇a

ψ̇a

 = Ca
2


φ̇v

0

0

+ Ca
2C2

1


0

θ̇v

0

+ Ca
2C2

1C1
n


0

0

ψ̇v

 (3.3)


φ̇a

θ̇a

ψ̇a

 = J


φ̇v

θ̇v

ψ̇v


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The Euler rates can then be determined from the axle fixed angular velocity vector by

inverting J, the sum of successive rotations in Eq. (3.4).


φ̇v

θ̇v

ψ̇v

 =


1 sinφv tan θv cosφv tan θv

0 cosφv − sinφv

0 sinφv/sin θv cosφv/cos θv




φ̇a

θ̇a

ψ̇a

 (3.4)


φ̇v

θ̇v

ψ̇v

 = J−1


φ̇a

θ̇a

ψ̇a



Note that because the road bank angle is defined between the vehicle frame and the inter-

mediate coordinates 1, φ̇r is not the same as φ̇v unless θv the Euler pitch is zero. The road

bank rate φ̇r is the x component of the angular velocity, ω1
a1 which represents the angular

velocity of the axle frame with respect to the intermediate coordinates 1. The angular frame

rate of the vehicle axle fixed frame is

ω1
a1 =


φ̇r

θ̇r

ψ̇r

 = C1
2


φ̇v

0

0

+


0

θ̇v

0

 (3.5)

=
(
C2

1

)−1


φ̇v

0

0

+


0

θ̇v

0

 (3.6)


φ̇r

θ̇r

ψ̇r

 =


cos θvφ̇v

θ̇v

− sin θvφ̇v

 (3.7)
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Thus the road bank rate is defined as

φ̇r = cos θvφ̇v (3.8)

and from Eq.(3.4) the road bank equation can also be written as

φ̇r = cos θvφ̇a + sinφv sin θvθ̇a + cosφv sin θvψ̇a (3.9)

Typically the mounting location for an IMU in a vehicle is somewhere on the vehicle

body not the vehicle axle. The relationship between the vehicle body fixed frame and the

vehicle axle fixed frame is the transformation

Cb
a =


1 0 0

0 cosφs sinφs

0 − sinφs cosφs

 (3.10)

Using Eq. (3.10), the IMU measurements in the body fixed frame can be expressed as

ωb
ab =


φ̇b

θ̇b

ψ̇b

 =


φ̇s

0

0

+ Cb
a


φ̇a

θ̇a

ψ̇a

 (3.11)

This reveals that the roll rate and yaw rate equations for the body fixed frame are

φ̇b = φ̇s + φ̇a (3.12)

ψ̇b = cosφvψ̇a − sinφsθ̇a (3.13)

Note that Eq. (3.12) shows that the roll rate of the body is the sum of the roll rate from the

sprung mass (vehicle body) and the roll rate of the axle. Even though the bank of a road is

built with “x” amount of bank, the amount “x” is measured perpendicular to the direction
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of travel on the road. The bank experienced by a vehicle is only equal to the amount “x”

when the orientation of the vehicle is such that the x-axis of the vehicle is parallel to the

direction of travel of the road.

To implement the equations into vehicle models, some simplifications need to be made.

Eq. (3.9) can be rewritten assuming that the total pitch angle, θv, of the vehicle vehicle is

small such that cos θv ≈ 1 and the variable εr is created to lump the effects of axle pitch

rate, axle yaw rate, total roll and total pitch ,θ̇a, ψ̇a, φv and θv, together . This yields

φ̇r ≈ φ̇a + εr (3.14)

εr = sinφv sin θvθ̇a + cosφv sin θvψ̇a (3.15)

Finally, assuming that the vehicle roll angle φs and the vehicle axle pitch rate θ̇a are small,

Eq. (3.13) can be simplified to

ψ̇b ≈ ψ̇a (3.16)

3.2.2 Coupled Roll and Yaw Model

The vehicle dynamics are modeled with a bicycle model coupled with a roll model as in

[21, 22, 23, 24] . Figure 3.2 displays the two dimensional relationship between the vehicle

frame and the navigation frame for reference. The navigation frame, shown in Figure 3.2, is

the north-east-down frame thus the lateral velocity for the velocity vector, V , is negative in

the vehicle z-up frame. Observe that the vehicles course, the direction of travel and denoted

by ν, is not equal to the heading of the vehicle, ψb. This results in vehicle side-slip, β, and

means that a velocity exists not only in the longitudinal, x direction, of the vehicle but also

in the lateral, y direction, of the vehicle. The change in this lateral velocity, V̇y, will be used

to formulate the equations of motion.
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Figure 3.2: Navigation Frame

Figures 3.3 and 3.4 represent the lateral and roll vehicle model. In Figure 3.3, the steer

angle is represented by δ, ψ̇b is the yaw rate of the vehicle body frame, β is the side slip angle

at the center of the mass, Vx and Vy are the longitudinal and lateral velocity components of

the velocity vector V. The lateral tire forces are denoted as FyF for the front and FyR for

the rear. Similarly, αf and αr are the front and rear axle slip angles.

Figure 3.3: Schematic of the Bicycle Model (with all Forces and Angles Shown in Positive
Direction)
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The tire force is modeled using the cornering stiffness Cα as a linear relationship between

the slip angle and tire force such that

FyF = −Cαfαf (3.17)

FyR = −Cαrαr (3.18)

where Cαf and Cαr are the cornering stiffness parameters for the front and rear axle respec-

tively. Eq. (3.17) - (3.18) assume small slip angles αf and αr such that vehicle operates in

the linear region of the tire curve modeled by the cornering stiffness. In the bicycle model

the inner and outer slip angles at the wheels are assumed to be equal.

Figure 3.4: Roll Model

Using Newton’s relationship to sum sum the forces and moments found in the bicycle

model from Figure 3.3 and the roll model in Figure 3.4, the coupled equations of motion for

the bicycle and roll model are
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V̇y = IeqC0

IxxmVx
Vy−

(
Vx + IeqC1

IxxmVx

)
ψ̇a−

hrgBφ̇

Ixx
φ̇s+

h (mghrg −Kφ)
Ixx

φs+
IeqCαf
Ixxm

δ−gφr (3.19)

ψ̈a = − C1

IzzVx
Vy −

C2

IzzVx
ψ̇a + aCαf

Izz
δ (3.20)

φ̈v = −C0hrg
IxxVx

Vy −
C1hrg
IxxVx

ψ̇a −
Bφ̇

Ixx
φ̇s + mghrg −Kφ

Ixx
φs + Cαfhrg

Ixx
δ − φ̈a (3.21)

where

C0 = Cαf + Cαr (3.22)

C1 = aCαf − bCαr (3.23)

C2 = a2Cαf + b2Cαr (3.24)

Ieq = Ixx +mh2
rg (3.25)

In these equations, Izz is the moment of inertial about the z, or yaw, axis. The total mass of

the vehicle is represented by m. The terms a and b denote the front and rear weight splits

relative to the center of gravity. The effect of the unsprung mass is assumed to be minimal.

Therefore, this yaw dynamic model assumes a mass-less axle. The moment of inertia about

the x axis, the roll axis, is represented by Ixx. Kφ is the roll stiffness and Bφ̇ is the roll

damping. The term hrg is the distance from the roll axis to the center of gravity on the

sprung mass. The angular acceleration of the axle, φ̈a, is related through Eq. (3.14) because

the axle frame is assumed to remain in contact with the ground surface by means of the

tires.

The coupled roll and bicycle model is represented in state space with the state transition

matrix A, input vector B, and two disturbance vectors Bw1 and Bw2 such that

ẋ = Ax + Bδ + Bw1φr + Bw2φ̈a (3.26)
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where

A =



IeqC0
IxxmVx

−
(
Vx + IeqC1

IxxmVx

)
−hrgBφ̇

Ixx

h(mghrg−Kφ)
Ixx

− C1
IzzVx

− C2
IzzVx

0 0

−C0hrg
IxxVx

−C1hrg
IxxVx

−Bφ̇
Ixx

mghrg−Kφ
Ixx

0 0 1 0


(3.27)

B =



IeqCαf
Ixxm

aCαf
Izz

Cαfhrg
Ixx

0


(3.28)

Bw1 =



−g

0

0

0


(3.29)

Bw2 =



0

0

−1

0


(3.30)

The state vector x is

x =



Vy

ψ̇a

φ̇s

φs


(3.31)
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3.2.3 Yaw model

Note, in Section 4.3 a vehicle model that includes only the lateral dynamics is used

to demonstrate some of the basics of the process for including parametric uncertainty in a

model. This reduced state model decouples the roll states from coupled yaw-roll model. The

equations of motion for the yaw model reduce to

V̇y = C0

mVx
Vy −

(
Vx + C1

mVx

)
ψ̇a + Cαf

m
δ (3.32)

ψ̈a = − C1

IzzVx
Vy −

C2

IzzVx
ψ̇a + aCαf

Izz
δ (3.33)

3.3 Model Accuracy and Fidelity

Simulations are performed using CarSim 9, a commercial software package used heavily

in the automotive industry, for system development. The software, developed by Mechanical

Simulation Corporation, provides a high fidelity simulation environment, and allows the

user to view a number of vehicle outputs. The software has been accepted by industry as

accurately representing vehicle dynamics. CarSim data is often used as a truth measurement

in simulation. The coupled roll and bicycle model is validated against the CarSim high

fidelity model for a small SUV. Steer angle and velocity output from CarSim simulations

were used as inputs to the coupled vehicle model simulations performed in Matlab. The

output states from the coupled vehicle model were then compared to the corresponding

vehicle states from the same CarSim simulations.

3.3.1 CarSim and the Double Lane Change

The vehicle used in the simulations was the Class SUV in CarSim which has vehicle

parameters typically associated with the SUV or crossover class of vehicle. The parameters

for the SUV are provided in Table A.1 of Appendix A. A maneuver called the double lane

change (DLC) is the industry standard for testing dynamic roll properties for various vehicles.
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Figure 3.5: ISO 3888-2 Double Lane Change Specification

Figure 3.5 represents the ISO 3888-2 standard for a DLC [25]. Observe that the width of

the starting lane and intermediate lane are function of the vehicle width. For verification

of the model, the steer input (and other relevant inputs such as road bank where required)

from the CarSim data was feed into the vehicle model in MATLAB and the output channels

from the vehicle model and the CarSim model data were compared.

3.3.2 Model Validation

The steering input for the double lane change (DLC) is represented in Figure 3.6. This

steering input is the angle δ at the tire as modeled by the yaw model from Figure 3.3. Figures

3.7 and 3.8 show the output comparison of a DLC maneuver at 20 km/hr. At this speed the

coupled vehicle model and the CarSim model compare quite well.
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Figure 3.6: Input of Steer Angle to the Model for a DLC at 20 km/hr

Figure 3.7: Model Comparison of Lateral Velocity and Yaw Rate for a DLC at 20 km/hr
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Figure 3.8: Model Comparison of Roll Rate and Roll for a DLC at 20 Km/hr

At higher speeds the coupled vehicle model and the CarSim models diverge more signif-

icantly. Figures 3.9 - 3.11 represent the same double lane change maneuver performed at 90

km/hr. Note that for this faster target speed the steering is much more aggressive in both

magnitude and that the minor correction present in the Figure 3.6 at 20 km/hr target now

become full counter steer correction in Figure 3.11 at the 90 km/hr target speed. A double

lane change at this highway speed is indeed a very aggressive maneuver.

Noticeably in Figure 3.9 and 3.10, all four states of the coupled yaw-roll model are

marked by deviations from the higher fidelity CarSim simulation data. This separation is

due potentially to the non-linear saturation from the tire forces that are unmodeled in the

linear tire model used in the coupled vehicle model. The presence of nonlinear springs and

dampers in the suspension of the CarSim model are another example where differences in

outputs may be attributed. The tire model used in coupled yaw-roll model does not account

for changes in tire loading which can greatly affect the available force in the lateral and

longitudinal directions generated at the tire contact patch. From this, it can be concluded
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that at low speeds and low dynamics the coupled vehicle model is an appropriate model, but

at high speeds and high dynamics the coupled vehicle model is not as reliable.

Figure 3.9: Model Comparison of Lateral Velocity and Yaw Rate for a DLC at 90 km/hr

Figure 3.10: Model Comparison of Roll Rate and Roll for a DLC at 90 km/hr
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Figure 3.11: Steer Input for Model Comparison of a DLC at 90 km/hr

The errors of each state are shown in Figures 3.12 and 3.13 to give a better visualizations

of the scale in time of the differences between the coupled model and the CarSim high fidelity

simulation. It is clear that the peak error is much greater at the higher target speed of 90

km/hr. But, aggregating these errors into a single root mean squared metric for the entire

run at the given target speed quantifies the trend of the suitability of the coupled yaw-roll

model.
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Figure 3.12: Model Comparison Errors for a DLC at 20 km/hr

Figure 3.13: Model Comparison Errors for a DLC at 90 km/hr
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3.3.3 Root Mean Squared ErrorAnalysis

Assessing the model in terms of the root mean squared (RMS) error is beneficial to

broadly capture the reliability of the model across a range of target speeds. Figure 3.14

represents the lateral velocity and yaw rate RMS errors for the coupled yaw-roll model at

various set speeds. While Figure 3.15 portrays the RMS error for the roll and roll rate

states. The model deviations, viewed holistically as RMS errors across several target speeds,

demonstrate a nonlinear and increasing trend in errors that correlates with the target speed

of the maneuver. This further validates that the model is less reliable at the higher dynamics

due to the higher speeds.

Figure 3.14: RMS Error of Lateral Velocity and Yaw Rate for the DLC across the Range of
Target Speeds
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Figure 3.15: RMS Error of Roll Rate and Roll for the DLC across the Range of Target
Speeds

3.4 Conclusion

The couple yaw-roll model was derived and validated against the higher fidelity CarSim

vehicle system for the Class D SUV. The parameters for the coupled yaw-roll model were

pulled from the information available on the CarSim Class D SUV and approximated where

appropriate. For example, the slope of the tire force curve vs slip angle was used for the

cornering stiffness values. Both the yaw-roll model and the CarSim system were subjected

to an industry standard double lane change (DLC) maneuver across several target speeds

to excite the dynamics. Analysis showed that the yaw-roll model represents the system

sufficiently around moderate speeds of 60 kph and below. Above these moderate speeds for

the high dynamic maneuvers the yaw-roll model becomes less reliable. This reliability was

quantified with a root mean squared analysis of the errors for the lateral velocity, yaw rate,

roll rate and roll vehicle states. A quadratic trend in the errors of these states was observed

with the errors being less at the lower velocities.
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Chapter 4

Accounting for Parametric Uncertainty Vehicle Models

4.1 Introduction

This chapter presents methods for incorporating the uncertainty of the parameters in

the vehicle models. The issue of coupled and repeated parameters is tackled with a tedious

but systematic approach using the LFT. The chapter concludes with system responses of

the vehicle model plants under various combinations of uncertainty perturbations.

