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Abstract 

 

The natural environment has experienced many transformations into rapidly expanding 

urban areas. The use of concrete and asphalt has had direct impacts on the urban environment 

such as land-surface temperature (LST) and atmospheric dynamics. These changes to the 

climatic variables have long-term and short-term consequences. In this study, the campus of 

Auburn University is used to accurately measure LST, solar irradiance, and albedo using 

remotely sensed images and geographic models. In order to determine the effect that this will 

have on energy use, a statistical model is built to accurately show any relationships among the 

changes from the natural environment and the urban environment and future impacts that may 

occur as a result. By establishing the statistical relationships that exist, it will be possible to apply 

an Urban Heat Island mitigation strategy through the use of installing cool roofs, where albedo 

can be measured to show factors towards cooling.  

Keywords: LST, Auburn-Alabama, Albedo, NDVI, Remote Sensing, Urban Heat Island, 

Reflectance, LSE, Solar Irradiance, Linear Regression, Ordinary Least Square, Energy Demand, 

Cool Roofs, UHI Mitigation Strategy, Geoengineering, Climate Change  
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Chapter 1. Introduction 
 

 

The land use/land cover changes (LULCC) of the natural surfaces to concrete structures 

have given rise to variability in land surface temperature, atmospheric humidity, and energy 

usage in the urban environment. This intensification of anthropogenic effect may be mitigated 

from geoengineering applications such as developing methods for land surfaces to reflect more 

of the incoming solar radiation. This application of direct solar reflectance can further be applied 

onto the rooftops of urban buildings, thus effectively lowering the absorbed heat that would 

otherwise occur. By analyzing the relational effects between the urban environment and the 

natural climate, such as the reflective properties of rooftops in Auburn’s campus, a model can be 

constructed that can be applied to individual buildings in regional southern climates. The primary 

goal of this research is to develop a predictive model that can effectively be used for making 

buildings more energy efficient. A secondary goal was further developed which proposes an 

empirical overview of the adoption of calculating Albedo values in regards to Landsat 8 OLI 

images. Specifically, this research pursues the following research objectives. 

1. Successfully measure the LST, Albedo, & Incoming Solar Insolation of Auburn 

University campus buildings using remotely processed images for the summer day of 

July 28th, 2015. 

2. Utilize a GIS platform, such as QGIS (http://www.qgis.org/en/site/), to interpret remotely 

sensed data in order to quantify meaningful geographic results, with the successful use of 

image resampling, and shapefile analysis. 

http://www.qgis.org/en/site/
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3. Finalize meaningful results of the effects of climate variables, such as were discovered 

using Remotely Sensed techniques, to overlay a predictive statistical model in order to 

interpret the energy use relationship of Auburn University’s campus buildings.  

The objectives of this study were achieved through the collection and analysis of land-

surface temperature, albedo, solar irradiance, and energy consumption, which were used as the 

inputs for a regression analysis over the campus of Auburn University, by using 97 physically 

and spatially diverse buildings’ rooftops.   

1.1 Thesis Structure 

The structure of this thesis adopts an approach that presents an accessible method for peer 

review research. Chapter 1 begins with an introduction to the environment that this research 

takes place and why it might be a worthwhile endeavor to pursue such research. Chapter 1 also 

discusses the importance of the study area chosen and why the date of the study area should be 

considered. A brief introduction to the methodological approach to research questions along with 

the data sources as well. The goal of this chapter is to help the reader become familiar with a 

broad overview of the thesis structure as to support cognitive recognition when reading the future 

chapters. 

Chapter 2 is used as a key introduction on much of the prerequisite background 

information required for the successful understanding of the research employed. Many of the 

topics that are studied are explained in great detail in Chapter 2, as well as key ideas and 

concepts that apply to the research in this study. It is strongly encouraged that a solid foundation 

in chapter 2 is attained before reading the following chapters. 
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Chapter 3 is detailed with the technical nature of the methodology of the research 

undertaken. It is in this chapter that a detailed explanation is created that allows for the greater 

understanding of the scientific knowledge required to understand much of the physical 

phenomena that occur. This chapter discusses the scientific methods used in order to calculate 

LST with remotely sensed images. After the discussion on LST, the next part details the 

developmental method for estimating Albedo in addition to providing statistical evidence for the 

chosen method. The final section of chapter 3 explains the processes for the model used to 

simulate the incoming solar radiation for the study. 

Chapter 4 acts as an extension of the methods employed in chapter 3. It is in chapter 4 

where the statistical interpretations are connected to the data created from chapter 3. This chapter 

sets up the final results and how they are significant to this study. Chapter 4 is the binding 

chapter that helps culminates all the deliverables from previous research questions.  

Chapter 5 contains the conclusive comments and discusses the meaningful results from 

chapter 4.  It is here, where suggestions and future directions are mentioned.  

1.2 Study Area 

The campus buildings of Auburn University were chosen as the study area for this 

research (See figure below). By choosing Auburn University, this research benefitted 

tremendously from the open availability of energy data, which was recorded by Auburn 

University’s facilities management. Ninety-seven buildings were selected to study for this 

research (Appendix 1). The selection of these buildings includes diverse building characteristics, 

such as age and square footage of the buildings, geographic location, and the type of building. It 

can be deduced that smaller buildings would benefit more from cool roofs due to the 
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proportional size of its roof in relation to the rest of the building (Bozonnet et al. 2011). 

Additionally, buildings with more active populations, where body temperature adds to the 

thermal equilibrium balance of the environment, may benefit less since there is an additional 

origin of heat energy being added into the system (Stolwijk 1980). Geographic properties also 

can play a large role in the intermittency of heat energy, for example, buildings that are further 

away from the urban center areas might not benefit as much as those that remain in the urban 

center, due to the thermal geometric properties, such as heat becoming trapped from the walls of 

other buildings, related to UHII (King et al. 1961). A geographic weighted regression (Brunsdon 

et al. 1996) can be used to indicate whether such geographic differences exists. With these 

considerations, 97 spatially separated buildings were chosen on Auburn University’s campus, 

which all include energy demand data for cooling.  

 

Figure 1: The study area includes the central campus of Auburn University, with several spatially and variable diverse 

building characteristics (Google Maps 2017). 
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1.3 The Date of Study 
 

The day of July 28th, 2015, was an important date for several reasons. The first reason 

was to obtain a valid approximation of an average Auburn summer day, so that ideal climate 

conditions are being accurately modeled. According to weather station data, this date matches 

well with the expected average temperature of the Month. The monthly average mean 

temperature was 81 degrees F, with a high of 91 degrees F and a low of 72 degrees F.  The 

average monthly dew point for July was at 70 degrees F. For 28th July 2015, the mean 

temperature was 86 degrees F, with a high of 97 degrees F and a low of 75 degrees F. The dew 

point for this date was 71 degrees F. This was a record high of temperature tying with the 1981 

high of the same 97 degrees F high. By selecting this date, it was possible to understand in a 

best-case scenario if cool roofs could be used as an effective mitigation strategy against UHII 

effects. If it was determined from a hot day during July that cool roofs are effective mitigation 

strategies, then further analysis could be conducted for the wintertime, when there would be a 

wintertime heating penalty (Akbari et al. 2001).   

A second reason was to obtain a cloud-free Landsat 8 image.  The state of Alabama is 

classified as humid subtropical (Cfa) under the Köppen-Geiger climate classification (Kotteck et 

al. 2006) (See figure below). The humid subtropical region experiences warm temperatures 

while being fully humid and having hot summers. Thunderstorms and heavy cloud developments 

can occur throughout the year in this climate, however, the most common occurrence of such 

events tend to be during the summer months. This makes the entire state of Alabama a difficult 

area to obtain remotely sensed images in general due to the lacking of cloud-free days. It was 
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determined from USGS EarthExplorer website, which lists the cloud cover percentage of each 

image, that this date was the most cloud-free day that remained suitable for study.  

 

Figure 2: This map details the Köppen climate classification of North America. Note that Alabama, including the entirety of 

the Southeast Region of the US, is classified as a humid subtropical climate (Cfa) (Peel et al. 2007). 

1.4 Methodology 

 There are a number of different methodologies that have been applied for this study. Data 

collection was derived from both primary and secondary sources. Geographic information 

systems (GIS) for spatial data processing had to be employed over the study area of Auburn 

University’s campus. In order to calculate incoming solar irradiance, an existing model 

developed by physical geographers has been used (Hofierka et al. 2002) within a dedicated GIS 
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framework. These cumulative methods also included in the use of a built predictive model, 

which used a regression analysis, in order to be able to validate the application for the data 

values from this study.  

1.5 Data collection  

In order to complete the primary objectives of this study remotely sensed imagery was 

initially used. The first set of images was collected from open access datasets available from the 

USGS EarthExplorer website (https://earthexplorer.usgs.gov/). As mentioned in the previous 

section, in order to accurately determine LST values cloud-free images were needed during the 

day of July 28th, 2015 from NASA’s Landsat satellite. The satellite had an overpass time of 

16:12:46 GMT (11:12 A.M.) with the WRS path of 19 and a WRS row of 38. The cloud cover 

was calculated at 4.52% of the total image. 

Airborne LiDAR data was obtained from the municipal city of Auburn for the study time 

period, which was used to model elevation and surface terrain properties as well as solar 

insolation. This was given as a raster file which was compatible with the use of the GIS when 

processing the solar irradiance model. 
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Table 1: Data Sources and Uses 

Datasets Data source Date Detail Description 

Landsat 8 OLI 

Landsat Archive 

Collection 1 

Level – 1 / L8 

OLI/TIRS  

USGS EarthExplorer 7.28.2015 The resolution 

for bands 1 – 9, 

excluding 7 are 

30 meters. For 

thermal bands 10 

& 11, the 

original 

resolution is 100 

meters, but are 

resampled to 30 

meters.  

Image 

LST 

Albedo 

NDVI 

Google Earth/ 

OpenStreetMap 

Google/ 

OpenStreetFoundation 

Same as above Natural/True 

color image, < 

3m 

Image 

Classification 

Auburn Map 

Shapefile 

Auburn University –

Office of the 

University Architect 

Same as above 1:100,000 Classification 

Spatial 

Statistics 

Auburn Energy 

Management 

Auburn Facilities Same as above Excel Classification 

Spatial 

Statistics 

LiDAR Auburn Municipality 1.1.2015 <3m spatial 

resolution 

DSM 

Solar Irradiance 

The fulfillment of the second objective in this study was accomplished through the use of 

polygon shapefiles for the buildings that were being investigated. These shapefiles were obtained 

through Auburn’s office of the University Architect, which allowed building information to be 

further spatially analyzed. This task was accomplished through Quantum GIS (QGIS) with the 

added data from the web service of the OpenStreetMap Foundation and Google Maps, which 

were both used as spatial references to ensure accuracy.    

Additionally, Auburn University’s energy management office provided energy data for 

all buildings being studied on campus. Auburn University’s campus buildings have energy 

meters installed that collect the energy usage for heating and cooling. This data was in an Excel 

file format and had to be reorganized in order to isolate the necessary variables of the study so 
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that it could be used for GIS processing (See appendix). The variables of the energy data include 

the buildings’ names, types, energy consumption due to heating, energy consumption due to 

cooling, and energy prices (See appendix).  

The third and final objective was fulfilled with the use of the statistical toolbox 

application within ArcMap for the use by the Environmental Systems Research Institute, also 

known as ESRI, from the desktop suite of ArcGIS. Within ArcMap, previously processed data 

was further configured into the development suite of ArcGIS to create statistical reports and new 

shapefiles from within the applied toolbox, which allowed for the newly created data to be easily 

interpreted to accomplish this studies research goals.  

My research will contribute to the broader scientific knowledge by modeling impacts 

caused from cool roofs within an urban area of the Southeastern region of the US. It will use 

real-time energy data, as well as much higher resolution data and models than the global models 

used in previous studies. The benefits from a local scale study such as this is that area specific 

details can become derived to suitable areas. Such an instance is in the case of having a study 

area in the climate classification of Cfa, humid subtropical, which accounts for the entire 

Southeastern US. 
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Chapter 2. Background 

 

 Due to the adverse effects of UHI (Oke 1997), there are considerable interests in 

developing cost-effective measures in mitigating this phenomenon. One such suggestion has 

been to implement cool roofs, or roofs which have high solar reflectance values (albedo) and/or 

thermal emittance properties, so that thermal temperatures decrease (Akbari 2008). Cool roofs 

are able to achieve this by either being painted white, another solar reflective color, or built with 

engineered materials that can give off heat very quickly (high emissivity). Although green roofs, 

roofs with vegetative cover, have been shown to also effectively mitigate temperature effects 

related to UHI (Susca et al. 2011), they are not considered the same as cool roofs due to the 

differences between the cost of the initial installation and maintenance. Georgescu et al. (2014) 

studied the urban landform and consequences to the regional climate and concluded from global 

climate models that cool roofs would counteract the UHI effect in terms of increased greenhouse 

gases (GHGs). However, it was also shown in this same research that the benefits of white roofs 

vary drastically depending on the geographic region. This is due from the increased heating that 

will occur for winter months, which are more common in northern cities, in the US. By factoring 

in differences, such as passive cooling, this counterbalance effect will be mitigated. Research 

from the Lawrence Berkeley National Laboratory discovered a series of different tests that white 

roofs are the most economically viable option, as it was shown to reduce energy demanded as 

well as reducing the greenhouse impact caused from urban cities (Rosenfeld et al. 1998).  
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There is some disagreement, however, with the beneficial potential of cool roofs, which 

is the rooftops ability to reflect energy thus decreasing the thermal load of a building. In 2011, it 

was shown through an engineered model that the total climate response to white roofs and other 

urban surfaces may, in fact, contribute to more global warming (Jacobson et al. 2012). The 

model showed that although there is local cooling, a lower atmospheric UHI would create fewer 

cloud formations and that the reflected solar energy could potentially become scattered, by 

common urban pollutants such as aerosols, as it travels back up to the atmosphere.  

In response, the Heat Island Group, researchers from the Lawrence Berkeley Lab, used a detailed 

global land surface model from NASA Goddard Space Flight Center to research the validating of 

the critiques proposed against cool roofs. Contained within this model was regional information 

on surface variables, such as topography, evaporation, radiation, and temperature, as well as on 

cloud cover. For the northern hemisphere during the summer, it was concluded that increasing 

the reflectivity of roof and pavement materials in cities with a population greater than 1 million 

would achieve a one-time offset of 57 gigatons of CO2 emissions. For comparison, the 

worldwide CO2 emissions in 2006 were 28 gigatons (Akbari et al. 2009).  

2.1 Urban Heat Island Intensity 

Urbanization has led to the rapid development of natural landscapes into concrete 

structures and asphalt roads within the past century (Arnfield 2003). Many of these urban and 

suburban areas also experience elevated temperatures compared to their surrounding rural areas; 

this temperature difference is what creates an Urban Heat Island Intensity (Wong et al. 2011). It 

has been shown by measurements taken from space that temperature differences for urban 

climates can reach as high as 22°F (12°C) (Oke 2002). Since temperature is a comparative 
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measurement, it is important to distinguish the difference between surface and atmospheric 

Urban Heat Island Intensities (UHII). 

2.2 Surface UHII 

During a typical summer day, urban surfaces, such as roofs, can have temperature 

differences much higher than the surrounding air temperatures (Pomerantz et al. 2000). A major 

difference that exists between surface UHIIs and atmospheric UHIIs is that surface UHIIs are 

usually present both during the day and night times, with the strongest difference in temperature 

tending to be present during the daytime when the sun is brightest. It has been shown that 

daytime surface temperatures varied as much as 18 to 27°F (10 to 15°C), and nighttime surface 

temperatures varied between 9 to 18°F (5 to 10°C) (Voogt et al. 2003). Urban Heat Island 

Intensities are strongest when there is no clouds present and the wind is at its calmest. Clouds 

can interfere by blocking the incoming solar radiation, and strong winds can increase the 

atmospheric mixing of the differing temperatures (Morris et al. 2001). Surface UHII is typically 

measured indirectly by the use of remote sensing, where estimates of the land surface 

temperature are either collected or reproduced (Voogt et al. 2003). From the remotely sensed 

data, thermal images can be created to show these temperature differences.  

2.3 Atmospheric UHII 

Air temperature is usually warmer in urban areas compared to the air in the surrounding 

rural areas, and this difference creates the atmospheric UHII. When studying atmosphere it is 

important to define where in relation to elevation the temperature is being studied, and in most 

cases, meteorology stations take air temperature measurements at 1.5-2 meters (5-6.5 feet) above 
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the surface (Ahrens 2007). Whereas the surface has one layer, the atmosphere consists of 

multiple layers and as the area being studied continues in elevation, the temperature differences 

from surface UHII will be much greater (Oke 1982). Atmospheric UHII is often weak during the 

late morning and day but becomes strongest after the sun has set, this is opposed to what occurs 

for surface UHII where the temperature difference occurs from the conductive properties of the 

storage of heat that occurs throughout the day, known as ground heat flux, which is slowly 

released at night (Oke 1973). There exist much fewer interferences for the atmosphere than what 

exists for the surface, therefore this enables air temperatures to quickly become mixed within the 

atmosphere, and therefore will show less variance in temperature (Oke 1973). On average, a 

typical large city can show an atmospheric UHII range of 1.8 to 5.4°F (1 to 3°C) warmer than the 

surrounding rural area (Oke 1997). Measurements for air temperature are usually taken directly 

from fixed weather station data, and because there exists a relationship between surface and 

atmospheric UHII the two can be comparatively studied, albeit with consideration for statistical 

differences (Lui and Zhang 2011), such as using root mean square error (RMSE) tests.  

