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 Longleaf ecosystems have severely decreased in total area since pre-European 

settlement. These dramatic losses are the principle reason for the listing of many plants 

and animals as endangered, and have been the driving factor for recent longleaf 

ecosystem restoration efforts. While studies have documented the regional decline of 

longleaf ecosystems, they provide little information on fine scale fragmentation patterns 

and current locations. This lack of information often limits the efficacy of longleaf 

ecosystem management, monitoring, and restoration.  

 To aid longleaf restoration efforts we developed a series of fine grain (30 m) 

ecosystem probability distributions using multitemporal Landsat enhanced thematic 

mapper plus imagery, digital elevation models, field data, ancillary data sets, polytomous 

logistic regression, and a hierarchical classification scheme. Using our ecosystem 
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probability distributions, resource managers can identify the most probable locations for 

longleaf ecosystems, locate potential restoration sites, prioritize restoration efforts, and 

estimate ecosystem area. 
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INTRODUCTION 

Currently, longleaf ecosystems are estimated to occupy 1.2 X 106 ha across the 

Southeastern United States, a mere 5% of the 24.3 X 106 ha pre-European settlement 

estimate (Outcalt and Sheffield, 1996). This dramatic loss of habitat has had a substantial 

impact on numerous plants and animals, and is the primary reason that many 

Southeastern species have been listed as threatened or endangered (Tuldge, 1999).  Due 

to this loss of habitat, there is a strong need for the conservation and restoration of these 

critically endangered ecosystems (Noss et al., 1995).  

While conservation and restoration efforts have begun, they have been limited, in 

part, by the lack of information depicting the current location of these ecosystems.   

Long-term studies such as the Forest Inventory Analysis have been useful in identifying 

trends in longleaf ecosystem decline (Kelly and Bechtold, 1990; Outcalt and Sheffield, 

1996), but are ill-suited to provide meaningful information at fine spatial scales. Due to 

the coarse nature of these data sets (e.g., 20 km grain), organizations have had to take a 

broad based approach towards longleaf ecosystem management, monitoring, and 

restoration, often limiting the efficacy of their efforts. To become more effective, these 

organizations need accurate, fine scale data sets that identify forested ecosystem types 

and depict the current location and distribution of longleaf ecosystems. 

Remotely sensed data (e.g., satellite imagery and digital elevation models) 

provide a unique opportunity to generate such a data set by linking fine grain (30 m) 
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spectral information with spatially explicit examples of forested ecosystem types. Due to 

the amount of spectral overlap among coniferous ecosystems in the Southeast, though, 

few analysts have successfully differentiated longleaf ecosystems from other coniferous 

ecosystems using common classification (e.g., maximum likelihood classifiers, 

clustering, classification trees, and artificial neural networks) and radiometric 

normalization (e.g., at-sensor reflectance, dark object subtraction, and ridge regression) 

techniques. This suggests either one of two scenarios: there are no differences (spectrally 

or in elevation) between longleaf and other coniferous ecosystems, or current 

methodologies may be too restrictive and/or inappropriate to depict the differences 

between coniferous ecosystems in the Southeast. Given the visual and structural 

differences of longleaf ecosystems (e.g., relatively sparse overstories, and diverse 

understories, composed of many grasses and forbs), we believed the latter scenario to be 

the case. Therefore, we adopted a probabilistic classification procedure (polytomous 

logistic regression), created a new radiometric normalization procedure, and implemented 

these procedures with a hierarchical classification scheme to differentiate between 

forested ecosystems types.  

While these procedures theoretically provided the flexibility and accuracy needed 

to distinguish among forested ecosystems, they have not been thoroughly tested against 

commonly used classification and normalization techniques in remote sensing. Therefore, 

we compared each procedure against other commonly used classification and 

normalization procedures. To present our findings in a clear and concise manner we 

separated each comparison into distinct chapters. Chapter 1 directly compares 

polytomous logistic regression (PLR) with a maximum likelihood classifier, also known 
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as discriminant analysis (i.e., linear and quadratic discriminant functions), to determine if 

there are any benefits to adopting the PLR process. Chapter 2 directly compares our 

radiometric normalization procedure, Aggregate No Change Regression, with 4 other 

radiometric normalization procedures in terms of bringing Landsat enhanced thematic 

mapper plus imagery to a common radiometric scale. Finally, in Chapter 3, we introduce 

our hierarchical classification scheme and describe how the procedures introduced in 

Chapters 1 and 2 were used to predict the distributions of longleaf ecosystems. Each 

chapter can be read independently and is styled in publication format according to the 

editor’s guidelines of Photogrammetric Engineering and Remote Sensing. 

Our findings indicate that, on average, longleaf ecosystems are spectrally different 

than other forested ecosystems. Furthermore, by incorporating our newly developed 

radiometric normalization technique and adopting PLR in a hierarchical framework, these 

differences can be used to accurately and precisely predict the probability distribution of 

longleaf and other forested ecosystems, thereby providing resource managers with the 

information needed to begin addressing fine scale questions pertaining to longleaf 

ecosystem management, monitoring, and restoration.
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CHAPTER 1 

 

COMPARING POLYTOMOUS LOGISTIC REGRESSION AND DISCRIMINANT 

ANALYSIS: A REMOTE SENSING PERSPECTIVE 

 

ABSTRACT 

Maximum likelihood classification, also known as discriminant analysis, is a 

popular supervised technique used by remote sensing analysts. While this classification 

procedure has been embraced by the remote sensing community, it has some distinct 

drawbacks such as being limited to continuous data, the assumptions of multivariate 

normality and equal covariance, limited modeling diagnostics, and few techniques that 

address model parsimony.  

An alternative classification approach, which is less restrictive and has been 

successfully used in other fields to distinguish among class types, is called polytomous 

logistic regression (PLR).  To assess the utility of PLR in image classification, we 

compared and contrasted PLR with the traditional maximum likelihood procedure (using 

linear and quadratic discriminant functions).  Our findings indicate PLR is a flexible 

alternative to the traditional maximum likelihood classification.  



 
 

 5

INTRODUCTION 

 Remote sensing analysts commonly use a maximum likelihood classification 

technique to perform supervised classifications (Lillesand and Kiefer, 1994; Erdas, 1997; 

Jensen, 2000).  This technique, also referred to as dicriminant analysis in the statistical 

literature (Press and Wilson, 1978; Johnson and Wichern, 2002), distinguishes among 

classes by estimating the distance between each class, using either a linear or a quadratic 

discriminant function, for a given set of explanatory variables (Erdas, 1997; Johnson and 

Wichern, 2002; Metternicht, 2003).  From these distance measures, analysts either create 

a hard classification (i.e., maximum likelihood classification) by generating rules that 

allocate class types to new observations based on minimizing class distance or 

maximizing posterior probability  (Jensen, 1986; Johnson and Wichern, 2002), or by 

incorporating posterior probabilities into a fuzzy classification (Foody, 1996; Benz et al., 

2004; Metternicht, 2003).  Discriminant analysis, though, assumes multivariate normality 

and equal covariance for linear dicriminant functions, and multivariate normality for 

quadratic functions.  As these assumptions are often difficult to satisfy (Press and Wilson, 

1971; Foody, 1996), discriminant analysis tends to overestimate the magnitude of 

association among classes (Halpern et al., 1971; Press and Wilson, 1978; Hosmer et al, 

1983; Hosmer and Lemeshow, 1989) and produces misleading posterior probabilities 

(Press and Wilson, 1978; Hosmer and Lemeshow, 2000; Johnson and Wichern, 2002).   

To circumvent these issues, analysts have employed a number of different 

techniques ranging from ignoring the statistical assumptions of discriminant analysis and 

performing a maximum likelihood classification (Ramírez-García et al., 1998; Keuchel et 

al., 2003; Galvão et al, 2005) to using alternative procedures that do not rely on the 
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assumption of multivariate normality (Yoshida and Omatu, 1994; Gopal and Woodcock, 

1996; Brown de Colstoun et al., 2003; Pal and Mather, 2003).  The accuracy of their 

classification is then assessed using a different analysis (e.g., class proportions and/or a 

kappa statistic), which compares the number of times classes were correctly identified to 

the number of times they were misclassified (Foody, 2002).  Assessing class accuracy 

using class proportions and kappa statistics (Foody, 2002; Agresti, 2002) assumes a 

multinomial distribution and large sample normality, respectively, (Agresti, 2002) which 

are typically easier to satisfy.   

An alternative classification technique, which assumes a multinomial distribution 

and large sample normality, is polytomous logistic regression (PLR).  This technique has 

been successfully used in numerous other fields including geography (Wrigley, 1985), 

engineering (Hasegawa and Kurita, 2002), biological and molecular sciences (Bailey et 

al., 2003), education (Peng and Nichols, 2003), and environmental sciences (Mahopatra 

and Kant, 2005).  Some of the benefits of using a PLR classification include the ability to 

use probabilistic classifications, it has relatively few statistical assumptions, the ability to 

use both continuous and categorical data as explanatory variables, and it focuses on 

directly modeling class probabilities (Agresti, 2002).  Using PLR, hard classifications can 

be generated by setting probability thresholds ranging from identifying minimum or 

maximum probabilities for each class to using a maximum likelihood allocation rule 

(MLAR) for each observation (i.e., the same allocation rule used in discriminant 

analysis).   

PLR hard classifications that use a MLAR, however, may not always provide 

good separation among classes when there is substantial overlap among explanatory 
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variables and can bias class area estimates.  For example, consider the hypothetical 

probability distribution of 5 class types illustrated in Figure 1.  In this scenario, using a 

MLAR (represented by the dashed lines) to classify each observation results in 

substantial misclassification (misclassification rate > 25%) between the following 

classes: Water Deciduous, Deciduous and Evergreen, Evergreen and Field, and Field and 

City.  Moreover, class area estimates, which are calculated by summing the multiple of 

the number of observations allocated to each class (using a MLAR) by the area of each 

observation, are substantially biased because misclassification errors are far from 

symmetric for the majority of class comparisons.  Using class probabilities, however, 

increases the ability to distinguish among class types at different ranges of the 

explanatory variable.  In addition, unbiased estimates of class area can be calculated by 

weighting the area of each observation by the probability of each class and then summing 

the weighted area estimates by class for all observations.     

Many have made the argument that hard classifications do not always adequately 

describe class transitions (Foody, 1996; Benz et al., 2004; Metternicht, 2003).  To address 

this issue they have incorporated posterior probabilities, calculated from the discriminant 

analysis procedure, into their classification.  These probabilities, however, are biased 

when statistical assumptions are not met (Hosmer and Lemeshow, 2000; Johnson and 

Wichern, 2002).  In contrast, the PLR method does not have the same restrictive 

assumptions as discriminant analysis and directly models class probabilities, potentially 

providing analysts with a more accurate estimate of class probabilities.   

To illustrate the difference between posterior probabilities of discriminant 

analysis and PLR probabilities, it is useful to look at how each method derives these 
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estimates.  In discriminant analysis, class probabilities are indirectly calculated based on 

class distance measurements and the assumption that each class has a multivariate normal 

distribution.  Maholanobis distances (MD), quadratic discriminant score (QDS), and 

posterior probabilities (PP) are calculated as follows: 

    ( ) ( ) p1,..., jn        1,...,i          )(MD i ==−′−== − xxSxx 1
ij iD                                 (1) 
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where xi and x  are the observed vector and mean vector, respectively, and S and Sj are 

the pooled sampled covariance matrix and the sample covariances, respectively (Johnson 

and Wichern, 2002).   

The PLR method, however, directly estimates class probabilities and assumes that 

multi-category responses have a multinomial distribution with asymptotic errors around 

the linear form of the natural log transformation of class odds (logits).  Estimated class 

(response) probabilities {πj(x)} are determined by manipulating baseline category logits 

as follows: 

given that 

( ) , , 111 ,...,J-j
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Using the linear form of the logit for p covariates and a constant term, denoted by the 
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Where πj(x) is the mean probability of group j, with class means and variances equal to 

nπj and nπj(1-πj), respectively (Agresti, 2002).  Maximum likelihood estimates of beta 

values are determined in an iterative fashion, typically using the Newton-Raphson or 

Fisher scoring methods, and the standard errors for each beta are based on profile 

likelihood functions or asymptotic normality (Agresti, 1990).    

While the PLR method has a number of benefits over the classical supervised 

approach, there are some drawbacks.  The first drawback deals with the efficiency of the 

PLR method when the multivariate normality assumption holds (Bull and Donner, 1987).  

Multivariate normality, however, rarely holds in remote sensing (Foody, 1996).  
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Secondly, PLR cannot obtain a maximum likelihood estimate when there is no overlap in 

class explanatory values.  While an unsolvable maximum likelihood estimate may be 

troubling in terms of mathematic complexity and model fit estimates (Agresti, 2002), 

viewed from a classification perspective this situation means that some of the class types 

can be separated from the rest of the class types with 100% accuracy given a set of rules.  

In this situation, a probabilistic classification is not required.  Instead, class types can be 

assigned using means and/or Mahalanobis distance.  For classes that do have overlap in 

the explanatory values, a maximum likelihood estimate can be solved and a probabilistic 

classification can be generated.  

From a theoretical standpoint, PLR is a very robust classification technique that 

should provide a better depiction of class distributions when compared with discrimant 

analysis.  However, few have directly compared these techniques (Bull and Donner, 

1987; Hossain et al., 2002) and to our knowledge, no one has applied PLR in a remote 

sensing framework. Therefore, we compared and contrasted the two techniques from the 

standpoint of a hard classification (using a MLAR) and a probabilistic classification. We 

then further demonstrate the utility and flexibility of PLR using an example of 3 land 

cover types that share a significant portion of spectral space.      