4.2 Model Limitations and Parametric Uncertainty

The amount of deviation seen in the vehicle states at higher dynamic conditions in the

previous chapter serves as a rough indicator of the overall confidence in any calculations of

allowable parametric uncertainties. However, this should not be a deterrence to exploring

the parametric uncertainty bounds of the model. The designer must keep in mind the

limitations of any model of interest that doesn’t capture the dynamics of the system. A

parametric model with greater system response matching can be expected to have more

reliable uncertainty bounds. It is important therefore to understand the limits of the model

as whole before considering the limits of the parameters within the model.

4.3 Incorporating Uncertainty

To incorporate uncertainty for simple systems with decoupled and non-repeated param-

eters the process is fairly straightforward and can be achieved in several ways. The first

method is via the system equations and involves isolating the parameters and manipulation

of the state space matrices. This method is ideal for simple systems or systems with only a
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few parameters of interest that have no coupling. The equation method can also be used on

systems where the parameters are grouped as a single term that affects the state. However, it

is not recommended to group parameters for the uncertainty perturbations with the hope of

decoupling the parameters post skew µ calculations as the decoupling is nontrivial and may

not be feasible. However, some methods in the literature rely on polynomial functions and

finite impulse response models to handle correlated parameter variations [2]. Other research

of parametric uncertainty either examine systems without coupling and repeated parameter

instances [26] or the parametric terms are treated as state coefficients [3].

An alternate and preferred method draws heavily from the LFT concepts. Though

this LFT building block method is more tedious, it is much more elemental in process and

the technique can handle both repeated parameters and parameters that are coupled via

multiplication. Both a standard system equation method and an LFT base-block method

are presented for demonstration purposes with a relatively simple version of the vehicle model

that consists of the just the lateral dynamics. The yaw model equations of motion from Eq.

3.32 and 3.33 are reprinted here for convenience of reference in the next section.

V̇y = C0

mVx
Vy −

(
Vx + C1

mVx

)
ψ̇a + Cαf

m
δ

ψ̈a = − C1

IzzVx
Vy −

C2

IzzVx
ψ̇a + aCαf

Izz
δ

4.3.1 System Equation Uncertainty Incorporation Technique

Once the system equation is derived and the parameters of interest are selected, this

technique requires the generation of a block diagram directly from the system equations. For

this initial example, the front and rear cornering stiffnesses are selected as the parameters

of which the variation and affects thereof are of interest. Once the basic block diagram is

created, the blocks containing parameter variations are augmented with a variation signal

specific to the instance in the diagram where the parameter appears. Figure 4.1 is repre-

sentation of the block diagram of the lateral vehicle dynamics with the variations of front
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and rear cornering stiffnesses included. Then the states, state derivatives and inputs to the

system are appropriately labeled. Additionally, the signal entering the variation block δp is

label zn and the signal exiting the variation block is labeled dn, where p is the parameter

symbol and n is the variation signal number. For parameters that are repeated, there will

be multiple entrance and exit signals matching the number of times the parameter appear

in the block diagram.
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Figure 4.1: Block Diagram of the Lateral Vehicle Dynamics with Uncertainty on CαF and
CαR
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The new system of equations with the variations included becomes

ẋ1 = − (CαF+CαR)
mVx

x1 +
(
−Vx − (aCαF−bCαR)

mVx

)
x2 − 1

mVx
d1 − 1

mVx
d2 − a

mVx
d3 + . . .

b
mVx

d4 + Vx
mVx

d5 + VxCαF
mVx

u

(4.1)

ẋ2 = − (aCαF−bCαR)
IzzVx

x1 −
(a2CαF+b2CαR)

IzzVx
x2 − a

IzzVx
d1 + b

IzzVx
d2 − a2

IzzVx
d3 + . . .

b2

IzzVx
d4 + aVx

IzzVx
d5 + aVxCαF

IzzVx
u

(4.2)

where x1 is the lateral velocity Vy and x2 is the yaw rate ψ̇. The mappings from uncertainty

to system states are

z1 = x1

z2 = x1

z3 = x2

z4 = x2

z5 = u
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These mappings to the system states are used to construct a matrix representation of the

vehicle system with uncertainties. The state space representation then becomes

 ẋ1

ẋ2

 =

 −
(CαF+CαR)

mVx
−Vx − (aCαF−bCαR)

mVx

− (aCαF−bCαR)
IzzVx

−(a2CαF+b2CαR)
IzzVx


︸ ︷︷ ︸

A

 x1

x2

+ . . .

 − 1
mVx

− 1
mVx

− a
mVx

− b
mVx

1
m

− a
IzzVx

b
IzzVx

− a2

IzzVx
− b2

IzzVx
a
Izz


︸ ︷︷ ︸

B∆, Pre



d1

d2

d3

d4

d5


+

 CαF
m

aCαF
Izz


︸ ︷︷ ︸

B

u

(4.3)



z1

z2

z3

z4

z5


=



1 0

1 0

0 1

0 1

0 0


︸ ︷︷ ︸

F

 x1

x2

+



0 · · · 0
. . .

... 0 ...
. . .

0 · · · 0


︸ ︷︷ ︸

G



d1

d2

d3

d4

d5


+



0

0

0

0

1


︸ ︷︷ ︸

J

u (4.4)

y =
[

0 1
]

︸ ︷︷ ︸
C

 x1

x2

+
[

0 0 0 0 0
]

︸ ︷︷ ︸
H



d1

d2

d3

d4

d5


+ [0]︸︷︷︸

D

u (4.5)

Note that the matrix B∆, Pre is what is derived via block diagram rules from the system

diagram. To capture the effect of variation in parameters, this pre-matrix is multiplied by a
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diagonal matrix of the relative variations and is described by,

B∆ = B∆, PreS5×5 (4.6)

where

B∆, Pre =

 − 1
mVx

− 1
mVx

− a
mVx

− b
mVx

1
m

− a
IzzVx

b
IzzVx

− a2

IzzVx
− b2

IzzVx
a
Izz

 (4.7)

and

S5×5 =



pCαF C̄αF 0 0 0 0

0 pCαRC̄αR 0 0 0

0 0 pCαF C̄αF 0 0

0 0 0 pCαRC̄αR 0

0 0 0 0 pCαF C̄αF


(4.8)

Denoting the relative variation with an Sx where x is the uncertain parameter the matrix

that injects uncertainty into the nominal system is then

B∆ =

 − SαF
mVx

− SαR
mVx

−aSαF
mVx

− bSαR
mVx

SαF
m

− aSαF
IzzVx

bSαR
IzzVx

−a2SαF
IzzVx

− b2SαR
IzzVx

aSαF
Izz

 (4.9)

This matrix representation with uncertain channels included is now in a form that can be

compacted. The upper LFT is then populated with matrices as marked by the under braces.
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Applying the mapping from Eq. 2.44 is then



V̇y

ψ̈

z1

z2

z3

z4

z5

y



= M8×8



Vy

ψ̇

d1

d2

d3

d4

d5

u



(4.10)

M8×8 =



− C0
mVx

−Vx − C1
mVx

− SαF
mVx

− SαR
mVx

−aSαF
mVx

− bSαR
mVx

−SαF
m

CαF
m

− C1
IzzVx

− C2
IzzVx

− aSαF
IzzVx

bSαR
IzzVx

−a2SαF
IzzVx

− b2SαR
IzzVx

aSαF
Izz

aCαF
Izz

1 0 0 · · · 0 0

1 0 . . . 0

0 1 ... 0 ... 0

0 1 . . . 0

0 0 0 · · · 0 1

0 1 0 0 0 0 0 0



(4.11)

The structured uncertainty diagonal matrix for the uncertain signal map is then



d1

d2

d3

d4

d5


=



δCαF 0 0 0 0

0 δCαR 0 0 0

0 0 δCαF 0 0

0 0 0 δCαR 0

0 0 0 0 δCαF





z1

z2

z3

z4

z5


(4.12)
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where δCαF and δCαR take on a value between one and negative one when implemented.

The lateral vehicle dynamic model is now defined in terms of the LFT and is ready for

manipulation with the H∞ robust control techniques. A controller can be designed using

the H∞ techniques. Or, as is the focus for this dissertation, the parametric uncertainty can

be assessed systematically in this compact LFT form.

4.3.2 LFT Block Uncertainty Incorporation Technique

The base block LFT technique starts with the generation of LFT blocks for the param-

eter in isolation. As described in Section 2.4 via Eq. 2.51, each parameter can be modeled

with a single uncertainty signal in the upper LFT format. Recall from Figure 2.3 that the

additive block for the uncertainty single parameter model is easily converted to an upper

LFT. A lower LFT can also be used for the basic LFT blocks for single parameters. The

designer just needs to keep consistent track of the input and output channels during the

combining of LFT blocks. This can be quite challenging in practice for systems with a lot

of uncertain parameters and/or with systems that have a lot of combinations of LFTs.

It is common practice to represent uncertainty with the upper LFT where the uncer-

tainty block is above the system block. Refer back to Figure 2.2 for block diagram of the

general LFT structure. Similarly, it also common for closed loop control to be represented

with the lower LFT where the controller block is below the system block. However, both

the upper and lower LFT formulations can be used to accurately represent either a control

block or an uncertainty block.

The scalar variations for CαF and CαR are expressed as

CαF = C̄αF (1 + pCαF δCαF )

CαR = C̄αR (1 + pCαRδCαR)
(4.13)

Recall for a general parameter x, an over bar denotes the nominal value, x̄, and px is the

percentage variation from nominal parameter. A parameter x with uncertainty is then more
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generically defined as

x = x̄ (1 + pxδx) (4.14)

where δx is the perturbation step which is bounded from −1 < δx < 1. This perturbation

step is what forms the structured (diagonal matrix) uncertainty block. Additionally, the

relative variation in terms of parameter units is then formally defined as

sx = pxx̄ (4.15)

From the lower LFT definition FL (M,K) = M11 +M12K (I −M22K)−1M21, first presented

in Eq. 2.47, the cornering stiffnesses can be written in terms of a nominal value and pertur-

bation as
FL (MCαF , δCαF ) = C̄αF + pCαF · δ (I − 0 · δCαF )−1 C̄αF

FL (MCαR , δCαR) = C̄αR + pCαR · δ (I − 0 · δCαR)−1 C̄αR

(4.16)

Finally, the two uncertain cornering stiffness terms can be written in the compact form of

the lower LFT subsystem blocks as shown earlier in Eq. 4.17.

CαF = MCαF =

 C̄αF pCαF

C̄αF 0

 CαR = MCαR =

 C̄αR pCαR

C̄αR 0

 (4.17)

Any parameters that are constant and without uncertainty, like the wheel base L, are mod-

eled as a simple gain block.

The next step is to combine the base parameter block systems and gain parameter blocks

into the larger subsystems. These subsystems will then be combined together to yield the

upper LFT system for the full yaw vehicle model with structured uncertainty. This block

construction and combining is most easily carried out in MATLAB with the µ toolbox.

The µ toolbox has many built in features for manipulating matrices and performing

frequency domain control analysis. It is possible to create and manipulate LFTs without

the toolbox, but the designer will have to reproduce many of the capabilities of the µ tools.
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This would be akin to using the bode plot function versus coding up the frequency phase

and magnitude response oneself. Although, it may be beneficial at first to understand the

interworking concepts and create user developed tools, it is more practical to use the built

in functionality once basics are mastered.

Note, for this dissertation the base parameter uncertainty block systems were created

early on in the lower LFT form. The larger subsystems, however, were developed in the

form of the upper LFT because the upper form is more commonly understood to represent

uncertainty. Conversion of the uncertain base parameter systems from the lower LFT to

upper LFT would have also required extensive alterations to the larger subsystem block

comprised of the base block lower LFTs. Therefore the base block LFTs for uncertain

parameters were kept in the lower LFT form.

Figure 4.2 shows the construction of base blocks and gain blocks for the yaw model with

uncertainty on the cornering stiffnesses. The note at the beginning of the code delineated

by the percent symbol is a breakdown of the signal map from input to output of a generic

lower LFT matrix denoted mXx.
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% Lower LFTs
% [ y ] = [ u ]
% [z_Xx] [mXx] * [w_Xx]
% where:
% [mXx] == lower LFT
% y == output of LFT mXx
% zXx == applied perturbation state of mXx
% u == input state to mXx
% w_Xx == input perturbation multiplier [-1 1] into to mXx

mCaf = [C_af P_Caf ;...
C_af 0];

mCar = [C_ar P_Car ;...
C_ar 0];

gainVx = nd2sys(Vx ,1);
gaina = nd2sys(a ,1);
gainb = nd2sys(L-a ,1);
gainL = nd2sys(L ,1);
gainMass = nd2sys(m ,1);
gainInvMass = nd2sys (1,m);
gainInvInertia = nd2sys (1,Izz);
gainInvVx = nd2sys (1,Vx);
intgrtr = nd2sys (1 ,[1 0]);

Figure 4.2: MATLAB Based Construction of Base Parameter System for the Yaw Model

The construction of the subsystem blocks is a bit more involved due to tracking of signals,

especially since the base parameter blocks were created as lower LFTs. The subsystem blocks

are created using the sysic function from the µ toolbox. This function requires the base

system names to be declared by systemnames, a name for the combined system/subsystem is

set with sysoutname, input signals to the combined system/subsystem are set with inputvar

and the output of the combined system/subsystem is established with outputvar. The output

will always be an output of one or more of the base systems or subsystems. The input call

input_to_X is the primary signal building device. Here, X is a base system or subsystem

named in systemnames. Figure 4.3 includes the construction of a few subsystems for the

yaw vehicle model with uncertain cornering stiffness. A comment on the order of input
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and output signals for an upper LFT is also included for clarity on the signal order that is

specified in the parenthesis proceeding a few of the base systems in the input_to_X call. If

a system is scalar (i.e. SISO), it is not necessary to specify the input and output channel

numbers. Each subsystem in the model is simply a section of blocks and/or series of blocks

from Figure 4.1.

