

Neural Network Based Gesture Recognition Robot

by

Bowen Yuan

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
December 16, 2017

Keywords: Artificial Neural Network, Gesture Recognition, ROS, Autonomous Mobile Robot

Copyright 2017 by Bowen Yuan

Approved by

Thaddeus Roppel, Chair, Associate Professor of Electrical and Computer Engineering
 Stanley Reeves, Professor of Electrical and Computer Engineering

Xiaowen Gong, Assistant Professor of Electrical and Computer Engineering

 ii

Abstract

 Autonomous mobile robots (ARM’s) are defined by their ability to perform some tasks

independently from direct human interaction. However, interaction with humans at some point is

necessary. There are some situations in which humans can give instructions to robots most

effectively with physical gestures. Example include scenarios that require silence, such as covert

military operations or hospital rooms, loud assemblies, underwater, or in space.

Artificial neural networks (ANN’s) have long been used for pattern recognition. If well-

trained with a suitable dataset, an ANN can provide a satisfactory result for a complex task.

ROS (Robot Operating System) is a mainstream software framework for robotics

research throughout the world. It can streamline the development of robots through code reuse.

This thesis describes a partial solution to help robots understand human gesture by

combining an ANN and ROS, with a Kinect sensor as the primary input. Five gestures are

trained, and then recognized when performed by people other than the trainer. The overall

success rate of gesture recognition in this study is 80 percent. Some gestures are recognized with

more than 90 percent success.

 iii

Acknowledgments

 I would first and foremost love to give my advisor, Dr. Thaddeus Roppel my deepest

appreciation for his support and guidance during my time at Auburn University. Dr. Roppel

provided me with the great opportunity doing my project and research in his CRRLAB as a

graduate student. He is an advisor to me, but also a professor, a mentor, and a friend. I would

also love to express my appreciation to Dr. Xiaowen Gong and Dr. Stanley Reeves for their time

and support as a member of my thesis committee.

 I would love to show my gratitude to my parents. They provided me generous help with

my life and education. I would never be able to reach my current academic level without their

help. They are also great mentors for my life: helped me from suffering and confusing. I could

never thank them enough.

 I would also give my appreciation to my friends. They are part of my life and provided

me support in many different areas. They are my treasure in life.

