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Abstract

Location-based services (LBS) nowadays have several consumer applications such as in-

door localization. Wi-Fi based indoor localization has attracted interest due to the ubiquitous

access in indoor environments. In this paper, we propose ResLoc, a deep residual sharing learn-

ing based system for indoor localization with channel state information (CSI) tensor data. First,

we introduce CSI data in wireless systems and discuss how to build CSI tensor data for indoor

localization. Then, we design the ResLoc system, which employs two channels CSI tensor data

to train the deep network by using the proposed deep residual sharing learning in the offline

phase. For online test phase, we use newly received CSI tensor data to estimate the location

of the mobile device based on the enhanced probabilistic method. Finally, the experimental

results show the proposed ResLoc system can obtain the decimeter level localization accuracy.
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Chapter 1

Introduction

1.1 Problem

With the remarkable development in mobile devices and wireless techniques [1–18], location-

based services for internet of things, like activity recognition and health sensing, has been

enhanced significantly [19–21]. To fulfill the requirement of these applications, a high precision

location information is indispensable. Considering the fact that the wireless propagation is

much more complex in the indoor environment, indoor localization with wireless signals faces

lots of unsolved issues, which draw so much attention from researchers. Lately, fingerprinting-

based indoor localization has become a research hot-spot, which builds a database with a large

amount of Wi-Fi measurements in the offline phase, and then computes the position of a mobile

device by comparing the newly received Wi-Fi data with that in the database.

Due to the low requirement on hardware and the easiness to obtaining (e.g. from laptops

smartphones or smartwatches), the received signal strength (RSS) is used as the fingerprint in

many Wi-Fi based fingerprinting systems. Radar, the first RSS-based fingerprinting scheme,

combines a deterministic method and RSS-based fingerprinting for location estimation [22].

Horus is another RSS-based fingerprinting scheme, which utilizes a probabilistic method with

K-nearest-neighbor(KNN) [23]. Moreover, various machine learning methods are applied for

promoting localization performance, such as neural networks, support vector machine and com-

pressive sensing [24]. Two principle disadvantages inhibit their performance [19]. First, af-

fected by the complex propagation environment, a stable RSS value could not be received for

a given location. Second, RSS value is the coarse channel information.
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Recently, several 802.11n measurement and experimentation tools are released, such as

Intel Wi-Fi Link 5300 NIC [25] and the Atheros AR9580 chipset [26], which can extract chan-

nel state information (CSI) from received packets by the modified firmware. Comparing with

RSS, CSI is the fine-grained channel information, including subcarrier-level channel measure-

ments in orthogonal frequency division multiplexing (OFDM) systems. Moreover, CSI is much

more stable than RSS for a given location [27]. Based on the CSI information, several finger-

printing systems exhibit better localization performance. FIFS exploits the weighted average of

CSI amplitudes over three antennas to achieve fine-grained localization [28]. In addition, CSI

amplitudes and calibrated phases information are leveraged by DeepFi [29] and PhaseFi [30],

respectively. These two schemes collect CSI from all the subcarriers at all the three antennas

and generate fingerprinting with deep autoencoder networks. Moreover, to improve the local-

ization accuracy, BiLoc system is proposed based on average CSI amplitude and phase dif-

ference information for indoor localization by using bimodal deep autoencoder network [31].

Although these three localization systems based on deep network can obtain better localization

performance, they need to build a database to store training feature as fingerprints for every

training location, which increases the training time and storage space.

1.2 Approach

In this paper, we consider bimodal CSI tensor data including estimated angles of arrival (AOA)

and amplitude information that are obtained from the 5GHz band. Firstly, AOA and amplitude

information are stable, which can be effective features for fingerprinting based indoor local-

ization. Moreover, AOA and amplitude information are complementary to each other under

different indoor environments. For example, when light of sight (LOS) component for wireless

signal is weaker than other AOAs, the amplitude information is useful for improving the local-

ization performance. On the other hand, once the signal is blocked by objects such as wall, the

estimated AOA values will help to strengthen the localization accuracy because the amplitude

information is greatly weakened. Moreover, we present a new deep residual sharing learning

for improving the training capacity with two channels CSI tensor data. The proposed method is

different from the original deep residual unit without sharing the residual function. Moreover,
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we can stack many residual blocks for adding the depth of the deep network, thus achieving

higher learning and representation ability. The residual learning method has been successfully

applied for image recognition [32–34]. The proposed method only requires for training one

group of weights in deep residual network for all training locations as a classification problem

in statistical learning, thus significantly reducing the amount of the stored data.

In particular, we present ResLoc, a deep Residual sharing learning for indoor Localization

with CSI Tensor. In ResLoc, we first construct a CSI tensor including three images, each

of which has the same size with 30 × 30 based on the estimated AoA values and the CSI

amplitude values. For CSI tensor, we consider two images from estimated AoA values between

antenna 1 and 2, and antenna 2 and 3. Another image is from the amplitude values from one

antenna. Thus, by using 990 packets, we can obtain 33 CSI tensor data for one training location.

Moreover, we consider two channels CSI tensor data, where the difference between two CSI

tensor data is that they have different amplitude information from different antennas for creating

the third image in CSI tensor. In ResLoc system, we consider the amplitude information from

antenna 1 and antenna 2 for two channel CSI tensor data. For offline training phase, all the

constructed two channels CSI tensor data from all training locations are leveraged to train

the weights of the deep network based on the proposed deep residual sharing learning, which

includes the input block, the residual block and the output block. The new idea for the residual

block is that the proposed scheme shares the residual functions for two channels, which can

effectively exploit the CSI tensor data. Moreover, we also analyze the proposed deep residual

sharing learning for forwarding and backward propagation. For the online stage, we use newly

received CSI tensor data to compute the location of the mobile device based on the probabilistic

method.

The main contributions of this paper are summarized below.

• This is the first work to use CSI tensor data for indoor localization, which can exploit

the rich frequency and time features of the CSI data including the amplitude and phase

difference information.
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• We propose deep residual sharing learning for training two channels CSI tensor data.

Moreover, we can stack many residual sharing blocks for adding the depth of the deep

network, thus achieving higher learning and representation ability for CSI tensor data.

Moreover, the proposed scheme is analyzed for forwarding and backward propagation.

In the online test, we consider a probability method for location prediction.

• We implement the proposed ResLoc system with commodity 5 GHz Wi-Fi in two repre-

sentative indoor environments with extensive experiments. The results show that ResLoc

achieves decimeter level location accuracy, which is better than other deep learning meth-

ods.

