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Abstract 
 

 
Functional magnetic resonance imaging (fMRI) has been widely used to infer brain function 

in both healthy and clinical populations. Here, we propose novel approaches for connectivity based 

characterization in both humans and dogs. In humans, these approaches have been applied for 

characterizing brain network alterations in Alzheimer’s disease (AD) patients. AD, which affects 

millions of elderly worldwide, is a neurodegenerative disorder with a long pre-morbid period such 

as mild cognitive impairment (MCI). Brain declines, both functional and structural, are inevitable 

with age. However, determining how and when the trajectories begin to deviate from healthy 

elderly individuals is a crucial step to effectively slow down the progression of the disease. 

Using resting-state fMRI, we first estimated Betweenness Centrality (BC) and a novel nodal 

characterization approach called Middlemen Power (MP) from directed network that characterize 

information flow. The directed network were derived from the following populations: Normal 

Control (NC), Early MCI (EMCI), Late MCI (LMCI) and AD. Our results demonstrate that MP 

detected more brain regions that progressively deteriorated from NC to EMCI to LMCI to AD, as 

compared to BC in directed networks. Also, BC did not identify a single node from undirected 

networks that significantly deteriorated. This demonstrates the MP may represent a more sensitive 

analytic tool for characterizing biomarkers in both directed and undirected networks. 

Most connectivity analyses have reported distributed decreases as well as increases in causal 

relationships among brain regions in MCI and AD. However, it is difficult to interpret these 

connectivity results because traditionally, our knowledge of brain function is anchored on regions 

and not connections. Therefore, we employed a novel approach for identifying focal directed 
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connectivity deficits in AD compared to healthy controls. Two foci were identified, locus 

coeruleus (LC) in the brain stem and right orbitofrontal cortex (OFC). Corresponding disrupted 

connectivity network associated with the foci showed that the brainstem is the critical focus of 

disruption in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-

centric, could in future investigate the role of brain stem in AD. 

Functional brain connectivity based on resting state fMRI has been shown to be correlated 

with human personality and behavior. In the third study, we sought to know whether capabilities 

and traits in dogs can be predicted from their resting state connectivity as in humans. We trained 

awake dogs to keep their head still inside a 3T MRI scanner while resting state fMRI data was 

acquired. Canine behavior was characterized by an integrated behavioral score. Functional scans 

and behavioral measures were acquired at three different time points (TPs). We hypothesized that 

the correlation between resting state FC in the dog brain and behavior measures would 

significantly change during their detection training process (from TP1 to TP2), and would maintain 

for the subsequent several months of detection work (from TP2 to TP3). To further study the 

resting state FC features that can predict the success of training, dogs at TP1 were divided into 

successful group and failure group. We observed a core brain network which showed relatively 

stable (with respect to time) patterns of interaction that were significantly stronger in the successful 

group compared to failure group and whose connectivity strength at TP1 predicted whether a given 

dog was eventually successful in becoming a detector dog.  A second flexible peripheral network 

was observed whose changes in connectivity strength with detection training tracked 

corresponding changes in behavior. Our findings suggest that upon replication and refinement, 

fMRI-based resting state brain connectivity may assist in choosing dogs that are more easily 

trainable for performing detection tasks.  
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CHAPTER 1  

Introduction 

 

Of all the objects in the universe, the human brain is the most complex organ which is capable 

of storing and processing information from a myriad of sensory inputs, and yet it remains very 

much a mystery. Over the years, neuroscientists have strived to understand the complex brain 

structures and tried to decipher the brain’s command of all its diverse functions. However, recent 

advances in magnetic resonance imaging (MRI) and functional MRI (fMRI) have led to great gains 

in our understanding of the brain and how it functions. 

 
1.1  Magnetic Resonance imaging (MRI) 

MRI is a non-invasive technique which uses strong magnetic field and electromagnetic waves 

to detect images of different structures in the body without the use of damaging radiation, and thus 

has been widely utilized in the area of radiology, disease diagnostics, treatment monitoring as well 

as in medical research [1]. An MRI scanner is a large magnet that generates a strong magnetic field 

that is thousands of times stronger than the natural magnetic field on the earth. By making use of 

the nuclear magnetic resonance property of elements in the body, the images can be obtained by 

the MR scanner [2]. Specifically, atomic number and the atomic weight are two characteristics that 

are of particular interest for MR, and these two determine the third property of an atom, namely 

its spin. In practice, 1H isotope of hydrogen is the most common to study as hydrogen is found in 
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abundance in the tissues that are the target of magnetic resonance imaging, and is very sensitive to 

the magnetic field into which the body is placed for the purpose of imaging. When the subject lies 

in the scanner, the hydrogen atoms, in particular, have a tendency to line up in the direction of the 

magnetic field, with slightly more than half going parallel and the rest going anti-parallel creating 

a net magnetization in the direction parallel to the magnetic field. The gradient coil can generate a 

gradient magnetic field so that each location has its own resonance frequency. To acquire the MR 

image, an additional energy need to be injected into the system, in the form of radiofrequency (RF) 

pulses. When the RF pulse is at the right resonance frequency, the protons absorb the energy and 

jump from the low energy state to high energy state. The affected protons are aligned at a uniform 

angle, and “tipped” away from its orientation at equilibrium and towards the transverse plane that 

is orthogonal to the axis of the original field. When the RF pulse is turned off, the protons release 

the energy and gradually return to the original state realigning to the static field. The emitted 

energy that is released by the protons is detected in turn by radiofrequency coils in the MR scanner 

to obtain the raw data matrix. By using the gradients in different directions, it enables different k-

space encoding of spatial information. The data are collected in Fourier space, known as k-space 

in MRI/fMRI literature [3]. By using an inverse Fourier transformation, k-space information can 

be transformed into image domain, and the spatial information can be recovered of the body that 

has been scanned. Once the RF pulse is turned off, the protons start to relax. The change in the 

MRI signal is called relaxation and can be classified into T1 and T2 relaxation. These relaxation 

time varied from different protons in the different tissues in the body thus can be utilized to 

construct images of different contrast. Images of different contrast can reflect different biological 

tissues which will be helpful in distinguishing interested tissues more clearly from surrounding 

areas and thus have various applications. With the advantage of good image quality and good 
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contrast between different tissues and comparatively high resolution, the MRI technique has 

earned broad prevalence in brain imaging, cardiac imaging, muscles over other medical imaging 

technique such as computed tomography (CT) and X-rays [4].  

 

1.2  Functional magnetic resonance imaging (fMRI) 

fMRI is now a primary technique to study the human brain, and the relevant pieces of literature 

are growing exponentially in recent years [5], [6]. The brain itself does not store glucose which is 

primary source of the energy. When the brain becomes active in response to a task or stimulus, the 

rate of blood flow to the regions that involved in the stimulus grows. The increase in the blood 

flow occurs because the brain requires oxygen to metabolize glucose, thus more oxygenated blood 

arrives in the relevant areas. The reason why magnetic resonance enters into this field is because 

blood contains iron in hemoglobin molecules, which is paramagnetic. A paramagnetic material has 

the property that when it is placed into a strong magnetic field, the atoms in the material align 

themselves with the field, thereby increasing the field strength. The magnetic properties of 

oxygenated and deoxygenated blood are different, oxygenated hemoglobin (HB) is diamagnetic 

while the deoxygenated hemoglobin (dHB) is paramagnetic. Since the changes in HB will cause 

changes in the local magnetic field applied to the body, this will affect the measured MR signal 

through the Blood Oxygenation Level Dependent (BOLD) contrast effect [7]. When neuron fires, 

the blood flow increases to bring more glucose and oxygen (HB) to replace dHB, the increase of 

the HB in the flow of blood in the vessels leads to MR (magnetic resonance) signal rise. In a word, 

neural activity and blood flow are coupled, the increase of neural activity brings more HB and less 

dHB and subsequently the increase of the MR signal. Consequently, the magnetic spin-spin 

relaxation time T2
 and T2

* grows, leading to an increase of intensity in T2-weigthed and T2
*-
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weighted MR images. That’s the mechanism of fMRI technique use BOLD contrast effect to obtain 

the picture of the activity in the brain. 

 

The changes in the ratio of oxygenated to deoxygenated blood are measured via the 

hemodynamic response function (HRF). Normally there is a delay of approximately 2 seconds 

after the triggering of neuronal activity, as the blood need time to be delivered to the relevant area. 

A gradual increase in the response peaks at about 6 seconds after that. If there is no further 

stimulation, the HRF starts to slow decay, returning to the baseline. Often there’s a dip below 

baseline is observed before complete recovery. It takes approximately 16 to 20 seconds to go back 

to baseline levels (see Fig.1.1). If the neuron keeps firing, the peak will spread to a flat plateau [5].  

 

Fig.1.1 Hemodynamic response function 
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Functional MRI tracks functionality of the brain in time, for every time of repetition (TR), a 

three dimensional volume image is generated by the MRI scanner. All 3D images generated within 

one scanning session can be concatenated in the form of a 4D image, with time as the fourth 

dimension. It can be noted that the temporal resolution is of great importance to the fMRI 

technique, however, due to the fact that the BOLD signal has its intrinsic limitation on temporal 

resolution, this prevent the temporal resolution from further progressing [8]. Recently, the 

deconvolution technique has been proposed to solve this problem. Further explanation will be 

elucidated in the chapter 1.4.3. Although fMRI technique has a comparatively poor temporal 

resolution compare to underlying neuronal signal, its spatial resolution is relatively high compared 

to other imaging technique such as the electroencephalograph (EEG) and magneto encephalogram 

(MEG). Thus some new techniques which can improve both spatial and temporal resolutions such 

as simultaneous recording and analysis of EEG and fMRI have received substantial attention. 

 

For the clinical use of the fMRI technique, physicians can use it to learn how a diseased brain 

is functioning, and how an invasive treatment works for a patient. They map the brain with 

connections between critical regions which are highly correlated with functions such as movement 

and sensory.  

 

1.3  fMRI Data Preprocessing 

Due to the noisiness of the data and subjects movement, the raw fMRI data cannot directly be 

used to the brain functionality analysis. A standard preprocessing pipeline step is needed. 

Normally, standard preprocessing of raw fMRI data includes slice timing correction, realignment, 

normalization, temporal filtering and regressing out nuisance covariates such as motion 
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parameters, white matter signal and cerebrospinal fluid signal, and spatial smoothing. 

Preprocessing usually performed using Data Processing Assistant for Resting-State fMRI 

(DPARSF) [9], which is based on the Statistical Parametric Mapping [10] and Resting-State fMRI 

Data Analysis Toolkit [11]. 

 

1.3.1 Slice Timing Correction 

As mentioned earlier, a 3D volume image is obtained by the scanner for each TR. However, 

functional volumes are usually acquired one slice at a time with the timing evenly separated over 

the TR to obtain a complete 3D volume image, the whole process normally takes within a few 

seconds. Therefore it’s incorrect to assume that all slices were captured at the same time. If the 

change of the timing isn’t correctly accounted for, the relative stimulus and response will not match 

across the slices and the statistical analysis will not fit the model with accuracy. Slice timing 

correction aims to adjust the voxel time series so that common reference timing appears for all the 

voxels. The temporal adjustment is achieved by shifting the time series of values slightly forward 

or backward in time using the sinc-interpolation.    

 

1.3.2 Realignment  

While the slice timing correction performs alignment in the temporal domain, the realignment 

does it in the spatial domain. Due to the fact that subjects’ movements are inevitable during the 

long-term scan session, the functional data acquired within a session (normally between 3 minutes 

to 12 minutes) cannot be perfectly matched. Therefore, the realignment of all the 3D volumes 

across each session are needed. The motion effect can be accounted by rigid body translations 

under the 6 motion parameters (3 translations and 3 rotations). Normally for each session, a 
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reference image is set to calculate the rigid body transformation between the reference image and 

other images in the same session that need to be realigned. Then the rigid body transformation is 

imposed on each image so that they are all aligned with each other.  

 

1.3.3 Spatial normalization 

Spatial normalization serves to convert the functional images which acquired from different 

subjects with different brain sizes to a standard template. This step is crucial because for most 

fMRI study, we need to concatenate data from different sessions and different subjects for the 

statistical analysis. However, different subjects have different brain size, it is impossible to 

perform the group-level analysis without using spatial normalization. Usually, the functional 

volumes are normalized to the standard template atlases such as MNI (Montreal Neurological 

Institute) [12]. 

 

1.3.4 Spatial smoothing 

Spatial smoothing works to average the data points with their nearby voxels to produce a 

smoother spatial map across the image compare to the raw data. This has the effect of removing 

the spatial high-frequency information of the data while enhancing the low frequencies. The 

average is often employed by convolving the fMRI signal with a Gaussian function of a particular 

width. If the filter width matches the expected signal width, this process improves the signal-to-

noise (SNR) ratio, but will reduce the spatial resolution of each image. Thus, a balance should be 

found between improving the SNR and maintaining the resolution of the functional image. In 

practice, for the most purpose a full width half maximum (FWHM) of the Gaussian kernel of 4mm 
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is suitable, but a larger FWHM may be useful if the SNR is particularly poor and the activation 

expected to cover a large area.  

 
1.3.5 WM and CSF removal 

In general, the BOLD signal has common source of error introduced by the physiological noise 

(WM and CSF). Signal changes in the WM and CSF primarily reflect the non-neural fluctuations 

such as scanner instability, respiration, etc. These signals are independent from BOLD signal 

fluctuations recorded in gray matter, and may cause the overestimation of the functional 

connectivity strength. Thus regressing out signals from CSF and WM may increase SNR. Usually, 

this can be done by averaging signals over all voxels within a WM or CSF mask for each time 

point, the mean WM and CSF time series are then used as temporal covariates and removed from 

the functional data through linear regression. 

 

There are also some other preprocessing steps that need to be taken account of, such as 

temporal filtering. Temporal filtering is applied to purge signal from unwanted noise and artifacts 

which come from thermal noise, physiological noise from heartbeat and breathing, and magnetic 

field shifting, etc. Especially for resting state time series, low frequency oscillations (~ 0.01—0.1 

HZ) are of great interest. However, it should be noted that band-pass filtering was not performed 

during preprocessing in this work, since the deconvolution method makes use of information 

carrying in the high frequency components[13].  

 

1.4 Relevant Literature and Methods 

1.4.1 Resting state fMRI 
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Functional imaging provides complementary viewpoints of the brain. In this chapter, we 

outline the general method in connectivity analysis, which are common to the rest of the chapters. 

There are mainly two ways in which fMRI can infer the brain functioning. Task fMRI asks subjects 

to perform certain tasks during the fMRI scan. The tasks are carefully designed to capture specific 

subdivision of the brain. The post analysis of task fMRI aims at identifying brain regions which 

are activated while performing the task as compared to a baseline condition. Task based fMRI 

experiment has several disadvantages that limit its application. The activation results are highly 

dependent on how well the patients can perform the described task. Patients with Parkinson’s 

disease may unable to cooperate. The task effects are small thus may need longer acquisition time 

to improve the SNR of the measurement. Further, brain functioning relies more on the 

communication between regions instead of isolated activation of these regions, thus activation 

analysis may not further shows how the brain process while tasking. In recent years, there has been 

an increase in interest in the application of the alternate approach at rest, termed resting-state fMRI 

(RS-fMRI). Resting state data are obtained without any explicit task requirements, subjects are 

asked to let their mind wander and lie still in the scanner, therefore the experiment cannot be 

influenced by particular task demands. Brain activity is present even in the absence of external 

task, any brain region will have spontaneous fluctuations in BOLD signal. The functional 

significance of these fluctuations was first found from one part of the motor cortex that were 

temporally correlated with other network functioning the same as motor cortex, even when the 

subject at rest. Literatures of resting state studies have reported sub-networks that are strongly 

functionally linked during rest, which referred to as the resting-state networks [14], [15]. These 

sub-networks are anatomically separated, but with brain regions that are functionally linked that 

show an ongoing functional connectivity during rest. Among these sub-networks, the default mode 
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network (DMN) is of special interest, which suggest to reflect a “default state” of neural activity 

in the brain [16]. The DMN is consist of functionally linked posterior cingulate cortex/precuneus, 

medial frontal and inferior parietal regions. Compared to other resting state networks, regions in 

the DMN have a high level of neuronal activity during resting, in contrast to the tasking 

performing. This makes the connectivity analysis in default mode network of special interest in 

examining cognitive malfunctioning in psychiatric and neurologic brain disorders. 