 iv

Table of Contents

Abstract ... ii

Acknowledgments ... iii

List of Tables .. vii

List of Illustrations ... viii

List of Abbreviations .. x

Chapter 1 Motivation ... 1

Chapter 2 Robot Operating System (ROS) .. 2

 2.1 ROS Overview .. 2

 2.2 Basic Implementation Concepts .. 3

 2.2.1 Nodes .. 3

 2.2.2 Messages ... 3

 2.2.3 Topics .. 3

 2.2.4 Services ... 4

 2.3 Gesture Recognition Review ... 4

 2.3.1 Gesture Categories .. 4

 2.3.2 Gesture Recognition Technology ... 5

 2.3.3 Gesture Recognition .. 6

 2.3.4 Applications .. 7

Chapter 3 Robot Hardware .. 8

 v

 3.1 Chassis .. 8

 3.2 Power .. 9

 3.3 Lower Control (Driving System) .. 9

 3.4 Kinect Sensor ... 10

 3.5 PID Control System .. 12

Chapter 4 Open Source Software ... 13

 4.1 OpenNI ... 13

 4.1.1 Primesense Primesensor .. 13

 4.1.2 Point Cloud Library (PCL) ... 14

 4.1.3 Skeleton_Marker ... 15

 4.2 PyBrain .. 16

Chapter 5 Neural Network ... 17

 5.1 History .. 17

 5.2 Concept .. 18

 5.3 Neural Logic .. 20

 5.4 Error Back-Propagation (EBP) Training ... 22

 5.4.1 Single Neuron Training ... 22

 5.4.2 Neural Network Training ... 24

Chapter 6 Gesture Recognition Algorithm .. 26

 6.1 Raw Data Analysis ... 26

 6.2 Data Acquisition .. 27

Chapter 7 Robot Implementation and Validation .. 28

 7.1 Implementation .. 28

 vi

 7.2 Validation ... 33

Chapter 8 Conclusion and Future Work .. 39

 8.1 Limitation ... 39

 8.2 Future Work ... 39

References .. 41

 vii

List of Tables

Table 2-1 .. 6

Table 7-1 .. 38

 viii

List of Illustrations

Figure 2.1 ... 5

Figure 2.2 ... 5

Figure 2.3 ... 7

Figure 3.1 ... 9

Figure 3.2 ... 10

Figure 3.3 ... 11

Figure 3.4 ... 12

Figure 3.5 ... 12

Figure 4.1 ... 14

Figure 4.2 ... 15

Figure 4.3 ... 16

Figure 5.1 ... 19

Figure 5.2 ... 20

Figure 5.3 ... 21

Figure 5.4 ... 21

Figure 5.5 ... 22

Figure 5.6 ... 22

Figure 5.7 ... 24

Figure 5.8 ... 24

 ix

Figure 7.1 ... 28

Figure 7.2 ... 29

Figure 7.3 ... 29

Figure 7.4 ... 30

Figure 7.5 ... 31

Figure 7.6 ... 31

Figure 7.7 ... 32

Figure 7.8 ... 33

 x

List of Abbreviations

AMR Autonomous Mobile Robot

ANN Artificial Neural Network

NN Neural Network

PCL Point Cloud Library

ROS Robot Operating System

CRRLAB Cooperative Robotics Research Lab

PID Proportional, Integral, and Derivative Control

RVIZ Robot Visualization Tool

SLAM Simultaneous Localization and Mapping

EBP Error Back-Propagation

GRR Gesture Recognition Robot

1

Chapter 1

Motivation

Autonomous mobile robots (AMRs) are emerging in recent decades in many areas

including academic, military, and industrial[1][2]. AMRs have abilities to finish tasks

that human will never be able to try, such as rescue in dangerous areas and restlessly

working in a high-precision job with a rapid pace. AMRs have been recognized as a

reliable assistant in modern and future human life. To better serve people, AMRs will

benefit from a high-level intelligence that can understand instruction from humans

without an external controller – to be more like communicating with creatures.

Much research has been done with the topic of increasing robot intelligence and it

is also a fast-growing area in both academia and industry. This thesis will use an

artificial neural network (ANN) to help the AMR with understanding human gestures

with specific reactions. Gesture is a normal way to communicate between human

individuals in daily life. In some kind of situations, gestures will provide better quality

such as under water, or in a silent environment like a hospital room. Through this neural

network implementation, people will be able to communicate with robots in a more

natural way.

2

Chapter 2

Robot Operating System (ROS) and Gesture Recognition Review

The robot used for this thesis work was built based on a very popular robot control

system – the Robot Operating System (ROS)[3]. ROS is an open source, flexible

framework for developing robot software. It is a collection of tools, libraries, and

conventions that try to streamline the process of creating a robust but complex set of

robot behaviors. In this thesis, a Kinect Depth Camera Sensor will collect a a point

cloud from the environment and send those data to the ROS environment[4]. After

processing those raw data, a human skeletal pose model will be generated and then sent

as a topic into the ROS environment. An artificial neural network processing node will

attempt to recognize a gesture, which will be published into ROS and subscribed by the

control node. Finally, the robot will follow instructions and respond with proper

movements. Almost all the information communication inside the robot will go through

ROS.

2.1 ROS Overview

 Robotics is experiencing tremendous growth. Consequently, a lot of effort has been

devoted to enabling code reuse. ROS has become the de-facto standard meta-operating

system for robots. It includes support for basic level embedded functions, physical

actions, and all the way up to autonomous control[3].

3

2.2 Basic Implementation Concepts

The fundamental concepts of ROS are nodes, messages, topics, and services. These

four concepts are built directly for ROS and get involved with every ROS application[2].

2.2.1 Nodes

 Nodes are processes that perform computation/function (more precisely: when the

node is running, it is a process. Otherwise it is a bunch of code).

2.2.2 Messages

Nodes use messages to communicate with each other, more specifically, passing

messages. A message is a typed data structure, strictly bounded, which may contain

almost any data type (Integer, Double, Float, etc.). There are a lot of supported data

types built inside the ROS and it is very convenient to use. In the meantime, you can

always define your own data structure using a “.msg” file, such as widely used

Pose2D.msg file which can provide x and y axis data in one message.

2.2.3 Topics

A node uses message to communicate and it does so through publish or subscribe

such message to a topic. Topics are typically identified as different strings such as

“/twist” and “/image_raw”. A node will receive designated messages by subscribing to

a certain topic. It can send a message by publishing messages to a topic in order to let

other subscribed nodes receive the messages. A node can have many different

publishers and subscribers while many subscribers can listen to one same topic – same

as publisher. Actually, publishers and subscribers will not know each other’s existence;

what they will do is only to send out or receive messages through a specific topic.

4

2.2.4 Service

Other than topic, service is another communication paradigm. Compared to topic’s

asynchronous communication, services provide a synchronous way for communication.

All the services work under a call-respond rule in which one node requests a specific

other node to execute and return a one-time response. This kind of situation will occur

when the modified system will perform only one-time task which is both special and

unique – this kind of action will not fit the all-time broad-casting architecture, which is

the topic-message architecture.

2.3 Gesture Recognition Review

 Gestures have long been considered an important way to provide human-robot

interaction. A gesture is a natural way for humans to interact, and they are easy to learn.

According to research, 35% of human communications consists of verbal but 65% of

human communications consists of non-verbal gesture-based communications[5].