1.3 Layout

In the remainder of the paper, we introduce the preliminaries and CSI tensor in Chapter 3. We

design the ResLoc design in Chapter 4 and performance evaluation in Chapter 5. Chapter 6

summaries this paper.
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Chapter 2

Background

RF sensing technique attracts researchers’ attention because of its contact-free, easy deploy-

ment, and low-cost. In recent years, enormous literature are published to address advanced

techniques about RF sensing [35]. Formerly, most of RF sensing techniques are related to

signal processing. For example, MUltiple SIgnal Classification(MUSIC) algorithm is utilized

in SpotFi [36] and it can achieve a good performance for indoor localization. However, there

are still some disadvantages about RF sensing technology based on signal processing. Time

consumption is always a key problem for real time system. Signal processing algorithms, like

MUSIC, take several seconds, even minutes, to estimate the frequency content of a signal or

autocorrelation matrix with an eigenspace method. This drawback limits the implementation

of RF sensing in our daily life and pushes researchers to find faster algorithms. Because of

AlphaGO’s [37] dominant victory, deep learning has become one of hottest techniques in 2017.

Moreover, due to the increase of computation capability in mobile devices and computers, more

and more RF sensing applications try to solve practical problems with deep learning methods.

Even though the training phase of deep learning methods always takes hours, even days, to

reach the convergence of neural network weights, deep learning has been hot in several re-

search fields because of its versatile model that could adapt to new problems easily and its

outstanding performance that significantly outperforms other solutions in multiple domains. In

this chapter, recent works will be discussed in two categories: The application of RF sensing

and the deep learning algorithms that are leveraged in RF sensing.
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2.1 RF Sensing

The applications of RF sensing are deployed in many areas, like indoor localization, healthcare,

activity recognition and virtual reality entertainment. Recently, many distinguished project are

constantly emerging in these areas.

2.1.1 Indoor Localization

Localization-based services attract a lot of attention because of their fast growing demands.

DeepFi [29] presents a deep learning based indoor fingerprinting scheme using channel state

information (CSI). Normally, the algorithm of fingerprint localization consists of two parts,

including offline establishment of location fingerprint database and online positioning. To build

fingerprint database, WiFi CSI values are collected as fingerprints at each position. At the

stage of online positioning, fingerprints that are collected for the test the position are compared

with fingerprints in the database. The test position whose fingerprint attains the best matching

in the database is chosen as the final estimated position. The difference between traditional

fingerprinting methods and DeepFi is that a large number of weights trained by a stack of

Restricted Bolzmann Machine (RBM) are utilized as fingerprints to denote different positions.

It is a much more effective way to describe the characteristics of CSI values for every location.

In other word, deep learning techniques extract more useful and abstract information from

CSI, so that DeepFi obtains a better performance compared with other fingerprint based indoor

localization systems.

2.1.2 Health Sensing

Health is central to human happiness and well-being. In 2015, U.S health care costs were $3.2

trillion,which makes health care become one of the country’s largest industries, equaling to 17.8

percent of gross domestic product. The demand for health monitoring is increasing instantly.

Thus, the health sensing application becomes one of the most sought-after application [38–40].

Many researchers also focus on this area. PhaseBeat [41] system is a representation project

in this area. It can monitor breathing and heart beats with commodity WiFi by utilizing the
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CSI phase difference data. Because of the popularity of commodity WiFi, PhaseBeat is able

to provide a contact-free, easy deployment, low-cost, and long-term vital sign monitoring for

patience. In PhaseBeat, several techniques are implemented to extract breathing and heart

beats. Discrete Wavelet Transform (DWT) is leveraged to remove high frequency noise from

the phase difference data; Peak detection and Root-MUSIC are used to estimate breathing

rate for single person and multiple person respectively. The PhaseBeat achieves an astonished

performance, where 70% test data have an estimated error under 0.5 bpm. In future, more and

more vital signals will be monitored by RF sensing in this convenient way.

2.1.3 Activity Recognition

Activity recognition is another important content of RF sensing. It could be exploited for

great societal benefits, especially in security applications, such as fall detection and security

surveillance. Recently, a deep-learning architecture that uses only RFID data for detection of

process phases and activities during trauma is proposed by researchers from Drexel University

and Childrens National Medical Center [42]. This project leverages RFID signals as sensors

to capture human activities. 3D matrices are generated by processed RFID signals as inputs of

the network that is composed with 3 convolutional layers and 3 fully (dense) connected layers.

A convolutional neural network is built to classify the activities into different categories. This

system achieves the average accuracy of 80.40% for recognition of 11 activities and the average

accuracy of 72.03% for detection of the five phases.

2.1.4 Object Tracking

Recently people always dream to control their computer with their hands. RF sensing is making

this dream become true. MIT researchers develop a system, as known as RF-IDraw [43], that

could accurately trace the trajectory of an RF source. Users are allowed to control their mobile

device by writing in the air any word or command. RF-IDraw is a system based on the Angle

of Arrival(AoA), which is computed by the phase differences from multiple antennas of the

reader. However, there is an ambiguity in computed AOA values. If the distance between two

antennas is larger than λ/2, multiple beams are exhibited even though there is only one true
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direction. However, a high resolution beam could not be obtained when the distance between

two antennas is smaller than λ/2. To solve this ambiguity, two antenna pairs are implemented.

A widely spaced antenna pair is used to provide high resolution, while tightly spaced antenna

pairs are utilized to reduce the ambiguity. The median point-by-point error distance for RF-

IDraw is 3.7 cm and 4.9 cm in line-of-sight and non line-of-sight, respectively. This multi-

resolution approach makes RF-IDraw exceed the capability of antenna array with the same

number of antennas.

2.2 Deep Learning

Recently, deep learning techniques have been undergoing a rapid expansion. Many corpo-

rate titans such as Google, Amazon, are devoting into deep learning related researches with

their powerful computing resources. On May 25 2017, AlphaGo [37], an artificial intelligence

program developed by Google’s DeepMind lab, defeated the world best human go player, Ke

Jie. The victory is a huge moment in the history of artificial intelligence. What makes Al-

phaGo so powerful is deep reinforcement learning based system, which makes AlphaGo a lot

more human-like and artificially intelligent than something like IBMs Deep Blue, which beats

chess grandmaster Garry Kasparov by using brute force computing power to search for the best

moving. Moreover, Deep learning also enhances computers better than human at recognizing

and sorting images. The deep learning algorithms from Microsoft and Google have reached

the error rates of 4.94% and 4.8%, respectively, for sorting images into predefined categories.

