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Abstract 
 

 
 Autonomous mobile robots (ARM’s) are defined by their ability to perform some tasks 

independently from direct human interaction. However, interaction with humans at some point is 

necessary. There are some situations in which humans can give instructions to robots most 

effectively with physical gestures. Example include scenarios that require silence, such as covert 

military operations or hospital rooms, loud assemblies, underwater, or in space. 

Artificial neural networks (ANN’s) have long been used for pattern recognition. If well-

trained with a suitable dataset, an ANN can provide a satisfactory result for a complex task. 

ROS (Robot Operating System) is a mainstream software framework for robotics 

research throughout the world. It can streamline the development of robots through code reuse. 

This thesis describes a partial solution to help robots understand human gesture by 

combining an ANN and ROS, with a Kinect sensor as the primary input. Five gestures are 

trained, and then recognized when performed by people other than the trainer. The overall 

success rate of gesture recognition in this study is 80 percent. Some gestures are recognized with 

more than 90 percent success. 
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Chapter 1 

Motivation 

Autonomous mobile robots (AMRs) are emerging in recent decades in many areas 

including academic, military, and industrial[1][2]. AMRs have abilities to finish tasks 

that human will never be able to try, such as rescue in dangerous areas and restlessly 

working in a high-precision job with a rapid pace. AMRs have been recognized as a 

reliable assistant in modern and future human life. To better serve people, AMRs will 

benefit from a high-level intelligence that can understand instruction from humans 

without an external controller – to be more like communicating with creatures. 

Much research has been done with the topic of increasing robot intelligence and it 

is also a fast-growing area in both academia and industry. This thesis will use an 

artificial neural network (ANN) to help the AMR with understanding human gestures 

with specific reactions. Gesture is a normal way to communicate between human 

individuals in daily life. In some kind of situations, gestures will provide better quality 

such as under water, or in a silent environment like a hospital room. Through this neural 

network implementation, people will be able to communicate with robots in a more 

natural way. 

 

 



2 
 

 

 

 

Chapter 2 

Robot Operating System (ROS) and Gesture Recognition Review 

The robot used for this thesis work was built based on a very popular robot control 

system – the Robot Operating System (ROS)[3]. ROS is an open source, flexible 

framework for developing robot software. It is a collection of tools, libraries, and 

conventions that try to streamline the process of creating a robust but complex set of 

robot behaviors. In this thesis, a Kinect Depth Camera Sensor will collect a a point 

cloud from the environment and send those data to the ROS environment[4]. After 

processing those raw data, a human skeletal pose model will be generated and then sent 

as a topic into the ROS environment. An artificial neural network processing node will 

attempt to recognize a gesture, which will be published into ROS and subscribed by the 

control node. Finally, the robot will follow instructions and respond with proper 

movements. Almost all the information communication inside the robot will go through 

ROS. 

2.1 ROS Overview 

 Robotics is experiencing tremendous growth. Consequently, a lot of effort has been 

devoted to enabling code reuse. ROS has become the de-facto standard meta-operating 

system for robots. It includes support for basic level embedded functions, physical 

actions, and all the way up to autonomous control[3]. 
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2.2 Basic Implementation Concepts 

The fundamental concepts of ROS are nodes, messages, topics, and services. These 

four concepts are built directly for ROS and get involved with every ROS application[2]. 

2.2.1 Nodes 

 Nodes are processes that perform computation/function (more precisely: when the 

node is running, it is a process. Otherwise it is a bunch of code).  

2.2.2 Messages 

Nodes use messages to communicate with each other, more specifically, passing 

messages. A message is a typed data structure, strictly bounded, which may contain 

almost any data type (Integer, Double, Float, etc.). There are a lot of supported data 

types built inside the ROS and it is very convenient to use. In the meantime, you can 

always define your own data structure using a “.msg” file, such as widely used 

Pose2D.msg file which can provide x and y axis data in one message. 