 

1.4.2 Connectivity analysis in RS-fMRI 

RS-fMRI technique helps to measure and examine the interrelationship between brain regions. 

Normally, the connectivity analysis which aims to model the interrelationship between brain 

regions is thought to be of two types: functional connectivity (FC) and effective connectivity (EC). 

FC studies the simultaneous activity between two brain regions, it can be defined as the temporal 

correlation between spatially neurophysiological events. EC on the other hand, studies the causal 

information from one region to the other, with one region being the source and the other being the 

destination. EC refers to the influence that one neuronal system exerts over another, at synaptic or 

population level. The change of the causality indicates that if the brain activity changes in one 

region, it will cause altered activity in another region. In this work, we employ EC to understand 

brain network alterations in Alzheimer’s disease (AD) patients and investigate FC correlation 

changes with behaviors in dogs in different data acquisition time point.  

 

It can be noted that connectivity focus more on the relationship between two brain regions, but 

human brain operates interrelationship among all the regions simultaneously. Thus pairwise 

relationships are inadequate and incomplete to represent the ground truth. To this effect, graph-
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theoretic measures derived from resting state connectivity measures have been used to identify 

potential biomarkers in AD patients. Among all the connectivity paths in the network, there are 

always some central nodes that participate in many short paths, and act as the controller of the 

information flow. Betweenness Centrality (BC), a local nodal characteristic which quantifies how 

much information may traverse the node (any given brain region) belongs to one of those critical 

node measures. We study the alterations in critical nodes in AD patients and its two preliminary 

stage groups.  

 

1.4.3 Deconvolution  

An important role that should not be ignored is that the fMRI is an indirect measure of neural 

activity which can be modeled as the convolution of the hemodynamic response function h(t) and 

underlying neural response s(t) which are driven by the external stimulus from performing task 

(see Fig.1.2).  

 

 

Fig.1.2 Hemodynamic model 

 

The HRF is the impulse response which governs the relationship between underlying neural 

response and the acquired fMRI signal. Since the fMRI data acquisition happens between the 

neurons firing and the change of HB in blood that changes the signal, the signal itself is not 
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faithfully represent the hidden neural activity. Moreover, it has been proved that the HRF vary 

across different subjects and also among different regions in the same subject. Given the fact that 

the fMRI signal can be influenced by variability of the HRF instead of the underlying neural 

response, studies have shown that the causal relationship obtained from the raw fMRI time series 

can be confounded by the factor [17], [18]. Therefore, performing deconvolution is an alternative 

way to overcome this problem. 

 

Since both the voxel-specific HRF and underlying neural responses are unknown and only can 

be estimated from the observed fMRI data, the deconvolution must be blind. To date, many 

deconvolution method have been proposed [19]–[21], in this study, we performed method 

demonstrated by Wu et al [13] to remove non-neural variability of the HRF and estimate latent 

neural response. Specifically, the resting-state fMRI data was considered as spontaneous event-

related, and those events can be detected by picking up the comparatively large amplitude of 

BOLD signal fluctuations. The HRF of each voxel was reconstructed by fitting them with a double 

gamma function and two time derivatives. Finally, signals at the neural level can be recovered by 

Wiener deconvolution using the corresponding HRF. Many previous literatures have performed 

this deconvolution method, and it has been proved that deconvolution improves the estimation of 

effective connectivity [20], [22] .   

 

1.4.4 This work in relation to prior literature 

While most studies performed Betweenness Centrality of functional connectivity as an 

indicator of node’s centrality in a network. A Previous study have shown that centrality measures 

do not necessarily identify some important critical nodes even though their removal might cause 
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the functional deterioration of the whole network [24]. With the combination of 

effective/functional connectivity, and a novel critical node identification method in directed 

networks named Middleman Power, we test the hypothesis that MP is superior to BC from both 

directed and undirected networks. 

 

There has been considerable work on studying the biomarkers of Alzheimer’s disease and its 

preliminary stage such as mild cognitive impairment. However, none of the studies have utilized 

dynamic connectivity information in characterizing the disorders. Dynamic connectivity has been 

shown to have better predictive ability than static connectivity. [25][25][25]Recent work suggests 

that connectivity varies over time, and the temporal variability of connectivity is sensitive to 

human behavior in health and disease [25]. In this study, we used a novel framework to identify 

the foci that affected most by the disease with the combination of Effective connectivity and 

dynamic effective connectivity, we believe that this work provide a unique insight of view into the 

brain alterations in the AD studies. While connectivity analysis provide valuable information on the 

biomarkers of the disease based on brain network alterations, it is difficult to interpret these connectivity 

results because traditionally, our knowledge of brain function is anchored on regions (activations 

and morphometric changes) and not connections. From an interventional standpoint, it is easier to 

functionally modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather 

than connections. Further, we assume that most abnormalities are usually characterized by certain 

sources (foci), the impairments affect neural signaling along pathways associated with the diseased 

regions. By identifying the source could leave better understanding to the rest of the abnormal 

effects. Moreover, traditional connectivity simply assumed to be stationary over time, and only 

one value of connectivity can be obtained from the whole scan. However, the state of human brain 
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changes every moment, with such a static formulation seems intuitively incomplete. Considered 

that dynamic fluctuation of connectivity cannot be captured by using this approach, and such 

change carries biological information [26]. Recent work suggests that connectivity varies over 

time, and the temporal variability of connectivity is sensitive to human behavior in health and 

disease [25]. In addition to studying the conventional static effective connectivity (SEC), we also 

estimated dynamic effective connectivity (DEC) from the resting state fMRI data acquired from 

AD group and NC group. 

 

Functional brain connectivity based on resting state functional magnetic resonance imaging 

(fMRI) has been shown to be correlated with human personality and behavior. In this study, we 

sought to know whether capabilities and traits in dogs can be predicted from their resting state 

connectivity as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner 

while resting state fMRI data was acquired. Canine behavior was characterized by an integrated 

behavioral score capturing their hunting, retrieving, and environmental soundness. Functional 

scans and behavioral measures were acquired at three different time points (TPs). The first time 

point (TP1) was prior to the dogs entering formal working detector dog training. The second time 

point (TP2) was soon after formal detector dog training. The third time point (TP3) was three 

month’s post detector dog training while the dogs were engaged in a program of maintenance 

training for detection work. We hypothesized that the correlation between resting state FC in the 

dog brain and behavior measures would significantly change during their detection training 

process (from TP1 to TP2), and would maintain for the subsequent several months of detection 

work (from TP2 to TP3). To further study the resting state FC features that can predict the success 

of training, dogs at TP1 were divided into successful group and failure group. Moreover, we 
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identified the homologous areas by comparing the connectivity fingerprints of regions between 

humans and dogs. Despite the lack of abundant literature into the neural basis of behaviors of dogs 

and their trainability, projecting dog brain regions identified here onto the human brain, and 

evaluating similar literature in humans may help us better understand the evolutionary role of 

brain-behavior relationships. This comparative evaluation is particularly relevant for dogs since 

they are a rare species which has socially co-evolved with humans for thousands of years. 

 

1.5 Organization of the Dissertation 

The first chapter gives a short introduction of relevant background knowledge, briefly 

elucidating the MRI, fMRI and its preprocessing pipelines. The other chapters are organized as 

follows. Chapters 2 and 3 are connectivity based characterization of resting state fMRI in 

Alzheimer’s disease patients. Chapter 2 presents the using of nodal characteristics to identify brain 

based biomarkers that progressively deteriorate from healthy status to mild cognitive impairment 

to Alzheimer’s disease. Chapter 3 presents the identification of disease foci which affect most by 

the Alzheimer’s disease. Chapter 4 presents resting state functional connectivity analysis in dogs. 

Chapter 5 provides concluding remarks on this work and Chapter 6 lists peer-viewed publications. 
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CHAPTER 2 

Deterioration from Healthy to Mild Cognitive Impairment and 

Alzheimer’s Disease Mirrored in Corresponding Loss of Centrality 

in Directed Brain Networks 

 
2.1 Introduction 

Alzheimer's disease (AD) is a neurodegenerative disorder that affects millions of individuals 

worldwide [27]. The disease is initially characterized by memory loss, and then cognitive decline 

and incapacity as the disease progresses. In order to accelerate discovery of the neurobiological 

basis of AD, Alzheimer's Disease Neuroimaging Initiative (ADNI) was conceived in 2000, aiming 

to characterize biomarkers of AD and study the progression from normal cognition to dementia 

[28], [29]. Mild cognitive impairment (MCI) presents as a transition period between normal aging 

and AD. Evidence regarding the pathologic basis of MCI has demonstrated characteristics similar 

to those seen in AD patients such as amyloid-β, neurofibrillary tangles, etc. [30]. It is estimated 

that half of the MCI patients will convert to AD patients in three to five years [31]. Therefore, 

studies employing both healthy, MCI and AD populations may help us to better understand the 

dynamic alterations in brain structure and function with the deterioration of the disease [32], [33]. 

Also, it is important to identify brain-based biomarkers that progressively deteriorate from healthy 

status to MCI to AD. 
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Resting state functional magnetic resonance imaging (RS-fMRI) is a promising method that 

can non-invasively characterize distributed brain networks [34], [35]. RS-fMRI has been widely 

used to study the inter-regional functional connectivity between healthy and disease populations, 

especially for detecting connectivity abnormalities in AD and MCI [36]. Studies have found that 

AD is associated with alteration of connectivity among different brain regions [37], [38]. 

Specifically, it has been shown that AD patients have decreased hippocampal connectivity with 

prefrontal lobe and posterior cingulate cortex [39], [40]. Further, connectivity alterations in AD 

patients’ brain have been shown to occur in medial frontal, medial parietal and posterior cingulate 

cortex, and those regions also have a high resting-state metabolism and are part of the “default 

mode network” [41]. Huang et al. [42] found that compared with control subjects, AD patients had 

decreases in the amount of inter-regional connectivity, especially in the hippocampus, weaker 

between-lobe connectivity and between-hemisphere connectivity. In contrast, MCI patients had 

increased between-lobe connectivity between the occipital and frontal lobes compared with control 

subjects. Reduced resting-state functional connectivity [43] has been found in the default-mode 

network of MCI patients. Some of the connectivity changes in MCI have been postulated to be a 

compensatory response to the onset of AD-like pathologies in the brain.  

 

Recently, the combination of RS-fMRI and graph theoretical analysis has revealed the 

topological organization of human whole-brain functional networks. For example, the healthy 

brain has been shown to exhibit small-world characteristics [44], [45]. Using graph theoretical 

analysis of AD/MCI patients and healthy populations can lead to better understanding of the 

differences in the topology of brain networks as well as the relationship between brain connectivity 

and the disease processes [37], [46]. Previous studies have found widespread reduction in node 
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degree (a measure of connection density) in MCI compared to healthy controls, suggesting that 

graph-based analyses might potentially be used in the determination of biomarkers for pathological 

aging [47]. For example, decrease in local clustering coefficient (specifically, in the hippocampus) 

and increased characteristic path length (CPL) in AD compared to normal controls has been 

demonstrated [37], [48]. Decreased long-distance connectivity of the frontal and caudal brain 

regions had been found in AD compare to controls [49]. Moreover, Betweenness Centrality (BC), 

a local nodal characteristic which quantifies how much information may traverse the node (any 

given brain region), was shown to be lower in certain brain regions in both AD and MCI compared 

to healthy controls [50].  

 

We identify two shortcomings in previous studies employing graph-theoretic complex network 

analysis of resting state brain networks. First, it is noteworthy that previous studies have not 

investigated whether complex network measures obtained from brain networks mirror 

neuropathological deterioration from NC to MCI to AD. This is important because such metrics 

could signal a neurodegenerative course which is different from normal aging at early stages of 

the disease when intervention is more likely to be successful. Second, previous reports have found 

promise in BC [50], but have utilized BC calculated from undirected networks that characterize 

synchronization rather than information flow, which is better characterized using directed 

networks. It is to be noted that both synchronization and information flow are prevalent 

mechanisms by which brain regions interact with each other. Besides, even though Betweenness 

Centrality can determine the importance of a particular node in a network, it tends to over-inflate 

the power of nodes [24] as will be explained in the next section.  
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In this study, we estimated BC from directed networks derived from the application of Granger 

causality [51]–[58] to resting state fMRI data acquired from the following populations: Normal 

Control, Early MCI, Late MCI and AD. We used an additional metric called Middlemen Power 

(MP) which not only characterizes information flow through a node as in BC, but also estimates 

the power of the node in terms of its criticality for information flow in the entire network [24]. We 

hypothesized that BC and MP of brain regions should progressively decrease from NC to EMCI 

to LMCI to AD and sought to identify such brain regions.  

 
2.2 Materials and Methods  

2.2.1 Subjects 

Data used in this study were obtained from ADNI database (http://www.loni.ucla.edu/ADNI). 

The ADNI is a multisite, longitudinal observational study of clinical, imaging, genetic and bio-

specimen biomarkers through healthy elders to MCI to dementia or AD. Over 800 adults, aged 55 

– 90 years, have been recruited from over 50 sites across USA and Canada to be followed for two 

or three years. 

 

Resting state fMRI data from 35 control subjects, 34 EMCI, 34 LMCI and 29 Alzheimer’s 

disease patients were obtained through ADNI-2 from the database. The participants in this study 

were recruited between 2011 and 2013 through ADNI-2 protocol, and we selected subjects who 

had completed both the 3D MPRAGE and resting state fMRI data scans in the same visit. We 

manually discarded 2 LMCI patients from the group so that the ages of four groups are statistically 

the same. Subjects were tested with Neuropsychiatric Inventory Questionnaire (NPI-Q), Mini-

mental State Examination (MMSE), Functional Assessment Questionnaire (FAQ), as well as 

Global Clinical Dementia Rating (Global CDR) (Table.2.1). Functional MRI data were acquired 

http://www.loni.ucla.edu/ADNI
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using a T2
*-weighted single shot echo-planar imaging (EPI) sequence on 3.0 Tesla Philips MR 

scanners with 48 slices, slice thickness = 3.3mm, repetition time (TR) = 3000 ms, echo time (TE) 

= 30 ms, flip angle (FA) = 80 degrees, field of view (FOV): RL = 212, AP = 198.75mm, FH = 159 

mm, voxel size: RL = 3.3125 mm, AP = 3.3125 mm and 140 temporal volumes in each run. 

Anatomical images were acquired using magnetization-prepared rapid gradient echo (MPRAGE) 

sequence for overlay and localization (TR = 6.8 ms, TE = 3.1 ms, voxel size: 1.11 × 1.11 × 1.2 

mm3, FA = 9 degree, FOV: RL = 204 mm, AP = 253 mm, FH = 270 mm). The data was subjected 

to standard resting state preprocessing pipelines using SPM8 and DPARSF toolboxes [9], [59]. 

Mean time series were extracted from 200 functionally homogeneous ROIs identified via spectral 

clustering [60]. It has been suggested that with 200 or fever ROIs, the Craddock template offers 

better interpretability and has been widely used in graph theory [61].  