Sensors used for gesture vary from optical devices, such as HD cameras: “SoftKinetic

HD camera”, to wearable devices, such as a data glove: “CyberGlove II” [6][7].

2.3.1 Gesture Categories

 Gestures can be divided into two different categories: static or dynamic. A static

gesture is represented by a hand performing no change of orientation or position in a

certain time interval. A dynamic gesture is represented by hand movements involving

other body parts following a certain trajectory within a limited time interval[8].

5

Figure 2.1: Hand Gesture Categories[8]

2.3.2 Gesture Recognition Technology

 Gesture recognition technology includes three areas: gesture detection, gesture

tracking, and gesture recognition[9]–[11]. There are abundant number of researches

done in these areas. In this thesis, the focus is on gesture recognition using existing

gesture detection and gesture tracking technology, namely PCL and Skeleton_Marker

in ROS.

Figure 2.2: Gesture Recognition Technology[11]

6

2.3.3 Gesture Recognition

 The target of gesture recognition is to interpret the semantics of hand(s) location

and posture. For static gestures, a common gesture classifier or template-matcher will

be used. For dynamic gestures, techniques that can handle temporal dimensional change

will be more helpful such as Hidden Markov Models (HMM) – but for dynamic gesture

with known class representatives, a supervised learning will perform better. Some of

the general gesture recognition techniques are listed below:

Table 2-1 Gesture Recognition Techniques

K-means A technique which will determine k centers (points) to minimize the

clustering error and find statically similar groups in multi-spectral

space[12][13]. It can provide a reliable match between gestures and

unknown data income.

K-nearest

Neighbor

A technique which will classify objects based on the closest training

examples[14]. It will also help with the static gestures.

Hidden

Markov

Model

Firstly introduced in the 1990s, Hidden Markov Model is a technique

which will provide a probability value for each state analysis and

provide a final probability at the final state – a probability which will

determine the user’s most likely gesture dynamically[13][14].

Neural

Network

A technique which will provide the network a memory about different

gesture recognitions and thus obtain the ability for real time dynamic

gesture recognition[17]. Since it’s a supervised learning, a new

network will need to be trained for every new gesture.

7

2.3.4 Applications

The KNN algorithm has been used to achieve over 90 percent accuracy in static

gesture recognition for human-robot interaction. [18]. Another group established a

gesture-following teleoperated robot for NASA/DARPA robonaut with exo-skeleton

like hardware[19]. In 2012, a senior design group at Auburn University developed a

Smart Cart which a reacted to human gesture based on the arm extended ratio – different

ratios can represent different gestures[20]. The Smart Cart project is one of the

motivations for this article. An easier to use and maintain, high accuracy, and robust

system will help more with human daily life. There is little research or project done on

gesture recognition using neural networks on an indoor robot.

Figure 2.3: AU Smart Cart

8

Chapter 3

Robot Hardware

A specific autonomous mobile robot was used for the experiments presented in

Chapter 7. This robot came from Auburn University’s CRRLAB which was used for

work dealing with cooperative robotics. This robot is fully integrated into the ROS

system and contain different kinds of sensors and electronics which will allow it to

sense and respond to gesture in a dynamic environment. Since this robot was first

integrated by other researchers, we will give a brief introduction about the basic parts

and focus more on the different hardware setup between the present application and the

original setup.

3.1 Chassis

The chassis displayed in Figure 7.1 is the REX-16D platform from Zagros

Robotics[2]. This chassis contains two support wheels, three 14-inch diameter round

plastic surfaces for loads and electronics, and two differential drive motors. These three

surfaces are stacked up one by one and separated by different spacing– decided by the

usage of the specific layer. The lowest surface holds the basic driving system including

a dual motor driver, a power distribution board, a battery and an Arduino Mega board.

The next layer contains a Kinect depth camera sensor and a battery for it. The top layer

holds an Acer netbook running ROS hydro which acts as the control center for all the

9

on-board electronics.

3.2 Power

All the bottom layer electronics are powered by a 12V rechargeable lead acid

battery placed on the bottom layer. The Kinect sensor is powered by another 12V

rechargeable lead acid battery individually. The 12V provided by the bottom battery

will partly go through a PD-101 power distribution board which will be able to provide

a stable 5V power for all the embedded electronics.

Figure 3.1: 12V Lead Acid Battery

3.3 Lower Control (Driving System)

The robot is driven by a differential drive system. Two motors were implemented

horizontally under the bottom surface. This differential driving system can provide up

to 0.5 m/sec speed for the robot. The encoders with the motors can provide over 32000

encoder pulses for one revolution. The encoder signal is processed by a hardware

divide-by 16 circuit resulting in 2100 pulses for one revolution of the drive draft. Two

10

castor wheels are mounted on the diagonal of the square whose other two corners are

the motors.