2.2.3 Topics 

A node uses message to communicate and it does so through publish or subscribe 

such message to a topic. Topics are typically identified as different strings such as 

“/twist” and “/image_raw”. A node will receive designated messages by subscribing to 

a certain topic. It can send a message by publishing messages to a topic in order to let 

other subscribed nodes receive the messages. A node can have many different 

publishers and subscribers while many subscribers can listen to one same topic – same 

as publisher. Actually, publishers and subscribers will not know each other’s existence; 

what they will do is only to send out or receive messages through a specific topic. 
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2.2.4 Service 

Other than topic, service is another communication paradigm. Compared to topic’s 

asynchronous communication, services provide a synchronous way for communication. 

All the services work under a call-respond rule in which one node requests a specific 

other node to execute and return a one-time response. This kind of situation will occur 

when the modified system will perform only one-time task which is both special and 

unique – this kind of action will not fit the all-time broad-casting architecture, which is 

the topic-message architecture. 

2.3 Gesture Recognition Review 

 Gestures have long been considered an important way to provide human-robot 

interaction. A gesture is a natural way for humans to interact, and they are easy to learn. 

According to research, 35% of human communications consists of verbal but 65% of 

human communications consists of non-verbal gesture-based communications[5]. 

Sensors used for gesture vary from optical devices, such as HD cameras: “SoftKinetic 

HD camera”, to wearable devices, such as a data glove: “CyberGlove II” [6][7].  

2.3.1 Gesture Categories 

 Gestures can be divided into two different categories: static or dynamic. A static 

gesture is represented by a hand performing no change of orientation or position in a 

certain time interval. A dynamic gesture is represented by hand movements involving 

other body parts following a certain trajectory within a limited time interval[8]. 
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Figure 2.1: Hand Gesture Categories[8] 

2.3.2 Gesture Recognition Technology 

 Gesture recognition technology includes three areas: gesture detection, gesture 

tracking, and gesture recognition[9]–[11]. There are abundant number of researches 

done in these areas. In this thesis, the focus is on gesture recognition using existing 

gesture detection and gesture tracking technology, namely PCL and Skeleton_Marker 

in ROS. 

 

Figure 2.2: Gesture Recognition Technology[11] 
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2.3.3 Gesture Recognition 

 The target of gesture recognition is to interpret the semantics of hand(s) location 

and posture. For static gestures, a common gesture classifier or template-matcher will 

be used. For dynamic gestures, techniques that can handle temporal dimensional change 

will be more helpful such as Hidden Markov Models (HMM) – but for dynamic gesture 

with known class representatives, a supervised learning will perform better. Some of 

the general gesture recognition techniques are listed below: 

Table 2-1 Gesture Recognition Techniques 

K-means A technique which will determine k centers (points) to minimize the 

clustering error and find statically similar groups in multi-spectral 

space[12][13]. It can provide a reliable match between gestures and 

unknown data income. 

K-nearest 

Neighbor 

A technique which will classify objects based on the closest training 

examples[14]. It will also help with the static gestures. 

Hidden 

Markov 

Model 

Firstly introduced in the 1990s, Hidden Markov Model is a technique 

which will provide a probability value for each state analysis and 

provide a final probability at the final state – a probability which will 

determine the user’s most likely gesture dynamically[13][14]. 

Neural 

Network 

A technique which will provide the network a memory about different 

gesture recognitions and thus obtain the ability for real time dynamic 

gesture recognition[17]. Since it’s a supervised learning, a new 

network will need to be trained for every new gesture. 
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2.3.4 Applications 

The  KNN algorithm has been used to achieve over 90 percent accuracy in static 

gesture recognition for human-robot interaction. [18]. Another group established a 

gesture-following teleoperated robot for NASA/DARPA robonaut with exo-skeleton 

like hardware[19]. In 2012, a senior design group at Auburn University developed a 

Smart Cart which a reacted to human gesture based on the arm extended ratio – different 

ratios can represent different gestures[20]. The Smart Cart project is one of the 

motivations for this article. An easier to use and maintain, high accuracy, and robust 

system will help more with human daily life. There is little research or project done on 

gesture recognition using neural networks on an indoor robot. 

 

Figure 2.3: AU Smart Cart 
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Chapter 3 

Robot Hardware 

A specific autonomous mobile robot was used for the experiments presented in 

Chapter 7. This robot came from Auburn University’s CRRLAB which was used for 

work dealing with cooperative robotics. This robot is fully integrated into the ROS 

system and contain different kinds of sensors and electronics which will allow it to 

sense and respond to gesture in a dynamic environment. Since this robot was first 

integrated by other researchers, we will give a brief introduction about the basic parts 

and focus more on the different hardware setup between the present application and the 

original setup. 