2.4 Solar Reflectance (Albedo) 

When studying UHII, a direct consequence of the strength of a UHII depends on the 

difference between how much energy from the sun is arriving onto the Earth and how much is 

being reflected back into space. Albedo is measured as the percentage of solar energy that is 

reflected by a surface, in relation to total solar energy (Budikova et al. 2010). Solar energy is 

composed of ultraviolet (UV) rays, visible light, and infrared energy, which all arrive on Earth’s 

surface in differing percentages. Most of the solar energy that produces heat is found within the 

infrared spectrum (700nm-1mm). In addition to infrared energy, nearly as much energy that 
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reaches the Earth is within the spectrum of visible light (400-700nm) (Arnfield 2003) (See figure 

below). Due to this phenomenon, lighter colored surfaces tend to have much higher solar 

reflectance than do darker colored surfaces. Urban areas tend to have surface materials that have 

lower albedo values than surrounding rural areas, reflecting less solar energy, thus absorbing 

more solar energy, which contributes to greater surface temperatures (Taha et al. 1988).  

 

Figure 3: Note that solar energy intensity varies over wavelengths from about 250 to 2500 nanometers. 

2.5 Solar Irradiance 

Albedo is one such variable that can be directly controlled by engineered methods, 

however, the incoming solar energy produced from the sun is a constant 1367 W/m2 (Bard et al. 

2000). This output changes seasonally depending on the solar position, such as Earth’s angle to 

the position of the Sun’s incoming radiation. During the winter in the Northern Hemisphere, the 

Sun’s Azimuth, or angle of position is at 23.5° with Earth’s axis tilted away from the Sun, 
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meaning that less direct solar radiation reaches the surface, but is diffused across the area of the 

surface instead (Pinker and Laszlo 1992) (See appendix 3 & 4).  

However as this incoming solar radiation travels through Earth’s atmosphere and 

eventually touches the surface, much of the energy becomes absorbed, scattered, and reflected. 

During cloud-free days incoming solar energy comes in by direct solar irradiance, meaning that 

almost no scattering occurs. Thus, during cloudy days, diffused solar radiation reaches the Earth 

in scattered forms of energy (Madronich et al. 1999)(See figure below). Some interferences of 

incoming solar irradiance can occur from the surface elevation itself, which causes a shadowing 

effect to occur (Hofierka et al. 2002).  

 

Figure 4: From 100% incoming solar radiation, 30% is lost in space due to scattering and reflectance, another 19% is absorbed in the 

atmosphere, due to absorption by water vapor, aerosols, clouds and particles, and 51% is absorbed in the surface as direct and indirect 

radiation (irradiance) (Nasa 2010) https://science-edu.larc.nasa.gov/energy_budget/. 
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2.6 Anthropogenic Effects from Energy Use 

Although UHII is largely determined from the percentage of energy that arrives from the 

Sun, there is also a significant amount that can be produced by human activity. These activities 

can include the running of air conditioners, used for cooling interiors, among other processes. 

Heat is generated from these processes which lead to the anthropogenic effects of raising land 

surface temperatures much higher than they would otherwise occur naturally (Kimura et al. 

1991). This is especially worrisome as it could lead to a positive feedback effect to occur, where 

the increased added heat from the use of air conditioning leads to an increased need for the use of 

additional cooling. Furthermore, it is estimated that due to the UHI effect, demand for electricity 

has increased 5 to 10 percent (Sailor et al. 2003) (See figure below). 

 

Figure 5: As shown in this example from New Orleans, electrical load can increase steadily once temperatures begin to exceed about 68 

to 77 degrees F (20 to 20 degrees C). Other areas of the country show similar demand curves as temperature increases (Sailor et al. 2003). 
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2.7 Mitigation Strategies to Reduce UHII 

There are several ways in which city planners, businesses, communities, governments, 

and individuals can adapt against the adverse effects of UHII. An obvious solution is to replace 

materials that absorb a lot of solar energy, such as concrete and asphalt, with vegetation. This 

can even be accomplished by the placement of green roofs, which are traditional roofs that have 

been replaced with vegetation (Takebayashi et al. 2007). Other mitigation strategies include 

making surfaces more reflective by either applying a light colored paint or by replacing surfaces 

with high emissivity materials (Rosenfeld et al. 1998). Some procedures are still in development 

and costs for different alternatives vary widely. The best strategies should consider the region, 

scope, scale, and place of the surface (Levinson et al. 2005).  

2.8 Cool Roofs 

One of the most cost-effective methods for mitigating the effects of UHII is through the 

process of having cool roofing on a building (Rosenfeld et al. 1998). Cool roofs are made up of 

materials that are usually highly reflective and/or highly emissive, meaning gives off heat 

quickly. Cool roofs are especially important in mitigation strategies because, in the US, a typical 

roof during peak summer temperatures can reach upwards to 150 to 185°F (66-85°C) 

(Konopacki 2010). Having cool roofs, such as whiter roofs, the solar reflectance will be much 

higher than the values for traditional roofs (65 percent compared to 5-15 percent), meaning that 

they will absorb much less energy, thus reflecting most of that energy back towards the 

atmosphere (Scherba et al. 2011).  

Since cool roofs mitigate the effects of UHII, many benefits that accompany such 

mitigation might include reduced demand for energy use, lowered amounts of air pollution and 
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GHGs, and improved human health and comfort. The most beneficial would be the reduced 

demand for energy used for cooling. Because less solar energy actually reaches the roof, the 

transfer of this energy to the rest of the building is significantly lessened, with the average 

amount of energy saved from the installation of a cool roof amounting to 20 percent (Haberl and 

Cho 2004). This reduced energy demand also has the added benefit of reduced air pollution and 

GHG emissions, due to the fact that much of the energy comes from the burning of fossil fuels. 

The production of this energy causes many pollutants to be put into the air, and can very 

negatively impact human health (Haines et al. 2006).  

Although the benefits are numerous, there are limitations to having a cool roof. The 

largest adverse effect of a cool roof is the wintertime heating penalty. This occurs in colder 

climates where the heating degree days (HDD), that is the days that energy is needed for heating, 

far outnumber the cooling degree days (CDD). Within the Southeastern regions of the US, this 

penalty is almost non-existent (Synnefa et al. 2007). Additionally, during the summertime versus 

the wintertime, the Sun is at a different angle which causes days to last at differing lengths 

(Pinker and Laszlo 1992) (See Appendix 3 & 4). With the days being shorter during winter, 

taken as less incoming solar irradiance, the effects of cool roofs are less impactful than it would 

be during the summer. Wintertime also tends to have more cloudy days (Castanho et al. 2001) 

and in northern climates where white snow may potentially cover areas, both will act to reflect 

the Sun's energy from otherwise reaching the roof.  
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Chapter 3. Methodology 
 

 

All of the satellite images were processed from raw data in order to obtain valid LST, 

albedo, and solar irradiance data. As a first step, several raster analysis were performed through 

open source software such as QGIS, Geographic Resource Analysis Support System (GRASS), 

and System for Automated Geoscientific Analysis (SAGA). In order to accurately measure LST, 

the raw data that is stored from the satellite must be downloaded (https://earthexplorer.usgs.gov/) 

and converted into quantifiable data (Roy et al. 2014). This process can be converted into any 

number of physical parameters such as radiance or reflectance taken from the multi-spectral 

image that is received at the sensor (Landsat 2011). If it is taken as the top of the atmosphere, 

this means that no atmospheric effects have been accounted, such as scattering and absorption. 

However, if the image is captured at the top of the canopy, an appropriate method of atmospheric 

correction has been applied (Fleming 2003).  

Once the image is taken as radiance or reflectance, then this image is able to be used in a 

geographic analysis. In order to calculate LST, there are several methods which can be used. The 

method chosen in this study was the inverse-plank function, due to the widespread use and strong 

support of documentation that could be followed within the scientific literature (Isaya et al. 

2016). However, by calculating LST using this method, two values are needed. These values 

must include brightness temperature, the theoretical temperature achieved if the surface is 

assumed to be a blackbody (a perfect emitter), and land surface emissivity (LSE), which is the 

thermal property of a surface describing how quickly that surface can give off heat (See 
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appendix 5 & 6). Where the calculation of brightness temperature is much more uniform, the 

calculation of emissivity is much more diverse. Some approaches to estimating emissivity are 

through land-based classification of multi-spectral images, which are then given an associated 

emissivity value for the given classification (Snyder et al. 1998). For example, soil, vegetation, 

urban build-up, and water would all have an associated emissivity value that would be different 

from one another.  

Other methods to calculate emissivity include direct measurements by using tools such as 

pyrometers and infrared cameras (Crawford et al. 1999). Often the use of such methods makes 

the calculation of LSE too costly due to the employment of the technology, can introduce errors 

due to human judgment of land-based classification, or presents a limited feasibility for the study 

area when under consideration from time constraints. Therefore the method used for this study 

was to first calculate the normalized difference vegetation index (NDVI) and then apply an 

algorithm to each pixel depending on the given output value (Weier 2000). This method has been 

developed by climate scientists and experts in the field of remote sensing (Xiao et al. 2007).  

Because LST only gives one picture of the entire energy system that occurs on earth (See 

Appendix 2), albedo is also calculated to show the percentage of energy that is being reflected. 

Albedo can be calculated using multi-spectral images, meaning images with several bands or 

spectral frequency readings. In addition, the final consideration of this study for the energy 

budget includes incoming solar irradiance (insolation), which has been modeled with 

consideration given to the shadowing effect that occurs due to the elevation and topographic 

features of the land surface. All three of these variables, LST, albedo, and incoming solar 

irradiance, contribute to a complete picture of the dynamics of the energy system that are being 
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transferred across the spatial-temporal dimension of Auburn University’s campus. These 

procedures are captured in the following flowchart. 

 

 

Figure 6: Landsat and elevation data is processed through several algorithms for the outputs of LST, albedo, and solar 

irradiance. 

A predictive linear model has been built that takes the above variables including energy 

consumption data, which is monitored by Auburn University’s facilities management, with an 

attempt to limit any distortion or bias that the three variables may give towards their relational 

effect on energy consumption. This has been accomplished by performing and ordinary-least 

square regression, which accounts for the standard residuals (instances where the predicted 

outcomes were over/underestimated) of the model, and a geographically weighted regression.  
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Table 2 will help cement how each variable was derived for use within the model. All of 

the initial processing was done through QGIS, however, SAGA GIS was also used for 

calculating Solar Insolation, and the created raster was exported into QGIS so that all of the 

variables could be worked with simultaneously, which resulted in a more manageable workflow. 

Within QGIS, the raster calculator function can be used with all of the associated formulas noted 

in this study, however, through the use of an already built-in PyQGIS plugin, much of the 

processing was automated for calculating LST.  

Table 2: Software Requirements for Model Variables 

Variable Software Used Notes 

Radiance QGIS – PyQGIS Plugin DN is downloaded from USGS’ website 

Brightness Temperature QGIS – PyQGIS Plugin  

NDVI QGIS – PyQGIS Plugin Reflectance is downloaded from USGS’ website 

LSE (Emissivity) QGIS – PyQGIS Plugin  

LST (Temperature) QGIS – PyQGIS Plugin  

Albedo QGIS – Raster Calculator Microsoft Excel used for RMSE analysis 

Solar Irradiance SAGA – Potential 

Incoming Solar Radiation 

Output raster was imported into QGIS after being 

modeled in SAGA GIS. 

 

As was previously shown, the process begins with two geographic source datasets 

(Landsat 8 OLI/TIRS & Auburn’s Aerial LiDAR/DEM). Landsat collects spectral data from 

radiation such as light, whereas the Aerial LiDAR has modeled surface elevation characteristics. 

Since temperature is a form of radiation, it was necessary for radiance to be used. However, 
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since LST is derived from the radiant temperature (brightness temperature), and the thermal 

properties of the surface (LSE) both are used to calculate the final LST. By using images 

calculated as reflectance the surface characteristics became more easily identified 

(http://www.harrisgeospatial.com/Home/NewsUpdates/TabId/170/ArtMID/735/ArticleID/13592/

Digital-Number-Radiance-and-Reflectance.aspx). Therefore, the use of the reflectance value is 

preferred when calculating NDVI and Albedo, both which are surface characteristics (USGS 

2017). In order to calculate the incoming solar radiation arriving on the surface, the geometric 

position of the Earth and Sun is modeled (Hofierka et al. 2002). Additionally, any shadowing 

effects that occur due to elevation is considered within the algorithm to give the output of solar 

irradiance. The separation of data processes allows the outputs to be checked independently from 

one another. The finalized outputs are LST, albedo, and solar irradiance, all of which has given 

the differing thermal-radiative quantities of physical characteristics of the Earth.    

3.1 Conversion DN to Radiance 
 

The thermal data in the Landsat satellite imagery is stored as Digital Numbers (DNs). In 

order to have accurately estimated LST, the DNs first needed to become converted into radiance 

values. This process was done through QGIS python plugin – Land Surface Temperature 

Estimation Using Landsat (See figure 7).  

http://www.harrisgeospatial.com/Home/NewsUpdates/TabId/170/ArtMID/735/ArticleID/13592/Digital-Number-Radiance-and-Reflectance.aspx
http://www.harrisgeospatial.com/Home/NewsUpdates/TabId/170/ArtMID/735/ArticleID/13592/Digital-Number-Radiance-and-Reflectance.aspx
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Figure 7: A PyQGIS plugin for Land Surface Temperature Estimation Using Landsat Images 

The use for the offset calibration of the image, Oi, was given as the value of -0.29. This 

calibration offset is valid only for Landsat 8 TIRS band 10, and not TIRS band 11, due to 

uncertainty in the band's value. (Isaya et al. 2016). The use of such a method required the 

following formula: 

𝐿𝜆 = 𝑀𝐿𝑄𝑐𝑎𝑙 + 𝐴𝐿 −  𝑂𝑖 

Where: 

Lλ is Top-of-Atmosphere (TOA) spectral radiance 

ML is the band specific multiplicative rescaling factor from the metadata file 

QCAL is the digital number, such as the quantized and calibrated standard product pixel 

values  

AL is the band specific additive rescaling factor from the metadata file 

Oi is the offsets issued by USGS for the calibration of the TIRS bands 

 

Through the use of the PyQGIS plugin, the final output raster for Radiance is shown in 

the figure below. This image is what a satellite would see from TOA. It is the amount of energy 
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that is being captured from the aperture of the satellite's sensor. By calculating radiance values, 

other thermal characteristics can become derived, such as brightness temperature.   

 

 

      9.333 Le,Ω       9.58 Le,Ω              9.828 Le,Ω    10.07 Le,Ω                  10.32 Le,Ω 

Figure 8: This image gives an example of what type of reflectance or brightness energy appears to the remote sensor of the satellite.  

 

3.2 Conversion of Radiance to Brightness Temperature (K) 
 

Brightness temperature is the temperature that a blackbody needs in order for it to emit 

the same amount of radiation of surface area to its surroundings. It is important to note that 

although brightness temperature can represent temperature measurements, it still lacks important 

characteristics from being actual physical temperature. After the radiance values have been 
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determined the processed image, which is the raster output, can be converted to brightness 

temperature by using Planck’s Radiance Function. This is again accomplished by the use of the 

PyQGIS plugin which was used previously. The below formula is included in the plugin: 

𝐵𝜆(𝑇) =  
𝐶1

𝜆5(𝑒
𝐶2
𝜆𝑇 − 1)

 

Where: 

 Bλ (T) is spectral radiance of the blackbody in W/ (m2 sr μm) 

 λ is a wavelength in meters 

C1 is a constant (=1.19104356 × 10−16W m2) 

 C2 is a constant (= 1.43876869 × 10−2m K) 

T is the temperature in Kelvin 

 

Within the context of remotely sensed images, the following formula can be used by obtaining 

the thermal constants that are included in the Landsat metadata file.  

𝑇 =  
𝐾2

ln(
𝐾1
𝐿𝜆

+ 1)
 

Where: 

T is the effective at-sensor brightness temperature (K) 

K2 is the calibration constant 2 (K) 

K1 is the calibration constant 1 [W/(m2 sr µm)] 

Lλ is the spectral radiance at the sensor’s aperture [W/m2 sr µm)] 

Ln is the natural logarithm 
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       77.27°F                80.35°F              83.42°F  86.5°F      89.58°F 

Figure 9: This image shows the theoretical temperature if all of the surfaces was a perfect emitter. This can give insight as to what 

temperature differences exist for one main characteristic of cool roofs. Note for comparison, the brightness temperature is converted into 

Fahrenheit degrees, it is usually the case for brightness temperature to be left in Kelvin.  

An important characteristic of Brightness temperature is that it is almost exclusively 

given in Degrees Kelvin (K). This is due to the fact of objective conformity within the scientific 

community. However, sometimes, it may be common to transform the original Kelvin values to 

other temperature values, for ease of comparison. In order to convert Kelvin to Celsius, it is 

necessary to add the value of 273.15 to what is given as the Kelvin value. Thus making absolute 

zero (0 degrees K), -273.15 degrees Celsius. In order to derive the Fahrenheit values, a ratio of 

9/5 is taken against the Celsius value, if only given the Kelvin value then it can become easily 
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converted by the addition of the 273.15 value to it, with the addition of the positive integer 32. 