 

Table.2.1. Demographics and clinical findings. 
 Controls EMCI LMCI AD 

Sex (F/M) 20 / 15 16 / 18 14 / 20 16 / 13 
Age  74.5 ± 5.8 72.2 ± 5.7 71.4 ± 8.6 73.1 ± 7.35 

NPI-Q 0.6 ± 1.3 2.1 ± 3.1 2.8 ± 2.5 3.0 ± 2.4 
MMSE 28.8 ± 1.6 28.1 ± 1.5 27.1 ± 2.3 20.9 ± 3.9 
FAQ 0.2 ± 0.8 3.3 ± 4.1 5.4 ± 6.2 16.3 ± 7.6 

Global CDR 0.0 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.8 ± 0.2 
 

2.2.2 Connectivity Analysis 

Directional brain networks were obtained from resting state fMRI data using Granger 

Causality [36], [62]–[67]. The principle underlying Granger Causality [68]–[71] is as follows: If 

using the past time series X improves the prediction of the future of time series Y, then X can be 

said to have a causal influence on Y (Granger, 1969). Let X(t) = [x1(t), x2(t),…, xq(t)] be the q 
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selected ROI time series, then the multivariate autoregressive (MVAR) model with order p is given 

by 

 

                  
1

( ) ( ) ( ) ( )
p

n
X t A n X t n E t

=

= − +∑                                                  (2.1) 

 

Where A(n) is the model parameter, and E(t) is the vector of the residual error. There are many 

previous studies which have used the MVAR model to estimate the causal relationship between 

fMRI time series from different brain regions. However, using Granger causality analysis on raw 

fMRI signals can be confounded by the spatial variability of the hemodynamic response [72], [73]. 

The spatial variability of the hemodynamic response function and its smoothing effect can be 

removed by blind hemodynamic deconvolution methods. Consequently, a novel blind 

deconvolution approach based on the detection of pseudo-events proposed by [13] was used to 

estimate the hemodynamic response function (HRF) and unmeasured neural variables from the 

observed data. Specifically, resting-state fMRI data was considered as spontaneous event-related, 

wherein the events were detected by picking up the comparatively large amplitude of BOLD signal 

fluctuations after removing other sources of noise. The HRF of each voxel was reconstructed by 

fitting them with a double gamma function and two time derivatives. Finally, signals at the neural 

level were recovered by Wiener deconvolution using the corresponding HRF. When the latent 

neuronal variables are input into the MVAR model (Eq.2.1) instead of raw fMRI data, we get the 

following equation 
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(2.2) 

 

Where hq(t) are the hidden neural states, p is the model order estimated from the 

Akaike/Bayesian information criterion [36], [51], a and e are the MVAR model coefficients and 

errors, respectively. The instantaneous influences between time series are represented by a(0) and 

the causal influences between time series can be inferred from a(n), n =1 .. q. Using a(0) and a(n) 

in the model can minimize the “leakage” of instantaneous correlation into causality [68], [72], 

[74], [75]. Subsequently, the correlation-purged causality (CPGC) from time series j to time series 

i could be obtained using the following equation 

 

2

1
( ) (n)

p

ij ij
n

CPGC a
=

=∑                                                           (2.3) 

 

The hidden neuronal response corresponding to all the 200 ROIs were first identified using 

deconvolution and then input into a fifth order MVAR model to obtain the causal connectivity 

between them. Surrogate data were obtained by randomizing the phase of the original time series 

and retaining their magnitude spectrum and then input into the MVAR model. This procedure was 

repeated 1000 times and the statistical significance of each path was obtained by comparing the 

CPGC value obtained from original data with the null distribution obtained from surrogate data. If 

region A significantly influenced region B (p<0.05), then the path from A to B was considered 

directionally connected. 
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2.2.3 Nodal Characteristics 

Betweenness Centrality (BC) is a local nodal characteristic that quantifies how much 

information may traverse the node (any given brain region) and has been widely used in graph 

analysis [76]. To define the BC measure, let λi(st) be the num paths [77] between node s and node 

t, passing through node i. Let the total number of shortest paths between node s and node t be 

denoted by λ(st). Then the Betweenness Centrality in network D (containing nodes s, t and i) can 

be defined as 

, : (
( )( )

)
i

i
s t s i t st

stBC D λ
λ≠ ≠

= ∑                                                           (2.4) 

 

Eq. 2.4 indicates that nodes with high Betweenness Centrality connect, otherwise unconnected 

parts of the network. However, some nodes located on the shortest paths between long distance 

vertices can turn out to possess rather high values of BC (due to long geodesics) that in actuality 

are not critical for information flow. This indicates that Betweenness Centrality is a rather good 

local characteristic measure, but may lose its advantages in large-scale networks. Comparatively 

speaking, a middleman in a network occupies a critical position that can block at least one node's 

information flow to another. In the extreme case, middlemen nodes might have the ability to 

separate the whole network into several disconnected components [24]. On the contrary, centrality 

measures do not necessarily identify these important critical nodes, even though, their removal 

might cause the functional deterioration of the whole network. 

 

For example, consider the directed network shown in Fig.2.1 Nodes N1, N2, N3 block 

information flow from nodes F1, F2, F3 to other nodes respectively. If we discard node N1 
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(Fig.2.1, left), information flow from F1 to other nodes will be blocked. Thus, the middlemen 

nodes are N1, N2, and N3. The value of un-normalized Betweenness Centrality of N1, N2 and N3 

are equal to 4. However, if we discard N4 (or N5) separately, it does not block the information 

flow from any of two nodes that originally communicate with each other (Fig.2.1, right). For non-

middlemen N4, N5, their Betweenness Centrality value equal to 6. Here, the non-middlemen nodes 

(N4, N5) have higher Betweenness Centrality value compared to actual middlemen (N1, N2, N3) 

because betweenness is counted on geodesics, and the geodesics between given nodes have equal 

weight. This example illustrates that BC tends to exaggerate the power of some non-middlemen 

nodes and thus may not necessarily accurately measure the ‘power’ of middlemen nodes 

(Table.2.2). 

 

Fig.2.1 An example illustrating the concept of Middleman Power and its superiority over 

Betweenness Centrality 
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Table.2.2 The value of un-normalized Betweenness Centrality and Middlemen Power for the 
directed network in Fig.2.1 

 Betweenness Centrality Middlemen Power 
N1 4 4 
N2 4 4 
N3 4 4 
N4 6 0 
N5 6 0 

 
 

The brokerage position of middlemen in directed networks allows them to be highly extractive 

to both directly and indirectly connected nodes. The brokerage of node i in network D can be 

defined as 

 

( ) # ( ) # ( ) # ( ) # ( )i j j i i
j N j i

b D S D S D i S D P D
∈ ≠

= − − − −∑ ∑                             (2.5) 

 

Where N is the set of all nodes in D, i denotes an arbitrary node belong to set N. Node j is the 

successor of node i and node i is called the predecessor of j if there is at least one node that adjacent 

to the path from i to j. Symbol # denotes the number of instances which satisfy the expression 

being referred to. For example, #Sj(D) is the number of successors of node j in network D. The 

maximal potential brokerage in network D is defined as 
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Where si(D) are all of the direct successors of i in D. By normalizing a node’s brokerage score, 

the Middleman Power of a node can be defined as 

 

             '
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b DD
B D

=                                                       (2.7) 

 

Eq. 2.7 indicates that if a middleman node breaks all potential opportunity in the network, in 

other words disconnects connections between all the other nodes due to its removal (such as the 

removal of the center node of a star shaped network), then the middleman node has a network 

power of 1.  

 

2.2.4 Statistical Analysis 

The directional connectivity matrices obtained using the MVAR model were binarized with a 

threshold p<0.05. Betweenness Centrality and Middleman Power measures were calculated from 

the binarized matrices. BC [76] and MP [24] were obtained for each node from the directed 

networks. Six one-sided t-tests using BC and MP measures were performed (NC > EMCI, NC > 

LMCI, NC > AD, EMCI > LMCI, EMCI > AD, LMCI > AD), to find common nodes among all 

the six comparisons in order to identify brain regions in which BC and MP decreased progressively 

from NC to EMCI to LMCI and AD.  

 

Besides, to test the BC measures for undirected networks (as MP is not defined for undirected 

networks), conventional functional connectivity, and associated p-values were derived from each 

group. This was done by calculating Pearson’s correlation coefficients between each pair of 200 

fMRI time series representing those ROIs. Similar to the effective connectivity, the functional 
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connectivity matrices were binarized at a threshold of p<0.05, and BC measures were calculated 

for each subject. Six one-sided t-tests were also performed to find the common nodes as described 

before. 

 

2.2.5 Behavioral Relevance of Nodal Characteristics 

In order to determine the behavioral relevance of nodal characteristics, we correlated both 

Middlemen Power and Betweenness Centrality of ROIs (which satisfied our hypotheses as stated 

above) with clinical variables (scores of NPI-Q, MMSE, FAQ and Global CDR) using the entire 

subject sample. 

 

2.3 Results 

Middlemen power of Left Orbitofrontal Cortex (L OFC) and Lateral Occipital Cortex (LOC) 

progressively decreased from NC to EMCI to LMCI to AD (Fig.2.2). These two regions are 

displayed (Fig.2.3) on a brain surface using BrainNet Viewer software 

(www.nitrc.org/projects/bnv/), which is a graphical interface visualization tool [78]. BC obtained 

from directional brain networks was able to identify only the LOC and not L OFC (Fig.2.4).  

http://www.nitrc.org/projects/bnv/


  28 

 

 

 

Fig.2.3 The location of two ROIs in the brain whose power progressively decreased with the 

deterioration of disease. L OFC: Left orbitofrontal cortex, LOC: lateral occipital cortex 

Fig.2.2 Middlemen Power of Left Orbitofrontal Cortex and Lateral Occipital Cortex, which were 

significantly different between the groups and deteriorated from NC to EMCI to LMCI to AD 
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Betweenness Centrality estimated from undirected networks obtained from each subject using 

conventional functional connectivity did not identify a single node which was significant in the six 

t-tests mentioned above. To be more specific, we gradually relaxed the p-value threshold in all 

tests and tried to find the node that was common among all the six comparisons. It was not until 

the p-value threshold was 0.25, that the first node, Cuneal Cortex (Fig.2.5) was identified. 

Obviously, it is not statistically significant. This demonstrates the superiority of Middlemen Power 

over Betweenness Centrality obtained from both directed and undirected networks. 

Fig.2.4 Betweenness Centrality of Lateral Occipital Cortex obtained from directional networks, which 

was significantly different between the groups and deteriorated from NC to EMCI to LMCI to AD 
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Middlemen power of L OFC and LOC, and Betweenness Centrality of LOC (all of which were 

estimated from directed networks) which progressively decreased from NC to EMCI to LMCI to 

AD correlated significantly with behavioral measures across the entire subject sample, thus 

highlighting their relevance to the underlying neuropathology (Tables.2.3 and 2.4). It is 

noteworthy that MMSE is highest in controls and lowest in AD while the opposite is true for the 

other three measures. Therefore, it makes sense that MMSE was positively correlated with nodal 

characteristics while the other three behavioral measures were negatively correlated with nodal 

characteristics. The correlations with behavior were also stronger for middlemen power as 

compared to betweenness centrality. 

 

Table.2.3 Correlation value (R) and corresponding p-value for the correlation of behavioral 

Fig.2.5 Betweenness Centrality of Cuneal Cortex obtained from undirected networks, which 

was not significantly different between the groups  
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measures with Middlemen Power of L OFC and LOC 

Behavioral 
Measures 

L Orbitofrontal Cortex Lateral Occipital Cortex 

R p-value R p-value 

NPI-Q -0.34 6.32×10-04 -0.38 1.49×10-04 

MMSE 0.41 3.297×10-05 0.38 1.41×10-04 

FAQ -0.48 8.97×10-07 -0.46 2.45×10-06 

Global CDR -0.79 2.16×10-21 -0.83 1.33×10-25 
 
 

Table.2.4 Correlation value (R) and corresponding p-value for the correlation of behavioral 

measures with Betweenness Centrality of LOC 

Behavioral 
Measures 

Lateral Occipital Cortex 

R p-value 

NPI-Q -0.24 1.86×10-02 

MMSE 0.34 1.52×10-03 

FAQ -0.36 3.81×10-04 

Global CDR -0.45 3.11×10-06 
  

2.4 Discussion 

We applied correlation-purged Granger causality to latent neural signals estimated from blind 

hemodynamic deconvolution of fMRI to obtain measures of directional influence across 200 brain 

regions covering the entire brain. We estimated BC and MP from directed networks from the 

following populations: Normal Control, Early MCI, Late MCI and AD. Our major findings were 

as follows. MP of two brain regions, Lateral Occipital Cortex and Left Orbitofrontal Cortex that 

significantly decreased with the deterioration of the disease were identified while Betweenness 

Centrality only found Lateral Occipital Cortex. In addition, no significant node was found in 
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undirected networks using Betweenness Centrality. The Middlemen Power of LOC and L OFC, 

and Betweenness Centrality of LOC also correlated significantly with behavioral scores, indicating 

their relevance to underlying pathology. Our results provide evidence that, for identifying imaging 

markers of deterioration from NC to MCI to DC, (i) Middlemen Power is a better local nodal 

characteristic compared to BC and, (ii) Directed networks seem to be more sensitive than 

undirected networks .  

 

Our results are in agreement with previous functional network studies. The orbitofrontal cortex 

is damaged conspicuously in AD, and from the view of neurofibrillary tangle (NFT) pathology, 

AD cases have been shown to have pathology in orbitofrontal cortex and distinct patterns of NFT 

while control cases had no appreciable pathology other than an occasional NFT and diffused 

plaque [79]. The Orbitofrontal Cortex plays crucial roles in cognitive processing of decision-

making [80] and age-related cognitive decline was shown to mirror neurodegenerative changes in 

this region [81]. On the other hand, LOC has also been previously noted in AD-related brain 

imaging studies. For example, it has been reported that with the deterioration of the disease, LOC 

showed a faster rate of atrophy in AD compared to MCI and NC [82]. Yao et al. found that the 

functional connectivity between LOC the left amygdala decreased in EMCI compared to LMCI, 

indicating that the decrease in memory ability was related to such connectivity changes [83]. Some 

previous studies have also found increased functional connectivities in MCI/AD which were 

attributed as compensatory mechanisms for losses in cognitive functionality [84], [85]. There 

hasn’t been more direct and expansive evidence for this alternative model. Therefore, we 

hypothesized that BC/MP of a few brain regions should progressively decrease with the 
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deterioration of the disease. The deterioration hypothesis is a more mainstream view with wider 

acceptability since it has roots in molecular/cellular level events in AD as discussed below. 

 

Beta-amyloid (Aβ) shows a high degree of spatial overlap with default mode network [86] and 

recent work has detected a linear relationship between amyloid deposition and functional 

connectivity derangement [87]. The Aβ is the critical initiating event in AD, starting with the 

aberrant clearance of Aβ-peptides followed by consecutive peptide aggregation and disruption of 

neural activity [88]. Thal et al analyzed whole brain regions Aβ deposition to clarify whether there 

are differences in the expansion of Aβ-pathology between clinically proven AD cases and healthy 

population [89] and their results showed that occipital cortex and frontal cortex were severely 

affected by the Amyloid deposition with the deterioration of the disease. These results by Thal et 

al are in concordance with our findings. Taken together, the decreasing of MP/BC is supported by 

deterioration in Aβ deposition with progression of disease. Given that estimating Aβ deposition 

requires a PET scan which is more invasive and expensive than an MRI scan, our results highlight 

the possibility of using the graph-theoretic characterization of directional brain networks obtained 

from resting state fMRI for tracking neurodegeneration. 

 

Some other regions have also been reported to be crucial to AD pathology [37], [90]–[92]. In 

fact, we also identified cingulate gyrus, hippocampus and middle temporal gyrus in the comparison 

of (NC>EMCI, NC>AD, EMCI>AD) using MP. This is in accordance with previous studies [37], 

[90]–[92]. However, these regions were not identified among all 6 comparisons (NC > EMCI, NC 

> LMCI, NC > AD, EMCI > LMCI, EMCI > AD, LMCI > AD). Considering that we were 
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primarily interested in brain regions that progressively deteriorated from NC to EMCI to LMCI to 

AD, we did not emphasize these results in this report. 