METHODS 

To contrast these two classification techniques, we compared hard classifications 

generated by the PLR method using a MLAR, with hard classifications generated by both 

linear and quadratic discrimant functions, for 15 different Landsat enhanced thematic 

mapper plus (ETM+) scenes.  Landsat ETM+ scenes were rectified using Multi-Resource 

Land Characteristics Consortium data processing level 1t (NASA, 2005) procedures.  
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Class types consisted of generalized National Land-Cover Database categories (Table 1; 

after Homer et. al., 2004) and temporal features (i.e. clouds, burnt areas, shadows, and 

smoke) and were visually interpreted at the spatial scale of one ETM+ pixel using ETM+ 

imagery and digital ortho quarter quads.   

To maintain consistency across the study area, one image interpreter identified all 

class types. Classification errors potentially caused by image acquisition dates 

representing different seasons were accounted for by randomly selecting 1 of 3 

phonologies for each scene comparison; leaf-off winter season, leaf-on spring growing 

season, leaf-on fall season (Figure 2; Table 2).  Digital number (DN) values occurring at 

the same spatial location as image interpreted samples were extracted on a nearest pixel 

basis, by band, using the sample command in Environmental Systems Research 

Institute’s (ESRI) Spatial Analyst extension (ESRI, 2005).  Samples were then randomly 

partitioned into a training (~ 70% of the data for each scene) and validation (~ 30% of the 

data for each scene) data set and imported into Statistical Analysis Software (SAS) 

version 8.2 to perform all analyses (Discriminant and Logistic procedures were used to 

perform the maximum likelihood classification and PLR classifications, respectively).  

Total sample size, by class and scene, are listed in Table 3.  

In studies that have contrasted PLR and discrimant analysis (Bull and Donner, 

1987; Hossain et al., 2002), only 3 classes were used to compare the two methods.  In 

remote sensing, however, there are often many more than 3 classes.  To determine 

whether the number of classes had an appreciable effect on the accuracy of the hard 

classification method, as many as 10 class types were sampled from some scenes, while 
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other scenes had as few as 4 class types sampled.  In all, 10,350 image-interpreted 

samples were collected across 15 different scenes.    

Validation accuracies were used to estimate the level of agreement between 

observed and predicted classes using kappa statistics (Foody, 2002; Erdas, 1997; Agresti, 

1990).  Each classification method’s mean kappa estimate and corresponding lower and 

upper kappa confidence limits were compared on a scene-by-scene basis to determine if 

the number of classes had an appreciable effect on the accuracy of a particular 

classification method.  To test general accuracy trends, we compared mean estimates of 

kappa for all scenes among all classification methods using a one-way nonparametric 

analysis of variance.    

In situations where there was complete spectral separation among some of the 

classes, the logistic procedure was allowed to continue using the last maximum 

likelihood iteration to determine fit statistics.  While fit statistics in these situations may 

be misleading due to an unsolvable maximum likelihood estimate, predicted class types, 

based on probabilities and a MLAR, can still be used to compare the class accuracy of the 

two methods.   

After comparing the classification methods using a hard classification, the PLR 

procedure was performed again for a randomly chosen scene (path/row 21/37) and the 

classes Evergreen, Deciduous, and Wetland to develop and interpret a parsimonious 

probabilistic classification.  Training data for this scene were used to generate a suite of 

classification models, from which the best fitting and most parsimonious model was 

selected using Akaike’s Information Criterion (AIC; Akaike, 1973).  The top ranked 

model was then used to perform a probabilistic classification for that scene.  To validate 
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our probabilistic classification, we compared the summed class frequency estimates 

(lower and upper 95% confidence limits) against observed class frequencies using the 

validation data set for that scene. Class frequency confidence intervals were calculated 

for each observation using the delta method (Agresti, 1990; Agresti, 2002). Under this 

scenario, a PLR model that contains a predefined proportion (i.e., 95%) of observed class 

frequencies within its predefined confidence interval (i.e, 95% confidence interval), 

suggests a good model fit and that the model can be generalized to the rest of the 

population.   

RESULTS 

Hard Classification 

 Kappa estimates for the PLR hard classifications and Quadratic maximum 

likelihood classification were significantly larger than kappa estimates for linear 

maximum likelihood classification for scenes 19/38 and 20/38 (Figure 3).  Additionally, 

the PLR hard classifications had a significantly larger kappa value when compared to the 

linear maximum likelihood classification method for scenes 20/37 and 20/39.  There were 

no significant differences in mean kappa estimates, however, between PLR hard 

classifications and quadratic maximum likelihood classification.  These results suggest 

that the number of classes and the sample size of each comparison did not have an 

appreciable effect on the accuracy of any particular classification method (Table 2; 

Figure 3).  In addition, there were no significant differences in hard classification 

accuracy trends among the different classification methods (all method comparisons: 

Kruskal-Wallace X2
df = 2 = 1.6935; p-value = 0.43, PLR vs Linear maximum likelihood 
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classification: Kruskal-Wallis X2
df =1 = 0.7230; p-value = 0.40, PLR vs Quadratic 

maximum likelihood classification Kruskal-Wallis X2
df = 1 = 0.1897; p-value = 0.66).   

Probabilistic Classification 

Reapplying the PLR classification method for the classes Evergreen, Deciduous, 

and Wetland in scene 21/37, we found only 6 spectral bands were needed to sufficiently 

describe the probability transition among classes (Table 4).  Using Landsat ETM+ bands 

2 through 7, we were able to generate a statistically significant model (X2
df = 12 = 227.59; 

p-value < 0.0001) that explained the majority of information within our training data 

(max rescaled 8211.0~ 2 =R ; SAS 2005).  Interpreting the beta estimates, in terms of odds 

ratio (calculated as follows; ratio, odds=Β ij xe where Bj = the slope estimate for bandj and 

xi = the DN value for bandj), we identified the effect each Landsat ETM+ band had on 

class probabilities (Table 5).  For example, with every incremental increase in DN values 

for band 4, while holding bands 2, 3, 5, 6, and 7 constant, the average odds (chances) of 

the classes Deciduous and Evergreen increased by multiples of 1.455 and 1.202, 

respectively, when compared with the Wetland Class.  Comparing the Deciduous and the 

Evergreen class, however, was less straightforward.  Odds ratio between the Deciduous 

and Evergreen classes were calculated as follows: 

Given that the log odds of,   

;  ln,ln j
Wetland

Deciduous

Wetland

Evergreen and βx ′=



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Using equation 7 and exponentiating the results (Agresti, 2002), the estimated average 

odds of the class Deciduous increased by a multiple of 1.211 for every incremental 

increase in band 4 DN values (Table 4).   

Using the delta method (Agresti, 1990; Agresti, 2002) to generate 95% 

confidence intervals for each observation in the validation data set and summing the 

lower and upper probability estimates for all observations, we predicted (within the lower 

and upper confidence limits) the total number of observations for each class (Figure 4).  

In addition, we were able to predict (within the lower and upper bounds of a 95% 

confidence interval) the cell counts of a hard classification accuracy assessment by using 

a MLAR and summing the lower and upper probability confidence interval for each class 

(Figure 4).  User accuracies (row proportions; Figure 4), were calculated by dividing the 

area under a specified class distribution (the sum of class probabilities for a given class 

type), within the bounds of a given MLAR, by the total area of that class distribution (the 

sum of class probabilities for a given class type across all MLARs).  Producer accuracies 

(column proportions; Figure 4) were calculated by dividing the area of each specified 

class distribution, within the bounds of each MLAR, by the area of all class distributions 

within the bounds of that MLAR. 

DISCUSSION 

 For all 15 scene comparisons, hard classification accuracies were similar among 

PLR, linear discriminant analysis, and quadratic discriminant analysis.  Similar results 

have been documented in other studies (binary case: Press and Wilson, 1978; 

multinomial case: Hossain et al., 2002).  Under different circumstances, such as when 

categorical variables provide important class separating information, the PLR 
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classification would have a significant advantage over the linear or quadratic maximum 

likelihood classification method given that categorical variables can be directly 

incorporated into a PLR model (Hosmer et al., 1983).  In cases where maximum 

likelihood classification assumptions are met, both the PLR and maximum likelihood 

classification methods will give equivalent results (Hosmer and Lemeshow, 2000), the 

primary difference among the methods is the efficacy of the algorithms (binary case: 

Efron, 1975; multinomial case: Bull and Donner, 1987).  Historically, the PLR 

classification method may have been less appealing due to the amount of processing time 

required to calculate a maximum likelihood estimate.  With today’s computer processors, 

however, this is no longer an issue.   

 When performing a maximum likelihood classification, sometimes analysts 

ignore the statistical assumptions of the classification technique and rely on an 

independent accuracy assessment to estimate classification accuracy.  While an accuracy 

assessment does assess the hard classification rule, it does not consider issues such as 

over fitting the data, modeling assumptions, multicollinearity, or model parsimony in the 

initial statistical model.  Failure to address these issues can mask the relationship between 

explanatory variables and response variables, reducing the overall accuracy of the 

classification, and limiting our understanding of the driving components of the model 

(Press and Wilson, 1978; Foody, 1996; Hosmer and Lemeshow, 2000; Johnson and 

Wichern, 2002).   

The PLR method differs from the discriminant analysis method in its modeling 

assumptions, its ability to incorporate both categorical and continuous variables, its focus 

on directly modeling class probabilities, and its ability to estimate model error (i.e., error 
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in the estimated probabilities).  While the discriminant method can be used to derive 

posterior probabilities, these probabilities are based on the assumption of multivariate 

normality, which seldom holds for remote sensing data (Foody, 1996).  Moreover, 

posterior probabilities only represent the mean probability given a set of explanatory 

variables values.  By definition, they do not include measures of probability error.  In 

contrast, the PLR method estimates probability error, which provides analysts and end 

users with a much finer level of detail.  In essence, a PLR classification is not limited to 

one map.  Instead, a probabilistic map, with corresponding lower and upper confidence 

limits can be produced for each respective class and observation. 

 For example, each observation in scene 21/37 represents a Landsat ETM+  pixel.  

Class probabilities for each pixel in that scene are interpreted as the mean proportion of 

times that one would expect to find each class at a pixel with given spectral values.  

Assume there were 100 pixels with DN values of 47, 36, 65, 69, 124, and 33 for bands 2 

through 7, respectively. Using equations 4 and 5 and the delta method, we would expect 

on average 28 (12-45, 95% confidence intervals), 7 (0-17, 95% confidence intervals), and 

65 (47-83, 95% confidence intervals) pixels out of the original 100 pixels to be 

Evergreen, Deciduous, and Wetland, respectively.  These types of maps not only depict 

the probability of each class for each pixel, but also maintain the modeling errors 

associated with class probabilities, which can be directly incorporated into other 

predictive models.   

A number of techniques exist to validate PLR models (Neter et al., 1996).  For 

example, a classical model validation approach is to generate models for both training 

and validation data sets and compare beta estimates and significant model parameters.  
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The difficulty with this approach is that it requires a substantial amount of data.  We 

demonstrated (Figure 4) how conditional probabilities and probability confidence interval 

can be used to assess the accuracy of a PLR model when sample size is limited.  One can 

then infer whether PLR probabilities can be generalized to the rest of the population (i.e., 

the rest of the pixels inside a Landsat ETM+ image) by comparing these predicted 

estimates with observed independent data.   

Evaluating PLR fit statistics and taking into consideration model parsimony, 

Landsat ETM+ bands 2 through 7 were useful in separating the classes Evergreen, 

Deciduous, and Wetland in scene 21/37.  ETM+ band 1 did not provide any additional 

information and was subsequently removed from the analysis.  Interpreting the results for 

scene 21/37 in terms of scaled energy (i.e., DN values) and odds ratios, we see that as the 

amount of energy being reflected and transmitted from the earth’s surface in ETM+ 

bands 3 and 6 increases (wavelength ranges of  0.630 µm - 0.690 µm and 10.40 µm – 

12.50 µm, respectively), while the energy being reflected and transmitted in band 2 

remains low (wavelength range 0.525 µm – 0.605 µm) the odds of the Evergreen class 

increase (Table 4).  Conversely, as the amount of energy being reflected and transmitted 

in bands 3 and 6 decrease while maintaining band 2 at low levels the odds of the 

Deciduous class increase.   

These results have biological implications.  For example, given the date of image 

acquisition and that certain objects use different portions of the electromagnetic 

spectrum, these results may suggest that in the spring, Deciduous class types absorb a 

relatively large portion of visible light (bands 2 and 3) when performing photosynthesis, 
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and that these class types maintain cooler daily temperatures (band 6) when compared 

with Evergreen and Wetland classes.    

Whether remote sensing analysts are primarily focused on developing a hard 

classification, building a series of probability maps, or understanding the driving 

components of a classification, it is critical that modeling assumptions are checked.  

Failing to do so may result in biased classification models.  If the assumptions of a 

classification method are met, such as in the PLR example for scene 21/37, then class 

probabilities can be used as an alternative to a hard classification.  Moreover, these class 

probabilities (and estimates of error) can provide a more accurate depiction of class area 

(and area confidence intervals).  This is not to imply that every pixel has a certain 

proportion of its area allocated to each class.  Instead, it indicates that, on average, we 

expect a certain number of pixels to be allocated to each class type, given a set of 

explanatory values.  This means that as the number of pixels used to calculate class area 

for a specified region increases, the accuracy of our class area estimate should also 

increase. 

Identifying class location, however, is less straightforward.  Given that class 

probabilities do not represent the amount of class area within each pixel, a class 

allocation rule must be specified to identify class location.  Arguably, one of the easiest 

rules to apply is a MLAR.  While this type of rule will ensure that every pixel is 

classified into one of the predefined categories, in some instances this rule may allocate 

class types to pixels where the probability of being a specific class could be as low as 

100% divided by the number of classes.  Alternatively, with the PLR method users can 

select class probability thresholds that identify class locations.  While this approach may 
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leave some pixels unclassified, it provides users of the data set with a level of precision 

(in terms of probabilities) for each class location.  By maintaining class probabilities for 

each pixel, data set users have the flexibility to address numerous different scenarios.  For 

example, if a user was interested in identifying locations in scene 21/37 where there was 

a high probability of the class Evergreen (x >  66%) and medium to high probability of 

the class Wetland (33% < x < 66%), they could perform a GIS query to find such 

locations.  To determine the accuracy of each potential class, a user could apply GIS 

zonal functions (ESRI, 2005) to average the summed probabilities of each class 

combination. 