Thus represented as:  

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝐹 =  
9

5
(𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝐶) + 32 

𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝐹 =  
9

5
(𝐾 − 273.15) + 32 

3.3 Calculation of the Normalized Difference Vegetation Index (NDVI) 
 

One of the earliest calculations developed for remotely sensed images was that of the 

normalized difference vegetation index (Weier 2000). This index is able to determine the amount 

of vegetation that inhabits an area of land. The calculation of NDVI uses bands 4 (Red – 0.636-

0.673) and bands 5 (Near Infrared (NIR) 0.851-0.879) for Landsat OLI. NDVI can be defined 

mathematically as: 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐸𝐷)

(𝑁𝐼𝑅 + 𝑅𝐸𝐷)
 

Where: 

NIR is the spectral reflectance in the near-infrared region  

RED is the spectral reflectance in the red region  

 

The QGIS plugin already has built-in functionality to obtain this calculation. The 

processed image of NDVI gives a vegetation index for an entire study area. It can accurately 

determine vegetative cover as well as the health of the vegetation being studied. The red areas 

that are shown in the figure below indicates urban built-up. There also exist other methods to 

classifying urban areas, such as creating training sites from supervised classification techniques, 
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however, such methods do require much more resources, where the accuracy is directly 

relational to the number of training sites and spectral frequencies analyzed, which can create 

much variance in the accuracy of the image classification (Foody 2002). Additionally, this 

approach to the image classification was necessary due to its future use for algorithmically 

calculating land surface emissivity.  

 

 

0.182μm                0.361μm        0.539μm  0.718μm        0.896μm 

Figure 10: NDVI gives details as to where vegetation exists in an image. Green indicates the most thriving instances of 

vegetation, whereas red would indicate in situ of urban build-up. 

 

3.4 Estimating Land Surface Emissivity (LSE) 

Although the brightness temperature can give a general estimate of temperature, it should 

not be used as a replacement for LST. In order to derive LST, the material properties of the Earth 
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need to be considered for their emissivity values. The most accurate approach to calculating LSE 

is to visually check the ground and perform the direct calculation of the area of study, but often 

this is too costly or too impractical, especially for larger study areas. The estimation of LSE 

within this project uses the NDVI based approach. This approach was introduced by Sobrino et 

al (2004). In Sobrino et al. (2004), the following formula for emissivity was calculated as: 

𝜀 =  𝜀𝑣𝑃𝑣 + 𝜀𝒮(1 − 𝑃𝑣) + 𝑑𝜀 

Where: 

εv is the vegetation of the emissivity 

εs is the soil emissivity 

Pv is the vegetation proportion obtained from the formula proposed by Carlson & Ripley, 

1997. 

𝑃𝑣 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼min

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
)2 

Where: 

NDVImax is 0.5 

NDVImin is 0.2 

This method was later adopted by Xiao et al. (2007) where an algorithm was further 

developed for calculating LSE. The authors presented that when the NDVI value of a certain 

pixel falls within a certain range, then emissivity can be applied to this pixel to determine the 

classification of the area being studied.  In order to estimate LST, emissivity must be estimated. 

According to Xiao et al. if the normalized vegetation index (NDVI) is known, then it will be 

possible to estimate the emissivity of the pixel depending on the value of the cell this pixel falls 

under in relation to its NDVI value. Most of all the surface of Earth has an emissivity above 0.9 
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and is usually within 0.96 to 0.98 (Brewster 1992). If the NDVI value of a pixel value falls 

below -0.185, then an emissivity value of 0.995 will be assigned. If the NDVI value for the pixel 

falls between -0.185 and 0.157, then it will be assigned an emissivity value of 9.70. A 

logarithmic emissivity value is assigned for the NDVI pixel values between 0.157 and 0.727. 

Finally, if the pixel value for NDVI is above 0.727 then the assigned emissivity value is 0.990, as 

noted in the table below. 

Table 3: Estimation Algorithm of Emissivity using NDVI 

NDVI  Land surface emissivity 

(εi) 

NDVI < −0.185 0.995 

−0.185 ≤ NDVI < 0.157 0.970 

0.157 ≤ NDVI ≤ 0.727 1.009 4 + 0.047ln(NDVI) 

NDVI > 0.727 0.990 

 

The final processed image is shown below. Note that the emissivity values all fall within 

the expected range of 0.9 – 0.99, and also that the urban areas exhibit a much lower emissivity 

value than the surrounding rural area. This signifies that the urban areas will give off heat much 

more slowly than the vegetative rural area, which would contribute to a greater UHII occurring 

during the day and continuing through the night. Note that it is also possible to derive the 

temperature difference from emissivity between brightness temperature values and LST values 

(See figure 9 & 12). From such an analysis it is possible to obtain a theoretical limit of how 

much cooling can occur from replacing all surface characteristics as perfect emitters (Black 
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Bodies). When comparing such results, it is shown that the temperature minimums for both 

brightness temperature and LST are 77.27°F versus 78.3°F and the maximums are 89.58°F 

versus 94.63°F. This signifies that the theoretical maximum temperature that can be saved from 

the installation of a perfectly emissive surface would only be marginal, yet would undoubtedly 

be very costly. 

 

 

      0.9485ε                 0.9595ε             0.9706ε         0.9816ε     0.9927ε 

Figure 11: This image portrays the emissivity characteristics of the surface properties on Earth. A higher emissivity value means that the 

surface can give off heat at a faster rate than otherwise if it had a lower emissivity value.  
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3.5 Estimation of Land Surface Temperature (LST)  

 

When computing LST through the PyQGIS plugin, the previously processed brightness 

temperature is corrected against LSE in addition to atmospheric effects. Within the PyQGIS 

plugin, there exist several valid methods to calculating LST, including using the mono-window 

algorithm, radiative transfer equation, the single-channel algorithm (Landsat/ASTER), and the 

split window algorithm (ASTER) (Isaya et al. 2016). Within this study, the inverse Planck 

function was used due to its simplicity and strong establishment among scientists. The formula 

for using Plank’s equations is as follows: 

𝑇𝑆 =  
𝐵𝑇

{1 + [
𝜆 ∗ 𝐵𝑇

𝜌 ] ∗ 𝑙𝑛𝜀}
 

Where: 

TS is the land surface temperature (K) 

BT is the at-sensor brightness temperature (K) 

λ is the wavelength of the emitted radiance 

ρ is the (հ* c/σ), which equals 1.438 * 10-2 mK 

ε is the spectral emissivity 

 

After the following algorithmic formula is applied to each pixel value in all the combined 

images, a final LST image is processed (See figure below). This processed LST image shows the 

prominent UHI effect from the temperature difference between the urban versus the rural area, a 

surface temperature difference of 16.33°F (94.63-78.3). The hottest areas are related to the urban 

areas, while the lowest temperature areas are associated with outermost rural areas, which is 

what is expected from prior UHII studies. It is also shown by comparing the LST image against 
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the image that shows brightness temperature, that the LST image is shown to have higher 

temperatures, which is also expected due to the factoring of the lower emissivity leading to 

warming. It is also important to note that the weather station data is corroborated with the 

processed LST image values, where it was shown that for the date of July 28th, 2015, there was a 

temperature high of 97 degrees F, and a temperature low of 75 degrees F. The processed image, 

in comparison, shows a temperature high of 94.63 degrees F, and a temperature low of 78.3 

degrees F, which shows that the temperature is within an acceptable range, considering time and 

temperature acquisition differences. The temperature difference that does exist between LST and 

the weather station data would be caused by the variation of time when the data was recorded, 

the remotely sensed image of LST is taken at one point in time, the evening, and the weather 

station data has recorded the highest temperature point of the day. An additional factor to 

consider is the surface to the air temperature differences, where the weather station records 

temperature in a Stevenson screen at 1.25-2.0 meters above the ground (Bewoor 2009). The 

significance of such results are expected as the time period of the image capture is during the 

evening, which would be near, but not exactly the highest temperature point of the day. 
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      78.3°F                  82.38°F            86.46°F         90.55°F       94.63°F 

Figure 12: This image captures the temperature differences that exist within an Urban-Rural landscape.  

 

  3.6 Estimating Albedo 
 

Albedo gives important information to be able to analyze Earth’s surface energy budget 

(Trenberth et al. 2009). It is given as a ratio value between 0 and 1.0, which vary from land 

cover to land cover. To be able to calculate outgoing short-wave albedo with Landsat OLI/TIRS, 

the stored DNs must first be converted to either top of atmosphere (TOA) reflectance, which can 

be corrected with the atmospheric effects, or surface reflectance. Reflectance is the ratio of the 

power and radiant energy that is being reflected from a surface material. TOA reflectance can 

account for atmospheric effects, with the use of such methods as dark object subtraction (DOS) 

or other similarly developed algorithms. This study used the USGS Level-2 Landsat Surface 
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Reflectance product. TOA reflectance uses the below formula to convert images from DNs into 

radiance: 

𝜌𝑝 = (𝜋 ∗ 𝐿𝜆 ∗ 𝑑2)/(𝐸𝑆𝑈𝑁𝜆 ∗ 𝑐𝑜𝑠𝜃𝑠) 

Where: 

Lλ is the spectral radiance at the sensor’s aperture (at-satellite radiance) 

d is the Earth-Sun distance in astronomical units (provided with Landsat metadata file 

ESUNλ is the mean solar exo-atmospheric irradiances 

θs is the solar zenith angle in degrees, which is equal to θs = 90֯ θe where θe is the Sun 

elevation  

Since the deployment of Landsat 8 OLI, the development for an algorithm to calculate 

albedo has not yet been accepted within the scientific community. Due to currently not having a 

scientific consensus on what method of calculation works best for obtaining albedo values for 

Landsat 8, this study chose to employ four well known algorithms for calculating albedo within 

QGIS raster calculator and run a root-mean-square error (RMSE) analysis in Microsoft Excel in 

order to compare and validate which of the methods showed the least error and thus gave the 

most accurate results. Albedo values obtained and corrected from MODIS product MCD43A 

series was used as the initial infrastructure to test the following output variables against one 

another.  

MODIS MC43A1 Version 6 Bidirectional reflectance distribution function and Albedo 

(BRDF/Albedo) Model Parameters data set is a 500 meter daily 16-day product, therefore 

observations are weighted to estimate Albedo for a given day. NASA employs the use of the 

MCD43A1 algorithm, which chooses the best representative pixel that includes all the 
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acquisitions from both the Terra and Aqua sensors from the retrieval period. The function of the 

MCD43AI data is its ability to provide weighting parameters (coefficient variables) for three 

models, which include isotropic, volumetric, and geometric parameters. These weights are each 

associated with MODIS bands 1 through 7, as well as the spectral frequency wavelengths that are 

associated with the visible, near infrared, and shortwave bands. Together when the coefficient’s 

weights are multiplied by the spectral wavelength of the associated bands, the product creates the 

image for an Albedo and BRDF, which are then derived to create separate MODIS products, 

such as MCD43A3 and MCD43A4. An additional parameter is layered specifically for each of 

bands 10 which are the Mandatory Quality layers. This layer acts to validate that the relational 

characteristics of the Earth are being accurately modeled, with the currently achieved validation 

being stage 3 (NASA 2015) for the above products. 

 

Figure 13: Differing methods used to calculate Albedo values for Landsat. 

As can be seen in the above flowchart, in order to establish an albedo value to be used 

within the predictive model, several methods were tested and compared against each other. 

These methods are named from the principle scientists that developed the algorithms that are 

used. Two of the methods shown, Silva and Olmedo, have been proposed for use with the 

Landsat 8 multispectral bands. The other two methods, Chemin and Liang, have been established 

for use with the Landsat 5 & 7 multispectral bands. Therefore the objective established, was to 

Albedo

Silva Olmedo Chemin Liang

Output Variable 

Applied Algorithm 
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analyze the compatibility of the scientifically accepted weighted coefficients from the Landsat 7 

algorithms against the unsubstantiated yet updated Landsat 8 algorithms.  

3.6.1 The Silva Method  
 

Although there exist numerous methods for calculating albedo for Landsat TM and 

ETM+ (5 & 7 respectively), there does not currently exist an established method for calculating 

albedo for Landsat OLI/TIRS (8) (Silva et al. 2013). Researchers from Brazil attempted to 

establish such a procedure that could be used with the latest Landsat OLI/TIRS. In their study, 

they used the river basin in the semiarid region of Northeastern Brazil and compared several 

methods used for calculating albedo. One of the main challenges in calculating albedo with the 

new bands established for Landsat 8 is determining how much weight should be applied to each 

band using multiplicative properties (See table below). The below formula was recommended as 

a suitable method that could be used to calculate albedo from this study, which can be done 

through QGIS’s raster calculator: 

𝛼𝑠ℎ𝑜𝑟𝑡 = 0.300𝜌2 + 0.277𝜌3 + 0.233𝜌4 + 0.143𝜌5 + 0.036𝜌6 + 0.012𝜌7 

Where:  

ρ represents Landsat OLI/TIRS bands 2,3,4,5,6, and 7.  

Table 3: Multiplicative properties of Landsat 8 multispectral Bands 

 

This table details the associated weights that were applied to each spectral band within the Landsat 8 OLI satellite. 
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3.6.2 The Olmedo Method 
 

‘Water’ is an open source package that can be installed in the R programming 

environment suite that includes several tools and built-in functions in order to calculate actual 

evapotranspiration using surface energy balance models such as METRIC. One of the functions 

used inside this package is the calculation of albedo with Landsat 8 OLI/TIRS. In developing the 

associated weights for the coefficient values, prior studies described by Tasumi et al. (2008), and 

Liang (2001), in addition to The Simple Model of the Atmospheric Radiative Transfer of 

Sunshine (SMARTS2), was used as a foundation as to further the construction of a new model. 

The following formula for the use of this method, which can be used in QGIS raster calculator, is 

the following: 

𝛼𝑠ℎ𝑜𝑟𝑡 = 0.246𝜌2 + 0.146𝜌3 + 0.191𝜌4 + 0.304𝜌5 + 0.105𝜌6 + 0.008𝜌7 

Where:  

ρ represents Landsat OLI/TIRS bands 2,3,4,5,6, and 7.  

 

3.6.3 The Chemin Method 
  

Yann Chemin developed an algorithm for the GIS platform GRASS through the built-in 

image processing function “i.albedo”. Through this application, it is possible to compute 

broadband albedo from surface reflectance. Due to the calculation of shortwave surface 

reflectance the chosen range includes the spectral frequencies of 0.3μm to 3.0μm. It is noted 

within the documentation that for Landsat 8, a temporary algorithm is applied that calculates the 

weighted average of the reflectance. Within the QGIS raster calculator, the following formula 

was used in order to derive albedo from this method: 
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𝛼𝑠ℎ𝑜𝑟𝑡 = 0.058674 + 2.153642𝜌1 − 2.242688𝜌2 − 0.520669𝜌3 + 0.622670𝜌4

+ 0.129979𝜌5 − 0.047970𝜌6 + 0.15228𝜌7 

Where:  

ρ represents Landsat OLI/TIRS bands 1,2,3,4,5,6, and 7.  

 

3.6.4 The Liang “Normalized” Method 
 

One of the most established methods for calculating albedo for Landsat 7 ETM+, is 

through the weighted coefficient methods that were established by Liang (2003). This method 

uses the following formula, which has been normalized to include only the in-range values:  

𝛼𝑠ℎ𝑜𝑟𝑡 =
0.356𝜌1 + 0.130𝜌3 + 0.373𝜌4 + 0.085𝜌5 + 0.072𝜌7 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072
 

Where:  

ρ represents Landsat 7 bands 1,3,4,5, and 7. Note that Landsat band 2 (green) is not used. 

 

However, since the deployment of Landsat 8 OLI/TIRS, the band classification went 

through a more severe change (See the following tables below). This change was much greater 

than the previous change to Landsat 7 ETM+ from Landsat 5 TM, meaning in order to reproduce 

image processing the newly associated wavelengths for each of the multispectral bands needed to 

become ported, or updated to match. Many of the multispectral bands fall within similar 

classification and wavelengths between Landsat 7 & 5, however, as shown in the below tables, 

the above formula can be shown to be closely associated with the band numbers for Landsat 8 

(Barsi 2014).  
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Table 5: Landsat Thematic Mapper (TM) band designation with associated Wavelength. 

Landsat 4-

5 

Thematic 

Mapper 

(TM) 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared (NIR) 0.76-0.90 30 

Band 5  - Shortwave Infrared 

(SWIR) 1 
1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 120* (30) 

Band 7 - Shortwave Infrared 

(SWIR) 2 
2.08-2.35 30 

* TM Band 6 was acquired at 120-meter resolution, but products are resampled to 30-meter pixels. 

Table 6: Landsat Enhanced Thematic Mapper (ETM+) band designation with associated 

Wavelength. 

Landsat 7 

Enhanced 

Thematic 

Mapper 

Plus 

(ETM+) 

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Blue 0.45-0.52 30 

Band 2 - Green 0.52-0.60 30 

Band 3 - Red 0.63-0.69 30 

Band 4 - Near Infrared 

(NIR) 
0.77-0.90 30 

Band 5 - Shortwave 

Infrared (SWIR) 1 
1.55-1.75 30 

Band 6 - Thermal 10.40-12.50 60 * (30) 

Band 7 - Shortwave 

Infrared (SWIR) 2 
2.09-2.35 30 

Band 8 - Panchromatic .52-.90 15 

* ETM+ Band 6 is acquired at 60-meter resolution, but products are resampled to 30-meter pixels. 
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Table 7: Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS) 

band designation with associated Wavelength. 

