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Abstract 

Many chemical processes generate products with properties of interest to businesses and end 

consumers (B&EC), using reactions. Thus, a need for quantitative modeling of physico-chemical 

properties and molecular design (MD) in reactive systems has arisen. Quantitative modeling 

precedes MD and is useful in relating chemical structure to properties of interest. Using 

quantitative models, a chemical’s properties can be systematically varied by varying its structure. 

This structure variation, without sole reliance on intuition, assists in exploring a large portion of 

the chemical space. When the rising prowess of computers is tapped, such an exploration is 

termed as computer-aided molecular design (CAMD). CAMD of products of reactions is thus 

beneficial since the demands of B&EC can be met efficiently. Since products originate from 

reactants, CAMD of products will also lead to the CAMD of reactants. While CAMD of solvents 

and catalysts has received significant attention, there is a paucity of CAMD algorithms that design 

reactants and products. To address this paucity, CAMD of reactants and products in three 

scenarios has been explored in this work. In the first scenario, only the products’ respective 

dominant properties are optimized, given a set of property constraints. In the second scenario, 

properties that are dependent on the structures of both reactants and products are optimized. 

Unlike the first scenario, both reactants and products are subject to property constraints. In the 

third scenario, each reactant and product’s respective dominant property is optimized. Like the 

second scenario, both reactants and products are subject to property constraints. Our CAMD 
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methodologies incorporate property models with a variety of molecular descriptors using 

signature descriptors, which are molecular building blocks. In order to generate feasible 

structures, previously developed structural constraints have been improved. Since the structures 

of reactants and products are related, relationships have been derived between them using 

signature descriptors. To demonstrate the efficacy of the developed CAMD methodologies, a 

case study has been solved for each scenario. Additionally, for CAMD of reactants, products and 

solvents for reaction rate optimization, we compare promising ensemble learning algorithms’ 

abilities to model reaction rate constant in terms of structures of reactants and solvents. We 

assessed decision tree-based ensemble methods’ abilities to model the Diels-Alder reaction’s 

rate constant in a case study.  
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1. Introduction 

During the period 1980-2000, the chemical industry transformed itself from being process-

centered to product-centered (Stephanopoulos and Reklaitis, 2011). In the former direction, the 

products were simple molecules and the R&D activities were not as complicated as in the latter 

direction. In the product-centered approach, the chemical industry moved towards the 

manufacture and sale of high value-added materials marketed on performance rather than 

compositional specifications (Hill, 2009). These materials were termed as chemical products. This 

shift in direction is also reflected in the paper of Grossmann and Westerberg (2000). They stated 

that increased investor pressure in the coming years will create demands for improved earnings 

performance from both commodity and specialty product manufacture. They further stated that 

driving forces like these will lead to process design expanding to accommodate product design, 

with particular emphasis on design of new molecules. Such a paradigm shift in process design has 

appeared in accordance with the predictions alongside other adaptations in process systems 

engineering (PSE), of which process design is a part. PSE, in general, has diversified from its 

process roots, first into wider aspects of project management, then to multi-site operations, and 

eventually to consideration of the whole supply chain (Sargent, 2005). In line with the expansion 

efforts of the PSE community, Klatt and Marquardt (2009) exhorted them to collaborate with 

other disciplines like material sciences which actively pursue product design. They called for the 

widening of scope of PSE into multi-scale product and process systems engineering (MPPSE) 

which would address product design among other areas in an integrated manner. Adjiman and 

Galindo (2011) later coined the term Molecular Systems Engineering that formally recognizes the 

design of molecules and materials as an integral part of the overall task of designing and 
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optimizing processes and products. Integrated product development and design also featured as 

one of the most important PSE conference topics in the period 1985-2006, as part of emerging 

areas (Glavič, 2012). Thus, from the above one can safely claim that there has been an attempt 

to elevate the relevance of product design over the years in PSE and by extension, in the chemical 

engineering community. 

In the international PSE conference, Foundations of Computer Aided Process Design (FOCAPD), 

convened in 2005 at Princeton University, the overarching theme was “Discovery through 

Product and Process Design” (Stephanopoulos and Reklaitis, 2011). The participants recognized 

that the notion of a product covered a fairly broad range of entities. These ranged from simple 

small molecules, functional molecules such as dyes to structured products which perform certain 

functions such as batteries and products closely connected to emotional disposition of humans 

such as clothing. Most of the efforts from the PSE community on product design, however, have 

been focused on the optimal generation of molecular structures, which satisfy a set of desired 

specifications usually expressed in terms of physico-chemical properties. Stephanopoulos and 

Reklaitis (2011) and Mlinar (2015) list a variety of reasons why this is the case. Some of the prime 

reasons are the significant enlargement in the design space with the rise in the scale of products 

considered and reduction in reliability of mathematical models relating structures to properties. 

For example, Segall (2012) questions in his paper whether we can currently carry out computer-

aided drug design (CADD). He states that the prediction in drug discovery is not yet sufficient to 

permit a design paradigm, as demonstrated by the large number of compounds that must be 

synthesized and tested to identify a successful drug. However, he does not diminish the utility of 

computational tools but provides a future outlook where the ever-rising computational prowess 
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will play a significant role. Although, the end of Moore’s law appears to be in sight because the 

size of the transistors can only be diminished to an extent, chip manufacturing companies are 

investing considerably in the development of post-Moore’s law devices (Pavlus, 2015). These will 

help in significantly improving the current computational prowess. Strategies such as ‘Heterotic 

computing’ which involve usage of combination of two or more computational systems are also 

emerging in order to help accelerate progress in a post-Moore’s law world (Kendon et al., 2015). 

Because of recent improvements in computer architecture and distribution techniques, Ceder 

(2013) suggests that we are inching towards a golden age of materials science. Although most of 

the efforts, over the years, concerning computer-aided product design (CAPD) have been 

devoted to computer-aided molecular design (CAMD), there are problems involving CAMD that 

are yet to be substantially addressed. For example, processes that involve reactions and high 

pressures need attention first in terms of developing property models (PMs) and then in 

developing methodologies to utilize these PMs to design molecules and processes. So far, in 

processes involving reactions, which is the focus of our work, CAMD of solvents, catalysts, 

reactants and products has been carried out. Solvents have been designed in reactive systems as 

mass separating agents (MSAs) and to enhance performance of reactions. In the first application 

of CAMD, one of the aims of MSA usage is to separate products of interest in order to drive the 

reaction in the forward direction. In the case of extractive fermentation, additionally, poisoning 

of cells by the products is to be avoided. The early approaches to design MSAs have been well 

documented in the work of Papadopoulos and Linke (2009). In their work, they have also 

presented a framework for integrated molecular and process design. In the framework, the 

information obtained at the solvent design stage is incorporated in the process design stage using 
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a data mining approach in the form of clustering. They utilized multi-objective optimization to 

assess various trade-offs characterizing the solvent design space. Also, Cheng and Wang (2010) 

presented an approach recently to design a biocompatible solvent for an extractive fermentation 

and separation process. Crisp and fuzzy optimization problems were formulated and solved using 

Mixed-Integer Hybrid Differential Evolution in their methodology. Differing from the 

mathematical programming based approaches generally utilized to design MSAs, an approach 

based on screening and experimental tests was also developed, by Faria et al. (2013). They 

developed a solvent selection methodology for integrated reactive-adsorptive processes as 

simulated moving bed reactors.  

In the second application concerning solvent design, an important goal of CAMD is to capitalize 

on the relationship between molecular structure and parameters influencing the performance of 

a reaction. Strübing et al. (2010) have discussed in detail the solvent effects on reactions and the 

early approaches to carry out CAMD of reaction solvents. Recently, a quantum mechanical (QM) 

CAMD approach was proposed by Struebing et al. (2013) where the computational expense is 

reduced by the adoption of a surrogate model. In this QM-CAMD approach utilizing Solvation 

Model based on Density (SMD), the density functional theory (DFT) calculations of the rate 

constant are incorporated in the problem formulation. The rate constant is then solved for its 

optimality at 298 K. On the other hand, Zhou et al. (2015b) proposed a framework to carry out 

simultaneous solvent and process design due to the lack of such a framework. The Conductor-

like Screening Model for Real Solvents (COSMO-RS) (Klamt, 2011) was utilized to calculate 

theoretical descriptors which were consequently expressed in terms of group contributions 

(GCs). By relating the rate constant to the descriptors, a structure-property relationship was 
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ultimately established. The optimization problem which included process constraints was then 

solved for profit maximization. This COSMO based approach has further been extended by Zhou 

et al. (2015a) to take into consideration multiple reactions and model uncertainties. Besides 

design of pure solvents, the design of mixed solvents, Gas-expanded liquids (GXLs), has also been 

addressed by Siougkrou et al. (2014). Also, apart from the approaches that generally utilize 

mathematical programming, solvent selection approaches for reaction rate enhancement 

involving screening have also been devised recently by Zhou et al. (2014) and Wicaksono et al. 

(2014).  

In the second application area of CAMD which involves catalysts, Lin et al. (2005) designed 

transition metal catalysts by formulating optimization problems. The tabu search method was 

used to search the chemical space. Properties concerning the transition metal catalysts, such as 

density, were expressed in terms of connectivity indices. On the other hand, by using an Inverse 

Quantum Chemistry (Weymuth and Reiher, 2014a) approach called Gradient-Driven Molecule 

Construction, Weymuth and Reiher (2014b) designed Small-Molecule Fixating Catalysts. In their 

approach, a search using differential evolution was conducted for a ligand sphere that stabilizes 

a predefined central fragment. Besides the design of transition metal catalysts, the design of 

enzymes also holds significance. A review that addresses the recent developments, particularly 

in de novo design of enzymes, has been conducted by Świderek et al. (2015).  

In the last application of CAMD in reactive systems, an important goal is to design reactants and 

products such that dominant properties dependent on their structures, are optimized. For the 

design of reactants and products, the reaction(s) occurring in the system is known prior to the 
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design. However, the reactants and products are structurally variable. Although much effort has 

been directed towards the design of solvents and catalysts in reactive systems, not much effort 

has been invested in the design of reactants and products. Since many chemical products are 

generated from reactions, to develop a comprehensive design framework, the reactions and the 

reactants involved should be considered (Ng et al., 2015b). In this regard, Chemmangattuvalappil 

and Eden (2013) developed an algorithm to generate structures of a single unknown reactant 

and product using signature descriptors. They related the property operators of the unknown 

product and unknown reactant in terms of atomic signatures of the product and reactant. The 

utilization of signature descriptors in the algorithm provides the advantage of being able to treat 

property models expressed in terms of both GCs and TIs on a single platform 

(Chemmangattuvalappil et al., 2010) . However, the linear relationship derived by them, between 

the property operators of the reactant and product, will not hold true if the property models 

utilized are nonlinear. Also, the formulated mathematical program in their algorithm is solved 

using bilevel optimization which is a computationally expensive approach. Besides the 

aforementioned approach, a quantum chemical approach was utilized by De Vleeschouwer et al. 

(2012) to design single unknown reactants and products. The discrete best-first-search (BFS) was 

adapted by them for the Linear Combination of Atomic Potentials (LCAP) scheme to design 

optimal acidic and photoacidic substituted 2-naphthols (Xiao et al., 2014). In the LCAP scheme 

(Wang et al., 2006), the design of molecules is conducted by searching for the optimum nuclear-

electron interaction potential function that generates a molecular system with associated target 

properties. The external potential, which at the very minimum is the nuclear-electron interaction 

potential, is expressed as a linear combination of atomic potentials, hence the name of the 
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approach. A concern that can arise with quantum chemical methods is that the computational 

cost scales with the size of the molecular system (Adjiman et al., 2014; Jinich et al., 2014). 

However, Wang et al., (2006) have proposed a hybrid geometry/LCAP optimization scheme to 

reduce some of the cost. In this approach, geometry optimization is carried out after the LCAP 

optimization and the LCAP optimization is repeated if the property being optimized has not 

converged. To avoid the computational cost of fully calculating the standard free energy change 

of acid dissociation of substituted 2-naphthols, De Vleeschouwer et al. (2012) utilized three 

different approximations to represent the gas-phase acidity. It is assumed by them, during 

optimization, that a substituent at a particular site displays a similar contribution regardless of 

the substituents on other sites. If one were to extrapolate from their optimization approach, the 

computational burden will increase with the number of unknown reactants and products. 

Approximations in the calculation of free energy change of reaction can also introduce sizeable 

errors in such a case. Also, in the optimization scheme of De Vleeschouwer et al. (2012), it is not 

clear how property constraints will be taken into account. A similar inverse approach also has 

been utilized by them (De Vleeschouwer et al., 2015, 2013) to optimize the stability, 

nucleophilicity and electrophilicity of thiadiazinyl radicals.  

As can be inferred from the available methodologies for CAMD of reactants and products, there 

is room for methodologies that efficiently design multiple unknown reactants and products. In a 

generalizable methodology involving CAMD of multiple reactants and products, a systematic 

approach will be required that takes into account the reaction mechanism involved. Since the 

reactants and products are structurally related, the methodology will also have to take into 

account these relationships between structures irrespective of their numbers. The methodology 
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should additionally be able to consider multiple objectives of any of the reactants and products. 

The methodologies available currently for design of reactants and products are lacking in these 

aspects. To address these shortcomings, in this work we present approaches for design of 

reactants and products irrespective of their numbers for three scenarios. These scenarios are 

described in detail in chapter 3. Property models, which can be nonlinear, involving either TIs 

and/or GCs have been utilized to relate various properties to structures. Signature descriptors, 

which are molecular building blocks, have been utilized to treat all the property models on a 

single platform.  

Although various scenarios have been considered while developing methodologies to design 

reactants and products in chapter 3, the accuracy of CAMD conducted in the presented design 

scenarios depends on the accuracy of the property models utilized. Thus, we are limited by the 

predictive ability of the property models and, the quality and amount of data available to develop 

these models. In order for us to design reactants and products such that the rate constant of a 

reaction or the rate of a reaction is optimized, we require property models that relate the rate 

constant of a reaction with the structures of reactants and solvents utilized. Since the structures 

of reactants and products are related, the need to model the rate constant in terms of the 

structures of products, additionally, does not arise. Currently, there are not many models 

available that jointly capture the effect of structures of reactants and solvents on the rate 

constant and consequently the rate of the reaction. With respect to property models that capture 

the reactants’ and solvent’s influence, Nandi et al. (2013) developed a quantitative structure-

activation barrier relationship for Diels-Alder reaction that utilizes quantum chemical descriptors. 

Their aim was to construct a relationship between the activation energy and the structures of the 
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utilized reactants and solvent. However, their data set lacked solvent variety. Recently, Datta et 

al. (2016) developed a quantitative structure-property relationship (QSPR) that relates the rate 

constant of the Diels-Alder reaction and the structures of reactants and solvent utilized. They 

concatenated the data set utilized by Nandi et al. (2013) and the data set obtained from the work 

of Zhou et al. (2014) in order to create a larger data set with slightly increased solvent diversity.  

The R2 and Q2 values of the obtained model were 0.81 and 0.86 respectively. Although the 

obtained model showed good performance, there is still further scope for improvement of the 

R2 and Q2 values. Additionally, the developed hybrid algorithm of Datta et al. (2016) has not been 

evaluated with respect to its scalability. With the aim of improving on the R2 and Q2 values of the 

model of Datta et al. (2016), in our work, we evaluated tree-based ensemble machine learning 

algorithms with respect to their predictive ability. Specifically, we evaluated the following 

algorithms: 

1. Random forests  

2. Regularized random forests  

3. Gradient boosted regression trees  

4. Extremely randomized trees.  

These ensemble learners are scalable and have found wide use in many regression and 

classification tasks. More details on these methods can be found in section 3.4.  

In order for the reader to obtain a deeper understanding and appreciation of the CAMD 

methodologies of reactants and products, first, in chapter 2, a theoretical background of CAMD, 

property modelling and concepts concerning CAMD has been provided. These concepts include 
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different types of molecular descriptors, including signature descriptors, which has been utilized 

in this work. In chapter 3, revised structural constraints and structural relationships between 

reactants and products are derived. Additionally, the problem formulation and the 

methodologies to solve the three presented design scenarios is discussed. Also, details on 

ensemble machine learning and tree-based ensemble learning is provided. In chapter 4, the 

CAMD methodologies for the three design scenarios presented in chapter 3 are exemplified using 

3 case studies. Additionally, a case study involving rate constant modeling of the Diels-Alder 

reaction is presented. In section 5, the conclusions and future directions are provided.    

Also, for the reader’s reference and consideration, it is worth noting that the various sections 

produced in this dissertation have been published in various peer-reviewed publications. Parts 

of chapters 1 and 2 have been published in a co-authored book chapter entitled ‘Mathematical 

Principles of Chemical Product Design and Strategies’ (Ng et al., 2017). The book chapter appears 

in the book titled ‘Tools For Chemical Product Design: From Consumer Products To Biomedicine’, 

published by Elsevier. Section 3.2.2 and section 4.1 have appeared in the work of Dev et al. 

(2014a, 2014b). Section 3.2.1, section 3.2.3 and section 4.2 have appeared in the work of Dev et 

al. (2015). Section 3.2.4 and section 4.3 has appeared in the work of Dev et al. (2016). Section 3.4 

and section 4.4 appear in the work of Dev et al. (2017). Parts of section 2.2 appear in the co-

authored works of Datta et al. (2016a, 2016b) and Datta et al. (2017).  
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2. Background 

2.1. Molecular Descriptors 

Molecular Descriptors (MDs) are the numerical values associated with the chemical constitution 

for correlation of chemical structure with various physical properties, chemical reactivity or 

biological activity (Roy et al., 2015a). Property models (PMs) that express relationships between 

properties and chemical structures of molecules, utilize MDs to represent the chemical 

structures. Property models express a quantitative relationship between properties and 

structures of molecules. Hence, they are also known as Quantitative Structure-Property 

Relationships (QSPRs). If the property is the biological activity of a molecule, then the QSPR is 

known as a Quantitative Structure-Activity Relationships (QSAR). Similarly, depending on the 

property other variations of the term Quantitative Structure-Property Relationships can be 

derived.  

Todeschini and Consonni (2000) provide an alternative definition for MDs as: 

The molecular descriptor is the final result of a logical and mathematical procedure which 

transforms chemical information encoded within a symbolic representation of a molecule into a 

useful number or the result of some standardized experiment.  

They are thus bifurcating MDs into two types; theoretical descriptors and experimental 

measurements. Theoretical descriptors are numerical values that are obtained from symbolic 

representation of molecules while experimental measurements are values of physico-chemical 

properties like polarizability and dipole moment. Theoretical descriptors offer an advantage over 
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experimental measurements in that the error due to experimental noise can be avoided. Also, 

the practice of expressing the PMs in terms of other physicochemical properties is an older one. 

These properties themselves are now expressed in terms of theoretical descriptors. A wide 

variety of theoretical descriptors have been developed in terms of which different properties can 

be expressed. There is no consensus, however, for a set of rules or criteria that guide the 

development of new theoretical descriptors for various property models (Hong et al., 2012). 

However, some general criteria have been suggested (Roy et al., 2015b): 

1. A descriptor must be correlated with the structural features and show negligible correlation 

with other descriptors. 

2. A descriptor should be applicable to a broad class of compounds. 

3. A descriptor can be calculated rapidly and does not depend on experimental properties; it 

can be considered more suitable than one that is computationally exhaustive and relies 

heavily on experimental results. 

4. A descriptor should generate dissimilar values for structurally different molecules, even if the 

structural differences are small. This means that the descriptor should show minimal 

degeneracy. In addition to degeneracy, a descriptor should be continuous. It signifies that 

small structural changes should lead to small changes in the value of the descriptor. 

5. It is always important that the descriptor has some form of physical interpretability to encode 

the query features of the studied molecules. 

6. Another significant aspect is the ability to map descriptor values back to the structure for 

visualization purposes. These visualizations are sensible only when descriptor values can be 

associated to structural features. 
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Besides the classification used by Todeschini and Consonni (2000) there are also other types of 

classification of molecular descriptors. For example, descriptors can be classified based on origin. 

Based on origin, MDs can be classified as topological (graph theory based), constitutional 

(functional group count), geometrical (distances, valence angles, surfaces, etc.), quantum-

chemical (charge distribution related), and thermodynamic (heat of formation, entropy, etc.) 

descriptors (Hong et al., 2012). However, the majority of researchers that develop PMs prefer to 

classify MDs based on their dimensionality (Roy et al., 2015b). The MDs can be classified as zero-

dimensional (0D), one dimensional (1D), two dimensional (2D), etc. MDs up to seven dimensions 

(7D) have been developed so far.  It is worth noting that descriptors up to two dimensions are 

the most commonly utilized ones. However, when large molecules are involved, descriptors with 

more than 2 dimensions are also utilized in property models. Descriptors with more than 3 

dimensions are geared for more sophisticated applications and hence are not commonly used. A 

brief overview of descriptors of different dimensions has been provided as follows. Also, special 

attention has been provided to signature descriptors which are 2D descriptors since we will be 

utilizing them during CAMD of reactants and products.  

2.1.1. 0D Descriptor 

Molecular descriptors that are derived from the molecular formula fall in the category of 0D 

descriptors. Since while writing the molecular formula we are not concerned with the 

arrangement of molecules but only the composition, the descriptors are derived from a zero-

dimensional representation of the molecule. Thus, the descriptors are referred to as 0D 

descriptors.  Examples of 0D descriptors include atom counts, charge, molecular weight, etc.  
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2.1.2. 1D Descriptor 

If fragments (e.g. substructural fragments or functional groups) of a molecule are used for 

molecular representation then 1D descriptors are obtained. This is because only one dimension 

is required to depict the type of substitution or fragments present. 1D descriptors can serve to 

quickly scan the chemical space for candidates based on some established similarity criteria with 

respect to a reference molecule. These have been used to filter out structures in the early stages 

of drug design. An example of such a descriptor is fragment count.  

2.1.3. 2D Descriptor 

2D descriptors are derived from 2D representation of molecules that takes into account the types 

of atoms, their number and their connection pattern with each other. Examples of 2D descriptors 

include chiral center count, which provides the number of chiral centers and rotatable bonds 

count, which provide the number of bonds capable of rotation (Roy et al., 2015a). The descriptors 

derived from the graphical representation of molecules are categorized under 2D descriptors. In 

the graphical representation, the molecule is referred to as a molecular graph. A molecular graph, 

G, consists of atoms which form the vertices of the graph and the covalent bonds which form the 

edges in the graph. Thus, atoms that have at least one bond between them are connected by an 

edge. The various fragments that can be obtained from G can be represented as sub-graphs. The 

sub-graphs thus consist of subset of edges belonging to the edge set, E, and subset of vertices 

belonging to the vertex set, V. The descriptors obtained from the graphical representation are 

termed as topological indices (TIs). These are the most widely used descriptors in model 

development and hence in computer-aided molecular design. TIs are very convenient to use 
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because they can be easily computed. Because isomorphic graphs have identical values for a 

given TI, TIs are graph invariants i.e. their values are independent of labelling of the molecular 

graph. In the following subsections, some details on the most widely used TIs both in modelling 

and CAMD algorithms are being provided.  