3.1 Chassis 

The chassis displayed in Figure 7.1 is the REX-16D platform from Zagros 

Robotics[2]. This chassis contains two support wheels, three 14-inch diameter round 

plastic surfaces for loads and electronics, and two differential drive motors. These three 

surfaces are stacked up one by one and separated by different spacing– decided by the 

usage of the specific layer. The lowest surface holds the basic driving system including 

a dual motor driver, a power distribution board, a battery and an Arduino Mega board. 

The next layer contains a Kinect depth camera sensor and a battery for it. The top layer 

holds an Acer netbook running ROS hydro which acts as the control center for all the 
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on-board electronics. 

3.2 Power 

All the bottom layer electronics are powered by a 12V rechargeable lead acid 

battery placed on the bottom layer. The Kinect sensor is powered by another 12V 

rechargeable lead acid battery individually. The 12V provided by the bottom battery 

will partly go through a PD-101 power distribution board which will be able to provide 

a stable 5V power for all the embedded electronics. 

 

Figure 3.1: 12V Lead Acid Battery 

3.3 Lower Control (Driving System) 

The robot is driven by a differential drive system. Two motors were implemented 

horizontally under the bottom surface. This differential driving system can provide up 

to 0.5 m/sec speed for the robot. The encoders with the motors can provide over 32000 

encoder pulses for one revolution.  The encoder signal is processed by a hardware 

divide-by 16 circuit resulting in 2100 pulses for one revolution of the drive draft. Two 
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castor wheels are mounted on the diagonal of the square whose other two corners are 

the motors. 

 

Figure 3.2: Lower Control Parts on Bottom Surface 

3.4 Kinect Sensor 

The KinectTM for Xbox 360 Sensor is a motion sensing input device by Microsoft 

for Xbox 360 and Microsoft Windows PCs. It enables users to interact with their 

PCs/consoles without a gaming controller through an infrared projector, a camera and 

a special microchip. It is a widely used sensor because of the availability and the low-

cost.  
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Figure 3.3: Kinect Sensor and Produced Infrared Points 

However, it also has some disadvantages which will limit its performance. Since 

the sensor is based on the infrared signal, it cannot be used outdoor under daylight. The 

sunlight will block the infrared points and void the sensor, which means our robot can 

only be used indoor. On the other hand, due to its size, it cannot be mounted on some 

small robots, which will not happen on the gesture recognition robot. Also, it has a 
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measuring range between 20cm to 3m, which means you can never leave far away from 

the robot and send gesture instructions to it.  

3.5 PID Control System 

The motors on the bottom surface are controlled by a pair of PID feedback loops. 

These PID loops work with an update frequency of 100Hz and will make sure the robot 

drives at a designate linear and angular velocity. The implementation has been 

introduced in Brain Pappas’s thesis[2]. 

 

Figure 3.4: Arduino Mega Board 

 

Figure 3.5: Power Distribution Board 
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Chapter 4 

Open Source Software 

The robot vision system is based on several open source software or open library, 

OpenNI and Pybrain respectively. The following contents will focus on their 

introduction and implementation on this gesture recognition robot. 

4.1 OpenNI 

OpenNI, as known as Open Natural Interaction, is an industry-led non-profit 

organization, initially built by PrimeSense -- a company which provides PrimeSense 

sensor for Kinect[5][6]. Due to Apple’s acquisition, the original OpenNI group was shut 

down. The new OpenNI website, OpenNI 2, was built based on the forked OpenNI 

directory and still works as an open source software for further use.  

OpenNI can provide a set of open source APIs for accessing natural interactive 

devices, also known as OpenNI SDK. It can support voice and voice command 

recognition, hand gestures, and body motion tacking. In this thesis, we will use the 

already-built openni_kinect package in ROS to deal with the point cloud acquired by 

the Kinect. It will be briefly introduced in this chapter. 

4.1.1 PrimeSense PrimeSensor 

To understand the pointcloud, firstly, we need to know the PrimeSensor and how it 

helps with the Kinect sensor. PrimeSensor is the depth image processing chip provided 
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by PrimeSense. The following figure shows the way PrimeSensor works. 