Landsat 8 

Operational 

Land 

Imager 

(OLI) 

and 

Thermal 

Infrared 

Sensor 

(TIRS) 

  

Bands 
Wavelength 

(micrometers) 

Resolution 

(meters) 

Band 1 - Ultra Blue 

(coastal/aerosol) 
0.435 - 0.451 30 

Band 2 - Blue 0.452 - 0.512 30 

Band 3 - Green 0.533 - 0.590 30 

Band 4 - Red 0.636 - 0.673 30 

Band 5 - Near Infrared 

(NIR) 
0.851 - 0.879 30 

Band 6 - Shortwave 

Infrared (SWIR) 1 
1.566 - 1.651 30 

Band 7 - Shortwave 

Infrared (SWIR) 2 
2.107 - 2.294 30 

Band 8 - Panchromatic 0.503 - 0.676 15 

Band 9 - Cirrus 1.363 - 1.384 30 

Band 10 - Thermal 

Infrared (TIRS) 1 
10.60 - 11.19 100 * (30) 

Band 11 - Thermal 

Infrared (TIRS) 2 
11.50 - 12.51 100 * (30) 

* TIRS bands are acquired at 100-meter resolution but are resampled to 30 meters in delivered data product. 

Note that in the above tables, there occur shifts between the various versions of the 

Landsat satellite for the various bands needed to calculate albedo, which includes the blue, red, 

near infrared, shortwave infrared 1, and shortwave infrared 2 bands. Using only the blue band as 

an example, the associated wavelengths for Landsat 5 (TM) and Landsat 7(ETM+) are the same 

(0.45-0.52). When comparing this wavelength value to the newer Landsat 8 (OLI/TIRS) there 

exists a subtle difference (0.452 - 0.512). This difference accounts for less than a 2 percent 

margin, which signifies that the adoption of such a prior method being used to calculating albedo 
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for the newer wavelengths bands of Landsat 8 (OLI/TIRS) should also show a communicated 2 

percent difference from the margin. Therefore, it may also be the case, that by finding the ratio 

difference between all of the various bands needed to calculate albedo, a new weight can be 

multiplied by this exact ratio difference to limit the subtle distortion effect that may be caused. 

By following the above tables, a suitable conversion was developed for the Liang method 

to calculating albedo for Landsat 7 was created: 

𝛼𝑠ℎ𝑜𝑟𝑡 =
0.356𝜌2 + 0.130𝜌4 + 0.373𝜌5 + 0.085𝜌6 + 0.072𝜌7 − 0.0018

0.356 + 0.130 + 0.373 + 0.085 + 0.072
 

Where:  

ρ represents Landsat OLI/TIRS bands 2,4,5,6, and 7. Note Landsat band 3 (green) is not 

used.  

 

 
       0.06A                       0.098A  0.136A          0.174A      0.212A 
Figure 14: This image portrays the percentage or radiant solar energy reflected in portion to what is received, known as albedo. A high 

albedo value, say 1, means that 100% energy is reflected, in the case of Auburn University, the high is 21.2% energy reflected. 
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It can be seen in the above image, that the albedo values for the area of Auburn do not 

exceed 0.212, which is also associated with urban areas, a minority area which may grow in the 

future. The representation of such data leads to the implication of greater potential for increasing 

surface reflectance, with the maximum being 1.0. This represents a 0.788 or 78.8% opportunity 

of reflectance difference. 

3.6.5 Albedo RMSE Analysis 
 

As shown in the below table, the Liang or normalized method to calculate albedo 

outperformed the other three with a significant margin. Using the Liang method gave a RMSE of 

0.029277 or 2.9%. The next best results were given by using the Silva method which had a 

RMSE of .23 or 23%. This was followed by the Olmedo method which had a RMSE of .237471 

or 23.7%. The lowest ranking RMSE score was obtained from using the Chemins Method which 

gave a RMSE of .60589 or 60.6%.  

Table 8: RMSE Results of Differing Albedo Methods 

Albedo Method  RMSE Result   

Silva .2300084 

Olmedo .2374712 

Chemins .6058908 

Liang .0292770 

 

As previously discussed, The Liang method was adopted for this study, showing the 

results that were expected, which assumed nearly a 2% margin, due to the subtle variance 

associated with the newer band wavelength values. Future studies which account for this 2% 

difference may build upon the algorithm developed by Liang for Landsat 7, which will be able to 
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improve significantly the corrected values of albedo for Landsat 8. In order to account for such 

differences, however, a relationship must be defined that shows the statistical difference as well 

as percentage change from the spectral wavelength functions of Landsat 7 to Landsat 8.  

As of an additional note, there does exist one other method for calculating albedo, which 

is the Tasumi method (Tasumi et al 2008). The reason this method was not chosen as a suitable 

method is that it is of the author’s opinion that the Olmedo has built upon Tasumi through 

updated weights, nevertheless, the following method can still be used with the below formula: 

𝛼𝑠ℎ𝑜𝑟𝑡 = 0.254𝜌2 + 0.149𝜌3 + 0.147𝜌4 + 0.311𝜌5 + 0.103𝜌6 + 0.036𝜌7 

Where:  

ρ represents Landsat OLI/TIRS bands 2,3,4,5,6, and 7.  

3.7 Potential Incoming Solar Radiation 
 

The Sun is the principal energy source for all of the activity on the Earth. Roughly 1370 

watts per square meter (solar constant) is constantly being radiated onto Earth’s atmosphere, 

however, most of this energy never even reach the surface.  

Net radiation at the surface is given by: 

𝑅𝑛 = 𝑆𝑛 + 𝐿𝑛 

Where: 

Rn is the net radiation at the surface 

Sn is the net shortwave radiation 

Ln is the net longwave radiation 

There exist three factors affecting the amount of solar radiation that reaches Earth’s 

surface 1) orientation of the Earth relative to the position of the sun, 2) clouds and other 
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atmospheric interferences and 3) topography. The Earth revolves around the Sun in an elliptical 

orbit making a complete orbit every 365.25 days, and it is through this orbit that the seasons are 

caused on the surface. In addition to the Earth revolving around the sun, the Earth is also 

constantly rotating around its axis turning face toward and away from the sun every 12 hours, 

creating the day/night cycle. Other planetary characteristics that may occur that can intercept the 

radiant energy from being absorbed completely on Earth occurs through eclipses. This is an 

event that occurs when the moon is placed between the Sun and the Earth, but due to the 

relatively small size of the moon to the Earth, this has a minimal effect.  

When the solar energy reaches the top of Earth’s atmosphere, this is only the beginning 

of the process of energy being absorbed. Immediately some of the radiant energy is bounced 

back into space and some continue inward toward the Earth. Earth’s atmosphere is made up of 

many chemicals and gases, including nitrogen, oxygen, CO2, and H20, which each can act upon 

the incoming radiant energy from the Sun. All of this energy will be reflected back, absorbed 

within the atmosphere, or absorbed by the surface of Earth. For a more detailed analysis of 

incoming solar irradiance and the interaction among various surface and atmospheric properties, 

the appendix of this thesis includes several visual illustrations (See appendix 2, 3, and 4).  

Finally, the leftover solar energy that arrives onto the surface of Earth can also act to 

disrupt any incoming solar radiation. This can include shadows being cast onto the surface 

property by trees, buildings, mountains or hills. For example, a valley that is obstructed by 

competing hills will shade the interior of the surface for much of the time when the sun is not 

directly overhead, causing its solar rays to be able to penetrate within the valley.  
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By taking into consideration all three of the solar properties and how solar energy can 

become disrupted, a solar irradiance model created by Hofierka et al. (2002) was used for the 

calculation of incoming solar energy. The model accounts for topography whereby an elevation 

perimeter may be used, such as a digital elevation model (DEM) or a LiDAR-derived digital 

surface model (DSM) image. Additionally, the model is able to allow for atmospheric 

interactions and albedo as well. After the perimeters have been set, the model accounts for the 

solar position of the inputted time and date perimeters to create output solar radiation values. For 

this study, a 0.3-meter resolution LiDAR DSM was chosen as the principal perimeter, 

corresponding to the same date and time captured previously from the Landsat OLI/TIRS 

satellite, July 28th, 2015. The atmospheric transference rate was chosen as 70%, which is what is 

expected from reasonableness tests. The model calculated for an entire day (24-hour period), 

with a temporal resolution set at every half hour increments (0.5h). There is a cost due to 

processing if a higher temporal resolution is needed, and thus the time period must be chosen to 

correspond to what both may accurately, and realistically measure the incoming solar radiation. 

The output given by the model included both diffuse (scattered) and direct solar irradiance and 

isolation. This process was done through SAGA GIS lighting library, using the module for 

calculating “Potential Incoming Solar Radiation.” (Böhner 2009) 

It was shown in the output images that were created from the solar model, that the 

campus of Auburn includes many suitable areas for solar insolation. During a typical summer 

day, most of Auburn’s campus buildings can receive on average 8.01 kWh/m2 of total incoming 

solar energy. The results indicate that sufficient energy arrives onto auburn’s surface that could 

potentially be used to offset radiative heating effects, from solar recapture technologies, such as 
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the installation of solar panels (See figure below). These results are expected, due to the fact that 

Auburn’s campus is a relatively homogenous elevated area, with little to no shading ever 

occurring. In addition to this fact, the added dimension that many buildings on campus are not 

sufficiently elevated as to induce shading to other buildings gives further explanation to the 

results.  

 

 

0 kWh/m2           1.72 kWh/m2                 3.44 kWh/m2     5.16 kWh/m2 6.88 kWh/m2 

Figure 15: This image captures the direct incoming solar radiation. The temporal resolution of this image is the detail of capture for 

every 30 minutes on July 28th, 2015. The model also assumes an atmospheric transmittance of 70%. 
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Diffused radiation indicates the amount of energy that would become refracted onto the 

surface of the study area. Such type of energy would be expected to be significantly lessened due 

to the phenomena of absorption that would principally occur from the initial occurrence of solar 

radiance, which is captured in direct solar insolation (see figures above).   

 

 

0.586 kWh/m2          0.721 kWh/m2      0.857 kWh/m2      0.992 kWh/m2         1.13 kWh/m2 

Figure 16: This image captures the diffuse incoming solar radiation. Like the image above, the temporal resolution is at the detail of 

capture for every 30 minutes on July 28th, 2015. In addition, the model assumes an atmospheric transmittance of 70%. 
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The importance of having both direct and diffused incoming solar insolation allows for 

the variable addition of total incoming solar radiation. If only looking at direct solar radiation, 

then there would be a missing percentage of redirected solar energy being factored into the 

climate-energy model that gets reabsorbed back into the surface. Thus by factoring both 

characteristics a more accurate determination can exist.   

3.8 Resampling Methods 
 

All of the previously processed images that have been finalized are given at an output of 

30-meter by 30-meter resolution per pixel. Nevertheless at this scale, when analyzing rooftops 

there are several misclassified pixels due to merging having taken place. In order to obtain an 

even higher resolution, therefore to achieve an even greater depth of analysis, several resampling 

techniques, which included Bilinear, Bicubic, B-Spline, and Inverse Distance Weighting 

interpolation, were employed and compared against one another using a RMSE analysis. 

In order to resample the processed images containing continuous data (such as 

temperature, and elevation, or slope) specific techniques are employed, this is due to 

interpolations generally being applied to “fill in” unknown pixel values effectively downscaling 

the original image to an even greater resolution. For instance a 30-meter by 30-meters per pixel 

resolution may accurately be resampled to a 1-meter by 1-meter per pixel resolution image. This 

task is accomplished by employing a resampling algorithm to all of the pixels of the image, this 

is usually accomplished by having each pixel being multiplied by a certain weighting factor, 

which is to say that pixels closer to each other have stronger weights or relationships than pixels 

that are further from each other (Hwang et al. 2004). Additionally, depending on which 

interpolation method is used, the final processed image will be given as smoother or coarser.  
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In order to choose the resampling method which exhibit the model’s best fit, an 

exploratory method of comparing four separate interpolation methods was performed. As shown 

in the figure below, all of the model’s variables, which were originally outputted by a 30m by 

30m spatial resolution were resampled to a 1m by 1m spatial resolution, and were then compared 

against one another through the use of a RMSE analysis.  

 

Figure 17: Process of resampling methods employed for each of the model’s variables. 

All of the resampling techniques were done after processing the satellite images into the 

necessary model variables of brightness temperature, NDVI, LSE, LST, and albedo. This was 

accomplished through the QGIS platform, more specifically within the built-in raster tool 

functionality of the SAGA Geoalgorithms that is found in the processing toolbox of QGIS. 

3.8.1 Bilinear Interpolation 

A bilinear interpolation was initially performed as a foundational base of study. When 

performing a bilinear interpolation, pixel value data is created or filled in, causing the final 

image to become much smoother. This is accomplished by having the new value of a cell based 

on an average weighted distance of the four nearest known pixel values (Hwang et al. 2004). 

Model's 
Variables

Bilinear Bicubic B-Spline IDWApplied Algorithm 

Raster Data for All 

Variables 
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This technique is especially useful for continuous data such as elevation and temperature, as is 

the case for LST and albedo raster. 

In order to understand the intuition better for the weighting method being used, it is 

necessary to think of how the pixels are being filled, which is to say that an empty pixel value 

within an associated pixel value will be given a weighted output depending on the distance of the 

other pixels. For instance, if you have a 2x2 pixel frame, with the values 100 and 200 that needs 

to be downscaled 4x4, this method will fill in those pixels from using the additive of various 

averages, hence the “bi” in bilinear, in relation to the location of the pixel. An example may be if 

it is needed to find a pixel value that is a third of the way to the second known pixel value, using 

100 and 200 as examples, then 100 is multiplied by 2/3 and 200 is multiplied by 1/3 with the 

product getting added together, which equals 133. 32.  

 

Figure 18: Here is an example of four known pixels’ values (Q11 Q12 Q21 & Q22). In order to interpolate for point P, R1 & R2 are 

averaged on both the X & Y axis (Jitse Nielson 2004).  
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In the above figure, it is shown how a visual representation might be considered in the 

context of having 4 known pixel values (Q11, Q12, Q21, and Q22), with the intention of discovering 

what a predicted or probabilistic value (P) would look like at the interpolation layer (R1, and R2). 

Another important characteristic of bilinear interpolation is the fact that it obtains the pixel 

samples from a linear set of values, where the pixels are connected in straight lines. Note that in 

the above image, that no outside pixel values are being calculated for the interpolated pixel 

value, therefore a linear relationship remains.  

3.8.2 Bicubic Spline Interpolation 

The use of a bicubic spline interpolation was chosen as a suitable alternative to the 

bilinear interpolation and was applied to the original raster images. When performing a bicubic 

interpolation, the new value of a cell, that is a pixel, will be based on fitting a smooth curve 

through the 16 nearest input cell centers. Through this method, more factors are weighted against 

the new pixel value, and the plotting of those pixels will appear smooth. Although the use of 

bicubic interpolation is appropriate for continuous data, it may calculate results that contain 

values that are outside the range of the original pixels. However, the use of such methods does 

prove to be geometrically less distorted than the raster achieved by running the nearest neighbor 

resampling algorithm. With the introduction of nearly four times more calculations per pixel than 

with bilinear interpolation, employing this method of interpolation does prove to be much more 

computationally demanding, thus having the disadvantage of requiring more processing time. 

Bicubic interpolation is similar to bilinear interpolation except that it uses a polynomial 

equation which factors in the gradient of the curve of a given pixel. This allows for the two 

curves of the connecting pixels to become combined into a much more smooth value as well as 
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produce more complexity within values (See figure below).  Unlike in nearest-neighbor 

interpolation, where all of the original pixel values remain intact, both bilinear and bicubic 

interpolations gives a much smoother image quality. In nearest-neighbor, the reason behind the 

fact that every original pixel is kept is due to the plotting of each pixel value. These original plots 

set the upper and lower limits of what will be assigned to any future pixel value. In the case of 

bilinear interpolation, the plotted lines are connected by slopes and new values can be created in 

the process, this is also true of bicubic interpolation, except in the latter case, the plotted lines are 

mathematically much more complex, factoring examples such as derivatives.  

 

Figure 19: This figure clearly shows the differences, through a visual intuition. Note the differences between the smoothness of the 

differing methods.  
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3.8.3 B-Spline Interpolation 

Next, in order to obtain data from a more complex interpolation (most smoothing-least 

artifacts), thus creating variety within the study a B-Spline interpolation was also applied to the 

raster images. Whereas in the previous two methods of interpolation, namely bilinear and 

bicubic, a b-spline interpolation can involve n-order or a number of differing situational 

polygons, it may not be limited to either 4 or 16. A spline is essentially a small section of a curve 

that goes between two endpoints.  These joining points connecting the various polygons are 

called knots and are what separates splines from other types of interpolations. The overall 

function of using a spline is to minimize as much surface curvature as possible while creating a 

smooth surface that passes through every point in the original input. As with Bicubic 

interpolation, this smoothing represents much more accurately the natural environment, and in 

the instance of urban areas, where there exists “sharp” drop off points from what is natural and 

what is man-made, these methods may overemphasize the smoothness of the image.  