2.1.3.1. Connectivity Indices 

The connectivity index (CI) was introduced by Randic (1975) and since then has been modified 

into different forms. The connectivity index is usually denoted by the symbol χ. One usually finds 

2 superscripts and one subscript assigned to the CI (Sabljic et al., 1990). The superscript on the 

left is a non-negative number and denotes the order of the CI and the superscript on the right, v 

denotes if a valence delta value has been utilized for calculation. The CIs are divided into 4 sub-

classes: path (denoted by subscript p), cluster (denoted by subscript c), path/cluster (denoted by 

subscript pc) and chain (denoted by subscript ch). These subclasses are describing the 

substructural units considered while calculating the CIs. For example, the path based CI is 

calculated using paths. A path is a sequence of edges from one vertex to another end vertex, such 

that the edges don’t repeat while traversing this sequence of edges. In most cases the subscript 

p is removed and path type is considered as a default. CIs are usually calculated from hydrogen 

suppressed graphs. In such molecular graphs, we do not draw/consider the hydrogen atoms. 

Consider the example of the mth order valence connectivity index mχkv. It is defined as follows 

(Mu and He, 2011): 
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(Z ) / (Z Z 1)v v v
i i i i iHδ = − − −   (2.2) 

(Z )v
i i iHδ = −   (2.3) 

 

Where, k denotes a contiguous path type fragment, which is divided into paths (p), clusters (c), 

paths/clusters (pc) and chains (ch). nm is the number of relevant path type fragments. δ iv is the 

valence delta value calculated as shown in Eq. (2.2). In Eq. (2.2), Ziv is the number of valence 

electrons, Hi is the number of hydrogen atoms connected to atom i, Zi is the number of electrons 

of atom i. If we calculate the mth order connectivity index mχk, then δ i will be substituted instead 

of δ iv in Eq. (2.1) to obtain mχk. δ i is the degree of the atom i obtained from the hydrogen 

supressed graph. Hence Hi is subtracted from Ziv in Eq. (2.3).  Consider the 3-methyl hexane 

molecule shown in Fig. 2.1. The degree values, δ i, of each of the atoms have also been displayed. 

 

Figure 2.1: 3-methyl hexane molecule 

 

The 1χ value of the 3-methyl hexane molecule can be calculated as: 

1χ = (1·2)-0.5+(2·2)-0.5+(2·3)-0.5+(3·1)-0.5+(3·2)-0.5+(2·1)-0.5 = 3.3081 
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2.1.3.2. Functional Groups 

Functional groups are widely used in group contribution models (GCMs). Functional groups are 

essentially molecular fragments and hence are categorized under fragment based descriptors. 

The groups utilized in a GCM can be of three types: first order, second order and third order. The 

first order consists of a large set of simple groups that allows describing the molecular structures 

of a wide variety of organic compounds. However, these groups capture only partially the 

proximity effects and are unable to distinguish among isomers. To address this drawback, higher 

order groups are introduced in a GCM. The second order groups permit a better description of 

proximity effects and differentiation among isomers. The second order groups are intended to 

deal with poly-functional, polar or non-polar compounds of medium size, i.e. number of carbon 

atoms = 3–6, and aromatic or cyclo-aliphatic compounds with only one ring and several 

substituents (van Speybroeck et al., 2010). The third order groups provide more structural 

information about molecular fragments of compounds whose description is insufficient through 

the first and second order groups. The third order groups account for complex heterocyclic and 

large (number of carbon atoms = 7–60) poly-functional acyclic compounds. According to rules 

developed by Marrero and Gani (2001), first-order groups should describe the entire molecule. 

It is also required that no atom of the molecule being considered can be included in more than 

one group i.e. no first order group is allowed to overlap any other first order group. Overlap 

between groups is however permitted for second and third order groups.  

 

 



18 
 

2.1.3.3. Atomic Signature Descriptors 

If G is a molecular graph and x is an atom of G, the atomic signature of height h of x is a canonical 

representation of the subgraph of G containing all atoms that are at a distance h from x (Faulon 

et al., 2003; Visco et al., 2002). The signature is represented as a tree in graphical form. The atoms 

whose signature is drawn forms the root of the tree. Thus, a signature consists of a root atom, x, 

and atoms in each nth out-neighborhood of x, where n varies from 1 to h. The atoms one path 

length away from the root atom form the 1st out-neighborhood. The 1st out-neighborhood is also 

the 1st level of the signature tree. Similarly, one can define other n levels.  The size of each atom’s 

first out-neighborhood is the out-degree. It can be used as a coloring function to distinguish 

various atom types in a molecule. Atomic signatures can be used as building blocks to form 

molecules. As previously mentioned, signature descriptors in CAMD enable utilization of 

quantitative structure property/activity relationships (QSARs/QSPRs) employing TIs and GCMs on 

a single platform (Chemmangattuvalappil et al., 2010). Thus, a wide variety of property targets 

can be tracked. Faulon et al. (2003b) identified the relationship between topological indices (TIs), 

which constitute QSARs/QSPRs, and signatures. If k is a constant, hαG is the vector of occurrences 

of atomic signature of height h and TI(root (hΣ)) is the vector of TI values calculated for each root 

of atomic signature: 

𝑇𝑇𝑇𝑇(𝐺𝐺) = 𝑘𝑘[ℎ𝛼𝛼𝐺𝐺 ∙ 𝑇𝑇𝑇𝑇(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(ℎΣ))]  (2.4) 

 
It is worth noting that while a distinction is being made between GCMs and QSARs/QSPRs, GCMs 

can actually be considered as a special class of QSARs/QSPRs (van Speybroeck et al., 2010). The  
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groups in GCMs can be considered as fragment based descriptors (Baskin, 2008) which fall under 

TIs. The distinction is being made to stress that we can treat a variety of property models on a 

single platform using signatures in CAMD schemes. Generally, CAMD methodologies involve 

separate approaches for GCMs and other QSARs/QSPRs. With regards to CAMD, signature 

descriptors have found a place in a variety of applications which include the design of foam 

blowing agents (Weis et al., 2005), polymers (Brown et al., 2006), solvents (Weis and Visco, 2010), 

Figure 2.2: Generation of height 2 signature of O atom 
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shrinkage-reducing compounds (Kayello et al., 2014; Shlonimskaya et al., 2014) and mixtures in 

an integrated biorefinery (Ng et al., 2015a). Fig. 2.2 displays how a height 2 signature of the 

oxygen atom, shown in bold, of the shown ether molecule, is generated. The atoms marked ‘#’ 

are at height 1. The atoms marked ‘*’ are at height 2 from the root atom O. The string 

representation of the atomic signature of O atom is O2(C2(C)C4(=CC)). The string representation 

contains the first and second out-neighborhoods besides the root O atom. Each out-

neighborhood is separated from other out-neighborhoods using brackets. All atoms except those 

at the last height are assigned colors.   

 

2.1.4. 3D Descriptors 

3D Descriptors are also known as geometrical descriptors. These descriptors are calculated by 

representing the molecule in the 3D space. Generally, geometrical descriptors are calculated 

either by utilizing optimized molecular geometry obtained by computational chemistry methods 

or from crystallographic coordinates (Cronin et al., 2003). 3D descriptors obtained by utilizing 

geometric distances between atoms constitute a special subset known as topographic indices. 

Now, the geometrical representation captures the relative positions of the atoms in 3D space. 

Thus, geometrical descriptors usually offer more information and discrimination power for 

similar molecular structures and molecule conformations than topological descriptors. This 

power to discriminate, however, comes at a cost. Since 3D descriptors require geometry 

optimization, a high computational expense is incurred. Additionally, complications arise if 

several conformations of the molecules exist. Also, it may happen that the active conformation 
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of the chemicals being studied for biological applications are unknown. Another concern with 3D 

descriptors is that, there isn’t a common understanding of the necessary degree of detail to which 

molecular structure has to be known calculate 3D descriptors reliably (Hechinger et al., 2012).  

The computational methods utilized for calculation can be anywhere from molecular mechanics 

to ab initio methods which are more rigorous. Due to the aforementioned reasons, simpler 

descriptors like TIs are usually preferred for the screening of large databases of molecules and 

CAMD applications. On the other hand, searching for relationships between molecular structures 

and complex properties, such as biological activities, often require the use of 3D descriptors.  

2.1.5. 4D-7D Descriptors  

These descriptors have been utilized the least for CAMD applications as the computational cost 

incurred is even higher than 3D descriptors. These descriptors consider a variety of factors as 

dimensions. These include the orientation and the solvation function (Roy et al., 2015a). Such 

descriptors are beneficial in capturing the ligand and receptor interactions.  

Although the descriptors mentioned so far have been categorized within whole number 

dimensions, there are descriptors that do not fit these categorizations. For example, between 2D 

and 3D descriptors, 2.5D descriptors exist as intermediates that tend to incorporate some aspects 

of the geometrical information contained in a 3D structure that were ignored by a 2D description 

of the molecule (Doucet and Panaye, 2010).  

2.2. QSPR Modeling   

QSPR modeling establishes a mathematical formalism between the behavior of a chemical and a 

set of quantitative chemical attributes which may be extracted from the chemical structures 
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using suitable theoretical and/or experimental means (Roy et al., 2015a). These attributes are 

also called descriptors or features of the chemical structures being studied. The naming of the 

study sometimes depends upon the nature of the behavior (also known as ‘endpoint’ and 

‘response’) being modeled giving rise to three major classes namely quantitative structure 

property/activity/toxicity relationship (QSPR/QSAR/QSTR) studies taking into consideration the 

modeling of physicochemical properties, biological activity, and toxicological data, respectively. 

This nomenclature can be extended to other response variables such as cytotoxicity, reactivity, 

etc. However, the name ‘QSPR’ can be utilized to designate all such models as any type of activity 

based model and physicochemical based model may be considered to model the property of a 

given chemical. QSPR modeling, in short, entails developing a mapping between the structural 

features of a group of compounds and a desired property.  

The efforts to develop QSPRs can be traced to as far back as the 1850s (Roy et al., 2015c). Borodin 

(1858) was the first to realize that a toxicological property is closely related to the chemical 

makeup of compounds. A similar type of behavior on the organisms was observed to be elicited 

by chemicals possessing same elements or taking part in similar chemical reaction. Later, Cros 

(1863) observed a relationship between aqueous solubility and toxicity of primary alcohols. Thus, 

it can be observed that the early application of QSPR modeling is associated with the field of 

toxicology. Around this period, Mendeleev observed a relationship among elements using their 

atomic weight and developed the periodic table of elements (Roy et al., 2015c). The use of atomic 

weight to develop the “rule of eight” by Mendeleev can be thought of as one of the oldest 

approaches involving “parameter” utilization in a relationship study involving chemistry. 
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The first proposition for the existence of a mathematical relationship between chemical structure 

and activity was put forward by Brown and Fraser (1868) by showing physiological activity (ϕ) as 

a mathematical function of chemical constitution (C).  

∅ = 𝑓𝑓(𝐶𝐶)  (2.4) 

 

It needs to be mentioned that the term chemical constitution merely represented elemental 

composition at that period of time. This is because the concept of molecular structure was not 

established at that time. They showed that a series of strychnine derivatives possessing muscle 

paralytic activity similar to curare can be prepared by varying the quaternary substituent (Roy et 

al., 2015c). The modern evolution of QSPR is indebted, in part, to Corwin Hansch. Hansch et al. 

(1962) provided momentum to QSPR research by using Hammett constants and hydrophobicity 

parameters to develop correlation models on plant growth regulators. Later, the famous linear 

Hansch equation was developed by Hansch and Fujita (1964) by combining hydrophobic constant 

terms with the Hammett sigma (σ), presented as follows: 

log �
1
𝐶𝐶�

= 𝑘𝑘1𝜋𝜋 + 𝑘𝑘2𝜎𝜎 + 𝑘𝑘3𝐸𝐸𝑠𝑠 + 𝑘𝑘 4   (2.4) 

 

Where, 

k1 , k2, and k3 = coefficient terms  

k4 = a constant 
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π = a relative hydrophobicity measure  

Es = a steric parameter 

Another landmark in the historical timeline of QSPR development is the introduction of molecular 

connectivity index by Kier et al. (1975a). It was shown to have strong correlations to 

physicochemical properties (Hall et al., 1975) as well as biological activities (Kier et al., 1975b). 

This led to a class of new molecular descriptors and led the way for a variety of techniques aimed 

at differentiating molecular structures through mathematical invariants in addition the 

previously used physico-chemical properties.  

From the aforementioned description, it can be observed that the origins of QSPR development 

can be traced to efforts to correlate activity of chemicals with the chemical composition which 

gradually led to the exploration of chemistry of compounds (Roy et al., 2015c). This trend has 

continued into present day approaches that have immensely benefitted from substantive 

developments in various computer centric research areas which are often overlapping. These 

include data mining, pattern recognition, machine learning, statistics, statistical learning, artificial 

intelligence and molecular modeling.  
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Select endpoint of interest 

Gather and clean relevant data on endpoint 

Obtain relevant descriptors linked to 
endpoint. Extract or select relevant 

descriptors. 

Generate appropriate model using knowledge 
of compounds and their property 

Assess validity of model 

Review and update model; investigate 
outliers; incorporate new data, mechanistic 

information, etc. as it becomes available 

Figure 2.3: Model development and assessment workflow 
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Depending on the size of the data set involved and the number of descriptors chosen for model 

development, the process of QSPR development can involve many complex and time-consuming 

steps. For very large data sets, much of the effort and time is spent in the cleaning and 

preprocessing of the data set. Cleaning of data for large datasets may be required, for example, 

to deal with missing values. A workflow for generating QSPR models has been displayed in Fig. 

2.3. In general, irrespective of the complexity of the steps involved, one can divide the QSPR 

development into the following phases:  

1) Data gathering and data cleaning  

2) Calculating molecular descriptors and ascertaining most informative descriptors  

3) Training model using descriptor values present in the training set  

4) Model validation and testing using descriptor values present in the validation and/or test set  

2.2.1. Feature Selection  

During the process of building property models, one is often confronted with the situation where 

the number of descriptors used for model building exceeds the number of data points in the 

training set. The data matrix then consists of more columns than rows. Here, each column 

corresponds to a descriptor and its values and each row corresponds to a data point in the 

training set. Such datasets are known as high-dimensional datasets. One of the problems of such 

high-dimensional datasets is that, in many cases, not all the descriptors are important for 

capturing the underlying phenomena of interest (Kononenko and Kukar, 2007). Varmuza and 
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Filzmoser (2009) provide reasons for why training the model on all descriptors’ values for 

regression problems may not be suitable. They provide the following arguments: 

1. Using all descriptors will produce a better fit of the model for the training data because 

the residuals become smaller. This increases the R2 measure. However, we are usually not 

interested in maximizing the fit for the training data but in maximizing the prediction 

performance for the test data. Thus, a reduction in the number of descriptors can avoid 

the effects of overfitting and lead to an improved prediction performance. Overfitting is 

the phenomena where the model follows the errors or noise too closely (James et al., 

2013a). Alternatively, when a given method yields a small training mean squared error 

(MSE) but a large test MSE, we are said to be overfitting the data.  

2. A regression model with a high (e.g., hundreds) number of descriptors is practically 

impossible to interpret. 

3. Using a smaller number of descriptors can also reduce the computation time 

considerably. 

In concert with the first argument, James et al. (2013) state that, in general, adding additional 

features that are truly associated with the response will improve the fitted model, in the sense 

of leading to a reduction in test set error. However, adding noise features that are not truly 

associated with the response will lead to a deterioration in the fitted model, and consequently 

an increased test set error. This is because noise features increase the dimensionality of the 

problem, exacerbating the risk of overfitting without any potential upside in terms of improved 

test set error. This is due to noise features being assigned nonzero coefficients because of chance 
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associations with the response on the training set. While certain computationally expensive novel 

methods can construct predictive models with high accuracy from high-dimensional data, it is 

still of interest in most applications to reduce the dimensionality of the original data prior to any 

modeling (Kononenko and Kukar, 2007). Feature selection becomes necessary when there are 

too many attributes or the set of attributes consists of irrelevant, random, redundant, or 

correlated attributes that may degrade the learning performance. 

Feature selection methods can be classified into the following three categories (Murty and Devi, 

2015): 

1. Filter methods 

2. Wrapper methods 

3. Embedded methods 

The filter methods compute a score for each feature. Later, features are selected in accordance 

with the score. The filter methodology relies on the general characteristics of the training data. 

In this methodology, the features are selected as a preprocessing step, independent of the 

utilized algorithm (Bolón-Canedo et al., 2015). The filter methods are advantageous due to the 

low computational cost of feature selection and the good generalization ability afforded by them. 

Filter methods are often used in the first step of dimensionality reduction. As a first step, filters 

are used to remove descriptors based on mutual correlation. One approach involves retaining 

the descriptor that has the highest correlation with the response. The other one is relinquished. 

Another strategy that is utilized is the removal of descriptors having the lowest variance and the 

lowest correlation to the response, and retaining those descriptors that have the highest 
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correlation (Goodarzi et al., 2012). Filters can be divided into several categories, such as distance 

methods (e.g., those that utilize the Euclidean distance measure), information methods (e.g., 

entropy and information gain), dependency methods (e.g., correlation coefficient), and 

consistency methods (e.g., min-features bias). There are still many other approaches that use, 

for instance, mutual information, the Chi-square (χ2) metric, the Kolmogorov-Smirnov statistic, 

the unbalanced correlation score, and the Shannon entropy, to select features (Goodarzi et al., 

2012). 

In a study by Venkatraman et al. (2004), the use of information-theoretic approaches based on 

the concept of mutual information gain has been applied to identify an optimal subset of 

descriptors for further correlation with a given biological activity. Since mutual information is a 

nonlinear statistical criterion, it can measure the interdependence of random variables without 

relying on established assumptions about their underlying relationships. This approach relies on 

two heuristic criteria during feature selection, namely:  

1. Feature should be comparatively informative about the output 

2. Feature should not be strongly dependent on other features selected  

The measure of mutual information between two random variables A and B represents the 

amount of information about A contained in B and vice versa. When the random variables are 

independent of each other, the mutual information, defined in Eq. (2.5), is zero.  

 𝐼𝐼(𝐴𝐴,𝐵𝐵) = �𝑃𝑃(𝑎𝑎, 𝑏𝑏)𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃(𝑎𝑎, 𝑏𝑏)
𝑃𝑃(𝑎𝑎)𝑃𝑃(𝑏𝑏)

𝑎𝑎,𝑏𝑏

 (2.5) 
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The marginal probabilities for the two features are represented by P(a) and P(b), while P(a,b) 

gives the joint probability. Mutual information measures the distance between the joint 

probability and the joint probability under the assumption of independence, P(a)P(b). This 

technique is most suitable to problems where both descriptors and activities are categorical. In 

such a case where the continuous numerical variables are utilized, discretization schemes must 

be applied to approximate the variables. 

In contrast to the filter methods, the wrapper methodology, in general, consists of utilizing the 

prediction performance of a given learning machine to assess the relative usefulness of subsets 

of variables (Guyon and Elisseeff, 2003). The wrapper approach is a more advanced approach as 

compared to the filter methodology. Wrapper methods often achieve better results than filters. 

However, they tend to be much slower than filters (Kononenko and Kukar, 2007). This is because 

they must repeatedly call the machine learning algorithm being utilized. Usually a greedy 

approach is used for searching the feature space. If a set of attributes is relatively small, more 

advanced methods can be used.  

One technique that stands out prominently is the Genetic Algorithm (Siedlecki and Sklansky, 

1989). It is especially useful for sampling large descriptor spaces. The genetic algorithm mimics 

the process of natural evolution whereby a population is guided towards more fitness through 

operations of mutation and crossover (Leardi, 2001). The fitness is measured by the error of the 

model that is generated. Each member of the population is represented by a chromosome.  Each 

position of the chromosome, a gene, usually corresponds to the absence or presence of a specific 

variable through the binary notation. Individual chromosomes with an increased measure of 
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fitness are selected for the conventional operations of crossover and mutation. The fitness is 

typically measured by the prediction capabilities of the model resulting from the descriptors 

represented by the chromosome. In the process of mutation, the binary variables alter within the 

chromosome to either a 0 or 1, the opposite of their initial state. The process of crossover 

involves the selection of two chromosomes which are sliced and recombined at one or more 

points. The number of points of alteration depend on the type of crossover utilized. The success 

of a genetic algorithm is, however, owed to the careful tuning of several probability parameters. 

This ensures that the solution space can be effectively explored. Also, early convergence to a 

homogenous population which is one of the local minima, is avoided. 

The genetic algorithm occupies the class known as stochastic programming/optimization. In this 

class, several successful techniques have been developed for the solution of problems with huge, 

multivariate solution spaces. Another similar technique, as that of the genetic algorithm, for 

variable selection is that of simulated annealing (Kirkpatrick et al., 1983). Like the genetic 

algorithm, it has enjoyed great success in QSPR development (Sutter and Jurs, 1995) (Itskowitz 

and Tropsha, 2005). Just as in the genetic algorithm’s approach, simulated annealing aims to 

minimize the error of the generated model by iteratively modifying the subset of selected 

descriptors. In this process, some percentage of descriptors are exchanged for others and this 

new subset is tested for its ability to model the desired response variable. A probability 

distribution function, a Boltzmann distribution, drives the decision making of utilization of the 

newly selected subset of descriptors. In this process of subset selection, sometimes, the current 

worse solution can replace a better one. This allows the simulated annealing method to escape 

from the local minima of the error function. The capabilities of the simulated annealing method 
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stem from the temperature term in the Boltzmann distribution function which needs to be 

suitably altered. At an early point in the algorithm, the temperature may be higher to allow the 

solution to escape the trap of a local minima. As the algorithm proceeds, the temperature is 

reduced so that the acceptance of worse solutions becomes less probable. This often results in 

the identification of very high-quality solutions to the problem at hand. 

While the two previously mentioned approaches of genetic algorithm and simulated annealing 

are stochastic in nature, there are several deterministic approaches which can explore the 

descriptor space more comprehensively. Most frequently, in this class, forward search and 

backward search are used. Kononenko and Kukar (2007) provide a brief overview of these 

methods in their book. Forward search starts with an empty set of attributes. In each subsequent 

step, it proceeds by adding either a random attribute (faster) or an attribute that optimizes some 

criterion (slower), and accepts the addition if the new feature subset improves the optimization 

criterion. Backward search starts with the complete set of attributes. In each subsequent step, it 

proceeds by removing either a random attribute (faster) or an attribute that optimizes some 

criterion (slower), and accepts the addition if the new feature subset improves the optimization 

criterion. Based on the two aforementioned approaches is the method called mixed search. 

Mixed search starts with a random set of attributes. In each subsequent step a new attribute can 

be added (as in forward search), or an existing attribute can be removed from the set of attributes 

(as in backward search). In all cases the process is repeated until the optimization criterion cannot 

be further improved. 

In contrast to filter and wrapper methods, embedded methods do not separate the process of 

learning from the feature selection process. A commonly utilized embedded technique for 
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regression tasks is LASSO (least absolute shrinkage and selection operator) regression. LASSO 

carries out feature selection by shrinking some of the coefficients of the descriptors, during linear 

regression, to zero (Tibshirani, 1996). In the Lagrangian form, the LASSO problem is expressed as 

follows: 

Where, N is the number of descriptor-response pairs (xi, yi). i varies from 1 to N. p is the number 

of descriptors. j varies from 1 to p. λ is a tuning parameter. βj are the coefficients. When we 

perform the LASSO, we are trying to find the set of coefficient estimates that lead to the smallest 

residual sum of squares (RSS), subject to the constraint that there is a limit s for how large ∑|β j| 

can be. When s is extremely large, then this constraint is not very restrictive, and so the 

coefficient estimates can be large (James et al., 2013a). When the least squares estimates have 

excessively high variance, the LASSO solution can yield a reduction in variance at the expense of 

a small increment in bias, and consequently can provide predictions with higher accuracy. 