CONCLUSION 

The PLR technique has desirable qualities for classifying remotely sensed data 

which include relatively unrestrictive model assumptions, the ability to incorporate both 

continuous and categorical variables directly into the classification scheme, relatively 

easy techniques for model comparison (e.g., AIC), an intuitive relationship between class 

types and explanatory variables (odds ratios), and a focus on directly modeling class 

probabilities (model error).  The outputs from the PLR method are class probability 

distributions.  Using class probability distributions and estimates of model error, users 

can accurately calculate the amount of area for each class type within a predefined level 

of confidence.  In addition, they can query each class probability distribution to generate 

a wide variety of maps identifying class location that are tailored to specific questions.  

These maps can include a MLAR map, but are not limited to this type of map.  Overall, 

the PLR classification method provides an extremely flexible alternative to the classical 

supervised approach. 
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Table 1. Cross walk between our stage 1 land cover classes and NLCD+ classes. 

Land Cover Classes NLCD Classes 

Water 11  Open Water     
21  Developed, Open Space   
22  Developed, Low Intensity  
23  Developed, Medium Intensity 
24  Developed, High Intensity  
31  Barren Land (Rock/Sand/Clay) 

 Urban / Transportation 
/ Bare Ground 

32  Unconsolidated Shore   
41  Deciduous Forest   

Forested * 42  Evergreen Forest   
43  Mixed Forest   Deciduous   Evergreen 
52  Shrub/Scrub     
71  Grassland/Herbaceous   
81  Pasture/Hay   Field 
82  Cultivated Crops     
90  Woody Wetlands   Wet Vegetated Area 
95  Emergent Herbaceous Wetlands 

+NLCD classes 12, 51, 72, 73, and 74 were not applicable to our study 

*Forested classes where split into 2 groups Evergreen and Deciduous based on the 

dominance of "Evergreen" and "Deciduous" trees. 



 
 

 23

 
 
Table 2. Landsat ETM + Scene, date, and number of classes used to compare maximum 

likelihood classification and PLR classifications. 

Scene 
(Path/Row) Season Date 

Number 
of 

Samples 

Number of 
Classes 

19/37 Spring 4/5/2000 251 5 
19/38 Spring 4/5/2000 2155 8 
19/39 Winter 12/20/2001 345 5 
20/36 Spring 6/18/2001 579 5 
20/37 Fall 10/8/2001 1371 7 
20/38 Fall 10/8/2001 1421 10 
20/39 Winter 1/25/2001 1005 6 
21/36 Winter 3/5/2001 406 4 
21/37 Spring 4/19/2000 897 9 
21/38 Winter 2/15/2000 633 8 
21/39 Spring 5/24/2001 318 7 
22/36 Fall 10/3/2000 88 4 
22/37 Spring 5/15/2001 405 8 
22/38 Spring 5/15/2001 282 7 
22/39 Fall 11/7/2001 194 6 



Table 3. Number of samples per class type for each Landsat ETM+ scene.  Approximately 70% of the samples were used to generate 

each classification model, while the remaining 30% of the data were used to test each classification methodology. 

Scene   
(Path Row) Burn City Clouds Deciduous Evergreen Field Shadow Smoke Water Wetland

19/37 44 46 0 0 48 0 0 47 66 0 
19/38 0 310 262 249 313 268 267 218 268 0 
19/39 59 0 0 0 71 73 0 0 71 71 
20/36 0 0 110 111 109 139 0 0 110 0 
20/37 192 195 191 197 204 196 0 0 196 0 
20/38 128 128 128 128 240 136 133 140 128 132 
20/39 170 157 0 169 172 0 0 0 168 169 
21/36 0 0 0 88 87 146 0 0 85 0 
21/37 86 240 80 77 81 78 0 74 101 80 
21/38 65 70 0 63 63 63 0 65 64 180 
21/39 44 44 0 50 45 44 0 0 47 44 
22/36 0 0 22 0 0 22 0 0 22 22 
22/37 69 44 78 44 34 45 0 0 37 44 
22/38 41 40 0 40 40 0 0 41 40 40 
22/39 33 0 29 41 33 0 29 0 0 29 
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Table 4. Model fit statistics for the PLR classification method using the Wetland class as the baseline response variable.  Model one 

represents our top model.  

Model 
# 

Landsat ETM+ Bands 
Used in the Model DF AIC ∆AIC AIC Model 

Weight 
X2 Nested 

Comparison P-value 

1 bands 2-7 12 182.277 0.000 0.500 2 vs 1 0.14266 
2 bands 1-7* 14 182.382 0.105 0.474 NA NA 

3 bands 2, 4-7 10 188.195 5.918 0.026 3 vs 2 
3 vs 1 

0.07921 
0.07048 

4 bands 1-6 12 204.660 22.383 0.000 4 vs 2 0.00000 
5 bands 2-6 10 207.000 24.723 0.000 5 vs 2 0.00000 
6 bands 3-7 10 219.876 37.599 0.000 6 vs 2 0.00000 

 * Model with most parameters (i.e., all Landsat ETM+ Bands)25 



Table 5. Maximum likelihood beta estimates, standard errors, chi-square values, p-values, and odds ratio for the top ranked 

probabilistic classification model.  Band 3 for the deciduous and evergreen classes and band 6 for the evergreen class have p-values 

> 0.05.  While these variables are not significant at α = 0.05 for their respective class, they are significant for the other class, thus 

making them significant in the overall model.   

Variables Class DF Beta 
Estimates 

Standard 
Error X2 P-value Odds ratio 

(Class/Wetland
Odds ratio 
(Deciduous/Evergreen)

Intercept deciduous 1 263.2 59.218 19.7474 <.0001 Exp(263.2) * 
Intercept evergreen 1 66.4517 23.3085 8.128 0.0044 Exp(66.45) * Exp(196.75) * 

Band 2 deciduous 1 -1.2422 0.3525 12.4202 0.0004 0.289 * 
Band 2 evergreen 1 -1.0443 0.2176 23.0397 <.0001 0.352 * 0.820 

Band 3 deciduous 1 -0.5096 0.2806 3.2996 0.0693 0.601 
Band 3 evergreen 1 0.2172 0.1315 2.7259 0.0987 1.243 0.483 * 

Band 4 deciduous 1 0.3752 0.1062 12.4725 0.0004 1.455 * 
Band 4 evergreen 1 0.1839 0.0593 9.6166 0.0019 1.202 * 1.211 

Band 5 deciduous 1 -0.3569 0.1599 4.9818 0.0256 0.7 * 
Band 5 evergreen 1 -0.4247 0.1066 15.8722 <.0001 0.654 * 1.070 

Band 6 deciduous 1 -1.8291 0.4746 14.8544 0.0001 0.161 * 
Band 6 evergreen 1 -0.2898 0.1794 2.6094 0.1062 0.748 0.215 * 

Band 7 deciduous 1 1.1635 0.3278 12.5954 0.0004 3.201 * 
Band 7 evergreen 1 0.8261 0.2043 16.3519 <.0001 2.284 * 1.401 

 
* Odds ratio that is significantly different than 1 at α = 0.05 
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Figure 1. Cross sectional view of a hypothetical, multidimensional, 5 class probability distribution.  The vertical dashed lines identify 

the location of each class’ maximum likelihood allocation rule while holding variables Xi-1 constant and allowing variable X1 to 

vary.   

0% 

100% Water Deciduous Evergreen Field City

0% 

100% 
C

la
ss

 P
ro

ba
bi

lit
y 

Variable X1

27 



 

Figure 2. Seasonality of each Landsat ETM+ scene and the spatial location of each sample point (total of 15 different scenes).
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Figure 3. Estimated mean kappa values (measure of agreement among classes) and 95% confidence intervals for each Landsat 

ETM+ scene (Path Row) for the PLR and MLC methods. 
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Figure 4. Comparison between an observed hard classification accuracy assessment and a predicted hard classification accuracy 

assessment using the top ranked PLR probabilistic classification model and a MLAR.  
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CHAPTER 2 

 

BRINGING IMAGES TO A COMMON RADIOMETRIC SCALE USING 

AGGREGATE NO CHANGE REGRESSION: A COMPARISON  

BETWEEN RADIOMETRIC NORMALIZATION  

TECHNIQUES 

 

ABSTRACT  

 Aggregate no change regression (AG-NCR) is a relative normalization procedure 

that addresses changes in the reflectance between images by aggregating the digital 

number values of each image, which have not experienced land use change or temporal 

features such as clouds, and regressing those values against one another. What separates 

this normalization procedure from other common relative normalization techniques is that 

it explicitly addresses spectral differences between images caused by geo-rectification 

errors. Compared with 2 absolute normalization models, a top ranking relative 

normalization model, and a combination of absolute and relative normalization model, 

AG-NCR significantly reduced the variability between 11 Landsat ETM+ scene 

comparisons, accounting for approximately 96% of the total variation between images. 

Using this technique, multiple images representing the same season, can be brought to a 
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common radiometric scale for the purpose of generating fine grain regional 

classifications. 

INTRODUCTION 

In recent years, the ability to produce fine grain (30 m) classifications that span 

across large extents has dramatically increased (Vogelmann et al., 2001; Skole et al., 

1997). Many of these regional classifications have been successfully performed by 

mosaicing adjacent satellite images acquired from sensors such as Landsat 7 (Homer et 

al., 1997, 2004). Adjacent images, though, often have significantly different spectral 

reflectance due to changes in the environment and changes in the sensor as a function of 

image acquisition dates (Hall et al., 1991; Du et al., 2002). If not accounted for, these 

spectral differences can increase class variability, causing the precision and accuracy of a 

classification to decrease (Song et al., 2001; Hall et al., 1991).  

To compensate for spectral differences between images, analysts have employed a 

number of different techniques ranging from classifying on a scene-by-scene basis 

(Vogelmann et al., 2001), to normalizing images prior to classification (Pax-Lenney et 

al., 2001). While the first approach addresses spectral differences between scenes, it does 

so in an indirect fashion, leading to issues such as edge matching, increased sampling, 

and multiple classification accuracies (many classification models), making the final map 

less appealing, more costly, and difficult to assess. Transforming imagery to a common 

radiometric scale, however, addresses spectral differences directly, potentially removing 

the issues associated with scene-by-scene classifications. For these reasons, radiometric 

normalization is often preferred over the time intensive scene-by-scene classification 

technique (Pax-Lenney et al., 2001; Song et al., 2001; Olthof et al., 2005a, b). Currently 
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though there is no commonly accepted radiometric normalization technique, and existing 

procedures do not fully address the sources of spectral differences between images. The 

purpose of this paper is to compare and contrast four commonly used radiometric 

normalization techniques with our newly developed technique that directly considers geo-

rectification errors. 

Background 

Radiometric normalization can be separated into two broad categories, absolute 

and relative. Absolute radiometric normalization attempts to transform spectral 

reflectance to surface reflectance using empirically derived models that account for 

atmospheric conditions and changes in the sensor given the temporal nature of the 

imagery. These models, referred to as radiometric transfer codes (RTC), have been 

shown to be effective at converting at-sensor reflectance to surface reflectance (Holm et 

al., 1989; Moran et al., 1992), but typically require accurate atmospheric information at 

the time of image acquisition, which is seldom available for historical imagery and can be 

costly to collect for multiple scenes (Chavez, 1996; Du et al., 2002; Velloso and De 

Souza, 2002; Canty et al., 2004). Therefore, alternative absolute normalization routines 

have been developed, such as dark object subtraction (Chavez, 1988, 1989, 1996; Song et 

al., 2001), which assumes the reflectance of certain objects (e.g., water and shadows) are 

near or at zero and that reflectance values deviating from zero, for these objects, are 

caused by atmospheric interference. In this methodology, dark objects are often manually 

selected through image interpretation (Chavez, 1989). In instances where manual 

selection is too time consuming and/or expensive, automated routines have been 

developed (Teillet and Fedosejevs, 1995; McDonald et al., 1998; Song et al., 2001).  
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Relative radiometric normalization attempts to transform spectral reflectance of 

one image (slave image) to match the spectral reflectance of another image (master 

image). The focus of this approach is not to transform image spectral reflectance to 

surface reflectance but to bring images to a common radiometric scale. This approach not 

only accounts for atmospheric and sensor conditions, but also accounts for changes in the 

biotic and abiotic environment (e.g., differences in soil moisture and growth in 

vegetation). Relative normalization procedures include algorithms such as histogram 

equalization and matching (Erdas, 1997), linear regression (Jensen, 1983), multiple 

regression (Olsson, 1993), non-parametric smoothing (Velloso and De Souza, 2002), and 

piecewise regression (Erdas, 1997). This approach typically uses features that remain 

constant through time to capture the spectral relationship, by band, between two images. 

Using these relationships, relative normalization then transforms the spectral reflectance 

of the slave image to match the spectral reflectance of the master image.  

Identifying spectrally constant features in the imagery is integral to the relative 

normalization approach. Numerous ways have been proposed to achieve this task ranging 

from manual interpretation (Schott et al., 1988) to automated techniques (Hall et al., 

1991). Others have suggested pixels occupying the same geometric location between 

images be used to transform the digital number (DN) values of one image to match the 

DN values of another image (Jensen, 1983; Song et al., 2001). In this approach, pixels 

that have been affected by land use change, given different image acquisition dates, are 

thought to have a minimal effect on the image transformation process. Yuan and Elvidge 

(1996), however, have demonstrated that a no change regression (NC) procedure reduces 

the effects of land use change and/or temporal features, such as clouds between image 
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acquisition dates and improves the normalization process. They also found that pixels 

that have undergone land use change or that have temporal features could have a 

significant, negative impact on the normalization process. 