However, the error rate for the typical human is about 5%. Computers know images, which is

much better than human. These two examples show the capability that deep learning algorithm

could find or recognize the rules and patterns that human does not know. This great potential

draws much attention from researchers and industries. Deep learning plays important roles in

more and more areas. Specially, increasing number of wireless sensing applications leverage

deep learning techniques to achieve better performance.
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Figure 2.1: Architecture of convolutioanl neural network .

2.2.1 Convolutional Neural Network(CNN)

Convolutional neural network is a well-known deep learning architecture, which is inspired by

emulating the natural visual perception mechanism of the living creatures. Thus, convolutional

neural network shows great potential in computer vision. In 1998, LeCun proposed LeNet-

5 [44], which is one of the first initial architecture of CNN. According to LeNet-5,shown in

Figure 2.1, convolution operation and subsampling operation are first applied to the input data

with computation units called convolutional layers and subsampling layers, respectively, by the

network. After two groups of such computation, the output of the higher layers is processed by a

fully connected traditional neural networks, where the final classification results are improved.

After that, incresing number of models based on convolutional neural network are proposed,

such as AlexNet [45] and ResNet [33]. AlexNet achieved top-1 and top-5 error rates of 37.5%

and 17.0% in the ImageNet LSVRC-2010 contest. Compared with LeNet-5, AlexNet is a

bigger and more complex model. Max pooling and ReLU nonlinear activation function are

leveraged in the model. And the dropout regularization is utilized to solve overfitting problem.

From AlexNet, people realize that increasing the depth of the network increases the accuracy

of the network. In 2015, a residual learning framework, also called ResNet, is proposed by

Microsoft Research. A 152-layer residual network achieves the error rate of 3.57% on the

ImageNet test set, and the performance is 1st place on the ILSVRC 2015 classification task.

To solve the vanishing gradient problem resulted by the depth of the network, residual module

creates a direct path between the input and output to the module implying an identity mapping.
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Figure 2.2: Architecture of autoencoder.

The great performance of convolutional neural networks also attracts RF sensing researchers’

attention. For example, CiFi [46], an indoor localization system with commodity 5GHz WiFi,

uses generated images with estimated AOA values for each received packet from every channel

as the input of the network to train a deep convolutional neural network. This system has

been demonstrated that the superior performance of the localization has outperformed existing

schemes, like FIFS [47] and Horus [48]. Moreover, the proposed ResLoc system in this thesis

is also motivated by the above deep residual learning [33].

2.2.2 Autoencoder

Unlike convolutional neural networks, an autoencoder neural network [49] is an unsupervised

learning algorithm. Its aim is to generate the output that is an approximation of the input. The

architecture of autoencoder is as shown in Figure 2.2. Generally, an autoencoder is composed

with three parts, an input layer, one or more hidden layer and an output layer. To reconstruct

its own input, the output layer has identical number of nodes as the input layer. On the other

hand, the number of nodes in the hidden layers is always smaller than the number of nodes

in the input layer, so that a compressed representation is extracted from the input data. There

are three stages in the training process, including pretraining, unrolling, and fine-tuning. In the
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pretraining stage, each neighboring set of two layer is considered as an restricted boltzmann

machines(RBM) for pretraining to approximate a good solution. Then the deep network is en-

rolled to obtain the reconstruction data using the input data with forward propagation. After

that, a backpropagation technique is used to fine-tune the results. Similar to principal compo-

nents analysis(PCA), the purpose of the autoencoder is to find low-dimensional representation

of the input data. Thus, autoencoder neural network is widely used in data compression and

signal denoising. The first application that utilizing autoencoder in RF sensing is DeepFi [50],

a deep learning based indoor fingerprinting scheme using CSI. The channel state information

values are collected at every training location as inputs of the deep autoencoder. For every

training location, the deep autoencoder is trained to obtain a set of weights and biases, which

are leveraged as fingerprints for corresponding locations. To estimate location, the fingerprints

that are gathered during the online phase are compared with fingerprints in the database. The

position whose fingerprint attains the best matching is chosen as the final estimated position.

The experience shows that the mean distance error in the living room and the laboratory is

about 1.2 and 2.3 meters, respectively.

2.2.3 Long Short-term Memory(LSTM)

To process variable-length sequence inputs, recurrent neural networks (RNN) are proposed,

which are originated from conventional feedforward neural networks. With the help of the

feedback loop in the recurrent layer, long-term dependencies could be handled. However, the

dependencies also result into that the recurrent neural network could not be trained successfully,

because the gradient of the loss function tends to either diminish or explode, which makes

gradient-based optimization methods become ineffective. In order to solve this problem, long

short-term memory architecture [51] is proposed. Unlike the traditional RNN that inputs at

each time-step affect every feedback loop, a LSTM unit, in Figure 2.3, contains three gates to

control the dataflow in it. An input gate decides if a new value could flow into the memory. A

forget gate controls if a value could remain in memory. And an output gate determines if the

value in memory could be used to compute the output of the unit. All these gates make sure that

gradient-based optimization methods could be used in LSTM units. The LSTM network has

11
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Figure 2.3: Architecture of LSTM.

been used widely for machine translation, speech recognition and time-series prediction. More

and more applications based on LSTM have shown in the area of RF sensing. A system, called

DeepConvLSTM [52], is presented to recognize human activities from wearable sensor data.

Considering the input of the network is a short time series extracted from the sensor, the fully

connected layer of the convolutional neural network is replaced by LSTM units in this system.

Compared with other non-recurrent approaches, DeepConvLSTM improves the best reported

result by 6% on the Skoda dataset. This result shows a great potential of LSTM in the area of

RF sensing.

12



Chapter 3

Preliminaries and CSI Tensor

3.1 Channel State Information Preliminaries

OFDM technique is implemented to handle frequency selective channels and acquire high data

rate in many wireless network standards (such as LTE, WiMAX, WiFi, and 5G) [14]. In OFDM

system, the spectrum is composed by multiple orthogonal subcarriers. To alleviate channel

fading and large delay spreads, wireless data could be transmitted with different modulation

and coding schemes. Also, to reduce the complexity of FFT processing, cyclic redundancy

is utilized at the receiver. Recently, several 802.11n measurement and experimentation tools

are released, which are convenient to extract CSI data from several off-the-shelf NICs, such as

Intel WiFi Link 5300 NIC [25] and the Atheros AR9580 chipsets [26]. ResLoc exploits the

Intel 5300 NIC to collect CSI data, which contains 30 out of the 56 subcarriers at the WiFi

receiver for a 20Mhz or 40Mhz channel.