Although the LASSO is widely used in variable selection, it has several drawbacks. Zou and Hastie 

(2005) stated that: 

1. if p > n, the LASSO selects at most n variables before it saturates 

2. if there is a group of variables which has very high correlation, then the LASSO tends to select 

only one variable from this group 

 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
1

2𝑁𝑁
�(𝑦𝑦𝑖𝑖 −�𝑥𝑥𝑖𝑖𝑖𝑖𝛽𝛽𝑗𝑗)2

𝑝𝑝

𝑗𝑗=1

+ 𝜆𝜆� |𝛽𝛽𝑗𝑗|
𝑝𝑝

𝑗𝑗=1

𝑁𝑁

𝑖𝑖=1

� (2.6) 
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3. for the usual n > p condition, if there are high correlations between predictors, the prediction 

performance of the LASSO is dominated by ridge regression. 

Zou and Hastie (2005) introduced the Elastic net method which combines beneficial features of 

the L1-norm and L2-norm penalties. The Elastic net is a regularized regression method which 

overcomes the limitations of the LASSO. This method is very useful when p is much greater than 

n or there are many correlated variables. The advantages are (Härdle and Simar, 2015):  

1. a group of correlated variables can be selected without arbitrary omissions,  

2. the number of selected variables is no longer limited by the sample size. 

As an improvement on LASSO, Datta et al. (2017) recently developed the corrLASSO (correlation 

based adaptive least absolute shrinkage and selection operator) regression approach. corrLASSO 

checks for response-descriptor correlation to determine shrinkage of coefficients of descriptors 

and their eventual selection or removal. Using the corrLASSO, Datta et al. (2017) generated a 

QSPR for predicting the DNA drug binding affinity of 9-Anilinoacridine derivatives. In their 

developed methodology, the CorrLASSO in combination with genetic algorithm helped generate 

a model with superior prediction as compared with the combination of genetic algorithm and 

LASSO, and genetic algorithm-multiple linear regression (GA-MLR).  

While feature selection methods have been divided into 3 categories, it is worth noting that 

hybrid methods also exist. For example, hybrid of filter and wrapper methods exist in which, first, 

a filter is used to generate a ranked list of features (Guyon and Elisseeff, 2006). Based on the 
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defined order, nested subsets of features are generated and computed using machine learning, 

i.e. the wrapper methodology is utilized. 

2.2.2. Feature Extraction 

Feature extraction is the process of determining the features to be utilized for learning. Here, we 

extract new features that are either linear or nonlinear combinations of the given descriptors and 

the extracted features are used in pattern recognition (Murty and Devi, 2015). Feature extraction 

is thus different from feature selection, because, the process of feature selection does not involve 

generating combinations of descriptors. In the context of regression and property modeling, 

however, feature extraction generally involves the reduction of number of variables obtained 

after the process of combining descriptors. Hence, in this respect, both feature selection and 

feature extraction can be categorized as dimensionality reduction methods.  

One of the most commonly used feature extraction methods is the principal component analysis 

(PCA). PCA is a multivariate technique with the central aim of reducing the dimensionality of a 

multivariate data set while accounting for as much of the original variation as possible present in 

the data set. This aim is achieved by transforming to a new set of variables, the principal 

components, that are linear combinations of the original variables, which are uncorrelated and 

are ordered so that the first few of them account for most of the variation in all the original 

variables. PCA can thus be thought of projecting data from a higher dimensional space onto a 

lower dimensional space. Thus, when the data set used is highly dimensional and very noisy with 

a small number of samples, PCA is an appropriate method for dimensionality reduction. After the 

dimensionality reduction process, the regression model can be developed with the new latent 
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variables by implementing principal component regression (PCR). PCA is very popular within the 

machine learning community and is useful for visualization of data also.  

 

 

 

 

 

 

 

 

 

The process of PCA begins by constructing a linear projection in which each of the projected 

dimensions is a linear combination of the original dimensions (Rogers and Girolami, 2017). This 

way the most relevant information is summarized (Wold et al., 1996) (MacGregor and Kourti, 

1995). Prior to implementing PCA, the data often needs to be preprocessed through a variety of 

techniques such that it becomes more suitable for further analysis. It is a common practice to 

initially mean-center and scale the values of descriptors. This is visually represented in Figure 2.5 

(Eriksson et al., 2006). 

X1 

X2 

X3 

X4 

PC1 

PC2 

Figure 2.4: Two principal components generated from 4 descriptors 
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Figure 2.5: Mean centering and scaling prior to PCA 

 

This technique ensures that no variable can dominate, in its interpreted importance, over 

another because of an increased length (difference in highest and lowest values) or mean value. 

Once the data has been preprocessed for further analysis, the process of PCA then calculates a 

set of principal components (PCs) by transforming the original, correlated, descriptors into a new 

set of uncorrelated ones. The first PC is the linear combination of the standardized original 

descriptors that have the greatest possible variance. Each subsequent PC is a linear combination 

of the standardized original variables that have the greatest possible variance, while being 

orthogonal to and having zero correlation with all previously defined PCs. This orthogonality 

constraint ensures that each variance-based axis is independent. Typically, the first three PCs 

capture most of the variance seen in the original data set (around 80-90%). Fig. 2.6 helps visualize 

the dimensionality reduction achieved through PCA. 
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Figure 2.6: Dimensionality reduction using PCA 

 

The loading matrix contains the coefficients in the linear combination of the original variables 

defining the PCs. This can be mathematically represented as shown in Eq. (2.7). 

Where, T = the score matrix with mutually orthonormal columns 

  P = the loading matrix with mutually orthonormal columns 

PLS is a regression extension of principal component analysis and it generalizes and combines 

different features from both PCA and multiple linear regressions (MLR). In addition to relating 

the two data matrices, of descriptors and response variables, PLS also models the common 

structure between them which often provides better results than those obtained with the 

traditional multiple regression approach. Figure 2.7 provides a visualization of the PLS process 

 𝑿𝑿𝑀𝑀×𝐾𝐾 = 𝑡𝑡1 ∙ 𝑝𝑝1𝑇𝑇 + 𝑡𝑡2 ∙ 𝑝𝑝2𝑇𝑇 + ⋯𝑲𝑲 = �𝑡𝑡𝑖𝑖

𝐾𝐾

𝑖𝑖=1

∙ 𝑝𝑝𝑖𝑖𝑇𝑇 = 𝑻𝑻𝑀𝑀×𝐾𝐾 ∙ 𝑷𝑷𝐾𝐾×𝐾𝐾
𝑇𝑇  (2.7) 
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whereby two “PCA-like” models are created for both the descriptor and response information 

which are then connected through an inner relationship to provide the PLS model. 

 

Figure 2.7: PLS regression 

 

The score plot in Figure 2.7 shows a linear relationship between predictors (x) and responses (y), 

however, there may be non-linearities. The dashed-dot line seen in the outer pictures of Figure 

2.7 represents the projection if PCA were performed on X and Y individually.  

Both techniques of PCR and PLS aim to avoid collinearity problems which would allow one to 

work with several variables that is greater than the number of samples. A comparison of the two 

techniques (Wentzell and Vega Montoto, 2003) has revealed similar prediction capabilities, 

however, PCR tends to yield higher precision (degree of closeness of the measured values to each 

other) while PLS yields higher accuracy (degree of closeness of a measured value to the actual 

value). 
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2.2.3. Regression for QSPR Development 

As discussed earlier, QSPRs are mathematical models that relate features derived from structures 

of compounds to their physicochemical properties or biological activities. They can be used to 

predict properties/activities or class (e.g., inhibitor versus noninhibitors) of compounds (Yee and 

Wei, 2012). In this work, however, we are concerned only with the prediction of property values, 

specifically, those that can aid in the design of reactants and products in reactive systems. 

Properties/activities are continuous variables. Although we can classify compounds based on 

their property/activity values into categories, we are not interested in classification of molecules 

in this work.  Thus, here, we are focusing on regression methods and validation of models derived 

from regression techniques. In a regression scheme, the response variable is modeled as a 

function of the molecular descriptors. On the other hand, in a classification scheme, the resulting 

model is defined by a decision boundary, which separates the various classes within the 

descriptor space. The variety of available regression methods can be categorized based on 

whether a linear or non-linear relationship is created. Linear models are usually sufficient for 

creating property relationships for a dataset of similar compounds. They have the benefit of 

being much easier to develop and interpret when compared to other methods.  

2.2.3.1. Multiple Linear Regression 

Multiple linear regression (MLR) is one of the most fundamental and common modeling methods 

for regression QSAR. This approach models the predicted response, Y, by means of a set of 

descriptor variables, X, through the relationship shown in Eq. (2.6). 
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where, M = the number of rows of sample readings of observations 

  L = the number of columns of measured response properties 

  K = the number of columns of descriptor variables 

  β = the regression coefficients or sensitivities matrix 

  E = the error or residual matrix 

There have been three cases, as described by Geladi and Kowalski (1986), for the solution of 𝛽𝛽: 

1. K > M: There is no unique solution for β as infinite numbers of solutions exist, unless on 

deletes predictor variables. 

2. K = M: There is one unique solution provided that X has full rank. 

E = Y - X∙β = 0 

3. K < M: There is no exact solution for β, however, a solution can be achieved by 

minimizing the residual in the following equation: 

E = Y - X∙β 

The most popular technique, known as the ordinary least-square (OLS) method, identifies the 

regression coefficients by maximizing the model sum of squares and minimizing the residual sum 

of squares. Using this approach, β can be estimated by: 

Where, the superscript T symbolizes the transpose of a matrix. 

 𝑌𝑌𝑀𝑀×𝐿𝐿 = 𝑋𝑋𝑀𝑀×𝐾𝐾 ∙ 𝛽𝛽𝐾𝐾×𝐿𝐿 + 𝐸𝐸𝑀𝑀×𝐿𝐿 (2.6) 

 𝛽̂𝛽 = (𝑋𝑋𝑇𝑇 ∙  X)−1 ∙  X𝑇𝑇 ∙  Y (2.7) 
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When the number of X-variables, or descriptors, is large compared to the number of 

observations, this can lead to a singular (XTX) matrix whose inverse does not exist. This happens 

when the number of unknown variables is greater than the number of equations, leading to an 

underdetermined equation system which has an infinite number of solutions for β. One solution 

to this problem would be to apply feature selection techniques. In addition, multivariate 

projection methods like PCA (principal component analysis) and PLS (partial least squares) can 

also be utilized to overcome such a difficulty. To date, MLR remains in use with enhancements 

or in combination with feature selection to improve its performance (Yee and Wei, 2012).  

2.2.3.2. Nonlinear Regression  

The least squares approach, as in the case of linear models, can be used to fit nonlinear models. 

In such a case, it is termed as nonlinear least squares. The nonlinear least squares estimate is 

obtained by minimizing the same objective function (loss function) as in linear regression. For the 

least squares estimate, the loss function is given as follows: 

 

Where, h is a nonlinear function, β is the parameter vector and (xi, yi) are the training samples. 

If the nonlinear function, h, is a polynomial then the regression problem is a polynomial 

regression problem. The minimization of the loss function yields the values of the parameters, 

which ultimately determines the model. In general, when nonlinear functions are involved, there 

is a concern that the derived nonlinear model may overfit the data. Hence, it is necessary that 

 𝐿𝐿(𝛽𝛽) = �{𝑦𝑦𝑖𝑖 − ℎ(𝛽𝛽, 𝑥𝑥𝑖𝑖)}2
𝑛𝑛

𝑖𝑖=1

 (2.8) 
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the model be tested on a test set. Usually, with regards to regression models, both linear and 

nonlinear, the errors are assumed to be normally distributed. However, this may not be the case 

when the data is explored. The data can be transformed if the normality assumptions are not 

satisfied. Other techniques are also available that can deal with data that does not abide by the 

normality assumptions.  

2.2.3.2.1. Support Vector Regression 

A robust method that incorporates nonlinearity is the support vector regression (SVR) method. 

Robustness, here, refers to the fact that the method has a high tolerance to noise. In contrast to  

 

typical regression methods, the predicted values are penalized only if their absolute error 

exceeds a certain user-specified threshold. Support vector regression is an extension of the 

support vector algorithm which was originally developed for classification tasks (Smola and 

Figure 2.8: Hyperplanes in feature space of SVR. y ∉ (f(x)- ε, f(x)+ ε) is penalized. 
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Schölkopf, 2004; Luts et al., 2010). The support vector algorithm constructs a hyperplane, or set 

of hyperplanes, in a highly dimensional space such that the distance to the nearest training data 

point is maximized (Cortes and Vapnik, 1995). The training examples that are closest to the 

hyperplane are called support vectors. The basic idea of SVR is to map the data into a higher-

dimensional feature space via nonlinear mapping F and then to perform linear regression in this 

space (Du and Swamy, 2014). The mapping of the original finite-dimensional space into a much 

higher-dimensional space is made possible using kernel functions. These functions lower the 

computational load associated with traversing between the two mapped spaces by ensuring that 

dot products are easily computed in terms of the original variable space.  The objective function 

for the SVR is the regularized risk minimization function R(C). 

Where, ‖yi-f(xi)‖ε, is an ε-insensitive loss function used to define empirical risk as follows, 

and ε > 0 and C > 0 are prespecified constants. Also, C is a regularization constant.  

In SVR, other robust statistics based loss functions such as Huber’s function can also be 

incorporated. If a data point xi lies inside the insensitive zone called the ε-tube, i.e., |yi − f (x i)| 

⊆ ε, then it will not incur any loss. This is illustrated in Fig. 2.8 (Du and Swamy, 2014). The 

performance of SVR is sensitive to the hyperparameters. Thus, the hyperparameters need to be 

chosen suitably because they impact the model predictive ability. Not selecting appropriate 

 𝑅𝑅(𝐶𝐶) =
1
2
∥ 𝑤𝑤 ∥2+ 𝐶𝐶� ∥ 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) ∥𝜖𝜖

2
𝑛𝑛

𝑖𝑖=1

 (2.9) 

 ∥ 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) ∥𝜀𝜀= 𝑚𝑚𝑚𝑚𝑚𝑚{0, ∥ 𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) ∥ − 𝜀𝜀} (2.10) 
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parameters may lead to underfitting or overfitting. In contrast to earlier discussed methods of 

PCA/PCR, PLS and OLS, SVR is built in most cases in a high-dimensional feature space (expanded 

feature space). SVR model is thus very flexible (Li et al., 2009). This is illustrated in Fig. 2.9 (Liang 

et al., 2011). With respect to application of SVR for regression modeling, Chen and Visco Jr. (2017) 

very recently developed an in silico pipeline for faster drug discovery. In this pipeline, they utilized 

SVR to predict the activity (IC50) of drug candidates. 

 

   

2.2.3.2.2. Artificial Neural Networks 

Artificial neural networks (ANNs) or neural nets enjoy considerable popularity with respect to 

development of QSPRs. Recently, learning by ANN in the form of deep learning has received even 

Figure 2.9: Model flexibility versus the dimension of feature space 
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mainstream popularity (Ekins, 2016). The development of ANN was an early attempt within the 

computer science community to create software that approximated the way collections of 

neurons in a human body function. However, it is known now that ANNs are a vastly 

oversimplified rendering of neural activity (Berk, 2016). However, from a modeling perspective 

they have been able to perform reliably. ANNs can be thought of as approximating a complicated 

function f(X) by a composition of many simple functional units. ANNs are generally used to 

combine inputs in a nonlinear fashion to arrive at an output(s). A sample neural network with an 

input layer, a hidden layer and an output layer has been illustrated in Fig. 2.10 (Efron and Hastie, 

2016).  

 

 

 

Figure 2.10: A neural network with an input layer, a hidden 
layer and an output layer 
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In general, ANNs can have multiple hidden layers. If the ANN has more than one hidden layer, 

then it is known as a deep neural network. The impact of the hidden layer on input variables in a 

simple neural network is visualized in Fig. 2.11 (Berk, 2016).  

 

Figure 2.11: A neural net with one response, one hidden layer, and no feedback 

 

In the illustrated neural network in Fig. 2.11, the inputs are represented by input variables x1, 

x2, ..., xp. In QSPR development problems, these variables represent the molecular descriptors. 

There is a single response, Y, for the regression case. For other cases, e.g. for the case of 

classification, more complicated networks having several different outputs can be constructed. 

Fig. 2.11 also displays a single “hidden layer” that consists of neurons having output variables z1, 

z2, ..., zM. These output variables associated with the hidden layer neurons can be thought of as 

a set of M unobserved, latent variables. All three components (i.e., inputs, output, and latent 

variables) are linked by associations that would be causal if one were trying to represent the 
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actions of a collection of neurons (with no feedback). In this association, each latent variable is a 

function of its own linear combination of the predictors. For the mth latent variable, one obtains 

Where αs are coefficients (or weights), different for each of the M latent variables. X is the set of 

p inputs, and σ is the activation function, commonly a sigmoid activation function. The sigmoid 

function has an S-shape. The effect of the sigmoid function is that a linear combination of inputs 

will likely trigger an impulse such that the combination increases in value, such that the alteration 

towards the middle of its range alters Zm the most. Next, a linear combination of the latent 

variable values is constructed as follows: 

Where the βs are the coefficients (or weights) and Z is the set of latent variables. Finally, the 

linear combination can be subject to the following transformation: 

where g is the transformation function. Usually, the weights of the model are determined using 

the backpropagation approach. To summarize the approach, an input is fed into the network to 

calculate the error with respect to the desired target. This error is then used to compute the 

weight corrections layer by layer, backward through the net (Roy et al., 2015d). Hence, the name 

backpropagation. The process is repeated until the errors for the entire training set are 

minimized. This can involve thousands of iterations. The process of training a neural network can 

 𝑍𝑍𝑚𝑚 = 𝜎𝜎(𝛼𝛼0𝑚𝑚 + 𝛼𝛼𝑚𝑚𝑇𝑇 𝑋𝑋) (2.11) 

 𝑇𝑇 = 𝛽𝛽0 + 𝛽𝛽𝑇𝑇𝑍𝑍 (2.12) 

 𝑓𝑓(𝑋𝑋) = 𝑔𝑔(𝑇𝑇) (2.13) 



49 
 

thus be very time consuming. Another disadvantage that ANNs have is that they are sensitive to 

the data utilized. Thus, error due to variance is a concern for ANNs (Kuhn, 2016). Despite the 

challenges of utilizing ANNs, they have found usage in prediction of toxicological, 

pharmacological, and physicochemical properties, such as aquatic toxicity, drug clearance, pKa, 

melting point, and solubility (Mitchell, 2014). It has even found application in process modelling 

(Potočnik et al., 2003).  

2.2.3.2.3. Regression Trees 

Regression trees are decision trees that deal with a continuous response. Decision trees (Quinlan, 

1986), are a type of non-linear mapping technique available for the development of QSPRs. This 

model that employs a divide and conquer strategy, consists of a tree-like structure containing the 

conventional nodes and links. In a decision tree, nodes form a hierarchical pattern, with several 

child nodes stemming from a common parent node. A node with no children is referred to as a 

leaf. Each node typically refers to a specific descriptor. At each node, a decision is made based 

on which the algorithm is directed towards a specific child node. This process continues till the 

algorithm is directed to the leaves of the tree. The final decision is based on the property class 

associated with that leaf. The diagram in Figure 2.12 represents the classification of a compound, 

based on three descriptors, d1, d2 and d3, as being either active or inactive. Here, the response 

variable is categorical.  
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One can notice that at each node, there is a split into one of two decisions based on the value of 

the descriptor at the node. Finally, when the leaves are reached, the final value of the response 

is obtained.  

Regression can be thought of as classification with continuous classes. Hence, regression trees 

can be considered as decision trees that categorize inputs into continuous classes (Cichosz, 2015). 

The representation of regression tree nodes and branches is the same as for decision tree nodes 

and branches. In regression trees, nodes correspond to regions in the domain of the response 

that are divided into smaller regions. This division is achieved by splitting at each of the nodes. 

As is the case for decision trees, in regression trees, branches connect to descending nodes or 

leaves. These nodes or leaves correspond to outcomes of decision making at each split. The 

choice of the best split at each node of the tree is usually guided by a least squares error criterion 

(Rokach, 2016). Regression trees are distinct from many regression algorithms because of their 

connection to logic-based systems and expert systems. 

Figure 2.12: Classifying into “Active” and “Inactive” categories 
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In order to construct regression trees, many techniques have been developed by researchers. Of 

the available techniques, one of the oldest and the most utilized is the classification and 

regression tree (CART) methodology developed by Breiman et al. (1984). For the task of 

regression, the methodology analyzes the entire training set, S, where it explores each distinct 

value of each descriptor. It then locates the descriptor and its split value. The end point of 

methodology is that it partitions the data into two groups, S1 and S2, such that the overall sums 

of squares error is minimized. It is defined as follows: 

Where, ȳ1 and ȳ2 are the averages of the training set outcomes within groups S1 and S2, 

respectively. Next, within each group, S1 and S2, the CART methodology locates the descriptor 

and its split value that best reduces SSE. Due to the application of recursive splitting during the 

training of regression trees, regression trees are also denoted as recursive partitioning (Kuhn and 

Johnson, 2013). The CART methodology has been tested in a study (Svetnik et al., 2005) on a wide 

range of targets, including COX-2 inhibition, blood-brain barrier permeability, CDK-2 antagonist 

activity, dopamine binding affinity, logD and toxicity. While they were outperformed by support 

vector machines and ensembles of decision trees, they did often perform better than PLS of naive 

bayes classifier. Ensemble machine learning using decision trees has been discussed in detail in 

section 3.4. 

Decision trees, because of the following reasons listed by Rokach (2016) and James et al. (2013b), 

have become a popular machine learning method: 

 𝑆𝑆𝑆𝑆𝑆𝑆 = �(𝑦𝑦𝑖𝑖 − 𝑦𝑦1���)2
𝑖𝑖∈𝑆𝑆1

+ �(𝑦𝑦𝑖𝑖 − 𝑦𝑦2���)2
𝑖𝑖∈𝑆𝑆2

 (2.14) 
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1. Trees are very easy to explain and understand. 

2. It is believed, by some, that decision trees more closely mirror human decision-making. 

3. Trees can be displayed graphically, and are easily interpreted even by a non-expert. 

4. Trees can easily handle qualitative predictors without the need to create dummy variables. 

5. Compared to other methods, they scale well to big data. 

6. They are capable of processing datasets that may have errors or missing values. 

7. They have a high predictive performance for a relatively small computational effort. 

8. They are available in many open source data mining packages over a variety of platforms. 

9. They are useful for various tasks like classification, regression, clustering and feature selection. 

10. While decision tree algorithms might have several controlling parameters, in many cases the 

default values yield sufficiently good predictive performance. If tuning is still required, this usually 

takes a short tuning session. 

While decision tree algorithms offer many advantages, they also have some drawbacks. These 

drawbacks have been listed by Rokach (2016). They are as follows: 

1. If many complex interactions among the descriptors are present, then they do not offer good 

predictions. 

2. They are myopic in nature because the splitting criteria is concerned only with immediate 

descendant descriptors. 
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3. They can be non-robust i.e. they suffer from high variance. A small change in the data set can 

cause large a large change in the estimated response. Decision trees are not suitable for noisy 

data.  