Given that the objectives of absolute and relative normalization differ, few have 

directly compared the 2 methodologies. Song et al., (2001) evaluated 4 dark object 

subtraction (DOS) methods (absolute), 2 dense dark vegetation (DDV) methods 

(absolute), a path radiance (PARA) method (absolute), and a regression method (relative) 

in terms of overall classification accuracies and found that 2 DOS methods and the 

regression technique were the top performing normalization models. However, no 

statistical tests were performed to determine if overall differences in classification 

accuracy could be attributed to a particular normalization method (e.g., compare 

variability in overall accuracies, perform ANOVA, or perform non-parametric ANOVA). 

Furthermore, errors in the classification may have been an artifact of the classification 

methodology and or classification rule(s) as opposed to the normalization technique, 

potentially masking the effect of the normalization process. Alternatively, one could 

evaluate both approaches by comparing how well each method transforms one image to 

match the spectral values of another image. Comparing absolute and relative 

normalization techniques in this manner, Yuan and Elvidge (1996) found that NC 

regression outperformed Chavez’s (1988) haze correction algorithm (early DOS), 

Jensen’s simple regression (1983), Hall et al.’s (1991) dark and bright regression, Schott 

et al.’s (1988) pseudoinvariant features normalization, mean-standard deviation 

normalization, and a minimum maximum normalization procedure. 
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While the NC regression showed a remarkable improvement in bringing two MSS 

images (27 years between scene acquisition dates) to a common radiometric scale, it 

makes assumptions that may limit the utility of the technique.  For example, only MSS 

bands 3 and 4 were used to identify no change pixels. Different bands, however, 

accentuate different features in satellite imagery (Jensen, 2000). Pixels identified as 

having constant reflectance or changed reflectance in bands 3 and 4 may not represent 

pixels that have constant reflectance or changed reflectance in other spectral bands. 

Furthermore, initial estimates that are determined by locating the centers of land and 

water ellipsoids from band 3 and 4 scattergrams can potentially be influenced by extreme 

land and water values. Finally, NC regression assumes the geometric rectification 

between images is accurate (i.e., the spatial location of a pixel in one scene represents the 

same spatial location in another scene). Geometric accuracies ranging from + 1 to + 8 

pixels for ETM+ imagery, depending on whether the source data have been terrain 

corrected or systematically corrected, are commonly encountered (NASA, 2005), 

potentially limiting the validity of this assumption.  

Given the assumptions of the NC regression, recent improvements in DOS 

methods (Chavez, 1996; Song et al., 2001), and that the Multi-Resource Land 

Characteristics Consortium (MRLC) has adopted at-satellite reflectance transformation of 

Landsat imagery (Huang et al., 2002), we compared and contrasted the ability of five 

normalization methods to bring images, acquired over different dates with the same 

representative season, to a common radiometric scale (Table 1).  
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METHODOLOGY 

Overview 

This section provides an overview of the study design and methods. Sections 

following the overview describe different aspects of our analyses in detail. 

Eleven overlapping areas of 9 Landsat enhanced thematic mapper plus (ETM+) 

images (Figure 1), acquired over a 2-year period representing a leaf-off winter season, 

were used to compare and contrast 5 radiometric normalization procedures (Table 1). 

Each Landsat image was preprocessed by the MLRC using processing level 1T 

procedures (NASA, 2005). Because extremely bright objects (e.g., sand, rocks, and 

concrete) have the potential to saturate individual Landsat ETM+ bands in one image 

without necessarily saturating the same band in another image (given changes in sun 

elevation angle, solar illumination, and atmospheric condition) we removed pixels that 

had DN values > to 240 for image pairs from the analysis. In addition, areas that had 

substantial cloud cover were removed from the analysis. For the remaining pixels in each 

of the overlapping regions, we developed a non-parametric change detection method and 

used it to identify no change pixels. Each no change pixel was then randomly assigned 

into a training (~ 50%) and validation (~ 50%) data set. Spectral values were extracted 

from each image, by band, on a pixel basis, using the no change subset, and imported into 

Statistical Analysis Software version 8.3 (SAS). The appropriate transformation 

coefficients for each normalization method were determined and applied to the validation 

data set.  

Master image spectral values for the validation data sets were then compared 

against transformed slave images spectral values for each method, on a pixel basis, using 
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ordinary least squares regression. Techniques that have brought images to a common 

radiometric scale in this analysis should predict intercept (α) and slope (β) values 

approximately equal to 0 and 1, respectively, and should explain a large amount of the 

variation between spectral values in image overlaps [i.e., have a large coefficient of 

determination (R2)]. To test whether there was a significant improvement among 

normalization methods, we compared predicted intercept and slope estimates with 

expected values for each method and performed a non-parametric one-way analysis of 

variance using R2 estimates. R2 estimates were compared by band as opposed to root 

mean squared error estimates because they are independent of scale, thereby allowing for 

direct comparison among the different normalization techniques (Olsson, 1993).  

Identifying No Change Pixels 

After removing potentially saturated DN values (i.e., > 240 for both images) from 

the overlap between two images, we subtracted the DN values of the slave image from 

the DN values of the master image by band on a pixel basis. Using an equal area slicing 

algorithm we ranked differenced values from smallest to largest and then grouped 

rankings into 100 classes, each with approximately equal area (ESRI, 2005; ERDAS, 

1997). Assuming that 90% of the area in the overlap between scenes had not experienced 

land use change or temporal features we then selected no change pixels by querying 

sliced categories > 5 and < 95.  

Ordinary Least Squares Regression  

Ordinary least squares regression was used to determine how well the spectral 

values of each transformed slave image matched the spectral values of each master 

image. Assuming that transformed slave images have been brought to the same 
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radiometric scale as master images, one would expect a perfect 1 to 1 linear relationship 

that crosses through the origin (i.e., intercept of 0, slope of 1, and R2 = 1). Using ordinary 

least squares regression and the validation data set, we estimated intercept (α), slope (β), 

and R2 parameters by minimizing the deviation (Q) between transformed slave image and 

master image spectral values as follows (Neter et al., 1996): 
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To determine the amount of variation explained between master and transformed slave 

image we use the following equation: 
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The top performing normalization method was determined by comparing estimated α, β, 

and R2 values against expected values.  

Normalization Methods 

Dark Object Subtraction (DOS) — DOS assumes that there are objects in the 

imagery that are completely dark. However, due to atmospheric scattering these objects 

will not appear absolutely dark (Chavez, 1988). Song et al. (2001) indicated that the top 2 



 
 

 45

DOS models, in terms of classification accuracy, were a method that assumed no 

atmospheric transmittance loss and no diffuse downward radiation (DOS1) and a method 

that assumes transmittance loss, diffuse downward radiation, and Rayleigh scattering 

(DOS3). Given that both methods gave comparable results in their study, we selected 

DOS1, the simpler of the two methods for our comparison.  

 To transform DN values (a measure of at-satellite radiance) to surface reflectance, 

using DOS1, we needed to identify the location of dark objects and account for the 

additive effect of atmospheric interference. Dark objects (DNmin) were located using the 

lowest DN value within an image, by band, which had > 1000 pixels (Teillet and 

Fedosejevs, 1995; Song et al., 2001). Assuming a 1 % surface reflectance for these 

objects (Chavez, 1989; Moran et al., 1992; Song et al., 2001) path radiance (Lpk) was 

calculated as follows; 

( ){ } 7 5,-1 Bands ETM k               θsinESUN.BDNminGLp kkkk +=−+⋅=
π

010          (4) 

where G, B, ESUN, and θ are band specific measures of gain, bias, solar exoatmospheric 

irradiance, and sun elevation angle, respectively. Using equation 4, surface reflectance 

(srk) was derived using the following equation (after Song et al., 2001): 

( )θsinESUN
)Lpπ(Lsat

sr kk
k ⋅

−
=                                                                                  (5) 

where Lsatk is at-satellite radiance and is calculated as follows (Markham and Barker; 

1986; Huang et al., 2002): 

kkkk BDNGLsat +⋅=                                                                               (6) 

For this method, the overlapping areas in slave and master scenes were transformed to 

surface reflectance and then regressed against one another using the validation data set.  
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At-Sensor Reflectance (ASR) — ASR is a first order normalization routine 

adopted by the MRLC (Huang et al., 2002). This routine directly addresses issues of 

sensor change and illumination geometry. ASR is calculated using equation 6 to convert 

DN values to at-satellite radiance and then converting at-satellite radiance to sensor 

reflectance as follows (Huang et al., 2002): 

 ( )θsinESUN
dLsatπ

ASR k
k ⋅

⋅⋅
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2
                                                                          (7) 

where d is the earth sun distance in astronomical units and can be calculated according to 

Iqbal (1983). This approach is similar to DOS1 except that Lpk term is removed and the 

square of earth sun distance is added to the reflectance formula. In this method, the 

overlapping areas in slave and master scenes were transformed to sensor reflectance and 

then regressed against one another using the validation data set.   

No Change Regression (NCR) — NCR is a relative normalization procedure that 

attempts to bring adjacent overlapping images to a common radiometric scale. Unlike the 

previously described procedures, this technique requires images to share a portion of 

geographic space. After removing pixels that represent land use change or temporal 

features, NCR regresses, on a pixel basis, the DN values of a slave image onto a master 

image using ordinary least squares regression (Yuan and Elvidge, 1996). Estimated 

intercept and slope coefficients are then used to transform DN values of the slave image 

to match DN values of the master image. Elvidge et al. (1995) suggest identifying no 

change pixels by first locating the centers of land and water pixels in scattergrams of 

Landsat multispectral scanner (MSS) bands 3 and 4 (approximate ETM+ spectral 

equivalent of band 4) and deriving initial estimates for each linear transformation. Using 
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these estimates and a half-perpendicular width of 10 DN (approximate ETM+ equivalent, 

20 DN), they generated a series of Boolean equations separating change verses no change 

pixels. Extreme water and land values (i.e. land use change or temporal features), 

however, can skew the center of water and land pixels, adversely affecting the initial 

intercept and slope estimates of the linear transformation. Furthermore, pixels identified 

as no change in certain bands may not represent no change pixels in other bands given 

that each band accentuates different environmental characteristics for both MSS and 

ETM+ sensors (Jensen, 2000). Therefore, we adopted our non-parametric approach of 

identifying no change pixels described early in this paper.  

Using the training data set and equations 1 and 2 we estimated linear 

transformation coefficients by band for each overlapping area. Applying these estimates 

to the DN values of the slave image validation data set, we then regressed transformed 

slaved image DN values against master image DN values, by band, for all image 

comparisons. 

At-Sensor No Change Regression (AS-NCR) — AS-NCR is a merger of the 

absolute ASR and the relative NCR normalization methods. The primary difference 

between this method and ASR and NCR is that before applying NCR we transformed DN 

values to at-sensor reflectance. After converting DN values to at-sensor reflectance, we 

regressed slave image reflectance onto the master image reflectance using the training 

data set. Estimated slope and intercept coefficients were then used to transform the slave 

image’s sensor reflectance values, for the validation data set by band for all 11 image 

comparisons. Finally, these transformed sensor reflectance were regressed against master 

sensor reflectance by band for all image comparisons. 
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Aggregate No Change Regression (AG-NCR) — AG-NCR is a relative 

normalization procedure that, in addition to accounting for changes in the biotic and 

abiotic environment, also addresses errors in the geographic rectification process. This 

technique is identical to the NCR procedure with one exception; prior to extracting the 

spectral values from the overlapping region of two images, AG-NCR performs a mean 

aggregating function (ESRI, 2005; ERDAS, 1997). The aggregating function helps to 

limit the effect of geographic rectification inaccuracies between two images by 

minimizing the importance of the spatial location of any one individual pixel. The 

assumption is that factors affecting differences between scene DN values occur at coarser 

scales than an individual ETM+ pixel (grain size 30 meters), and that geo-rectification 

errors are such that a pixel occupying the same spatial location in two scenes may not 

represent the spectral reflectance of  the same objects.  

To determine an appropriate aggregation size, a series of empirical tests were 

performed, simulating geo-rectification errors between the overlapping areas of two 

images. DN values (0-255) were randomly assigned to pixels within a master scene 

overlap, assuming a worst-case scenario between adjoining pixels (i.e., no spatial 

correlation between spectral reflectance). Slave scene pixel values were then calculated 

using an arbitrary linear transformation of the master scene.  

( )
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Next, constant spatial shifts of 1, 2, and 4 pixels were applied to the slave image to mimic 

geo-rectification errors. Finally, mean aggregates of 0, 25, 100, 400, 625, 2500, 10000, 

and 40000 pixels were compared, using ordinary least squares regression analysis. From 
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the regression analyses mean estimated intercept, slope, and R2 were obtained for each 

aggregation level and were plotted against the size of the aggregating function for each 

corresponding pixel shift (Figure 2). From these plots a conservative aggregation size of 

50 (2500 pixels) was selected based on identifying a point where all estimated values 

(intercept, slope, and R2, respectively) begin to reach a local asymptote (5, 0.875, and 1, 

respectively), for the three simulated pixel shifts.    

 After aggregating the bands of each image, we randomly assigned 50% of the 

aggregated pixels to a training and validation data set. From the training data set, we 

generated intercept and slope coefficients by band for each image comparison, using 

equations 1 and 2. Using these estimates and the validation data sets, we transformed the 

DN values of the slave image and regressed those values against the master image DN 

values by band for each image comparisons.  

RESULTS 

Transformation Coefficients 

 Transformation intercepts and slope estimates for NCR and AS-NCR (DN 

equivalent) were very similar (Table 2). Comparing mean R2 values for these methods 

revealed that both techniques explain equal amounts of variation between slave and 

master image spectral reflectance (Table 2). Given at-sensor reflectance is a linear 

transformation of DN values, these results were expected.  