 

Figure 4.1: Kinect Flow-Chart 

The final output of the PrimeSensor is data through USB cable containing infrared 

points and color image. Those data will be processed through Point Cloud Library 

(PCL). 

4.1.2 Point Cloud Library (PCL) 

PCL is a comprehensive free library for n-D Point Clouds and 3D geometry 

processing, which is also fully integrated with ROS[23]. A point cloud is a set of data 

points in some coordinate system. For Kinect, a three-dimensional coordinate system, 

all the points in cloud are usually defined by X, Y, and Z coordinates. PCL will process 

and display the point cloud and provide APIs toward some kind of post-processing. In 

this article, PCl will provide the basic function of human recognition and also involving 

further process. 
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Figure 4.2 Point Cloud in Rviz 

4.1.3 Skeleton_Marker 

After obtaining the point cloud from Kinect sensor, the data will then go through 

Skeleton_Marker node and provide a human skeleton with each joint’s three-

dimensional coordinates. The Skeleton_Marker is provided and still maintained by 

Patrick Goebel[24]. 
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Figure 4.3； Skeleton Generated from Skeleton-Tracker 

4.2 PyBrain 

PyBrain is a versatile machine learning library for Python[25]. It has flexible, easy-

to-use yet still powerful algorithm for machine learning tasks, including a variety of 

predefined environments and benchmarks to test and compare algorithms. It can 

provide following features: supervised learning, black-box optimization / evolutionary 

methods, reinforcement learning, architectures, compositionality, tasks and 

benchmarks, and speed optimization. 

In this thesis, the neural network architecture in PyBrain was used to build the 

network for gesture recognition. The function used are buildNetwork and 

BackpropTrainer. A two hidden-layer MLP neural network was built and trained with 

EBP (error back propagation) algorithm.  
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Chapter 5 

Artificial Neural Networks 

Artificial Neural Networks (ANN’s) are able to provide enhancement for numbers 

of applications. They can be adapted in many different applications including academic 

research, commercial, and military use. There have been demonstrated improvements 

in pattern recognition, optimization, and scheduling in all these areas[26]. 

ANN’s sometimes provide higher accuracy than conventional technologies along 

with reasonable training time. Well-constructed ANN’s can provide high fault tolerance 

for system failure and provide high overall data throughput rates because of the parallel 

processing when embedded on hardware. A number of ANN hardware solutions have 

been developed, including neural network VLSI chips. They make it possible to 

integrate low-cost neural networks into existing systems without having to re-design 

the whole system, thus improving accuracy in pattern recognition, process and adaptive 

control, and noise filtering. 

There are many types of ANN’s. Each architecture has areas of strength and 

preferred application. 

5.1 History 

The artificial neural network, by its name, was inspired by the biological neuron. 

Neurophysiologists explained the functions of human neurons – the movements of 
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spikes and transmission. After that, several simulations have been developed. The first 

well-admitted neural network model – perceptron – was introduced in the year 1958 by 

Rosenblatt. Perceptron has been wildly recognized, enhanced and also provided 

confidence to various different architectures, such as Self-Organizing Neural Network, 

Associative Memory Neural Network, Multilayered Feedforward Neural Networks. In 

1959, the first neural network for real world was developed, known as ADALINE and 

MADALINE for reducing telephone line echoes[10][11]. 

Neural network used to be in a dark age around 1970s due to some theoretical 

controversy about limitations of the perceptron and minimal funding resources. Things 

changed in the 1980s: books and conferences provided a number of positive feedbacks 

to neural network research results while media began to spread the works about neural 

network, even academic programs started to offer courses about neural networks at 

many major academic institutions. 

There are many recently widely recognized neural network including: the back-

propagation network, the Hopfield network, the Bidirectional Associative Memory 

network. Many significant achievements have been provided in this area which is 

attractive enough for further research with sufficient funding. Additionally, there are 

conferences and workshops for neural networks world-wide these years such as the 

Deep Learning Workshop. 

5.2 Concept 

ANN’s can provide estimates in the presence of uncertain information, similar to a 

human determining a situation based on former experience. By using electrical signal 
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to re-format neurons in the brain, human will use changed neurons to make future 

decision and re-format neurons after the future result came out as right or wrong. 