For regression tasks, the last point can be attributed to the fact that decision trees produce 

piecewise-constant regression models. Regression trees divide the domain into several regions 

and the model’s prediction attains a constant value in each region. This is visualized in Fig. 2.13 

(Cichosz, 2015) for prediction of an arbitrary response f using a1 and a2 as the descriptors.  

 

 

While the non-robustness of decision trees is a disadvantage, ensemble methods (discussed in 

section 3.4) exploit this characteristic to create models that tend to have extremely good 

performance. 

Figure 2.13: Piecewise prediction of a regression tree 
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2.3. Computer-Aided Molecular Design 

Experimentally, molecular design can be achieved by studying the properties of different 

molecules that are synthesized and then selecting the one that matches the objective the best. 

In such an endeavor, constraints can also be placed on the molecules that are to be synthesized, 

in accordance with the demands of the businesses/end consumers. The objective and constraints 

can be either an economic one (e.g. objective of minimization of cost), one related to the process 

(e.g. process yield) or the property of a molecule (e.g. boiling point). However, due to constraints 

on time and resources, it is infeasible to simply rely on experiments to design molecules. Also, if 

conflicting multiple design objectives are involved during the process of molecular design, it will 

be tedious to take into account all of these while designing molecules experimentally. This 

problem will further escalate if we want to carry out integrated product and process design 

where the requirement of resources can be magnanimous, if experimentally investigated. 

Recently, (Reymond, 2015) also enumerated all possible synthesizable and stable molecules 

containing up to 17 atoms. His latest database, GDB-17, contains 166.4 billion molecules. The 

molecules only consist of H, C, N, O, S and halogens as the atoms. One can thus understand that 

the chemical universe of all possible molecules consisting of all possible elements is much vaster. 

Thus, if we are interested in discovery of novel molecules, it will be an uphill task to scan the 

chemical space experimentally. It is also worth noting that much of the experimental 

investigations are based on intuition and/or heuristics which can be limiting factors while 

scanning for molecular candidates. Instead, one can harness a systematic mathematical approach 

that exploits the relationship between structures of molecules and their properties, and the 

prowess of computers. This approach, although may not completely replace experimental 
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research, but can at the very least aid in significantly narrowing down the molecular candidates 

that need to be experimentally investigated.  

At its most fundamental level, computer-aided molecular design (CAMD) is the application of 

computer-implemented algorithms that are utilized to design a molecule for a particular 

application (Visco, 2010). In the context of Process Systems Engineering (PSE), CAMD plays a 

significant role. It helps in the design of both business-to-business (B2B) and business-to-

consumer (B2C) products (Gani and Ng, 2015). An example of B2B product is vinyl chloride from 

which polyvinyl chloride polymer is derived. An example of B2C product is cisplatin which is a 

molecule known for its anti-tumor activity. By scanning the chemical space, CAMD helps in the 

selection of molecular candidates with attributes of interest, usually expressed in terms of 

physico-chemical properties.  

2.3.1. CAMD Solution Strategies 

Depending on the computational resources available and the time constraint of the project, 

different CAMD methodologies are adopted by molecule designers. The different CAMD 

approaches and their pros and cons are discussed in some detail in the following subsections. It 

is worth noting that although we have used three classifications, there exist methodologies that 

cannot be clearly classified into these three categories as they have characteristics borrowed 

from more than one category.  
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2.3.1.1. Virtual Screening/Database search 

Searching through a database can be advantageous when the computational resources available 

are ample and accuracy is desired, but time is a constraint. Screening candidates can involve 

calculation of desired properties of each of the candidates in the database and matching it against 

a set of prerequisites. It can also involve similarity search where the molecules are identified 

based on structural similarity to some reference structure(s). In the 1960s, chemical structures 

were first stored as computer files in searchable form by Chemical Abstract Services, thus 

providing a basis for structure retrieval and searching (Willett, 1987). During the 1970s, methods 

for two-dimensional substructure (Cramer et al., 1974) and three-dimensional pharmacophore 

searching (Gund, 1977) were developed, which made it possible to search compound databases 

for desired structural motifs or active molecules.  

If the database is huge and first principles calculations are used, one can rely on distributed 

computing which can help borrow idle time on different computers. The Harvard Clean Energy 

Project is an example of a research initiative that relies on distributed computing. The project 

aims to design organic photovoltaics. Utilization of supercomputers has traditionally been the 

route to achieve high computational resources for search of large databases. The availability of 

ample resources in a search involving large databases can offer advantages in terms of having 

the ability to use very accurate quantum chemical methods. Usually, reduction in computational 

expense comes with some compromise on accuracy of models. Searching of small databases may 

not offer as much advantage as mathematical programming based approaches because the 

search space is limited to molecules in the database.  
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2.3.1.2. Generate and Test  

The Generate and Test method to solve CAMD problems was first developed for solvent selection 

by Gani and Brignole (1983). They were designed by keeping in mind, the functional groups that 

form the GCMs. The Generate and Test CAMD methodology can be divided in two stages 

(Cismondi and Brignole, 2004). The two stages are: 

1. The generate or the molecular synthesis stage  

2. The test stage or the molecular evaluation stage  

The two stages are concerned with the generation of feasible molecular structures and the 

testing of the molecular structures to ensure they meet the requirements issued to the molecule 

designer. The generate stage involves the selection of functional groups utilized in GCMs, the 

characterization of groups and the evaluation of molecular feasibility. The test stage involves the 

selection of group contribution methods for property estimation, calculation of properties, 

evaluation of property constraints and evaluation of performance indices. The final outcome of 

the generate and test procedure is a ranked set of product candidates. 

2.3.1.2.1. Generate Stage 

In this stage, molecules are synthesized by joining functional groups with free-attachments until 

no free-attachments remain in the generated structure. The free-attachments of a group are the 

number of chemical bonds available to neighboring groups for attachment (or combination). The 

free-attachments are also known as their valency. Unlike database search, the generate and test 

procedure is not confined to molecules already synthesized. But instead, the database may 
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contain molecules that have not been synthesized yet.  Thus, the search is not limited to a given 

set of molecules. However, if the number of functional groups considered rise then the issue of 

combinatorial explosion can arise. This is because combinatorially many possible molecular 

structures will get generated in the database being analyzed.  

The functional groups with only one free attachment are defined as terminal groups. All other 

groups with more than one free attachment are defined as intermediate groups. There are three 

types of intermediate groups: radial, linear and mixed. The terminal and intermediate groups are 

combined according to combination and feasibility rules presented in the work of Brignole et al. 

(1986).  The combination rules define allowance of attachments and the feasibility rules ensure 

that the molecules resulting from the combination of the groups are feasible and can exist in 

reality. Because of the huge number of combinations, Cismondi and Brignole (2004) introduced 

an algorithm in order to reduce the size of the problem. Property and structural feasibility 

constraints have also been proposed in the work of Cismondi and Brignole (2004). 

2.3.1.2.2. Test Stage 

In this stage, the structures generated in the first stage are evaluated according to the imposed 

property constraints. The properties that are under bounds are calculated using QSPRs which are 

property models relating properties to structure. An example of a QSPR is the group contribution 

model (GCM). In GCMs the property value is calculated by summing the product of the functional 

group’s contribution and number of times the functional group occurs in the molecule of interest.  

Besides the aforementioned conventional generate and test procedure, Harper and Gani (2000) 

introduced a hybrid CAMD method which is based on the generate and test procedure. Their aim 
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was to rein in the computational cost that is associated with accurate methods. A funnel of sorts 

is generated in their procedure. The least accurate of the utilized methods to calculate the 

properties evaluates the maximum number of candidate structures and the most accurate 

method evaluates the least amount of candidate structures. As the accuracy of methods utilized 

increases, the error decreases and hence the accuracy of prediction of candidate structures. This 

reduces the number of candidate structures while simultaneously reducing the overall cost of 

calculation.  Their method consists of three stages: 

1. Pre-design – definition phase of the design problem 

2. Design – solution phase in terms of generation of feasible molecular candidates 

3. Post-design – analysis phase in which the final selection is made 

In the pre-design stage, the problem is defined and the aims of the CAMD problem at hand are 

posed in detail. Then, the properties that need to be evaluated and the evaluation methods for 

each property are enumerated. Next, the methods for property evaluation as well as the 

constraints are selected. A problem is then formulated where all available information 

concerning property and constraint values is taken into account. The main objective of the design 

stage is to generate feasible candidates that satisfy all the property constraints. These candidates 

are generated from a set of molecular building blocks (i.e. groups) and then they are tested 

against the design specifications; the property constraints. This is carried out over four levels, 

where the input of each level is the output of the previous one. A generate and test approach is 

applied in each level and the extent of detail varies from the first level, the coarsest level to the 

fourth level, the most detailed level. At the first level, group vectors are generated from the 
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combination of groups from a basic set of groups. At the second level, the groups from the first 

level’s vectors are combined to form new feasible molecules, including isomers. An atomistic 

representation of the new molecules is derived at the third level, where full (atom-based) 

connectivity information is obtained and the use of property prediction methods based on a 

higher order of structural descriptors is enabled. Finally, in the fourth level, a 3D representation 

of the molecules is created, by assigning bond lengths, bond angles and torsion angles. The multi-

level structure of the method reduces considerably the number of molecules tested with the 

most computationally demanding prediction techniques, a fact that makes the method 

significantly less computationally expensive. In the post-design portion, the molecular candidates 

created in the design stage are tested against constraints that were not included in previous 

stages. Those could be more general constraints, such as cost constraints, or environmental 

constraints. The optimal candidate is selected, based on its performance in all sections of 

interest. This hybrid methodology has been partially implemented as a computer program, 

ProCAMD. 

2.3.1.3. CAMD Using Mathematical Programming 

Unlike the screening and, generate and test approaches detailed earlier, the mathematical 

programming based approaches for CAMD are an inverse approach. In the screening and, 

generate and test approaches, the molecular structures part of a database are used to calculate 

the properties of molecules using property models. Using some pre-defined criteria, the 

structures are then ranked/evaluated for efficacy in these ‘forward approaches’. On the other 

hand, in the inverse approach of mathematical programming, the property targets are first listed. 
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These targets can be expressed in terms of property bounds or objectives that need to be 

maximized/minimized. Using property models, these property targets are translated to targets 

on the values of occurrence numbers of molecular building blocks. The occurrence number of a 

building block is the number of times the molecular building block appears in a molecule. A 

molecular building block can, for example, be a molecular fragment. Signature descriptors, 

mentioned in section 2.1.3.3., are classified in the category of molecular fragments.  

Once the mathematical programming or optimization problem has been set up in terms of the 

occurrence numbers of molecular building blocks, the problem is solved either using 

deterministic or stochastic algorithms. In a deterministic algorithm, given a starting candidate 

solution, the final solution is the same every time the algorithm is implemented. This is because 

the sequence of steps does not involve any probabilistic variables/operations. On the other hand, 

in a stochastic algorithm, given a starting candidate solution, the final solution can be different 

due to involvement of probabilistic variables/operations in the sequence of steps. Obtaining the 

final solution in both of the algorithms involves the selection of the best values of the occurrence 

numbers of building blocks that either maximize or minimize the objective property functions of 

interest to the businesses/end user. The best solution may be an optimal or a near-optimal 

solution. The best solution can be a near-optimal solution also because property models utilized 

may perpetuate their errors in the solution space. Thus, due to the errors, the optimal solution 

may not be the best solution.  

Since the occurrence numbers of the molecular building blocks are not continuous, the 

algorithms used to solve the ensuing optimization problems should have the capability to address 
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discrete variables. If we are dealing with properties that also depend on continuous variables, for 

example temperature, the algorithms should additionally be able to deal with continuous 

variables. It is often the case that nonlinear property models are able to better correlate 

structures and properties. In such a case, the mathematical programming problem will be 

formulated as a mixed integer nonlinear programming problem (MINLP). Where ‘mixed integer’ 

refers to presence of both discrete and continuous variables in the problem formulation. 

‘Nonlinear programming problem’ refers to the nonlinear nature of the mathematical 

programming problem due to presence of one or more nonlinear property models. If all the 

property models utilized are linear then a mixed integer linear programming (MILP) problem will 

be formulated. It is also possible that some problems consist of multiple objectives. If the 

objectives are conflicting then a multi-objective optimization problem will be formulated. Akin to 

MILP and MINLP formulations, multi-objective (MO) formulations, MOMILP and MOMINLP 

problem formulations will be generated. In MO problems, since conflicting objectives are 

involved there will not be a single solution that optimizes (maximizes/minimizes) all of the 

objectives because trade-offs will be involved when an objective(s) is improved. Solutions known 

as pareto optimal solutions are generated in such a case. Each pareto solution consists of a set 

of values of objective functions. Each set is an improvement in at least one objective function 

and worsening of at least one, another objective function.  

The mathematical problem that usually arises during CAMD is an MINLP. One of the forms that 

it assumes is the following: 

min/max Fobj(U, V)  (2.5) 
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subject to   

H1(V) ≤ 0  (2.6) 

H2(V) ≤ 0  (2.7) 

H3(U,V) ≤ 0  (2.8) 

H4(U,V) ≤ 0  (2.9) 

Where, Fobj(U,V) is the objective function that either needs to be minimized or maximized. H1(V), 

H2(V), H3(U,V) and H4(U,V) correspond to structural feasibility constraints, constraints on pure 

component properties, property constraints of mixtures and process constraints respectively. 

Also, U is a vector of continuous variables concerned with processes and/or mixtures. V is a vector 

of discrete variables concerned with the number of molecular building blocks and/or molecules.   
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3. Methodology 

In this chapter, first, the revised structural constraints are presented that ensure that feasible 

structures are obtained from the solution of a CAMD problem that utilizes signature descriptors. 

Next, structural relationships between the reactants and products are developed taking into 

account whatever the reaction mechanism involved may be. Building upon these, the three 

design scenarios previously mentioned are addressed. The problem formulation for each of these 

scenarios is then arrived at. Lastly, tree based ensemble machine learning methods are discussed 

that can be utilized to develop property models to predict properties of molecules in reactive 

systems. Specifically, in this work we are interested in predicting the rate constant of a reaction 

using structures of reactants and solvents. There is a paucity of such models in the scientific 

literature.  

3.1. Revised Structural Feasibility Constraints  

In their work, Chemmangattuvalappil et al. (2010), presented a detailed mathematical 

programming based CAMD framework which utilized signature descriptors. The dominant 

property to be optimized and the properties that were constrained were expressed in terms of 

molecular structure using property models. These property models, which were expressed in 

terms of TIs/GCs, were all treated on a single platform and solved for the occurrence number of 

atomic signatures. The occurrence number of an atomic signature decides how many times that 

particular signature appears in the final molecular structure(s). Finally, with these right amounts 

of atomic signatures, the molecular structures were enumerated by combining these signatures 

using steps provided in Faulon et al. (2003a). In order for feasible structures to be generated from 
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the solution, it is necessary to construct structural constraints in terms of occurrence number of 

atomic signatures. Structural constraints for feasibility have been presented in the work of 

Churchwell et al. (2004) and Chemmangattuvalappil et al. (2010). However, these constraints are 

lacking in full consideration of overlap of neighborhoods of bonding atoms. While their CAMD 

methodologies are applicable when signatures with height greater than 1 are utilized, the overlap 

of neighborhoods of bonding atoms is not considered beyond the first out-neighborhood in the 

structural feasibility constraints. Since a signature is a rooted tree that captures the local 

neighborhood of an atom up to height h, it is important to take this fully into consideration while 

framing structural constraints. Let us consider 2 arbitrary root atoms X and Y. Let, Xi, atom X 

colored i and Yj, atom Y colored j have respective signatures of height h. Let the respective 

signatures be σ(Xi) and σ(Yj). Now, let there be a bond between atoms Xi and Yj. Since σ(Xi) and 

σ(Yj) are rooted trees, rooted at Xi and Yj, Xi and Yj will also have their respective branches, where 

the branch at Xi of the tree σ(Xi) is the maximal subtree containing Xi as the end node 

(Balakrishnan and Ranganathan, 2012). The branch at Yj of the tree σ(Yj) is similarly defined. In 

this work, the branches at Xi and Yj will be known as the branches of σ(Xi) and σ(Yj). Since Xi and 

Yj bond, Xi will appear on the first level of signature of Yj and vice versa. Let σ*(Yj) and σ*(Xi) be 

the height h rooted trees of Xi and Yj respectively, who appear on the first levels of Yj and Xi 

respectively. Since Xi appears on the first level of signature of Yj, the branches of σ(Xi) that do 

not contain Yj at the child level will overlap with σ*(Yj) only up to height h-1. However, the branch 

of σ(Xi) that contains Yj can overlap up to height h. This is true vice versa, i.e. when σ(Yj) and 

σ*(Xi) are made to overlap. Also, it is worth noting that overlapping of the edges (bonds) is also 

necessary, besides the nodes.  
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Fig. 3.1 displays height 3 signatures of two atoms C3Bold and N3Bold who form a bond. C3Bold 

is the C atom shown in bold and has degree 3. Similarly, N3Bold is the N atom shown in bold 

having degree 3. N3Ital, in italics, is the N3Bold atom that appears on the first level of C3Bold’s 

signature. C3Ital, in italics, is the C3Bold atom that appears on the first level of N3Bold’s 

signature. Which portions of C3Bold’s signature of height 3 and C3Ital’s rooted tree of height 3, 

overlap, is shown using numbers adjoining the atoms in signatures. The root atoms have been 

numbered zero and the atoms in the out-neighborhoods, that overlap, have been numbered 

progressively from 1 to 3. 

 

Figure 3.1: Isomorphism of C3’s archetypical tree and N3’s complementary tree 
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The terminal atoms with dashed bonds do not overlap. One can observe that the branch of 

C3Bold’s signature not containing N3Ital overlaps with the rooted tree of C3Ital only up to height 

2. However, on the branch containing N3Ital, the overlap occurs up to height 3. Vice versa is true 

also if the N3Bold’s signature is made to overlap with the height 3 rooted tree originating from 

the first level of signature of C3Bold. From here onwards, such an overlap between signatures of 

bonding atoms will be referred to as ‘mutual overlap’. The branches of σ(Xi) and σ(Yj) which 

overlap up to height h-1 only will be referred to as ‘non-bonding branches’. The branches of σ(Xi) 

and σ(Yj) having overlap up to height h will be referred to as a ‘bonding branch’. σ*(Xi) and σ*(Yj) 

will be referred to as ‘complementary trees’. 

Finally, we can state the sufficient condition for bonding of two atoms as: 

Xi and Yj bond when the rooted tree, obtained by redrawing the non-bonding branches of σ(Xi) 

to height h-1, overlaps with σ*(Yj). Alternatively, Xi and Yj bond when the rooted tree, obtained 

by redrawing the non-bonding branches of σ(Yj) to height h-1, overlaps with σ*(Xi).  

σ*(Yj) and σ*(Xi) thus have height h, but, except one branch all other branches terminate at (h-

1)th level. Let the rooted trees obtained after redrawing σ(Xi) and σ(Yj) be σ´(Xi) and σ´(Yj) 

respectively. Even these are of height h but except one branch, all other branches terminate at 

the (h-1)th level. They will henceforth be referred to as ‘archetypical trees’. Both the archetypical 

and complementary trees have been displayed in Fig. 3.1. From the aforementioned discussion, 

it should be clear that it is important to fully take into consideration the information captured in 

a root atom’s local neighborhood while formulating the structural constraints. The revised 
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structural feasibility constraints are now presented in the following subsections and compared 

vis-à-vis those presented in Churchwell et al. (2004) and Chemmangattuvalappil et al. (2010). 

3.1.1. Handshaking lemma  

In a (molecular) graph, the total number of degrees is twice the number of edges. In order to 

calculate the number of degrees from an atomic signature, one needs to know only the number 

of connections a root atom has with the atoms appearing on the first level. Thus, while expressing 

a handshaking lemma relation, signature heights greater than 1 do not contribute any special 

information. Thus, the relationship proposed by Chemmangattuvalappil et al. (2010) in terms of 

occurrence numbers will remain unaltered as it rightly considers the neighborhood up to height 

one. If the maximum degree is 4 in a molecular graph with R no. of circuits, then the handshaking 

lemma is expressed in terms of the occurrence numbers of signatures as follows: 
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Where, Di = degree of atom with signature having occurrence number xj, ns = number of 

signatures having degree Di, N is the total number of signatures in the molecule being designed, 

and ND, N2D and NT are the total number of signatures with root atoms having one double bond, 

2 double bonds and one triple bond respectively as part of the first level. The relation presented 

above can accordingly be modified to include atoms with degree higher than 4.  
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3.1.2. Conservation of Overlapping Trees 

The signature of an atom can be viewed as a directed rooted tree (Jayaseelan et al., 2012). Thus, 

each bond appearing in the signature, between atoms who will be in adjacent levels, can be 

represented as an arc. The direction of all the arcs will be away from the root atom. Let us again 

consider arbitrary atoms X and Y that have at least one bond between them. In the signature of 

X, Y will appear in the first level. Thus, there will be an arc from X to Y. Similarly in the signature 

of Y, there will be an arc from Y to X which will now be in the first level. Thus, the same bond 

between X and Y will appear as arcs in opposing directions. This information was used to 

formulate the equations, called consistency equations, presented in the work of Churchwell et 

al. (2004) and Chemmangattuvalappil et al. (2010). Mathematically this can be stated as: 
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  (3.2) 

 

Where, Xi and Yj are the atoms X and Y with colors i and j respectively. Xi,root and Yj,root are atoms 

Xi and Yj when they are the root. Xi,child and Yj,child are atoms Xi and Yj as children. σ(Xi,root  Yj,child) 

is a signature in which atom Xi is the root and Yj is the child. Similarly, σ(Yj,root  Xi,child) is a 

signature in which Yj is the root and Xi is the child. p and q are the total number of signatures 

containing arcs of the type Xi,root  Yj,child and Yj,root  Xi,child respectively. ηp and ηq are the 

number of arcs of the type Xi,root  Yj,child and Yj,root  Xi,child respectively in the signatures having 

occurrence numbers αp and αq respectively.  The signatures have been specified in the square 
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brackets. However, as mentioned earlier, X and Y bond only when there is mutual overlap 

between their respective signatures. Thus, although Eq. (3.2) holds, it can lead to mismatch of 

signatures that have the potential to bond as it does not capture the information of the local 

neighborhood beyond the first height. An equation, that addresses this shortcoming, can be 

expressed mathematically as: 
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  (3.3) 

 

Where, σp(Xi,root  Yj,child)# is a signature of Xi which has a mutual overlap with signature σq(Yj,root 

 Xi,child)# of Y j. µ+p and µ-q are the number of archetypical trees and complementary trees that 

can be generated from signatures σp(Xi,root  Yj,child)# and σq(Yj,root  Xi,child)# respectively having 

occurrence numbers αp and αq respectively. It is worth noting that Eq. 3.3 is also valid for the 

case, Xi = Yj = Zk, where Z is an arbitrary atom colored k. This is another difference from the 

equations presented in Churchwell et al. (2004) and Chemmangattuvalapil et al. (2010). However, 

there is an exception to this case. If a signature of Zk, σ(Zk) has a mutual overlap with itself then 

a bond has a possibility of being established between two Zk atoms who have same signatures. 