 

2.5 Conclusion 

In conclusion, our results showed that the MP detected more brain regions that progressively 

deteriorated from NC to EMCI to LMCI to AD, as compared to BC in directed networks. Also, 

BC did not identify a single node from undirected networks that significantly deteriorated. This 

demonstrates the superiority of MP over BC in both directed and undirected networks, and could 

serve as a potential biomarker for progressive deterioration from NC to MCI to AD. 
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CHAPTER 3 

Investigating Focal Connectivity Deficits in Alzheimer’s Disease 

using Directional Brain Networks Derived from Resting-State fMRI 

 

3.1 Introduction 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with a long pre-morbid 

asymptomatic period [93] which affects millions of elderly individuals worldwide [27]. The 

disease is initially characterized by the presence of neuronal and synaptic loss, β-amyloid (Aβ) 

production which results in the formation of intracellular neurofibrillary tangles and senile plaques 

[94], thereby resulting in memory loss, cognitive decline, etc. Structural and functional decline are 

inevitable with age and the existing treatment options for AD are highly limited. Therefore, 

determining neural aberrations underlying AD are an important step in addressing this challenge.  

 

Resting-state functional magnetic resonance imaging (RS-fMRI) is a promising neuroimaging 

technique that can non-invasively characterize underlying brain networks. This technology has 

been widely used to identify biomarkers of AD based on brain network alterations [38], [95], [96]. 

Seed-based approaches [97], independent components analysis (ICA) based approaches [98] and 

graph theory [99] have been the three primary methods used in the study of resting-state functional 

connectivity (FC) in the brain. The seed-based approach involves predefining a region of interest 

(ROI) and extracting the BOLD signal from it; then a map of FC is obtained by calculating the 
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cross-correlation between the time series extracted from the seed ROI and all other voxels in the 

brain. Previous studies in AD employing seed-based FC revealed decreased connectivity between 

the posterior cingulate cortex seed and regions spread across the whole brain in subjects with AD 

compared to healthy aging, with the Default Mode Network (DMN) being the most affected system 

[100], [101]. Rather than define prior seeds, the ICA approach is model-free, which identifies 

independent components or co-activation networks throughout the brain. [102] examined the 

components corresponding to the DMN for AD patients, and found significantly decreased FC in 

the posterior DMN and increased connectivity in ventral and anterior DMN in the AD group. 

Graph theoretic analysis is typically performed using FC matrices, revealing the topological 

properties and organization of the underlying brain network. For example, [91] found that AD 

impacted the clustering coefficient and modularity in resting-state networks before the onset of the 

symptoms, suggesting that there might be a network-level pathology even in the preclinical stage. 

In summary, a profile of decreased connectivity has been consistently observed in AD. 

 

However, most of the existing works on connectivity analyses have relied on FC or co-

activation patterns, the literature on directed or effective connectivity (EC) patterns in AD is 

comparatively limited (more on this in the next paragraph). It is noteworthy that synchronization 

and causality in fMRI time series both represent distinct mechanisms in the brain [103], hence 

investigating EC aberrations in AD deserves attention. Motivated by this, we employed EC 

modeling to investigate aberrations in causal relationships between brain regions in AD. EC is 

often obtained using either of the two popular approaches, Granger causality (GC) [72], [104], 

[105] and dynamic causal modeling (DCM) [106]. DCM is highly dependent on prior assumptions 

concerning the underlying connectomic architecture and is therefore not generally considered 
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suitable for analyses of large graphs. On the other hand, GC is a data-driven approach that does 

not need a predefined model [57], [62]–[64], [66], [107], [108]. Recent developments have 

demonstrated that GC is a viable technique for obtaining EC networks from fMRI data [109], 

[110]. Therefore, in this study, we used a GC-based analysis framework. Strictly speaking, GC 

measures directed functional connectivity because it does not appeal to an underlying model of 

causal influences. In other words, GC tests for temporal precedence, thereby endowing functional 

connectivity with a direction. However, to emphasize the distinction between directed and non-

directed connectivity, we will refer to our GC measures as effective connectivity (see [111] for 

further discuss on this issue). 

 

There have been several studies investigating EC-related aberrations in AD [112]–[115]. These 

studies have reported distributed increases as well as decreases in directed relationships among 

brain regions in AD compared to healthy controls. However, these studies performing 

conventional GC analysis assume connectivity to be stationary over time, wherein only one 

connectivity value is obtained from the whole scan [68]–[70], [75], [116], [117]. However, 

connectivity, specifically the non-directed FC, has been shown to be non-stationary across time 

[26], [118]. Recent works suggests that connectivity varies over time, and that the temporal 

variability of connectivity is sensitive to human behavior in health and disease [25], [119]–[121]. 

Therefore, in addition to studying the conventional static effective connectivity (SEC), we also 

estimated dynamic effective connectivity (DEC) [52]–[56] from the resting-state fMRI data 

acquired from participants with AD as well as healthy controls (HC). 
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Traditionally, univariate statistical tests are performed for analyzing connectivity differences 

in population studies. Based on the statistical score, connectivity paths that differ from HC are 

ascertained. However, it is not straightforward to interpret such connectivity results, because 

traditionally our knowledge of brain functioning relies more on region-based properties 

(activations and morphometric changes) than connectivities. Further, from an interventional 

standpoint, it is easier to modulate the activity of brain regions (using brain stimulation, 

neurofeedback, etc.) rather than connections. With these viewpoints, Venkataraman et al. [122] 

recently introduced a technique for identification of focal regions of functional disruption based 

on non-directed FC differences between populations. In this work, we extend this technique for 

identifying focal regions of disruption based on static as well as dynamic directed/effective 

connectivity aberrations in AD compared to HC.  

 

We constructed brain networks using strength (SEC) and temporal variability (variance of 

DEC [vDEC]). After certain modifications to the connectivity measures, we fed them into the foci-

identification model to obtain disrupted foci. The foci obtained independently from SEC and 

vDEC networks were then overlapped (intersection) to identify the common foci which exhibited 

impairments in both static and time-varying EC. Reduced temporal variance in dynamic 

connectivity is often associated with psychiatric disorders [121], [123], and a relatively low 

variability of connectivity has been associated with poor behavioral performance in healthy 

individuals [25]. Recall that a profile of decreased static connectivity has been consistently found 

in AD as discussed above. Taken together, we hypothesized that AD is characterized by 

dysfunctional disease foci, and that these foci are associated with connectivity paths that exhibit 

lower strength (SEC) as well as lower variability (vDEC) of effective connectivity. 
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3.2 Materials and Methods 

3.2.1 Participants 

Data used in this study were obtained from the ADNI database 

(http://www.loni.ucla.edu/ADNI). Resting state fMRI data of 30 participants diagnosed with 

Alzheimer’s disease (AD), along with 39 matched healthy controls (HC) were obtained through 

ADNI-2 cohort. Participants in this study were recruited between 2011 and 2013 through the 

ADNI-2 protocol, and we selected participants who had completed both 3D MPRAGE and resting-

state fMRI data. Functional MRI data were obtained from a 3.0 Tesla Philips MR scanner with 

repetition time (TR) = 3000 ms, echo time (TE) = 30 ms, flip angle (FA) = 80 degrees, field of 

view (FOV): RL (right-left) = 212, AP (anterior-posterior) = 198.75mm, FH (foot-head) = 159 

mm, voxel size: RL = 3.3125 mm, AP = 3.3125 mm, slices = 48, thickness = 3.3125mm. 140 

temporal volumes were acquired for each participant in a single scanning session. All data 

available from the ADNI database was acquired in accordance with the recommendations of local 

IRBs with written informed consent from all subjects. All subjects gave written informed consent 

in accordance with the Declaration of Helsinki. The protocol was approved by local IRBs. More 

specific information can be obtained from the ADNI website (http://www.loni.ucla.edu/ADNI). 

The data was subjected to a standard resting-state preprocessing pipeline using SPM12 [59] and 

DPARSF toolboxes [9], including slice timing correction, realignment & motion correction, 

normalization to MNI space, and spatial smoothing with a Gaussian kernel of 4 × 4 × 4 mm3 full 

width at half maximum (FWHM). Six rotation and translation parameters were first tested 

individually. Except rotation in Y axis (P < 0.05), there were no significant differences between 

the groups (P > 0.05). Then, all the six head motion parameters were aggregated into a single 
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metric (i.e. framewise displacement), and no significant differences in framewise were found 

between the groups (P > 0.05). Nuisance variables such as the mean white matter signal, mean 

cerebrospinal fluid signal, and six head motion parameters were regressed out of the BOLD time 

series. It should be noted that band-pass filtering was not performed during pre-processing since 

it will likely impact deconvolution. Mean time series were extracted from 200 functionally 

homogeneous ROIs identified via spectral clustering [60]. 

 

3.2.2 Connectivity analysis 

Static effective connectivity (SEC) was obtained using Granger causality (GC) analysis. 

However, before GC analysis is performed, it is necessary to acknowledge the impact of 

hemodynamic response function (HRF) on connectivity modeling, which is known to vary across 

different regions within a participant, as well as vary across participants [124]. Previous studies 

have shown that results obtained by using GC analysis on HRF-corrupted fMRI data can be 

confounded by the variability of the HRF [18], [125]. Hence, a blind deconvolution technique, 

proposed by Wu et al. [13], was employed to minimize the non-neural variability of the HRF and 

estimate the latent neuronal time series from the observed fMRI data. In brief, the resting-state 

data was modeled as spontaneous event-related data [126], and the HRF of each voxel was 

estimated by Wiener deconvolution [127]. The estimated neural time series were then used in 

further GC analysis. 

 

The underlying concept of GC is that a directed causal influence from time series X to time 

series Y can be inferred if the past values of time series X improves the prediction of the present 

and future values of time series Y [104]. Let q time series X(t) = [x1(t), x2(t),…,xq(t)] be the latent 

neural time series obtained after HRF deconvolution of selected ROI fMRI time series, with q 



  41 

being 200 ROIs in this study. Then the multivariate autoregressive (MVAR) model with order p 

is given by 

 

( ) (1) ( 1) (2) ( 2) ( ) ( ) ( )X t A X t A X t A p X t p E t= − + − + + − +
                    (3.1) 

 

Where A(1)…A(p) are the model parameters, and E(t) is the vector of the residual error.  

 

To remove the zero-lag correlation effect (i.e. ignore co-activations), the time series were input 

into a modified multivariate autoregressive model which included the zero-lag term used by 

Deshpande et al. [51] shown as follows:  

 

( ) (0) ( ) (1) ( 1) ( ) ( ) ( )X t A X t A X t A p X t p E t′ ′ ′= + − + + − +
                           (3.2) 

 

The diagonal elements of A'(0) were set to zero, to model only the instantaneous cross-

correlation rather than zero-lag auto-correlation. The off-diagonal elements of A'(0) corresponded 

to the zero-lag cross-correlation [51]. It is to be noted that the coefficients in Eq. 3.1 A(1), … A(p) 

would not be the same as A'(1) … A'(p) as in Eq. 3.2, because the modified zero-lag term affects 

other coefficients since it removes the zero-lag cross correlation effects from them. Accordingly, 

the correlation-purged granger causality (CPGC) from time series i to time series j was obtained 

using the following equation 

 

2

1
( )' ) (

p

ij ij
n

CPGC a n
=

=∑                                                   (3.3) 
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Where a'ij are the elements of A'. It is well-known that the coupling among brain areas is time-

varying and context-sensitive. Indeed, the most interesting parameters of dynamic causal models 

are the fluctuations in effective connectivity (induced by experimental manipulations or time). In 

recent years, the functional connectivity (resting state) community has dubbed these fluctuations 

in coupling as "dynamic functional connectivity". In our work, we characterised dynamic effective 

connectivity using a temporally adaptive modified MVAR model: 

 

 ( ) (0, ) ( ) (1, ) ( 1) ( , ) ( ) ( )X t A t X t A t X t A p t X t p E t′ ′ ′= + − + + − +                      (3.4) 

 

In this model, the coefficients A'(p) were allowed to vary over time, thus ‘dynamically’ 

estimating EC.  

 

The parameters A'(n,t), n = 0,…,p were estimated in a Kalman filter framework using variable 

parameter regression [128], [129]. The Kalman filtering is a recursive process, where new 

information is added when it arrives. Thus, estimates taken from early steps are less reliable 

compared to later ones. A forgetting factor (FF) is introduced to circumvent this problem by taking 

recent past Kalman filter estimates into account during current estimation in order to control 

smoothness and enhance stability. The forgetting factor was determined by minimizing the 

variance of estimated error energy [130] and was found to be equal to one in our study. In brief, 

Kalman filtering treats the underlying MVAR coefficients as slowly fluctuating states. This 

enables the estimation of time varying directed connectivity that was used for subsequent 

modelling at the between-subject level. The DGC is estimated as: 
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( ) ( ( , ))'

p

ij ij
n

DGC t a n t
=

=∑                                                (3.5)  

 

Where DGCij (t) is the dynamic Granger causality value from time series i to time series j at time 

point t. Given that the neural delays of interest are of the order of a TR or less [65], and that 

previous literature supports using a first order model to capture most relevant causal information 

[71], we employed a first order model for estimating both SEC and DEC in this work.  

 

3.2.3 Identification of Disease Foci 

Connectivity studies often report aberrations in functional connections between brain regions. 

While this is useful, it does not provide a comprehensive characterization of the underlying 

connectomics. First, it is likely that several aberrations in connectivity are the after-effects arising 

from disruptions in certain focal brain regions. Second, our knowledge about brain functioning is 

centered on functions of regions rather than connections. Therefore, it is advantageous to identify 

certain focal regions of disruption using connectivity data. Thus in this study, we sought to identify 

diseased foci in AD. A recent study introduced a novel technique for the identification of disease 

foci [122] based on non-directed FC differences between populations. Here we generalise this 

technique to the identification of diseased foci from effective connectivity as well as dynamic 

connectivity data. 

 

The model proposed by Venkataraman et al. considers the connectivity measure (CM
ij for HC 

group and PM
ij for the AD group) as a noisy observation of the latent connectivity (CL

ij for HC 

group and PL
ij for the AD group). The model is illustrated in Fig.3.1 and consists of several parts. 
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Fig.3.2 General model of the Foci identification technique. Parameters in circles indicate 

random variables. Please refer to the text for a description of the variables. 

 

The first part defines a binary indicator vector that selects disrupted regions, and a binary graph 

characterizes corresponding abnormal connectivity. Let N be the total number of regions in the 

brain being considered. The model assumes a the random variable R = [R1,…,RN] is a binary vector 

(i.e. brain regions are either healthy with Ri=0 or disrupted with Ri = 1, where i=1 .. N indicates 

the state of each region in the brain. Elements of R follow an independent, identically distributed 

(i.i.d.) Bernoulli distribution model Qb(R) where Q(.) denotes the posterior distribution and 

superscript b indicates a Bernoulli distribution. Then, an underlying binary graph G which 

characterizes the network of abnormal connectivity can be defined as follows: a connection 

between two healthy regions is always healthy with probability equal to 1, a connection between 

two disrupted regions is always abnormal with probability equal to 1, and a connection between a 
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healthy region and a disrupted region is abnormal with probability η. The second part specifies the 

latent connectivity for controls (CL) as a tri-state variable from a multinomial distribution with 

parameter πk (k denotes three different states), positive connectivity with probability π1, little or no 

functional connection (0) with probability π0, and negative connectivity with probability π-1. Given 

the binary graph G and latent connectivity for controls CL, the tri-state latent connectivity of the 

AD population can be defined. Specifically, the latent connectivity from the control group CL
ij 

equals to PL
ij with probably є if the binary graph connection between regions i and j is abnormal, 

CL
ij equals to PL

ij with probably 1 - є if the connection between regions i and j is healthy. The third 

part characterizes the observed connectivity measures CM
ij and PM

ij as Gaussian random variables 

whose mean and variance (μ and σ) depend on the value of CL
ij and PL

ij. Then, the joint likelihood 

of all configurations of latent connections between regions can be modeled as an 9-state 

multinomial distribution model Qm(C, P) (superscript m denotes that Q(.) is a multinomial 

distribution).  