Figure 3.2: Lower Control Parts on Bottom Surface

3.4 Kinect Sensor

The KinectTM for Xbox 360 Sensor is a motion sensing input device by Microsoft

for Xbox 360 and Microsoft Windows PCs. It enables users to interact with their

PCs/consoles without a gaming controller through an infrared projector, a camera and

a special microchip. It is a widely used sensor because of the availability and the low-

cost.

11

Figure 3.3: Kinect Sensor and Produced Infrared Points

However, it also has some disadvantages which will limit its performance. Since

the sensor is based on the infrared signal, it cannot be used outdoor under daylight. The

sunlight will block the infrared points and void the sensor, which means our robot can

only be used indoor. On the other hand, due to its size, it cannot be mounted on some

small robots, which will not happen on the gesture recognition robot. Also, it has a

12

measuring range between 20cm to 3m, which means you can never leave far away from

the robot and send gesture instructions to it.

3.5 PID Control System

The motors on the bottom surface are controlled by a pair of PID feedback loops.

These PID loops work with an update frequency of 100Hz and will make sure the robot

drives at a designate linear and angular velocity. The implementation has been

introduced in Brain Pappas’s thesis[2].

Figure 3.4: Arduino Mega Board

Figure 3.5: Power Distribution Board

13

Chapter 4

Open Source Software

The robot vision system is based on several open source software or open library,

OpenNI and Pybrain respectively. The following contents will focus on their

introduction and implementation on this gesture recognition robot.

4.1 OpenNI

OpenNI, as known as Open Natural Interaction, is an industry-led non-profit

organization, initially built by PrimeSense -- a company which provides PrimeSense

sensor for Kinect[5][6]. Due to Apple’s acquisition, the original OpenNI group was shut

down. The new OpenNI website, OpenNI 2, was built based on the forked OpenNI

directory and still works as an open source software for further use.

OpenNI can provide a set of open source APIs for accessing natural interactive

devices, also known as OpenNI SDK. It can support voice and voice command

recognition, hand gestures, and body motion tacking. In this thesis, we will use the

already-built openni_kinect package in ROS to deal with the point cloud acquired by

the Kinect. It will be briefly introduced in this chapter.

4.1.1 PrimeSense PrimeSensor

To understand the pointcloud, firstly, we need to know the PrimeSensor and how it

helps with the Kinect sensor. PrimeSensor is the depth image processing chip provided

14

by PrimeSense. The following figure shows the way PrimeSensor works.

Figure 4.1: Kinect Flow-Chart

The final output of the PrimeSensor is data through USB cable containing infrared

points and color image. Those data will be processed through Point Cloud Library

(PCL).

4.1.2 Point Cloud Library (PCL)

PCL is a comprehensive free library for n-D Point Clouds and 3D geometry

processing, which is also fully integrated with ROS[23]. A point cloud is a set of data

points in some coordinate system. For Kinect, a three-dimensional coordinate system,

all the points in cloud are usually defined by X, Y, and Z coordinates. PCL will process

and display the point cloud and provide APIs toward some kind of post-processing. In

this article, PCl will provide the basic function of human recognition and also involving

further process.

15

Figure 4.2 Point Cloud in Rviz

4.1.3 Skeleton_Marker

After obtaining the point cloud from Kinect sensor, the data will then go through

Skeleton_Marker node and provide a human skeleton with each joint’s three-

dimensional coordinates. The Skeleton_Marker is provided and still maintained by

Patrick Goebel[24].

16

Figure 4.3； Skeleton Generated from Skeleton-Tracker

4.2 PyBrain

PyBrain is a versatile machine learning library for Python[25]. It has flexible, easy-

to-use yet still powerful algorithm for machine learning tasks, including a variety of

predefined environments and benchmarks to test and compare algorithms. It can

provide following features: supervised learning, black-box optimization / evolutionary

methods, reinforcement learning, architectures, compositionality, tasks and

benchmarks, and speed optimization.

In this thesis, the neural network architecture in PyBrain was used to build the

network for gesture recognition. The function used are buildNetwork and

BackpropTrainer. A two hidden-layer MLP neural network was built and trained with

EBP (error back propagation) algorithm.

17

Chapter 5

Artificial Neural Networks

Artificial Neural Networks (ANN’s) are able to provide enhancement for numbers

of applications. They can be adapted in many different applications including academic

research, commercial, and military use. There have been demonstrated improvements

in pattern recognition, optimization, and scheduling in all these areas[26].

ANN’s sometimes provide higher accuracy than conventional technologies along

with reasonable training time. Well-constructed ANN’s can provide high fault tolerance

for system failure and provide high overall data throughput rates because of the parallel

processing when embedded on hardware. A number of ANN hardware solutions have

been developed, including neural network VLSI chips. They make it possible to

integrate low-cost neural networks into existing systems without having to re-design

the whole system, thus improving accuracy in pattern recognition, process and adaptive

control, and noise filtering.