Similarly, neurons in an ANN will modify connections during training, and respond to 

new situations. 

An ANN is built upon numbers of neurons. Neurons in the neural network are 

basically individual processing units which can provide an output value from an input 

through a simple rule. Similar to a human neuron, a spike entering one end will or will 

not be transmitted to another end of a neuron, due to some electrical judgement[28]. 

These two kinds of movements are illustrated in Figure 5.1. 

 

Figure 5.1: Mechanism of Neural Transmission 
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A neuron, often recognized as a McCulloch-Pitts neuron, will be like Figure 5.2[29]: 

 
Figure 5.2： A McCulloch-Pitts Neuron.  

The inputs are the x’s and the bias of +1. The w’s are weights which multiply the 

inputs. The neuron applies an activation function to the weighted sum of inputs, and 

thereby determines the output value. 

5.3 Neuron Logic 

A neuron will have multiple inputs, coming from initial input or other neurons’ 

outputs, and a weight input. A weight input will provide a bias for a neuron to help the 

neuron partly independent from other neurons and adjust the judging rule, usually we 

assign the weight as 1. The judging rule is also known as an activation 

function[26][30]–[32]. 

A neuron could be a unipolar neuron or a bipolar neuron. A unipolar neuron means 

the output of the neuron will between 0 and 1. A bipolar neuron means the output of the 

neuron will between -1 and 1. These two kinds of neurons will provide difference 

convenience in different circumstances, also inspired by human neurons.  
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The total input of a neuron will be the summation of the inputs: 

 s1 = x1 ∗ w1 + x2 ∗ w2 + 1 ∗ w3 (5.1) 

Then the input will go through the activation function. There are various types of 

activation function for a neuron, such as linear function (identity function), step 

function, logistic function, tanh function… Different kinds of functions will provide 

different resolution for a common problem, and will help in different kinds of situations. 

For example, a step function will be helpful in an efficiency-first neural network 

because it will have low precision and thus reduce the computation time. A step function 

will be shown below. There will be two different kind of step function due to the type 

of the neuron. 

 

Figure 5.3: 0-1 Step Function 

 sign(x) = {
1 𝑖𝑓 𝑥 > 0

0.5 𝑖𝑓 𝑥 = 0
0 𝑖𝑓 𝑥 < 0

 (5.2) 

 

Figure 5.4: -1 – 1 Step Function 

 sgn(x) = {
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 = 0

−1 𝑖𝑓 𝑥 < 0
  (5.3) 
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Another type of activation function will be Tanh function. The expression of the 

tanh function will be: 

 tanh(x) =  
2

1 + 𝑒−2𝑥 − 1 (5.4) 

 

Figure 5.5: Tanh Function 

The tanh function is used for bipolar neuron. 

The major difference between these two types of activation functions will be the 

further training possibility. A step function is not suitable for high-precision training 

since it is not continuously differentiable, while a Tanh function can be differentiated 

everywhere for further training. 

5.4 Error Back-Propagation (EBP) Training 

The Error Back-Propagation (EBP) training will be illustrated by consideringone 

bipolar neuron. As mentioned before, the ANN will use some of the already known 

information to determine information with unknown result. Thus, the dataset for 

training will be patterns which includes inputs value and desired outputs values 

respectively.  

5.4.1 Single Neuron Training 

 

Figure 5.6: Single Neural with Output Function 
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For each pattern P (assuming it has n inputs and 1 outputs), the output of the one-

neuron neural network will be, 

 𝑂𝑃 = 𝐹{𝑓(𝑤1𝑥𝑃1 + 𝑤2𝑥𝑃2 + ⋯ + 𝑤𝑛𝑥𝑃𝑛)} (5.5) 

And the error between the real output and desired output will be, 

 TE = ∑[𝑑𝑃 − 𝑂𝑃]2
𝑛𝑃

𝑝=1

 (5.6) 

Training the neuron means changing the weight for each input to adjust the 

neuron’s function since the weight is the only parameter that will lead the neuron to a 

different result. The way to change the weights will rely on the difference between the 

real output and the desired output.  