 

The model in Venkataraman et al [122] was applied in the case of functional connectivity, i.e. 

the Pearson’s correlation coefficient between regions. However, EC is not a bounded measure, a 

small number of outliers is to be expected. In our EC data, we found a small portion of connectivity 

values which were greater than 1 or less than -1 (0.3%), wherein these outliers indicate stronger 

causal information flow between regions. To maintain the importance of those stronger effective 

connections and minimize its negative impact on model evaluation, inverse Fisher transformation 

was used to render the EC values as a bounded measure within [-1 1]. For the variance of dynamic 

EC, the latent tri-states of variance of connectivity vFij can be considered as follows: little 

variability or stationary connection, modest variability and strong variability. It is to be noted that 
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static FC is direction-less, hence only the upper or lower triangle of the symmetric connectivity 

matrices were needed to fit the model in Venkataraman et al. However, in our case, both SEC and 

vDEC are directed with asymmetric connectivity matrices, and hence the whole matrices were 

used in the model. Taken together, these modifications permitted the model to be applied to both 

static and dynamic EC. 

 

After initiating the prior parameters (such as the Bernoulli prior for binary state vector R, prior 

for latent connectivity for controls πk, etc) for the model, a variational expectation maximization 

(EM) algorithm [131] was adopted for estimating the latent connectivity and model parameters 

from the observed connectivity measures (CM and PM). Technically, we inverted the (between 

subject) model of disconnection using variational Bayes. This scheme is formally similar to an EM 

algorithm that uses a variational update for all the factors of an approximate posterior. These 

included an approximate posterior distribution over model parameters (πk, η, є, μ and σ), latent 

connectivity for both groups of subjects (Qm(C, P)) and regional pathology (Qb(R)). In brief, this 

variational scheme optimises the sufficient statistics of each marginal distribution or density with 

respect to variational free energy (FE), under the expected values of the remaining factors. The 

variational EM alternates between updating the latent posterior distribution and estimating the 

nonrandom model parameters. Convergence was based on the relative change in free energy of the 

model of less than 10-4 between consecutive iterations. Disrupted focal regions and latent abnormal 

connectivity would then be identified from the posterior probabilities for each region and each 

connection. Fig.3.2 illustrates the flow chart of the algorithm. 
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Fig.3.2 A flow chart of the Foci identification technique. The foci-identification technique posits 

that the latent connectivities can be stochastically generated from a distribution mode, and that the 

observed connectivity data are a noisy measurement of the latent unmeasured connectivity. Latent 

variables of the model were randomly initialized, and the variational EM algorithm was used to 

obtain the posterior distribution Q (both the nine-state distribution of latent functional connectivity 
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and distribution over binary vector R) and model parameters to minimize the variational free 

energy. Then the disrupted foci and corresponding dysfunctional connections can be identified. 

 

The significance of the resulting foci was estimated using nonparametric permutation tests. 

Specifically, the group label of each participant was randomly permuted for 1000 times. For each 

permutation, we fit the data to the model and obtained the posterior probability of disrupted foci 

for each region. This provided an empirical null distribution from which the p-value of the 

significance was obtained. The method also identified the affected connections associated with the 

disrupted foci. Among such connections, we retained those that were also in accordance with our 

hypothesis (paths exhibit lower SEC, as well as lower vDEC of effective connectivity in AD 

compared to healthy controls with a threshold of p < 0.05).  

 

3.3 Results 

We identified two disrupted foci which were common to both SEC and vDEC networks: 1) 

Locus Coeruleus (LC) in the Brainstem (p-value = 0.003 for SEC and 0.006 for vDEC), 2) Right 

orbitofrontal cortex or R OFC (p-value = 0.007 for SEC and 0.002 for vDEC). Disrupted 

connectivity paths associated with these foci exhibited higher strength and larger temporal 

variability in HC as compared to AD (in accordance with our hypothesis). Furthermore, they 

exhibited a unique pattern of disrupted connectivity – those associated with the LC in the brain 

stem emanated from it, while connectivity paths associated with R OFC converged onto it 

(Fig.3.3). 
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(a)                                                                               (b) 

 

(c) 

Fig.3.3 Sagittal view (a) and axial view (b) of the disease foci and corresponding disrupted 
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connections. Regions in red are the identified affected foci, located in Locus Coeruleus and Right 

orbitofrontal cortex. Regions in blue are the non-foci regions that were connected from/to the 

disease foci. A schematic of the identified network is also shown for better visualization of the 

network architecture (c). The expansions for the abbreviations are as follows: SFG = superior 

frontal gyrus, MFG = middle frontal gyrus, IFG = inferior frontal gyrus, MTG = middle temporal 

gyrus, PHG = parahippocampal gyrus, MOG = middle occipital gyrus, OFC = orbitofrontal cortex 

 
Five of the ten connectivity paths emanating from the LC resulted in connectivity paths 

terminating in the R OFC, with four of these five paths being indirect pathways via the L MFG, L 

MTG, R MOG and L Calcarine, and one path being a direct connection from LC to R OFC. All 

connectivity paths exhibited lower SEC and lower vDEC in AD compared to HC. 

 

Further clarity on the corresponding aberrant connectomic network was obtained by 

partitioning the network into four unique subnetworks (Fig.3.4): a) LC-PFC working memory 

system, b) LC-PHG emotional memory system, c) LC-visual cortex sensory system, and d) LC-

MTG language system. Note that this partitioning is based on different functions performed by the 

locus coeruleus – norepinephrine system and is not based on any analytical strategy. Taken 

together, the disruption of these networks likely leads to working memory deficits, difficulties in 

processing emotional memories, and several other symptoms commonly observed in those with 

AD. The relevance of these subnetworks to AD pathology are discussed in detail in the next 

section. 
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(a) 

 

 

(b) 

 

 

(c) 
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(d) 

Fig.3.4 Disrupted networks associated with the diseased foci, showing the entire network 

partitioned into four unique subnetworks: a) LC-PFC working memory system, b) LC-PHG 

emotional memory system, c) LC-visual sensory system, and d) LC-MTG language system. 

Abbreviations: SFG = superior frontal gyrus, MFG = middle frontal gyrus, IFG = inferior frontal 

gyrus, MTG = middle temporal gyrus, PHG = parahippocampal gyrus, MOG = middle occipital 

gyrus, OFC = orbitofrontal cortex. 

 

3.4 Discussion 

In this study, we estimated static and dynamic measures of directed influences between 200 

ROIs covering the entire brain in both AD and HC participants taken from the ADNI database. 

SEC and vDEC connectivity data were fed into a probabilistic model to identify regions with focal 

connectivity deficits in AD, with the hypothesis that connections associated with those regions 

would be weaker in strength and lower in temporal variability (i.e. rigid) in AD. We identified two 

such foci, brain stem and orbitofrontal cortex, which were affected significantly by the disease. 

The aberrant connections emanating from LC suggested a widespread dysregulation originating 

from the brainstem, part of which terminated into the other focus (orbitofrontal cortex). 

 

Interestingly, all connectivity paths corresponded with the directed influence of the LC (in the 

brain stem) on mostly cortical (and few sub-cortical) regions. This corroborates with previous 
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studies that have shown progressive damage [132] in the brain stem during early periods of AD. 

Further, LC in the brain stem is the largest repository of Norepinephrine (NE) in the human brain 

[133]. Noradrenergic neurons in LC have projections to several parts of the brain including 

olfactory, limbic, prefrontal and other cortical regions [134], [135]. NE is known to suppress 

neuroinflammation [23]. This purported role has been hypothesized to be a protective factor 

against AD. In fact, Heneka et al., 2010 showed that NE stimulation of mouse microglia suppressed 

Aβ-induced cytokine and chemokine production and increased microglial migration and 

phagocytosis of Aβ. Induced degeneration of the brain stem increased the expression of 

inflammatory mediators in amyloid precursor protein (APP)-transgenic mice and resulted in 

elevated Aβ deposition. [137] suggesting that the decrease of NE in the brainstem facilitates the 

inflammatory reaction of microglial cells in AD and impairs microglial migration and 

phagocytosis, thereby contributing to reduced Aβ clearance. The Aβ is the critical initiating event 

in AD, starting with the aberrant clearance of Aβ-peptides followed by consecutive peptide 

aggregation and disruption of neural activity [88]. Moreover, a post-mortem study has found 

significant volume decreases in the LC during AD progression, highlighting the importance of this 

region in AD [138]. These findings indicate that the depletion of NE in LC is an etiological factor 

in the development of MCI and progression to AD. The studies discussed above provide some 

basis for the important role of brainstem in AD. Further, an animal study has found that boosting 

NE transmission can lead to increased functional connectivity [139], suggesting that the reduction 

of NE could potentially result in lower connectivity between LC and cortical regions. 

 

Several previous studies have suggested that OFC may be important for understanding the 

mechanisms for putative spreading of AD pathology in the brain [140], [141]. Robust correlation 
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has been found between Aβ deposition levels and volume in the orbitofrontal area [142]. In fact, 

the amyloid precursor protein (APP) gene contains the sequence for the Aβ peptide, which is 

concentrated in the senile plaques (SPs) [143]. During AD progression, the SPs appear first in the 

orbitofrontal and temporal cortices and later extend to the whole cortex [144]. Further, SPs and 

Aβ deposition has been associated with reduced connectivity at the synaptic level [145], suggesting 

a potential mechanism that might link SPs and Aβ deposition with directed connectivity estimated 

from fMRI. While we discuss the role of temporal regions later in this section, the findings 

presented above highlight the importance of the role of OFC in AD. 

 
Connectivity paths from LC to the prefrontal cortex (PFC) in general, and OFC in specific 

(note that OFC is a region in the PFC), can be considered as an aberrant LC-PFC working memory 

system (Fig.3.4a). Given that many studies have referred to the PFC in general without specifying 

sub-regions, and hence we are going to use the same nomenclature in the ensuing discussion. 

Previous studies have indicated that NE is instrumental in enhancing working memory through 

actions within the prefrontal cortex (PFC). PFC underlies the encoding of task-relevant 

information in working memory [146], and it has been shown that damage to the noradrenergic 

innervation of the PFC impairs performance in working memory [147]. The stimulation of α2-

adrenergic receptors in the PFC of nonhuman primates has been shown to improve performance 

in working memory tasks [148] while α1-adrenergic receptors impaired the working memory 

[149]. α2-adrenergic receptors have a higher affinity for NE compared to α1-adrenergic receptors, 

thus under normal conditions, NE facilitates working memory performance via actions at α2-

adrenergic receptors in general and also in the PFC. However, dysfunction in noradrenergic 

pathways emanating from LC may result in low PFC NE levels, affecting working memory [150].  
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The connectivity from LC to PHG can be considered as a LC-PHG emotional and spatial 

memory system (Fig.3.4b). The LC-NE system modulates emotional memories, and studies have 

suggested that emotional memories induce the activation of LC and subsequent NE release [151]. 

Corticotropin-releasing hormone (CRH) receptors are known play an important role in the 

coordination of autonomic and electrophysiological responses associated with emotional 

memories [152], [153]. CRH-immunoreactive fibers were observed in the LC, suggesting that 

CRH may modulate LC neuronal activity [154], [155]. In fact, many studies [156]–[158] have 

shown that CRH administered locally into the LC increases LC discharge activity and NE release 

in its terminal fields. Moreover, an abundant expression of CRH was found in PHG [159]. The 

first sign of emotional memories was also observed in PHG, and was found to then gradually 

spread to PFC and other cortical regions [160]. On the other hand, PHG is known to be involved 

in spatial memory [161]. Noradrenergic neurons within LC have widely distributed, ascending 

projections to the limbic system including PHG [162]. Thus, the LC-NE system may help trigger 

the involvement of the PHG in spatial memory. An animal study has indicated that the LC-NE 

system is necessary for the acquisition of spatial memories [163]. These evidence suggest that the 

decrease of NE in LC could likely cause dysregulation of the emotional and spatial memory system 

in the LC-PHG network.  

 

Connectivity paths from LC to the frontal cortex, mediated by sensory visual regions, can be 

considered as a LC-visual sensory system (Fig.3.4c). Previous works in animal models have shown 

that the LC-NE system can alter receptive field properties such as velocity tuning, direction 

selectivity, etc. [164], [165]. Malfunction of the LC-visual sensory network may contribute to 

deficits in visual assessment [166] .  
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Connectivity paths from LC to the OFC mediated by MTG can be considered as a LC-MTG 

language system (Fig.3.4d). A previous study has shown decreased regional cerebral blood flow 

(rCBF) after ingestion of an α2-adrenergic agonist drug in the MTG [167]. Given that the 

noradrenergic system in the brain originates from LC, this suggests that there might exist a 

noradrenergic pathway between LC and MTG which is impaired in AD. The malfunction of the 

LC-MTG language system may cause language impairments often observed in AD [168], [169]. 

 

It is evident that most of the disrupted connectivity paths emanating from the LC in the brain 

stem drive OFC either directly or via other systems. OFC is known to play a critical role in 

memory, emotions, reward, as well as decision-making mechanisms [170], [171]. Disrupted 

connectivity paths that converge into the OFC were observed in three of the subnetworks, and 

could potentially underlie behavioral deficits in these domains.  

 

Taken together, we identified LC in the brainstem and OFC as the foci of network disruption 

in AD. The dysregulation of LC-NE neurotransmission likely contributes to behavioral deficits 

observed in AD. In corroboration, previous literature has pinpointed the same regions [136], [142] 

to be affected in AD. Our identification of the LC in the brain stem as the disease focus in AD 

supports these previous observations and suggests that functional MRI studies of AD, which have 

been largely cortico-centric [100], [172], must in future investigate the role of this structure in AD. 

 

Previous studies have also identified some other regions to be crucial to AD pathology [90]–

[92]. In fact, our foci-identification technique did identify some of the regions reported in these 
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papers. Specifically, we also identified parahippocampal gyrus, middle frontal gyrus and 

precuneus as foci only considering DEC networks. Further, middle temporal gyrus, lateral occipital 

cortex and cerebellum posterior lobe were identified as foci in SEC networks. However, these 

regions were not identified as foci in both DEC and SEC networks. Acknowledging that previous 

studies reported regions as having significantly different static connectivity between the groups, 

in this study we only reported the foci and the associated connectomic network that were found as 

having impairments in both static and dynamic EC. 