“Possibility of being established” is being stated because there can be another signature of Zk 

that not only mutually overlaps with itself but also with σ(Zk). The existence of other such 

signatures of Zk is possible because the non-bonding branches overlap only up to height h-1 and 
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at height h in such branches, different atoms can possibly exist. For this separate case, the 

mathematical expression is: 
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Where, Ψ is a non-negative integer. µr is the number of archetypical trees that can be generated 

from the signature σr(Zk,root  Zk,child)# having occurrence number αr. Both the root and the child 

levels have atom Zk.  

Although Eq. (3.3) and Eq. (3.4) ensure that signatures present on LHS and RHS mutually overlap, 

they are concerned only with balancing the total number of archetypical and complementary 

trees. One needs to additionally ensure, that for all possible signatures of one bonding atom 

having multiple archetypical trees, only one archetypical tree overlaps with one complementary 

tree generated from the signature of the other bonding atom. This is the case because when a 

bond is formed, only one archetypical tree from the possible archetypical trees of a signature 

overlaps with one of the possible complementary trees generated from the other signature. This 

can be expressed mathematically as: 
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       (3.5) 
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  (3.6) 

 

Where, λ+m is the number of archetypical trees of signature σm(Xi,root  Yj,child)# and  λ-n is the 

number of complementary trees of signature σn(Yj,root  Xi,child)#. Signatures σm(Xi,root  Yj,child)# 

and σn(Yj,root  Xi,child)# have multiple archetypical and complementary trees respectively. Xi,root 

has m signatures with multiple archetypical trees. Yj,child has n signatures with multiple 

complementary trees. Eq. (3.5) and Eq. (3.6) ensure that there exist total number of occurrences 

of signatures, at least equal to the total number of archetypical and complementary trees 

belonging to signatures having multiple archetypical and complementary trees. The presented 

inequalities are the counterpart of the ‘parent-child colour inequality’ presented in 

Chemmangattuvalappil et al. (2010). Using Eqs. (3.1), (3.3), (3.4), (3.5) & (3.6) one can thus ensure 

that infeasible structures are eliminated. Although infeasible structures can be eliminated from 

the solution pool of a CAMD problem when the previously reported constraints are used, the 

revised structural constraints will be helpful in the avoidance of generation of such structures in 

the first place and perhaps improve the search efficiency. Constraints are now developed to 

address the structural relationship between reactants and products, irrespective of the reaction 

mechanism and the number of reactants and products involved.  
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3.2. Molecular Design of Reactants and Products 

During molecular design of reactants and products, their molecular structures are varied until the 

dominant properties of interest are optimized without violation of property and structural 

constraints. The reaction(s) occurring in the system and their mechanism(s) are known 

beforehand. Every allowed variation of molecular structures is incorporated in the set of 

potential atomic signatures. Atomic signatures are generated for each atom present in each 

reactant and product after consulting their respective general structural formula. In the set of 

potential atomic signatures, different signatures for the same root atom can exist. The 

appearance of atoms from variable groups, in the neighborhood of the root atom causes different 

signatures for the same root atom to exist. A subset is chosen from the set of potential signatures 

every time a molecular structure is varied.  The elements of this subset when combined suitably 

in correct numbers generate a feasible structure. These numbers are the occurrence numbers of 

the signatures part of the subset. Depending on the TIs and GCs utilized, the height of the 

signatures is decided (Chemmangattuvalappil et al., 2010). Usually all signatures are converted 

to the same height. The height chosen is the highest out of those initially required to capture the 

structural information encoded in different TIs and GCs appearing in the property models 

(Chemmangattuvalappil et al., 2010). However, as shown in section 3.3, for a particular case, it 

might be beneficial to utilize signatures of different heights.  

3.2.1. Root Atom Balance of Signatures 

In a chemical reaction, atoms of reactants rearrange to yield products. Thus, the number of atoms 

in a reaction remain constant and the molecular structures of reactants and products are related. 
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The new position of a reactant atom in the molecular graph of the corresponding product is 

revealed by the reaction mechanism. Consequently, given a signature from a reactant’s set of 

potential signatures, not only the root atom but atoms in each level of the signature tree can be 

tracked to the signatures in the products. Thus, the change, if any, in the signatures can be 

inferred.  

In compliance with the involved reaction mechanism, some or all of the atoms in the nth out-

neighborhood (1 ≤ n ≤ h) of a reactant atom may appear in the nth out-neighborhood of the 

repositioned reactant atom. The common atoms may also appear in a different nth out-

neighborhood after the reaction. The uncommon atoms can also be tracked from different 

positions in the reactants. Thus, identification of a product signature obtained from 

transformation of a reactant signature, with the same root atom, can be carried out. The 

mentioned root atoms are tracked from molecular subgraphs in reactants to molecular 

subgraphs in the products to derive relationships between the occurrence numbers of the 

signatures involved. Let us consider the case where an atom’s signature has no variation in the 

neighborhood after the reaction. If more atoms exist of such kind in a molecular subgraph whose 

signatures are isomorphic to each other, then they can be summed up together as the occurrence 

number of that signature particular to that subgraph. It should be mentioned that such signatures 

can belong to subgraphs part of variable groups and still not get varied after the reaction. In this 

case, their occurrence numbers will be variable. Since the signatures of such atoms do not vary, 

their number must remain constant after the reaction as the number of atoms remain constant. 

One can track the unchanged signatures to molecular subgraphs in products and equate the 

occurrence values in the reactants to those in these new subgraphs. One can similarly track 
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isomorphic signatures from reactants to isomorphic signatures of products when there is a 

variation in the neighborhoods, such that the uncommon atoms in the neighborhood do not 

originate from variable groups. Since the uncommon atoms in the neighborhood do not originate 

from variable groups, for every signature in reactant, there is only one corresponding signature 

in the product. Again, isomorphic signatures of atoms in the reactants belonging to certain 

subgraphs transforming into set of isomorphic signatures have same occurrence numbers after 

the reaction.  

On the other hand, due to variability of molecular structures, some atoms in reactants will exist 

whose n out-neighborhoods can be filled by different sets of possible atoms. If these different 

possible sets do not appear in the n out-neighborhoods of the repositioned reactant atom then 

different possible reactant signatures will exist for a corresponding product signature. 

Conversely, it may happen that different sets of possible atoms can be filled in the n out-

neighborhoods of the repositioned reactant atom. If they do not originate from the n out-

neighborhoods of the original reactant atom then different possible product signatures will exist. 

Thus, to identify the corresponding product signatures obtained after transformation of certain 

reactant signatures, the atoms common to the n out-neighborhoods of the root atom should 

appear in both reactant and product signatures as mandated by the reaction mechanism. The 

uncommon atoms if variable will generate different possible reactant and/or product signatures 

for the same set of common atoms. In this case, even if we have isomorphic sets of possible 

signatures of root atoms in a subgraph in reactants and products, it will be difficult to attribute 

the final neighborhoods to the respective atoms. This is because some atoms can have a 

neighborhood which is distinct from that of other atoms, but is one of those possibilities. Thus, a 
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balance equation for the occurrences of signatures will be written for each atom separately. In 

this case the sum of occurrence numbers of possible signatures before and after the reaction will 

be equal. Also, the sum of occurrences will be equal to 1 since we’re writing the balance equation 

for one atom only. All the aforementioned different cases of alteration (including the lack of 

alteration) of neighborhoods of atoms can be represented by the following generalized balance 

equation involving the occurrence numbers, titled as the Root Atom Balance of Signatures 

(RABS):  
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  (3.7) 

 

Where p is the number of reactants, na is the stoichiometric coefficient of each reactant, and q 

is the number of possible signatures belonging to a reactant that due to the reaction transforms 

into specific signatures in the products. Also, r is the number of products, nc is the stoichiometric 

coefficient of each product and s is the number of possible signatures in a product that are 

obtained by transformation of signatures in the reactants under consideration. αa,b,root v is the 

occurrence number of possible atomic signatures of root v belonging to one of the reactants. 

These signatures can transform into possible atomic signatures of root v belonging to one of the 

products having an occurrence number βc,d,root v. root v is an atom of the same element and can 

have different colors associated with the vertex degree in the reactants and products. 
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Consider the transesterification reaction, shown in Fig. 3.2, as an example to demonstrate how 

Eq. (3.7) is applied. The numbers adjoining the atomic symbols are the vertex degrees, used as 

colors. The dashed bond between C4 and O2 is a bond that will break. R, R´ and R˝ are assumed  

to be acyclic saturated groups.  

 

 

From the mechanism, it is known that the C4 atom (marked *) double bonded to the O2 atom in 

the reactant ester appears only in the product ester also as C4 (marked #) double bonded to same 

O2. Let all the possible signatures of height 3 of the reactants and products be generated. Then 

the root atom balance that can be written for the C4 atom when R is possibly CH3 i.e. C1 is the 

following:    

α[C4(=O2C1O2(C1))] + α[C4(=O2C1O2(C2(C)))] + α[C4(=O2C1O2(C3(CC)))] + 

α[C4(=O2C1O2(C4(CCC)))] = β[C4(=O2C1O2(C1))] + β[C4(=O2C1O2(C2(C)))] + 

β[C4(=O2C1O2(C3(CC)))]        +        β[C4(=O2C1O2(C4(CCC)))] 

Where, α and β are occurrence numbers of the signatures, in square brackets, of reactant and 

product C4, respectively. The above holds because according to the mechanism, along with C4, 

the R group is also transferred to the product ester. Thus, the atoms of R group are common and 

Figure 3.2: Transesterification Reaction 
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will appear as it is in the n neighborhoods of C4 in both reactant and product signatures. In this 

sub-example R has been taken to be possibly C1. So, C1 makes an appearance in each of the 

signatures. Also, the OR´ group is transferred to the product alcohol and the OR˝ group from the 

reactant alcohol becomes a part of the product ester. These are the variable groups that do not 

share any common atom. Thus, the branch of the C4 signature tree containing atoms of OR´ can 

be varied. The same is done for C4 bonded to OR˝. Hence, the summation on both sides includes 

this variation where single bonded O2 is bonded to differently colored atoms. For this example, 

different variations in R will have different relationships involving signatures rooted at C4. Since 

in the above reaction only one C4 double bonded to O2 will appear in each ester, an additional 

condition where the sum of occurrences of all signatures with C4 root atom equals 1 will be 

imposed on each ester.  

Consider atoms in the R group whose neighborhoods do not vary after the reaction. Atoms that 

do not experience bond breaking or new bond formation will not experience a change in their 

signatures. Atoms far away from the C4-O2 bond breaking will have unchanged signatures. An 

example of such a signature is C4(C1C1C1C2(C1C3(CC))). One can notice that the C4-O2 bond is 

not present in the C4 root atom’s neighborhood. Thus, one can say that 

α[C4(C1C1C1C2(C1C3(CC)))] = β[C4(C1C1C1C2(C1C3(CC)))]. Here, α and β are the occurrence 

numbers of the signature in the molecular subgraphs R in the reactant ester and product ester 

respectively. The root atom balance of signatures thus helps in relating the structures of 

reactants and products in terms of occurrence numbers. This ensures that only those 

combinations of reactants and products, which are sanctioned by the reaction mechanism, are 

included in the design process. 
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3.2.2. Optimizing Dominant Property of Each Product 

Now that a methodology has been developed to structurally relate the reactants and products, 

it will be easier to handle the three design scenarios being addressed in this work. In the first 

design scenario, we want to generate the structures of reactants and products such that only the 

optimization of the respective dominant property of each of the products is carried out. Also, 

each of the products are subjected to their respective set of property constraints. The general 

methodology for addressing this scenario has been displayed in Fig. 3.3. In this scenario, since 

the properties of reactants are not constrained, there is no impact on the products through the 

structural relationships, derived earlier in the form of RABS. Thus, the products can be separately 

optimized by setting up mathematical programming problems (MPP) for each of the products. 

Each MPP will consist of the property being optimized, the property constraints and the revised 

structural constraints derived in section 3.2.1. Since the TIs/GCs can be expressed in terms of 

occurrence numbers of signatures, the property models utilizing TIs/GCs can be expressed in 

terms of the occurrence numbers also. The revised structural constraints have also been derived 

in terms of the occurrence numbers of signatures. Thus, the entire MPP can be formulated in 

terms of occurrence numbers of signatures. As the occurrence numbers of signatures are non-

negative integers, the MPP will be either an MILP or an MINLP problem depending on whether 

the property models are linear or nonlinear.  In this work, the DICOPT solver available in the 

GAMS software has been used to solve any ensuing MINLP problems. DICOPT tends to be very 

fast and provides a globally optimal solution for convex functions but for non-convex functions 

often serves as a successful heuristic approach (Bonami et al., 2012). To solve any ensuing MILP 

problems, CPLEX has been utilized. The solution obtained by solving the MILP/MINLP problems  
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Figure 3.3: General methodology for CAMD of reactants and products in 1st scenario 
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consists of values of occurrence numbers of signatures of reactants and products. The signatures 

will be combined in the right numbers using the sufficient condition proposed earlier for bonding 

of two atoms. This will finally give us the desired structures. Once the structures of the products 

are determined, using the general structural formula of the reactants and products, and by 

tracking the groups/atoms, the structures of the reactants can be determined. One can also use 

the above methodology to design reactants and products when only each reactant’s dominant 

property has to be optimized.  

In product design, it is often the case that competing objectives are involved. To accommodate 

this need, one can also extend the above methodology to include multiple objectives. In this 

extension, instead of setting up separate MILP/MINLP problems, multi-objective mixed integer 

linear programming (MOMILP) or multi-objective mixed integer nonlinear programming 

(MOMINLP) problems will be set up separately for each product. In this work, the augmented ε-

constraint method (AUGMECON) has been used to solve the ensuing MOMILP/MOMINLP 

problems. Details on AUGMECON have been provided in section 3.2.4. Once the set of pareto 

optimal solutions have been determined, the decision maker (DM) can select the best solution 

for each product according to his/her requirements. Similar to the case involving single 

objectives, the groups/subgraphs from final product structures will be tracked to the reactants 

by utilizing the general structural formulae and the reaction mechanism. In this manner, the final 

reactant structures will be generated. 
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3.2.3. Optimizing Properties Dependent on Both Reactant and Product Structures 

Since, the methodology developed in section 3.2.2 is applicable only when we want to optimize 

each product’s dominant property, we cannot optimize properties that are dependent on 

structures of both reactants and products. We will need a different methodology which optimizes 

such properties, which include thermodynamic properties like Std. Gibbs Free Energy change of 

a reaction. We would want to optimize properties like Std. Gibbs Free Energy change of reaction 

to ensure that the reactants and products being designed comprise feasible reactions. 

Optimization of such properties comprises the second design scenario. A general methodology 

to address this scenario has been displayed in Fig. 3.4. In this scenario, depending on the linearity 

or nonlinearity of the properties involved, an MILP or an MINLP problem is formulated to 

optimize the property of interest. In this CAMD scenario, each of the reactants and products have 

also been subjected to their respective set of property constraints. Since the properties being 

optimized depend on structures of both reactants and products, the property constraints of each 

reactant and product will influence the selection of reactants and products. The MILP/MINLP 

formulation will thus also include members of all sets of property constraints of reactants and 

products. Unlike the first design scenario, we are simultaneously considering the variation of the 

reactant and product structures due to their combined influence on the property being 

optimized. Since structures of reactants and products are related and since we are considering 

their variation simultaneously, the RABS relationships will also be employed in the MILP/MINLP 

formulation. This will ensure their selection in accordance with the reaction mechanism. In 

addition, the revised structural constraints will be included for each reactant and product to 

ensure their structural feasibility. 



83 
 

 

Figure 3.4: General methodology for CAMD of reactants and products in 2nd 
scenario 
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Like the first scenario, we have utilized the DICOPT solver to solve any ensuing MINLP problem 

and CPLEX for any ensuing MILP problem. The solution obtained by solving the MILP/MINLP 

problem consists of values of occurrence numbers of signatures of reactants and products. The 

signatures will be combined in the right numbers using the sufficient condition proposed earlier 

for bonding of two atoms. This will finally give us the desired structures.  

Unlike the first design scenario, we are not formulating separate MILP/MINLP problems but a 

single MILP/MINLP problem. However, if we want to incorporate additional objective functions 

of any of the reactants and/or products, some of which are conflicting, then a single 

MOMILP/MOMINLP problem will be formulated instead. This is again distinct from the multi-

objective case considered in section 3.2.2. The addition of conflicting objectives of any of the 

reactants and products is possible because already the MPP consists of a property which is 

dependent on the structures of each reactant and product. In our work, we have used 

AUGMECON to solve the ensuing MOMILP/MOMINLP problems. 

3.2.4. Optimizing Dominant Properties of Each Reactant and Product 

In the third design scenario, each reactant and product has dominant properties to be optimized. 

Also, each reactant and product has been subjected to a set of property constraints. In the second 

scenario we have already allowed for the possibility of addition of dominant properties of any of 

the reactants and products. However, what will be the outcome if we remove the property which 

is dependent on the structures of each reactant and product? Can the third design scenario be 

still formulated as a multi-objective optimization problem? As one will find out, from the 
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following discussion, the problem can still be formulated as a multi-objective optimization 

problem when conflicting objectives are involved of each reactant and product.  

To develop a methodology to address this third CAMD scenario, let’s consider a general reaction 

of the following type: 

AB + CD  AC + BD 

Where, A, B, C and D are the molecular subgraphs of the structurally variable reactants AB and 

CD that get exchanged due to the reaction to yield AC and BD. Using RABS, one can relate the 

occurrence number of signatures of atoms that are part of A of AB to the occurrence numbers of 

signatures of atoms of A of AC. Similarly, AB can be structurally related to BD, CD to BD and CD 

to AC and vice versa. Now, in our work we are concerned with properties that are related to 

structure. These properties are expressed in terms of occurrence numbers of atomic signatures 

which are non-negative integers. So, if some molecules are structurally related, a variation in the 

properties of one molecule will vary the properties of the others as well. In our case if we place 

property constraints on AB, constraints on the occurrence number of signatures of atoms of A 

and B will be placed. Now, AC has property constraints of its own which places restrictions on 

signature occurrence numbers of both A and C. Also, the allowed values of signature occurrence 

numbers in A influence the allowed values of signature occurrence numbers in C. Since A appears 

in both AB and AC, constraints on A due to constraints on AB will influence both the selection of 

A and C. Since structure translates to properties through property models, properties that are 

constrained are also influenced. An inverse effect of influence of property constraints of AC on 

occurrence number of signatures of A in AB will also take place by a similar argument. Similarly 
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constraints on AB and CD will influence BD’s constraints and vice versa, and CD’s constraints will 

influence those of AC and vice versa. Thus, property constraints of each of the reactants and 

products influence each other. Same set of arguments can be used to show the influence of 

property objective functions of each of the reactants and products on themselves. Thus, when 

the property objective functions of some of the reactants and/or products are conflicting, a multi-

objective optimization problem will have to be set up. The analysis above can be carried out for 

a different type of general reaction as well and similar conclusions can be accordingly derived. 

The general methodology to address this third CAMD scenario has been shown in Fig. 3.5.  

Let us consider an instance of the aforementioned reaction. In this example, D is the Hydorgen 

atom, H.  

AB + CH  AC + BH 

Also, AB, CH, AC and BH’s property objective functions, P(AB), P(CH), P(AC) and P(BH) are to be 

maximized. AB, CH, AC and BH’s respective set of properties are also constrained. Let the output 

of P(AB), P(CH) decrease with the increase in the value of the inputs, i.e. the occurrence numbers 

of signatures. Let the output of P(AC) and P(BH) increase with the value of the inputs. Let us 

increase the value of occurrence number of signatures of atoms in A, B and C. This will cause 

P(AC) and P(BH) to rise. P(AB) and P(CH) however will reduce. Thus, there exists a conflict 

between the objectives. The variation in the occurrence numbers of signatures of atoms in A of 

AB is subject to the property constraints of AB. Since A appears in AC also, the property 

constraints on AC impact the occurrence numbers of signatures of atoms in A also. Since property 

constraints have been placed on AB and not A and B individually, occurrence numbers of  



87 
 

 

Figure 3.5: General methodology for CAMD of reactants and products in 3rd scenario 
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signatures of atoms in B depend on the values of occurrence numbers of signatures of atoms in 

A. Thus, the rise in occurrence numbers of signatures of atoms in B will occur such that the 

property bounds on AB are not violated. Similarly, property constraints on BH will also affect the 

occurrence numbers of signatures of atoms in A. This is because B of AB appears in BH and the 

values of occurrence numbers of signatures of atoms in B is impacted by property constraints on 

BH. This will further restrict the rise in values of occurrence numbers of signatures of atoms in A 

since the property constraints on AB cannot be violated. After using similar arguments, one can 

deduce that the rise in occurrence numbers of signatures of atoms in AB, CH, AC and BH are 

impacted by all the property constraints. The impact of objective functions can similarly be 

argued. Thus, a single multi-objective problem will be formulated that includes all the objectives 

and property constraints. Although we have assumed a rise in the values of occurrence numbers 

of signatures of atoms in A, B and C, a reduction in some or all of the occurrence numbers also 

yields conflicting objectives. The analysis conducted here can also be used to check if the 

objectives are conflicting when some or all of the property objective functions are minimized. 

The analysis will also have to take into account if the nature of property objective functions is 

different from what has been assumed here. It is worth noting the distinction of the third design 

scenario from the first. In the first design scenario, separate optimization problems were set up 

for each of the products. Here, only a single optimization problem is being set up. Removal of the 

property constraints and the objective functions of the reactants from the design problem will 

yield the first design scenario. In the third design scenario, it can be noticed that the influence of 

structure of reactants on properties of products and vice versa exists irrespective of the linearity 

or nonlinearity of the property models utilized. Thus, if nonlinear models are involved, the design 
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problem is formulated as a multi-objective mixed integer nonlinear programming problem 

(MOMINLP). In this formulation, the objective functions include all the conflicting property 

objective functions of each of the reactants and products. The MOMINLP problem also includes, 

like the second design scenario, property and revised structural constraints of each reactant and 

product. Additionally, the RABS relationships for each root atom are included to ensure that only 

those combinations of reactants and products are evaluated who comply with the reaction 

mechanism.  

To solve multi-objective mathematical programming problems, the available methods can be 

categorized as no-preference methods, a priori methods, interactive methods or a posteriori 

methods (Miettinen, 1998). However, these distinctions are not rigid. Each of these methods 

have their advantages and drawbacks. Depending on the nature of the problem and the stage of 

decision making, with regards to preferences of objectives, in the solution process, by the 

decision maker (DM), one can appropriately choose a method. The advantages and drawbacks of 

these methods have been discussed in Miettinen (2008) and Miettinen et al. (2008).  In this work, 

we will be relying on the augmented ε-constraint method (AUGMECON) (Mavrotas, 2009). It is 

an a posteriori method. In such a method, the DM is involved in the solution process after the 

pareto optimal values have been generated. Thus, such methods offer the advantage of providing 

a broad picture of the trade-offs involved before a choice is made by the DM. By increasing the 

number of representative pareto optimal solutions generated, the DM’s confidence can be 

increased. With such methods, generally, a concern can be the computational time involved and 

the lack of widely available software (Mavrotas, 2009). AUGMECON however alleviates these 

issues. In an ε-constraint like optimization scheme relying on early exit from loops, for increased 
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efficiency, the pareto optimal set is populated using AUGMECON. AUGMECON guarantees 

generation of pareto optimal solutions which is not the case with the conventional ε-constraint 

method. In case of MOMINLP problems, the guaranteed pareto optimal solutions may be locally 

pareto optimal. But, this is better than the possibility of generating local weak pareto optima 

using the conventional ε-constraint method. We once again rely on the DICOPT solver in GAMS 

to solve the MINLP problems which are part of the AUGMECON scheme. AUGMECON in addition 

to supported pareto optima, can generate unsupported pareto optima also. Supported optima 

lie on the boundary of the feasible objective space while unsupported optima do not. The number 

of representative optima obtained from AUGMECON can be controlled by adjusting the number 

of grid points in each of the objective function ranges. If the problem posed in the third design 

scenario can be formulated as a multi-objective integer programming (MOIP) problem then the 

improved version of AUGMECON, AUGMECON2 (Mavrotas and Florios, 2013) can be utilized. In 

the MOIP problem, only linear constraints and linear objective functions exist. AUGMECON2 has 

been demonstrated to be much more efficient than AUGMECON in solving such kind of problems 

(Mavrotas and Florios, 2013; Florios and Mavrotas, 2014).  