On average, AG-NCR had smaller intercepts than NCR and AS-NCR (DN 

equivalents) and had larger slopes than NCR (α = 0.05). In addition, AG-NCR had initial 

R2 values that were significantly larger than the other two relative methods (Kruskal-

Wallace X2
df = 2 = 35.66; p-value < 0.0001; Table 2).  
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For ASR and DOS1 methods, transformation coefficients were determined by 

band using image header files and the lowest DN value with at least 1000 pixels within 

each image (Teillet and Fedosejevs, 1995; Song et al., 2001). Transformation values for 

each parameter within ASR and DOS1 can be found in Table 3.  

Validation Coefficients 

The amount of variation explained between master spectral values and 

transformed slave values for DOS1, ASR, NCR, and AS-NCR methods were equal for all 

bands, suggesting that given a linear transformation, these 4 methods would equivalently 

bring each image to common radiometric scale. The appropriate linear transformation for 

NCR and AS-NCR would be, on average, an intercept and slope value equal to 0 and 1, 

respectively, implying that these two methods are at a common radiometric scale (Table 

4). DOS1 and ASR, however, had intercept and slope values different than 0 and 1, 

indicating that an additional additive and multiplicative transformation is necessary to 

bring each image to a common radiometric scale (Table 4).  

In addition to having average intercept and slope values approximately equal to 0 

and 1, respectively, the AG-NCR method showed a significant improvement (Kruskal-

Wallace X2
df = 4 = 44.41; p-value < 0.0001) in the amount of variation explained between 

master and transformed slave spectral reflectance (Table 4). On average, AG-NCR 

explained an additional 6% of the variation (averaged across all ETM+ bands) between 

master spectral values and transformed slave values.  

DISCUSSION 

Comparing transformed slave spectral values with master spectral values, we 

determined that AG-NCR out-performed the rest of the normalization procedures in 
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terms of bringing each scene to a common radiometric scale. NCR and AS-NCR also 

brought each Landsat ETM+ image to common radiometric scale but did not explain as 

much of the variability between each image comparison, thereby suggesting geo-

rectification accuracy is an additional source of spectral variability between images. 

Furthermore, when comparing AS-NCR and NCR it was apparent both methods 

explained the same amount of variation between master and transformed slave spectral 

values, indicating the additional step of converting DN to at-sensor reflectance prior to 

performing regression is unnecessary.  

The DOS1 and ASR methods did not bring adjacent scenes to a common 

radiometric scale. This finding implies that these models may not be appropriate, by 

themselves, to mosaic adjacent images for the purposes of classification. When 

transformed slave values were regressed against master slave values, DOS1 and ASR 

explained equal amounts of the variation in the overlap, again suggesting that converting 

to surface and satellite reflectance is unnecessary. While DOS1 and ASR performed 

poorly in our tests, it should be noted the objective of these methods are to estimate 

surface and satellite reflectance, not to bring images to common radiometric scale. 

Studies interested in quantifying the affects of biological growth between two images 

acquired at different time periods may be better suited by a normalization approach such 

as DOS1, ASR, dark object bright object regression (Hall et al., 1991), pseudo invariant 

features (Schott et al., 1988), or a combination of these techniques with AG-NCR. 

Prior to comparing normalization methods, we identified and removed pixels that 

had experienced land use change and/or temporal features using a non-parametric slicing 

algorithm. This algorithm was developed to address issues of automation, outlier 
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influence, and individual band differences. Using our non-parametric differencing 

technique, one can conservatively estimate the amount of land use change and/or 

temporal features within the overlapping areas of two scenes and implement those 

estimates directly into the model. In our study, we chose to mask the majority of temporal 

features before running our non-parametric differencing technique. This additional step, 

however, could have been directly addressed using our non-parametric differencing 

procedure. For example, given a short time period between ETM+ image acquisition 

dates (1 year) one might hypothetically estimate that 6% of the overlapping area between 

two images has experienced land use change. In addition, for the visible and near infrared 

portions of the electromagnetic spectrum (ETM+ bands 1-4), temporal features, such as 

clouds, appear to be covering 7% of the slave scene in the overlapping area. Given that 

the slave scene is subtracted from the master scene in our technique, we can set slicing 

thresholds as follows:  

                                          
  valueslice5,7 bands  valueslice

  valueslice4-1 bands  valueslice

pixels NC  3
pixels NC  10

97
97

<>
<>

 

The assumption in this example is that land use change is equally distributed (3% of the 

area in the overlap) to upper and lower extreme differenced values, while differenced 

values associated with temporal features are allocated to only the lower extreme 

differences in ETM+ bands 1-4. Conservative (i.e., inflated) estimates of land use change 

and temporal features should be used when applying this approach and special care 

should be given when allocating thresholds for temporal features given that clouds in a 

slave scene would manifest as negative differenced values where as clouds in a master 

scene would manifest as positive differenced values in ETM+ bands 1-4. By inflating 
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land use change and temporal features estimates, analysts can be assured of removing 

pixels that have experienced extreme spectral change from the regression analysis.  

 Interestingly, the amount of average variation unexplained in the AG-NCR 

method was very close to the amount of variation left unexplained for an aggregation size 

of 50 and a one pixel shift in our simulation study (Figure 2). This similarity suggests 

further improvements to bring images to a common radiometric scale can be achieved 

through increased geo-rectification accuracies. Alternatively, one could increase the 

aggregation size, but this would more than likely have a minimal impact on the amount of 

variance explained given that R2 began to reach a local asymptote at an aggregate size of 

50 in our simulation (Figure 2).  

In a recent study (Velloso and De Souza, 2002), there has been some question as 

to the validity of linear regression assumptions (i.e., normally distributed errors and a 

linear relationship between two images acquired at different dates). Checking regression 

diagnostics for our study, these assumptions appeared to be valid. Furthermore, almost all 

of the variation in DN values for each master scene was explained by the DN values of 

each transformed slave scene (mean R2 = 0.96). Deviations from a linear relationship and 

or low R2 values (< 0.8) may suggest that slave and master images represent different 

seasons and/or pixels representing land use change or temporal features may still be 

affecting the regression model. In the former case, our approach would be inappropriate, 

given that different vegetation types use light differently at various times of the year. In 

the latter case, non-parametric differencing thresholds could be adjusted to alleviate the 

problem.  
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Given numerous reasons for variation between two images, we suggest that R2 

values be used to determine if two images have been brought to a common radiometric 

scale. Conservatively speaking, when using AG-NCR, R2 values less than 0.90 for any 

band should be checked to see if the assumption of linearity is being met and values less 

than 0.80 more than likely suggest that images have not been brought to a common 

radiometric scale.  

CONCLUSION 

 Compared with 3 popular radiometric normalization techniques and a 

combination of at-sensor reflectance and no change regression, Aggregate No Change 

Regression (AG-NCR) showed a significant improvement in bringing 11 adjacent scenes 

to a common radiometric scale. This method can easily be automated and provides a 

quantitative assessment of how well two images have been normalized (R2). The 

advantages of AG-NCR include: 1) it directly addresses geo-rectification errors, 2) it uses 

a non-parametric differencing technique to identify changed pixels, 3) and it works on an 

individual band basis.  

The intent of AG-NCR is to bring images acquired under similar seasons and 

solar illumination geometries, to a common radiometric scale. Often, however, subtle 

changes in illumination and seasonality can go undetected with visual inspection of the 

imagery alone. Using AG-NCR and estimates of model fit, remote sensing analysts can 

identify these situations and determine which images have been brought to a common 

radiometric scale. Properly normalized imagery can then be mosaiced together and used 

to perform accurate fine grain, regional classifications, in a cost and time efficient 

manner. 



 
 

 55

 

AKNOWLEDGEMENTS 

We would like to acknowledge the following people who have provided valuable 

comments and insight in this paper; Ralph Meldahl, Barry Grand, Nedret Billor, Melissa 

Reynolds, Kevin Kleiner, and John Gilbert. Funding for this study was provided by 

Alabama Gap Analysis Project.  



Table 1. Method, source, and normalization issues addressed 

Method Acronym Source Issues Addressed 
Dark object 
subtraction 1 DOS1 Song et al., 2001 sensor and atmosphere 

At-Sensor 
Reflectance ASR NASA, 2001 sensor 

No Change 
Regression NCR after Yuan and Elvidge, 1996 sensor, atmosphere, changes in biotic 

and abiotic condition 
At-Sensor No 
Change 
Regression 

AS-NCR NASA, 2001 
after Yuan and Elvidge, 1996 

sensor, atmosphere, changes in biotic 
and abiotic condition 

Aggregate No 
Change 
Regression 

AG-NCR This Paper 
sensor, atmosphere, changes in biotic 
and abiotic condition, and geometric 
rectification 56 



Table 2. Initial mean regression estimates for relative normalization procedures. AS-NCR intercept and slope estimates correspond to 

changes in sensor reflectance. Values inside () indicate digital number (DN) equivalents*. 

 

 

 

 

 

 

 

* DN equivalents were estimated by back transforming sensor reflectance to DN values. Average sun elevation and solar distance of 34.96° and 0.9864, 

respectively, were used to calculate DN intercept and slope values. 

Normalization 
Technique Parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

intercept 3.400 2.278 2.309 2.862 2.457 1.544 
slope 0.952 0.957 0.945 0.961 0.955 0.957 AG-NCR 

R2 0.946 0.960 0.967 0.941 0.968 0.963 
intercept 5.892 3.192 3.099 4.654 4.082 2.725 

slope 0.907 0.935 0.927 0.931 0.932 0.930 NCR 
R2 0.861 0.907 0.910 0.889 0.919 0.911 

intercept 0.012 (5.95) 0.006 (3.01) 0.005 (2.74) 0.013 (4.04) 0.010 (3.48) 0.006 (2.23) 
slope 0.944 0.972 0.965 0.976 0.972 0.970 AS-NCR 

R2 0.861 0.907 0.910 0.889 0.919 0.911 57 



Table 3. Elevation Distance and digital number values of selected dark objects used in ASR and DOS1 normalization techniques.  

 

Path Row Date Elevation Distance Dark Object 
(Band 1) 

Dark Object 
(Band 2) 

Dark Object 
(Band 3) 

Dark Object 
(Band 4) 

Dark Object 
(Band 5) 

Dark Object 
(Band 7) 

1937 12/20/2001 29.1600 0.9840 41 25 18 11 3 4 
1938 12/20/2001 30.3500 0.9840 42 27 19 12 3 4 
2036 2/26/2001 40.0700 0.9902 48 29 21 12 2 3 
2037 12/27/2001 28.9700 0.9836 41 25 18 10 2 3 
2038 1/25/2001 33.1700 0.9846 44 28 21 12 2 3 
2039 1/25/2001 34.2800 0.9846 46 28 18 10 2 2 
2136 3/5/2001 42.5600 0.9919 53 33 25 14 3 4 
2137 2/15/2000 37.5200 0.9878 47 29 21 13 2 3 
2138 2/15/2000 38.5700 0.9878 49 32 24 14 3 4 

58 



Table 4. Summarized validation statistics. Values represent averaged estimates across 11 scene comparisons. AS-NCR and ASR 

intercept estimates correspond to changes in sensor reflectance (RF). DOS1 intercept estimates corresponds to changes in surface RF. 

AG-NCR and NCR intercept estimates correspond to changes in digital number (DN) values. Values inside () indicate the DN 

equivalents* for validation intercept and slope estimates for models that use RF.  

 

 

 

 

 

 

 

 

 

 

 

*DN equivalents were estimated by back transforming RF to DN values. Average sun elevation (34.96°), solar distance (0.9864), and dark objects values for 

ETM+ bands 1-5 and 7 (46, 28, 21, 12, 2, and 3, respectively) were used to calculate the intercept and slope values for each appropriate normalization model.  

Normalization 
Technique Parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 7 

intercept -0.02 0.015 0.181 -0.02 0.066 0.119 
slope 1.001 1.000 0.997 1.001 1.000 0.998 AG-NCR 

R2 0.947 0.962 0.968 0.942 0.968 0.963 
intercept 0.006 0.00 -0.00 0.006 0.00 0.001 

slope 1.000 1.000 1.000 1.000 1.000 1.000 NCR 
R2 0.861 0.907 0.909 0.888 0.919 0.910 

intercept 0.000 (0.01) 0.00 (0.00) 0.00 (0.00) 0.000 (0.01) 0.00 (0.00) 0.000 (0.00) 
slope 1.000 1.000 1.000 1.000 1.000 1.000 AS-NCR 

R2 0.861 0.907 0.909 0.888 0.919 0.910 
intercept 0.011 (5.95) 0.006 (3.01) 0.005 (2.74) 0.012 (4.04) 0.009 (3.48) 0.005 (2.23) 

slope 0.944 0.972 0.965 0.976 0.972 0.970 ASR 
R2 0.861 0.907 0.910 0.888 0.919 0.910 

intercept 0.006 (5.37) 0.006 (-0.63) 0.005 (-1.31) 0.013 (1.47) 0.011 (0.56) 0.006 (-0.96) 
slope 0.946 (0.95) 0.973 (0.96) 0.967 (0.96) 0.978 (0.96) 0.974 (0.97) 0.971 (0.96) DOS1 

R2 0.861 0.907 0.910 0.888 0.919 0.910 

59 



 
 

  60

2137/2138

2136/2137

2038/2138

2037/2137

2136/2036

2036/2037

2038/2039

2037/2038

1938/2038

1937/2037

1937/1938

Scene Overlaps 
Used in 

Comparisons

2137/2138

2136/2137

2038/2138

2037/2137

2136/2036

2036/2037

2038/2039

2037/2038

1938/2038

1937/2037

1937/1938

Scene Overlaps 
Used in 

Comparisons

2039

2138
2038

1938

2037
1937

2137

2036
2136

 

Figure 1. Scenes (path and row) and overlaps used in the comparison between 

normalization methods. 
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 Figure 2. Scatter plots for simulated, image overlapping regions where a slave image is a 

linear function of a master image and has a constant geometric rectification error of 1, 2, 

and 4 pixels. Expected intercept and slope values are 5 and 0.875 respectively.   
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CHAPTER 3 

 

CREATING LONGLEAF ECOSYSTEM PROBABILITY DISTRIBUTIONS ACROSS 

THE SOUTHEAST 

 

ABSTRACT  

 Longleaf ecosystems have declined to a mere 5% of their original range since 

European settlement. These dramatic losses, in what was once the dominant pine 

ecosystem across the southeastern U.S., are the principle reasons for the listing of many 

plants and animals as threatened and endangered and have been the driving factor for 

recent longleaf ecosystem restoration efforts. While studies have documented the 

regional decline of longleaf ecosystems, they provide little information on fine scale 

fragmentation patterns and current ecosystem locations. This lack of information often 

limits the efficacy of restoration efforts.  