 

Next, we report a few noteworthy limitations of this work. We have based our interpretation 

on the efferent projections of neurotransmitters arising out of LC. We employed this logic since 

functional imaging studies of the brain stem (and LC) in AD are limited, with the existing literature 

employing functional imaging in AD being cortico-centric. However, we have not directly 

measured norepinephrine in the brain, as it is difficult to do so using MRI. Therefore, our results 

form the basis for a hypothesis regarding dysfunction in the noradrenergic pathways in AD. Future 

studies must employ other modalities such as positron emission tomography for in vivo imaging 

of noradrenergic pathways (not just NE deficits) in AD. This could potentially open up possibilities 

for therapeutic interventions in AD. Further, the proposed methodology of combining static as well 

as dynamic effective connectivity analysis with probabilistic modeling for identifying 

dysfunctional foci and associated dysfunctional networks could provide novel insights into the 

pathophysiology of other brain-based disorders.. 
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CHAPTER 4 

Two Separate Brain Networks for Predicting Trainability and 

Tracking Training-related Plasticity in Working Dogs 

 

4.1 INTRODUCTION 

Dogs have been mankind’s faithful friends for tens of thousands of years [173] and have been 

trained by humans for various tasks. For example, sniffer dogs have been trained for detecting 

explosives, hearing dogs for alerting people who are deaf to important sounds [174], therapy dogs 

for supporting language-impaired children [175] and those with stress- and anxiety-related 

disorders [176], etc. Consequently, the ease with which dogs can be trained to perform various 

tasks, as well as their general behavioral capabilities such as hunting and retrieving, become critical 

parameters for selecting dogs for training. Despite the importance of canine capabilities to human 

society and the capital costs incurred in training dogs [177], [178], research into the neural basis 

of behavior of dogs and their trainability is sparse. Such a research endeavor is important for the 

following reasons. First, it could potentially lead to procedures involving non-invasive 

measurement of canine neural function as a criterion for selecting dogs to be trained, thereby 

limiting capital expenditure on less trainable dogs or dogs with less favorable behavioral 

capabilities. Second, a scientific account of the neural structures/processes supporting behavior in 

dogs could be evaluated with respect to similar literature in humans and other species for 

understanding the evolutionary role of brain-behavior relationships. This comparative evaluation 
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is particularly relevant for dogs since they are a unique species because they have socially co-

evolved with humans for thousands of years [179].  

 

One of the most widely used non-invasive tools for investigating the neural basis of behavior 

in humans is functional magnetic resonance imaging (fMRI), which is based on the principle that 

changes in the local concentration of the paramagnetic deoxygenated hemoglobin due to neural 

activity leads to enhancement in the magnetic resonance signal. Of particular interest to brain-

behavioral relationships is the fMRI signal in the absence of a goal-directed task, known as resting 

state fMRI (RS-fMRI), which displays spatially correlated structure forming distributed brain 

networks [34]. In humans, the functional connectivity (FC) between brain regions in such networks 

(measured through temporal correlation between fMRI time series from those regions), has been 

shown to co-vary with various behavioral variables (e.g., cognitive abilities, attention, working 

memory, cognitive control) [180]–[184]. In our work, we extend this concept from humans to 

dogs, and surmised that fMRI-based resting state functional connectivity in brain networks 

obtained from the dog brain would correlate with canine behavior. 

 

The methodological challenges involved in measuring fMRI-based functional connectivity in 

the dog brain are quite daunting. First, head movement poses a big problem for fMRI since the 

displacement of the head from one acquisition to the next, if not corrected for, can appear like a 

change in image intensity which is unrelated to underlying neural activity. Therefore, fMRI studies 

employing animals have either immobilized them [185], [186] or anesthetized them. The former 

reduces the comparative validity of the experiment (e.g., humans are not immobilized) and may 

make the experiment less ethologically valid, while the latter has been proved to alter neural 
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activity and connectivity [187], [188]. Therefore, imaging awake dogs is the best workable option. 

Recent studies have made strides in this regard. Both our group [179], [189]–[191] and three other 

groups [192]–[204] have been successful in training dogs to keep their head still inside the MRI 

scanner while fMRI data is acquired. Specifically, we showed the existence of resting state brain 

networks in dogs by scanning them in a fully conscious and unrestrained state. Critically, we 

employed optical head motion tracking with an external camera device to record and account for 

head motion, which is inevitable even if the dog is trained to keep its head still. Using this paradigm 

enabled us to non-invasively measure whole brain functional connectivity in awake dogs. 

 

The objectives of the current study were twofold. First, we wanted to discover the resting state 

brain networks whose change in the strength of connectivity during a canine training regimen 

mirrored corresponding changes in their behavior. Second, we were interested in investigating 

whether resting state brain networks estimated from fMRI data acquired before the commencement 

of the training regimen were able to predict whether a given dog would eventually graduate to 

become a detector dog or not. In order to achieve these objectives, we designed a longitudinal 

experimental paradigm where fMRI data and behavioral assessments were acquired at multiple 

time points (TPs) across the time of participation of dogs in this study. The first time point (TP1) 

was prior to the dogs entering formal working detector dog training, but after 1-3 months of MRI 

training [189], [191] to keep their head still inside the scanner. The second time point (TP2) was 

soon after formal detector dog training which lasted about 3 months. The third time point (TP3) 

was three months post detector dog training while the dogs were engaged in a program of 

maintenance training for detector dog work. We hypothesized that the correlation between resting 

state FC in the dog brain and behavior measures would significantly change during their detection 
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training process (from TP1 to TP2), and would maintain for the subsequent several months of 

detection work (from TP2 to TP3).  This was based on the premise that detection training would 

lead to strengthening of certain functional connectivities from TP1 to TP2, which would then 

maintain those FC levels from TP2 to TP3 during maintenance training. Further, the identified 

paths would also mirror corresponding behavioral improvements from TP1 to TP3 and subsequent 

maintenance till TP3.  

 

4.2 MATERIALS AND METHODS 

Ethical approval for the study was obtained from the Auburn University Institutional Animal 

Care and Use Committee. We recruited forty dogs (24 males/16 females) with ages in the range of 

12 to 36 months from the Auburn University Canine Detection Research Institute and iK9 LLC 

(www.ik9.com).  

 

4.2.1 Dog Training and Preparation 

The dogs for this study came from a working dog acquisition process intended to select dogs 

that have the potential to be trained successfully for working tasks. A standardized assessment test 

was used for judging the workability of candidate dogs, and that assessment was also used as a 

behavioral measure for comparison with fMRI imaging metrics.  

 

Once acquired, the dogs began training for being scanned in the MRI while fully awake and 

unrestrained. For this purpose, a full-scale MRI simulator was fabricated. Additionally, a couple 

of simulated human knee coils, into which the dog must learn to place and hold the head, were 

fabricated for use in training the MRI routine (Fig.4.1).  
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Fig.4.1 Mock MRI scanner and mock head coil for training dogs. 
 
 

The training process was separated into two stages. Throughout the first stage of the training 

process, a recording of the MRI operation sound was played, and the volume of the sound gradually 

increased until it was similar to an actual scan. Once a dog put its head within the knee coil 

(Fig.4.2), remained relatively motionless for approximately 5 minutes, and repeated this 

performance several times across the course of an approximately 30 minutes training session, they 

were ready for the next stage.  

 

 

Fig.4.2 A German shepherd dog in the MRI simulator being prompted to place his head in the 
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mock coil. 

 

The second stage of training was performed inside the real MRI scanner with the running of a 

functional sequence. Transitioning to the actual MRI went smoothly for some dogs but was more 

difficult for others. The final target performance for the training was for a dog to voluntarily enter 

the MRI scanner, position its head into the knee coil and remain relatively motionless for an 

approximately hour-long session. The time to train the dogs from initial training to successful scan 

in the actual MRI ranged from 12 hours to 30 hours (on average, about 18 hours), which was 

divided into several one-hour sessions across days.  

 

4.2.2 Longitudinal Experimental Design 

To track the changes in functional imaging metrics with time, all of the fMRI scans and 

behavioral measures were acquired at multiple time points (TPs) across the time of participation 

of dogs in this study (Fig.4.3). The first time point (TP1) was prior to the dogs entering formal 

working detector dog training, but after 1-3 months of MRI training to keep their head still inside 

the scanner. The second time point (TP2) was soon after formal detector dog training which lasted 

about 3 months. The third time point (TP3) was three months post detector dog training while the 

dogs were engaged in a program of maintenance training for detector dog work.   
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Fig.4.3 A schematic of the longitudinal experimental design. 

 

4.2.3 Working Dog Assessments 

All of the dogs in this project were assessed for their potential to be successfully trained and 

employed for working detector dog tasks. The assessment we employed is a variation of those 

widely used across many operational agencies (e.g., U.S. Military, Homeland Security agencies, 

law enforcement agencies) for assessing candidate working dogs. The assessment has two 

components, performance and environmental soundness [205], [206]. The performance element 

assessed the propensity of the dog to retrieve a thrown object; interest, focus, and desire to possess 

a toy reward; the propensity of the dog to use its nose in hunting for a desired object; the amount 

of effort and degree of distractibility during retrieving and hunting games. The environmental 

soundness element assessed the extent of startle and ability to recover from sudden loud noises; 

comfortableness with and ability to overcome initial difficulty with novel surfaces (such as slick 

floors), obstacles (such as open stairs), and surroundings; reaction to strange/new persons, places, 

and busy urban settings. A composite score from 1 (low proficiency) to 5 (high proficiency) was 

assigned for each of the measures: retrieve, hunt and environmental soundness. The scores from 

all the three measures were aggregated to provide one integrated working dog assessment score 
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named “Integrated Behavioral Score”. This measure was then used for correlation with imaging 

metrics.  

 

4.2.4 Data Acquisition 

Functional MRI data were acquired using a T2
*-weighted single shot echo planar imaging (EPI) 

sequence on a Siemens 3 Tesla Verio scanner (Erlangen, Germany) with 16 axial slices, slice 

thickness = 3mm, repetition time (TR) = 1000 ms, echo time (TE) = 29 ms, field of view (FOV) = 

150×150 mm2, flip angle (FA) = 90 degree, in-plane resolution 2.3×2.3 mm, in-plane matrix = 64 

× 64 and 200 temporal volumes in each run. Two resting state runs were acquired for each dog at 

each time point. A 15-channel human knee coil was used as a head coil for the dog brain, and all 

dogs were trained to keep their heads in the coil as still as possible (with eyes open) during the 

scanning. Anatomical images were acquired using T1-weighted, 3-dimension magnetization-

prepared rapid gradient echo (3D-MPRAGE) sequence for overlay and localization (TR = 1990 

ms, TE = 2.85 ms, FA = 9 deg, FOV = 152×152×104 mm3, in-plane matrix = 192×192, number 

of partitions = 104, for voxel size = 0.8×0.8×1.0 mm3).  All MRI scans included Generalized 

Autocalibrating Partially Parallel Acquisitions (GRAPPA) with acceleration factor = 2. 

 

The longitudinal training and assessment process (Fig.4.3) was performed in 40 dogs. 

However, due to the relatively long period of time that the dogs were expected to be in the 

longitudinal training and assessment process, 10 dogs were released from imaging for behavioral 

reasons in TP1, 14 dogs were released in TP2, and 16 dogs were released in TP3. Thus, data 

acquired from all the time points included a total of 154 scans/runs from 30 dogs, with 60 scans 
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from 30 dogs (17 males/13 females) at TP1, 49 scans from 26 dogs (14 males/12 females) at TP2, 

and 45 scans from 24 dogs (14 males/10 females) at TP3.  

 

4.2.5 Image Preprocessing 

The preprocessing of raw RS-fMRI data was performed using SPM12 and DPARSF tool box 

[9], [59]. The preprocessing steps included slice-timing correction, realignment to the first 

functional image (i.e. image-based correction for head motion by aligning 3D volumes acquired 

at different time-points), spatial normalization, spatial smoothing with a Gaussian kernel of 4×4×4 

mm3 full width at half maximum (FWHM), detrending and temporal band-pass filtering (in the 

range 0.01-0.1 Hz) for removing low and high frequency sources of noise. Further, variance due 

to nuisance factors such as the six head motion parameters (3 translations and 3 rotation), as well 

as white matter and cerebrospinal fluid signals were regressed out from each voxel time series 

inside the dog brain. Unlike human experiments, spatial normalization in dogs is not 

straightforward due to lack of a general template such as the MNI template in humans. Existing 

templates for dogs are derived from less than ten dogs and thus may not capture the head size 

variability across different breeds (Datta, 2012). Therefore, we used a relatively more accurate 

two-step spatial normalization method, which was employed in our previous dog fMRI studies 

[179], [189]–[191].  

 

4.2.6 Characterization of Resting State Brain Networks 

Resting state networks are defined as the collection of regions temporally correlated with an 

anchor or seed region. Consequently, many networks can be defined based on different seed 

regions and these networks have shown to be correlated with human personality and behavior 
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[207]–[209]. For example, the Default Mode Network (DMN) has been shown to correlate with 

traits and capabilities [15], [16], and the Reward Network (RN) has been shown to be correlated 

with reward and reinforcement learning in humans [207]. However, seed-based connectivity 

obtained from predefined ROIs is limited by the fact that they do not capture interactions between 

all brain regions. On the other hand, whole brain voxel-wise functional connectivity provides a 

more holistic measure and captures functional associations between all voxels in the brain. 

Therefore, voxel-wise resting state FC was obtained using Pearson’s correlation between voxels 

taken pair wise across the entire brain. For example, if there were N voxels inside the brain of a 

given dog, then this would result in an N2 × N2 voxel-wise connectivity matrix for that dog. 

 

4.2.7 Connectivity-Behavior Correlations across Time-points 

Considering that the data acquisition is longitudinal, the dogs were scanned prior to undergoing 

training for the detection work (TP1), at the conclusion of a standard 3-month course of training 

for detection work (TP2), and after 3 subsequent months of intermittent detection work and 

maintenance training (TP3). We hypothesized that the correlation between resting state FC in the 

dog brain and behavior measures would significantly change during their detection training 

process (from TP1 to TP2), and would maintain for the subsequent several months of detection 

work (from TP2 to TP3). This was achieved by two steps (Fig.4.4): 1) the difference of the FC for 

each subject and path between TP1 and other TPs were correlated with the difference of the 

corresponding behavioral measures between TP1 and other TPs, respectively. This yielded paths 

whose resting state connectivity differences FCTP2-TP1 and FCTP3-TP1 significantly correlated 

(p<0.05, uncorrected) with corresponding differences in the integrated behavioral score IBSTP2-TP1 

and IBSTP3-TP1, respectively. 2) Among paths satisfying this condition, we retained those paths 
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whose FC significantly increased (p<0.05, uncorrected) from TP1 to TP2, and TP1 to TP3, but did 

not change significantly from TP2 to TP3. This was based on the premise that detection training 

would lead to strengthening of certain functional connectivities from TP1 to TP2, which would 

then maintain those FC levels from TP2 to TP3 during maintenance training. Further, the identified 

paths would also mirror corresponding behavioral improvements from TP1 to TP3 and subsequent 

maintenance till TP3. The resting state brain network resulting from this analysis represents the 

flexible networks which change with the detection training process. 

 

 

Fig.4.4 A schematic of the two steps connectivity-behavior correlation analysis 

 

4.2.8 Brain Networks Predictive of Dogs’ Suitability for Detection Work 
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Networks that statistically correlate with behavioral changes across time do not necessarily 

guarantee their ability to predict which dogs are suitable for detection work using pre-training data 

at TP1. To further study the resting state FC features that can predict the success of training, dogs 

at TP1 were divided it two groups: the successful group consisting of 13 dogs which were 

eventually deemed suitable for detection work at the end of the longitudinal training and 

assessment process (7-9 months post-recruitment, Fig.4.3) and a failure group consisting of 17 

dogs which were eventually deemed unsuitable for detection work. FC paths that were 

significantly stronger (p<0.01) in the successful group compared to failure group at TP1 were 

determined and used as input features to the classifier. This could enhance the quality of 

classification and ensure that non-discriminatory features are not fed into the classifier.  

 

In order to determine classification accuracy, i.e. the ability of FC features from TP1 identified 

above to predict whether a given dog would eventually fail or succeed, logistic regression was 

used as the training kernel since it performed consistently well. Also, using this classifier allowed 

us to compare our results with a previous study which is similar to ours [196]. The receiver 

operating characteristic (ROC), which plots the true positive rate (TPR) against false positive rate 

(FPR) and thus does not depend on a specific threshold, was generated and the area under the curve 

(AUC) for the ROC was used as a metric for performance evaluation. Four-fold cross validation 

was employed so that the model could be built using training data and then be tested using 

validation data. This minimizes the chances of model overfitting.  