3.3. Reduction in Number of Signatures Generated 

As discussed before, all the property models, the structural feasibility constraints and the RABS 

relationships are expressed in terms of occurrence numbers of signatures. As mentioned in 

section 3.2.1, all the occurrence numbers of smaller height signatures are expressed in terms of 

occurrence numbers of signatures of biggest height. This can be mathematically expressed as: 
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𝛼𝛼[ℎ𝜎𝜎] = �𝛼𝛼[𝐻𝐻𝜎𝜎𝑖𝑖]
𝑖𝑖

 (3.8)  

 

Here, hσ is the signature of lower height, h. Hσ i is a signature of higher height, H, which when 

redrawn to height h is isomorphic to hσ. α is the occurrence number of the signature mentioned 

in the square brackets. Eq. (3.8) is valid because the signatures of higher height can be generated 

from signatures of lower height, having same root atom, by adding different possible 

combination of atoms in the kth out-neighborhoods. Here, h < k ≤ H.  

With increasing height, a concern that can arise is the increment in the number of possible 

signatures that need to be generated. As the number of out-neighborhoods increases, more 

combinations of atoms can be introduced in the signature. Hence, the increment in the numbers. 

With the rise in number of signatures, the number of structural constraints required to solve the 

ensuing MINLP problems also rises. Usually when GCMs are utilized, one is not required to 

generate all possible signatures to calculate the property value of a molecule. Only those 

signatures need to be generated which can effectively capture the structure of the utilized 

functional groups in the neighborhood of one of the atoms in the functional group. In a GCM, 

one can thus replace the occurrence number of a functional group with the occurrence number 

of an equivalent signature. If the highest height stems from the presence of a group(s) in a GCM 

instead of a TI in a QSAR/QSPR, then one can reduce the number of highest height signatures 

that need to be drawn significantly. A step wise strategy that can be used in such a case is the 

following: 
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1. Draw all the signatures that represent groups requiring highest height.  

2. Draw all possible signatures with the second highest height.  

3. The signatures of highest height can be redrawn to give signatures of second highest height. 

Hence, subtract the occurrence number of the signature of highest height from the 

occurrence number of equivalent signature of lower height. This is in accordance with Eq. 

(3.8). This effective occurrence number is the actual occurrence number of such equivalent 

signatures when they do not represent the particular equivalent signature with the highest 

height. If there are more signatures, having the same equivalent signature of second highest 

height, their occurrence numbers will be subtracted too. 

4. Express groups and TIs requiring signatures of lesser heights in terms of the occurrence 

number of signatures of second highest height. The occurrence number will be the sum of 

effective occurrence number and the occurrence number of equivalent signatures of highest 

height.  

5. Write the structural feasibility constraints using highest height signatures only.  

6. Write the structural feasibility constraints using second highest height signatures and highest 

height signatures. The highest height signatures are also being added because their 

occurrence number is part of total occurrence number of equivalent signature of second 

highest height.  

7. When a signature of height h has a mutual overlap with another signature of height h, the 

non-bonding branches overlap only up to height h-1. In the case being considered here, some 
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of the signatures are of a higher height. When there is a height disparity, the lower height 

signature can overlap with the height h signature originating from the first level of the 

signature with higher height. Hence, write extra structural constraints of the following form: 

 

�𝛼𝛼𝑚𝑚[𝐻𝐻′𝜎𝜎𝑚𝑚�𝑌𝑌𝑗𝑗,𝑟𝑟𝑟𝑟𝑜𝑜𝑜𝑜 → 𝑋𝑋𝑖𝑖,𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖�
#] 

𝑚𝑚

≤ 𝛼𝛼𝑞𝑞[ℎ′𝜎𝜎𝑞𝑞�𝑋𝑋𝑖𝑖,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 → 𝑌𝑌𝑗𝑗,𝑐𝑐ℎ𝑖𝑖𝑖𝑖𝑖𝑖�
#] (3.9)  

 

Where, h´σ(Xi,rootYj,child)# is the signature of lower height, h´, which overlaps with the height 

h´ signature originating from the first level of H´σi(Yj,rootXi,child)#.  α is the occurrence number 

of the signature mentioned in the square brackets. The above inequality needs to be written 

because the structural feasibility constraints for the second highest height only consider 

overlap of non-bonding branches up to height (h´-1). Also, Eq. (3.9) is an inequality instead of 

an equality because h´σ(Xi,rootYj,child)# can mutually overlap with other signatures of height 

h´. Here, it is being insured that when signatures on LHS are selected, there are enough 

signatures on RHS that can lead to bond formation between their root atoms.  

8. In spite of the above structural constraints, the disparity in the height of signatures may lead 

to generation of infeasible structures due to mismatch. Thus, eliminate infeasible structures 

from the solution pool. This is simpler than generating all signatures of highest height along 

with the corresponding structural constraints.  
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3.4. Tree-Based Ensemble Machine Learning 

In the previous sections we have developed methodologies to design reactants and products in 

different scenarios. However, if we were to use these methodologies to design reactants and 

products such that the rate of reaction is optimized, one will realize that currently not many 

reliable models are available that relate the rate constant to structures of reactants and solvents. 

In order to improve upon the currently available models and also in order to offer scalable 

methods, we explored the use of ensemble machine learning in our work. Specifically, we were 

interested in decision tree based methods because ensemble learning works particularly well 

when they are based on decision trees (Rokach, 2016). It has been shown, repeatedly, that 

ensemble learning improves the predictive performance of a single model. Tree based ensemble 

learners are frequently used in many real-world applications in domains such as engineering, 

information retrieval and medicine. With respect to QSPR development, however, ensemble 

learning, in general, is still under-represented in the literature (Kew and Mitchell, 2015).  

Ensemble machine learning methods, as the name suggests, involve the generation of ensemblea 

of models, generally trained on sampled datasets. These models are then combined in some form 

(for example, by averaging) to then provide predictions of response variables of interest. 

Contrary to expectations, many ensemble learning methods aim to generate constituent models 

that can predict barely better than what can be achieved by chance. The ensemble methods rely 

on such models because they are computationally inexpensive to generate. Such models are 

known as ‘weak learners’ or ‘base learners’. A large number of such inexpensive models can then 

be combined together using various methodologies to offer reliable predictions. Two of the most 

common approaches to generating ensemble models are discussed as follows: 
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3.4.1. Randomization-Based Approaches 

Randomization-based methods produce different models from a single initial learning sample by 

introducing random perturbations into the learning procedure. A commonly utilized 

randomization-based approach is bagging. Bootstrap aggregation or bagging is a general-purpose 

procedure for reducing the variance of a machine learning method. Given a set of n independent 

observations Z1, … Zn, each with variance σ2, the variance of the mean Ẑ, of the observations is 

given by σ2/n. Thus, averaging a set of observations reduces variance. Thus, extending this to 

machine learning models, one can obtain predictions with reduced variance contribution to 

error, if we aggregate various models and average their predictions (James et al., 2013b). The 

models can be trained on different samples drawn from the population. However, in a real world 

scenario, it can be difficult to ascertain the sampling distribution of the population. Often one is 

limited to small datasets. A strategy to address this problem is the generation of multiple datasets 

by bootstrap sampling. Bootstrap sampling involves the generation of datasets of the same 

dimensions as that of the original dataset. However, the sampling is carried out with 

replacement. Once these samples are generated base learners are trained on these bootstrap 

samples. The predicted value of the response variable is then obtained by averaging the response 

values obtained from the base learners. This process is visualized in Fig. 3.6 (Liang et al., 2011).  

3.4.1.1. Random Forests 

Random forests are an innovation based on bagged decision trees which are shown in Fig. 3.7. 

Bagged trees are generated by aggregating trees trained on bootstrap samples. Random forests 

are different from bagged trees in that they allow for split-variable randomization i.e. at each 
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split of the decision tree, only m out of p total predictors are searched (Breiman, 2001). Building 

a random forest involves the following: 

 

Inputs: 

• input data (xi, yi), where i = 1, …, p 

• number of iterations B, here, number of bootstrap samples generated 

• choice of the loss function φ(y, f), where f is the true function relating y and x 

 

Algorithm: 

1. for b = 1 to B do 

2.   create training set db by bootstrap sampling of input data 

3.   grow regression tree rb̂(x) using db by sampling m of p descriptors at each split 

 

The random forest fit at any prediction point, say x0, can then be computed as the following 

average: 

𝑟̂𝑟𝑟𝑟𝑟𝑟(𝑥𝑥0) =
1
𝐵𝐵
�𝑟̂𝑟𝑏𝑏(𝑥𝑥0)
𝐵𝐵

𝑏𝑏=1

 (3.10)  
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Figure 3.6: Averaging of models trained on bootstrap samples Z*1, Z*2, …, Z*T 

 

3.4.1.2. Regularized Random Forests 

Regularized random forests, a recent extension of random forests, apply a regularization 

framework to random forests and can select a compact feature subset (Deng and Runger, 2013). 

Regularization usually involves the addition of a penalty to a loss function in order to prevent 

overfitting. In the case of regularized random forests, a penalty coefficient is utilized while 

evaluating features that split a node of the decision tree in a random forest model.  

 



98 
 

 

Figure 3.7: Bootstrap aggregation of decision trees 

 

3.4.1.3. Extremely Randomized Trees 

Extremely randomized trees (ERTs), a recent innovation in ensemble learning, differ from random 

forests in that they utilize the whole sample for generating constituent decision trees instead of 

bootstrap replicas (Geurts et al., 2006). ERTs essentially consist of randomization of both the 

attribute and the cut-point choice while splitting a tree node. This helps in the reduction of the 

error associated with variance. Relying on the whole sample helps in the reduction of bias.  
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3.4.2. Boosting 

Boosting works by choosing training sets for base learners in such a fashion so as to force them 

to infer something new about the data each time they are called (Schapire, 2003; Meir and 

Rätsch, 2003). While bagging can be thought of as a parallelization of model fitting by generating 

base learners from sampled sets, boosting is a sequential approach to construction and addition 

of models to the ensemble (James et al., 2013b). At each iteration, a new weak, base-learner 

model is trained with respect to the error of the whole ensemble learnt so far. The construction 

of each base learner is strongly dependent on the previously generated base learners. Like 

bagging, boosting is a general approach that can be applied to many machine learning problems. 

3.4.2.1. Gradient Boosted Regression Trees 

Ensemble methods based on gradient-descent based formulation of boosting are termed 

gradient boosting machines (GBMs) (Natekin and Knoll, 2013). The GBM proposed by Friedman 

(2001) consists of the following:  

 

Inputs: 

• input data (xi, yi), where i = 1, …, m 

• number of iterations N 

• choice of the loss function φ(y, f), where f is the true function relating y and x 

• choice of the base learner model h(x,θ), where θ represents the model parameters 
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Algorithm: 

1. initialize f �0 with a constant 

2. for t=1 to N do: 

3.   compute the negative gradient gt(x) 

4.   fit a new base-learner function h(x, θt) 

5.   find the best gradient descent step size ρt 

6.   update the function estimate: 

7.   f �t  f �t-1 + ρt h(x, θt) 

8. end for 

 

In the algorithm listed above, f � represents the model, an estimate of f. Also, ρt is calculated using 

the following formula: 

𝜌𝜌𝑡𝑡 = arg𝑚𝑚𝑚𝑚𝑚𝑚𝜌𝜌
1
𝐵𝐵
�𝜑𝜑[
𝑚𝑚

𝑖𝑖=1

𝑦𝑦𝑖𝑖 ,𝑓𝑓𝑡𝑡−1(𝑥𝑥𝑖𝑖) + 𝜌𝜌ℎ(𝑥𝑥𝑖𝑖 ,𝜃𝜃𝑡𝑡)] (3.11)  

In our work, h were regression trees. In general, it is worth noting that, with ensembles of 

decision trees, an issue that can arise is model interpretability. This is because a large number of 

trees are generated in which the training data is encoded. Conventional models with parameters 

are not generated by decision tree algorithms. Hence, tree based methods are categorized as 

nonparametric machine learning methods.  
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4. Case Studies 

To exemplify and demonstrate the effectiveness of the aforementioned methodologies for each 

design scenario, we solve case studies, one each for each design scenario.  

4.1. Case Study 1 

We consider the transesterification reaction that is portrayed in Fig. 3.2. The aim of this case 

study is to design reactant ester (RCOOR´) and reactant alcohol (R˝OH) that generate product 

ester (RCOOR˝) and product alcohol (R´OH) with respective optimal flash points (Fp). The flash 

points are to be maximized given that the boiling point (Tb) and log(P) values of RCOOR˝, and the 

Tb and log(LC50) values of R´OH are constrained. Here, P is the octanol-water partition coefficient 

and LC50 is the acute toxicity. The property ranges are listed in Table 4.1. The property models 

utilized have been listed in Table 4.2. The Fp GCM was developed by Hukkerikar et al. (2012). In 

the GCM, Ci, Dj and Ek are contributions of first, second and third order groups of type i, j and k 

respectively. Ni, Mj and Ok are their respective occurrence numbers. The Tb GCM (Hukkerikar et 

al., 2012) has the same form as GCM of Fp. In the log(P) model (Šoškić and Plavšić, 2005), 1χopt is 

the optimized first-order molecular connectivity index. IMET, IPHYD, IALRIN and ICONJUG are indicator 

variables (IVs) for compounds containing methyl group attached to heteroatoms, H atom bonded 

to strongly electronegative group, an aliphatic ring and conjugation respectively. IHG2 and IHG3 are 

IVs representing 2 and 3 geminal halogens on a C atom, IHVIC represents halogens bonded to 

vicinal carbons and IPG2 and IPVIC represent polar groups separated by 1 and 2 carbons 

respectively. In the log(LC50) QSAR (Juric et al.,1992), 0χv is the zero-valence connectivity index. R, 

R´ and R˝ in the esters and alcohols have been assumed to be homogeneous, acyclic and 
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saturated. The highest degree of atoms in these groups has been restricted to 3. This puts a limit 

on the structures being explored in the chemical space but does not affect the CAMD 

methodology. We have also restricted ourselves to first order groups only. There are no third 

order groups for our case. If we ignore the second order groups then the maximum height of 

utilized signatures is 2. We expressed all groups and TIs in terms of occurrence number of 

signatures of height 2 after ignoring the second order groups. Sizeable errors could get 

introduced after using such an approximation of GCMs. With the aforementioned assumptions 

taken into account, signatures of the atoms that make the product ester and alcohol have been 

listed in Table 4.3 and Table 4.4 along with their occurrence number variables. The ‘(*)’ adjacent 

to certain atoms in signature strings signifies that are no further connections at a higher height.  

Now, in accordance with section 3.2.2, for each product a separate optimization problem was set 

up. Beside the property constraints, the revised structural constraints were also included in the 

problem formulation. For the product alcohol, the ensuing MINLP was solved using DICOPT and 

for the product ester, the ensuing MILP was solved using CPLEX. Some of the solutions obtained 

after solving the two optimization problems are shown in Table 4.5. Now, since we know the 

mechanism of the reaction and the general structures of the products, we can trace the 

determined R, R´ and R˝ in the final product structures to the reactants. Let us for example 

consider, solution no. 8. For this case, R is CH3CH2CH2CH2CH(CH3), R´ is CH3CH2 and R˝ is 

CH3CH2CH2. Since R of RCOOR˝ appears in RCOOR´, R˝ of RCOOR˝ appears in R˝OH and R´ of 

R´OH appears in RCOOR´, the final structures of the reactants can be determined. These have 

been displayed in Table 4.5. For our case study, only one optimal structure of the product alcohol 
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was obtained i.e. ethanol. However, multiple structures were obtained corresponding to the 

optimal property of the product ester.  

 

Table 4.1: Property Constraints on Products 

Products Properties Upper Bound Lower Bound 

RCOOR˝ Fp (K)  Maximum 

 Tb (K) 485 395 

 log(P) 5 - 

R´OH Fp (K) Maximum 

 Tb (K) 415 320 

 log(LC50) - -1 

 

Table 4.2: Property Models 

Properties Property Models 

Fp (K) 𝐹𝐹𝑝𝑝 − 𝐹𝐹𝑝𝑝0 = �𝑁𝑁𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖

+ �𝑀𝑀𝑗𝑗𝐷𝐷𝑗𝑗
𝑗𝑗

+ �𝐸𝐸𝑘𝑘𝑂𝑂𝑘𝑘 
𝑘𝑘
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Tb (K) exp(𝑇𝑇𝑏𝑏/𝑇𝑇𝑏𝑏0) = �𝑁𝑁𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖

+ �𝑀𝑀𝑗𝑗𝐷𝐷𝑗𝑗
𝑗𝑗

+ �𝐸𝐸𝑘𝑘𝑂𝑂𝑘𝑘 
𝑘𝑘

 

log(LC50) log(𝐿𝐿𝐶𝐶50) = 2.975 + 1.169 × log(0 𝜒𝜒𝑣𝑣) − 7.309 × (log(0𝜒𝜒𝑣𝑣))2   

log(P) log(𝑃𝑃) = 0.829 + 1.055 × (1𝜒𝜒𝑜𝑜𝑜𝑜𝑜𝑜) + 0.580 × 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 + 0.367 × 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

− 0.627 × 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.454 × 𝐼𝐼𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 + 0.658 × 𝐼𝐼𝐻𝐻𝐻𝐻2

+ 1.726 × 𝐼𝐼𝐻𝐻𝐻𝐻3 + 0.381 × 𝐼𝐼𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 + 1.271 × 𝐼𝐼𝑃𝑃𝑃𝑃2 + 0.605 × 𝐼𝐼𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

 
 
 

Table 4.3: Signatures of Product Ester 

 ATOM TYPES 
 

OCCURRENCE NOS. 
(yi) 

SIGNATURES 
 

O2 (Single Bonded) y1 O2(C4(=OC)C1(*)) 
 y2 O2(C4(=OC)C2(C)) 
 y3 O2(C4(=OC)C3(CC)) 
C at Parent  y4 C1(O2(C)) 
Level of O2 y5 C2(O2(C)C1(*)) 
(Single Bonded) y6 C2(O2(C)C2(C)) 
 y7 C2(O2(C)C3(CC)) 
 y8 C3(O2(C)C1(*)C1(*)) 
 y9 C3(O2(C)C2(C)C1(*)) 
 y10 C3(O2(C)C2(C)C2(C)) 
 y11 C3(O2(C)C3(CC)C1(*)) 
 y12 C3(O2(C)C3(CC)C2(C)) 
 y13 C3(O2(C)C3(CC)C3(CC)) 
C at Child  y14 C1(C2(O)) 
Level of O2 y15 C1(C3(OC)) 
(Single Bonded) y16 C2(C2(O)C1(*)) 
 y17 C2(C2(O)C2(C)) 
 y18 C2(C2(O)C3(CC)) 
 y19 C2(C3(OC)C1(*)) 
 y20 C2(C3(OC)C2(C)) 
 y21 C2(C3(OC)C3(CC)) 
 y22 C3(C2(O)C1(*)C1(*)) 
 y23 C3(C2(O)C2(C)C1(*)) 
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 y24 C3(C2(O)C2(C)C2(C)) 
 y25 C3(C2(O)C3(CC)C1(*)) 
 y26 C3(C2(O)C3(CC)C2(C)) 
 y27 C3(C2(O)C3(CC)C3(CC)) 
 y28 C3(C3(OC)C1(*)C1(*)) 
 y29 C3(C3(OC)C2(C)C1(*)) 
 y30 C3(C3(OC)C2(C)C2(C)) 
 y31 C3(C3(OC)C3(CC)C1(*)) 
 y32 C3(C3(OC)C3(CC)C2(C)) 
 y33 C3(C3(OC)C3(CC)C3(CC)) 
Remaining C Atoms in 
R" Group y34 C1(C2(C)) 
 y35 C1(C3(CC)) 
 y36 C2(C2(C)C1(*)) 
 y37 C2(C2(C)C2(C)) 
 y38 C2(C3(CC)C1(*)) 
 y39 C2(C3(CC)C2(C)) 
 y40 C2(C3(CC)C3(CC)) 
 y41 C3(C2(C)C1(*)C1(*)) 
 y42 C3(C2(C)C2(C)C1(*)) 
 y43 C3(C2(C)C2(C)C2(C)) 
 y44 C3(C3(CC)C1(*)C1(*)) 
 y45 C3(C3(CC)C2(C)C1(*)) 
 y46 C3(C3(CC)C2(C)C2(C)) 
 y47 C3(C3(CC)C3(CC)C1(*)) 
 y48 C3(C3(CC)C3(CC)C2(C)) 
 y49 C3(C3(CC)C3(CC)C3(CC)) 
O2 (Double Bonded) y50 O2(=C4(OC)) 
C4 of Ester y51 C4(=O2(*)O2(C)C1(*)) 
 y52 C4(=O2(*)O2(C)C2(C)) 
 y53 C4(=O2(*)O2(C)C3(CC)) 
C at Parent Level y54 C1(C4(=OO)) 
of C4 of Ester y55 C2(C4(=OO)C1(*)) 
 y56 C2(C4(=OO)C2(C)) 
 y57 C2(C4(=OO)C3(CC)) 
 y58 C3(C4(=OO)C1(*)C1(*)) 
 y59 C3(C4(=OO)C2(C)C1(*)) 
 y60 C3(C4(=OO)C2(C)C2(C)) 
 y61 C3(C4(=OO)C3(CC)C1(*)) 
 y62 C3(C4(=OO)C3(CC)C2(C)) 
 y63 C3(C4(=OO)C3(CC)C3(CC)) 
Remaining C Atoms in R 
Group y64 C1(C2(C)) 
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 y65 C1(C3(CC)) 
 y66 C2(C2(C)C1(*)) 
 y67 C2(C2(C)C2(C)) 
 y68 C2(C3(CC)C1(*)) 
 y69 C2(C3(CC)C2(C)) 
 y70 C2(C3(CC)C3(CC)) 
 y71 C3(C2(C)C1(*)C1(*)) 
 y72 C3(C2(C)C2(C)C1(*)) 
 y73 C3(C2(C)C2(C)C2(C)) 
 y74 C3(C3(CC)C1(*)C1(*)) 
 y75 C3(C3(CC)C2(C)C1(*)) 
 y76 C3(C3(CC)C2(C)C2(C)) 
 y77 C3(C3(CC)C3(CC)C1(*)) 
 y78 C3(C3(CC)C3(CC)C2(C)) 
  y79 C3(C3(CC)C3(CC)C3(CC)) 
 
 
 

Table 4.4: Signatures of Product Alcohol 

 ATOM TYPES 
 

OCCURRENCE NOS. 
(zi) 

SIGNATURES 
 

O1  z1 O1(C1(*)) 
 z2 O1(C2(C)) 
 z3 O1(C3(CC)) 
C at Parent Level  z4 C1(O1(*)) 
of O1 z5 C2(O1(*)C1(*)) 
 z6 C2(O1(*)C2(C)) 
 z7 C2(O1(*)C3(CC)) 
 z8 C3(O1(*)C1(*)C1(*)) 
 z9 C3(O1(*)C2(C)C1(*)) 
 z10 C3(O1(*)C2(C)C2(C)) 
 z11 C3(O1(*)C3(CC)C1(*)) 
 z12 C3(O1(*)C3(CC)C2(C)) 
 z13 C3(O1(*)C3(CC)C3(CC)) 
C at Child Level  z14 C1(C2(O)) 
of O1 z15 C1(C3(OC)) 
 z16 C2(C2(O)C1(*)) 
 z17 C2(C2(O)C2(C)) 
 z18 C2(C2(O)C3(CC)) 
 z19 C2(C3(OC)C1(*)) 
 z20 C2(C3(OC)C2(C)) 
 z21 C2(C3(OC)C3(CC)) 
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 z22 C3(C2(O)C1(*)C1(*)) 
 z23 C3(C2(O)C2(C)C1(*)) 
 z24 C3(C2(O)C2(C)C2(C)) 
 z25 C3(C2(O)C3(CC)C1(*)) 
 z26 C3(C2(O)C3(CC)C2(C)) 
 z27 C3(C2(O)C3(CC)C3(CC)) 
 z28 C3(C3(OC)C1(*)C1(*)) 
 z29 C3(C3(OC)C2(C)C1(*)) 
 z30 C3(C3(OC)C2(C)C2(C)) 
 z31 C3(C3(OC)C3(CC)C1(*)) 
 z32 C3(C3(OC)C3(CC)C2(C)) 
 z33 C3(C3(OC)C3(CC)C3(CC)) 
Remaining C Atoms in 
R' Group z34 C1(C2(C)) 
 z35 C1(C3(CC)) 
 z36 C2(C2(C)C1(*)) 
 z37 C2(C2(C)C2(C)) 
 z38 C2(C3(CC)C1(*)) 
 z39 C2(C3(CC)C2(C)) 
 z40 C2(C3(CC)C3(CC)) 
 z41 C3(C2(C)C1(*)C1(*)) 
 z42 C3(C2(C)C2(C)C1(*)) 
 z43 C3(C2(C)C2(C)C2(C)) 
 z44 C3(C3(CC)C1(*)C1(*)) 
 z45 C3(C3(CC)C2(C)C1(*)) 
 z46 C3(C3(CC)C2(C)C2(C)) 
 z47 C3(C3(CC)C3(CC)C1(*)) 
 z48 C3(C3(CC)C3(CC)C2(C)) 
  z49 C3(C3(CC)C3(CC)C3(CC)) 

 
 
 

Table 4.5: Structures of designed Products and Reactants 

Soln. 