3.8.4 Inverse Distance Interpolation  

Lastly, the original raster files were resampled using an inverse distance weighted (IDW) 

interpolation. The intuition behind the IDW method for interpolation is simple. Each of the 

sample points that are available is weighted, which determines the effect of influence one point 

might have on another relative to their location to each other. The farther away from this point 

the less influence this point will have on the other to be estimated point. The way in which these 

sample points are weighted is through the use of being given a weighting coefficient, which 

controls the perimeter and influence that this will have on the estimated points. Meaning that 

points nearer the weighted point will be more similar and the points that are farthest away will 
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take on the characteristics of those closer points. As might already be noticed, there are some 

major limitations to this method. First, if the distribution of weighted points are uneven, where 

you may have just a few points on the outside and the great majority of points are concentrated in 

one small area, then obviously the concentrated region will be the more accurate.  Another major 

consideration is that the maximum and minimum values are set at the weighted values, whether 

this is true or not.  

3.8.5 Interpolation Comparison Analysis 

In order to compare the four different methods, a RMSE analysis was used. The process 

included taking the original 30-meter by 30-meter pixel and downscaling the image using 

SAGA’s resampling algorithm built into the QGIS framework, which gave four separate raster 

images. 2205 random points were created for each of the 441 original buildings, which were then 

compared to their residual values, which is the difference between the actual values. The sum of 

the squares was divided by n, the sample, which then had to be squared to get the RMSE value. 

Of the four above methods, the inverse distance weight interpolation showed the lowest RMSE 

of 0.005. This was followed by the bilinear interpolation method with a RMSE of 0.0062. The 

last two, B-spline and Bicubic spline interpolation methods were equal with a RMSE of 0.0097. 

In conclusion, the inverse method was chosen as the principal method used to downscale the 

original 30-meter by 30-meter pixel image to a 1-meter by 1-meter pixel image. 
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Table 9: Resampling RMSE Comparison Values 

Resampling (Interpolation)  RMSE Value  

Bilinear 0.0062 

Bicubic 0.0097 

B-Spline 0.0097 

Inverse Distance Weighting 0.005 

 
*172 point values were observed from the original Landsat OLI/TIRS image. 

 

3.9 Shapefile Data Merge in Research Methods 

In order to further analysis the raster output files, it was necessary to combine all values 

into a master shapefile. The procedure was accomplished through the research tool and zonal 

statistics function of QGIS. The first procedure was to merge the characteristics of the campus 

buildings shapefile, and the table for energy use data. All of the Landsat values (NDVI, BT, 

LSE, LST, & Albedo) had the same coordinate reference system of EPSG: 32616, WGS 84 / 

UTM zone 16N. In order to merge the raster values with the campus buildings’ shapefile the 

projection of both items needed to be compared against one another. After which, the addition of 

the solar insolation raster values also needed to become merged into the new shapefile. Since the 

output raster files employed different methods, the Coordinate Reference System (CRS) was 

different for the solar insolation values. A reprojection of the shapefile was performed so as to 

add the new solar energy values. After verifying that all the layers, of both the shapefile 

attributes to the raster data values, matched, a final merge through the use of zonal statistics was 

accomplished. The use of the zonal statistics plugin allowed several new values to become 

merged onto the primary shapefile for study, such as pixel count, sum, mean, median, standard 

deviation, minimum/maximum values, etc. These procedures finalized the merging of all 

necessary attribute files to be studied. 
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Figure 20: Workflow Process of the relationship between software, variables, and methods. 

 

The two major platforms of research were finalized on QGIS and ArcMap. Remote 

sensing, image processing, and shapefile data merges were accomplished on QGIS. Afterwards, 

the final shapefile, which then contained all of the processed raster data, was able to be exported 

into ArcMap, where statistical methods were applied to obtain meaning from the data originally 

processed within QGIS.    

QGIS
•Saga

-Solar Insolation

•PyQGIS

-BT

-NDVI

-LSE

-LST

•Raster Calculator

-Albedo (4 
Methods)

•Resampling
-All variable (4 
Methods)

ArcMap

•OLS
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Chapter 4. Regression of Energy 

 

An ordinary least square (OLS) regression is applied to the study area to find a predictive 

correlation between LST, albedo, and energy use. The output can be visualized in a chart or 

graph. The formula that is used is the following: 

𝑦 =β0 +β1𝑋1 +ε  

Where: 

y is the dependent variable 

β is the coefficient’s weight 

X1 is explanatory variable(s) 

ε is the error term or residual value 

By employing a regression model, it is possible to explore the spatial relationship of 

different factors, or variables, in order to be used for future predictions. All regression models 

include dependent variables (Y), which is what is trying to be predicted, explanatory variables 

(X), which are variables that hold the influence on the outcome of the dependent variable, 

coefficients (β), which act as weights toward the explanatory variables (X) relationship to the 

dependent variable (Y), and finally residuals (ε), which portrays the portion of the dependent 

variable (Y) that isn’t being explained by the model, more specifically, it is where the model has 

shown under predictions and over predictions from the predicted outcome of the dependent 

variable.  
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4.1 Regression Using Ordinary-Least Squares (OLS)  

By using OLS as a starting point in the regression analysis, it was possible to test 

predicted energy values, by testing the dependent variable: Energy Use (for cooling), against the 

explanatory variables, the following were used: gross area, NDVI, LSE, Albedo, LST, Total 

Solar Insolation, Elevation, and Age (of Building). OLS provides a global model of the variables, 

meaning that all variables are included together to explain the predicted outputs. Homogeneity is 

assumed within this type of analysis.  One way of testing this is through spatial autocorrelation. 

However, before spatial correlation can be tested, it is necessary to set up an initial test to show if 

the predictive statistical model could benefit from the further use of a spatial regression. This is 

used for assessing if any relationship exists between the associated variables from the results of 

the OLS regression. Principally this was accomplished through a scatterplot matrix graph (see 

figure below) 

 

Figure 21: This scatterplot matrix shows the correlational effect between the dependent and independent variables. The diagonal line 

indicates if the relationship if positive (upwards sloped) or negative (downwards sloped.) in addition to the strength of correlation (degree 

of slope for the line). Note that there exists a very strong positive correlation between the gross area for the buildings and energy used for 

cooling. 
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By running a scatterplot analysis, it was possible to visualize the associated relationship 

between the dependent variables among all of the independent variables. Of all the independent 

variables, gross area of buildings showed the strongest correlation. NDVI, LSE, LST, and 

Albedo showed somewhat moderate correlation. In order to understand all of these relationships 

better, OLS regression was performed in addition to various statistical tests, including Variance 

Inflation Factor (VIF), Adjusted R-Squared, Akaike’s Information Criterion (AICc), Joint-F and 

Wald Statistics, Koenker (BP) Statistics, and Jarque-Bera Statistics. Results from this analysis 

indicated key explanations (See tables below). 

Table 10: Summary of OLS Results – Model Variables 

 

This table indicates the variables related to the dependent variable.  

Table 11: OLS Diagnostic Tests 

 

Note that within the above diagnostic test, an asterisk symbol (*) indicates statistical significance. 
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The first check was to accept whether or not the independent variables exhibited the 

hypothesized relationship. Gross area showed a positive relationship meaning that the larger the 

building the more energy was used. NDVI also showed a positive relationship, which is expected 

in relation to the spectral wavelength in consideration. NDVI would be unreliable in the context 

of classifying “true” urban areas, as this index was originally intended for vegetation only, and 

thus used primarily for the purpose of urban classification, will show little evidence of 

correlational effects on the variables. LSE showed a negative relationship with energy use, which 

is expected, because if an object has a lower emissivity, then this object would be less efficient at 

transferring the absorbed heat, resulting in more absorbed heat into the energy system. LST 

showed a positive relationship, which was also expected, due to the fact that a hotter temperature 

would require more energy used for cooling. Elevation showed a negative relationship, meaning 

the lower the object was the more energy was used, which could mean that heat is becoming 

“trapped”, such as occurs during the phenomenon of the urban canyon effect, where wind cannot 

act as a cooling force. However, this would only somewhat be offset by the fact that higher 

elevated areas would reach more incoming solar insolation and thus act to provide shade to lower 

lying areas. Age was shown to have a positive relationship with energy use, meaning that the 

older the building is, the more energy used, and expected result due to wear and tear occurring in 

the building with the passage of time leading to greater thermal efficiencies, especially in 

windows, walls, doors, and roofs. Another important characteristic of the age variable was that it 

had the second lowest weighting factor coefficient of 230.4, among all of the variables, with the 

gross area having the lowest coefficient’s weight and thus most significant of 3.8. Albedo was 

shown to have a positive relationship, which would seem unexpected since a high albedo would 
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signify that more energy is being reflected thus preventing energy from ever becoming absorbed 

in the first place, but it is also the case that the more industrial/utility building on campus also 

showed the highest albedo values whereas the smaller residential buildings showed the lowest 

albedo. It is important to not consider this variable in isolation and as such within this context, it 

does make sense as to why a higher albedo would show a positive correlation. Finally, total 

incoming solar insolation, which has been modeled as incoming solar radiation (both direct and 

diffuse), was shown to have a negative correlation with energy use. Another seemingly 

unexpected result in isolation, but by understanding the situation occurring, the same effect 

causing elevation to show a negative relationship will also be the same phenomenon acting on 

the solar isolation variable (See tables above). 

The VIF value signals whether or not the model’s variables show the relationship of 

multicollinearity, meaning that there may be redundancy among variables both explaining 

similar, if not the same, instances. A smaller VIF value means that there is less of a chance of an 

over-count bias, where any variables larger than 7.5 (ESRI 2017) would need to be removed. All 

of the variables are shown to be safe from bias, however, it is noted that both the variables of 

NDVI and LSE do appear to be explaining similar incidents within the model, but not so much as 

to lead to bias. This is very much accepted due to how LSE was calculated strongly linearly 

based off of NDVI, with only a small portion becoming logarithmically different within the 

algorithms’ context. It is, however, evidenced that the urban areas would show the largest gains 

from these differences, which is why the two variables are clear from bias. 

The last test that can be used on all of the variables is a test of significance. As already 

been stated, with the exception of the gross area variable, all of the rest of the variables were not 
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shown to be statistically significant in helping explain the models’ behavior outputs, however, 

due to the principle nature of this study, the importance of such variables were needed to be 

included as to be able to demonstrate the climatological relationship of energy use. If the only 

goal was to understand energy use, then it could be argued that such variables are not needed and 

thus may be removed. 

A fundamental method of assessing the model’s performance or explanatory power is by 

identifying the Multiple R-Squared and Adjusted R-Squared value. Although the Multiple R-

Squared value will always be higher than the Adjusted R-Squared value, due to the reflection of 

complexity being modeled, an Adjusted R-Squared value reasonable gives what percentage is 

being explained by the model. In this test, the Adjusted R-Squared was shown to be 0.614268, 

meaning that the variables are acting to explain nearly 61 percent of the independent variable’s 

outcome. Generally, an Adjusted R-Squared value of 0.5 or higher, is considered a well-behaved 

model, because at least half of the model is being explained, nevertheless, depending on the 

complexity of the system being studied, this value is subjective and can be determined on a case 

by case basis. This model has a predictive capability of 61 percent, however, there is the 

limitation of having only one variable shown to have overall statistical significance, which is 

Gross_Area (of the building). More studies will be needed as to show whether or not an adjusted 

R-Squared value of .61 should be considered an overall good predictor, although it seems 

acceptable within the context of this study. Nevertheless, this model's predictive capability is 

stated at being at nearly 61 percent of the energy used for cooling. Additionally, it is possible to 

choose the best performing model by comparing different models to the Akaike’s Information 



 

65 

 

Criterion (AICc) value. In this test, the model returned an AICc value of 2664.785837. In the 

absence of any comparative model, this does not add to the analysis of this study. 

Furthering the analysis, it is shown that both the Joint F-Statistic and Joint Wald Statistic 

are statistically significant. This finding must be checked against the Koenker (BP) Statistic for 

statistical significance as well. Since it is shown that the Koenker (BP) Statistic is not statistically 

significant, then it means both the Joint F-Statistic and the Joint Wald Statistic, which are tests of 

the models overall statistical significance, can be accepted for the study. Furthermore, the 

Koenker (BP) Statistic (Koenker’s studentized Bruesch-Pagan statistic) is used to assess 

stationarity, meaning that all statistical properties are constant over space and time. If it was 

shown that the Koenker (BP) Statistic was statistically significant as well, then it would signify 

that at least some, if not all, of the independent variables and the dependent variable, are non-

stationary, meaning that some of the explanatory power of the variables may be stronger or 

weaker depending on geographic space or time. Regression tests that show the Koenker (BP) 

Statistic as being statistically significant can be further analyzed by performing a Geographic 

Weighted Regression (GWR). Since this is not the case in this situation, all of the explanatory 

variables are stationary, and operate consistently regardless of the specific geographic location 

being studied.  

In the context of OLS regression being used in spatial statistics, the Jarque-Bera Statistic 

tests whether or not the residuals are normally distributed when plotted as a curve function. If 

when plotted, the residuals do show a Gaussian distribution or a “normal” bell curve, then the 

model is not biased, and the Jarque-Bera Statistic would not be statically significant.  Another 

importance of the Jarque-Bera Statistic test, is the indication of whether or not the model has 
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been misspecified (meaning a key variable is missing from the model) when tested together with 

Spatial Autocorrelation, or if the model is trying to define for a nonlinear relationship, which 

would be shown when key explanatory variables show strong heteroscedasticity or skewness of 

the curve. It is important to note that in the case of nonlinear relationships, OLS, which is a 

linear regression model, should be suspended instead for the use of a nonlinear regression model, 

otherwise the variables may be recomputed, so as to be transformed usually logarithmically or 

exponentially. Since the analysis has shown the Jarque-Bera Statistic is statically significant, 

further analysis must be completed, upon whether or not spatial autocorrelation exists. Therefore 

it may be assumed that there are sufficiently key variables that are not being used to show 

predicted outcomes of the dependent variable, which has already been shown by the adjusted R-

squared, explaining 61% of the model’s outputs. These unknown variables may include other 

building characteristics, such as window, wall, and roof thermal insulation properties (R-values). 

Additionally, none of the variables appear to exhibit strong heteroscedasticity, indication that a 

nonlinear relationship does not exist.  
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Figure 22: Residual map showing greatest deviation has occurred for over/under predictions. 

In order to test for residual spatial autocorrelation, it is possible to compute Global 

Moran’s I (Index) to be able to understand if clustering is occurring. Sometimes it is possible to 

be able to look at a map of the residuals (See figure above) to visually notice whether or not 

spatial clustering is occurring, but a more objective, and thus trusted method, is by deriving the 

actual Moran’s I value. If it is true that statistically, significant clustering is occurring for the 

residuals of the regression outcome, then a key variable is missing, thus it is said that the model 

is misspecified.  

This study’s results have shown that the Critical Value (z-score) is 1.038557, which fall 

within the level of randomness needed for statistically significant clustering to not occur. The 

value that is needed to ensure statically testing is met is for the range of values to fall between     

-1.65 to +1.65 (See figure below).  
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Figure 23: Moran’s I Spatial Autocorrelation graph signifying whether the model exists clustering. 

By plotting a graph of the residuals, it is possible to determine if the statistical model that 

has been developed is properly specified. The shape of these residuals, where the model has 

underpredicted values and over predicted values, should be random and take the shape of a bell 

curve. Although no model will ever be perfect, nevertheless, the shape from the plotted residuals 

should achieve as close as random as what is reasonable. In figure 24, the residuals do give the 

appearance of a bell curve, which is shown from the blue “normal” curve line. In addition to a 
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visual histogram, this should be checked in relation to the given value of determining from the 

Jarque-Bera test. 

 

Figure 24: The purple bars presented the plotted distribution of the residuals. These can be compared against the ideal Gaussian 

distribution, which is represented as a blue curve line. Since the two appear to match it can be said that the explanatory variable in this 

model is properly specified. 

The figure shows the graphical representation that is derived from the Koenker diagnostic 

test, which details the relational changes that are being modeled through the study area or 

stationarity. The plotted dots from the residual outputs should show a random distribution, with 

no shaping occurring, such as is the case in the figure. If it were determined that there existed a 

clear heteroscedasticity from the plotted residuals, such as a cone shape forming to the left, then 

the model would be exhibiting nonstationarity (i.e. residuals that vary intrinsically across space).  
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Figure 25: This graph shows the plots of the residuals from the model. When a model is properly specified, this graph shows almost no 

structure and appears to be random. Otherwise, nonstationarity may be occurring, which could have the benefit of running a GWR. 

Note how a random plot of residuals may appear on the right.  

Note that the above image does not show any true bias occurring. The residuals do appear 

random and do not show shape, such as the shape of a cone. This pattern indicates that the model 

is properly fitted and that indeterminate to geographic space, the residual outputs will look 

evenly distributed.  
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4.2 Regression Model Comparison 

Due to the specification of the prior model's results, a logarithmic transformation was 

performed on the variable of gross building area, to shift the heteroscedasticity to measure with a 

normal distribution curve. The process of this transformation did, in fact, shift one of the most 

important variables in the prior model to the right as seen in the below figure.  