Once all subsystems have been constructed they can be combined into a single LFT that

represents the entire system and all the uncertain signals and feedback. Figure 4.4 contains

the MATLAB code that pulls together all the subsystems for the vehicle yaw model of Figure

4.1.
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% Upper LFTs
% [z_Xx] = [w_Xx]
% [ y ] [mXx] * [ u ]
% [mXx_invrt] == upper LFT
% y == output of LFT mXx_invrt
% zXx == applied perturbation state of mXx_invrt
% u == input state to mXx
% w_Xx == input perturbation multiplier [-1 1] into to

mXx_invrt

% mUsys1
systemnames = ’mCaf gainVx ’; % Lower LFTs
sysoutname = ’mUsys1 ’;
inputvar = ’[w_Caf; control ]’;
input_to_mCaf = ’[ control ; w_Caf]’;
input_to_gainVx = ’[mCaf (1)]’;
outputvar = ’[mCaf (2); gainVx (1)]’; %[z_Caf; Caf*Vx]; %UpperLFT

out
cleanupsysic = ’yes ’;
sysic;
minfo(mUsys1)

% mFwdPathVxM
systemnames = ’gainInvVx gainInvMass intgrtr ’; %UpperLFT ,

scalarGain , 1out -1 inSystem
sysoutname = ’mFwdPathVxM ’;
inputvar = ’[error1]’;
input_to_gainInvMass = ’[error1]’;
input_to_gainInvVx = ’[ gainInvMass (1)]’;
input_to_intgrtr = ’[ gainInvVx (1)]’;
outputvar = ’[ intgrtr (1)]’; %[1/(m*Vx)*1/s]; [x_1]; %UpperLFT
cleanupsysic = ’yes ’;
sysic;
minfo( mFwdPathVxM )

Figure 4.3: MATLAB Based Construction of a Few Subsystems for the Yaw Model
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%IMPORTANT: inputvar , outputvar and delta block (order of
perturbations)

%are all correlated must have order correct

% G_vehYaw_CaFR_LFTblocks
systemnames = ’mUsys1 mUsys2 mFwdPathVxM mFwdPathVxIzz mCo mC1

mVxC1 mC2 ’;
sysoutname = ’G_vehYaw_CaFR_LFTblocks ’;
inputvar = [’[w_Caf3; w_Car1; w_Caf4; w_Car2; w_Caf5; w_Car3;’

...
’w_Caf6; w_Car4; w_Caf1; w_Caf2;’...
’u_steer ]’];

input_to_mUsys1 = ’[w_Caf1; u_steer ]’;
input_to_mUsys2 = ’[w_Caf2; u_steer ]’;
input_to_mFwdPathVxM = ’[mUsys1 (2) -mCo (3) -mVxC1 (3)]’;
input_to_mFwdPathVxIzz = ’[mUsys2 (2) -mC1 (3) -mC2 (3)]’;
input_to_mCo = ’[w_Caf3; w_Car1; mFwdPathVxM (1)]’;
input_to_mC1 = ’[w_Caf4; w_Car2; mFwdPathVxM (1)]’;
input_to_mVxC1 = ’[w_Caf5; w_Car3; mFwdPathVxIzz (1)]’;
input_to_mC2 = ’[w_Caf6; w_Car4; mFwdPathVxIzz (1)]’;

outputvar = [’[mCo (1); mCo (2); mC1 (1); mC1 (2); ’ ...
’mVxC1 (1); mVxC1 (2); mC2 (1); mC2 (2); mUsys1 (1)

; mUsys2 (1); ’ ...
’mFwdPathVxIzz (1)]’]; %[x2]

cleanupsysic = ’yes ’;
sysic;
minfo( G_vehYaw_CaFR_LFTblocks )
seesys( G_vehYaw_CaFR_LFTblocks )

Figure 4.4: MATLAB Based Construction from LFT Subsystems of the Yaw Model with
Uncertain Cornering Stiffness

Notice that feedback is handled with the input_to_X calls by the subtraction of the

subsystems. Specifically, this is done for the subsystems mFwdPathVxM and mFwdPathVxIzz

with the outputs of the smaller subsystems matching feedback junctions observed in the

block diagram of Figure 4.1. For a full definition of all the subsystems, refer to Appendix

A.2.1 where the full script that constructs all the subsystems blocks of the yaw model with

uncertain cornering stiffness can be found.
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4.3.3 Comparison of the Equation Based Approach and the LFT Base Block

Method

The two approaches, the system equation method and the base block LFT technique,

for constructing the system LFT with uncertainty for the vehicle yaw model should have

identical response outputs. It is straightforward and necessary to check the nominal system,

subset matrices A, B, C and D. The subset matrices, B∆, F , G, H and J , that map the

uncertainties to parameters in the nominal system are not guaranteed to match if the number

of instances of the repeated parameters is not identical. This is easy to see by the fact that

the equation based technique has a structured uncertainty block, ∆, of size 5 × 5 and the

LFT base block technique has a ∆ of size of 10× 10.

The reason for this difference in uncertainty block size is that LFT base block method

is more reliably constructed if each instance of an uncertain parameter is accounted for

during the subsystem designation and construction. It is possible to intelligently “reuse”

uncertainty parameter channels without creating another named instance. Note, a named

instance is for example w_Caf1, w_Caf2 ... etc. This “reuse” of instances though becomes

confusing very quickly. Therefore, for better tracking of the block interconnections and better

repeatability in application of the base block method to other systems it is recommended

to uniquely name most if not every repeated instance of an uncertain parameter at the

expense of a larger sized structured uncertainty, ∆. Conversely, when using the equation

based technique, the designer often intuitively “reuses” uncertain parameter instances at the

signal split junctions in the block diagram, shown in Figure 4.1.

The block diagram for the LFT base block method with size 10×10 uncertainty ∆ block

has the same general form as Figure 4.1, but is less compact due to the additional blocks

and more explicit uncertainty signal channels. Additionally, the equation based technique

can be applied for this 10 × 10 case and the system nominal response and response with

varying levels of uncertainty injected on the parameters should be identical to both the 5×5

equation based technique response and the 10× 10 LFT base block method response.
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It is important to check these responses on a simple model with limited uncertain

parameters because the base block method often yields LFT system matrices that account

for parameter uncertainty in different order than the hand calculated equation based method.

For example, the B∆ matrices of the equation based method and the LFT base block method

are similar but in a different order. Backing out the symbolic representation for the LFT

base block method, the matrix is

B∆ =

 − SαF
mVx

− SαR
mVx

0 0 −aSαF
mVx

− bSαR
mVx

0 0 SαF
m

0

0 0 − aSαF
IzzVx

bSαR
IzzVx

0 0 −a2SαF
IzzVx

− b2SαR
IzzVx

0 aSαF
Izz


(4.18)

and the B∆ for the equation based technique is

B∆ =

 − SαF
mVx

− SαR
mVx

−aSαF
mVx

− bSαR
mVx

0 0 0 0 SαF
m

0

0 0 0 0 −a2SαF
IzzVx

− b2SαR
IzzVx

− aSαF
IzzVx

bSαR
IzzVx

0 aSαF
Izz


(4.19)

Here it’s easy to see that the uncertain channels are equal in effect but are ordered differently.

The other matrices within the LFT that inject uncertainty into the nominal system will be

similarly ordered. Note that determining a match based on a comparison of the system LFT

matrices from the two methods can be a bit challenging to decipher when looking at the

numeric non-symbolic representations. Therefore, a comparison of the outputs of the both

nominal system and the uncertain perturbations of the parameters is useful.

First the ∆ perturbation block needs to be created such that the diagonal values be-

tween -1 and 1 can be applied to the system M once connected. This connection is made

via the upper LFT of the system M and the ∆ perturbation block, M∆ = FU (M,∆). In

MATLAB, ndgrid() is useful for creating a gridded variable to insert along the diagonals

with respect to each uncertain variable. The ∆ block can be easily looped through different

perturbation scenarios when diagonals are constructed in this fashion. The starp() func-

tion is used to implement both the upper and lower types of LFT connections, where the
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connection type depends on the order of the inputs to the function call. Specifically, the call

starp(delta, M) with an uncertainty matrix ∆ as the first input and the system M as the

second input yields an upper LFT; while ordering the inputs with the system M first and a

matrix such as a controller K second yields a lower LFT, or starp(M, K).

A comparison of the frequency response output of open loop system derived via the

system equation method and the base block LFT technique is presented in Figure 4.5. This

comparison of the nominal system outputs and the outputs with various parameter pertur-

bations shows the respective outputs to match. A lot of effort has been spent to show the

equivalency between the two methods for deriving a system model that includes the para-

metric uncertainty. The reason for this effort is that the hand derivation via the system

equation method becomes more tedious as the number of uncertain parameters increases

and also not very practical in the presence of uncertain parameters that are coupled.

Figure 4.5: Open Loop Frequency Response with 15% Uncertainty on the Cornering Stiff-
nesses for the Class D SUV at 120 kph
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4.3.4 Coupled Yaw-Roll Model with Full Parametric Uncertainty

In this section, focus returns to the coupled yaw-roll model which is better representation

of the vehicle system dynamics than just the two state yaw model. As mentioned above

each uncertain parameter is again combined via the interconnections of the larger block

diagram. Instead of using the additive block (shown in Figure 2.3), it is helpful in practice

to represent each uncertain parameter as an LFT matrix Mp where the subscript p is the

uncertain parameter of interest.

Note, for this model there is quite a number of instances of repeated parameters. How-

ever, this is easily handled by collecting and reorganizing the like repeated parameters into

groups along the diagonal of the structured uncertain matrix ∆. This reorganization is car-

ried out after the interconnections of all Mp blocks and feedback of the system has been

setup and the system LFT calculated. The yaw-roll vehicle model with uncertainty on the

following 10 parameters m, Izz, Vx, Cαf , Cαr, a, Ixx, hrg, Kφ, and Bφ̇ is described by Fig-

ure 4.6. For this model, only the front weight split term, a, is used to capture changes in

loading conditions. It would not make sense practically for both the terms a and b to vary

for a normal vehicle with a wheel base, L, that is structurally fixed length. Therefore, the

corollary rear weight split term b is represented in terms of the fixed length L and varying

front weight split a, i.e. b = L− a.

Due to the number of instances of uncertain parameters for the yaw-roll model only the

base LFT method was used to construct the LFT of the system. The procedure is the same

as described for the yaw model, but with more base block LFTs in place of the gain blocks

for the parameters that are now modeled with uncertainty. The final construction step from

the LFT subsystems to the open loop system is shown in Appendix A.2.3.

The coupled yaw-roll vehicle model with uncertainty is transformed into theM−∆ upper

LFT by combining the base LFT formulations of the uncertain parameters. This produces

a system M with uncertain ∆ matrix composed of ten perturbation variables. However, as

mentioned previously, the parameters are repeated and the size of the uncertain matrix is
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Figure 4.6: Vehicle Coupled Yaw-Roll Model with Parametric Uncertainty for All Parameters
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much larger at 71×71 in size. Grouping the like parameters together the uncertainty matrix

takes the form

∆ = diag



[
∆a,11×11 ∆m,9×9 ∆Izz,1×1 . . .

∆Vx,12×12 ∆Cαf ,9×9 ∆Cαr,6×6 . . .

∆Ixx,6×6 ∆hrg ,13×13 . . .

∆Kφ,2×2 ∆Bφ̇,2×2

]


(4.20)

where the subset ∆p,n×n are the n number of collected diagonal perturbations. Rearranging

the uncertainty matrix is accomplished via rearrangement of the input and output channels

of the system LFT matrix M . This is accomplished easily with the µ toolbox in MATLAB

using the sel () function to specify the input and output channels. An example of this

rearrangement is shown in Figure 4.7 where the variable GK_clp_vary is the frequency

response matrix, (a matrix that can vary in size based on the vector of frequency points

desired), of the closed loop system. Note that GK_clp_vary contains both a controller K

and the uncertain block ∆.

% I s o l a t e repea ted params
i_SetParm = 1 : 7 1 ;
i_a = [ 2 0 : 2 1 , 3 8 : 4 1 , 4 4 : 4 5 , 5 5 : 5 6 , 6 8 ] ;
i_m = [2 , 1 1 , 1 5 , 2 3 , 2 9 , 3 2 , 3 4 , 5 0 , 6 3 ] ;
i_Izz = [ 4 ] ;
i_Vx = [3 , 5 , 7 , 1 6 : 1 7 , 2 8 , 3 1 , 4 7 , 4 8 , 6 1 , 6 7 , 7 0 ] ;
i_Caf = [8 , 1 8 , 3 6 , 4 2 , 5 3 , 5 8 , 6 0 , 6 6 , 6 9 ] ;
i_Car = [ 9 , 1 9 , 3 7 , 4 3 , 5 4 , 5 9 ] ;
i_Ixx = [ 1 , 6 , 1 0 , 1 4 , 2 2 , 6 2 ] ;
i_hrg = [ 12 : 1 3 , 2 4 : 2 5 , 2 7 , 3 0 , 3 5 , 5 1 , 5 2 , 5 7 , 6 4 : 6 5 , 7 1 ] ;
i_Kphi = [ 3 3 , 4 9 ] ;
i_Bphid = [ 2 6 , 4 6 ] ;

% Calc Mu Bas l ine but account f o r repea ted v a r i a b l e s f o r b a s e l i n e
Mu c a l c u l a t i o n GK_clp_Uncert_varyCollectRepeats = s e l (
GK_clp_vary , . . .

[ i_a i_m i_Izz i_Vx i_Caf i_Car i_Ixx i_hrg i_Kphi i_Bphid ] , . . .
[ i_a i_m i_Izz i_Vx i_Caf i_Car i_Ixx i_hrg i_Kphi i_Bphid ] ) ;

Figure 4.7: Method for Reorganizing the Yaw-Roll LFT System with Full Parametric Un-
certainty
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The closed loop process is discussed in detail in, Chapter 5. Here, a look at the open

loop response confirms that the nominal system still matches the output response of the

original system without the uncertainty as expected. A mathematical check on the nominal

system can also be carried out by extracting the nominal state matrix A and input matrix

B from the open loop LFT matrix. Also, differencing the original system matrices from

the corresponding LFT extracted matrices should yield null matrices for each if the LFT

was properly constructed. Ensuring the uncertainty is incorporated correctly is a bit more

tedious and involves tracing signals through the base block and subsystems to ensure it

matches the LFT block diagram routing, shown in Figure 4.6.

Note that it is also recommended to first work with a simple system such as a traditional

mass-spring -damper system to build confidence in the understanding of the uncertain block

connections. Once the process is mastered some coupled uncertainties can be added by,

for example, squaring the spring stiffness parameter to ensure LFT connections are being

handled correctly. Any errors on this common system are much easier to isolate and this

experience will reduce errors in the connections in a more complicated system.