There are many types of ANN’s. Each architecture has areas of strength and

preferred application.

5.1 History

The artificial neural network, by its name, was inspired by the biological neuron.

Neurophysiologists explained the functions of human neurons – the movements of

18

spikes and transmission. After that, several simulations have been developed. The first

well-admitted neural network model – perceptron – was introduced in the year 1958 by

Rosenblatt. Perceptron has been wildly recognized, enhanced and also provided

confidence to various different architectures, such as Self-Organizing Neural Network,

Associative Memory Neural Network, Multilayered Feedforward Neural Networks. In

1959, the first neural network for real world was developed, known as ADALINE and

MADALINE for reducing telephone line echoes[10][11].

Neural network used to be in a dark age around 1970s due to some theoretical

controversy about limitations of the perceptron and minimal funding resources. Things

changed in the 1980s: books and conferences provided a number of positive feedbacks

to neural network research results while media began to spread the works about neural

network, even academic programs started to offer courses about neural networks at

many major academic institutions.

There are many recently widely recognized neural network including: the back-

propagation network, the Hopfield network, the Bidirectional Associative Memory

network. Many significant achievements have been provided in this area which is

attractive enough for further research with sufficient funding. Additionally, there are

conferences and workshops for neural networks world-wide these years such as the

Deep Learning Workshop.

5.2 Concept

ANN’s can provide estimates in the presence of uncertain information, similar to a

human determining a situation based on former experience. By using electrical signal

19

to re-format neurons in the brain, human will use changed neurons to make future

decision and re-format neurons after the future result came out as right or wrong.

Similarly, neurons in an ANN will modify connections during training, and respond to

new situations.

An ANN is built upon numbers of neurons. Neurons in the neural network are

basically individual processing units which can provide an output value from an input

through a simple rule. Similar to a human neuron, a spike entering one end will or will

not be transmitted to another end of a neuron, due to some electrical judgement[28].

These two kinds of movements are illustrated in Figure 5.1.

Figure 5.1: Mechanism of Neural Transmission

20

A neuron, often recognized as a McCulloch-Pitts neuron, will be like Figure 5.2[29]:

Figure 5.2： A McCulloch-Pitts Neuron.

The inputs are the x’s and the bias of +1. The w’s are weights which multiply the

inputs. The neuron applies an activation function to the weighted sum of inputs, and

thereby determines the output value.

5.3 Neuron Logic

A neuron will have multiple inputs, coming from initial input or other neurons’

outputs, and a weight input. A weight input will provide a bias for a neuron to help the

neuron partly independent from other neurons and adjust the judging rule, usually we

assign the weight as 1. The judging rule is also known as an activation

function[26][30]–[32].

A neuron could be a unipolar neuron or a bipolar neuron. A unipolar neuron means

the output of the neuron will between 0 and 1. A bipolar neuron means the output of the

neuron will between -1 and 1. These two kinds of neurons will provide difference

convenience in different circumstances, also inspired by human neurons.

21

The total input of a neuron will be the summation of the inputs:

 s1 = x1 ∗ w1 + x2 ∗ w2 + 1 ∗ w3 (5.1)

Then the input will go through the activation function. There are various types of

activation function for a neuron, such as linear function (identity function), step

function, logistic function, tanh function… Different kinds of functions will provide

different resolution for a common problem, and will help in different kinds of situations.

For example, a step function will be helpful in an efficiency-first neural network

because it will have low precision and thus reduce the computation time. A step function

will be shown below. There will be two different kind of step function due to the type

of the neuron.

Figure 5.3: 0-1 Step Function

 sign(x) = {
1 𝑖𝑓 𝑥 > 0

0.5 𝑖𝑓 𝑥 = 0
0 𝑖𝑓 𝑥 < 0

 (5.2)

Figure 5.4: -1 – 1 Step Function

 sgn(x) = {
1 𝑖𝑓 𝑥 > 0
0 𝑖𝑓 𝑥 = 0

−1 𝑖𝑓 𝑥 < 0
 (5.3)

22

Another type of activation function will be Tanh function. The expression of the

tanh function will be:

 tanh(x) =
2

1 + 𝑒−2𝑥 − 1 (5.4)

Figure 5.5: Tanh Function

The tanh function is used for bipolar neuron.

The major difference between these two types of activation functions will be the

further training possibility. A step function is not suitable for high-precision training

since it is not continuously differentiable, while a Tanh function can be differentiated

everywhere for further training.

5.4 Error Back-Propagation (EBP) Training

The Error Back-Propagation (EBP) training will be illustrated by consideringone

bipolar neuron. As mentioned before, the ANN will use some of the already known

information to determine information with unknown result. Thus, the dataset for

training will be patterns which includes inputs value and desired outputs values

respectively.