 

Figure 26: Transformed Building Gross Area Variable Scatterplot 

The model was able to outperform the prior model's results as shown from the table 

below. As noted, the AICc value is lowered by a significant margin, showing a stronger model in 

general. In addition, prediction power of the model, through the Adjusted R-Squared value is 

shown to be lowered, however, it still remains in a suitable range. Biases of the residuals are not 
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present in either model. Another significant discoverable difference is that of the stationarity of 

both models. Where the original model A was shown to be stationary from the Koenker (BP) 

Statistic, the new transformed model B is shown to be non-stationary, meaning that the 

explanatory variables may hold some degree of variance in regards to predictability against the 

dependent variable in regards to specific location. This can be further analyzed through a 

geographically weighted regression. The other significance of the Koenker (BP) Statistic is in the 

refutation of both the Joint F Statistic and the Joint Wald Statistic, which can only assess the 

models overall statistical significance if and only if the Koenker (BP) Statistic is shown to not be 

statistically significant. The final difference that exists from both models is the results from the 

Jarque-Bera Statistic. Having the Jarque-Bera Statistic measure as not being statistically 

significant details the facts that the model is being properly specified (key variables are not 

missing), and that a nonlinear relationship does not exist.  

Table 12: Comparison of OLS Models 

Statistics Original Model A  Transformed Model B 

Akaike’s (AICc) 2664.785837 2454.956981 

Adjusted R-Squared 0.614268 0.589439 

Z-Score 1.560348 (Non Biased) 1.249627 (Non Biased) 

Joint F-Statistic Statistically Significant Statistically Significant 

Joint Wald Statistic Statistically Significant Statistically Significant 

Koenker (BP) Statistic Not Statistically Significant Statistically Significant 

Jarque-Bera Statistic Statistically Significant Not Statistically Significant 
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4.3 Regression Using Geographically Weighted Regression (GWR)  

As already been noted, the first order to running a GWR (Brunsdon et al. 1996), is to first 

run an OLS regression, where it is possible to run a Koenker test in order to see if all the 

variables are non-stationary. GWR can help in explaining whether or not the explanatory 

variables have a strong predictive relationship with the dependent variable in certain geographic 

locations. In the case of LST, it might be reasonable to assume the case that LSE will show a 

strong predictive relationship downtown, where an associated Urban Heat Island Intensity 

(UHII) would be strongest. In the original Model A OLS analysis, it was shown through the 

Koenker (BP) Statistic that all of the key explanatory variables were stationary. Therefore the 

model would not benefit significantly by performing a GWR.  However, through the transformed 

variable Model B, the Koenker (BP) Statistic was shown to have instances of non-stationarity.  

It was possible to run a GWR analysis through only one key explanatory variable, which 

was the logarithmically transformed gross area of buildings. When other explanatory variables 

were used, there most probably existed severe local multicollinearity within the model’s design, 

signifying that there were key explanatory variables overlapping in their predictive power, thus 

creating redundancy within the GWR analysis. Once the design problems were fixed, the 

residual map output showed geographically where the gross area of the buildings played a more 

significant role on the energy use of the campus (See figure below).  
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Figure 27: A residual map indicating geographic influences from the model predicted outcomes. 

The results of the GWR analysis were performed with the Bandwidth parameter chosen 

from the AICc method. This output gives the smoothness of the representation being presented, 

with a fixed distance measured in meters. The output, therefore, was calculated as 18,095.08 

meters. The residual squares test indicates the model’s fit to the actual observed data. A smaller 

number indicates a better overall fit. A number of 2,598,177,193,250.9873 would be considered 

very high. The effective number value can be used for further diagnostic measures and reflects 

the tradeoff within the model’s overall fit. Sigma values indicate the estimated standard deviation 

of the residuals, where a smaller value is preferred. A value of 171,133.7875 would be 

considered as also being very high. Again the AICc value helps to determine the overall model's 

performance, which is shown as to not have improvement, with a value of 2455.6712. Lastly, the 
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R2 Adjusted value also give detail to the model’s performance, however, in the case of a GWR 

analysis, the AICc value would become more reliable of a measure (See table below).  

Table 13: GWR Diagnostic Test 

 

Statistics Score 

Bandwidth (Neighbors) 18095.077005254832 

Residual Squares 2598177193250.9873 

Effective Number 2.2849621634233452 

Sigma 171133.78745271239 

AICc 2455.671201751858 

R2 Adjusted 0.54325974475834582 

 

In conclusion, the additional information provided from the GWR regression is still 

limited. Although it can be shown that non-stationarity exists, meaning that the model’s 

parameters exhibit a total better fit in certain geographic spaces above other occurrences on the 

map, the overall parameters are still limited, as shown by the evidence of missing variables, 

which are still key to accurately determining the energy-use modeling of Auburn’s campus. 

Therefore more data is necessary in order to derive significant results that can be used in decision 

making.   
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Chapter 5. Significance 
 

 

Primarily, it has been shown that the use of a cool roof may not be a suitable mitigation 

strategy against Urban Heat Island intensity as originally intended. The properly specified 

regression model showed little relationship between the variables of Albedo, LST, Solar 

Insolation and Energy Use. This would signify that a more reflective roof would contribute little 

to lowering the energy use for the buildings on Auburn University’s campus, which would not 

disrupt the feedback effect of an Urban Heat Island to continue to occur.  

Secondly, due to the results of the regression models test for stationarity, it would not 

seem that some buildings would benefit significantly from the adoption of cool roofs to others. 

Therefore, even overall cool roofs do not seem to be a suitable geoengineering technique for use 

of the buildings on the campus of Auburn University. 

Thirdly, a suitable method has been established for the use of calculating albedo with 

Landsat 8 data, which was previously reserved for prior Landsat data or alternative methods of 

calculating reflectance, such as the use of tasseled cap brightness.  

5.1 Future Studies 

 

It is reasonable to expect the thermal insulation factors of the buildings’ properties to play 

a more significant effect on energy use than climatic environmental factors. Due to this 

phenomenon, it is necessary to include other building characteristics to future studies. Some such 

building characteristics may include number and size of windows, the building’s material, 
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thermal insulation property (R-Factor), and the building’s population (number of daily residents 

with traffic in and out of the building).  

Additionally, due to the large exposure on both direct and diffuse solar insolation, the 

marginal benefit from the installing of cool roofs may not outperform the energy capture from 

the installation of solar energy panels. Due to the continued decrease in costs for solar energy, it 

may become much more feasible to choose to install solar roofing. The achieved outcome of 

such work may be such that, the energy saved from installing cool roofs, will be much less than 

the energy gained from the capture of solar energy panels.  

The primary goal of finding the relationship between LST, albedo, solar irradiance, and 

energy has been determined by using statistical regression. These results can provide details on 

the type of buildings which may be best for adopting UHI mitigation strategies. By applying a 

regression analysis, trend data can be used to set predictors and estimators that will allow 

researchers and decision makers the ability to observe energy consumption patterns as it relates 

to the natural climate and anthropogenic effects as well. 

5.2 Conclusion 

 

The beneficial use of cool roofs have been proposed in areas like California and even 

Chicago, yet the data for Auburn University does not seem to exhibit the same benefit from cool 

roofs. The reason for some of this difference may be in the regional differences from Auburn’s 

climate to the others. Other factors to consider are that cool roofs in this study are being 

modeled, with the goal to find a relationship between Albedo and energy use, meaning that the 

defined “Cool Roofs” are not being directly studied. There exist no cool roofs on Auburn 

University’s campus, and so the hypothetical value must be modeled through regression. 
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However, it has been shown by the temperature difference between the remotely sensed images 

of brightness temperature and LST, that there exists a significant temperature difference. This 

signifies that emissivity, one part of the equation for cool roofs, does play a large role in the 

actual LST of Auburn’s campus, and as such may act to mitigate against UHII effects. This 

process, however, would be costly, and may only become accepted during the process of new 

roof construction or roof repair and reconstruction.  

Nevertheless, the increasing use of energy in urban areas will continue to pressure the 

sustainable development of these areas. Pollution that is being emitted from the increased energy 

use will continue to present real tangible problems, adding to the intensification of UHI through 

the positive feedback effect of the creation of GHGs which act to trap more heat, that needs to be 

offset by increased energy demand used for cooling, thus creating more GHGs and pollutants 

(Menon et al. 2010). By looking at solutions of reducing energy use, these sustained negative 

effects can be turned around, which will greatly reduce energy use and therefore reduce the 

associated negative effects caused by UHII. Although it has been shown that the installation of 

cool roofs for Auburn University does not significantly counteract the UHII problem, there may 

be other solutions in the form of increased energy efficiency of the building’s construction, and 

the installation of solar panels on the building’s rooftops. Both of these circumstances would act 

to positively counteract the negative balance caused from UHII, by capturing more energy on 

sunny days, which would be when energy use would be highest, as well as having the ability to 

retain cooler internal building temperatures from increased thermal efficiencies.  

The era in which we currently live has been termed the Anthropocene period (Crutzen 

2006), a time when humans have had the greatest impact on their natural environment, more so 
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than any other time in history. This human impact on the natural environment has led to 

devastating consequential effects that if left unchecked, will surely continue to escalate. Never 

has the case been so relevant than within the study of UHII, where the rapid pace of urbanization 

in the 21st century is causing environmental stress to be placed on the microclimates of the 

world. The necessity to employ mitigation strategies to ameliorate these harmful effects has 

never been of more paramount importance and demands immediate action. Cool roofs may still 

play an instrumental role in the future for solving the UHII problem, however, it has been shown 

for Auburn University that it may no longer be considered a suitable alternative from the 

investment of resources from building insulation and solar roofing.  
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Appendix 
 

Appendix 1: Maps of Study Area (site of 97 Buildings) 
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Appendix 2: Earth’s Energy Budget (NASA) 
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Appendix 3: The angle of the Sun’s position to Earth 

 

The path of the Sun over the celestial sphere through the course of the day for an observer at 56°N latitude. The Sun's path changes with 

its declination during the year. The intersections of the lines with the horizontal axis show azimuths in degrees from North where the Sun 

rises and sets at the summer and winter solstices (Deditos). 

  

https://en.wikipedia.org/wiki/Azimuth
https://en.wikipedia.org/wiki/Solstice
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Appendix 4: Seasonal Solar Altitude 

 

Solar altitude over a year; latitude based on New York, New York (Hartz). 
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Appendix 5: Spectrum of Solar Radiation on Earth 

 

Wavelength (nm) (http://commons.wikimedia.org/wiki/File:Solar_spectrum_ita.svg) 
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Appendix 6: Radiation spectrum for reflectance and absorption 

 

Reflectivity spectra of different surfaces (Andreas Kaab, University of Oslo)  
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Appendix 7: Sample of Energy Data for Scott-Richie Research Center 

 

Month-CY FY

Building

Code BUILDING NAME

CONSUMPTIO

N 

MEASURE

CONSUMPTIO

N 

(K/GALLONS)

COST 

PER UNIT

COST THIS 

PERIOD SUBTOTAL COMMENTS MMBTU Building Type

Sep-09 FY09 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,643.000 $0.50 $6,321.50 $6,321.50 Laboratory

Oct-09 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,558.000 $0.56 $7,032.48 $7,032.48 Laboratory

Nov-09 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,827.000 $0.56 $6,063.12 $6,063.12 Laboratory

Dec-09 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 5,383.000 $0.56 $3,014.48 $3,014.48 Laboratory

Jan-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 2,367.000 $0.56 $1,325.52 $1,325.52 Laboratory

Feb-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 1,862.000 $0.56 $1,042.72 $1,042.72 Laboratory

Mar-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 3,021.000 $0.56 $1,691.76 $1,691.76 Laboratory

Apr-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,765.000 $0.56 $6,028.40 $6,028.40 Laboratory

May-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 11,425.000 $0.56 $6,398.00 $6,398.00 Laboratory

Jun-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 11,980.000 $0.56 $6,708.80 $6,708.80 Laboratory

Jul-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,088.000 $0.56 $7,889.28 $7,889.28 Laboratory

Aug-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,096.000 $0.56 $7,893.76 $7,893.76 Laboratory

Sep-10 FY10 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,560.000 $0.56 $7,593.60 $7,593.60 Laboratory

Oct-10 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,884.000 $0.50 $5,442.00 $5,442.00 Laboratory

Nov-10 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 11,098.000 $0.50 $5,549.00 $5,549.00 Laboratory

Dec-10 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,201.000 $0.50 $4,600.50 $4,600.50 Laboratory

Jan-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,103.000 $0.50 $4,551.50 $4,551.50 Laboratory

Feb-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 8,761.000 $0.50 $4,380.50 $4,380.50 Laboratory

Mar-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,169.000 $0.50 $5,084.50 $5,084.50 Laboratory

Apr-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,131.000 $0.50 $5,065.50 $5,065.50 Laboratory

May-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,048.000 $0.50 $6,024.00 $6,024.00 Laboratory

Jun-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,651.000 $0.50 $6,825.50 $6,825.50 Laboratory

Jul-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,123.000 $0.50 $7,061.50 $7,061.50 Laboratory

Aug-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,018.000 $0.50 $7,009.00 $7,009.00 Laboratory

Sep-11 FY11 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,885.000 $0.50 $3,942.50 $3,942.50 Laboratory

Oct-11 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 6,666.310 $0.47 $3,133.17 $3,133.17 Laboratory

Nov-11 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,253.000 $0.47 $5,758.91 $5,758.91 Laboratory

Dec-11 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,645.000 $0.47 $5,003.15 $5,003.15 Laboratory

Jan-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,996.000 $0.47 $4,698.12 $4,698.12 892 Laboratory

Feb-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,058.000 $0.47 $4,727.26 $4,727.26 858 Laboratory

Mar-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,183.807 $0.47 $6,196.39 $6,196.39 1236 Laboratory

Apr-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,564.928 $0.47 $5,905.52 $5,905.52 1234 Laboratory

May-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,114.239 $0.47 $6,633.69 $6,633.69 1828 Laboratory

Jun-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,657.369 $0.47 $6,418.96 $6,418.96 2375 Laboratory

Jul-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,098.056 $0.47 $6,626.09 $6,626.09 2320 Laboratory

Aug-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,114.119 $0.47 $6,633.64 $6,633.64 2283 Laboratory

Sep-12 FY12 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,529.511 $0.47 $5,888.87 $5,888.87 1784 Laboratory

Oct-12 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,009.453 $0.54 $6,485.10 $6,485.10 1268 Laboratory

Nov-12 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,515.705 $0.54 $5,138.48 $5,138.48 755 Laboratory

Dec-12 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,482.427 $0.54 $5,660.51 $5,660.51 822 Laboratory

Jan-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,959.423 $0.54 $5,918.09 $5,918.09 954 Laboratory

Feb-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,730.633 $0.54 $5,254.54 $5,254.54 648 Laboratory

Mar-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,561.356 $0.54 $5,703.13 $5,703.13 886 Laboratory

Apr-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,088.809 $0.54 $5,447.96 $5,447.96 1076 Laboratory

May-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 16,958.167 $0.54 $9,157.41 $9,157.41

Averaged: 

NIE/NAE 

Upgrade 1633 Laboratory

Jun-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 19,278.662 $0.54 $10,410.48 $10,410.48 2135 Laboratory

Jul-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 19,574.558 $0.54 $10,570.26 $10,570.26 2203 Laboratory

Aug-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 25,715.011 $0.54 $13,886.11 $13,886.11 2475 Laboratory

Sep-13 FY13 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 20,645.007 $0.54 $11,148.30 $11,148.30 2026 Laboratory

Oct-13 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 17,147.070 $0.55 $9,430.89 $9,430.89 1454 Laboratory

Nov-13 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,991.570 $0.55 $6,045.36 $6,045.36 789 Laboratory

Dec-13 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 10,549.144 $0.55 $5,802.03 $5,802.03 767 Laboratory

Jan-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 8,164.514 $0.55 $4,490.48 $4,490.48 438 Laboratory

Feb-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,095.056 $0.55 $5,002.28 $5,002.28 610 Laboratory

Mar-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,308.316 $0.55 $5,119.57 $5,119.57 660 Laboratory

Apr-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 12,154.612 $0.55 $6,685.04 $6,685.04 1041 Laboratory

May-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 15,691.173 $0.55 $8,630.15 $8,630.15 1473 Laboratory

Jun-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 19,165.316 $0.55 $10,540.92 $10,540.92 1878 Laboratory

Jul-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 22,918.444 $0.55 $12,605.14 $12,605.14 2231 Laboratory

Aug-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 24,184.856 $0.55 $13,301.67 $13,301.67 2378 Laboratory

Sep-14 FY14 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,884.043 $0.55 $8,186.22 $8,186.22 689 Laboratory

Oct-14 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,294.682 $0.56 $7,445.02 $7,445.02

Averaged days 

2-3 for day 1 1199 Laboratory

Nov-14 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 8,641.903 $0.56 $4,839.47 $4,839.47  649 Laboratory

Dec-14 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,102.515 $0.56 $5,097.41 $5,097.41  756 Laboratory

Jan-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,676.624 $0.56 $4,298.91 $4,298.91  609 Laboratory

Feb-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,115.752 $0.56 $3,984.82 $3,984.82  546 Laboratory

Mar-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 11,007.471 $0.56 $6,164.18 $6,164.18  626 Laboratory

Apr-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,848.665 $0.56 $7,755.25 $7,755.25  1210 Laboratory

May-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 15,731.489 $0.56 $8,809.63 $8,809.63  1631 Laboratory

Jun-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,166.786 $0.56 $7,933.40 $7,933.40  1900 Laboratory

Jul-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 16,155.738 $0.56 $9,047.21 $9,047.21  2103 Laboratory

Aug-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 15,477.766 $0.56 $8,667.55 $8,667.55  1944 Laboratory