The perturbed frequency response of the open loop yaw-roll system for the Class D SUV

is shown in Figure 4.8. The velocity for this analysis was 120 km/hr and each parameter was

given a 15% uncertainty value. Hence the variance on the output response for the yaw is

quite large when 10 parameters can vary even at such a low percentage. To demonstrate

that the uncertainty is functioning, the uncertainty for each parameter was lowered in 5

percent increments in Figures 4.9 and 4.10. Additionally, Figures 4.11-4.13 represent the

frequency response with 15 percent uncertainty on each parameter at speeds 20, 50 and 90

kph respectively to show the effect of speed on the output response when the uncertainty is

held constant. As the speed decreases there are less extreme variances in the output response

of the yaw state. By inspection the uncertain perturbations for the open loop cases shown in

Figures 4.8 - 4.13 are found to be within the reasonable realm of vehicle dynamic responses.
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Figure 4.8: Vehicle Yaw Rate Perturbed OLP Frequency Response at 120 km/hr and 15%
Initial Uncertainty in Each Parameter

In the next chapter, the loop is closed with feedback of the yaw rate and a suitable controller

applied to the system.

4.4 Conclusion

Parametric uncertainty for the vehicle system was first incorporated into the less com-

plicated yaw model with the development of a block diagram that accounts for variations

via an additive block. Two approaches for producing the governing system matrices were

presented. The first was a direct method in which the classic block diagram rules are used to

manually derive the equations. The second approach leverages the definition of the LFT by

condensing each parameter and respective additive variation block into single LFT matrix

blocks that capture the parameter and variation affects. The LFT blocks are then combined

into a single larger LFT block that represents the system and an upper LFT diagonal block

that represents the uncertainty or variation of the parameters. The output responses of the

two approaches were compared to show that both produce an accurate representation of both
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Figure 4.9: Vehicle Yaw Rate Perturbed OLP Frequency Response at 120 km/hr and 10%
Initial Uncertainty in Each Parameter

Figure 4.10: Vehicle Yaw Rate Perturbed OLP Frequency Response at 120 km/hr and 5%
Initial Uncertainty in Each Parameter
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Figure 4.11: Vehicle Yaw Rate Perturbed OLP Frequency Response at 20 km/hr and 15%
Initial Uncertainty in Each Parameter

Figure 4.12: Vehicle Yaw Rate Perturbed OLP Frequency Response at 50 km/hr and 15%
Initial Uncertainty in Each Parameter
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Figure 4.13: Vehicle Yaw Rate Perturbed OLP Frequency Response at 90 km/hr and 15%
Initial Uncertainty in Each Parameter

the nominal system response and the response with uncertainty injected via the structured

uncertainty block. The LFT base block method was then used to produce the uncertainty

model of the more complicated coupled yaw-roll vehicle system. For the yaw-roll model

with full parametric uncertainty the LFT block method is better suited method due to the

number of uncertain channels, amount of repeated parameters and the coupling of several

of the parameters. Note that while the base block LFT method can handle some cases of

parameter coupling, it is not capable of representing other nonlinearities such as sine and

cosine operations. The open loop response for yaw-roll system was then analyzed at several

operating velocities with an initial uncertainty of 15 % on all the parameters showing how

the parameter variations affected the frequency response of the system.
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Chapter 5

Skew µ Analysis of Closed Loop Coupled Vehicle Model with Full Parametric Uncertainty

5.1 Introduction

In this chapter, the coupled yaw-roll vehicle model representing a Class D SUV is closed

around the yaw rate with a controller K. Analysis of the remaining “space” of uncertainty

for a given parametric dimension for the closed loop system is performed. Specifically,

uncertainty model cases are created where only a single parameter is placed in the varying

subset ∆v with the remaining fixed parameters residing in the subset ∆f . This chapter

analyzes how each parameter isolated in the varying subset is affected by the operating

velocity of the model and the initial uncertainties specified for the entire uncertainty set ∆.

5.2 Controller Design and Closed Loop Response

The closed loop for yaw rate control was examined with a fixed proportional-integral

controller (PI) where Kp = 2 and Ki = 0.125. In the LFT block form the controller is then

K =

 0 2

1 0.125



This PI controller was selected because the system did not need derivative control as the sys-

tem was stable in the open loop and demonstrated a damped response without a controller. A

lower LFT is used then to combine the systemMK = FL (M∆, K). The repeated parameters

were then grouped together and the closed loop system MK rearranged accordingly.

One additional step is required, which is to formally define the input and outputs of the

M∆ LFT for the closed loop system before performing the lower LFT operation that yields
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the resultantMK . This input-output setup step is again performed with the µ toolbox sysic

function. Figure 5.1 shows the steps needed to close the loop around the yaw rate. The signal

connections and signal names for the M∆ system G_vYawRoll_FullLFT are specified with

the variables inputvar, outputvar and input_to_G_vYawRoll_FullLFT. Also, notice that

a disturbance is also incorporated on the on the yaw rate output ofM∆ with the outputvar.

The star product function, starp(), is then used to generate MK , or clp_SysIcKCtrl as it’s

labeled in the script excerpt.

systemnames = ’G_vYawRoll_FullLFT ’;
inputvar = ’[pert {71}; dist; control ]’;
outputvar = ’[ G_vYawRoll_FullLFT (1:71); - G_vYawRoll_FullLFT (72) - dist]’;
input_to_G_vYawRoll_FullLFT = ’[pert; control ]’;
sysoutname = ’sys_ic_vYawRoll_FullLFT ’;
cleanupsysic = ’yes ’;
sysic;

clp_SysIcKCtrl = starp( sys_ic_vYawRoll_FullLFT , Kctrl_modal );

Figure 5.1: Script showing the setup of the Inputs and Outputs for Feedback to Properly
Carry Out the Lower LFT of the Yaw-Roll Model with the Controller K

The yaw response of the simulated closed loop system is represented by Figure 5.2. Here,

the step inputs are in red and the yaw rate output is in cyan. The closed loop frequency

responses are shown in Figure 5.3. Here the frequency response of a disturbance is also

included to show the effect that control has on the output disturbance rejection.
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Figure 5.3: Closed Loop Frequency Response of the Yaw-Roll Model with Controller K at
120 km/hr

Figure 5.2: Closed Loop Transient Response of the Yaw-Roll Model with Controller K at
120 km/hr
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More important though to the topic at hand is a look at some initial µ analysis of the

closed loop system. Remember that a µ value less the one ensures the system is stable, but

a µ above one does not necessarily mean the system is unstable. If the µ value is above one

it means only that all specified conditions and performance of the controller and system are

not met.

5.3 µ and Skew µ Analysis

It is useful to first examine the µ value of the the entire system with some initial

uncertainty value assigned to each parameter in the set ∆. Note the entire set of uncertainties

in the ∆ block are fixed for the mu analysis. Only, the skew µ analysis has fixed and

varying subsets, ∆f and ∆v respectively, within the entire set ∆s of uncertain parameters.

These initial uncertain values are based on assumptions made about the system. A set

of assumptions can be thought of as a scenario or model that has a different purpose in

highlighting characteristics of the perturbations of the system. For example the “extra

space” of uncertainty for parameters is different if a scenario/model has initial uncertainty

of 1% for each parameter versus a case where initial uncertainty is say 15%. The former

assumes either the uncertain parameters will not vary much or that the parameters are well

known and/or easily measurable. Conversely the latter case is a model/scenario where it

is assumed that the parameters are not well know and/or the parameters may vary under

operational conditions quite a bit [27].

These scenarios are determined by the interest of the designer and the physical charac-

teristics of the system. For example, the cornering stiffness is not always well known and

there is some debate among vehicle dynamics community whether it is a uniform value for

all tire-surface interactions. Other parameters may be measured with confidence but may

vary under operating conditions. An example of this operational variance is the weight split,

which may be well known but is subject to change slightly with various loadings of the

vehicle.
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5.3.1 µ for the Coupled Yaw-Roll Model with Full Parametric Uncertainty

The µ analysis for the coupled yaw-roll model with full parametric uncertainty for the

10 parameters, m, Izz, Vx, Cαf , Cαr, a, Ixx, hrg, Kφ, and Bφ̇, but with the repeated instances

treated as independent occurrences is shown Figure 5.4. Recall from Eq. 4.20 and the

development of the yaw-roll vehicle model that there 71 total entries in the ∆ block, but

only 10 uncertain parameters. The µ analysis for the case where the instances of repeated

parameters are collected is shown in Figure 5.5. For the case where repeated instances are

collected the scaling that occurs the µ algorithm is applied to the collection of instances for

each term. For example, all 11 instances of the weight split parameter a are treated as a

single uncertain parameter when occurrences collected. Therefore, specifying repeated terms

means the µ is calculated for the correct amount of uncertain terms which is 10 parameters

not 71. Thus, these two figures are presented to highlight the importance of collection of

repeated parameters. It is important to have the proper scaling applied at every instance of

a repeated parameter in system model, because the fully independent case is not an accurate

representation of the how the system is affected by changes in each parameter. The two

plots are for a system with 15% initial uncertainty on all 10 parameters. Notice that when all

71 uncertain channels can vary independently as in Figure 5.4 the upper bound of the µ value

shown in yellow is around 2.4, which is greater one. Thus, the system can’t be guaranteed

to meet performance specification and may not be stable. However, for the analysis where

the repeated instances of uncertain parameters are collected, Figure 5.5, the system µ values

are below one for all frequencies and the peak of the upper bound is just under 0.7 which

indicates there is “space” remaining among the parameters for more uncertainty along any

of the parameter dimensions or combination thereof.

If the the µ analysis of the system reveals the overall max µ value to be one or greater

there is no need to perform any further skew µ analysis as the system cannot handle any

additional uncertainty. In the event where the system µ is equal one or near a value of one

it is recommended to reconsider the assumptions made regarding the initial uncertainties. It
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Figure 5.4: Fully Independent µ Analysis for Yaw-Roll at 120 kph with 15% Uncertainty on
Each Parameter

Figure 5.5: Collected Parameter µ Analysis for Yaw-Roll at 120 kph with 15% Uncertainty
on Each Parameter
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would also be possible to redesign the controller. But, assuming the controller is kept as is, it

may mean that certain parameters need to be measured more precisely or that to achieve a

greater variance on desired parameter(s) the variance of some or all of the other parameters

must be narrowed to operate within a tighter range. Such narrowing specification may not

be physically possible due to the system operating conditions. Also, the manner in which

parameters are measured or estimated may prevent such narrowing of the initial uncertainty

of some parameters.

Also of importance for the topic of parametric uncertainty and the µ calculation is that

these parametric uncertainties are real terms, not complex terms, which often makes the

convergence of the µ solution much more difficult. For this reason real parametric uncertainty

is often avoided in place of complex uncertainty added to the system holistically when the

goal is to synthesize a controller. In the controller synthesis case, the complex uncertainty

is generally applied to either the input or output of a system. As mentioned earlier this

uncertainty can be either additive or multiplicative complex uncertainty depending on what

type of system uncertainty is being modeled. When designing a controller, the added effort

of accounting for the parametric uncertainty often is not worth pursuing when the other

methods can so easily account for the effects of parameter uncertainty. In the brief section

on parametric uncertainty in [1] the input/output methods show mathematically why time

spent on parameter uncertainty methods is not well spent for controller synthesis. The work

presented in the dissertation, however, seeks to address directly the effect of parametric

variations on the the closed loop system, so the extra effort is required.

The computational issue of the real parametric variance is a problem that must be dealt

with. When an uncertainty block consists of all real perturbations then the µ calculation

function is not necessarily continuous, which is pointed out in [28]. These discontinuities for

the purely real perturbation case can cause problems in the calculations of the lower bound

such that the lower bound converges to a value much lower than the upper bound or the

solution may not converge at all. In [20] a technique for mixing real parametric variations
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with some desired percentage of complex uncertainty is presented for the purpose of increas-

ing the likelihood of convergence of the µ calculation. The uncertain block ∆ is converted

from a purely real termed to a block with the real subsets of parameters added to similarly

sized weighted complex subset blocks along the diagonal. Effectively what was once a range

of real perturbation values is now a “disc” in the real-imaginary plane. Mathematically ∆

becomes ∆RC , “Delta real-complex”

∆ = ∆R → ∆R + α2∆C (5.1)

∆RC = ∆R + α2∆C (5.2)

This weighted complex additive factor is incorporated to the “varying” system, typically

a frequency response, by essentially multiplying the real uncertainty of the uncertain ∆R

block by a complex variance, ∆C , that is weighted by a value α. Because right and left sided

matrix multiplication is used, the total weight applied is α2. Typically α is kept small, but

even a larger α of 0.4 is only adding 16% complexity to the uncertainty model. Another

effect of this left and right side multiplication is that the size of the ∆ block is doubled when

a percentage of complexity is added. This real-complex uncertainty block is denoted as ∆RC .

The equations below outline the extra steps required for building the weighted ∆RC , which

involves altering the system M, Mvary, to account for the increase in size of the uncertainty

block. The subscript “vary” refers to frequency points set by the designer, which cause the

size of the system M to change with respect to the number of frequency points.

WL =

 In×n

αIn×n

 (5.3)

WR = W ′
L =

[
In×n αIn×n

]
(5.4)

Mmix = WLMvaryWR (5.5)
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∆RC =

 ∆R

∆C

 (5.6)

boundsRC = µ (Mmix,∆RC) (5.7)

Note that the effect of adding a small amount of complexity to each uncertain parameter

results in a slightly more conservative solution in the µ bound results. This conservativeness

means that the upper bound solution of µ is slightly larger than would be the case for the

purely real condition based solution. A comparison of the effects of the upper and lower

bound solutions versus the complex value weighting α can be found in [20]. Additionally,

mixed real and complex parametric uncertainties are discussed in [29] and the real parametric

perturbation case is well presented for a helicopter model in [30].

5.3.2 Skew µ for the Each Uncertain Parameter of the Coupled Yaw-Roll Model

Once the µ for the system is found to not be above one and the assumptions on the

model or models for initial uncertainty are satisfactory the skew µ analysis can be per-

formed. The maximum skew µ is the primary interest, but examining the skew µ across

the frequency spectrum helps to understand the important frequencies with respect to the

parameter variations.

Unique to this dissertation, the real parametric uncertainty with weighted complex

uncertainty technique was extended to the skew µ case. This conservativeness for the skew µ

case means that the solution of allowable parametric variances, which comes from the upper

bound, might be less than the system could handle in reality. There is still concern with the

lower bound as it is used as a measure for the tolerance of solution convergence. Thus, it is

important to perform the skew µ search over a continuous set of conditions.