5.4.1 Single Neuron Training

Figure 5.6: Single Neural with Output Function

23

For each pattern P (assuming it has n inputs and 1 outputs), the output of the one-

neuron neural network will be,

 𝑂𝑃 = 𝐹{𝑓(𝑤1𝑥𝑃1 + 𝑤2𝑥𝑃2 + ⋯ + 𝑤𝑛𝑥𝑃𝑛)} (5.5)

And the error between the real output and desired output will be,

 TE = ∑[𝑑𝑃 − 𝑂𝑃]2
𝑛𝑃

𝑝=1

 (5.6)

Training the neuron means changing the weight for each input to adjust the

neuron’s function since the weight is the only parameter that will lead the neuron to a

different result. The way to change the weights will rely on the difference between the

real output and the desired output.

Each weight will contribute to a different orientation for the real output. Which

means, if one weight is taking the result far away from the desired output, this weight

should be changed to keeping the result closer to the desired output. The gradient will

help solve this problem. For each gradient, it’s easy to find out that choosing the

opposite direction to modify the weight will lead to a better result. Calculation will be

described below,

 𝑑(𝑇𝐸)
𝑑𝑤𝑖

= − ∑[2(𝑑𝑃 − 𝑂𝑃) ∗
𝑑𝑂𝑃

𝑑𝑧𝑃
∗

𝑑𝑧𝑃

𝑑𝐼𝑃
∗

𝑑𝐼𝑃

𝑑𝑤𝑖
]

𝑛𝑃

𝑃=1

(5.7)

 𝐼𝑃 = 𝑤1𝑥𝑃1 + 𝑤2𝑥𝑃2 + ⋯ + 𝑤𝑛𝑥𝑃𝑛 (5.8)

 𝑑(𝑇𝐸)
𝑑𝑤𝑖

= −2 ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃𝑖]
𝑛𝑃

𝑃=1

(5.9)

For each weight, we should apply a small step opposite to the original gradient.

The change that will apply to a weight will be,

24

∆𝑤𝑃𝑖~β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃𝑖]

𝑛𝑃

𝑃=1

(5.10)

This expression can be applied to all the weights, so it can be represented as,

∆𝑤𝑃 = β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝐹′{𝑧𝑃} ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃]

𝑛𝑃

𝑃=1

(5.11)

If the neuron has only one output, we can have a simpler function version,

∆𝑤𝑃 = β ∑[(𝑑𝑃 − 𝑂𝑃) ∗ 𝑓′(𝐼𝑃) ∗ 𝑥𝑃]

𝑛𝑃

𝑃=1

(5.12)

This is also the activation function used for the robot.

Figure 5.7: Single Neuron with Direct Output

5.4.2 Neural Network Training

For a whole neural network, the training process will be almost the same as the

single neuron training.

Figure 5.8: A Two-layer Neural Network

25

The error and gradient for each neuron will be calculated first and updated at the

same time after calculation.

26

Chapter 6

Gesture Recognition Algorithm

In this chapter, the actual implementation of the neural network will be introduced.

6.1 Raw Data Analysis

The data received from Skeleton_Marker node will include three-dimensional

coordinates x, y, and z. The Skeleton_Marker node will post total 9 joints’ dimensional

data as right_hand, left_hand, right_arm, left_arm, torso… The neural network will be

only trained with dataset collected from right_hand topic.

In this setup, a gesture can be recognized as a series of points which have a specific

trajectory if listed in time sequence. On first thought, it would be reasonable to train the

network with those points’ coordinates. However, while implementing these data into

the network, it is easily to observe that using raw value from coordinates will not be a

good choice since different kinds of gestures will share the same points and probably

have a high rate of overlap. Also, using the absolute coordinate value will ruin the

robustness of the system – the system will only recognize gestures in a certain distance.

A solution to this situation is to use the difference between every two adjacent points

as the input series to train the neural network. In this way, the character for each gesture

will be successfully distinguished. Gestures like clockwise and counter-clockwise will

share the same trajectory but have significantly different datasets for training.

27

6.2 Data Acquisition

To provide sufficient data including enough knowledge for the neural network, a

moderate dataset will be provided for each gesture. Through using pickle library in

Python, the robot will be input with excel files including coordinates as input and output.

The robot will record a 3-second data in 5 excel files for each gesture.

28

Chapter 7

Robot Implementation and Validation

7.1 Implementation

The trained neural network was implemented with the robot. The robot test

platform is shown in Figure 7.1:

Figure 7.1: The Robot test platform.

29

Figure 7.2: Comparison Between Human and Robot

The ROS node map will be:

Figure 7.3: The ROS Node Map. This shows the data flow inside the ROS environment.

There will be five human gestures being trained through the neural network:

forward, backward, clockwise, counter-clockwise, stop. All images are illustrated in the

mirror view.