Sep-15 FY15 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 13,114.824 $0.56 $7,344.30 $7,344.30  1674 Laboratory

Oct-15 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,150.402 $0.60 $8,490.24 $8,490.24  1886 Laboratory

Nov-15 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 9,716.393 $0.60 $5,829.84 $5,829.84  213 Laboratory

Dec-15 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,740.078 $0.60 $4,644.05 $4,644.05

Programming 

error: Averaged 

days 18-31 for 

days 1-8 567 Laboratory

Jan-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 3,681.212 $0.60 $2,208.73 $2,208.73  228 Laboratory

Feb-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 4,771.888 $0.60 $2,863.13 $2,863.13  361 Laboratory

Mar-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,305.114 $0.60 $4,383.07 $4,383.07  665 Laboratory

Apr-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 7,965.570 $0.60 $4,779.34 $4,779.34  776 Laboratory

May-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 11,280.646 $0.60 $6,768.39 $6,768.39  1198 Laboratory

Jun-16 FY16 AA_D1401 SCOTT-RITCHEY RESEARCH CENTER & WARE Metered 14,858.996 $0.60 $8,915.40 $8,915.40  1710 Laboratory
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Appendix 8: Shapefile Data Sample 
OBJECTID BLDG_NAME BLDG_NASF ORIG_YEAR_ Age_year_ GROSS_AREA Shape_Leng Shape_Area Ener_Cool Ene_Use_Gross_Area LST_mean NDVI_mean LSE_mean Lian_mean Log_Lian LN_Lian Exp_Lian Exp_2_Lian Log_2_Lian Log_Lian_2 Inverse_Li Ele_mean DIR_Solar DIFF_Solar Solar_Tota

1 Wellness Kitchen 7682 2014 3 13856 490.65646 11972.65036 141050 10.17970554 93.59229 0.27687 0.95986 0.234859886 -0.629191155 -1.448766173 1.26473155 0.055159166 -2.090127773 0.395881509 0.484623447 196.75566 5.922736088 1.057762021 6.980498108

2 South Donahue Residence Hall 156381 2013 4 272056 2232.79555 53195.59454 580544 2.133913606 93.41065 0.36628 0.95997 0.130716935 -0.883668145 -2.034721099 1.139645142 0.017086917 -2.935482038 0.780869391 0.36154797 217.10298 4.969937571 0.974466723 5.944404293

3 Bailey Small Animal Teaching Hos 118211 2014 3 216943 1838.13631 95692.51164 1017254 4.689038134 98.39188 0.45063 0.97261 0.200021564 -0.698923181 -1.609330099 1.221429097 0.040008626 -2.321772552 0.488493614 0.447237704 200.80683 5.864276551 1.055340978 6.919617529

4 Kinesiology Building 36289 2013 4 63259 866.63725 22293.96699 204602 3.234354005 94.79594 0.32612 0.956 0.192313014 -0.715991325 -1.648630952 1.212049846 0.036984295 -2.378471699 0.512643578 0.438535078 211.49598 6.003005336 1.056374314 7.05937965

5 Recreation & Wellness Center 180612 2013 4 289759 2610.06203 110484.9632 566405 1.95474515 99.1335 0.19182 0.95686 0.148973907 -0.826889791 -1.903984106 1.160642705 0.022193225 -2.746868428 0.683746726 0.385971382 209.95751 6.231766035 1.079832335 7.31159837

6 Equine Research Lab Building 3179 2011 6 5810 335.49028 6004.00362 30577 5.262822719 86.4675 0.63329 0.98716 0.168457783 -0.77350892 -1.781070109 1.183478262 0.028378025 -2.569541014 0.59831605 0.410436088 193.55388 5.752784709 1.0458575 6.798642209

7 Woltosz Engineering Research Lab 42284 2011 6 84315 655.75001 18431.71632 988768 11.7270711 101.10975 0.23274 0.94357 0.152431593 -0.816925011 -1.881039353 1.164662788 0.023235391 -2.713766146 0.667366474 0.390424888 224.75585 5.716841236 1.026890537 6.743731774

8 Wiggins Hall 44155 2011 6 75695 708.70833 21009.02069 510674 6.746469384 99.97133 0.21219 0.94841 0.156768774 -0.804740437 -1.852983335 1.169725112 0.024576449 -2.673289868 0.647607172 0.395940367 222.81505 5.796998027 1.034199178 6.831197205

9 Information Technology Building 34833 2011 6 63948 1152.59844 32203.40357 236217 3.693891912 93.27932 0.40834 0.96562 0.137946742 -0.860288552 -1.980887596 1.147914413 0.019029304 -2.857816711 0.740096393 0.371411823 224.42549 6.057325987 1.049019671 7.106345658

10 Auburn Arena 148512 2010 7 276513 2083.30698 134174.3426 917120 3.316733752 95.83902 0.13741 0.97128 0.300194154 -0.52259777 -1.203325835 1.350120913 0.09011653 -1.736032215 0.273108429 0.547899766 213.07036 6.169906718 1.072428659 7.242335377

11 Village View Dining Facility 19675 2009 8 40245 821.93714 26695.20552 269035 6.684929805 96.20444 0.15663 0.96838 0.196785531 -0.706006837 -1.625640819 1.2174829 0.038724545 -2.345303947 0.498445654 0.443605152 210.70767 6.220694583 1.075638671 7.296333254

12 Aubie Residence Hall 76331 2009 8 107930 1357.27913 26859.50207 345116 3.197591031 94.71168 0.39597 0.96515 0.13853309 -0.858446477 -1.976646062 1.148587688 0.019191417 -2.851697471 0.736930354 0.372200336 217.97042 5.74958475 1.025896285 6.775481035

13 Eagle Residence Hall 37851 2009 8 58215 804.95724 14988.08493 203132 3.489341235 94.99756 0.3778 0.96315 0.145922676 -0.835877214 -1.924678412 1.157106713 0.021293427 -2.776724 0.698690716 0.381998267 214.3761 5.53238969 1.012599372 6.544989062

14 Tiger Residence Hall 38097 2009 8 58213 804.95724 14988.08493 214610 3.68663357 94.48387 0.3777 0.96313 0.138402478 -0.858856134 -1.977589331 1.148437678 0.019155246 -2.853058321 0.737633859 0.372024835 211.61812 5.528789481 1.012577364 6.541366845

15 Talon Residence Hall 41671 2009 8 60772 833.71649 15072.28395 99338 1.634601461 93.05251 0.39991 0.96564 0.144095192 -0.841350511 -1.937281145 1.154994049 0.020763424 -2.794905901 0.707870683 0.379598724 209.79763 5.66944936 1.02265713 6.69210649

16 Plainsman Residence Hall 41678 2009 8 60779 833.71649 15072.28395 219570 3.612596456 93.29993 0.4082 0.96685 0.142187437 -0.847138773 -1.950609111 1.152792705 0.020217267 -2.814134091 0.717644101 0.377077495 209.75544 5.685581848 1.021725612 6.707307459

17 Willow Residence Hall 76821 2009 8 108827 1368.32745 27420.66578 143674 1.320205464 94.34306 0.39434 0.96521 0.136930526 -0.863499724 -1.988281593 1.146748476 0.018749969 -2.868483994 0.745631774 0.370041249 212.62668 5.625944883 1.022034028 6.64797891

18 Oak Residence Hall 76870 2009 8 108868 1368.32745 27420.66578 108868 1 94.71083 0.42963 0.96903 0.142460476 -0.846305609 -1.948690679 1.153107505 0.020294987 -2.811366378 0.716233183 0.377439367 215.06471 5.626797532 1.020681875 6.647479407

19 Magnolia Residence Hall 74365 2009 8 107088 1337.50421 26921.11403 120384 1.12415957 94.85277 0.39071 0.96405 0.140517398 -0.852269901 -1.962423968 1.150869102 0.019745139 -2.831179327 0.726363983 0.374856503 212.34739 5.805140613 1.034406676 6.839547288

20 Hoerlein Hall 25047 1970 47 39412 1155.81779 49335.71495 355215 9.012864102 99.6211 0.2094 0.94859 0.158919654 -0.79882239 -1.839356528 1.172243757 0.025255456 -2.653630541 0.638117211 0.39864728 194.67373 6.195198585 1.085349029 7.280547614

21 Duncan Hall 22191 1928 89 37730 706.36105 12138.27205 171067 4.533978267 93.88405 0.34654 0.95827 0.151048314 -0.820884118 -1.890155533 1.163052848 0.022815593 -2.726918015 0.673850735 0.388649346 215.82046 5.728321175 1.031663315 6.75998449

22 BERL - Biological Eng Rsrch Lab 12380 1949 68 21415 690.467 10533.252 235226 10.98416997 96.67688 0.21279 0.93573 0.14439312 -0.8404535 -1.9352157 1.155338206 0.020849373 -2.791926093 0.706362085 0.379990947 210.69977 5.479026275 1.025902589 6.504928863

23 Dudley Hall 36318 1977 40 56285 677.99298 14539.29389 151466 2.691054455 91.4633 0.25039 0.96721 0.151726248 -0.818939282 -1.885677382 1.163841589 0.023020854 -2.720457407 0.670661547 0.389520536 221.01007 5.961961071 1.043185195 7.005146267

24 Sciences Center Laboratory Bldg 53935 2005 12 106609 727.17283 21335.99193 1128520 10.58559784 93.62516 0.41218 0.96708 0.112024194 -0.950688173 -2.189040415 1.118539922 0.01254942 -3.158117751 0.903808002 0.334700155 223.42382 5.150449762 1.000275074 6.150724836

25 Haley Center 244491 1969 48 429797 2612.01168 95292.79885 1833654 4.266325731 93.53508 0.17037 0.96603 0.290359963 -0.537063268 -1.236633875 1.336908639 0.084308908 -1.784085559 0.288436954 0.538850594 217.50854 5.21908271 1.034265476 6.253348186

26 Beard-Eaves-Memorial Coliseum 196120 1969 48 372165 2142.62037 132227.3737 1028844 2.764483495 104.35729 0.21931 0.94147 0.109338637 -0.961226345 -2.213305452 1.115540049 0.011954938 -3.1931248 0.923956086 0.330663933 213.51927 6.262154304 1.08459518 7.346749484

27 Watson Fieldhouse 29176 1997 20 31860 780.13177 32810.5548 46673 1.464940364 92.68084 0.25747 0.97584 0.231261445 -0.635896765 -1.464206412 1.260188666 0.053481856 -2.112403329 0.404364696 0.480896501 195.83348 6.191968871 1.075981478 7.267950349

28 Dudley Commons 13976 1977 40 23873 582.45962 9661.86558 34294 1.436518242 91.05654 0.38872 0.9631 0.145125609 -0.838255944 -1.93015564 1.156184789 0.021061442 -2.784625971 0.702673027 0.380953553 213.15311 5.265536547 1.03220751 6.297744056

29 Shelby Center for Engineering 98238 2007 10 198765 2091.95379 58504.79789 544323 2.738525394 97.22531 0.39366 0.96339 0.131067002 -0.882506634 -2.03204662 1.140044164 0.017178559 -2.931623581 0.778817959 0.36203177 225.90426 5.647476639 1.017141702 6.664618341

30 Duncan Residence Hall 18285 1962 55 34341 512.58513 8613.9439 123322 3.591101016 91.53704 0.46153 0.97227 0.142358162 -0.846617628 -1.94940913 1.152989532 0.020265846 -2.812402884 0.716761408 0.377303806 219.45623 5.283793254 0.974356982 6.258150237

31 Vaughan Large Animal Hospital 46760 2003 14 82353 1299.6113 67935.88955 644685 7.828312265 98.74887 0.33363 0.95724 0.096443157 -1.015728584 -2.338801495 1.101246981 0.009301282 -3.374177319 1.031704556 0.310552985 195.44307 6.018894708 1.065697085 7.084591794

32 Carson Barn - Beef Receiving 8370 2005 12 9708 394.39411 9132.70827 90199 9.291203131 92.51687 0.45041 0.96771 0.126392479 -0.898278769 -2.068363302 1.134727437 0.015975059 -2.984017478 0.806904746 0.355517199 192.78717 5.930311954 1.059150195 6.989462149

33 Greene Hall 79003 1971 46 124200 2115.77684 73627.07381 916460 7.378904992 98.70535 0.2716 0.95497 0.162231942 -0.789863633 -1.818728228 1.176133004 0.026319203 -2.623870195 0.623884559 0.402780265 199.1213 6.071074185 1.075750366 7.146824551

34 Large Animal Isolation Facility 1600 1997 20 2766 257.85424 3293.08035 42554 15.38467101 92.14633 0.47032 0.96706 0.172010475 -0.764445105 -1.760199903 1.187690274 0.029587603 -2.539431672 0.584376319 0.414741455 191.51259 5.857352742 1.049885189 6.907237931

35 Veterinary Education Center 27964 1987 30 55744 808.70466 28089.15097 65000 1.166044776 100.1482 0.35209 0.95845 0.113497655 -0.945013112 -2.175973104 1.120189262 0.012881718 -3.139265606 0.893049782 0.33689413 202.81246 6.307467452 1.077645676 7.385113129

36 Medical Clinic 25042 2004 13 42861 650.66847 19262.27299 122961 2.868831805 90.51546 0.42665 0.9682 0.135824552 -0.867021717 -1.996391282 1.145480904 0.018448309 -2.880183802 0.751726658 0.368543827 219.10566 6.054001355 1.0531752 7.107176555

37 Forestry and Wildlife Sciences 60368 2005 12 112066 1386.53592 35982.16675 424803 3.790650153 87.41857 0.60181 0.98292 0.115156741 -0.938710633 -2.161461109 1.122049295 0.013261075 -3.118329223 0.881177652 0.339347523 216.02486 5.670077232 1.027895358 6.69797259

38 Sasnett Residence Hall 35556 1967 50 61016 542.2937 9204.9584 218681 3.583994362 92.38484 0.37815 0.96295 0.138817438 -0.857555976 -1.974595608 1.148914332 0.019270281 -2.848739291 0.735402253 0.372582122 224.11872 4.494931335 0.942282967 5.437214302

39 Boyd Residence Hall 35503 1967 50 60598 544.34462 9041.02215 115531 1.906515067 90.97942 0.43654 0.96995 0.127624589 -0.894065645 -2.058662226 1.136126408 0.016288036 -2.970021784 0.799353377 0.357245838 226.85229 4.539401043 0.941247705 5.480648748

40 Dowell Residence Hall 21367 1967 50 34036 496.28137 8724.49605 50676 1.488894112 92.30604 0.44375 0.97064 0.130399223 -0.884724997 -2.037154588 1.139283121 0.017003957 -2.938992822 0.782738319 0.361108326 218.20842 5.262432452 0.970518002 6.232950454

41 Knapp Residence Hall 21234 1967 50 34533 545.12634 8689.4272 44218 1.280456375 91.81858 0.43453 0.96945 0.163668936 -0.78603374 -1.809909573 1.177824316 0.026787521 -2.611147565 0.617849041 0.404560176 219.43025 5.310940746 0.979726648 6.290667394

42 Leischuck Residence Hall 18542 1994 23 31192 471.43039 8127.5877 131342 4.210759169 90.93383 0.469 0.97338 0.134529201 -0.871183438 -2.005973998 1.143998064 0.018098106 -2.894008739 0.758960583 0.366782225 218.34973 5.325208562 0.97752537 6.302733932

43 Terrell Dining Hall 25184 1962 55 32862 1080.33536 31421.747 61882 1.883086848 93.52155 0.3823 0.96233 0.168561852 -0.773240706 -1.780452522 1.183601433 0.028413098 -2.568650024 0.597901189 0.410562848 212.77443 6.14297024 1.07130728 7.21427752

44 M Residence Hall 18096 1994 23 31180 476.31257 8017.6612 154925 4.968729955 90.28585 0.43659 0.96968 0.130238096 -0.88526196 -2.038390993 1.139099567 0.016961962 -2.940776576 0.783688738 0.360885157 219.69685 4.815524042 0.96113202 5.776656061

45 Graves Residence Hall 18159 1965 52 30147 487.57723 8410.34025 84153 2.791422032 92.90484 0.40319 0.96623 0.123532489 -0.908218809 -2.09125109 1.131486765 0.015260276 -3.017037577 0.824861404 0.351471889 219.5157 4.865212277 0.965108126 5.830320403

46 Student Center 91221 2008 9 200425 1637.01751 63006.7057 675403 3.36985406 96.16223 0.15975 0.95302 0.146696014 -0.833581687 -1.919392766 1.158001893 0.02151972 -2.769098425 0.694858429 0.383009156 219.25282 5.927029979 1.04580333 6.972833309

47 Gorrie Center 20676 2006 11 37278 569.89498 12990.79045 64841 1.739390525 92.43205 0.40026 0.96485 0.130553753 -0.88421064 -2.035970239 1.139459187 0.017044282 -2.937284167 0.781828456 0.361322228 224.18252 5.206520727 0.995066163 6.20158689

48 Swingle Hall 16552 1972 45 30243 663.6336 8741.4865 190444 6.297126608 89.33033 0.51984 0.97827 0.146380708 -0.834516156 -1.921544461 1.157636826 0.021427312 -2.772202665 0.696417215 0.382597318 215.28623 5.943549128 1.048661183 6.992210311

49 Chemistry Building 35770 1989 28 72244 741.53207 22310.41107 632123 8.749833896 91.5943 0.43902 0.96983 0.146858044 -0.833102259 -1.918288843 1.15818954 0.021567285 -2.767505801 0.694059375 0.383220621 216.60467 4.815862771 0.981770647 5.797633418