 

4.2.9 Identification of Homologous Brain Networks in Humans 
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In order to better understand the functional roles of paths (and corresponding regions) that 

correlated with behavioral changes due to detection training, we identified the homologous regions 

between dogs and humans by comparing the similarity of connectivity fingerprints of these regions 

using a permutation testing framework (readers are referred to the following papers for details 

regarding this method: [210], [211]). Connectivity studies often yield high-dimensional profiles 

that can be hard to summarize. For example, a connectivity fingerprint obtained from a whole brain 

voxel wise seed based map can have dimensionality equal to the number of voxels in the brain. On 

the contrary, the connectivity fingerprints proposed by [211] characterize the connections between 

the ‘seed’ region with a selected set of other ‘target’ regions which are important. In this way, 

connectivity profiles of a seed region can be characterized in a lower dimension which is also 

useful in avoiding overfitting. We have utilized this concept in our work. Comparing connectivity 

profiles obtained from data acquired with different scanning parameters for humans and dogs was 

achieved by normalizing the data to the maximum connection strength in the brain, such that 

functional connectivity becomes a metric of relative connection strength. Then, a single mean 

connectivity profile for both the dog and human samples were obtained separately. Using the 

Manhattan distance measure, we determined the similarity of different fingerprints. Subsequently, 

the homology between dog and human “seed” region was examined as described below.  

 

Resting state functional connectivity in humans was determined using preprocessed RS-fMRI 

data from the Human Connectome Projection (HCP) (HCP 500 Subjects + MEG2 Data Release). 

This dataset included 3T MRI scans from young healthy adults (age range: 22~35 years). We 

manually selected 154 human subjects to match the number of scans, gender, and age in dog year 

equivalents (Table.4.1) based on Lebeau’s model [212] with our dog group. The raw functional 
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data obtained from HCP were collected on a Siemens Skyra 3T scanner using multiplexed 

gradient-echo EPI sequence with slice thickness = 3mm, TR = 720ms, TE = 33.1ms, FA = 52o, 

FOV = 208×180 mm2, in-plane matrix = 104 × 90 and 1200 temporal volumes in each run. For 

more details about data acquisition and preprocessing of the data, please see “HCP 500 Subjects + 

MEG2 Data Release” reference manual 

(http://www.humanconnectome.org.documentation/S500/HCP_S500+MEG2_Release_Referenc

e_Manual.pdf). 

 

Table.4.1 Matched age for dogs and human subjects 
Dogs (months) Human subjects 

(years) 
12-20 22-25 
20-28 25-30 
28-36 30-35 

 

To establish connectivity fingerprints for each subject, we predefined 19 “targets” which were 

ROIs covering most of the cortical regions as well as several subcortical regions (Fig.4.5, 

Table.4.2) that are known to play a crucial role in guiding canine behavior as borne out by previous 

dog fMRI studies [189], [191], [199]. The selected “target” regions were: anterior cingulate cortex 

(ACC), ventromedial prefrontal cortex (vmPFC), bilateral dorsolateral prefrontal cortex (dlPFC), 

bilateral ventrolateral prefrontal cortex (vlPFC), posterior cingulate cortex (PCC), bilateral inferior 

parietal lobule (IPL), visual cortex, bilateral caudate, bilateral amygdala, olfactory bulb, bilateral 

hippocampus and bilateral temporal cortex. The MNI coordinates for these “target” regions in 

humans are listed in Table.4.2.  

http://www.humanconnectome.org.documentation/S500/HCP_S500+MEG2_Release_Reference_Manual.pdf
http://www.humanconnectome.org.documentation/S500/HCP_S500+MEG2_Release_Reference_Manual.pdf
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(a)                                                            (b) 

Fig.4.5 A pictorial spatial representation of “target” regions in human brain (a) and dog brain (b). 

ROI abbreviations: anterior cingulate cortex (ACC), ventromedial prefrontal cortex (vmPFC), 

bilateral dorsolateral prefrontal cortex (dlPFC), bilateral ventrolateral prefrontal cortex (vlPFC), 

posterior cingulate cortex (PCC), bilateral inferior parietal lobule (IPL), bilateral Hippocampus 

(Hippo), bilateral amygdala (Amy), bilateral caudate (Caud), olfactory bulb (OB) 

 

Table.4.2 Montreal Neurological Institute (MNI) coordinates of “target” regions in humans. ROI 

abbreviations as in Fig.4.2 
 

MNI coordinates (x, y, z) 
X Y Z 

ACC 0 40 8 
vmPFC 0 50 -7 
dlPFC +/-20 56 28 
vlPFC +/-22 57 -12 
PCC 0 -40 27 



  75 

IPL +/-44 -52 40 
Visual Cortex 0 -94 -6 

Caudate +/-12 12 12 
Amygdala +/-24 0 -20 

Olfactory bulb 0 16 -8 
Hippocampus +/-28 -28 -8 

Temporal cortex  +/-44 -52 -16 
 

Seed regions in the dog brain were defined as regions involving paths whose changes in 

connectivity with time correlated with corresponding behavioral changes due to detection training 

(more on this in the results section). The seed regions in the human brain included every voxel in 

the human brain. The connectivity fingerprints of “seed” regions for each subject were determined 

based on the correlation of time series of seed regions (mean time series of seed ROIs in dogs and 

just the voxel time series in humans) with those of “target” regions. It is noteworthy that the 

number of “targets” should be sufficient enough to capture the diversity of the connectivity from 

the seed regions, but should not be too many that might cause overfitting.  

 

Then the Manhattan distance between the averaged connectivity fingerprint of each dog seed 

and each human seed (averaged over the dog and human samples, respectively) were calculated to 

determine voxels in the human brain that share the same pattern or fingerprint of connectivity with 

“seed” regions in dogs (Fig.4.6). Permutation testing was used to test the significant of the match 

between each of voxels in the human brain and the dog “seed” regions (p < 0.01).  
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Fig.4.6 A schematic illustration of the connectivity fingerprint matching approach in our study. 

Each vertex of the polygon indicates individual “target” regions. A connectivity fingerprint of a 

dog “seed” region (in green) is compared to connectivity fingerprints obtained from human “seed” 

voxels picked from across the entire human brain (here we randomly selected three voxels shown 

in yellow, purple and red for illustration). The connectivity fingerprints were calculated by 

estimating resting state functional connectivity between the seed regions and 19 pre-selected target 

regions. Manhattan distance measure was used to determine the similarity of different fingerprints. 

In this case, the yellow area in human brain has a connectivity fingerprint with target regions that 

are most similar to that obtained by the dog “seed” region. Therefore, the yellow voxel in the 

human brain could potentially be the region homologous to the green seed voxel in the dog brain. 

 

4.3 RESULTS 

We identified ten paths in accordance with our hypotheses (Fig.4.7 and Table.4.3). These paths 

satisfied two different criteria. First, resting state connectivity differences FCTP2-TP1 and FCTP3-TP1 
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significantly correlated (p<0.05, uncorrected) with corresponding differences in the integrated 

behavioral score IBSTP2-TP1 and IBSTP3-TP1, respectively (Fig.4.8 and Fig.4.9). Second, the strength 

of these paths significantly increased (p<0.05, uncorrected) due to detection training (from TP1 to 

TP2) and then maintained from TP2 to TP3 (p>0.05) (Fig.4.10 and Table.4.4). This demonstrates 

that that detection training would lead to strengthening of certain functional connectivities from 

TP1 to TP2, which would then maintain those FC levels from TP2 to TP3 during maintenance 

training. Further, the identified paths would mirrored corresponding behavioral improvements 

from TP1 to TP3 and subsequent maintenance till TP3.  

 

Table.4.3 Functional connectivity paths in the dog brain whose FC values satisfied our hypotheses. 

Pyri = pyriform lobe, IPL = inferior parietal lobe, Hippo = hippocampus, Amy = amygdala, Hypo 

= hypothalamus, MFG = middle frontal gyrus, Caud = caudate, OB = olfactory bulb, DLPFC = 

dorsolateral prefrontal cortex, IFG = inferior frontal gyrus 

Path No. Path 
1 R Pyri ↔ R IPL 
2 L Pyri↔ L IPL 
3 L Claustrum/Insula↔ R IPL 
4 L Hippo↔ L Amy 
5 L Hippo↔ Hypo 
6 Brainstem↔ L MFG 
7 R Caud↔ L Hippo 
8 R Claustrum/Insula↔ OB 
9 R DLPFC↔ L IPL 
10 OB↔ R IFG 
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Fig.4.7 Functional connectivity paths in the dog brain whose FC values satisfied our hypotheses. 

Pyri = pyriform lobe, IPL = inferior parietal lobe, Hippo = hippocampus, Amy = amygdala, Hypo 

= hypothalamus, MFG = middle frontal gyrus, Caud = caudate, OB = olfactory bulb, DLPFC = 

dorsolateral prefrontal cortex, IFG = inferior frontal gyrus. 
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Fig.4.8 Resting state connectivity differences between TP2 and TP1 (FCTP2-TP1) in the dog brain 

significantly correlated (p<0.05, uncorrected) with corresponding differences in the integrated 

behavioral score IBSTP2-TP1. 
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Fig.4.9 Resting state connectivity differences between TP3 and TP1 (FCTP3-TP1) in the dog brain 

significantly correlated (p<0.05, uncorrected) with corresponding differences in the integrated 

behavioral score IBSTP3-TP1.. 

 

 
Fig.4.10 FC paths in the dog brain at each time point whose strength significantly increased 

(p<0.05, uncorrected) due to detection training (from TP1 to TP2) and then maintained from TP2 
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to TP3 (p>0.05).  

 
Table.4.4 P-values for differences in the strength of FC across time points for paths shown in 

Fig.4.10.  

 TP2 > TP1 TP3 > TP1 TP2 ≠ TP3 
R Pyri ↔ R IPL 1.49 × 10-2 1.76 × 10-2 9.12 × 10-1 
L Pyri↔ L IPL 1.83 × 10-2 5.52 × 10-3 4.58 × 10-1 

L Claustrum/Insula↔ R IPL 2.66 × 10-2 3.06 × 10-2 9.75 × 10-1 
L Hippo↔ L Amy 2.23 × 10-2 3.53 × 10-2 8.54 × 10-1 
L Hippo↔ Hypo 7.71 × 10-3 4.39 × 10-2 5.18 × 10-1 

Brainstem↔ L MFG 1.69 × 10-2 1.42 × 10-2 9.65 × 10-1 
R Caud↔ L Hippo 2.29 × 10-2 4.61 × 10-2 6.69 × 10-1 

R Claustrum/Insula↔ OB 3.73 × 10-2 1.92 × 10-2 6.79 × 10-1 
R DLPFC↔ L IPL 2.75 × 10-6 2.17 × 10-3 2.62 × 10-1 

OB↔ R IFG 1.57 × 10-2 1.51 × 10-2 8.72 × 10-1 
 

To better understand the functional roles of regions in the dog brain connected by paths 

identified above, corresponding homologous regions in the human brain were determined. This 

was done because there is a lot more literature about the functional roles of brain regions in the 

human brain than in the dog brain. We selected 10 “seed” regions from the dog brain based on 

regions that were connected in the paths identified above (R Pyri, R IPL, L Pyri, L IPL, L 

Claustrum/Insula, Brainstem, L MFG, R Claustrum/Insula, R DLPFC, and R IFG). The role of 

many of these regions in canine cognition is unclear due to lack of corresponding literature. After 

identified the homologous regions in the human brain (Table.4.5), corresponding paths connecting 

them in the human brain were mapped on a brain surface (Fig.4.11) using BrainNet Viewer 

software [78]. 

 

Table.4.5 Regions of the dog brain connected by paths identified above (in Table.4.3) and 
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corresponding homologous regions in the human brain with their MNI coordinates 

Dog region Human region Peak MNI 
coordinate in 
human brain 

x y z 
R pyriform lobe R parahippocampal gyrus 14 -8 -22 

R inferior parietal lobe R inferior parietal lobe 36 -46 39 
L pyriform L parahippocampal gyrus -16 -4 -14 

L inferior parietal lobe L inferior parietal lobe -38 -44 50 
L Claustrum/Insula L Claustrum/Insula -38 6 4 

Brainstem Locus Coeruleus in 
Brainstem 2 -40 -36 

L middle frontal gyrus L middle frontal gyrus -40 48 14 
R Claustrum/Insula R Insula 40 6 2 

R dorsolateral prefrontal 
cortex R superior frontal gyrus 16 46 30 

R inferior frontal gyrus R inferior frontal gyrus 60 10 22 
 
 

 
Fig.4.11 A pictorial spatial representation of homologous regions in the human brain identified in 

Table.4.4. PHG = parahippocampal gyrus, IPL = inferior parietal lobe, Hippo = hippocampus, 

Amy = amygdala, Hypo = hypothalamus, MFG = middle frontal gyrus, Caud = caudate, OB = 
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olfactory bulb, SFG = superior frontal gyrus, IFG = inferior frontal gyrus 

 

Further, we identified seven paths in the dog brain (Fig.4.12) whose FCs were significantly 

stronger in the successful group (n = 13) as compared to the failure group (n = 17) at TP1 as well 

as other time points (Table.4.6, Fig.4.13), but did not change with training (Table.4.7). Among 

them, six paths were located between Caudate and L MTG. The corresponding homologous 

regions (Table.4.8) in the human brain and corresponding paths were then mapped on a human 

brain surface (Fig.4.14). 

 

Table.4.6 Paths in the dog brain whose FC values were significantly stronger (p<0.01) in the 

successful group as compared to the failure group at each time point. Caud = Caudate, MTG = 

middle temporal gyrus, STG = superior temporal gyrus 

 P-value of FCsuccessful > FCfailure  
Path TP1 TP2 TP3 

1-6. Caudate ↔ L MTG 

3.38×10-4 2.9×10-3 1.9×10-3 
7.97×10-4 2.1×10-3 1.6×10-3 
8.55×10-5 1.6×10-3 4.1×10-3 
9.91×10-5 9.4×10-4 1.7×10-3 
2.8×10-3 1.6×10-3 1.9×10-3 
3.7×10-3 4.2×10-3 1.8×10-3 

7. L Caud ↔ R STG 3.8×10-6 1.9×10-3 4.8×10-3 
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(a)                                           (b) 

Fig.4.12 FC paths in the dog brain whose strength was significantly stronger in the successful 

group (a) as compared to the failure group (b) specifically at TP2, but also at other time points.  

 

Table.4.7 P-values for differences in the strength of FC across time points for paths shown in 

Fig.4.12. None of them were significant 

 P-value of successful group P-value of failure group 
Path No. TP1≠TP2 TP1≠TP3 TP2≠TP3 TP1≠TP2 TP1≠TP3 TP2≠TP3 

1 5.6×10-1 2.3×10-1 9.5×10-2 7.8×10-1 5.2×10-1 4.4×10-1 
2 3.8×10-1 3.5×10-1 1.2×10-1 3.4×10-1 8.7×10-1 3.3×10-1 
3 6.4×10-1 5.7×10-1 2.9×10-1 5.1×10-1 2.4×10-1 5.1×10-1 
4 4.3×10-1 8.7×10-1 4.1×10-1 3.5×10-1 8.9×10-1 5.4×10-1 
5 1.7×10-1 6.9×10-1 1.7×10-1 8.8×10-2 5.1×10-1 3.5×10-1 
6 6.2×10-2 6.2×10-1 2.6×10-1 6.3×10-2 9.3×10-2 9.6×10-1 
7 3.9×10-1 9.1×10-1 4.1×10-1 1.1×10-1 6.6×10-2 5.4×10-1 
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Fig.4.13 A pictorial spatial representation of the paths shown in Table.4.6. The thick line 

corresponds to multiple paths between L Caud and L MTG while the thin line corresponds to the 

single connection between L Caud and R STG. Caud = Caudate, MTG = middle temporal gyrus, 

STG = superior temporal gyrus 

 
 
Table.4.8. Regions of the dog brain connected by paths identified above (in Table.4.6) and 

corresponding homologous regions in the human brain with their MNI coordinates 

Dog region Human region Peak MNI 
coordinate in 
human brain 

x y z 
L caudate L caudate -12 2 20 

L middle temporal gyrus L middle temporal gyrus -58 -46 6 
R superior temporal 

gyrus R superior temporal gyrus 54 -40 12 
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Fig.4.14 A pictorial spatial representation of homologous regions in the human brain identified in 

Table.4.6. The thick line corresponds to multiple paths between L Caud and L MTG while the thin 

line corresponds to the single connection between L Caud and R STG. Caud = Caudate, MTG = 

middle temporal gyrus, STG = superior temporal gyrus 

 

Considering that the sample size was relatively small, we performed classification analyses 

using 1000 iterations of stratified random shuffling with a test size of 25% of the data (4 folds 

cross-validation). Classifiers with behavior (integrated behavioral score) performed above chance 

with AUC equal to 0.62 (Fig.4.15, blue). Classifiers using functional connections in a flexible 

neural network in the dog brain which changed with detection training and correlated with 

corresponding behavioral changes (Table.4.3) also performed above chance with AUC=0.68 

(Fig.4.15, red). However, best classification performance was achieved using functional 

connections in a predictive neural network in the dog brain which was significantly stronger in the 

successful group as compared to the failure group (Table.4.6), but did not change with training 

(Table 4.7). This network gave an AUC equal to 0.90 (Fig.4.15, green).  
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Fig.4.15 ROC plot for the three classifier models used to predict, using data at TP1, whether a dog 

would eventually be suitable for detection work. 