A forward gesture will be:

Right arm level as shoulder – Right forearm raise up till vertical – Level back right

30

forearm

Figure 7.4: A Forward Gesture

A backward gesture will be:

Level the upper right arm and put right forearm vertically close to right ear – keep

upper right arm in the same position and move right forearm away from right ear

horizontally – let right forarm go back to the same position

31

Figure 7.5: A Backward Gesture

A stop gesture will be:

Raise right hand over head while right upper arm keeping a nearly horizontal

position – put down the right hand vertically till under waist – put right hand back over

head

Figure 7.6: A Stop Gesture

32

A clockwise gesture will be:

Let right upper arm naturally relax and right forearm horiaontally places while right

hand stand vertically – let right hand perform a circler clockwisely – keep 3 seconds

and stop

Figure 7.7: A Clockwise Gesture

A counter-clockwise gesture will be:

Let right upper arm naturally relax and right forearm horiaontally places while right

hand stand vertically – let right hand perform a circler counter-clockwisely – keep 3

seconds and stop

33

Figure 7.8: A Counter-clockwise Gesture

For training, each gesture will have 5 csv files containing three-seconds coordinate

data as training dataset. Totally there will be 25 data files. For training, each gesture

will be represented as a number. Here we just choose 1, 2, 3, 4, 5 as the desired output

result.

After training, the neural network is capable of recognizing the gestures

respectively.

7.2 Validation

The validation process will be very much similar to the data input process. The

tester will stand in front of the robot. For each gesture, the tester will need to do the Pi

post to calibration at first. Then the tester will hold the right arm at the initial postion

for gesture respectively while wait for left arm’s start signal. The start signal will be

released as: put left hand straight pointing up and pull it down below the torso point.

34

As soon as the left hand becomes lower than the torso point, the tester will perform

right hand gesture and the robot will start to record for three seconds. Then the robot

will put the recorded data into the trained neural network and return an integer between

1 and 5 indicating the current gesture.

Ten subjects were invited and each taking turns tested the functionality of the robot.

Below are images for some of the subjects.

35

36

37

Subjects did several tests and the result is relatively good. The accuracy for all five

gestures ranged from 86% to 96.8%. Among all gestures, Clockwise gesture has the

best recognition rate and Backward/Stop gestures share below average performance.

The latter result is reasonable, since the Backward and the Stop gestures share a

similar right hand trajactory and orientation (waving). Though clockwise and counter-

clockwise share the same trajactory, they have different orientation.

38

Table 7-1: Gesture Experimental Data. The row headings indicate the actual gesture

performed, and the column headings indicate the gesture interpreted by the artificial

neural network.

 Interpreted by

Actual the ANN

Gestures

performed

Forward

Backward

Stop

Clockwise

Counter

Clockwise

Forward 90% 4% 4% 2% 0%

Backward 2% 66% 28% 0% 4%

Stop 10% 24% 62% 0% 4%

Clockwise 0% 0% 0% 94% 6%

Counter-Clockwise 0% 0% 0% 10% 90%

39

Chapter 8

Conclusion and Future Work

 From the experimental results, it can be revealed that based on the effective data

and well trained neural network, a robot can recognize human gestures and follow them

as instructions for human-robot interaction with satisfying results.

8.1 Limitations

The result revealed that due to the mechanism of the neural network, distinctive

features must be provided for its training process. This supervised training process

limits the expansion of gestures – if a new gesture needs to be recognized, all the already

trained gestures will be trained again and this will be a time consuming process. In the

mean time, data features for trainging must be provided manully, which means if the

features were mistakenly determined, the whole network will be suspended.

 For the hardware part, currently the Kinect sensor is placed on the designated spot

with limited freedom, which leads to an inconvient but necessary re-calibration after

each movement.

8.2 Future Work

 From the neural network perspective, there could be better training process, such

as reinforcement learning which will be possibly better to handle new incoming gesture

sets. Also the data features can be improved to make better distinction between

40

gestures.

 From the hardware perspective, the Kinect sensor could be placed at a better

location. If mounted on a servo’d platform, the sensor could possibly track people while

the robot is moving around, which would reduce the calibration time and improve

efficiency. Alternatively, a remotely-located Kinect sensor would be able to provide

more flexiblity when the robot is out of sight.

41

References:

[1] D. S. Roland Siegwart,Illah Reza Nourbakhsh, Introduction to Autonomous

Mobile Robots. 2011.

[2] B. Pappas, “Multi-Robot Frontier Based Map Coverage Using the ROS

Environment,” Master@Auburn Univ., 2014.

[3] M. Quigley et al., “ROS: an open-source Robot Operating System,” Icra, vol.

3, no. Figure 1, p. 5, 2009.

[4] Z. Zhang, “Microsoft Kinect Sensor and Its Effect,” IEEE Multimed., vol. 19,

no. 2, pp. 4–10, Feb. 2012.

[5] E. T. (Edward T. Hall, The silent language. Anchor Books, 1990.