Each weight will contribute to a different orientation for the real output. Which 

means, if one weight is taking the result far away from the desired output, this weight 

should be changed to keeping the result closer to the desired output. The gradient will 

help solve this problem. For each gradient, it’s easy to find out that choosing the 

opposite direction to modify the weight will lead to a better result. Calculation will be 

described below, 

 𝑑(𝑇𝐸)
𝑑𝑤𝑖

=  − ∑[2(𝑑𝑃 − 𝑂𝑃) ∗
𝑑𝑂𝑃

𝑑𝑧𝑃
∗

𝑑𝑧𝑃

𝑑𝐼𝑃
∗

𝑑𝐼𝑃

𝑑𝑤𝑖
]

𝑛𝑃

𝑃=1

 
(5.7) 

 𝐼𝑃 = 𝑤1𝑥𝑃1 + 𝑤2𝑥𝑃2 + ⋯ + 𝑤𝑛𝑥𝑃𝑛 (5.8) 

 𝑑(𝑇𝐸)
𝑑𝑤𝑖

=  −2 ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃𝑖]
𝑛𝑃

𝑃=1

 
(5.9) 

For each weight, we should apply a small step opposite to the original gradient. 

The change that will apply to a weight will be, 
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∆𝑤𝑃𝑖~β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃𝑖]

𝑛𝑃

𝑃=1

 
(5.10) 

This expression can be applied to all the weights, so it can be represented as, 

 
∆𝑤𝑃 = β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃]

𝑛𝑃

𝑃=1

 
(5.11) 

If the neuron has only one output, we can have a simpler function version, 

 
∆𝑤𝑃 = β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃]

𝑛𝑃

𝑃=1

 
(5.12) 

This is also the activation function used for the robot. 

 

Figure 5.7: Single Neuron with Direct Output 

5.4.2 Neural Network Training 

For a whole neural network, the training process will be almost the same as the 

single neuron training.  

 

Figure 5.8: A Two-layer Neural Network 
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The error and gradient for each neuron will be calculated first and updated at the 

same time after calculation.  
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Chapter 6 

Gesture Recognition Algorithm 

In this chapter, the actual implementation of the neural network will be introduced.  

6.1 Raw Data Analysis 

The data received from Skeleton_Marker node will include three-dimensional 

coordinates x, y, and z. The Skeleton_Marker node will post total 9 joints’ dimensional 

data as right_hand, left_hand, right_arm, left_arm, torso… The neural network will be 

only trained with dataset collected from right_hand topic.  

In this setup, a gesture can be recognized as a series of points which have a specific 

trajectory if listed in time sequence. On first thought, it would be reasonable to train the 

network with those points’ coordinates. However, while implementing these data into 

the network, it is easily to observe that using raw value from coordinates will not be a 

good choice since different kinds of gestures will share the same points and probably 

have a high rate of overlap. Also, using the absolute coordinate value will ruin the 

robustness of the system – the system will only recognize gestures in a certain distance. 

A solution to this situation is to use the difference between every two adjacent points 

as the input series to train the neural network. In this way, the character for each gesture 

will be successfully distinguished. Gestures like clockwise and counter-clockwise will 

share the same trajectory but have significantly different datasets for training. 
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6.2 Data Acquisition 

To provide sufficient data including enough knowledge for the neural network, a 

moderate dataset will be provided for each gesture. Through using pickle library in 

Python, the robot will be input with excel files including coordinates as input and output. 

The robot will record a 3-second data in 5 excel files for each gesture.  
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Chapter 7 

Robot Implementation and Validation 

7.1 Implementation 

The trained neural network was implemented with the robot. The robot test 

platform is shown in Figure 7.1: 

 

Figure 7.1: The Robot test platform. 
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Figure 7.2: Comparison Between Human and Robot 

The ROS node map will be: 

 

Figure 7.3: The ROS Node Map. This shows the data flow inside the ROS environment. 

There will be five human gestures being trained through the neural network: 

forward, backward, clockwise, counter-clockwise, stop. All images are illustrated in the 

mirror view. 