50 Toomer Residence Hall 18730 1962 55 30508 525.2297 8646.1004 57562 1.886783794 94.44923 0.35093 0.9591 0.131081089 -0.88245996 -2.031939149 1.140060224 0.017182252 -2.931468534 0.778735581 0.362051224 219.37894 5.247013452 0.971388231 6.218401682

51 Dobbs Residence Hall 18071 1965 52 30530 534.00631 8797.8889 63810 2.090075336 94.49265 0.31336 0.9536 0.126448783 -0.898085348 -2.067917934 1.134791329 0.015989295 -2.983374949 0.806557292 0.355596376 219.50415 4.824684197 0.961902395 5.786586593

52 Burton Hall 7695 1967 50 14655 428.03907 5990.98745 50463 3.443398158 92.8067 0.41876 0.9681 0.148724264 -0.82761817 -1.905661262 1.160352994 0.022118907 -2.749288052 0.684951836 0.38564785 217.82305 4.881490513 0.966264282 5.847754795

53 Hollifield Residence Hall 18332 1962 55 30479 537.77352 8657.51435 62125 2.038288658 90.84062 0.41163 0.96705 0.11917404 -0.923818338 -2.127170334 1.126565969 0.014202452 -3.068858092 0.853440322 0.345215932 218.74214 4.87674479 0.966238083 5.842982873

54 Peet Theatre 33187 1972 45 61209 1000.2123 31077.51297 152798 2.496332239 90.01722 0.27132 0.97305 0.27085981 -0.567255431 -1.306153898 1.311091256 0.073365037 -1.884381752 0.321778724 0.520441937 216.62038 4.984861723 1.008278765 5.993140488

55 Smith Hall, M.W. 29928 1948 69 50269 1042.74203 22562.39296 326465 6.494360341 90.48971 0.49347 0.97399 0.133883865 -0.873271757 -2.01078253 1.14326004 0.017924889 -2.900945985 0.762603562 0.365901442 213.55219 5.735558401 1.048885662 6.784444063

56 Leach Science Center 35118 1960 57 65773 893.36244 28351.31385 656244 9.977407143 92.47648 0.34962 0.95792 0.160166431 -0.795428501 -1.831541809 1.173706196 0.025653286 -2.642356285 0.6327065 0.400207985 209.89161 6.055363542 1.067583518 7.12294706

57 Rouse Life Sciences Bldg 42236 1992 25 83279 745.68659 22288.087 886320 10.64277909 92.74897 0.35997 0.95856 0.151145603 -0.820604483 -1.889511649 1.163166006 0.022844993 -2.725989086 0.673391717 0.388774489 221.8676 4.78813679 0.988260793 5.776397583

58 Biological Research Facility 6888 1988 29 17427 333.23906 5969.52875 97846 5.61462099 93.9835 0.29325 0.94952 0.141505281 -0.849227351 -1.95541824 1.152006588 0.020023745 -2.821072197 0.721187094 0.376171877 215.99078 5.167831173 0.986653989 6.154485161

59 Upchurch Hall 44448 1930 87 70794 1009.29096 24255.20025 275919 3.897491313 92.33408 0.38988 0.96367 0.1270874 -0.895897506 -2.062880242 1.135516257 0.016151207 -2.976107095 0.802632341 0.356493197 218.71337 5.742849319 1.024028738 6.766878056

60 Corley Building 13453 1939 78 23265 414.38256 7809.13568 62322 2.678787879 96.02146 0.22374 0.93797 0.1276557 -0.893959788 -2.058418482 1.136161755 0.016295978 -2.969670136 0.799164103 0.357289379 215.84692 5.377505471 0.99761081 6.375116281

61 Funchess Hall 86882 1961 56 147343 1582.97955 46346.03507 895420 6.077112588 90.80135 0.14845 0.96669 0.309320811 -0.50959086 -1.173376318 1.362499405 0.095679364 -1.692824195 0.259682845 0.556166172 220.33034 6.231730637 1.070259257 7.301989894

62 Extension Hall 11998 1938 79 19148 392.17995 6392.4689 84015 4.387664508 90.53616 0.69865 0.98979 0.159140351 -0.798219688 -1.837968754 1.172502497 0.025325651 -2.651628407 0.63715467 0.398923992 211.22548 5.690285499 1.018131186 6.708416685

63 Allison Laboratory 24438 1963 54 37510 624.74525 12397.54341 108839 2.901599573 88.82642 0.54397 0.9799 0.163494383 -0.786497164 -1.810976645 1.17761874 0.026730413 -2.612687024 0.618577788 0.404344387 206.08629 6.032134322 1.062194158 7.09432848

64 Parker Hall 55037 1963 54 90251 755.58268 29952.9495 337567 3.740313127 93.79132 0.3622 0.95914 0.141998248 -0.847717014 -1.951940561 1.152574629 0.020163502 -2.816054967 0.718624137 0.376826549 207.25615 6.505437002 1.093873629 7.599310632

65 Comer Hall 26990 1910 107 45625 544.042 11701.17478 213159 4.671978082 92.79554 0.29644 0.95135 0.240919214 -0.618128563 -1.423293614 1.272418237 0.058042068 -2.053378638 0.38208292 0.490835221 226.00132 6.168523808 1.060515046 7.229038854

66 Owen Residence Hall 14402 1956 61 23832 504.99136 8232.73025 234795 9.852089627 89.74337 0.62545 0.98692 0.146116358 -0.835301163 -1.923352005 1.157330844 0.02134999 -2.7748104 0.697728032 0.382251694 210.95993 5.344627086 1.000369848 6.344996934

67 Lupton Residence Hall 14629 1952 65 30510 506.12772 8226.12525 215919 7.07699115 89.98688 0.63612 0.98646 0.133378811 -0.874913158 -2.014561995 1.142682777 0.017789907 -2.9063986 0.765473034 0.365210639 210.84971 5.275865361 0.99975604 6.275621402

68 Glenn Residence Hall 14373 1952 65 25397 500.68296 8314.383 159333 6.273693743 89.55523 0.63448 0.98757 0.146332182 -0.834660152 -1.921876024 1.157580651 0.021413107 -2.772681008 0.696657569 0.382533896 212.26527 5.301992549 0.998287552 6.300280101

69 Lane Residence Hall 14350 1952 65 30461 508.2336 8309.3464 192945 6.334164998 92.78827 0.44086 0.96933 0.126798096 -0.896887267 -2.06515925 1.135187796 0.016077757 -2.979395009 0.804406769 0.356087203 212.39047 5.252906657 0.995110668 6.248017325

70 Keller Residence Hall 14133 1952 65 23896 504.27033 8187.92345 128912 5.394710412 92.62831 0.48359 0.97454 0.145876685 -0.836014114 -1.924993636 1.157053498 0.021280007 -2.777178772 0.698919598 0.381938065 212.4402 5.296394675 0.995214259 6.291608934

71 Dowdell Residence Hall 14249 1952 65 24986 507.23317 8248.5088 131776 5.273993436 90.79662 0.56006 0.98095 0.138817015 -0.857557299 -1.974598653 1.148913847 0.019270164 -2.848743684 0.735404521 0.372581555 213.89352 5.348057289 0.99787381 6.345931099

72 Spidle Hall 34413 1962 55 50843 742.71358 17520.2176 670646 13.1905277 93.10454 0.38389 0.96366 0.173596319 -0.760459487 -1.751022678 1.189575261 0.030135682 -2.526191734 0.578298631 0.416648916 215.78308 6.342740342 1.073927122 7.416667464

73 Quad Center 14006 1939 78 28357 541.62821 14235.67438 120688 4.256021441 93.47416 0.37274 0.96202 0.140327855 -0.852856114 -1.963773773 1.150650984 0.019691907 -2.833126684 0.72736355 0.374603597 214.50114 5.905105081 1.045204977 6.950310058

74 Broun Residence Hall 16216 1938 79 29697 664.87299 8922.43568 66644 2.244132404 91.0169 0.49823 0.97598 0.15578541 -0.807473219 -1.859275798 1.168575411 0.024269094 -2.682367973 0.652013 0.394696605 217.89351 5.265306464 0.987537639 6.252844103

75 Martin Aquatics Center 59317 1969 48 88505 1302.61934 65459.14883 109324 1.235229648 101.28449 0.18863 0.94206 0.172405344 -0.763449277 -1.757906925 1.188159349 0.029723603 -2.536123603 0.582854799 0.415217225 201.84538 6.023666723 1.062184318 7.085851041

76 Student Activities Center 61330 1984 33 101572 1280.84371 73138.30089 389974 3.83938487 93.67188 0.21275 0.97575 0.317726537 -0.497946511 -1.146564214 1.374000471 0.100950152 -1.654142505 0.247950728 0.563672366 199.42757 6.492537985 1.098348653 7.590886639

77 Athletics Complex 60048 1989 28 100190 970.40012 46160.72017 607471 6.063189939 98.4844 0.32988 0.95198 0.1484076 -0.828543857 -1.907792735 1.159985611 0.022024816 -2.752363117 0.686484923 0.38523707 201.45157 5.816134824 1.063088284 6.879223108

78 Walker Building 67854 1975 42 123892 1134.98415 39504.18806 703636 5.679430472 97.71904 0.23913 0.95371 0.145878487 -0.836008749 -1.924981283 1.157055582 0.021280533 -2.777160951 0.698910628 0.381940424 214.3608 5.243379141 1.012778108 6.256157249

79 Gavin Engineering Research Laboratory 34205 1930 87 48950 800.87189 19614.6313 261061 5.333217569 95.66219 0.38714 0.96439 0.125851666 -0.900141031 -2.07265132 1.134113928 0.015838642 -2.990203781 0.810253876 0.354755784 218.28222 5.418045786 1.005910046 6.423955832

80 Harbert Center 28569 1986 31 46445 675.42112 18411.42765 246973 5.317536872 97.1543 0.33109 0.95666 0.14009155 -0.853588059 -1.965459139 1.150379112 0.019625642 -2.835558153 0.728612574 0.374288058 227.08524 5.371829933 0.997586122 6.369416054

81 Foy Hall 70188 1953 64 131929 1803.62691 51697.44825 926894 7.025703219 89.21375 0.10935 0.9772 0.332498659 -0.478210102 -1.101119452 1.394448029 0.110555358 -1.588579573 0.228684902 0.576626967 217.3406 5.96584626 1.055325771 7.02117203

82 Draughon Library 277395 1962 55 395503 1299.23507 82914.69525 1150864 2.909874261 92.76371 0.24507 0.9696 0.150426017 -0.822677044 -1.894283899 1.162329309 0.022627987 -2.732873987 0.676797519 0.38784793 227.57669 6.119664175 1.062164902 7.181829077

83 Teague Residence Hall 14563 1938 79 24036 667.76277 8416.79117 73434 3.055167249 91.68939 0.49323 0.97545 0.142856271 -0.84510069 -1.945916251 1.153563989 0.020407914 -2.807363725 0.714195176 0.37796332 217.73054 5.35485163 0.992840833 6.347692464

84 Harper Residence Hall 11391 1938 79 21813 633.35435 7787.95495 48052 2.202906524 90.03286 0.48987 0.97525 0.156505114 -0.805471467 -1.854666593 1.169416743 0.024493851 -2.675718297 0.648784285 0.395607272 220.92816 5.113804811 0.983110665 6.096915476

85 Little Residence Hall 16835 1938 79 27296 633.44243 8270.03695 49494 1.813232708 89.87088 0.5594 0.98163 0.134846428 -0.870160554 -2.003618719 1.144361029 0.018183559 -2.89061079 0.757179389 0.367214417 221.11899 5.209627978 0.982589739 6.192217716

86 Hotel/Dixon Conference Center 111502 1988 29 172536 1340.64954 59196.7879 337928 1.958594148 95.18195 0.16768 0.95939 0.173075537 -0.761764313 -1.754027152 1.188955911 0.029955141 -2.530526274 0.580284869 0.416023481 219.92728 5.795379439 1.061410774 6.856790213

87 Martin Hall 23864 1910 107 40698 535.79021 10922.05715 106356 2.613297951 92.78137 0.32318 0.95589 0.201904246 -0.694854549 -1.599961726 1.223730825 0.040765324 -2.308256847 0.482822844 0.449337563 225.35253 6.191926016 1.064098913 7.256024929

88 Petrie Hall 13239 1939 78 21697 613.93689 11317.4947 107558 4.957275199 92.12261 0.45436 0.97107 0.127186499 -0.895558986 -2.06210077 1.135628792 0.016176406 -2.974982555 0.802025897 0.356632163 206.25733 5.345891897 1.005358123 6.351250021

89 Tichenor Hall 22223 1940 77 41757 597.93524 14130.61155 103008 2.466843882 92.27968 0.42801 0.96852 0.118509015 -0.926248613 -2.132766248 1.125817023 0.014044387 -3.076931289 0.857936492 0.344251383 219.12326 5.444958812 1.005270646 6.450229458

90 Thach Hall 25218 1951 66 42871 746.38206 14528.81435 120131 2.802150638 94.85946 0.39985 0.96584 0.143634165 -0.842742247 -1.940485736 1.154461688 0.020630773 -2.799529148 0.710214495 0.378990982 211.93117 5.657079126 1.029429727 6.686508853

91 Miller Hall 14067 1952 65 25240 511.66448 11107.5815 90798 3.597385103 91.9165 0.55993 0.98188 0.141511727 -0.849207569 -1.95537269 1.152014014 0.020025569 -2.821006482 0.721153496 0.376180445 213.49037 5.726893272 1.034522034 6.761415306

92 Broun Hall 60742 1983 34 101458 1030.15158 28967.9003 627582 6.185633464 99.26911 0.22354 0.94983 0.114500451 -0.941192801 -2.167176514 1.121313147 0.013110353 -3.12657481 0.885843889 0.338379153 214.53487 5.975985537 1.062767534 7.038753071

93 Samford Hall 40925 1888 129 63973 538.50973 13320.72785 587547 9.1842965 90.69337 0.42742 0.96912 0.134406759 -0.871578893 -2.006884566 1.143857999 0.018065177 -2.895322411 0.759649766 0.366615273 237.07881 4.560990492 0.94270697 5.503697462

94 Ross Hall 31403 1930 87 62212 576.69491 17830.49843 139273 2.238683855 95.68438 0.29125 0.95016 0.159818826 -0.796372064 -1.833714443 1.17329828 0.025542057 -2.645490734 0.634208465 0.399773468 224.44617 5.805445903 1.033482852 6.838928755

95 Wilmore Laboratories 46054 1949 68 83094 1112.21513 52863.03322 1292204 15.55111079 100.05541 0.2292 0.93804 0.140176794 -0.853323876 -1.964850836 1.150477179 0.019649534 -2.834680557 0.728161637 0.374401916 216.19128 5.367124631 1.026898103 6.394022734

96 Langdon Hall 7565 1846 171 12159 356.10028 6265.40295 26832 2.206760424 98.65654 0.19166 0.92957 0.153883172 -0.812808869 -1.871561585 1.166354616 0.023680031 -2.700092617 0.660658257 0.392279457 224.78387 4.714235282 0.957278026 5.671513308

97 Davis Hall 36011 1992 25 73190 634.42809 19861.56165 123991 1.694097554 99.18773 0.21889 0.93673 0.158755733 -0.799270581 -1.840388526 1.172051619 0.025203383 -2.6551194 0.638833462 0.398441631 225.98435 4.797303893 0.973234376 5.770538269

98 Hargis Hall 4928 1888 129 11203 347.80011 5321.32985 32602 2.910113362 92.8626 0.46372 0.9726 0.156485317 -0.805526405 -1.854793092 1.169393592 0.024487655 -2.675900796 0.648872789 0.395582251 226.68205 4.348083915 0.930293408 5.278377322

99 Biggin Hall 33643 1951 66 53596 662.42391 15796.6378 192380 3.589446974 95.12201 0.395 0.96421 0.144032057 -0.841540836 -1.937719384 1.154921132 0.020745234 -2.795538145 0.708190978 0.379515556 226.75068 6.072241259 1.045407336 7.117648595

100 Lowder Hall 106203 1992 25 160566 1192.088 51005.9902 554780 3.455152398 97.5786 0.29641 0.96179 0.129326486 -0.888312523 -2.045415174 1.138061625 0.01672534 -2.950910327 0.789099139 0.359619919 223.22165 5.829063461 1.036912519 6.86597598

101 Ramsay Hall 29828 1925 92 47964 682.98799 14961.5121 190804 3.978066884 95.10681 0.46008 0.97248 0.109704702 -0.959774758 -2.209963049 1.115948485 0.012035122 -3.188302732 0.921167585 0.331217002 226.75029 5.290144321 0.992495328 6.282639649

102 Wallace Hall 27753 1984 33 47012 660.50803 25928.6791 81033 1.723666298 94.62066 0.20647 0.97366 0.179606214 -0.745678642 -1.716988524 1.196746009 0.032258392 -2.477090829 0.556036637 0.423799733 207.50902 6.274248411 1.084209165 7.358457576

103 Nichols Center 21757 1986 31 33709 891.31788 18069.79445 123079 3.651220742 94.24308 0.40943 0.96684 0.15086209 -0.82141988 -1.891389171 1.16283628 0.02275937 -2.728697778 0.67473062 0.388409693 210.65263 6.086489538 1.065858715 7.152348253