No. 

Reactants/ 

Products 

Name 

Objective 

Function 

Value 
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1 RCOOR´ ethyl 2,4,5,6-tetramethylheptanoate - 

 R˝OH methanol - 

 RCOOR˝ methyl 2,4,5,6-tetramethylheptanoate 341.81 K 

 R´OH ethanol 282.81 K 

2 RCOOR´ ethyl 2,4-dimethylpentanoate - 

 R˝OH 3-methylbutan-2-ol - 

 RCOOR˝ 3-methylbutan-2-yl 2,4-dimethylpentanoate 341.81 K 

 R´OH ethanol 282.81 K 

3 RCOOR´ ethyl 2,3-dimethylbutanoate - 

 R˝OH 4-methylpentan-2-ol - 

 RCOOR˝ 4-methylpentan-2-yl 2,3-dimethylbutanoate 341.81 K 

 R´OH ethanol 282.81 K 

4 RCOOR´ ethyl 2,3-dimethylbutanoate - 

 R˝OH 3-methylpentan-2-ol - 

 RCOOR˝ 3-methylpentan-2-yl 2,3-dimethylbutanoate 341.81 K 
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 R´OH ethanol 282.81 K 

5 RCOOR´ ethyl 2-ethyl-3-isopropyl-4-methylpentanoate - 

 R˝OH methanol  - 

 RCOOR˝ methyl 2-ethyl-3-isopropyl-4-methylpentanoate 341.81 K 

 R´OH ethanol 282.81 K 

6 RCOOR´ ethyl isobutyrate - 

 R˝OH 4,5-dimethylhexan-2-ol  - 

 RCOOR˝ 4,5-dimethylhexan-2-yl isobutyrate 341.81 K 

 R´OH ethanol 282.81 K 

7 RCOOR´ ethyl 2-ethylpentanoate - 

 R˝OH propanol - 

 RCOOR˝ propyl 2-ethylpentanoate 341.41 K 

 R´OH ethanol 282.81 K 

8 RCOOR´ ethyl 2-methylhexanoate - 

 R˝OH propanol - 
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 RCOOR˝ propyl 2-methylhexanoate 341.41 K 

 R´OH ethanol  282.81 K 

9 RCOOR´ ethyl 2-propylhexanoate - 

 R˝OH methanol - 

 RCOOR˝ methyl 2-propylhexanoate 341.41 K 

 R´OH ethanol 282.81 K 

10 RCOOR´ ethyl isobutyrate - 

 R˝OH 5-methylhexan-3-ol  - 

 RCOOR˝ 5-methylhexan-3-yl isobutyrate 337.87 K 

 R´OH ethanol 282.81 K 

11 RCOOR´ ethyl 2-methylbutanoate - 

 R˝OH 2-methylpentan-3-ol  - 

 RCOOR˝ 2-methylpentan-3-yl 2-methylbutanoate 337.87 K 

 R´OH ethanol 282.81 K 
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4.2. Case Study 2 

Like in the first case study, we rely on the transesterification reaction portrayed in Fig. 3.2. We 

use the same terminologies as those in section 4.1. The aim of this case study is to design RCOOR´, 

R˝OH, RCOOR˝ and R´OH such that the standard Gibbs free energy change of the 

transesterification reaction in gas phase, ∆Gºrxn, is minimized. Also, RCOOR´ and R˝OH are 

constrained by log(P) and log(LC50) respectively. RCOOR˝ and R´OH are subjected to their 

respective set of Tb and Fp constraints. The property ranges are listed in Table 4.6. ∆G0rxn has been 

evaluated using the following definition: 

 

∆𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟0 = �𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐺𝐺𝑓𝑓,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 −�𝑏𝑏𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝐺𝐺𝑓𝑓,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 (4.1)  

 

Where, Gf, product and Gf, reactant are standard Gibbs energy of formation values and aproduct and 

breactant are stoichiometric coefficients of each product and reactant respectively. The free energy 

of formation in gas phase (Gf) in kJ/mol of each reactant and product was expressed in terms of 

their structures using the following GCM developed by Hukkerikar et al. (2012): 

 

𝐺𝐺𝑓𝑓 − 𝐺𝐺𝑓𝑓0 = �𝑁𝑁𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖

+ �𝑀𝑀𝑗𝑗𝐷𝐷𝑗𝑗
𝑗𝑗

+ �𝐸𝐸𝑘𝑘𝑂𝑂𝑘𝑘 
𝑘𝑘

 (4.2)  
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The GCM in Eq. (4.2) has the same form as the GCMs mentioned in Table 4.2. The other utilized 

property models are same as those listed in Table 4.2. 

 

Table 4.6: Property Constraints on Reactants and Products 

Reactant/Product Property Upper Bound Lower Bound 

All ∆Gºrxn (kJ/mol)  Minimum 

RCOOR´ log(P) 5 - 

R˝OH log(LC50) - -1 

RCOOR˝ Boiling Point (K) 485 395 

 Flash Point (K) 375 295 

R´OH Boiling Point (K) 470 385 

 Flash Point (K) 380 300 

The strategy in section 3.3, to reduce the number of signatures generated, is relevant to this case 

study. This is because the highest height required is 3 in this case, owing to some second order 

groups in the GCMs. All other groups in the GCMs and TIs can be expressed using height 2 

signatures. An MINLP problem, in accordance with section 3.2.3, of minimizing the standard 

Gibbs energy change of transesterification reaction in gas phase, was set up in GAMS. 

Additionally, the structural and property constraints of the reactant and product esters and 
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alcohols along with RABS relationships were included taking into consideration the above 

strategy. The structural constraints owing to the height disparity, mentioned in section 3.3, are 

also included in the MINLP problem. The MINLP problem was solved using the DICOPT solver. 

Also, R, R´ and R˝ are assumed to be homogeneous, acyclic, and saturated groups. Also, the 

degree of atoms in R, R´ and R˝ do not exceed 3. Unlike the first case study, we have not ignored 

the second order groups in the GCMs. Thus, the GCMs have not been approximated. Also, no 

third order groups exist for our case study. Taking into account the aforementioned assumptions, 

the signatures of atoms of reactant ester and reactant alcohol are listed in Table 4.7 and Table 

4.8. The signatures of products, not listed here, are same as that of the reactants. They have 

different occurrence no. variables associated with them, however. The obtained results 

corresponding to the optimal value of the Gibbs free energy change of the reaction have been 

presented in Table 4.9. It is worth mentioning that although we have optimized the Std. Gibbs 

Energy change in gas phase, one can definitely use the methodology described in section 3.2.3 

to carry out the optimization in other phases as long as the suitable thermodynamic models are 

available. In aqueous phase, for example, the Gibbs Energy of formation computation can be 

carried out using the GCM developed by Jankowski et al. (2008).  

 

Table 4.7: Signatures of Reactant Ester 

ATOM TYPES 
 

OCCURRENCE NOS. 
(wi) 

SIGNATURES 
 

O2 (Single Bonded)  w1 O2(C1(*)C4(=OC)) 
 w2 O2(C2(C)C4(=OC)) 
  w3 O2(C3(CC)C4(=OC)) 
C at Parent Level of O2 w4 C1(O2(C)) 
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 w5 C2(O2(C)C1(*)) 
 w6 C2(O2(C)C2(C)) 
 w7 C2(O2(C)C3(CC)) 
 w8 C3(O2(C)C1(*)C1(*)) 
 w9 C3(O2(C)C2(C)C1(*)) 
 w10 C3(O2(C)C2(C)C2(C)) 
 w11 C3(O2(C)C3(CC)C1(*)) 
 w12 C3(O2(C)C3(CC)C2(C)) 
 w13 C3(O2(C)C3(CC)C3(CC)) 
 w14 C3(C1(*)O2(C4(=OC))C3(C1(*)C1(*))) 
 w15 C3(C1(*)O2(C4(=OC))C3(C1(*)C2(C))) 
  w16 C3(C1(*)O2(C4(=OC))C3(C1(*)C3(CC))) 
C at Child Level of O2 w17 C1(C2(O)) 
 w18 C1(C3(OC)) 
 w19 C2(C2(O)C1(*)) 
 w20 C2(C2(O)C2(C)) 
 w21 C2(C2(O)C3(CC)) 
 w22 C2(C3(OC)C1(*)) 
 w23 C2(C3(OC)C2(C)) 
 w24 C2(C3(OC)C3(CC)) 
 w25 C3(C2(O)C1(*)C1(*)) 
 w26 C3(C2(O)C2(C)C1(*)) 
 w27 C3(C2(O)C2(C)C2(C)) 
 w28 C3(C2(O)C3(CC)C1(*)) 
 w29 C3(C2(O)C3(CC)C2(C)) 
 w30 C3(C2(O)C3(CC)C3(CC)) 
 w31 C3(C3(OC)C1(*)C1(*)) 
 w32 C3(C3(OC)C2(C)C1(*)) 
 w33 C3(C3(OC)C2(C)C2(C)) 
 w34 C3(C3(OC)C3(CC)C1(*)) 
 w35 C3(C3(OC)C3(CC)C2(C)) 
 w36 C3(C3(OC)C3(CC)C3(CC)) 
 w37 C3(C1(*)C1(*)C3(C1(*)O2(C))) 
 w38 C3(C1(*)C2(C1(*))C3(C1(*)O2(C))) 
 w39 C3(C1(*)C2(C2(C))C3(C1(*)O2(C))) 
 w40 C3(C1(*)C2(C3(CC))C3(C1(*)O2(C))) 
 w41 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)O2(C))) 
 w42 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)O2(C))) 
 w43 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)O2(C))) 
 w44 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)O2(C))) 
 w45 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)O2(C))) 
 w46 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)O2(C))) 
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 w47 C3(C1(*)C2(O2(C))C3(C1(*)C1(*))) 
 w48 C3(C1(*)C2(O2(C))C3(C1(*)C2(C))) 
 w49 C3(C1(*)C2(O2(C))C3(C1(*)C3(CC))) 
 w50 C3(C1(*)C3(O2(C)C2(C))C3(C1(*)C1(*))) 
 w51 C3(C1(*)C3(O2(C)C2(C))C3(C1(*)C2(C))) 
 w52 C3(C1(*)C3(O2(C)C2(C))C3(C1(*)C3(CC))) 
 w53 C3(C1(*)C3(O2(C)C3(CC))C3(C1(*)C1(*))) 
 w54 C3(C1(*)C3(O2(C)C3(CC))C3(C1(*)C2(C))) 
  w55 C3(C1(*)C3(O2(C)C3(CC))C3(C1(*)C3(CC))) 
C at Height 3 from O2 w56 C3(C1(*)C1(*)C3(C1(*)C2(O))) 
 w57 C3(C1(*)C2(C1(*))C3(C1(*)C2(O))) 
 w58 C3(C1(*)C2(C2(C))C3(C1(*)C2(O))) 
 w59 C3(C1(*)C2(C3(CC))C3(C1(*)C2(O))) 
 w60 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C2(O))) 
 w61 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C2(O))) 
 w62 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C2(O))) 
 w63 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C2(O))) 
 w64 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C2(O))) 
 w65 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C2(O))) 
 w66 C3(C1(*)C1(*)C3(C1(*)C3(OC))) 
 w67 C3(C1(*)C2(C1(*))C3(C1(*)C3(OC))) 
 w68 C3(C1(*)C2(C2(C))C3(C1(*)C3(OC))) 
 w69 C3(C1(*)C2(C3(CC))C3(C1(*)C3(OC))) 
 w70 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C3(OC))) 
 w71 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C3(OC))) 
 w72 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C3(OC))) 
 w73 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C3(OC))) 
 w74 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C3(OC))) 
 w75 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C3(OC))) 
 w76 C3(C1(*)C2(C2(O))C3(C1(*)C1(*))) 
 w77 C3(C1(*)C2(C2(O))C3(C1(*)C2(C))) 
 w78 C3(C1(*)C2(C2(O))C3(C1(*)C3(CC))) 
 w79 C3(C1(*)C2(C3(OC))C3(C1(*)C1(*))) 
 w80 C3(C1(*)C2(C3(OC))C3(C1(*)C2(C))) 
 w81 C3(C1(*)C2(C3(OC))C3(C1(*)C3(CC))) 
 w82 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C1(*))) 
 w83 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C2(C))) 
 w84 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C3(CC))) 
 w85 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C1(*))) 
 w86 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C2(C))) 
 w87 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C3(CC))) 
 w88 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C1(*))) 
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 w89 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C2(C))) 
 w90 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C3(CC))) 
 w91 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C1(*))) 
 w92 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C2(C))) 
  w93 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C3(CC))) 
Remaining C atoms in 
R' Group w94 C1(C2(C)) 
 w95 C1(C3(CC)) 
 w96 C2(C2(C)C1(*)) 
 w97 C2(C2(C)C2(C)) 
 w98 C2(C3(CC)C1(*)) 
 w99 C2(C3(CC)C2(C)) 
 w100 C2(C3(CC)C3(CC)) 
 w101 C3(C2(C)C1(*)C1(*)) 
 w102 C3(C2(C)C2(C)C1(*)) 
 w103 C3(C2(C)C2(C)C2(C)) 
 w104 C3(C3(CC)C1(*)C1(*)) 
 w105 C3(C3(CC)C2(C)C1(*)) 
 w106 C3(C3(CC)C2(C)C2(C)) 
 w107 C3(C3(CC)C3(CC)C1(*)) 
 w108 C3(C3(CC)C3(CC)C2(C)) 
 w109 C3(C3(CC)C3(CC)C3(CC)) 
 w110 C3(C1(*)C1(*)C3(C1(*)C2(C))) 
 w111 C3(C1(*)C1(*)C3(C1(*)C3(CC))) 
 w112 C3(C1(*)C2(C1(*))C3(C1(*)C2(C))) 
 w113 C3(C1(*)C2(C1(*))C3(C1(*)C3(CC))) 
 w114 C3(C1(*)C2(C2(C))C3(C1(*)C1(*))) 
 w115 C3(C1(*)C2(C2(C))C3(C1(*)C2(C))) 
 w116 C3(C1(*)C2(C2(C))C3(C1(*)C3(CC))) 
 w117 C3(C1(*)C2(C3(CC))C3(C1(*)C1(*))) 
 w118 C3(C1(*)C2(C3(CC))C3(C1(*)C2(C))) 
 w119 C3(C1(*)C2(C3(CC))C3(C1(*)C3(CC))) 
 w120 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C2(C))) 
 w121 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C3(CC))) 
 w122 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C2(C))) 
 w123 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C3(CC))) 
 w124 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C1(*))) 
 w125 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C2(C))) 
 w126 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C3(CC))) 
 w127 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C3(CC))) 
 w128 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C1(*))) 
 w129 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C2(C))) 
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 w130 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C3(CC))) 
 w131 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C1(*))) 
 w132 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C2(C))) 
  w133 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C3(CC))) 
O2 (Double Bonded)  w134 O2(=C4(OC)) 
C4 of Ester Group w135 C4(=O2(*)O2(C)C1(*)) 
 w136 C4(=O2(*)O2(C3(CC))C1(*)) 
 w137 C4(=O2(*)O2(C)C2(C)) 
  w138 C4(=O2(*)O2(C)C3(CC)) 
C at Parent Level of C4 w139 C1(C4(=OO)) 
 w140 C2(C4(=OO)C1(*)) 
 w141 C2(C4(=OO)C2(C)) 
 w142 C2(C4(=OO)C3(CC)) 
 w143 C3(C4(=OO)C1(*)C1(*)) 
 w144 C3(C4(=OO)C2(C)C1(*)) 
 w145 C3(C4(=OO)C2(C)C2(C)) 
 w146 C3(C4(=OO)C3(CC)C1(*)) 
 w147 C3(C4(=OO)C3(CC)C2(C)) 
 w148 C3(C4(=OO)C3(CC)C3(CC)) 
 w149 C3(C1(*)C4(=O2(*)O2(C))C3(C1(*)C1(*))) 
 w150 C3(C1(*)C4(=O2(*)O2(C))C3(C1(*)C2(C))) 
  w151 C3(C1(*)C4(=O2(*)O2(C))C3(C1(*)C3(CC))) 
C at Child Level of C4 w152 C3(C1(*)C1(*)C3(C1(*)C4(=OO))) 
 w153 C3(C1(*)C2(C1(*))C3(C1(*)C4(=OO))) 
 w154 C3(C1(*)C2(C2(C))C3(C1(*)C4(=OO))) 
 w155 C3(C1(*)C2(C3(CC))C3(C1(*)C4(=OO))) 
 w156 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C4(=OO))) 
 w157 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C4(=OO))) 
 w158 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C4(=OO))) 
 w159 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C4(=OO))) 
 w160 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C4(=OO))) 
 w161 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C4(=OO))) 
 w162 C3(C1(*)C2(C4(=OO))C3(C1(*)C1(*))) 
 w163 C3(C1(*)C2(C4(=OO))C3(C1(*)C2(C))) 
 w164 C3(C1(*)C2(C4(=OO))C3(C1(*)C3(CC))) 
 w165 C3(C1(*)C3(C4(=OO)C2(C))C3(C1(*)C1(*))) 
 w166 C3(C1(*)C3(C4(=OO)C3(CC))C3(C1(*)C1(*))) 
 w167 C3(C1(*)C3(C4(=OO)C2(C))C3(C1(*)C2(C))) 
 w168 C3(C1(*)C3(C4(=OO)C3(CC))C3(C1(*)C2(C))) 
 w169 C3(C1(*)C3(C4(=OO)C2(C))C3(C1(*)C3(CC))) 
  w170 C3(C1(*)C3(C4(=OO)C3(CC))C3(C1(*)C3(CC))) 
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Remaining C Atoms in 
R Group w171 C1(C2(C)) 
 w172 C1(C3(CC)) 
 w173 C2(C2(C)C1(*)) 
 w174 C2(C2(C)C2(C)) 
 w175 C2(C3(CC)C1(*)) 
 w176 C2(C3(CC)C2(C)) 
 w177 C2(C3(CC)C3(CC)) 
 w178 C3(C2(C)C1(*)C1(*)) 
 w179 C3(C2(C)C2(C)C1(*)) 
 w180 C3(C2(C)C2(C)C2(C)) 
 w181 C3(C3(CC)C1(*)C1(*)) 
 w182 C3(C3(CC)C2(C)C1(*)) 
 w183 C3(C3(CC)C2(C)C2(C)) 
 w184 C3(C3(CC)C3(CC)C1(*)) 
 w185 C3(C3(CC)C3(CC)C2(C)) 
 w186 C3(C3(CC)C3(CC)C3(CC)) 
 w187 C3(C1(*)C1(*))C3(C1(*)C2(C))) 
 w188 C3(C1(*)C1(*))C3(C1(*)C3(CC))) 
 w189 C3(C1(*)C2(C1(*))C3(C1(*)C2(C))) 
 w190 C3(C1(*)C2(C1(*))C3(C1(*)C3(CC))) 
 w191 C3(C1(*)C2(C2(C))C3(C1(*)C1(*))) 
 w192 C3(C1(*)C2(C2(C))C3(C1(*)C2(C))) 
 w193 C3(C1(*)C2(C2(C))C3(C1(*)C3(CC))) 
 w194 C3(C1(*)C2(C3(CC))C3(C1(*)C1(*))) 
 w195 C3(C1(*)C2(C3(CC))C3(C1(*)C2(C))) 
 w196 C3(C1(*)C2(C3(CC))C3(C1(*)C3(CC))) 
 w197 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C2(C))) 
 w198 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C3(CC))) 
 w199 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C2(C))) 
 w200 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C3(CC))) 
 w201 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C1(*))) 
 w202 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C2(C))) 
 w203 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C3(CC))) 
 w204 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C3(CC))) 
 w205 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C1(*))) 
 w206 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C2(C))) 
 w207 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C3(CC))) 
 w208 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C1(*))) 
 w209 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C2(C))) 
  w210 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C3(CC))) 
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Table 4.8: Signatures of Reactant Alcohol 