 To aid longleaf restoration efforts we developed a series of fine grain (30 m) 

ecosystem probability distributions using multitemporal Landsat enhanced thematic 

mapper plus imagery, digital elevation models, field data, ancillary data sets, polytomous 

logistic regression, and a hierarchical classification scheme. Using our ecosystem 

probability distributions, resource managers can identify the most probable locations for 
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longleaf ecosystems, locate potential restoration sites, prioritize restoration efforts, and 

estimate ecosystem area.  

INTRODUCTION  

 Longleaf ecosystems, some of the most species rich plant ecosystems outside of 

the tropics (Outcalt and Sheffield, 1996), have experienced increased attention over the 

last several decades. Recent studies on longleaf ecosystems have included topics ranging 

from structural characteristics (Noel et al., 1998), ecological classification (Peet and 

Allard, 1993; Carter et al., 1999), vegetation composition (Hedman et al., 1999), to 

current trends and condition (Outcalt and Sheffield, 1996), with the latter example 

becoming a primary focus for numerous organizations due to the ecological value of 

these ecosystems. Findings, based on the USDA Forest Service’s, Forest Inventory 

Analysis (FIA, Gillespie, 1996), have documented dramatic area reductions in longleaf 

ecosystems across the southeastern U.S. (henceforth Southeast) since 1935 and suggest 

that the ecosystem has been eliminated from northeastern North Carolina and 

southeastern Virginia (Outcalt and Sheffield, 1996).  

Historically, longleaf ecosystems ranged from Virginia to Texas (Frost, 1993; 

Figure 1), covering between 24-37 million hectares across the landscape (Outcalt and 

Sheffield, 1996; Frost, 1993), making it formally the dominant coniferous ecosystem in 

the Southeast (Frost, 1993; Peet and Allard, 1993). However, by the early 1930’s, 

longleaf ecosystems had been decimated to 8 million hectares (Outcalt and Sheffield, 

1996) and by the 1980’s to less than 1.6 million hectares across the Southeast (Kelly and 

Bechtold, 1990) due to over harvesting, fire suppression, and land conversion.     
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Currently, longleaf ecosystems are estimated to occupy 1.2 million hectares 

across the Southeast, a mere 5% of their pre-European settlement estimate (Outcalt and 

Sheffield, 1996). This tremendous loss of habitat has had a dramatic impact on numerous 

plants and animals and is the primary reason that many species have become listed as 

threatened or endangered (Tuldge, 1999). Since the 1980’s, the amount of longleaf 

ecosystem area has remained fairly stable on public lands, while private land holdings 

have shown a declining area trend (Outcalt and Sheffield, 1996). This is especially 

alarming for states such as Alabama where longleaf ecosystems are primarily found on 

private lands (Outcalt and Sheffield, 1996). These findings indicate a strong need for the 

conservation of this critically endangered ecosystem (Noss et al., 1995).  

While conservation and restoration efforts have begun, they have been limited, in 

part, by the lack of information depicting the current location of these ecosystems. Long 

term studies such as the FIA have identified declining longleaf ecosystem trends, but are 

ill-suited to provide meaningful information at fine spatial scales. Due to the coarse 

nature of these data sets, organizations have had to take a broad based approach towards 

longleaf ecosystem management, monitoring, and restoration, often limiting the efficacy 

of their efforts. To become more effective, these organizations need accurate, fine scale 

data sets that identify coniferous ecosystem types and depict the current location and 

distribution of longleaf ecosystems. 

Many recent studies have focused on gradient analysis and ecosystem 

classification (Peet, and Allard, 1993; Carter et al., 1999; Weakley et al., 2000; Goebel et 

al., 2001) to better understand the abiotic and vegetated composition of longleaf 

ecosystems. While these types of studies have been used to quantify differences in 
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longleaf ecosystems, they typically do not address other coniferous ecosystems, and often 

fall short in identifying the location of longleaf ecosystems, particularly across large 

extents. Furthermore, patterns emerging at fine scales may not extend to coarser scales 

(Perry et al., 2002), thereby causing confusion in regional ecosystem classifications. 

Finally, these classification techniques are typically very labor intensive, can be 

challenging to interpret, and require a substantial amount of field work when trying to 

map fine scale class distributions, making these approaches logistically unattainable and 

too expensive to apply at regional scales. 

Alternatively, remote sensing offers a unique opportunity to link fine grain 

information (i.e., field samples) with large extents (i.e., the Southeast). Remote sensing 

satellites, such as Landsat 7, continuously quantify portions of the electro-magnetic 

spectrum reflected and transmitted from the earth’s surface at a grain size of 15, 30, or 60 

m (225, 900, and 3600 m2, respectively) depending on the wavelength of the 

electromagnetic radiation, at an extent of 183 by 170 km (Jensen, 2000; NASA, 2005). 

Using spectral information obtained from remote sensing satellites and field sample 

locations, analysts have successfully identified land use (Yang et al., 2001), forest types 

(Jakubauskas, 1996; Schmidt and Skidmore, 2003; Foody and Hill, 1996; Brown de 

Colstoun et al., 2003; Yu et al., 1999), forest structure (Hall et al., 1995; Chen, 1996; 

McDonald et al., 1998; Makela et al., 2001), and many other variables across numerous 

landscapes.  

Several techniques and algorithms have been developed to analyze remotely 

sensed data. These techniques range from isoclustering algorithms with post 

identification to regression analysis, multivariate analysis, classification trees, artificial 
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neural networks, and polytomous logistic regression (PLR). Using PLR, Hogland et al. 

(in progress; see chapter 1) demonstrated the flexibility and utility of probabilistic 

classifiers when there was substantial spectral overlap between land cover types. Given 

the structural similarities between longleaf and other coniferous ecosystems in the 

Southeast, a probabilistic classification would be well suited to distinguish ecosystem 

types. To improve classification accuracy for projects with an extent that spans across 

multiple satellite images (Song et al., 2001; Vogelmann et al., 2001; Du et al., 2002), 

remote sensing analysts have developed techniques that radiometrically normalize sensor 

reflectance (Elvidge, 1995; Song et al., 2001; Hogland and MacKenzie, in progress; see 

chapter 2). Comparing normalization techniques, Hogland and MacKenzie (in progress; 

see chapter 2) found that an Aggregate No Change Regression (AG-NCR) procedure 

significantly improved the ability to bring images to a common radiometric scale. Once 

images have been brought to a common radiometric scale, reflectance in one image can 

be generalized to reflectance in another image, implying that relationships between 

vegetated ecosystems and the spectral values in one image can be used to identify the 

same relationships in other images. 

 While remote sensing offers one of the most economically viable and regionally 

consistent means to identify the location of ecosystems across the Southeast, few analysts 

have focused on the critically endangered longleaf ecosystem. To aid in management, 

monitoring, and restoration of longleaf ecosystems, we generated a series of fine scale 

(grain size 30 m) forested ecosystem data sets depicting the probability distributions of 

Hardwood, Mixed Hardwood/Pine, Coastal Plain Longleaf, Mountain Longleaf, Slash, 

and Loblolly ecosystems across eastern Mississippi, Alabama, western Georgia, and the 
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panhandle of Florida (Figure 1). These data sets can be used with a geographic 

information system (GIS) to identify ecosystem locations, potential longleaf restoration 

areas, and corridors between longleaf ecosystems. They can also be used to manage 

existing longleaf ecosystems, determine the amount of longleaf ecosystem area, and/or be 

directly incorporated into existing ecosystem models.   

METHODS 

Forested ecosystem probability distributions were mapped across portions of the 

Southeast using the spatial locations of image and field interpreted samples, 

multitemporal Landsat enhanced thematic mapper plus (ETM+) imagery, ancillary data 

sets, PLR, and a hierarchal classification scheme. Our study area (Figure 1) is known for 

its diverse vegetation found on a wide variety of soil types ranging from clayey hills 

occurring in the Piedmont and Ridge and Valley portions of Alabama to xeric sandhill 

sites comprised of coarse sandy soils (Peet and Allard, 1993).  Longleaf ecosystems 

across our study area are known to vary from relatively sparse overstory and understory 

vegetation in the more xeric sites to floristically rich savannas and flatwoods found along 

mesic sites (Peet and Allard, 1993). This pattern of species scarcity and abundance 

depending on soil moisture led Peet and Allard (1993) to hypothesize that longleaf 

composition would vary in an interpretable manner between physiographic regions. From 

their study, we hypothesized that spectral differences in forested ecosystems can be used 

to identified longleaf ecosystems.  

 Our primary explanatory variables include Landsat ETM+ imagery (spectral 

bands 1-5 and 7) acquired from 1999 to 2002 (Figure 2). Landsat ETM+ imagery was 

chosen specifically because of its availability, cost, and resolution (spectral, spatial, and 
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temporal). Recent studies have found that multitemporal imagery improved classification 

accuracy (Reese et al., 2002; Homer et al., 2004). Therefore, image dates were selected to 

approximate three seasons: 1) leaf-on spring growing season, 2) leaf-on late summer/fall 

season, and 3) leaf-off winter season (Figure 2). In all, 64 ETM+ images, representing 22 

Landsat scenes, were used to distinguish among forested ecosystem types. Ancillary 

information used in this study include FIA findings, digital elevation models (DEMs), 

and vector layers of known publicly and privately owned protected lands within our study 

area, tree distribution maps (after Little, 1971), and Level III Omernik ecoregions 

(Omernik, 1987).  

Due to the inherent spectral variability of multiple Landsat ETM+ images 

(Elvidge et al., 1995; Yuan and Elvidge, 1996; Song et al., 2001; Hogland and 

MacKenzie, in progress; see chapter 2), AG-NCR was used to bring ETM+ scenes of the 

same season, to a common radiometric scale (Hogland and MacKenzie, in progress; see 

chapter 2). AG-NCR is a relative normalization procedure that determines the optimal 

linear transformations needed to bring spectral bands of 2 images to common radiometric 

scales by regressing the overlapping aggregated digital number (DN) values of a slave 

and master image. The inputs to this normalization technique include a conservative 

percent area estimate of land use change and temporal features (e.g., clouds, smoke, burnt 

areas, and shadows) for the overlapping region of a slave and master image and an 

appropriate aggregation size. For this study, we estimated land use change and temporal 

features to account for 20% of the area in the overlapping region and used an aggregation 

size of 50 (2500 pixels). Large bodies of water and areas that had significant cloud cover 

were removed from this analysis prior to performing the AG-NCR procedure. Images that 
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could not be brought to a common radiometric scale, identified using measures of model 

fit (R2 < 0.85 for any ETM+ bands), were removed from the classification. Once images 

representing the same season were brought to a common radiometric scale they were then 

merged together by band to create three large images representing each season. Bands 

from each season were then used as explanatory variables for our hierarchical 

classification scheme.  

Hierarchical Classification Scheme 

 Our hierarchical classification scheme is a 2 level, multi-stage classification that 

uses the conditional probabilities of a preceding PLR model to constrain the conditional 

probabilities of subsequent PLR models. Using this approach, we were able to reduce the 

impact of temporal features in multitemporal imagery and were able to hierarchically 

organize our classification without losing spatially explicit class information. The 

benefits of our hierarchical classification scheme include fewer field samples, preserving 

modeling and classification errors, and the ability to account for confounding temporal 

features.  

The first stage in level 1 of our hierarchical classification scheme generated a 

series of land cover, land use change, and temporal features probability distributions at 

the resolution of one ETM+ pixel, using extracted spectral values visually interpreted 

from our normalized multitemporal ETM+ imagery and digital ortho quarter quads. 

Temporal feature probability distributions occurring in stage 1, which identify the season 

and type of temporal feature, were then allocated to land cover and land use change 

probability distributions by restricting the explanatory variables of each consecutive stage 

to seasonal imagery that did not have confounding temporal feature class types. For 
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example, a probabilistic land cover classification that uses multitemporal ETM+ imagery 

representing a leaf-on and leaf-off season generates 3 PLR models (i.e., stages; Figure 3). 

The first PLR model identifies the probability distribution of land cover, land use change, 

and temporal feature class types using the ETM+ bands from both seasons. The second 

and third PLR models (i.e., second and third stage) generate a series of land cover and 

land use change probability distributions using only leaf-on or leaf-off imagery as 

explanatory variables, respectively. Land cover and land use change probability 

distributions generated in the second and third PLR models are then multiplied by the 

temporal feature probability distributions of the first PLR model. The product of these 

multiplications are then added to the land cover and land use change probability 

distributions of the first PLR model, thereby constraining the land cover and land use 

change probability distributions of the second and third PLR model to the temporal 

features probability distributions of the first PLR model.  