 
4.4 DISCUSSION 

Dogs have a unique ability to interact with humans and this ability has led to dogs working 

with and assisting humans for various tasks. Therefore, investigations on their general behavioral 

capabilities and their related neural bases can inform us about critical parameters for selecting dogs 

for training. However, research into the neural basis of the behavior of dogs, specifically 

longitudinal investigations, is sparse. This study is the first to our knowledge to explore the neural 

processes across different training time points at in vivo level using resting state fMRI.  

 

Previous studies have shown reconfiguration of brain networks during task learning in humans 

[213]–[216]. Such regional network dynamics are consistent with a core-periphery model wherein 

certain brain regions show relatively stable (with respect to time) patterns of interaction that are 
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necessary for the task performance, while others display relatively flexible patterns that support 

the learning and changes in task performance [216]. In our work, we extended this concept to the 

dogs training process and hypothesized that such a core-periphery network may not only mirror 

changes in behavior with training, but also predict the success of dog training and could potentially 

be used for selecting dogs to be trained.  

 

We identified two systems, one system (periphery system) consisting of a brain network which 

strengthened its connectivity with improvements in canine behavior scores after detection training. 

We believe that this is a flexible system which supports learning related plasticity during the 

training process. However, the periphery system is not predictive, and its connectivity at the 

baseline first time point prior to training could not predict whether a given dog could eventually 

be trained to become a good detector dog. The other system we identified did not show significant 

changes in its connectivity strength during the training process. However, the strength of 

connectivity of this core network predicted, with 90% accuracy, whether a given dog would 

eventually graduate as a detector dog from the training regimen. We speculate that the core stable 

network may be an endophenotype that is inherited and mainly controlled by genes while the 

flexible periphery network may be amended by environmental influences [217], [218]. Below, we 

discuss this core-periphery model in greater detail.  

 

4.4.1 Flexible Periphery Network underlying Detection Training 

We found significant correlations between behavioral changes and connectivity changes 

between the following ROIs: L Amy and L Hippo, L Hippo and Hypo, L Hippo and R Caud 

(Fig.4.16). Previous human studies [219]–[221] as well as dog studies [189], [191] have implicated 
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these set of regions during olfactory processing. Further, previous studies have shown that 

functional connectivity of olfactory-related networks may be reinforced by training, and training-

induced behavioral improvement in olfactory performance has been observed in healthy humans 

[222]. Therefore, this sub-network may be related to improvement in olfactory processing 

capabilities of dogs during detection training. Additionally, in a meta-analysis study on food-cue 

neuroimaging, the insula and inferior frontal gyrus were commonly activated by visual and odor 

food-cue stimulation in humans [223]. Considering that during the training process, dogs were 

reinforced for successful performance with treats, the increase of FC between the OB and R insula, 

as well as between the OB and IFG (Fig.4.17) might reflect neural plasticity of conditioning for 

food-related stimuli.  

 

     

(a)                                                                      (b) 
Fig.4.16 Olfaction-related network in the dog brain (a) and homologous regions in the human brain 

(b) which showed significant correlations between behavioral changes and connectivity changes. 

Hippo = hippocampus, Amy = amygdala, Hypo = hypothalamus, Caud = caudate 
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(a)                                                                     (b) 
Fig.4.17 Positive reinforcement network in the dog brain (a) and homologous regions in the human 

brain (b) which showed significant correlations between behavioral changes and connectivity 

changes. OB = olfactory bulb, IFG = inferior frontal gyrus 

 

Paths from the R SFG to L IPL in the periphery network may be considered to be part of the 

fronto-parietal network (Fig.4.18). This is consistent with human studies that have shown 

behavioral variables co-vary with connectivity in frontal-parietal networks (FPN) [180], [181]. 

Previous human studies have suggested that brain regions in the frontal and parietal cortices played 

an important role in cognitive control processes and connectivity within the FPN directly relates 

to attention [224]–[226]. An ICA study has shown greatly overlapped frontal-parietal network in 

macaque and human brains, suggesting an evolutionary preserved frontal-parietal system [227]. 

Moreover, studies related to individual human intelligence found that greater connectivity, 

especially during task performance, within the frontal-parietal network was associated with higher 

intelligence scores [228], [229].  
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(a)                                                                     (b) 
Fig.4.18 The fronto-parietal network in the dog brain (a) and homologous regions in the human 

brain (b) which showed significant correlations between behavioral changes and connectivity 

changes. DLPFC = dorsolateral prefrontal cortex, IPL = inferior parietal lobe, SFG = superior 

frontal grrus 

 

The IPL is known to be associated with familiarity and recollection-related judgments [230]. 

Also, the PHG and insula are also known to be involved in familiarity-related judgments [231]–

[233]. The increase of the FC within the FPN, and between the L insula and IPL, as well as between 

the PHG and IPL (Fig.4.19) might suggest improved understanding and reaction towards the 

trainer’s gestures and commands through the learning process.  

     

(a)                                                                     (b) 
Fig.4.19 The fronto-parietal network in the dog brain (a) and homologous regions in the human 

brain (b) which showed significant correlations between behavioral changes and connectivity 
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changes. PHG = parahippocampal gyrus, IPL = inferior parietal lobe, Pyri = pyriform lobe 

 

The Locus coeruleus (LC) in the brain stem is the largest repository of Norepinephrine (NE) 

in the human brain [133]. Noradrenergic neurons within LC are widely distributed, and one of the 

main ascending pathways from the LC projects to the prefrontal cortex [134], [135]. It has been 

shown that NE projections from the LC to the cortex support learning and memory retrieval [234], 

[235]. An animal study has further found that boosting NE transmission can lead to increased 

functional connectivity [139]. Thus, the significantly increased FC (from baseline time point to 

other TPs post detection training) between the LC in the brainstem and L MFG might correspond 

to the mechanisms of learning of odors and retrieval of such memory. 

 

     

(a)                                                                     (b) 
Fig.4.20 The fronto-parietal network in the dog brain (a) and homologous regions in the human 

brain (b) which showed significant correlations between behavioral changes and connectivity 

changes. MFG = middle frontal gyrus 

 

4.4.2 Stable Core Network for Predicting Training Outcome 

It can be noted that a majority of the paths in the stable core network involved the caudate. 

Previous studies have considered the caudate as a part of reward system and may reinforce learning 
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in humans as well as dogs [191], [194], [207]. Studies in humans and monkeys have indicated that 

regions in the temporal cortex respond preferentially to face recognition [236]. Further, a recent 

canine study has shown that using fMRI activations from the caudate, amygdala, and a specialized 

region in the temporal cortex for face processing (known as the dog face area or DFA), the authors 

were able to predict (with cross-validation) a given dog’s suitability for assistance work with an 

accuracy of 80% [196]. Thus, it is not surprising that we found multiple paths between the L Caud 

and L MTG in the stable core network that were stronger in the successful group at TP1. Further, 

the strength of connectivity of these paths at TP1 was able to predict the success of training with 

an accuracy of 90% using a classifier with cross-validation comparable to the one used by Berns 

et al, 2016.  

 

The main role of the STG is to process sound stimuli [237]. During the training process, dogs 

were reinforced for successful performance with treats and verbal reward (trainer praised the dog 

– “Good dog” or “Yes”). Stronger connectivity between the L Caud and R STG in the successful 

group might suggest that dogs that were able to associate human verbal praise with reward might 

have a better chance to be trained as detection dogs. 

 

It should be noted that the caudate was found to be a part of both the core and periphery 

networks (L Caud in the stable core network and R Caud in flexible periphery network). The factor 

that prohibits dogs from successful training is believed to be their fearfulness/anxiety towards 

novel/complex environments [238]. Previous studies have suggested that dopamine D4 receptors 

influence canine fearfulness, anxiety and impulsivity related traits [239], [240]. Dopamine D4 

receptors have been found to be concentrated in the caudate [241]. Since the expression of D4 
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receptors in the caudate is controlled by specific genes, they might influence fearfulness, anxiety 

and impulsivity related traits in dogs, thereby influencing baseline neural connectivity between the 

caudate and other brain regions. This might be a potential mechanism by which the caudate may 

be involved in the stable core network that predicts whether dogs can be trained to become 

successful working dogs. On the other hand, the role played by the caudate in reinforcement-based 

learning in humans is known [242], [243]. Specifically in dogs, Berns et al found that the caudate 

was significantly more active when the dogs were exposed to different types of reward stimuli 

[194], [196], [197], [199], [200]. We found an increase in FC between the R caudate and L hippo 

in periphery network with detection training. Therefore, our findings also support the role of the 

caudate in learning, reward and training-related neural plasticity.  

 

Taken together, we identified a core-periphery organization in the dog brain and these systems 

responded differently to the detection training process, which appear to represent ontogeny and 

phylogeny. The flexible periphery network is ontological, as it changed with corresponding 

behavioral changes due to training/learning that were mainly located in regions implicated in odor 

processing. Biologically, the network flexibility might be driven by physiological processes that 

facilitate the participation of corresponding regions in multiple functional communities while 

learning new tasks. On the other hand, the caudate based core network is driven more by phylogeny 

because of its stability across detection training. Such a stable network may contain information 

about intrinsic learning ability for individuals that can successfully predict the outcome of training. 

Our result suggests that, upon replication and refinement, fMRI-based resting state brain 

connectivity may assist in choosing dogs that are more easily trainable for performing detection 

tasks before they enter the training regimen. 
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4.4.3 Insights from Human Homology 

A basic challenge in animal neuroimaging is to compare and explain brain functions across 

species, especially at the voxel level. Interpretation often relies on the assumption that putative 

homologous areas are functionally similar [244]. However, this assumption is not always valid 

[245] since putative homology is generally not established on any rigorous statistical premise. 

Previous studies have suggested that specific functions in an area of one species may be shifted to 

other regions in other species [246]. In this study, we sought to identify the homologous areas by 

comparing the connectivity fingerprints of regions between humans and dogs [211], [210]. This 

was done because there is a relatively abundant literature about the functional roles of brain regions 

in the human brain than in the dog brain. The approach of matching connectivity fingerprints is a 

viable technique and has been used in a number of studies previously [247], [248]. 

 

We identified several regions that do not functionally correspond to their putative homologous 

regions. For example, the R pyriform lobe, L pyriform lobe and R dorsolateral prefrontal cortex in 

dogs shared similar connectivity profiles as the R parahippocampal gyrus, L parahippocampal 

gyrus and R superior frontal gyrus in humans. Moreover, the LC in the human brainstem was 

identified to be homologous to a specific region of the dog brainstem. With the help of previous 

human literature, and based on the homology established using the connectivity fingerprint 

matching procedure, we speculated that the connectivity between the brain stem and the frontal 

cortex in dogs corresponded to that between the LC and L MFG in humans and this might underlie 

mechanisms of learning of odors and retrieval of such memory. Despite the lack of abundant 

literature into the neural basis of behaviors of dogs and their trainability, projecting dog brain 
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regions identified here onto the human brain, and evaluating similar literature in humans may help 

us better understand the evolutionary role of brain-behavior relationships. This comparative 

evaluation is particularly relevant for dogs since they are a rare species which has socially co-

evolved with humans for thousands of years. 

 

4.5 Limitations 

A few limitations of this work are noteworthy. Although the number of dogs is comparatively 

large, the sample size is still considered small which did not allow us to use stringent p-value 

thresholds. However, the identified dog core-periphery model could provide a window into the 

evolutionary role of brain-behavior relationships and provides great potential in answering 

questions about phylogeny and ontogeny. It should be noted that no significant gender differences 

were found in the identified two systems in our study; however, future studies should aim to 

replicate our findings in different breeds of dog. Further, we have compared our classification 

results with that from a previous study [194]. However, here we studied detection dogs while they 

focused on service dogs. Therefore, comparison of our results with those reported by Berns et al 

is qualitative at best.  
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CHAPTER 5 

Conclusions  

 

The main purpose of this work was to characterize brain functions based on connectivity 

analysis in human and dogs. We employed multiple approaches to identify brain-based biomarkers 

of Alzheimer’s disease. Further, considering that functional brain connectivity based on resting 

state fMRI had been shown to be correlated with human personality and behavior, we sought to 

identify whether capabilities and traits in dogs can be predicted from their resting state connectivity 

as in humans. The main contributions of this work are: 

1. Using Middlemen Power and effective connectivity modeling, we identified Lateral 

Occipital Cortex and Left Orbitofrontal Cortex that significantly decreased with the 

deterioration of the disease. Betweenness Centrality only found Lateral Occipital Cortex. 

We showed that the Middlemen Power of LOC and L OFC, and Betweenness Centrality 

of LOC also correlated significantly with behavioral scores, indicating their relevance to 

underlying pathology. We suggested that Middlemen Power might be a better local nodal 

characteristic compared to BC and, directed networks seem to be more sensitive than 

undirected networks. 

2. Using static and dynamic effective connectivity modeling, we identified focal directed 

connectivity deficits in AD compared to healthy controls. We characterized group 

differences using a (between-subject) generative model of pathology, which generates 
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latent connectivity variables that best explain the (within-subject) directed connectivity. 

Crucially, our generative model at the second (between-subject) level explains connectivity 

in terms of local or regionally specific abnormalities. This allows us to explain 

disconnections among multiple regions in terms of regionally specific pathology; thereby 

offering a target for therapeutic intervention. We identified two foci, locus coeruleus in the 

brain stem and right orbitofrontal cortex. We further partitioned the aberrant connectomic 

network into four unique sub-networks and explained how the dysfunction of foci cause 

symptoms commonly observed in AD. 

3. We designed a longitudinal experimental paradigm where fMRI data and behavioral 

assessments were acquired at multiple time points (TPs) across the time of participation of 

dogs in this study. We discovered the resting state brain networks whose change in the 

strength of connectivity during a canine training regimen mirrored corresponding changes 

in their behavior. We also investigated whether resting state brain networks estimated from 

fMRI data acquired before the commencement of the training regimen were able to predict 

whether a given dog would eventually graduate to become a detector dog or not. We 

identified the homologous areas by comparing the connectivity fingerprints of regions 

between humans and dogs. Despite the lack of abundant literature into the neural basis of 

behaviors of dogs and their trainability, projecting dog brain regions identified here onto 

the human brain, and evaluating similar literature in humans may help us better understand 

the evolutionary role of brain-behavior relationships. This study is the first to our 

knowledge to explore the neural processes across different training time points at in vivo 

level using resting state fMRI. 
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