[6] “SoftKinetic - 3D Vision Leader.” [Online]. Available:

https://www.softkinetic.com/. [Accessed: 24-Oct-2017].

[7] Ng Yong, Yi Kevin, S. Ranganath, and D. Ghosh, “Trajectory modeling in

gesture recognition using cybergloves and magnetic trackers,” in 2004 IEEE

Region 10 Conference TENCON 2004., vol. A, pp. 571–574.

[8] M. B. Kaaniche, “Gesture Recognition From Video Sequences,” p. 129, 2009.

[9] H. Liu and L. Wang, “Gesture recognition for human-robot collaboration: A

review,” International Journal of Industrial Ergonomics, 2016.

[10] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans. Syst.

Man Cybern. Part C Appl. Rev., vol. 37, no. 3, pp. 311–324, 2007.

[11] S. S. Rautaray and A. Agrawal, “Vision based hand gesture recognition for

human computer interaction: a survey,” Artif. Intell. Rev., vol. 43, no. 1, pp. 1–

42

54, 2012.

[12] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture models for

real-time tracking,” Proc. 1999 IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit. Cat No PR00149, vol. 2, no. c, pp. 246–252, 1999.

[13] Wei-Lwun Lu and J. J. Little, “Simultaneous Tracking and Action Recognition

using the PCA-HOG Descriptor,” in The 3rd Canadian Conference on

Computer and Robot Vision (CRV’06), pp. 6–6.

[14] D. Introduction and K. Neighbor, “God , Your Book Is Great !! A Detailed

Introduction to K-Nearest Neighbor (KNN) Algorithm,” pp. 1–22, 2010.

[15] D. Ramage, “Hidden Markov models fundamentals,” Lect. Notes. http//cs229.

stanford. edu/section/ …, pp. 1–13, 2007.

[16] T. E. Starner, “Visual Recognition of American Sign Language Using Hidden

Markov Models MA R 2 2 1995 Visual Recognition of American Sign

Language Using Hidden Markov Models,” 1991.

[17] L. Sigal, S. Sclaroff, and V. Athitsos, “Skin color-based video segmentation

under time-varying illumination,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

26, no. 7, pp. 862–877, Jul. 2004.

[18] G. Bernstein, N. Lotocky, and D. Gallagher, “Robot Recognition of Military

Gestures CS 4758 Term Project,” 2012.

[19] S. M. Goza, R. O. Ambrose, M. A. Diftler, and I. M. Spain, “Telepresence

control of the NASA/DARPA robonaut on a mobility platform,” in

Proceedings of the 2004 conference on Human factors in computing systems

43

- CHI ’04, 2004, pp. 623–629.

[20] “AU Smart Cart Senior Design Project Report Fall 2012

http://hdl.handle.net/11200/49045,” 2012.

[21] PrimeSense, “OpenNI User Guide,” OpenNI User Guid., vol. 1, no. June, p. 44,

2011.

[22] M. K, “OpenNI Standard Launched,” kinecthacks.net, Dec. 2010.

[23] R. B. Rusu and S. Cousins, “3D is here: point cloud library,” IEEE Int. Conf.

Robot. Autom., pp. 1–4, 2011.

[24] G. F. He, J. W. Park, S. K. Kang, and S. T. Jung, “Development of gesture

recognition-based serious games,” Proc. - IEEE-EMBS Int. Conf. Biomed.

Heal. Informatics Glob. Gd. Chall. Heal. Informatics, BHI 2012, vol. 25, no.

Bhi, pp. 922–925, 2012.

[25] T. Schaul et al., “PyBrain,” J. Mach. Learn. Res., vol. 11, pp. 743–746, 2010.

[26] A. J. Maren, C. T. Harston, and R. M. Pap, Handbook of neural computing

applications. Academic Press, 1990.

[27] B. Widrow and M. A. Lehr, “30 Years of Adaptive Neural Networks:

Perceptron, Madaline, and Backpropagation,” Proc. IEEE, vol. 78, no. 9, pp.

1415–1442, 1990.

[28] W. Maass and C. M. Bishop, Pulsed Neural Networks, vol. 275. 1999.

[29] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys., vol. 5, no. 4, pp. 115–133, Dec. 1943.

[30] B. M. Wilamowski, “Comparison of Training Algorithms and Network

44

Architectures,” IEEE Intell. Eng. Syst. Conf. Costa Rica, pp. 17–11, 2013.

[31] H. Yu and B. M. Wilamowski, “Neural Network Training with Second Order

Algorithms,” Human–Computer Syst. Interact. Backgrounds Appl. 2, pp. 463–

476, 2012.

[32] B. M. Wilamowski, “Understanding of Neural Networks,” in Industrial

Electronics Handbook, vol. 5 – Intelligent Systems, 2011, pp. 5-1-12.