The process for the skew µ calculation is slightly different than the single µ calculation

for the system. The skew µ calculation is an iterative process where only the designated

subset of parameters of the system is scaled by k, the inverse of the current µ upper bound.
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After scaling the subset, the whole system is tested with a calculation of a new µ value,

called the skewed-mu. This process is repeated until the tolerance set on the difference

between current and previous lower bound of the µ solution is met or the maximum number

of iterations is exceeded. This specified tolerance is why the lower bound is still important

even though the upper bound is used to implement the parameter scaling.

For the vehicle model, it has been shown in [6] that velocity greatly affects the lateral

dynamics of a vehicle system even though it is often used as a “static” parameter for the

vehicle model to operate about. For this reason the skew µ is analyzed at several velocity

points. Also, the initial uncertainty was made uniform across the parameters for simplicity.

However, it is also advantageous to consider how well a parameter may be measured and

how much it is expected to vary. For example, the cornering stiffness, Cα, is known to vary

by up to 30 % depending on the range of driving conditions due to changes in tire loading

and other factors.

No specific assumptions about the uncertainty or practical expected variation of param-

eters were made for the initial study of the vehicle system presented in the next subsections.

This type of equal weighted uncertainty modeling of the initial uncertainty is useful to gauge

how each parameter can independently vary before the µ condition is violated. The skew µ

analysis for the vehicle model with equal initial uncertainties is presented below for several

operating speeds.

5.3.2.1 Skew µ for 15% initial uncertainty at 50, 90 and 120 kph

In Section 5.3.1, an initial uncertainty model of 15% uncertainty for all parameters was

examined. A value of 15% keeps the parameters very close to their nominal values. But,

with a total of 10 parameters, all with initial uncertainty, the resulting system has quite a

bit of uncertainty incorporated into the vehicle model. In this section, the skew µ analysis is

carried out such that the varying subset is comprised of only one parameter. However, the

varying ∆v subset is not scalar but is a diagonal matrix containing all the repeated instances

84



Figure 5.6: Skew µ with 15% Uncertainty Each Parameter for Speed of 120 kph

of the variable of interest. The fixed subset ∆f likewise contains the collected uncertainty

instances of the other 9 parameters.

Recall from Figure 5.5 that the maximum value of the upper µ bound was roughly 0.7

for a vehicle traveling at 120 kph a velocity that it is within the range of typical vehicle

speeds on the highway. Therefore, there is space remaining for additional uncertainty in

the system. Figures 5.6 and 5.7 show the skew µ results of the vehicle system at 120 kph

with initial 15% uncertainty for each parameter both in the fixed subset and for the single

parameter in varying subset.

For this case, while the initial uncertainties are somewhat small and the velocity is

relative high, there is still a relatively large “space” remaining on almost every parameter

that is isolated in the ∆v varying subset when all others are fixed and a skew µ is calculated.

Note, while the isolated cases are presented together in the same plots only one parameter,

as specified in the legend, was allowed to vary while the other nine were held to the initial

uncertainty bounds.
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Figure 5.7: Skew µ with 15% Uncertainty Each Parameter for Speed of 120 kph

Table 5.1 represents the uncertainty for the yaw-roll model with an initial uncertainty

of 15% for all parameters and a Vx of 120 kph. Recall, that the skew µ is the inverse of

the allowable scaling that is applied to the ∆v varying subset and represented in column

two of the table. The table also includes the value change for each parameter that the

respective scaling would apply to the appropriate nominal parameter. Columns four and

five contain the maximum and minimum of each parameter when the delta value is added

and subtracted respectively. Finally, the last column contains the percent difference of

the nominal parameter to the maximum (and minimum) scaled parameter. This percent

difference is the most useful measure for quickly understanding how much the parameter is

affected in physical terms. Note that any negative values in the minimum may not be a

realistic value. For example the negative inertia would not be achievable in reality.

The skew µ results for the identical initial uncertainty cases are presented in Figures

5.8- 5.11. Figures 5.8 and 5.9 are for the 90 kph case (≈56 mph) and Figures 5.10 and 5.11

are for a vehicle speed of 50 kph (≈ 35 mph).
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Table 5.1: Available Uncertainty for Yaw-Roll Model at 120 km/hr and Initial Uncertainty
15%

Param. Scale
(1/µ )

Nominal
Param.

Delta
Param.

Max.
Param.

Min.
Param. %-Diff.

m 4.05 1430 869.69 2299.69 560.31 60.82 %
Izz 8.48 2059.2 2619.92 4679.12 -560.72 127.23 %
Vx 3.46 33.33 20.27 53.61 13.06 51.84 %
Cαf 5.50 68439.81 41624.12 110064.92 26816.68 82.56 %
Cαr 5.11 68439.81 41624.12 110064.92 26816.68 76.62 %
a 12.62 1.050 0.639 1.689 0.41 189.23 %
Ixx 3.94 700.7 426.15 1126.85 274.55 59.15 %
hrg 4.31 0.650 0.383 1.013 0.25 64.71 %
Kφ 4.94 216148.33 131456.03 347603.69 84691.64 74.16 %
Bφ̇ 6.25 16825.90 10233.15 27059.09 6592.79 93.68 %

Figure 5.8: Skew µ with 15% Uncertainty Each Parameter for Speed of 90 kph

87



Figure 5.9: Skew µ with 15% Uncertainty Each Parameter for Speed of 90 kph

Figure 5.10: Skew µ with 15% Uncertainty Each Parameter for Speed of 50 kph
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Figure 5.11: Skew µ with 15% Uncertainty Each Parameter for Speed of 50 kph

It is difficult to discern trends in the peak skew µ or the span values across the range of

frequencies as the speed is lowered except for the longitudinal velocity Vx parameter. The

decreasing trend for the peak µ value of Vx is µ values of roughly 0.31, 0.29 and 0.24. Note,

that this decrease in µ for the Vx parameter is akin to an increase in the scaling value k for

the Vx parameter. Therefore, it makes since that as the velocity is reduced in the nominal

system more “space” for variation is available.

Another observation made of the skew µ is that frequencies of 5 to 8 rad/s are roughly

the peak in parameter scaling for most of the parameters. The exceptions at which the peak

occurs at a greater frequency are the suspension dampening, Bφ̇, that peaks around 16 rad/s

and the yaw inertia, Izz, which peaks at the end of the tested frequency window, 100 rad/s.

Since the primary concern is with the overall maximum, it is interesting to see where these

peaks occur. Most seem to occur near the typical steering input cutoff range of 1-2 Hz (or 6.3

rad/s to 12.6 rad/s). The skew µ for yaw inertia, Izz, even has a small sub-peak at roughly

8 rad/s for speeds of 120 kph and 90 kph.
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Figure 5.12: Skew µ of Mass and Yaw Inertia with 15% Initial Uncertainty on Each Parameter
for Speeds of 50, 90 and 120 kph

It would be intuitively expected that many of the parameters would be influenced by

a change in speed because the lateral and roll dynamic outputs for the vehicle model are

observed to be less intense in magnitude at the lower speeds across the frequency spectrum.

However, this is less obvious in the Figures 5.8- 5.11. Therefore examining several skew µ

results overlaid with respect to speed is more useful.

5.3.2.2 Skew µ with initial uncertainty of 5%, 10% and 15% at 120 kph

The idea in this section is to see how the skew µ for the single-isolated varying parameter

in the set ∆v is affected when the initial uncertainty, for the cases in which initial uncertainty

is set uniform across all the parameters in the total set ∆s, is altered. Because the overall

µ value decreases with a decrease in the uncertainty of parameters, it is expected that the

skew µ for all the cases would decrease, i.e. that the scaling k applied for each parameter

in the varying set would increase. With a lower initial uncertainty there is more “space” for

variation among the parameters in the varying set. Keep in mind that for the skew µ cases
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Figure 5.13: Skew µ of Velocity and Front Cornering Stiffness with 15% Initial Uncertainty
on Each Parameter for Speeds of 50, 90 and 120 kph

Figure 5.14: Skew µ of Rear Cornering Stiffness and Weight Split ’a’ with 15% Initial
Uncertainty on Each Parameter for Speeds of 50, 90 and 120 kph

91



Figure 5.15: Skew µ of Roll Inertia and c.g. Height with 15% Initial Uncertainty on Each
Parameter for Speeds of 50, 90 and 120 kph

Figure 5.16: Skew µ of Roll Stiffness and Roll Damping with 15% Initial Uncertainty on
Each Parameter for Speeds of 50, 90 and 120 kph
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Figure 5.17: µ of System for Several Initial Uncertainty Values on Each Parameter for Speed
of 120 kph

presented in this chapter only a single parameter is placed in the varying subset, ∆v, but

the varying subset may not be scalar due to repeated instances of the isolated parameter.

The processing time for the vehicle yaw-roll model with full parametric uncertainty is

quite long, anywhere from 20 to 45 minute run times depending on the number of frequency

points specified. Therefore, the closed loop system with different initial uncertainty is pre-

sented only at the 120 kph speed. First, a basic µ analysis is performed, meaning the entire

set of parameters is fixed at the initial uncertainty. This baseline analysis is always recom-

mended to check if the system is capable of additional variance before performing any skew

µ analysis. The baseline µ values for cases of initial uncertainty set at 20%, 15%, 10% and

5% for all 10 of parameters is presented in Figure 5.17. In this plot of the upper bound µ

value versus frequency observe that as the uncertainty rises on the initial condition the µ

value gets closer to the unity value of one. Thus, the increase in uncertainty for the cases is

correlated with µ values that indicate lesser additional system variance is available. Figure

5.18 contains the skew µ of the mass and the yaw inertia for cases of initial uncertainty at

93



Figure 5.18: Skew µ of Mass and Yaw Inertia for Several Initial Uncertainty Values on Each
Parameter for Speed of 120 kph

20%, 15%, 10% and 5% for all 10 of parameters. A similar trend to the µ of the system is

observed in Figure 5.18 for the skew µ values of the parameter that is allowed to vary to the

limit of µ equal to unity for the system. However, the amount of additional variation is not

the same as evidenced by the dissimilar peak values for the mass and yaw. A look at the

peak values for each isolated parameter case versus the initial uncertainty percentage gives

an indication to the influence a particular parameter has on the total system. A lower skew

µ value means the parameter scaling is relatively large and the particular parameter can

take on on a larger variation before the stability and or the performance of the closed loop

system is violated, i.e. µ greater than or equal to one. For example, the peak 0.7 skew µ

for mass means the mass can be scaled 1/0.7 times, roughly 1.2 times, before the conditions

are such that performance can no longer be guaranteed. Whereas, the peak of 0.23 means

the inertia can be scaled 4.8 times. Therefore the uncertainty of mass has a larger influence

then on the system performance. A better method though of understanding the influence

from each parameter though is discussed next in Chapter 6.
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5.4 Conclusions

The concept of µ and the skew µ was explored for real parametric uncertainty of the

the coupled yaw-roll vehicle model. The skewed µ analysis showed the model parameters

had remaining “space” to vary given an initial uncertainty for each parameter. If the initial

uncertainty is increased for some or all of the parameters then there is less space remaining

for further variation in the parameters. Assuming the model is an accurate representation of

the system, a designer can use the technique to answer the question of how much uncertainty

is allowable for a single isolated parameter in the closed loop and still maintain a specific

performance criteria.
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Chapter 6

µ Sensitivity and the Determination of Parameter Scaling Groups

6.1 Introduction

In this chapter a method to analyze the sensitivity is presented. It has been shown

in [3] that the sensitivity of the open loop is not necessarily the same as the closed loop

sensitivity due to the influence of the controller. Additionally, the closed loop sensitivity

calculation based on the eigenvalues does not capture any information with respect to op-

erating frequency spectrum. The µ based sensitivity approach, however, is a method that

provides a sensitivity value at each frequency point for the parametrically perturbed system

with reference to the nominal system. The µ sensitivity discloses which parameters are most

influenced by the µ scaling. This is important to know for the skew µ analysis. With the µ

sensitivities known the parameters can be intelligently grouped together into the fixed and

varying subsets of the uncertain matrix, ∆.

6.2 Methodology Sensitivity

Section 2.3 discussed the details of the setup of the µ sensitivity calculation. In brief,

the eigenvalue sensitivity calculation is the change of the “perturbed” system eigenvalue with

respect to the nominal system eigenvalue divided by the amount of the parameter change.

For the eigenvalue sensitivity calculation, each parameter was perturbed individually by 10%

from the nominal value of the respective parameter.

For the µ sensitivity calculation the parameters were effectively perturbed by 1%. Specif-

ically, the initial uncertainty was set to 10% for all parameters in the entire set of ∆. Then,

the parameter of interest, placed in side the subset of ∆v, was set to vary by 10%. Thus,
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the net change in the parameter was 0.10 times 0.10 or 1 % for the resulting perturbation

that the skew µ was calculated from.

With respect to the eigen sensitivity, the µ sensitivity calculation is similar except that

it is the change in µ value from the “perturbed” system with respect to the µ of the nominal

system that is divided by the change in parameter value at each frequency point. The division

of the change in parameter ensures the parameters are dimensionless. The sensitivities can

be compared relative to each other for a given method. However, both of the two methods

are not meant to compare directly because the scale of the sensitivity from the eigenvalue

method is different from that of the µ based sensitivity method. What is important is

determining the most sensitive parameter with the eigenvalue calculations and comparing

that set with the most sensitive group of parameters from the µ sensitivity calculations.

6.3 Application to Yaw-Roll Vehicle Model with Full Parametric Uncertainty

Here the sensitivities for the yaw-roll vehicle model are calculated and analyzed across

the operating frequency and in terms of the the maximum sensitivity value from the frequency

range. The yaw-roll model with full parametric uncertainty is used for the µ sensitivity

analysis. Uniform initial uncertainty of 10 % is set with a single varying parameter of

interest and placed in the ∆v set for the skew µ calculation.

6.3.1 Aggregate Sensitivity

First, and most importantly, the peak sensitivity is examined and compared to the

eigenvalue sensitivity which is itself an aggregate characteristic of the system with respect

to the frequency. Figure 6.1 shows the eigen sensitivity, for the open and closed loop system

in blue and green bars, respectively. Observe that the open loop eigenvalue sensitivity

maximum values are slightly different than the maximums for the closed loop eigenvalue

sensitivity, but there is very little difference in the most sensitive parameters. Both the open

loop and closed loop analysis indicates that Ixx, Kφ and Bφ̇ are quite influential parameters
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Figure 6.1: Eigen Sensitivity Yaw-Roll model 15% Initial Uncertainty at 120 kph

for the system. This should make sense given that the a PI controller is used, which adds a

zero and a pole and then shifts the dominate poles of the system a bit via the proportional

gain. Therefore the PI controller does not create a large change in the system eigenvalues. In

general, however, the controller implemented may have a greater influence on the sensitivity

depending on the specific controller and specific system. It would be expected though that

a system with derivative or other poles added from the controller may have a sensitivity

results that are not as similar as the the yaw-roll vehicle model and PI controller presented

here. For this vehicle system, the eigenvalue sensitivity indicates only a slight attenuation

of the sensitivity of the parameters in the presence of the controller. The most influential

parameters, Ixx, Kφ and Bφ̇, in the open loop remain the most influential in the closed loop

but have a more visibly reduced sensitivity.