For a Wi-Fi network with OFDM, we denote Hi as the CSI value of subcarrier i, which is

a complex value expressed by

Hi = |Hi| exp (j∠Hi), (3.1)

where |Hi| and ∠Hi are the amplitude response and phase response of subcarrier i, respectively.

Besides amplitude information, ResLoc system also uses phase difference information between

two adjacent antennas to build CSI tensor as the input data for indoor localization, where phase

difference information is stable [31, 53, 54].
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Figure 3.1: Images generated by estimated AoA values.

3.2 CSI Tensor Construction

To build CSI tensor as the input of the ResLoc system, we compute bimodal CSI data including

estimated AOAs and amplitude information that are obtained from the 5GHz band. Besides

the amplitude information from three antennas, it is also easy to estimate the corresponding

AoA values between two adjacent antennas from each subcarrier and each received packet

by using the same method in BiLoc system [31]. Then, for every 30 packets(x-axis) with 30

subcarriers (y-axis), we can construct a CSI tensor including three images, each of which has

the same size with 30 × 30 based on the estimated AoA values and the CSI amplitude values.

For CSI tensor, we consider two images from estimated AoA values between antenna 1 and 2,

and antenna 2 and 3,shown in Figure 3.1; Another image is formed from extracted amplitude

values from one antenna. Thus, by using 1500 packets, we can obtain 50 CSI tensor data
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for one training location or one test location. For ResLoc system, we consider two channels

CSI tensor data, where the difference between two CSI tensor data is that they have different

amplitude information from different antennas for creating the third image in CSI tensor. In

ResLoc system, we consider the amplitude information from antenna 1 and antenna 2 for two

channel CSI tensor data.

There are three reasons for using the CSI tensor as the input of ResLoc. First, by using

CSI tensor with three dimensional data it can strengthen the performance of deep network

for classification problem with indoor localization. Moreover, all subcarrier information from

all packet sample are exploited by three images in CSI tensor, which contains rich frequency

and time features of the CSI data. We can thus extract more effective features from CSI tensor.

Third, we leverage bimodal CSI data including the estimated AoA values and the CSI amplitude

values for indoor localization, which are complementary to each other under different indoor

environments [55].
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Chapter 4

The ResLoc System

4.1 ResLoc System Architecture

In Figure 4.1, the ResLoc system is composed by one transmitter, which is a mobile device,

and one receiver, which is an access point. Both devices are equipped with the Intel 5300

NIC. To collect the CSI data, the transmitter is set to the injection mode, and the receiver

works in the monitor mode. The Intel 5300 NIC reports CSI from 30 groups of subcarriers

from each antenna. After CSI data collection, we can build two channels CSI tensor based on

estimated AOAs and amplitude information. ResLoc system employs the fingerprinting based

method, which includes the offline training and online location prediction. For training data

with two channels CSI tensor in the offline phase, we propose a deep residual sharing learning

for obtaining the optimal weights of deep residual network. For online location prediction,

we utilize newly received CSI tensor data to compute the location of the mobile device based

on an enhanced probabilistic approach. Our ResLoc system is totally different from traditional

fingerprinting based methods, which build the database for every training location based on raw

data or training features as the fingerprints. In fact, ResLoc system only requires for training

one group of weights in deep residual network for all training locations like the regression or

classification problem in statistical learning. Apparently, this method reduces the amount of

the stored data significantly. On the other hand, it also contributes to the improvement of the

robustness for indoor localization based on the proposed deep residual sharing learning, which

can effectively represent the features of CSI data.
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Figure 4.1: The ResLoc system architecture.

4.2 Offline Training

We propose a deep residual shared learning for training the deep network with bi-modal CSI

tensor, which includes the input block, the residual block, and the output block in Fig. 4.2.

4.2.1 Input Block

For the input block, the bi-modal CSI tensor data can be trained by four different layers with

the Convolution2D layer, batch normalization layer, activation layer and max pooling layer,

respectively. It can obtain the local dependency and scale invariant feature from bi-modal CSI

tensor. Furthermore, Input block can exploit more abstract representation of the input CSI

tensor data from the lower layers to the higher layers, which can improve the feature extraction

of CSI tensor data for indoor localization. We discuss four different layers for the input block.

The Convolution2D layer is to obtain feature maps within local regions in input CSI tensor

or the previous layer’s feature maps with several convolution kernels. In fact, each data of a
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feature map is connected with the local data in the previous layer. Moreover, by using different

convolution kernels we can obtain all produced feature maps. Let θli denote as the ith feature

map in layer l, which is defined as

θli =
∑

m∈Sl−1

wlim ∗ θl−1m + bli, (4.1)

where wlim is the convolutional kernel to generate the ith feature map in layer l, bli is the bias

of the ith feature map in layer l, Sl−1 is the set of feature maps in layer (l − 1) connected to

the current feature map, which is the same for different m due to local weights sharing. The

convolution operation with weights sharing scheme can improve the efficiency for training deep

network.

The batch normalization layer can adjust the input distribution for different layers and

thus alleviate the problem of Internal Covariance Shift that is as the data flow propagates for

different layers in deep network, the distribution of input will be shifted, thus reducing the

learning capacity [56]. In batch normalization layer, the input data are normalized such that

it can satisfy a zero mean and a unit standard deviation, where the estimation of mean and

variance are obtained by each mini-batch. Then, to improve the representation ability in deep

network, the normalized data is shifted and scaled. Thus, the batch normalization for the kth

input data xk is formulated by

yk = γ
xk − uB√
σ2
B + ε

+ β (4.2)

where uB and σ2
B are the the mean and variance of mini-batch, respectively, ε is the small

constant value to avoid numerical problems in batch normalization, γ and β are the scaled

and shifted parameters, which are learned from training. By using batch normalization, it can

instead of Dropout for avoiding overfitting in training.

The activation layer can be employed to avoid obtaining trivial linear combinations of in-

put data, which can detect nonlinear features. Traditional nonlinear activation functions mainly

exploit sigmoid σ(x) = 1
1+exp(−x) and tanh tanh(x) = 2σ(x)− 1 functions in neural networks.

In ResLoc system, we leverage rectified linear unit (ReLU) as the activation function with the
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expression ReLu(x) = max(x, 0), which can stay the positive part and suppress the total neg-

ative part to zero [57]. For training in deep convolution neural networks, ReLU function has

faster training than that for traditional sigmoid and tanh functions. Moreover, it can also ex-

ploit the sparse representations in the hidden units and can have effectively training without

pre-training.