 The first stage in the second level of our hierarchical classification scheme 

generated a series of forested ecosystem probability distributions using extracted spectral 

values from ETM+ imagery interpreted from field samples and PLR (Figure 3). Similar 

to level 1 of our hierarchical classification, temporal features can have confounding 

effects on forested ecosystem probability distributions. To account for these effects, the 

same staging scheme as described in level 1 was used to generate a series of ecosystem 

PLR models. The probability distributions of each forested ecosystem stage were then 

multiplied by the probability distributions of Deciduous and Evergreen land cover types, 

for each corresponding level 1 stage. The product of these multiplications were then 
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summed across all ecosystem stages, thereby constraining forested ecosystem 

probabilities by Deciduous and Evergreen land cover types.  

In the second level of our hierarchical classification, field samples potentially 

could occur at the same geographic location as temporal features in the imagery. To 

account for this scenario, an initial hard classification (sensue Foody and Hill, 1996) of 

the field sample points was performed using the level 1, stage 1 PLR model and a 

maximum likelihood allocation rule. Field samples identified as a temporal features were 

then subset into groups, based on the seasonality of the confounding feature, and used in 

the appropriate forested ecosystem PLR stage.  

Image Sampling Scheme 

 Land cover, land use change, and temporal features class types were visually 

interpreted at the spatial scale of one ETM+ pixel across the study area using the 

normalized ETM+ imagery and digital ortho quarter quads. Class types include 

generalized National Land-Cover Database categories (Table 1; after Homer et al., 2004), 

land use change (e.g., cropland converted to bare ground, clear cuts, and developing 

areas) and temporal features (e.g., clouds, burnt areas, shadows, and smoke). To maintain 

consistency across the study area, one image interpreter identified all class samples. 

Using ArcGIS version 8.3, Environmental Systems Research Institute’s Spatial Analyst 

extension and our normalized multitemporal ETM+ imagery, DN values occurring at the 

same spatial location as image interpreted sample plots were extracted on a nearest pixel 

basis by band using the sample command (ESRI, 2005). In all, 10,941 spectral samples, 

representing the DN values of land cover, land use change, and temporal features for each 
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band of our normalized multitemporal ETM+ imagery, were collected across our study 

area. 

Field Sampling Scheme 

 Due to the presence of large, contiguous, coniferous stands on public lands 

(Outcalt and Sheffield, 1996) and issues of accessibility, field samples of forested 

ecosystems were primarily collected in national forests, national wildlife refuge areas, 

state forests, and military installations. Prior to field visits, potential sample sites were 

identified using aerial photography, stand data, and other ancillary data sets (e.g., spatial 

layers identifying forest boundaries, roads, and stream networks). After navigating to 

prioritized areas, sample locations were selected based on field observations. Locations 

that appeared to be composed of predominantly one overstory species ( > 75% of the 

overstory component) were sampled based on the following criteria; 1) sampling plots 

were at least 60 m from any road, 2) sampling plots represented at least a 3 by 3 pixel 

area of homogeneous overstory, and 3) sample locations had a minimum distance of 60 m 

from one another. In all, 1772 field samples were collected across our study area.   

            At each sample location, a 0.04 ha plot (~ half an ETM+ pixel) was used to 

categorize ecosystem types by quantifying the relative density of tree species > 4 m in 

height. Plots that had > 75% relative density for a single pine tree species, were 

categorized as one of the following forested ecosystem; Coastal Plain Longleaf, 

Mountain Longleaf, Loblolly, or Slash. Plots that had > 75% relative density for 

hardwood tree species were grouped into one class called Hardwoods. Plots that had a 

mixture of hardwood and pine species (relative densities of hardwood and pine species < 

75% and > 25% for a given group) were categorized as Mixed Hardwood Pine. Plots that 
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had mixture of pine species with relative densities < 75% and > 25% for given groups of 

pines were removed from our analysis because they were found to occupy the same 

spectral space as low class probabilities of the two most prevalent pine species within 

those groups, thus generating redundant information. By setting probabilistic thresholds 

for each pine dominant ecosystem (> 75% relative density for a given pine species), users 

can identify the probable locations of mixed pine ecosystems. Dominant pine ecosystems 

not represented in our classification scheme (e.g., shortleaf, sand, spruce and Virginia 

pine) accounted for a small portion of our study area and thus were not directly modeled. 

In addition to categorizing relative densities, geographic coordinates (WGS 84) were 

collected at each sample location using a Garmin eTrex Legend global positioning 

systems (GPS) unit. To maintain a close proximity to the true location of our sample plot, 

GPS coordinates were only recorded when location errors were less than 10 meters. 

Sample plots were then projected into Albers equal area projection using ArcGIS version 

8.3 and were used to extract elevation and spectral data from our DEMs and our 

normalized multitemporal ETM+ imagery, on a nearest pixel basis, using the same 

process described in the previous section. 

PLR Models 

 Prior to extracting spectral information for image and field interpreted samples, 

we randomly partitioned each data set into 2 groups, a training (~70% of the data) and a 

validation (~ 30% of the data) data set. Training data were used to develop PLR 

classifications for each stage of our hierarchical classification scheme by first removing 

redundant or insignificant explanatory variables via a stepwise procedure (SAS, 2005). 

Thresholds for variables entering and staying in each PLR model were set at a 
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significance level of 0.15 and 0.10, respectively. Next, using combinations of the 

remaining explanatory variables, a suite of potential PLR classifications were generated, 

from which the best fitting, most parsimonious models were selected based on Akaike's 

Information Criterion (AIC; Akaike, 1973; Table 2). The validation data set was then 

used to independently assess the predictive capabilities of our classification models using 

methods described in Hogland et al. (in progress; see chapter 1). To avoid extrapolating 

our PLR models when generating our probabilistic classification, we restricted each 

predictive model to the upper and lower values of sampled explanatory variables. In level 

1 of our hierarchical classification scheme, all pixels within our study area fell within the 

spectral range of image interpreted samples. In level 2 of our hierarchical classification 

scheme, many pixels within our study area fell outside the range of our DN and elevation 

values sampled in the field. Subsequently, ecosystem probabilities for those pixels were 

not calculated and class probabilities for those pixels reverted to level 1 Evergreen and 

Deciduous class probabilities.     

 Because the spatial location of each forested ecosystem type was not known prior 

to the beginning of our study, we approached each stage of level 2 in our hierarchical 

classification as a retrospective study (Agresti, 2002). Therefore, forested ecosystems 

were given an equal sampling weight for each PLR model. To account for forested 

ecosystem prior probabilities across our study area, we incorporated Bayesian statistics 

into our analyses.  

Bayesian statistics were generated in the form of prior abundance estimates, 

relative to a maximum abundance of 100, for each forested ecosystem using FIA findings 

(Outcalt and Sheffield, 1996) and the spatial layers of tree species range maps (after 
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Little, 1971), known publicly owned and privately owned protected lands, and Level III 

Omernik Ecoregions (Omernik, 1987). Prior abundance estimates can be converted to 

prior probabilities as follows; 

                

AbundancePrior 

AbundancePrior 
iesProbabilitPrior 

n

1i
i

i
i

∑
=

=                                             (1) 

where i identifies each ecosystem type and n is the total number of ecosystems. Figure 4 

illustrates the prior abundance estimates used at the intersection and extent of each spatial 

layer.  

RESULTS 

All winter leaf-off and summer/fall leaf-on ETM+ images were brought to a 

common radiometric scale for each respective season (R2 > 0.85 for every ETM+ band; 

Figure 2). On average, the AG-NCR normalization procedure accounted for 96.6 % and 

96.8% of the variation between ETM+ images representing a winter and summer/fall 

season, respectively.  

Six ETM+ images representing a spring leaf-on season could not be brought to a 

common radiometric scale (R2 < 0.85 for at least one ETM+ band; Figure 2), and were 

subsequently removed from our hierarchical classification. Furthermore, 2 representative 

images, identified as path/row 18/39 and 19/36 for the spring leaf-on season (Figure 2), 

could not be obtained and consequently were not used in our hierarchical classification. 

On average, the AG-NCR normalization procedure accounted for 96.5% of the variation 

between the remaining 14 spring leaf-on ETM+ images. 

Models selected for each stage in our hierarchical classification can be found in 

Table 2. While the best fitting most parsimonious models were achieved using a 
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combination of spectral bands from all seasons, these models could not be generalized to 

our entire study area because of the problems with 8 spring leaf-on images previously 

mentioned. Therefore, we limited our final probabilistic classifications to PLR models 

which used winter and summer/fall normalized ETM+ imagery. Reducing the 

explanatory variables in our hierarchical classification had a minimal effect on model fit 

( 2R~∆ ~ 0.01; SAS, 2005) and decreased the total number of land use change and temporal 

features classes (i.e., land use change and temporal features occurring in the spring 

imagery), making for a less complex probabilistic classification that could be generalized 

across our study area. 

PLR stages 

 Slope estimates for each explanatory variable in our hierarchical classification 

(Tables 3 and 4) identify changes in the natural log odds ratio (logits) of each class 

comparison (Agresti, 2002; Hogland et al., in progress; see chapter 1), given a change in 

that explanatory variable. Odds ratios represent the number of times one class was found 

versus a baseline class (i.e., a class with which all other classes are compared against in 

the PLR classification), for a given set of explanatory variables. Alternatively, one can 

view these class counts as class probabilities (i.e., the counts of one class “A” divided by 

the counts of another class “B” is equivalent to the ratio of {A/{A+B}} / {B/{A+B}}). 

Therefore, the exponentiation of the slope estimates for each logit provides an intuitive 

description of the change in probabilities between one class versus the baseline class. 

This description is properly interpreted as a multiplicative increase/decrease in the ratio 

of 2 class probabilities for every incremental increase in a given explanatory variable. To 

determine the change in probabilities between one class and another class other than the 
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baseline class, one can exponentiate the difference between the beta estimates of a given 

explanatory variable. For example, in stage 1 of level 1 in our hierarchical classification 

(Table 3) the odds of the Deciduous class (i.e., the probability of the Deciduous class / 

the probability of the Water class) increase on average by a multiple of 1.59 (e(0.464)) for 

every unit increase in ETM+ spectral band 4 during a winter leaf-off season. However, 

when comparing the Deciduous class with the Evergreen class the odds of the Deciduous 

class (i.e., the probability of the Deciduous class / the probability of the Evergreen class) 

decrease on average by a multiple of   0.94 (e(0.464 - 0.526))  for every unit increase in 

spectral band 4 during a leaf-off season. Using odds ratios, analysts can quickly 

determine how changes in the spectral values affect the probability of one class given the 

probability of another class, they can objectively compare the slope estimate of 

explanatory variable when values have been standardized (Appendix 1), and they can 

generate class probability through a series of mathematical manipulations (Appendix 

2A). 

Level 1 of the hierarchical classification scheme — The top performing model 

in stage 1, level 1 used normalized spectral bands 1-5 and 7 from both seasons to 

calculate class probabilities of land cover, land use change, and temporal features (Table 

2). Subsequent stages also used ETM+ bands 1-5 and 7 to calculate class probabilities, 

but were restricted to only one season for each PLR model (Figure 3). Each stage in level 

1 generated statistically significant models (p-value < 0.0001) that explained the majority 

of the information within the data ( 2R~ values > 0.96). Slope estimates for each stage of 

level 1 can be found in table 3. 
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Assessing each stage’s PLR model using class 95% confidence intervals, a 

maximum likelihood allocation rule, and the validation data set (Hogland et al, in 

progress; see chapter 1), we found that each PLR model accurately predicted the number 

of observations occurring for each class (Table 5). This result suggests that our PLR 

models for level 1 were unbiased and could be applied across our study area. Applying 

our level 1 PLR models, we effectively removed the confounding temporal features in 

our multitemporal imagery while maintaining the spatially explicit nature of our PLR 

model and classification errors (Figure 5).  

Level 2 of the hierarchical classification scheme — The top performing model 

in level 2, stage 1 used ETM+ spectral bands 1-5 from both the winter leaf-off and 

summer/fall leaf-on season and DEMs to differentiate between forested ecosystems types 

(Tables 2 and 4). Stage 2 and 3 PLR models used DEMs and ETM+ bands 1-5 and 7 for  

summer/fall leaf-on and winter leaf-off seasons, respectively, to distinguish forested 

ecosystems. Each stage of level 2 generated statistically significant models (p-value < 

0.0001) that explained large portions of the information within the data ( 2R~ values > 

0.93). 

Comparatively, both the Slash and Mountain Longleaf ecosystem classes are 

spectrally closest to the Coastal Plain Longleaf ecosystem class in the winter leaf-off 

season (i.e., slopes closest to zero in stage 1; Table 4 and appendix 1). However, these 

forested ecosystems quickly become distinguishable in band 1 of the summer/fall leaf-on 

season and low and high elevations, respectively (Table 4; appendix 1). Furthermore, the 

spectral differences between the Slash and Coastal Plain Longleaf ecosystem 



 
 

  83

dramatically increases in ETM+ bands 2, 3, and 4 representing a summer/fall leaf-on 

season. 

Assessing the accuracy of our forested ecosystem classification using the same 

methodology as in stage one, we were able to predict the number of observations 

occurring for each PLR iteration (Table 6). Constraining our ecosystem models by the 

conditional probabilities of stage 1 Evergreen and Deciduous classes, we were able to 

identify the probability distribution of each forested ecosystem type while maintaining 

stage 1 and stage 2 modeling and classification errors (Figure 6). 

 DISCUSSION 

 Using the spatial locations of image interpreted and field interpreted samples, 

multitemporal ETM+ imagery, ancillary data sets, PLR, and our hierarchical 

classification scheme, we have accurately (i.e., good model fit) depicted the probability 

distributions of longleaf and other pine ecosystems across a large portion of the 

Southeast. To account for differences among forested ecosystem prior probabilities, given 

spectral reflectance and the elevation of each pixel, we estimated prior abundance of each 

ecosystem, relative to a maximum abundance of 100, on a pixel basis, using recent FIA 

findings (Outcalt and Sheffield, 1996) and the spatial distribution of our ancillary data 

sets (Figure 4). While we believe these estimates to be an accurate depiction of the 

chance of finding each forested ecosystem, given the spectral reflectance and elevation of 

each pixel, they may be insufficient to account for site-specific cases. In instances where 

the prior abundance of a given ecosystem is greater or less than our assumed values, 

absolute ecosystem probabilities will be skewed to either the lower or higher end of the 

probability distribution, respectively. Relative values (i.e., the magnitude of change in the 
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logits between any two pixels within the same prior abundance estimates), however, 

remain constant across the spatial distribution of our prior abundance estimates. 