Turning to the µ sensitivity analysis for the same parameter cases, which is presented

in Figure 6.2, it is evident that the frequency based µ sensitivity reveals a different result for

the closed loop eigen analysis. The reason for this difference is that the µ value calculated
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Figure 6.2: µ Sensitivity Yaw-Roll Model 10% Initial Uncertainty at 120 kph

Figure 6.3: µ Sensitivity Select Parameters Yaw-Roll Model 10% Initial Uncertainty at 120
kph
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Figure 6.4: µ Sensitivity Yaw-Roll model 10% Initial Uncertainty (Left at 90 kph; right at
50 kph)

over the range of frequencies, incorporates initial uncertainty assigned to parameters and

better accounts for the “directional” effects of the system eigenvalues, which is more relevant

for MIMO systems.

Studying the µ sensitivity closer, the top influential terms in the closed loop are hrg, a

and Vx. The terms deemed most sensitive in the closed loop eigenvalue analysis, Ixx, Kφ and

Bφ̇, are in fact of the least influence to the closed loop system per the µ sensitivity as shown

in Figure 6.3 where the hrg, aand Vx have been removed form the bar chart. Additionally,

the closed loop µ sensitivity suggest that weight split parameter a has close to the least

effect on performance and stability in the closed loop with the PI controller included. For

completeness the maximum µ sensitivities for the 50 and 90 kph velocities are represented

in Figures 6.4 and 6.5 respectively. The characteristics are largely the same for both the

sensitivity at 90 and 120 kph.

6.3.2 Sensitivity Trends Across Frequency

While the maximum µ sensitivity is useful to characterize broadly the influence of pa-

rameters on the system, a look at the the µ sensitivity across the frequency spectrum can

be useful as well. First, a look at the µ sensitivity for the mass, yaw inertia and roll inertia

in Figure 6.6 shows that the maximum uncertainty value tends to occur at the frequency in

which the max skew µ value occurs. Referring back to Figure 5.12 it can be seen that the

100



Figure 6.5: µ Sensitivity Select Parameters Yaw-Roll model 10% Initial Uncertainty (Left
at 90 kph; right at 50 kph)

max skew µ value for the roll inertia is between 8 and 11 rad/s depending on the operating

velocity, and in Figure 6.6 the µ sensitivity maximum occurs within the 8 to 11 rad/s as well.

The mass µ sensitivity and skew µ have a similar locations of the peak as well. The yaw

inertia sensitivity is without a true peak and seems to rise proportionally with the frequency.

Recall from Figure 5.12 that the skew µ for the yaw inertia increased with velocity as well.

Thus, there is a loose correlation between the frequency at which the maximum skew µ

and the maximum sensitivity occurs. There are a few cases where the frequency locations

of the maximum µ and maximum µ sensitivity value do not correlate exactly. Figure 6.7

contains the µ sensitivity for case of an isolated velocity parameter and an isolated weight

split parameter. The µ sensitivity for Vxis not marked by any clear peak where as in the

skew µ analysis a peak was observed in the 8 to 10 rad/s range in Figure 5.13. Physically

this means that the maximum allowable scaled value is determined by the peak in the skew

µ plot. This scaled value is by nature of the µ analysis, the maximum conservative scaling.

However, the µ sensitivity indicates that changes of Vx have roughly the same impact across

the range of frequencies; there is no frequency in which velocity affects the system to any

greater or lesser degree. The sensitivity of a has a peak that is aligned near the same 4 rad/s

location as the peak of the skew µ value from Figure 5.14 for the 50 and 90 kph velocities.

Figures 6.8-6.11 represent the mu- sensitivity for the remaining parameter cases: the

pair hrg and a(for reference), the pair Cαr and Kφ, the single Cαf parameter and finally the
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Figure 6.6: µ Sensitivity vs. Frequency of m , Izz and Ixx for the Yaw-Roll model 15% Initial
Uncertainty at 50, 90 and 120 kph

Figure 6.7: µ Sensitivity vs. Frequency of a and Vx for the Yaw-Roll model 15% Initial
Uncertainty at 50, 90 and 120 kph
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Figure 6.8: µ Sensitivity vs. Frequency of a and hrg for the Yaw-Roll model 15% Initial
Uncertainty at 50, 90 and 120 kph

single Bφ̇ parameter. The sensitivity for hrg in Figure 6.8 rolls off much more gradually than

the sudden “drop” observed in the skew µ for hrg in Figure 5.15. In fact, here the“cutoff”

frequency in low pass filtering terminology is much different: 2-4 rad/s for the skew µ cutoff

vs. 0.3-0.4 rad/s cutoff frequency range for the µ sensitivity. A possible interpretation

of this difference is that changes to the cg height have a greater effect on the µ value at

low frequencies than at higher frequencies. Where as, the frequency which determines the

maximum cg height that is allowable occurs under much more excitation in the high frequency

band. So, a change to the cg has more “noticeable” effect on the µ value at lower frequencies,

but the most change the system can handle occurs in the faster to mid range of the frequency

response.

The µ sensitivity for Cαr and Kφ over the frequency range are also marked by a trend

where the lower frequencies are where highest sensitivity occurs while simultaneously the

lower frequency skew µ values in Figure 5.14 and 5.16 are very “flat” and almost match

the maximum allowable frequency that occurs in the middle of the range. Oddly, the least
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Figure 6.9: µ Sensitivity vs. Frequency of Cαr and Kφ for the Yaw-Roll model 15% Initial
Uncertainty at 50, 90 and 120 kph

amount of correlation between peak sensitivity and peak skew µ is found in the Cαf and

Bφ̇ parameters. The front cornering stiffness is marked by a skew value with a noticeable

peak for the 90 and 120 kph speeds as well as a relatively flat trend in the low frequency

range. The sensitivity is mainly flat across the range, with a slight peak detectable around

the 8-9 rad/s frequencies. The sensitivity for the Bφ̇, however, displays no noticeable trend

in sensitivity across the spectrum. This is much different than the skew µ analysis in Figures

6.6 - 5.15 where a very noticeable skew µ peak occurs. This simply means that the parameter

Bφ̇ is both not very sensitive overall and is not marked by any frequencies in which a small

change in Bφ̇ would significantly alter the closed loop response.

6.4 Conclusion

The sensitivity analysis is a useful tool to determine how small changes to the parameters

affect the overall system performance and stability. The closed loop and open loop eigen

sensitivity may not yield the same results due to the influence of the control in the closed
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Figure 6.10: µ Sensitivity vs. Frequency of Cαf for the Yaw-Roll model 15% Initial Uncer-
tainty at 50, 90 and 120 kph

Figure 6.11: µ Sensitivity vs. Frequency of Bφ̇ for the Yaw-Roll model 15% Initial Uncer-
tainty at 50, 90 and 120 kph
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loop form. Though here for the yaw-roll model with the specified PI controller the open and

closed loop eigen sensitivity were quite similar. The µ sensitivity, however, is a much better

method of assessing the parameter sensitivity in the closed loop since the effect of parameter

changes is considered across the frequency spectrum, which enables the determination of

peak sensitivity. For the yaw-roll vehicle model a noticeable difference between the closed

loop eigen sensitivity and the µ sensitivity was observed. For the the skew µ analysis in

the next chapter the µ sensitivity is recommended for the purpose of grouping parameters

together that have similar sensitivities, which can be interpreted as similar scaling effects.

The cg height parameter hrg was found to be highly sensitive to the system with respect

to system response and small changes in the parameter value. The next two most sensitive

parameters are the weight split a and velocity Vx. But these sensitivities are almost a mag-

nitude smaller in value from the sensitivity of the hrg parameter. Specifically, the sensitivity

value for hrg of roughly 23 as compared to approximately 4 and 0.5 for the weight split a

and velocity Vx sensitivities, respectively.

This sensitivity information is useful to the control or system designer to determine

which parameters are most critical for estimation requirements and which parameters can

either be allowed to vary quite significantly under operational conditions and/or which pa-

rameters nominal value measurements or estimates can be roughly acquired. With the

understanding of these sensitivity relationships the yaw-roll vehicle model is reexamined in

the next chapter with a set of initial uncertainties based off the µ sensitivity analysis.
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Chapter 7

Skew µ and µ Sensitivity for Practical Initial Uncertainty Models

7.1 Introduction

In practice a designer would rarely be concerned with only how much just one param-

eter could vary as was explored in Chapter 5. Additionally, it is more realistic to assign

initial uncertainty values that reflect the level of certainty in the measurements or estimated

values of the parameter and/or the expected (or experimentally measured) variation of the

parameters under the system operating conditions. In this chapter, measurement and oper-

ating condition assumptions with respect to the initial uncertainty are made and applied to

the skew µ analysis. Also, given the results of the sensitivity analysis in Chapter 6, certain

parameters will remain only in the “fixed” subset, ∆f , of uncertainty block set, ∆s, for the

skew µ analysis.

7.2 Yaw-Roll Vehicle Model-Specific Assumptions on Parameter Uncertainties

In [5] a set of variances were used to synthesize a controller for a vehicle system with

the H∞ techniques. The variance used for some of the primary parameters of the vehicle

system were 80% for each cornering stiffness, 15% for the mass, 15% for the yaw inertia.

These parameter uncertainties were first presented in [31] under the California Partners for

Transportation Technology organization.

The cornering stiffness, mass and inertia uncertainty values from [31] were applied to

the Class D SUV along with percentages for the other parameters displayed in Table 7.1.

With cornering stiffness set to 80% the µ for the system yielded a value above 1 meaning

the performance conditions were already not being met and also that there is no further
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space to vary other parameters via the skew µ technique. Thus, the cornering stiffnesses

were dropped to an initial uncertainty of 55%.

Table 7.1: Class D SUV Initial Parameter Uncertainty

Parameter Symbol Value Units Initial Uncertainty (%)
Mass m 1430 Kg 15%

Inertia x axis Ixx 700.7 Kg ·m2 15%
Velocity Vx 50/90/120 m/s 5%

Inertia z axis Izz 2059.2 Kg ·m2 15%
Front Split a 1.050 m 10%

Cornering Stiffness Front Axle Cαf 1194.5 N/deg 55%
Cornering Stiffness Rear Axle Cαr 1194.5 N/deg 55%

CG Height hrg 0.650 m 15%
Roll Stiffness kφ 3772.5 N ·m/deg 10%
Roll Damping bφ̇ 16825.9 N ·s/m 5%

Analysis for the skew µ was performed at 50, 90 and 120 kph. The µ uncertainty analysis

from Chapter 6 indicated that the roll center height, hrg, weight split, a, and longitudinal

velocity, Vx, were the most sensitive parameters, with the roll center height being especially

sensitive. To study the effect of remaining variation in the parameters it is best to create

several uncertainty block, ∆, models or cases. These models are grouped by the magnitude

of sensitivity. Table 7.2 contains the set of skew µ uncertainty block models, where again

∆v subset is the group of parameters that is scaled during the search for the skew µ value.

The first look at the skew µ analysis for this case with intelligent assumptions placed on

initial uncertainty comprises skew µ value for all nine varying block models at an operating

speed of 90 kph. Here in Figure 7.1, the models containing cornering stiffnesses (light blue

and yellow solid lines) have the highest skew µ value meaning the additional scaling applied

to the terms in the varying subset, ∆v , is the lowest. The fact that the cornering stiffnesses

have so little additional variance available makes sense given that both have the highest

initial uncertainty. Also, the model containing the cornering stiffnesses, roll stiffness and

damping stiffness, model 5 (light blue line), is almost unaffected by the inclusion of the roll

and damping parameters into the varying subset. This lack of influence can be attributed to
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Table 7.2: Uncertainty Block Models for Scaling and Skew µ Analysis
Model ∆f ∆v

1
{
δm, δVx , δIzz , δCαf , δCαr , δa, δIxx , δKφ , δBφ̇

} {
δhrg

}
2

{
δm, δVx , δIzz , δCαf , δCαr , δIxx , δKφ , δBφ̇

} {
δa, δhrg

}
3

{
δm, δIzz , δCαf , δCαr , δIxx , δhrg , δKφ , δBφ̇

}
{δa, δVx}

4
{
δVx , δCαf , δCαr , δa, δhrg , δKφ , δBφ̇

}
{δm, δIzz , δIxx}

5
{
δm, δVx , δIzz , δa, δhrg , δIxx

} {
δCαf , δCαr , δKφ , δBφ̇

}
6

{
δm, δVx , δCαf , δCαr , δIzz , δa, δhrg , δIxx

} {
δKφ , δBφ̇

}
7

{
δm, δVx , δIzz , δa, δhrg , δIxx , δKφ , δBφ̇

} {
δCαf , δCαr

}
8

{
δVx , δCαf , δCαr , δhrg , δKφ , δBφ̇

}
{δa, δm, δIzz , δIxx}

9
{
δCαf , δCαr , δa, δhrg , δKφ , δBφ̇

}
{δa, δm, δIzz , δIxx , δVx}

Figure 7.1: Skew µ for all Varying Subset Uncertainty Models at 90 kph for Yaw-Roll Vehicle
Model with Assumptions on Initial Uncertainty
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the initial uncertainty of 10 and 5 percent on the roll and damping parameters as well as the

fact that these two parameters had the lowest µ sensitivity. In fact, model 6, represented

by the purple line and which contains only Kφ and Bφ̇ in the varying subset, serves as an

effective “lower bound” for the skew µ of all the models.

Looking at the other models in Figure 7.1, which all have initial uncertainties that are

relatively close 5%-15%, the trend reflects the sensitivity analysis a bit more. Models 1-3

form a bit of a subgroup of the most sensitive parameters. The skew µ of model 2 containing

the weight split and cg height parameter in the varying subset (represented by the green

line) bounds the other varying subset models that don’t contain cornering stiffness. This

skew µ value of roughly 0.7 means a and hrg could both be varied with scaling value of

roughly 1.4 applied to both parameters and the system still remain within the performance

specifications if the other parameters stay within the bounds of the initial uncertainties.