The max pooling layer can reduce the resolution of the feature maps by downsampling

over a local neighborhood in the feature maps of the previous layer. It is invariant to distortions

and small shifts on the inputs. Moreover, it also improves the robustness of the deep network.

The feature maps in the previous layer are pooled over a local temporal neighborhood by the

max pooling function, as

θl+1
ij = max

k∈Gl
j

θlik, (4.3)

where Gl
j is the set of pooling region for the jth value in the ith feature map in layer l, θlik is

the kth value of the ith feature map in layer l. Other methods such as the mean or sum pooling

function can be also used in this stage for reducing the training time.

4.2.2 Residual Block

For the residual block, we propose a new deep residual sharing learning for improving the

training capacity with two channels CSI tensor data. The proposed method is different from

the original deep residual unit without sharing the residual function. Moreover, we can stack

many residual blocks for adding the depth of the deep network, thus achieving higher learning

and representation ability. For residual learning [33, 34], the idea is that instead of learning the

underlying mapping H(x) by using a few stacked layers, we can learn the residual function

F (x) = H(x)− x. Thus, the original mapping can become F (x) + x, where x is implemented

by identity mapping with the shortcut connection. Thus, it is easy for training very deep net-

work by using residual learning. Moreover, we implement the proposed deep residual sharing

learning by sharing the residual functions for two channels input data in Figure 4.2. On the
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Figure 4.2: Deep residual sharing learning for offline training

other hand, the residual function includes two layers convolution operations, each of which in-

cludes the batch normalization layer, the activation layer, and the convolution2D layers. They

are implemented as the same as the input block.

For analyzing deep residual sharing learning for forwarding and backward propagation,

we denote the x1k and x2k as the input data with channel 1 and channel 2 for the kth residual

block, respectively. Let R denote the residual function with two 3 × 3 convolution layers.
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Based on Figure 4.2, we have x1k+1 = x1k +R(x1k)+R(x2k) and x2k+1 = x2k +R(x2k)+R(x1k) for

the kth residual block at channel 1 and channel 2, respectively. Thus, we can recursively obtain

the x1K and x2K for the Kth residual block at channel 1 and channel 2, which is formulated by

x1K = x1k +
∑K−1

i=k R(x1i ) +
∑K−1

i=k R(x2i )

x2K = x2k +
∑K−1

i=k R(x2i ) +
∑K−1

i=k R(x1i )
(4.4)

Based on the above equations about forward propagation, we can find that the output x1K and

x2K shares the same residual function, which can be represented by the summation of preceding

residual functions adding input x1i or x2i , respectively. This reduces the error of the gradient

propagation. Moreover, it is easier to train the sharing residual functions, which are pushed

into zeros when the identity mapping are optimal. On the other hand, we consider the loss

function as L for the backward propagation. Based on the chain rule of backpropagation, we

can obtain:
∂L
∂x1k

= ∂L
∂x1K

(1 + ∂
∂x1k

(
∑K−1

i=k (R(x1i ) +R(x2i ))))

∂L
∂x2k

= ∂L
∂x2K

(1 + ∂
∂x2k

(
∑K−1

i=k (R(x2i ) +R(x1i ))))
(4.5)

By the the above equations about backward propagation, we can see that the gradients ∂L
∂x1K

and

∂L
∂x2K

are directly propagated back to the any shallower input x1k and x2k, respectively. More-

over, because the gradients for the sharing residual functions ∂
∂x1k

(
∑K−1

i=k (R(x1i ) +R(x2i ))) and

∂
∂x2k

(
∑K−1

i=k (R(x2i ) + R(x1i ))) are not always -1, the gradients ∂L
∂x1K

and ∂L
∂x2K

cannot be canceled

for the mini-batch with SGD to avoid the problem of the vanishing of gradient. Thus, the

proposed deep residual sharing learning can increase the learning capacity and leverage two

channels CSI tensor data.

4.2.3 Output Block

For the output block, we first merge two channel data into single channel. Then, we implement

basic data operations for the merged data including batch normalization, activation with ReLU,

and max pooling. Moreover, the main operation in the output block is the fully-connected layer,

which employs a basic neural network with one hidden layer to train the output data based on

softmax classifier. We consider the input data for the softmax function as the R dimensional
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vector z = [z1, z2, ..., zR], where R is the number of clusters. Then, the softmax function can

map the R dimensional vector to the normalized data p = [p1, p2, ..., pR], that is

pi =
ezi∑R
r=1 e

zr
for i = 1, 2, ...R. (4.6)

In addition, we define the loss function as the cross-entropy to measure the difference between

the output normalized data and the true label data, that is

E = −
R∑
r=1

y(r)log(pr), (4.7)

where y(r) means the true label data for the rth location. Then, we can train the parameters in

deep network with the stochastic gradient descent method by minimizing the values of the loss

function.

Weight Training with Deep Learning

The pseudocode for offline training with two input tensors is presented in Algorithm1 and

Algorithm2. The inputs to the algorithm1 are two bimodal CSI tensors, For one input tensor,

it includes two phase difference slices and an amplitude slice. Each of slices has the same

size with 30 times 30 based on the estimated AoA values and the CSI amplitude values for

every 30 packets(x-axis) with 30 subcarriers (y-axis). The input datasets are spit into mini

batches to train the network. First, batches are processed by the input block, which consists

of a convolution layer, a batch normalization layer, an activation layer and a pooling layer.

To obtain the output of the input block, batches are dealt by the layers sequentially (lines 10-

18). Because of our two-channel framework, two input tensors pass two channels parallel

based on tesorflow. The outputs of the input block are processed by residual blocks.Then

the outputs of residual blocks are delivered into the output block. Similarly, the output block

consists of a batch normalization layer, an activation layer, a convolution layer and a pooling

layer as well. What the difference in the output block is two special layers, a merge layer

and a fully-connected layer. Before the input tensors pass the merge layer, they are passed
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Algorithm 1: Weights Training
1 Input: Input tensor dataset T1 and input tensor dataset T2, number of repetitions for

residual blocks K ;
2 Output: : Trained weight W , b;
3 Divide input datasets T1 and T1 into a batches that contains q CSI tensors;
4 c denotes as channel index;
5 while epoch < 50 do
6 for d = 1 : a do
7 θ1 = Ma

1 ;
8 θ2 = Ma

2 ;
9 //M denotes as CSI tensor batch;