ATOM TYPES 
OCCURRENCE 

NOS. (xi) SIGNATURES 
O1 x1 O1(C1(*)) 
 x2 O1(C2(C)) 
  x3 O1(C3(CC)) 
C at Parent Level of O1 x4 C1(O1(*)) 
 x5 C2(O1(*)C1(*)) 
 x6 C2(O1(*)C2(C)) 
 x7 C2(O1(*)C3(CC)) 
 x8 C3(O1(*)C1(*)C1(*)) 
 x9 C3(O1(*)C2(C)C1(*)) 
 x10 C3(O1(*)C2(C)C2(C)) 
 x11 C3(O1(*)C3(CC)C1(*)) 
 x12 C3(O1(*)C3(CC)C2(C)) 
 x13 C3(O1(*)C3(CC)C3(CC)) 
 x14 C3(C1(*)O1(*)C3(C1(*)C1(*))) 
 x15 C3(C1(*)O1(*)C3(C1(*)C2(C))) 
  x16 C3(C1(*)O1(*)C3(C1(*)C3(CC))) 
C at Child Level of O1 x17 C1(C2(O)) 
 x18 C1(C3(OC)) 
 x19 C2(C2(O)C1(*)) 
 x20 C2(C2(O)C2(C)) 
 x21 C2(C2(O)C3(CC)) 
 x22 C2(C3(OC)C1(*)) 
 x23 C2(C3(OC)C2(C)) 
 x24 C2(C3(OC)C3(CC)) 
 x25 C3(C2(O)C1(*)C1(*)) 
 x26 C3(C2(O)C2(C)C1(*)) 
 x27 C3(C2(O)C2(C)C2(C)) 
 x28 C3(C2(O)C3(CC)C1(*)) 
 x29 C3(C2(O)C3(CC)C2(C)) 
 x30 C3(C2(O)C3(CC)C3(CC)) 
 x31 C3(C3(OC)C1(*)C1(*)) 
 x32 C3(C3(OC)C2(C)C1(*)) 
 x33 C3(C3(OC)C2(C)C2(C)) 
 x34 C3(C3(OC)C3(CC)C1(*)) 
 x35 C3(C3(OC)C3(CC)C2(C)) 
 x36 C3(C3(OC)C3(CC)C3(CC)) 
 x37 C3(C1(*)C1(*)C3(C1(*)O1(*))) 
 x38 C3(C1(*)C2(C1(*))C3(C1(*)O1(*))) 
 x39 C3(C1(*)C2(C2(C))C3(C1(*)O1(*))) 
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 x40 C3(C1(*)C2(C3(CC))C3(C1(*)O1(*))) 
 x41 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)O1(*))) 
 x42 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)O1(*))) 
 x43 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)O1(*))) 
 x44 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)O1(*))) 
 x45 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)O1(*))) 
 x46 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)O1(*))) 
 x47 C3(C1(*)C2(O1(*))C3(C1(*)C1(*))) 
 x48 C3(C1(*)C2(O1(*))C3(C1(*)C2(C))) 
 x49 C3(C1(*)C2(O1(*))C3(C1(*)C3(CC))) 
 x50 C3(C1(*)C3(O1(*)C2(C))C3(C1(*)C1(*))) 
 x51 C3(C1(*)C3(O1(*)C2(C))C3(C1(*)C2(C))) 
 x52 C3(C1(*)C3(O1(*)C2(C))C3(C1(*)C3(CC))) 
 x53 C3(C1(*)C3(O1(*)C3(CC))C3(C1(*)C1(*))) 
 x54 C3(C1(*)C3(O1(*)C3(CC))C3(C1(*)C2(C))) 
  x55 C3(C1(*)C3(O1(*)C3(CC))C3(C1(*)C3(CC))) 
C at Height 3 from O1 x56 C3(C1(*)C1(*)C3(C1(*)C2(O))) 
 x57 C3(C1(*)C2(C1(*))C3(C1(*)C2(O))) 
 x58 C3(C1(*)C2(C2(C))C3(C1(*)C2(O))) 
 x59 C3(C1(*)C2(C3(CC))C3(C1(*)C2(O))) 
 x60 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C2(O))) 
 x61 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C2(O))) 
 x62 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C2(O))) 
 x63 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C2(O))) 
 x64 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C2(O))) 
 x65 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C2(O))) 
 x66 C3(C1(*)C1(*)C3(C1(*)C3(OC))) 
 x67 C3(C1(*)C2(C1(*))C3(C1(*)C3(OC))) 
 x68 C3(C1(*)C2(C2(C))C3(C1(*)C3(OC))) 
 x69 C3(C1(*)C2(C3(CC))C3(C1(*)C3(OC))) 
 x70 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C3(OC))) 
 x71 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C3(OC))) 
 x72 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C3(OC))) 
 x73 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C3(OC))) 
 x74 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C3(OC))) 
 x75 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C3(OC))) 
 x76 C3(C1(*)C2(C2(O))C3(C1(*)C1(*))) 
 x77 C3(C1(*)C2(C2(O))C3(C1(*)C2(C))) 
 x78 C3(C1(*)C2(C2(O))C3(C1(*)C3(CC))) 
 x79 C3(C1(*)C2(C3(OC))C3(C1(*)C1(*))) 
 x80 C3(C1(*)C2(C3(OC))C3(C1(*)C2(C))) 
 x81 C3(C1(*)C2(C3(OC))C3(C1(*)C3(CC))) 
 x82 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C1(*))) 
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 x83 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C2(C))) 
 x84 C3(C1(*)C3(C2(O)C2(C))C3(C1(*)C3(CC))) 
 x85 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C1(*))) 
 x86 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C2(C))) 
 x87 C3(C1(*)C3(C2(O)C3(CC))C3(C1(*)C3(CC))) 
 x88 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C1(*))) 
 x89 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C2(C))) 
 x90 C3(C1(*)C3(C3(OC)C2(C))C3(C1(*)C3(CC))) 
 x91 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C1(*))) 
 x92 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C2(C))) 
  x93 C3(C1(*)C3(C3(OC)C3(CC))C3(C1(*)C3(CC))) 
Remaining C atoms in R" x94 C1(C2(C)) 
Group x95 C1(C3(CC)) 
 x96 C2(C2(C)C1(*)) 
 x97 C2(C2(C)C2(C)) 
 x98 C2(C3(CC)C1(*)) 
 x99 C2(C3(CC)C2(C)) 
 x100 C2(C3(CC)C3(CC)) 
 x101 C3(C2(C)C1(*)C1(*)) 
 x102 C3(C2(C)C2(C)C1(*)) 
 x103 C3(C2(C)C2(C)C2(C)) 
 x104 C3(C3(CC)C1(*)C1(*)) 
 x105 C3(C3(CC)C2(C)C1(*)) 
 x106 C3(C3(CC)C2(C)C2(C)) 
 x107 C3(C3(CC)C3(CC)C1(*)) 
 x108 C3(C3(CC)C3(CC)C2(C)) 
 x109 C3(C3(CC)C3(CC)C3(CC)) 
 x110 C3(C1(*)C1(*)C3(C1(*)C2(C))) 
 x111 C3(C1(*)C1(*)C3(C1(*)C3(CC))) 
 x112 C3(C1(*)C2(C1(*))C3(C1(*)C2(C))) 
 x113 C3(C1(*)C2(C1(*))C3(C1(*)C3(CC))) 
 x114 C3(C1(*)C2(C2(C))C3(C1(*)C1(*))) 
 x115 C3(C1(*)C2(C2(C))C3(C1(*)C2(C))) 
 x116 C3(C1(*)C2(C2(C))C3(C1(*)C3(CC))) 
 x117 C3(C1(*)C2(C3(CC))C3(C1(*)C1(*))) 
 x118 C3(C1(*)C2(C3(CC))C3(C1(*)C2(C))) 
 x119 C3(C1(*)C2(C3(CC))C3(C1(*)C3(CC))) 
 x120 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C2(C))) 
 x121 C3(C1(*)C3(C1(*)C1(*))C3(C1(*)C3(CC))) 
 x122 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C2(C))) 
 x123 C3(C1(*)C3(C2(C)C1(*))C3(C1(*)C3(CC))) 
 x124 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C1(*))) 
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 x125 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C2(C))) 
 x126 C3(C1(*)C3(C2(C)C2(C))C3(C1(*)C3(CC))) 
 x127 C3(C1(*)C3(C3(CC)C1(*))C3(C1(*)C3(CC))) 
 x128 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C1(*))) 
 x129 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C2(C))) 
 x130 C3(C1(*)C3(C3(CC)C2(C))C3(C1(*)C3(CC))) 
 x131 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C1(*))) 
 x132 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C2(C))) 
  x133 C3(C1(*)C3(C3(CC)C3(CC))C3(C1(*)C3(CC))) 

 

Table 4.9: Structures of designed Reactants and Products 

Soln. 

No. 

Reactants/ 

Products 

 

Name 

Objective 

Function 

Value 

1 RCOOR´ 
 

2-methylpentan-3-yl pentanoate 
-13.62 

kJ/mol 

 R˝OH  ethanol  

 RCOOR˝  Ethyl pentanoate  

 R´OH  2-methylpentan-3-ol  

2 RCOOR´ 
 

pentan-2-yl 3-ethylpentanoate 
-13.62 

kJ/mol 

 R˝OH  ethanol  
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 RCOOR˝  ethyl 3-ethylpentanoate  

 R´OH  pentan-2-ol  

3 RCOOR´ 
 

pentan-3-yl 2,3-dimethylbutanoate 
-13.62 

kJ/mol 

 R˝OH  methanol  

 RCOOR˝  methyl 2,3-dimethylbutanoate  

 R´OH  pentan-3-ol  

4 RCOOR´ 
 

hexan-3-yl 2,3-dimethylbutanoate 
-13.62 

kJ/mol 

 R˝OH  3-methylpentan-2-ol  

 RCOOR˝  3-methylpentan-2-yl 2,3-dimethylbutanoate  

 R´OH  hexan-3-ol  

5 RCOOR´ 
 

pentan-3-yl 3,4-dimethylpentanoate 
-13.62 

kJ/mol 

 R˝OH  methanol   

 RCOOR˝  methyl 3,4-dimethylpentanoate  
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 R´OH  pentan-3-ol  

6 RCOOR´ 
 

pentan-3-yl 2,3-dimethylpentanoate 
-13.62 

kJ/mol 

 R˝OH  methanol  

 RCOOR˝  methyl 2,3-dimethylpentanoate  

 R´OH  pentan-3-ol  

7 RCOOR´ 
 

pentan-2-yl 2-ethylbutanoate 
-13.62 

kJ/mol 

 R˝OH  methanol  

 RCOOR˝  methyl 2-ethylbutanoate  

 R´OH  pentan-2-ol  

 
 
 
 
4.3. Case Study 3 

Once again, we use the transesterification reaction portrayed in Fig. 3.2 to demonstrate our 

algorithm. The aim of this case study is to design RCOOR´ and R˝OH with respective optimal 

log(LC50) values and RCOOR˝ and R´OH with respective optimal Fp. The Fp of the products and 

log(LC50) of the reactants are to be maximized. Additionally, Tb of the reactants are constrained 
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and Tb and melting point (Tm) of the products are constrained. The lower and upper bounds on 

Tb and Tm are mentioned in Table 4.10. The log(LC50) value of RCOOR´ and R˝OH decreases with 

the increase in the values of occurrence numbers of signatures of atoms in R, R´ and R˝. On the 

other hand, Fp value of RCOOR˝ and R´OH increases with the rise in values of occurrence numbers 

of signatures of atoms in R, R´ and R˝. This case is similar to that of the example presented in 

section 3.2.4 where A is the RCO group, OR´ is B and R˝O group is C. Since, in accordance with 

section 3.2.4, the property objective functions are conflicting, there is not going to be one single 

optima value for each function that will capture the various trade-offs. Thus, a pareto optimal set 

will have to be generated. The log(LC50) computation is carried out using the following GCM 

developed by Martin and Young (2001): 

 

− log(𝐿𝐿𝐶𝐶50) = �𝑛𝑛𝑖𝑖𝛼𝛼𝑖𝑖

𝑛𝑛𝑛𝑛

𝑖𝑖=1

 (4.3)  

 

Where, ni is the number of groups of type i in the compound, αi is the toxicity contribution of 

group i and ng is the number of groups in the model. Tm computation in Kelvin is carried out using 

the following GCM developed by Hukkerikar et al. (2012): 
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exp(𝑇𝑇𝑚𝑚/𝑇𝑇𝑚𝑚0) = �𝑁𝑁𝑖𝑖𝐶𝐶𝑖𝑖
𝑖𝑖

+ �𝑀𝑀𝑗𝑗𝐷𝐷𝑗𝑗
𝑗𝑗

+ �𝐸𝐸𝑘𝑘𝑂𝑂𝑘𝑘 
𝑘𝑘

 (4.4)  

 

The Tm GCM has the same form as the GCMs in Table 4.2. Also, for computation of Tb and Fp, the 

GCMs mentioned in Table 4.2 are utilized. 

  

Table 4.10: Property Constraints on Reactants and Products 

Reactants/ 

Products 

Property Upper Bound Lower Bound 

RCOOR´ log(LC50)  Maximum 

 Boiling Point (K) 430 350 

R˝OH log(LC50) Maximum 

 Boiling Point (K) 430 360 

RCOOR˝ Flash Point (K) Maximum 

 Boiling Point (K) 485 395 

 Melting Point (K) 280 200 

R´OH Flash Point (K) Maximum 
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 Boiling Point (K) 470 385 

 Melting Point (K) 275 190 

 

To make the Tb and Tm GCMs linear, we replace exp(Tb/Tb0) and exp(Tm/Tm0) by some variables U 

and V. The constraints on Tm and Tb are also accordingly modified so that they then become 

constraints on U and V. Since all the models now become linear, we will set up an MOMILP 

problem. In accordance with section 3.2.4, the MOMILP problem consists of each of the objective 

functions, property constraints, structural feasibility constraints and RABS relationships. Like in 

section 4.1, we have ignored the second order groups. There are no third order groups for our 

case. R, R´ and R˝ are assumed to be homogeneous, acyclic, and saturated groups. Also, the 

degree of atoms in R, R´ and R˝ do not exceed 3. The signatures of atoms in reactants and 

products are same as those listed in Table 4.3 and Table 4.4. The signatures of reactant alcohol 

and product alcohol have different occurrence no. variable associated with them, however. 

Similar is the case for the reactant and product ester. To solve the MOMILP problem, we utilized 

AUGMECON. In the AUGMECON scheme, the ensuing MILP problems were solved using CPLEX in 

GAMS. We chose the number of grid points to be 5. Choosing additional grid points may provide 

additional pareto optimal solutions. We have listed the pareto optimal solutions obtained for our 

case study in Table 4.11.  
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Table 4.11: Pareto Optimal Solutions 

Solution No. 
Reactants/ 

Products 
Name 

Objective 

Function Value 

1 RCOOR´ butyl acetate -3.52 

 R˝OH pentanol -2.19 

 RCOOR˝ pentyl acetate 160.24 K 

 R´OH butanol 154.98 K 

2 RCOOR´ pentan-2-yl acetate -3.84 

 R˝OH pentanol -2.19 

 RCOOR˝ pentyl acetate 160.24 K 

 R´OH pentan-2-ol 158.92 K 

3 RCOOR´ 2-methylbutyl acetate -3.84 

 R˝OH butanol -1.74 

 RCOOR˝ butyl acetate 148.83 K 

 R´OH 2-methylbutanol 158.92 K 

4 RCOOR´ pentan-3-yl acetate -3.84 
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 R˝OH Pentanol -2.19 

 RCOOR˝ pentyl acetate 160.24 K 

 R´OH pentan-3-ol 158.92 K 

5 RCOOR´ 3-methylbutyl acetate -3.84 

 R˝OH butanol -1.74 

 RCOOR˝ butyl acetate 148.83 K 

 R´OH 3-methylbutanol 154.98 K 

 

4.4. Case Study 4 

The aim of this case study is to compare the performance of four different tree based ensemble 

machine learning algorithms with respect to the prediction of rate constant of Diels-Alder 

reaction. The performance evaluation is conducted in terms of the R2 and Q2 values. Additionally, 

the performance is compared with the model developed by Datta et al. (2016a). A diverse data 

set pertaining to Diels-Alder reaction that consists of 38 different dienophiles, 19 dienes and 10 

solvents was obtained from the work of Datta et al. (2016a). One sixth of the data set was utilized 

for testing the ensemble models and the remaining portion was utilized to train the models. The 

models were implemented, trained and tested using the RTM software. The chemical species 

involved in the Diels-Alder reaction were designed using the AvogadroTM software. The chemical 
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structures were optimized using MMFF94s, a built-in geometry optimization algorithm of 

AvogadroTM. The optimized geometries were saved in the form of mol files. Next, these mol files 

were utilized as input to the DragonTM 6 software to calculate the values of various descriptors 

belonging to the class of connectivity indices. In total, the values of 111 connectivity index based 

descriptors was calculated, 37 each for the diene, dienophile and the organic solvent. This initial 

set of 111 descriptors was reduced to a set of 30 descriptors using the RReliefF algorithm of 

Robnik-Šikonja and Kononenko (1997), for model development. RReliefF was implemented using 

the ‘CORElearn’ package in R. RReliefF falls in the category of filter methods of feature selection. 

In our work, for all the ensemble methods, we utilized 500 trees to predict the rate constant and 

we set the value of number of features evaluated at each node as 10. Additionally, we 

implemented random forests using the ‘RandomForest’ package in R. On the other hand, 

regularized random forests, extremely randomized trees and gradient boosted regression trees 

were implemented using the ‘caret’ package in R. The R2 and Q2 values obtained for the four tree 

based ensemble methods are listed in Table 4.12. As shown in Table 4.12, with respect to the 

training set, all the utilized ensemble methods except gradient boosted regression trees, 

performed at least comparably or better than the hybrid GA-DT of Datta et al. (2016a). However, 

the performance was lower, when compared to the hybrid GA-DT, on the test set. Gradient 

boosted regression trees, in general fared poorly. This could be due to the small sample size used 

in our work. Randomization-based methods performed well overall and seem as promising and 

scalable alternatives for prediction of rate constant of reaction. Generally, with regards to QSPR 

development, models with Q2 value greater than 0.5 are considered to be acceptable. As pointed 

in section 3.4, decision tree based methods do not generate parametric models like in the case 
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of multiple linear regression. Decision tree based methods generate nonparametric models i.e. 

they do not make any assumptions about the distribution of the data.  

 

Table 4.12: R2 and Q2 values of different ensemble methods 

Ensemble Method  R2 Q2 

Hybrid GA-DT 0.81 0.86 

Random Forests 0.81 0.76 

Regularized Random Forests 0.81 0.74 

Extremely Randomized Trees 0.91 0.73 

Gradient Boosted Trees 0.57 0.48 
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5. Conclusions and Future Directions 

In this work, we have proposed revised structural feasibility constraints. The structural 

constraints fully take into account the overlapping of neighborhoods of bonding atoms. This 

avoids any mismatch that might occur at higher height in signatures that have the potential to 

bond. For a special case involving GCMs, an additional structural feasibility constraint has also 

been proposed. The constraint is applicable when occurrence number of all signatures are 

expressed in terms of the occurrence number of signatures of either the second highest height 

or the highest height. The highest height signature owes its presence to groups from GCMs only, 

in this case. In order for the designed reactants and products to comply with the reaction 

mechanism, a methodology has been proposed to relate the structures of reactants and products 

in accordance with the mechanism. In this methodology, we related the occurrence numbers of 

signatures of reactants and the occurrence numbers of signatures of the products. This 

relationship is captured in the RABS formulation. After relating the reactants and products 

structurally in terms of signatures, three design scenarios were addressed in this work. In the first 

scenario, we were concerned only with the optimization of dominant properties of products. This 

was extended to the optimization of properties dependent on structures of both reactants and 

products, in the second design scenario. A multi-objective optimization based approach was then 

formulated in the third design scenario to address the optimization of conflicting dominant 

properties of each reactant and product. Based on the insights developed for the design 

scenarios, we solved case studies, one for each scenario. The methodologies developed for each 

design scenario is not dependent on the number of reactants and products, and it also takes into 

account the reaction mechanism that may be involved.  
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Besides addressing different design scenarios, we also evaluated different tree based ensemble 

machine learning algorithms so that they could be used to predict properties relevant in reactive 

systems. Specifically, we were interested in predicting the rate constant of a reaction so that 

reactants and products can be designed to optimize the rate of a reaction. In our evaluation we 

found that, except gradient boosted regression trees, all methods were at least comparable or 

better than the hybrid GA-DT algorithm of Datta et al. (2016a) when compared on the basis of 

the training set. Extremely randomized trees with a R2 value of 0.91 outperformed all other 

methods. On the basis of the test set, however, the hybrid GA-DT algorithm outperformed all 

methods on the training set with the highest value of Q2 being 0.86. Overall, randomization-based 

methods’ performance was comparable to the hybrid GA-DT method. All the calculated metrics 

in our work were based on the small concatenated data set of Datta et al. (2016a). 

While the approaches showcased in this work are successful in addressing the limitations of the 

currently available methodologies for CAMD of reactants and products, there is further scope of 

extension in the approaches developed. For the future, the following extensions are proposed: 

5.1. Design at Different Temperatures and Pressures 

The three design scenarios considered in our work involve an assumption of the conditions being 

standard state conditions. However, many reactions in practice do not occur at standard 

conditions. Our work would benefit from the inclusion of operating temperatures and pressures 

as variables. This can be achieved by first generating models that are applicable over a large range 

of temperatures and pressures. Necessary data will have to be first gathered to generate such 

models. Once the models have been developed, the design methodologies developed so far will 
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have to be extended to design reactants and products within the temperature and pressure 

ranges of interest.  

 

5.2. Modelling and Maximization of Rate Constant of Reactions 

While the second design scenario addressed the optimization of thermodynamic properties of 

reactions, the maximization of rate of these reactions is also of prime importance. In the past, 

the CAMD of solvents has been carried out to maximize the rate constant of reactions. We would 

like to develop a CAMD methodology which takes into account the structural relationship 

between the rate constant and structures of reactants and molecular solvents. To partly address 

this design challenge, we developed QSPRs to predict the value of the rate constant for Diels-

Alder reaction using the molecular descriptors of reactants and solvents as input. Models for 

other reactions being studied can be similarly developed. However, availability of data is a 

concern. In general, once the models have been developed, the design methodologies developed 

so far will have to be extended to design reactants, products and solvents such that the rate of 

the reaction is maximized. A further possible extension would be to also take into account the 

effect of temperature on the rate constant of the reaction. So far, the available CAMD 

methodologies and the models utilized to design solvents for reactions have not taken the 

variation of temperature into consideration. Standard state conditions have been assumed in 

these available methodologies. 
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5.3. Modelling and Design of Reactants, Products and Ionic Liquids 

While ample research has been carried out to design molecular solvents that maximize the rate 

constant of a reaction, there has been no design study that formulates a procedure to design 

ionic liquids such that the rate of a reaction is maximized. Ionic liquids have recently generated 

enhanced interest because they have attractive properties such as low vapor pressure and high 

thermal stability. They are also known to influence the rate of reactions, just like molecular 

solvents. Designing an ionic liquid that influences the rate of reactions would involve the 

selection of the cation and the anion that makes up the ionic liquids. To carry out design of such 

solvents, first, property models will have to be generated that relate the structures of ionic liquids 

to that of the rate constant of the reaction. So far, to the best of our knowledge, such models 

have not been generated using molecular descriptors. A further extension would be to study the 

influence of structures of reactants, products and ionic liquids simultaneously on the rate 

constant of a reaction. Once, this is achieved, a CAMD methodology can be developed such that 

the design of reactants, products and ionic liquids can be carried out. Additionally, the effect of 

temperature can also be studied once the aforementioned research gaps have been filled.  
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