Model 1 (represented by the light red line), which has the most sensitive parameter hrg

as the only parameter in the varying subset, the maximum skew µ is 0.43. The model

containing the second most sensitive parameters in the varying subset, a and Vx, Model

3 (dark blue line), has a maximum skew µ of 0.68. The sensitivity analysis suggests that

more sensitivity parameter might have a higher skew mu that is closer to a value of one

(less additional scaling) than the less sensitive parameters. However, the skew µ analysis

shows that while sensitivity can indicate a large scaling affect from a single parameter the

combination of several parameters can have a greater impact on the additional uncertainty

(or scaling) available. Thus several sets of uncertainty models are necessary to understand

the affect of allowing multiple parameters to have additional variance in the varying subset

∆v.

The remaining set of models are concerned with change in loading of the vehicle. Specif-

ically, model 4 allows for additional variance in the mass and both inertias and models 8 and

9 add to the varying subset the weight split term and then both the weight split and velocity

respectively. The assumption in these varying subset models is that the cg is not greatly
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Figure 7.2: Skew µ for all Varying Subset Uncertainty Models at 50 kph for Yaw-Roll Vehicle
Model with Assumptions on Initial Uncertainty

affected by the loading, i.e. mass added would not be placed at extreme elevations above the

vehicle but within the dimensions of the vehicle. This may not be a safe assumption for all

use cases as drivers do often attach roof racks for additional storage. Model 4 represented by

the dark red line has a skew µ of 0.62 at 90 kph so there is a healthy amount of additional

variance that is achievable when just m, Izz and Ixx are allowed to vary. Oddly though the

extra space for variance increases when the weight split and the combination of weight split

and velocity are added to varying subset as evident in Figure 7.1 by the decreased maximum

skew µ for model 8 (dashed light red line) and model 9 (dashed light blue line), respectively.

This is quite unexpected as model 9 is essentially model 3 (dark blue) and model 4 (dark

red) combined, both of which have skew µ values above 0.6. The search for µ and also skew

µ is suboptimal so potentially this could be the reason. Additionally, the order of the terms

on the diagonal in the subset may have a numerical influence on the solution.
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Figure 7.3: Skew µ for all Varying Subset Uncertainty Models at 120 kph for Yaw-Roll
Vehicle Model with Assumptions on Initial Uncertainty

7.3 Experimental Comparison

It is important to verify the analyzed limits from the previous section of the actual

closed loop system. Without the availability of a functional automated SUV, the CarSim

simulation software was used in conjunction with Simulink. The Class D SUV with solid

rear axle was again used only this time a loop was closed around the yaw rate output from

the CarSim vehicle model. This control loop and supporting blocks is represented in Figure

7.4. The controller is the same PI controller from the presented in Chapter 5 with the gains

Kp = 2 and Ki = 0.125. The CarSim model block took in steering wheel angle while the

controller was designed with respect to the average steering angle of the front axle measured

at the tire. Thus, several blocks were needed to convert the controller output steer angle into

the steering wheel angle required from the CarSim block. The values and look-up tables for

these steering conversions were sourced from the CarSim model data specific to the Class D
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Figure 7.4: Simulink Experimental Closed Loop Yaw Rate Setup for Class D SUV

SUV that was used in the experimental simulation. The values for the Class D SUV can be

found in Table A.1 of Appendix A.

The setup in Figure 7.4 also contains several input sources, but for the spectral analysis

the Swept Chirp block as connected in the diagram was the source used for the desired yaw

rate. A sample time of 1/100000 was used for the swept cosine chirp signal with an initial

frequency of 0.0003 Hz and target frequency of 100 Hz (or 0.00188 rad/s and 628.32 rad/s

respectively) over a duration of 40 seconds.

The steering conversion takes the steer angle at the tire and using the lookup tables

converts the angle to a pitman arm angle for both the left and right steering, which is

averaged and then scaled by the pitman arm to steering wheel angle ratio which is 20 deg

of turning at the steering wheel per 1 deg of pitman arm rotation.

Several test cases were selected to examine the accuracy of the parameter perturbations,

which are presented in Table 7.3. The two parameters with the highest µ sensitivity were

chosen for the test cases. A value above and below the nominal value was chosen for both

the weight split and cg height. Note, the cg height, while referenced to the road surface

directly, affects the hrg term in the coupled yaw-roll model.

The transient response is presented in Figure 7.5 to show a sample of the yaw rate

outputs for each case of parameter alterations. The desired yaw rate signal is also included

and is represented by the light blue line . Additionally, the nominal system is represented
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Table 7.3: Experimental Cases of Select Parameter Extremes for the Class D SUV
Case Alteration hcg a

1 CG Low 50 mm 1050 mm
2 CG High 1250 mm 1050 mm
3 Nominal 650 mm 1050 mm
4 Weight Split Front 650 mm 10.5 mm
5 Weight Split Rear 650 mm 2600 mm

Figure 7.5: Transient Response Output for all Cases of Parameter Alterations for Class D
SUV

114



by the dashed black line. All other system cases are represented per the legend. The desired

yaw rate with peaks and troughs of 1 deg/s magnitude is not that great of a demand from the

system but it is enough to characterize the frequency response across the range of frequencies

using the fast Fourier transform (FFT), specifically the fft() function call in Matlab. Note,

the CarSim model is set to a time step of 1e-05, a frequency of 100,000 Hz. So, there should

be no aliasing effects at the higher frequencies of the spectral analysis given that the highest

desired yaw rate input is 100 Hz. Also, the averaging of the spectral output was set to bands

with a spacing of 24 .

The FFT spectral analysis yields an experimental Bode diagram shown in Figure 7.6

The figure represents the gain and phase of the Class D SUV at a speed of 90 kph for the

high and low CG cases shown in red and yellow respectively as well as the nominal response

which is shown in blue. Note that the nominal response peak gain matches closely with

the response from the coupled yaw-roll model in Figure 5.3. There is a slight difference in

the peak magnitude of 1.06 for the CarSim experimental system versus 1.03 for the yaw-roll

coupled model. There is also a deviation in phase at higher frequencies. These differences

are likely due to higher order dynamics that the yaw-roll coupled model does not account

for. For example, the height of the cg does have an small effect on the closed loop system

yaw dynamics. The changes to the weight split, however, have quite a bit of an effect on the

yaw dynamics. The experimental Bode with weight split biased towards the front and rear

is shown in Figure 7.7.

7.4 Conclusion

The Class D SUV vehicle model was used in analysis that sought to more realistically

represent the initial uncertainty of the parameters of the vehicle system. The initial uncer-

tainty values were derived from experimental analysis of variance observed under operation

of the system as well as from assumptions made about the vehicle operating conditions. The
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Figure 7.6: Bode for Alteration of the CG Height for Class D SUV

Figure 7.7: Bode for Alteration of the Weight Split for Class D SUV
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µ for the system returned a value greater than one with the original set of initial uncertain-

ties meaning, too much uncertainty was specified leaving no room for extra variance on any

varying subset for any iteration of fixed-varying uncertainty cases.

The uncertainty of the cornering stiffness was then relaxed resulting in a base µ less

than one, which allowed the development of several uncertainty models. These uncertainty

models were created with reference to the µ sensitivity analysis results presented in Chapter

6. The resulting skew µ analysis primarily held with the understanding and expectation of

how much more the parameters in the varying subset of each case could vary.

Finally, the Class D SUV vehicle from CarSim 9 and the previously designed controller

were incorporated into a closed loop Simulink model. The CarSim block provided a link to

the high fidelity dynamic vehicle model. This setup served as the experimental verification.

Obviously, it is more feasible to alter the vehicle parameters in the CarSim environment than

on a physical testbed to verify the uncertainty bounds determined via the skew µ analysis

of the yaw-roll model. Additionally, the required road space for the swept chirp commanded

input was easily handled in simulation

The spectral analysis from the experimental tests revealed a nominal closed loop re-

sponse that was very close to the nominal closed loop response of the coupled yaw-roll

model. The magnitude response for variations of the cg height and the weight split were

explored. Spectral analysis was done using variations on just the parameter of interest. A

better method of analysis would be to consider one of the specific initial uncertainty cases.

Then for the fixed subset adjust the parameters therein to the limits of the respective initial

uncertainties. For the varying subset parameters the skew µ analysis would be used to set

the limits. A comparison of the experimental spectral analysis could then be made to the

closed response of coupled-yaw roll model with all parameters also at the uncertainty lim-

its. This is an area of future research to better verify the allowable parametric uncertainty

bounds determined via the skew µ method.
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Chapter 8

Conclusions & Future work

8.1 Conclusions

A methodical approach based on parametric uncertainty for determining how accurate a

system model must be in order to meet the specifications of the controller be was presented.

First, some of the robust control concepts were reviewed and then the modern control theory

of loop shaping was presented. This led into the infinite norm concept and then to the

structured singular value or µ value. The µ analysis and the structured of uncertainty

was discussed as being primarily used to account for various types of uncertainty for the

synthesis of a controller. The µ analysis, however, was also shown to be useful in analyzing

the allowable uncertainty of a closed loop system for a previously designed controller.

The primary concern of this dissertation was the real parametric µ and skew µ analysis

with repeated parameter instances. Prior work in the area of determining the allowable un-

certainty considered system formulations where the parameters where lumped together such

that the uncertainty matrix did not include any repeated terms. This dissertation leveraged

the linear fractional transformation LFT to formulate a system model that incorporated

uncertainty on the parameters in methodical manner. This base block LFT method allows

for uncertain parameters that occur in multiple instances to incorporated into an uncertain

system model with ease. The base-block LFT method presented also maintained certain

types of parameter coupling.

Summarizing, the approach is as follows:

• Acquire the system equations and represent the system as a standard block diagram.
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• In the block diagram convert all uncertain parameters to an LFT base block 2-by-2

matrix and non-varying parameters as gain blocks.

• Referencing the converted block diagram combine gain blocks and base LFT uncer-

tainty blocks into larger subsystem LFT blocks.

• Combine subsystem LFT blocks into an open loop LFT system of ∆−M .

• Close the loop according to the previously designed controller K to form the LFT

system ∆−M −K.

• Perform both the eigen sensitivity and µ sensitivity analysis to determine which pa-

rameters are most influential on the system and to better group parameters in the

varying subset for the skew µ analysis

• Use the sensitivity analysis to generate uncertainty cases where parameters with similar

sensitivity are placed in the varying subset together.

• Select initial uncertainty based off the operational variance of the parameters or based

off the accuracy of measurements.

– Note parameters which can be measured well or do not vary under operation can

stay in the fixed subset. i.e. cases with these types of parameters in the varying

subset are not needed.

• Check that the µ value for the closed loop system is less than one.

– Adjust initial uncertainty if possible or reconsider system and controller feasibility.

• Perform skew µ analysis on the uncertainty cases.

– Note: To find the upper limit of variance for a single parameter skip the sensitivity

analysis and place only a single parameter in the varying subset for the skew µ
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analysis and set initial uncertainty for all parameters equal. Construct uncertainty

cases like this for each uncertain parameter.

This method for real parametric uncertainty was explored for the coupled yaw-roll vehicle

model. It was shown that the parametric eigenvalue analysis may not reveal accurate infor-

mation about the closed loop system for the coupled yaw-roll vehicle model. The µ sensitivity

analysis showed that the cg height and weight split parameters were the most sensitive pa-

rameters for the coupled vehicle model. This means that small variations in these parameters

has a large effect on the system output and overall performance as specified by the controller

design. The system was also understandably sensitive to velocity.

In general, the skewed µ analysis showed the model parameters had remaining “space”

to vary given an initial uncertainty for each parameter. If the initial uncertainty is increased

for some or all of the parameters then there is less space remaining for further variation

in the parameters. The µ sensitivity analysis can be a helpful tool to determine which

vehicle parameters should be grouped together in the varying subset for skew µ analysis.

The combination of µ sensitivity and skew µ was shown to be useful to determine which

parameters need to be known precisely and which parameters can be allowed to vary under

operation conditions or measured with less accuracy. The real parametric technique provides

a method to determine the allowable uncertainty relative to the system model, the designed

controller and the specific initial uncertainties of all the uncertain parameters. This bound

on the uncertainty allowed, however, does rely on the assumption that the system model is

an accurate representation of the system response.

8.2 Future Work

Future work should first encompass a study of the yaw-roll vehicle model with a loop

closed around the roll and roll rate states to determine allowable uncertainty for the same

ten uncertain parameters used in vehicle model for this dissertation. It is likely that the
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most sensitive parameters of a system closed around roll or roll rate would be different from

the most mu-sensitive parameters of closed loop yaw rate system.

An analysis of the uncertainty for a closed loop system that controls multiple outputs

would be useful to the vehicle dynamics community. Most electronic vehicle stability con-

trollers on production vehicles are being designed to manage the vehicle roll and roll rates

in addition to the yaw rate. Skew µ results of the allowable parameter uncertainty on the

coupled vehicle model with controllers on both the yaw axis and roll axis are again likely to

be different than the results for the system with yaw rate controller only. The LFT approach

presented in this dissertation can also handle MIMO systems.

Additionally in this dissertation, it was shown that at higher speeds and dynamics the

coupled yaw-roll model matches the output of the more accurate CarSim model which was

used as the experimental test case. Including some measure of confidence in model fit may

be of use so that a quantitative confidence in the allowable uncertainty could be established.

On similar note, the incorporation of a better tire model into the coupled vehicle model

would better to capture tire saturation. The f-tire model which uses physical parameters to

model the slip-force relationship is highly recommended.
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Appendix A

Vehicle Properties

A.1 CarSim’s Small SUV

Table A.1: Class D SUV Vehicle Parameters
Parameter Symbol Value Units

Mass m 1430 Kg
Inertia x axis Ixx 700.7 Kg ·m2

Inertia y axis Iyy 2059.2 Kg ·m2

Inertia z axis Izz 2059.2 Kg ·m2

Track Width tw 1.565 m
Wheel Base wb or L 2.660 m
Front Split a 1.050 m
Rear Split b 1.610 m

Cornering Stiffness Front Axle Cαf 1194.5 N/deg

Cornering Stiffness Rear Axle Cαr 1194.5 N/deg

CG Height hrg 0.6350 m
Axle Height haxle 0.340 m

Roll Center Height hrc 0.020 m
Roll Stiffness kφ 3772.5 N ·m/deg

Roll Damping bφ̇ 16825.9 N ·s/m

Table A.2: Class D SUV Suspension Parameters
Parameter Symbol Value Units

Spring Mount Separation Front s1,s 1.565 m
Damper Mount Separation Front s1,d 1.565 m

Spring Stiffness Front k1 130,000 N/m

Damper Coefficient Front b1 9178.0 N ·s/m

Auxiliary Roll Stiffness Front (Anti-Sway Bar) kφ,1,aux 32601.3 N ·m/deg

Spring Mount Separation Rear s2,s 1.103 m
Damper Mount Separation Rear s2,d 1.103 m

Spring Stiffness Rear k2 40,000 N/m

Damper Coefficient Rear b2 9178.0 N ·s/m

Auxiliary Roll Stiffness Rear (Anti-Sway Bar) kφ,1,aux 0.0 N ·m/deg
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Table A.3: Small SUV Roll Stiffness and Damping
Parameter Symbol Value Units

Auxiliary Roll Stiffness Front (Anti-Sway Bar) kφ,aux 32601.3 N ·m/deg

Roll Stiffness kφ 12,384,349 N ·m/deg

Roll Damping bφ̇ 16825.9 N ·s/m

kφ,aux = (kφ,1,aux + kφ,2,aux)
2 (A.1)

kφ =

(
k1s

2
1,s + k2s

2
2,s

)
2 + kφ,aux (A.2)

bφ̇ =

(
b1s

2
1,d + b2s

2
2,d

)
2 + kφ,aux (A.3)

A.2 MATLAB

A.2.1 Construction of LFT for Vehicle yaw Model with Uncertain Cornering

Stiffness

% model_smSUV_yaw_CaFR_LFTblocks.m

% Lowell Brown

% H-inf applied to simple statepace vehicle model at constant

speed.