10 for c = 1 : 2 do
11 θc = Convolution(θc);
12 //Calculate outputs of the convolution layer
13 θc = γc

θc−uBc√
σ2
Bc+εc

+ βc;

14 //Calculate outputs of the batch normalization layer
15 θc = ReLU(θc);
16 //Calculate outputs of the activation layer
17 θc = pool(θc);
18 //Calculate outputs of the pooling layer
19 end
20 do Residual blocks;
21 for c = 1 : 2 do
22 θc = Xc;
23 //Xc is the output of the residual block
24 θc = γc

θc−uBc√
σ2
Bc+εc

+ βc;

25 //Calculate outputs of the batch normalization layer
26 θc = ReLU(θc);
27 //Calculate outputs of the activation layer
28 θc = Convolution(θc);
29 //Calculate outputs of the convolution layer
30 end
31 S = θ1 + θ2; //Calculate outputs of the merge layer
32 S = γ S−uBs√

σ2
Bs+εs

+ βs; //Calculate outputs of the batch normalization layer

33 S = ReLU(S); //Calculate outputs of the activation layer
34 S = pool(S); //Calculate outputs of the pooling layer
35 q = softmax(W ∗ flattened(S) + b);
36 //Fully-connected Layer
37 Loss function L = −

∑
r yr log (qr);

38 Update weights and bias using the error with back-propagation;
39 end
40 end
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Algorithm 2: Pseudocode for residual blocks
1 Input: two outputs of input blocks, I1 and I2, and number of repetitions for residual

blocks K;
2 Output: two outputs of residual blocks,X1 and X2;
3 c denotes as channel index;
4 for k = 1 : K do
5 if k == 1 then
6 X1 = I1;
7 X2 = I2;
8 end
9 for c = 1 : 2 do

10 θc = Convolution(Xc);
11 //Calculate outputs of the convolution layer
12 θc = γc

θc−uBc√
σ2
Bc+εc

+ βc;

13 //Calculate outputs of the batch normalization layer
14 θc = ReLU(θc);
15 //Calculate outputs of the activation layer
16 θc = Convolution(θc);
17 //Calculate outputs of the convolution layer
18 end
19 X1 = θ1 + θ2 +X1;
20 X2 = θ1 + θ2 +X2;
21 //Calculate outputs of residual blocks
22 end
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into two-channel framework parallel. Namely, two inputs of the output block are dealt by the

batch normalization layer, the activation layer and the convolution layer parallel (line22-29).

After the two-channel framework merges together at the merge layer, the output of the merge

layer is processed by a batch normalization layer, an activation layer, a pooling layer and a

fully connected layer sequentially (line 32-45). Once the output of the fully-connected layer is

obtained, we could compute cross entropy between the prediction result of the network and the

desired labels. Then, the weights and biases are updated using the error with back-propagation

algorithm. Finally, we need to update all batches, which is implemented for 50 epochs in the

offline training algorithm.

The pseudocode for residual blocks is given in Algorithm 2. The inputs to the algorithm

are the number of repetitions for residual blocks Kand two output tensors of input blocks I1

and I2. The outputs to the algorithm includes two tensors, X1 and X2.The repetition defines

the number of residual blocks that are stacked to form residual blocks. The basic residual block

is composed by a two-channel framework, which includes two convolution layers, a batch

normalization layer and an activation layer in each channel. The stacking sequence of these

layers is as shown in Algorithm 2 (line10-17). It is noteworthy that there is a sharing layer at

the end of residual block. For each channel, the input of the current block and the outputs of

residual paths from both channels are sum up in the sharing layer.

4.3 Test Phase

For the test phase, a probabilistic method is leveraged to estimate the position of the mobile

device by using the newly received CSI tensor data from the test points based on the trained

deep network. Let T denote the number of CSI tensor from one position, and pij denote as the

output result of the deep network with the jth CSI tensor for the ith location. The matrix P as

the prediction output of the deep network with T CSI tensor data for R training locations, that

is
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P =



p11 p12 p13 . . . p1T

p21 p22 p23 . . . p2T
...

...
... . . . ...

pR1 pR2 pR3 . . . pRT


. (4.8)

To reduce the variance of the output results, T output data for every location are averaged.

Thus, we can obtain the vector P̄ = [p̄1, p̄2, ..., p̄R], where p̄i is the mean for the output vector

[pi1, pi2, ..., piT ] in the ith row.

Finally, we can compute the location of the mobile device as a weighted average of all R

locations, that is

L̂ =
R∑
i=1

li × p̄i, (4.9)

where li is the ith training location.
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Chapter 5

Experimental Study

5.1 Experiment Configuration

To evaluate the performance of the ResLoc, we implement it with 5GHz WiFi devices. In order

to collect CSI data, a desktop computer and a Dell laptop are used as access point and mobile

device. Both computers are equipped with an Intel 5300 network card, running Ubuntu desktop

14.04 LTS system. To transmit the data to the desktop, the Dell laptop with one antenna works

in the injection mode. The monitor mode is executed in the desktop to receive data. The

distance between two adjacent antennas on the Desktop is set as 2.68cm, which is a half wave

length for 5.58GHz WiFi signal. Moreover, the PHY is the IEEE 802.11n OFDM system with

QPSK modulation and 1/2 coding rate. To accelerate the training process, we employ the

offline stage of the ResLoc in Keras with tensorflow backend on a PC with Intel(R) Core(TM)

i7-6700K CPU, and an Nvidia GTX1070 GPU [58]. ResLoc are compared with two typical

deep learning localization approaches, BiLoc [31] and DeepFi [29], to evaluate its performance.

Moreover, we also consider the localization performance for ResLoc with the single channel.

For the sake of fairness, the same CSI training dataset and testing dataset are leveraged in all

four approaches. We examine them in two experimental environments including a computer

laboratory and a corridor.

5.1.1 Computer Laboratory

Computer Laboratory: We set up the first testbed in a 6 × 9 m2 computer laboratory in the

Borun Hall in the Auburn University campus. This laboratory is a crammed environment. The
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Figure 5.1: Layout of the computer laboratory: training locations are marked as red squares
and testing locations are marked as green dots.

furniture and appliances block the most of LOS paths. 15 training locations are shown as red

squares in Figure 5.1, while the other 15 green dots are testing locations. The distance between

two adjacent training locations is 1.8m. Our receiver is fixed on the table. We collect 1000 CSI

packets from every training location and testing location to accumulate CSI data. Moreover,

we set the number of layers for the proposed deep network as 34, which has higher localization

accuracy and smaller training time.