A forward gesture will be:  

Right arm level as shoulder – Right forearm raise up till vertical – Level back right 
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forearm 

 

Figure 7.4: A Forward Gesture 

A backward gesture will be:  

Level the upper right arm and put right forearm vertically close to right ear – keep 

upper right arm in the same position and move right forearm away from right ear 

horizontally – let right forarm go back to the same position 
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Figure 7.5: A Backward Gesture 

A stop gesture will be: 

Raise right hand over head while right upper arm keeping a nearly horizontal 

position – put down the right hand vertically till under waist – put right hand back over 

head 

 

Figure 7.6: A Stop Gesture 
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A clockwise gesture will be: 

Let right upper arm naturally relax and right forearm horiaontally places while right 

hand stand vertically – let right hand perform a circler clockwisely – keep 3 seconds 

and stop 

 

Figure 7.7: A Clockwise Gesture 

A counter-clockwise gesture will be: 

Let right upper arm naturally relax and right forearm horiaontally places while right 

hand stand vertically – let right hand perform a circler counter-clockwisely – keep 3 

seconds and stop 
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Figure 7.8: A Counter-clockwise Gesture 

For training, each gesture will have 5 csv files containing three-seconds coordinate 

data as training dataset. Totally there will be 25 data files. For training, each gesture 

will be represented as a number. Here we just choose 1, 2, 3, 4, 5 as the desired output 

result.  

After training, the neural network is capable of recognizing the gestures 

respectively. 

7.2 Validation 

The validation process will be very much similar to the data input process. The 

tester will stand in front of the robot. For each gesture, the tester will need to do the Pi 

post to calibration at first. Then the tester will hold the right arm at the initial postion 

for gesture respectively while wait for left arm’s start signal. The start signal will be 

released as: put left hand straight pointing up and pull it down below the torso point. 
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As soon as the left hand becomes lower than the torso point, the tester will perform 

right hand gesture and the robot will start to record for three seconds. Then the robot 

will put the recorded data into the trained neural network and return an integer between 

1 and 5 indicating the current gesture. 

Ten subjects were invited and each taking turns tested the functionality of the robot.  

Below are images for some of the subjects. 
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Subjects did several tests and the result is relatively good. The accuracy for all five 

gestures ranged from 86% to 96.8%. Among all gestures, Clockwise gesture has the 

best recognition rate and Backward/Stop gestures share below average performance. 

The latter result is reasonable, since the Backward and the Stop gestures share a 

similar right hand trajactory and orientation (waving). Though clockwise and counter-

clockwise share the same trajactory, they have different orientation. 
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Table 7-1: Gesture Experimental Data. The row headings indicate the actual gesture 

performed, and the column headings indicate the gesture interpreted by the artificial 

neural network.  

    Interpreted by 

Actual  the ANN 

Gestures 

performed 

 

Forward 

 

Backward 

 

Stop 

 

Clockwise 

 

Counter 

Clockwise 

Forward 90% 4% 4% 2% 0% 

Backward 2% 66% 28% 0% 4% 

Stop 10% 24% 62% 0% 4% 

Clockwise 0% 0% 0% 94% 6% 

Counter-Clockwise 0% 0% 0% 10% 90% 
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Chapter 8 

Conclusion and Future Work 

 From the experimental results, it can be revealed that based on the effective data 

and well trained neural network, a robot can recognize human gestures and follow them 

as instructions for human-robot interaction with satisfying results.  

8.1 Limitations 

The result revealed that due to the mechanism of the neural network, distinctive 

features must be provided for its training process. This supervised training process 

limits the expansion of gestures – if a new gesture needs to be recognized, all the already 

trained gestures will be trained again and this will be a time consuming process. In the 

mean time, data features for trainging must be provided manully, which means if the 

features were mistakenly determined, the whole network will be suspended. 

 For the hardware part, currently the Kinect sensor is placed on the designated spot 

with limited freedom, which leads to an inconvient but necessary re-calibration after 

each movement. 

8.2 Future Work 

 From the neural network perspective, there could be better training process, such 

as reinforcement learning which will be possibly better to handle new incoming gesture 

sets. Also the data features can be improved to make better distinction  between 



40 
 

gestures. 

 From the hardware perspective, the Kinect sensor could be placed at a better 

location. If mounted on a servo’d platform, the sensor could possibly track people while 

the robot is moving around, which would reduce the calibration time and improve 

efficiency. Alternatively, a remotely-located Kinect sensor would be able to provide 

more flexiblity when the robot is out of sight. 
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