% dbstop if error

% clear

% clc

% close all
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% Upper LFTs

% [z_Xx] = [w_Xx]

% [ y ] [mXx] * [ u ]

% [mXx_invrt] == upper LFT

% y == output of LFT mXx_invrt

% zXx == applied perturbation state of mXx_invrt

% u == input state to mXx

% w_Xx == input perturbation multiplier [-1 1] into to

mXx_invrt

% mUsys1

systemnames = ’mCaf gainVx ’; % Lower LFTs

sysoutname = ’mUsys1 ’;

inputvar = ’[w_Caf; control ]’;

input_to_mCaf = ’[ control ; w_Caf]’;

input_to_gainVx = ’[mCaf (1)]’;

outputvar = ’[mCaf (2); gainVx (1)]’; %[z_Caf; Caf*Vx]; %UpperLFT

out

cleanupsysic = ’yes ’;

sysic;

minfo(mUsys1)

% mUsys2 systemnames = ’mUsys1 gaina ’; %UpperLFT and LowerLFT

sysoutname = ’mUsys2 ’;

inputvar = ’[w_Caf; control ]’;

input_to_mUsys1 = ’[w_Caf; control ]’;

input_to_gaina = ’[mUsys1 (2)]’;
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outputvar = ’[mUsys1 (1); gaina (1)]’; %[z_Caf; Caf*Vx*a]; %

UpperLFT

cleanupsysic = ’yes ’;

sysic;

minfo(mUsys2)

% mFwdPathVxM

systemnames = ’gainInvVx gainInvMass intgrtr ’; %UpperLFT ,

scalarGain , 1out -1 inSystem

sysoutname = ’mFwdPathVxM ’;

inputvar = ’[error1]’;

input_to_gainInvMass = ’[error1]’;

input_to_gainInvVx = ’[ gainInvMass (1)]’;

input_to_intgrtr = ’[ gainInvVx (1)]’;

outputvar = ’[ intgrtr (1)]’; %[1/(m*Vx)*1/s]; [x_1]; %UpperLFT

cleanupsysic = ’yes ’;

sysic;

minfo( mFwdPathVxM )

% mFwdPathVxIzz

systemnames = ’gainInvVx gainInvInertia intgrtr ’; %UpperLFT ,

scalarGain , 1out -1 inSystem

sysoutname = ’mFwdPathVxIzz ’;

inputvar = ’[error2]’;

input_to_gainInvInertia = ’[error2]’;

input_to_gainInvVx = ’[ gainInvInertia (1)]’;

input_to_intgrtr = ’[ gainInvVx (1)]’;
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outputvar = ’[ intgrtr (1)]’; %[z_Vx; 1/(Izz*Vx)*1/s]; [z_Vx; x_2

]; %UpperLFT

cleanupsysic = ’yes ’;

sysic; minfo( mFwdPathVxIzz )
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A.2.2 Construction of LFT Subsystems for Yaw-Roll Model with Uncertainty

on All Parameters

% model_smSUV_yaw_CaFR_LFTblocks.m

% Lowell Brown

% H-inf applied to simple statepace vehicle model at constant

speed.

% dbstop if error

% clear

% clc

% close all

% Upper LFTs

% [z_Xx] = [w_Xx]

% [ y ] [mXx] * [ u ]

% [mXx_invrt] == upper LFT

% y == output of LFT mXx_invrt

% zXx == applied perturbation state of mXx_invrt

% u == input state to mXx

% w_Xx == input perturbation multiplier [-1 1] into to

mXx_invrt

% mUsys1

systemnames = ’mCaf gainVx ’; % Lower LFTs

sysoutname = ’mUsys1 ’;

inputvar = ’[w_Caf; control ]’;
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input_to_mCaf = ’[ control ; w_Caf]’;

input_to_gainVx = ’[mCaf (1)]’;

outputvar = ’[mCaf (2); gainVx (1)]’; %[z_Caf; Caf*Vx]; %UpperLFT

out

cleanupsysic = ’yes ’;

sysic;

minfo(mUsys1)

% mUsys2 systemnames = ’mUsys1 gaina ’; %UpperLFT and LowerLFT

sysoutname = ’mUsys2 ’;

inputvar = ’[w_Caf; control ]’;

input_to_mUsys1 = ’[w_Caf; control ]’;

input_to_gaina = ’[mUsys1 (2)]’;

outputvar = ’[mUsys1 (1); gaina (1)]’; %[z_Caf; Caf*Vx*a]; %

UpperLFT

cleanupsysic = ’yes ’;

sysic;

minfo(mUsys2)

% mFwdPathVxM

systemnames = ’gainInvVx gainInvMass intgrtr ’; %UpperLFT ,

scalarGain , 1out -1 inSystem

sysoutname = ’mFwdPathVxM ’;

inputvar = ’[error1]’;

input_to_gainInvMass = ’[error1]’;

input_to_gainInvVx = ’[ gainInvMass (1)]’;

input_to_intgrtr = ’[ gainInvVx (1)]’;
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outputvar = ’[ intgrtr (1)]’; %[1/(m*Vx)*1/s]; [x_1]; %UpperLFT

cleanupsysic = ’yes ’;

sysic;

minfo( mFwdPathVxM )

% mFwdPathVxIzz

systemnames = ’gainInvVx gainInvInertia intgrtr ’; %UpperLFT ,

scalarGain , 1out -1 inSystem

sysoutname = ’mFwdPathVxIzz ’;

inputvar = ’[error2]’;

input_to_gainInvInertia = ’[error2]’;

input_to_gainInvVx = ’[ gainInvInertia (1)]’;

input_to_intgrtr = ’[ gainInvVx (1)]’;

outputvar = ’[ intgrtr (1)]’; %[z_Vx; 1/(Izz*Vx)*1/s]; [z_Vx; x_2

]; %UpperLFT

cleanupsysic = ’yes ’;

sysic; minfo( mFwdPathVxIzz )
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A.2.3 Construction from Yaw-Roll Model with Full Parametric Uncertainty

from the LFT Subsystems

%IMPORTANT: inputvar , outputvar and delta block (order of

perturbations)

%are all correlated must have order correct

% G_vYawRoll_FullLFT

systemnames = [’mUsysVy mUsysPsi mUsysPhi ’...

’mFwdPathVy mFwdPathPsi mFwdPathPhi ’...

’mIeqCo mVxIeqC1 mBphid4Vy mKphi4Vy ’...

’mC2 mC1 ’...

’mBphid4Phi mKphi4Phi mC1hrg4Phi mCohrg4Phi ’];

sysoutname = ’G_vYawRoll_FullLFT ’;

inputvar = [’[w_Ixx1; w_m1; w_Vx1; ’... %Fwd Paths

’w_Izz1; w_Vx2; ’...

’w_Ixx2; w_Vx3; ’ ...

’w_Caf1; w_Car1; w_Ixx3; w_m2; w_hrg1; w_hrg2; ’

... % subcomponents

’w_Ixx4; w_m3; w_Vx4; w_Vx5; w_Caf2; w_Car2; w_a1;

w_a2; w_Ixx5; w_m4; w_hrg3; w_hrg4;’...

’w_Bphid1 ; w_hrg5; w_Vx6; w_m5;’...

’w_hrg6; w_Vx7; w_m6; w_Kphi1 ; w_m7; w_hrg7;’...

’w_Caf3; w_Car3; w_a3; w_a4; w_a5; w_a6;’ ...

’w_Caf4; w_Car4; w_a7; w_a8;’ ...

’w_Bphid2 ; w_Vx8;’ ...

’w_Vx9; w_Kphi2 ; w_m8; w_hrg8;’ ...

’w_hrg9; w_Caf5; w_Car5; w_a9; w_a10;’ ...

134



’w_hrg10 ; w_Caf6; w_Car6; ’ ...

’w_Caf7; w_Vx10; w_Ixx6; w_m9; w_hrg11 ; w_hrg12 ; ’

... % system input pre mults

’w_Caf8; w_Vx11; w_a11; ’...

’w_Caf9; w_Vx12; w_hrg13 ; ’ ...

’u_steer ]’]; %actual input to system

input_to_mFwdPathVy = ’[w_Ixx1; w_m1; w_Vx1; mUsysVy (7) -mIeqCo

(7) -mVxIeqC1 (13) -mBphid4Vy (5)+ mKphi4Vy (7)]’; %out: x1;

mFwdPathVy (4)

input_to_mFwdPathPsi = ’[w_Izz1; w_Vx2; mUsysPsi (4) -mC2 (7) -mC1

(5)]’; %out: x2; mFwdPathPsi (3)

input_to_mFwdPathPhi = ’[w_Ixx2; w_Vx3; mUsysPhi (4) -mBphid4Phi

(3)+ mKphi4Phi (5) -mC1hrg4Phi (6) -mCohrg4Phi (4)]’; %out: x3 &

x4; mFwdPathPhi (3) & mFwdPathPhi (4)

input_to_mIeqCo = ’[w_Caf1; w_Car1; w_Ixx3; w_m2; w_hrg1;

w_hrg2; mFwdPathVy (4)]’; %sigIn = x1

input_to_mVxIeqC1 = ’[w_Ixx4; w_m3; w_Vx4; w_Vx5; w_Caf2;

w_Car2; w_a1; w_a2; w_Ixx5; w_m4; w_hrg3; w_hrg4;

mFwdPathPsi (3)]’; %sigIn = x2

input_to_mBphid4Vy = ’[ w_Bphid1 ; w_hrg5; w_Vx6; w_m5;

mFwdPathPhi (3)]’; %sigIn = x3

input_to_mKphi4Vy = ’[w_hrg6; w_Vx7; w_m6; w_Kphi1 ; w_m7;

w_hrg7; mFwdPathPhi (4)]’; %sigIn = x4

input_to_mC2 = ’[w_Caf3; w_Car3; w_a3; w_a4; w_a5; w_a6;

mFwdPathPsi (3)]’; %sigIn = x2

input_to_mC1 = ’[w_Caf4; w_Car4; w_a7; w_a8; mFwdPathVy (4)]’; %

sigIn = x1
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input_to_mBphid4Phi = ’[ w_Bphid2 ; w_Vx8; mFwdPathPhi (3)]’; %

sigIn = x3

input_to_mKphi4Phi = ’[w_Vx9; w_Kphi2 ; w_m8; w_hrg8;

mFwdPathPhi (4)]’; %sigIn = x4

input_to_mC1hrg4Phi = ’[w_hrg9; w_Caf5; w_Car5; w_a9; w_a10;

mFwdPathPsi (3)]’; %sigIn = x2

input_to_mCohrg4Phi = ’[ w_hrg10 ; w_Caf6; w_Car6; mFwdPathVy (4)]

’; %sigIn = x2

input_to_mUsysVy = ’[w_Caf7; w_Vx10; w_Ixx6; w_m9; w_hrg11 ;

w_hrg12 ; u_steer ]’;

input_to_mUsysPsi = ’[w_Caf8; w_Vx11; w_a11; u_steer ]’;

input_to_mUsysPhi = ’[w_Caf9; w_Vx12; w_hrg13 ; u_steer ]’;

%Note: output variables are represented explictly to visually

match with %inputs. only the repeated outputs are

represented as ranges i.e. z_a is mVxC1 (5:6)

outputvar = [’[ mFwdPathVy (1); mFwdPathVy (2); mFwdPathVy (3);’

...

’mFwdPathPsi (1); mFwdPathPsi (2);’...

’mFwdPathPhi (1); mFwdPathPhi (2);’...

’mIeqCo (1); mIeqCo (2); mIeqCo (3); mIeqCo (4);

mIeqCo (5:6);’...

’mVxIeqC1 (1); mVxIeqC1 (2); mVxIeqC1

(3:4); mVxIeqC1 (5); mVxIeqC1 (6);

mVxIeqC1 (7:8); mVxIeqC1 (9);

mVxIeqC1 (10); mVxIeqC1 (11:12) ;’

...
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’mBphid4Vy (1); mBphid4Vy (2); mBphid4Vy (3);

mBphid4Vy (4);’ ...

’mKphi4Vy (1); mKphi4Vy (2); mKphi4Vy (3); mKphi4Vy

(4); mKphi4Vy (5); mKphi4Vy (6);’ ...

’mC2 (1); mC2 (2); mC2 (3:6);’ ...

’mC1 (1); mC1 (2); mC1 (3:4);’ ...

’mBphid4Phi (1); mBphid4Phi (2);’ ...

’mKphi4Phi (1); mKphi4Phi (2); mKphi4Phi (3);

mKphi4Phi (4);’ ...

’mC1hrg4Phi (1); mC1hrg4Phi (2); mC1hrg4Phi (3);

mC1hrg4Phi (4:5);’ ...

’mCohrg4Phi (1); mCohrg4Phi (2); mCohrg4Phi (3);’

...

’mUsysVy (1); mUsysVy (2); mUsysVy (3); mUsysVy (4);

mUsysVy (5:6);’...

’mUsysPsi (1); mUsysPsi (2); mUsysPsi (3);’...

’mUsysPhi (1); mUsysPhi (2); mUsysPhi (3);’...

’mFwdPathPsi (3)]’]; % output of plant: x2,

yawRate (psi_dot)

cleanupsysic = ’yes ’;

sysic; minfo( G_vYawRoll_FullLFT )

seesys( G_vYawRoll_FullLFT )
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