Corridor:

5.1.2 Corridor in Broun Hall

We set up the second testbed in a long corridor in Borun hall, which is 9× 25 m2. filled with no

furniture and appliance. In this scenario, LOS path is majority. We employ 15 training location

and 15 testing location in a straight line. The distance between two adjacent training locations

is 1m. The red squares are training locations and the rest green dots are testing locations. We

set the receiver in the middle of the corridor. 1000 packets are obtained from every training

location and testing location to collect 5GHz CSI data. The number of layers in the deep

network in the corridor is the same as that in the computer laboratory.
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Figure 5.2: Layout of the corridor: training locations are marked as red squares and testing
locations are marked as green dots.

5.1.3 Accuracy of Location Estimation

Figure 5.3 depicts the training loss over epoches of the ResLoc for the laboratory and corridor

scenarios. To prevent overfitting for the training CSI tensor data set and reduce training time,

the epoch is set as 50. As illustrated in Fig.3, the train loss for the corridor curve reaches

about 0.3 and the training loss for the lab scenario stops at about 0.5. Moreover, based on

Nvidia GTX1070 GPU, we can obtain the smaller training time for the laboratory and corridor

scenarios, which are 608.14s and 619.35s, respectively. Also, the test time for the laboratory

and corridor scenarios are 0.587s and 0.647s, which can be accepted for indoor localization.

Figure 5.4 shows the cumulative distribution function(CDF) of distance error across the 15

positions in the laboratory. Unlike the corridor scenario that the LOS is majority, the furniture

and appliances block most of LOS paths in this environment. As we can see, the maximum

distance errors for ResLoc with two channels and single channel are about 2.5m, which is

less than DeepFi and BiLoc. In addition, the median of distance errors for ResLoc with two

channels and single channel are about 0.89m, which also outperforms BiLoc and DeepFi by

0.51m and 0.89m, respectively. For ResLoc with two channels, the distance error of over 30%

testing data is less than 0.3m. However, there is no data falling within this error range for

DeepFi and BiLoc. In summary, based on the proposed deep residual sharing learning, ResLoc

with two channels exhibits the best performance in this rich multipath scenario.
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Figure 5.3: Training errors for the laboratory and corridor experiments.

Figure 5.5 plots the CDF of localization error in the corridor scenario. As shown in Fig-

ure 5.5, the maximum distance error for ResLoc with two channels and single channel are

3.14m and 3.95m, respectively, which are significantly less than that of other two schemes,

DeepFi and BiLoc. It shows that the ResLoc has a better stability than DeepFi and BiLoc. In

addition, the median of distance errors for ResLoc with two channels and single channel, BiLoc

and DeepFi are about 0.98m, 1.24m, 1.68m, and 1.75m respectively. Thus, ResLoc with two

channels achieves the best performance in this scenario. Besides the better performance, the

proposed ResLoc system only requires one set of weights for all training locations to achieve

localization, which means that it is not necessary for ResLoc to store fingerprints for every

training location like BiLoc and DeepFi. Furthermore, ResLoc does not need a ratio for the

bi-modal data to obtain a better localization performance.
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Figure 5.4: CDF of localization errors for the laboratory experiment.

5.1.4 Effect of Different Parameters

Impact of image size

To determine how image size impacts the accuracy of the indoor localization, we test ResLoc

with images sized to 30x20, 30x25, 30x30, 30x35 and 30x40. For fairness, 50 images are

constructed for every training position. Epoch and batch size are set to 50 and 10, respectively.

As is shown in Figure 5.6, distance errors for both scenarios decrease slightly as the image size

increases from 30x20 to 30x30, then rise as the image size increases from 30x30 to 30x40.

However, the distance errors are stable in these two scenarios. The errors in the lobby and the

lab are about 1.2 meters and 1.13 meters, respectively. This result indicates that the localization

performance of Resloc is robust enough to the image size. Even though the size of images is

changed, Resloc could achieve localization with high precision.

As discussed previously, the image size does not show a significant effect on localization

accuracy. To select the best size for training and testing the network, we also compare the
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testing time with different image sizes.As is shown in Figure 5.7,it is apparent for both scenarios

that the testing time rises with the increment of the image size. Theoretically, with the same

image size, the testing time should be identical in these two scenarios. However, there is a 0.1

second gap between the lab and the lobby. We find that this gap is resulted from the computer

performance. Considering the testing time and the distance error, the image size of 30x30 is the

best choice for training and testing because of its lowest distance error and acceptable testing

time in two scenarios.

Impact of the number of images

To further explore how many the number of pictures affects the distance error, we build 5

datasets with different number of pictures in every position. As is shown in Figure 5.8, the

distance error declines with the increase of the number of pictures. The lowest distance errors,

1.0869 meters for the lab and 1.1819 meters for the lobby, are obtained when the number of

pictures is 130. This result indicates that the number of pictures is related to the localization

accuracy positively. Furthermore, the distance error in the lobby is more sensitive to the number

of pictures. We also notice that all distance errors for the lab are smaller than 1.2 meter and
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Figure 5.8: The average distance error for different number of pictures.
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Figure 5.9: The average training time for different number of pictures.
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Figure 5.10: The average distance error for different input dataset with two channel model.

distance errors for the lobby are lower than 1.3 meter when the number of pictures is greater

than 90. It also shows that the performance of ResLoc is robust to the change of the number of

pictures.

Figure 5.9 shows the training time across all datasets with different number of pictures.

It is intuitive to show that the training time is directly proportional to the number of pictures.

For the same number of pictures, the training time for the lobby is slightly longer than the

training time for the lab. Considering that the training process is a part of offline stage, namely

the training time does not compromise user experience. Thus, we choose the dataset with 130

pictures in every training point as the input of ResLoc because of the lowest distance error.

Impact of Bimodality

To evaluate the performance of our proposed bimodal input, we also deploy our ResLoc model

with different kind of input datasets, the amplitude dataset, the phase difference dataset and

the bimodal dataset. We compare the performance of these three datasets in two indoor en-

vironments, a computer laboratory and a long corridor. We know that CSI amplitude values

reflects channel frequency responses with abundant multipath components and channel fading.
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Figure 5.11: The average distance error for different input dataset with one channel model.

In other words, the performance of amplitude dataset is degraded by the indoor environments.

The computer lab is a cluttered environment. The furniture, computers, and appliances block

most of the LOS paths and generate lots of multipath. As is shown in Figure 5.10, the worst

performance is achieved by the amplitude dataset in the lab. Comparing with the amplitude val-

ues, the phase values of the signal with the periodical change over the propagation distance is

relatively more robust. According to Figure 5.10, we have a lower distance error with the phase

difference dataset. The bimodal tensor shows the lowest distance error among three datasets.

Due to the use of bi-modal CSI tensor, the phase difference values can be utilized to mitigate

the influence of the complex indoor environment. The mean distance errors are 1.0869 meters

and 1.819 meters in the lab and the corridor, respectively.

Impact of Channels

We also implement the single channel version ResLoc on these three datasets to investigate the

performance difference between the two channel ResLoc and the single channel ResLoc. Fig-

ure 5.11 shows a similar trend to previous two channel ResLoc, which means that the complex-

ity of the indoor environment is a dominant effect to the localization performance. However,

36



2-2-2-2 3-3-3-3 4-4-4-4 5-5-5-5 6-6-6-6

Network Depth

0

0.2

0.4

0.6

0.8

1

1.2

1.4

D
is

ta
n

ce
 E

rr
o

r 
(m

) Lobby

Lab

Figure 5.12: The average distance error for different network depth.

it is noticed that all distance errors showed in Fig. 5.11 are larger than corresponding distance

errors slightly. The distance error that is obtained by the amplitude dataset in the lab is over 2

meters. For the single channel ResLoc, the lowest distance error, 1.2027 meter, that is obtained

by bimodal dataset is still higher than the corresponding distance error, 1.0869 meters, which

is the best result of the two channel ResLoc. According to Figure 5.10 and Figure 5.11, it is

obvious to reveal that the two-channel architecture enhances the performance of the ResLoc

system.

Impact of the number of layers

We now show the impact of different number of layers on the proposed ResLoc system. There

are four sizes of basic residual blocks in the ResLoc system. Each residual block is formed by

two stacked convolutional layers. In different residual blocks, the number of the feature maps

in convolutional layers are different. We set the number of feature maps to 64, 128, 256 and

512 for convolutional layers in different residual blocks. To evaluate how the depth of network

affects the performance of the network, we repeat the basic residual block twice, three times,

four times, five times and six times, respectively.(For example, 2-2-2-2 means that four kinds
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Figure 5.13: The average distance error for different batch size.

residual blocks are repeated twice respectively.) Theoretically, increasing layers may reduce

the distance error. However, Figure 5.12 shows that the distance error reaches the lowest point

when the network scheme is 3-3-3-3. After that, the distance error rises slightly as the network

goes deep. According to Figure 5.12, all distance errors are about 1.2m, which means the

distance error is robust to network depth. Thus, we choose 3-3-3-3 scheme as the best scheme

to train the network, because of the lowest distance error and a relatively simple scheme.

Impact of batch size

Batch size defines number of samples that can be propagated through the network. We study

the impact of batch size on localization accuracy under the two environments. Figure 5.13

illustrates the mean distance errors for increasing batch size in the lab and lobby scenarios.

As we can see, there is no relation between the value of batch sizes and the mean distance

error. For the lab scenario, the highest mean error is 1.0869 meters and the lowest mean error

is 1.0579 meters. The difference between the maximum and minimum of mean error is 0.029

meters, which means the mean distance error is robust enough to the change of the batch size.

Similarly, the difference between the maximum and minimum of the mean error is only 0.0613
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Figure 5.14: The average training time for different batch size.

meters for the lobby scenario. It also shows that the mean distance error is independent to the

value of batch size.

Figure 5.14 depicts the training time for different batch sizes. Typically, networks trains

faster with mini-batches. We observe that the training time gets shorter with increasing batch

size. According to the Figure 5.14, we know the longest training times are 1744 seconds and

1581 seconds in the lobby and the lab, and the shortest training times are 1081 seconds and

1017 seconds in the lobby and the lab.

Impact of batch epoch

To improve the accuracy of ResLoc, we adjust the value of epoch. The impact of epoch on

localization accuracy is shown in Figure 5.15. In both indoor environments, the lab and the

lobby, the highest distance error is obtained when the value of epoch is 30. Along with the

growth of the value of epoch, the distance error keeps decreasing. And it maintains at about

1.1 meters from 50 epochs. Intuitively, the network does not converge before 50 epochs. When

the network reaches convergence, the distance error remains at same level. It is noticed that the

lowest distance errors in the lab and the lobby are obtained at 50 epochs.
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Figure 5.15: The average distance error for different epoch.
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Figure 5.16: The average training time for different epoch.

Figure 5.16 depicts the training time against the value of epoch. As is shown, the training

time increases as the value of the epoch increases in both scenarios. It is consistent with our

intuitive result that the more epoch loops the more time is consumed. To reach the lowest
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distance error, we spend about 1344 seconds and 1256 seconds to train the network in the

lobby and the lab respectively.
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Chapter 6

Conclusions and Future Work

6.1 Summary

In this paper, we presented ResLoc, a deep residual sharing learning based system for indoor

localization with two channels CSI tensor data. We introduced CSI in WiFi network with

OFDM system and discussed how to build CSI tensor data for indoor localization. Then, we

designed the ResLoc system, which leverages two channels CSI tensor data to train the deep

network by using the proposed deep residual sharing learning. For online test, we used newly

received CSI tensor data to compute the location of the mobile device based on the probabilistic

method. Finally, the experimental results showed the superior performance of the proposed

ResLoc system.

6.2 Future work

Even though ResLoc is a high accuracy indoor localization system using off-the shelf WiFi

devices, there are still many interesting problems that deserve further study. In the future, we

plan to consider the following three aspects for performance enhancement.

To evaluate the performance of ResLoc, we implemented the system in the corridor and

lab where no passenger occurred. However, it is impossible to avoid the effect from other

passengers in real life. The moving objects and people, generating multipaths and making

environment dynamic, lead to significant change to wireless channels. The changes nullify

fingerprints we collected. Thus, an effective background elimination algorithm is essential in

our future study.
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We trained two residual net for two scenarios respectively, which is time-consuming. In

the future work, we plan to propose a general localization method based on our ResLoc system.

Considering that most of position information is related, we plan to use transfer learning to

shrink training time, even zero training time for a new environment.

With fingerprinting based location, we have to collect a huge fingerprint dataset to train the

neural network. However, this process is too laborious when the system would be implemented

at large public facilities, like airports or shopping malls. To overcome this time-consuming

process, we would like to propose an data generating method to generate fingerprints. With the

help of such techniques, we could train our ResLoc system with a relatively small dataset.
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