Therefore, individuals that have further knowledge of prior ecosystem abundance for a 

site specific location (in relation to the spectral reflectance and elevation of that location) 

can directly incorporate that information into the probabilistic ecosystem classification 

(Appendix 2B). 

Potential biological implications 

 While the goal of this study was to generate a spatially explicit data set that 

accurately depicts the distribution of longleaf ecosystems across a large portion of the 

Southeast, many other biologically important questions, pertaining to ecosystem structure 

and the effects on spectral reflectance can be addressed. For example, given the 

dependence of longleaf ecosystems on fire (Lear et al., 2005) and that longleaf 

ecosystems typically have sparse overstories with a diverse understory (Peet and Allard, 

1993) when compared to loblolly ecosystems, one would expect Coastal Plain Longleaf 

ecosystems to reflect and transmit more spectral energy than Loblolly ecosystems in the 

photosynthetically active portion of the electromagnetic spectrum (ETM+ bands 1 and 3). 

To test this prediction we compared the probability of finding a Loblolly ecosystem with 

the probability of finding a Coastal Plain Longleaf ecosystem (odds ratio; Table 4) using 

exponentiated slope estimates for ETM+ bands 1 and 3, acquired during a winter leaf-off 

and summer/fall leaf-on season using level 1, stage 1 in our hierarchical classification 

scheme. Surprisingly, we found a mixed effect when comparing these values. In ETM+ 

band 1, for both the winter and summer/fall periods, the mean odds of finding a loblolly 

ecosystem increased by multiples of 1.40 and 1.36, respectively, for every increase of 1 
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DN value. In ETM+ band 3, however, the odds of finding a loblolly ecosystem declined 

by multiples of 0.73 and 0.62, respectively, for every DN value increase. Interpreting 

these results, we see that as reflectance increase in the spectral range of ETM+ band 1, 

coastal plain longleaf ecosystems are less likely to occur when compared with loblolly 

ecosystems and that as reflectance increase in the spectral range of ETM+ band 3, 

longleaf ecosystems are more likely to occur when compared with loblolly ecosystems. 

This could suggest a relative trade off in the way each ecosystem absorbs electromagnetic 

energy for the purposes of photosynthesis (i.e., longleaf ecosystems prefer higher energy, 

shorter wavelength, electromagnetic energy, and loblolly ecosystems prefer lower energy, 

longer wavelength, electromagnetic energy). To determine if these results are due to 

chance alone, one could incorporate standard error estimates (Appendix 3) with mean 

slope estimates (Tables 4) to calculate the probability that each slope estimate is 

equivalent to zero. In this example, the slope estimates for both seasons and bands were 

significantly different from zero (p-value < 0.0001), meaning the relationship found 

between the probability of finding a loblolly vs. longleaf ecosystem is very unlikely to be 

caused by chance alone. Comparing the effect of changes in other spectral bands, such as 

the near and middle infrared bands (ETM+ bands 4, 5, and 7), on the odds of each 

forested ecosystem, analysts can begin to characterize other biological aspects of each 

ecosystem. It is important to remember, however, that our relationships are correlational 

not causal, and that further tests, designed as an experiment, should be performed to 

substantiate biological interpretations. 



 
 

  86

Management implications 

Using our forested ecosystem probability distributions and a GIS, resource 

managers can generate probability distribution maps for a specific location (Figure 8), set 

probability thresholds to identify the most probable locations of longleaf ecosystems, 

identify potential longleaf ecosystem restoration sites, and incorporate ancillary data sets 

to prioritize restoration locations. By weighting the area of each pixel by the probability 

of each ecosystem, managers can obtain an estimate of the amount of ecosystem area for 

a predefined location. For example, if a resource manager wanted to estimate the average 

amount of area within the boundary of the Blackwater State Forest in Florida that was 

classified as a coastal plain longleaf ecosystem type, they could use zonal statistics to 

sum the multiples of pixel area by ecosystem probability (Figure 7). In so doing, 

managers would estimate there to be approximately 19,500 hectares of Coastal Plain 

Longleaf ecosystem within Blackwater State Forest. This area estimate, however, would 

more than likely be inflated given that mixed pine ecosystems were not modeled. To 

account for mixed pine ecosystems we would suggest setting a minimum probability 

threshold of 25% when performing area calculations. Furthermore, this estimate 

represents only the mean estimate of ecosystem area. Using modeling error and the delta 

method (Agresti, 1990) managers could generate probability confidence intervals for 

each pixel within the study area, which could be used to generate a range of ecosystem 

area estimates representing a predefined level of ecosystem area accuracy.      

CONCLUSION  

We successfully mapped longleaf ecosystems at a fine spatial resolution (30 m 

grain), across a large portion of the Southeast. These probabilistic ecosystem 
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classifications provide resource managers with a level of detail that is statistically 

accurate and precise and flexible enough to begin addressing fine scale longleaf 

ecosystem restoration questions. In addition, model and classification errors have been 

maintained in a spatially explicit manner across our study area, thereby allowing other 

researchers to incorporate our model errors into their work. Future studies could 

potentially improve upon our results by incorporating ETM+ imagery from a spring leaf-

on season, adding a textual component to the analysis, and/or directly incorporating the 

spatial locations of FIA data. Finally, probabilistic ecosystem classification will be made 

available through the Alabama Gap Analysis by the end of August 2005. 
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Table 1. Cross walk between our level 1 land cover classes and NLCD+ classes. 

Land Cover Classes NLCD Classes 

Water 11  Open Water   
21  Developed, Open Space  
22  Developed, Low Intensity  
23  Developed, Medium Intensity 
24  Developed, High Intensity  
31  Barren Land (Rock/Sand/Clay) 

 Urban / Transportation 
/ Bare Ground 

32  Unconsolidated Shore  
41  Deciduous Forest  Evergreen 
42  Evergreen Forest   
43  Mixed Forest   

Fo
re

st
ed

*  

Deciduous 
52  Shrub/Scrub   
71  Grassland/Herbaceous  
81  Pasture/Hay   Field 
82  Cultivated Crops   
90  Woody Wetlands   Wet Vegetated Area 
95  Emergent Herbaceous Wetlands 

+National Land-Cover Dataset (NLCD) classes 12, 51, 72, 73, and 74 were not applicable 

to our study. 

*Forested classes were split into 2 groups Evergreen and Deciduous based on the 

dominance (> 50% percent cover) of Evergreen and Deciduous trees.



Table 2. PLR model statistics for each level and stage of our hierarchical classification scheme (HCS). W and S/F identify winter 

and summer/fall seasonality of the imagery. 

+All explanatory variables listed had values significantly different than 0 (α < 0.0001)  
 
*Model selected for each stage of our HCS

Explanatory Variables 
+

 
HCS 
Level 

HCS 
stage 

Top 3 
models W ETM+ 

Bands 
S/F ETM+ 

Bands DEM

Degrees 
of 

Freedom
AIC ∆AIC Model 

Weight 
X2 Nested 

Comparison p-value 

1* 1-5 and 7 1-5 and 7 no 168 7443.25 0.000 1.0000 - - 
2 1, 3-5, and 7 1-5 and 7 no 154 7496.27 53.020 0.0000 1 vs.2 0.0000 1 
3 1-5, and 7 1-5 no 154 7551.562 108.312 0.0000 1 vs.3 0.0000 
1* - 1-5 and 7 no 36 3952.42 0.000 0.9994 - - 
2 - 1-5 no 30 4180.83 228.410 0.0000 1 vs.2 0.0000 2 
3 - 2-7 no 30 3967.41 14.990 0.0006 1 vs.3 0.0001 
1* 1-5 and 7 - no 36 4839.211 0.000 1.000 - - 
2 2-7 - no 30 5045.916 206.705 0.000 1 vs.2 0.0000 

1 

3 
3 1-5 - no 30 5188.836 349.625 0.000 1 vs.3 0.0000 
1 1-5 1-5 and 7 yes 60 3271.926 0.000 0.457 - - 
2* 1-5 1-5 yes 55 3272.197 0.271 0.399 1 vs.2 0.0679 1 
3 1 and 3-5 1-5 and 7 yes 55 3274.232 2.306 0.144 1 vs.3 0.0308 
1* - 1-5 and 7 yes 35 4027.868 0.000 0.8921 - - 
2 - 1-5 yes 30 4032.092 4.224 0.1079 1 vs.2 0.0142 2 
3 - 1, 3-5, and 7 yes 30 4194.528 166.660 0.0000 1 vs.3 0.0000 
1* 1-5 and 7 - yes 35 4104.671 0.000 0.8242 - - 
2 1, 3-5, and 7 - yes 30 4107.761 3.090 0.1758 1 vs.2 0.0225 

2 

3 
3 1-2, 4-5, and 7 - yes 30 4219.027 114.356 0.0000 1 vs.3 0.0000 

89 



Table 3. Slope and intercept estimates for each stage of level 1 in our hierarchical classification scheme (HCS). The land cover class 

type “Water” was used as the baseline category. W and S/F identify winter leaf-off and summer/fall seasons, respectively. 

HCS stage Logits intercept W Band 1 W Band 2 W Band 3 W Band 4 W Band 5 W Band 7 S/F band 
1 

S/F band 
2 

S/F band 
3 

S/F band 
4 

S/F band 
5 

S/F band 
7 

LUC W, S/F -3.527 -0.493 -0.040 -0.170 0.278 -0.118 0.218 0.341 -0.202 -0.059 0.261 0.117 0.134 
LUC W -5.503 -0.078 -0.315 0.133 0.292 -0.013 -0.010 0.204 -0.287 -0.099 0.306 -0.154 0.322 
LUC S/F 0.356 -0.403 -0.069 -0.408 0.334 0.027 -0.110 0.477 -0.319 -0.098 0.252 0.106 0.224 
Burnt W -9.352 -0.198 -0.219 -0.391 0.423 -0.410 0.536 0.423 -0.086 -0.184 0.331 0.098 0.068 
Burnt S/F -5.316 -0.186 0.003 -0.405 0.434 -0.094 0.056 0.390 -0.126 -0.196 0.143 -0.024 0.253 
Smoke W -33.550 0.892 -0.170 -0.526 0.545 -0.367 0.374 -0.279 -0.280 -0.348 0.338 0.077 0.325 
Smoke S/F -21.892 -0.704 0.028 -0.213 0.474 -0.145 0.226 0.946 -0.083 -0.520 0.319 -0.005 0.240 
Clouds S/F -29.553 -0.430 0.197 -0.248 0.385 -0.125 0.090 0.627 -0.060 -0.205 0.418 -0.057 0.230 
Shadow S/F 13.476 -0.941 0.588 -0.669 0.834 0.138 0.130 0.755 -1.041 -0.096 -0.139 -0.348 -0.251 

Fields -22.224 -0.432 0.245 -0.303 0.506 -0.292 0.333 0.249 -0.266 -0.065 0.467 0.099 0.175 
Urban / Trans. / 

Bare  -29.764 -0.194 0.146 -0.183 0.440 -0.294 0.268 0.419 -0.162 -0.009 0.388 -0.159 0.293 

Deciduous -4.725 -0.162 -0.183 -0.209 0.464 -0.135 0.104 0.298 -0.233 -0.491 0.351 0.213 0.024 
Evergreen 5.317 -0.354 0.143 -0.160 0.526 -0.186 -0.075 0.066 -0.168 -0.208 0.327 0.009 0.138 

1 

Wet  Vegetated  -21.056 0.005 -0.026 -0.082 0.236 -0.090 -0.038 0.273 0.195 -0.262 0.210 0.165 -0.101 
LUC S/F -18.146 - - - - - - 0.291 -0.670 0.136 0.293 0.226 0.152 

Fields -26.316 - - - - - - 0.192 -0.580 0.137 0.526 0.126 0.256 
Urban / Trans. / 

Bare -30.296 - - - - - - 0.345 -0.268 0.126 0.400 -0.041 0.249 

Deciduous -5.990 - - - - - - 0.240 -0.530 -0.214 0.338 0.388 -0.262 
Evergreen -4.310 - - - - - - 0.187 -0.316 -0.058 0.338 0.068 -0.107 

2 

Wet Vegetated  -23.247 - - - - - - 0.299 0.100 -0.154 0.149 0.336 -0.294 
LUC W -0.435 0.073 -0.654 0.100 0.299 0.107 0.081 - - - - - - 
Fields -15.736 -0.085 -0.110 -0.169 0.555 -0.042 0.253 - - - - - - 

Urban / Trans. / 
Bare -20.152 0.085 -0.008 -0.083 0.490 -0.219 0.289 - - - - - - 

Deciduous 2.170 0.205 -0.800 -0.177 0.466 0.160 -0.001 - - - - - - 
Evergreen 14.310 -0.080 -0.639 -0.036 0.506 0.110 -0.249 - - - - - - 

3 

Wet Vegetated  -12.737 0.400 -0.399 -0.073 0.266 0.161 -0.188 - - - - - - 
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Table 4. Slope and intercept estimates for each stage of level 2 in our hierarchical classification (HCS). The forested ecosystem 

Coastal Plain Longleaf was used as the baseline class. W and S/F identify winter leaf-off and summer/fall seasons, respectively. 

HCS 
stage Logits intercept W  

band 1
W 

band 2
W  

band 3
W  

band 4
W  

band 5
W  

band 7 
S/F 

band 1
S/F 

band 2
S/F 

band 3
S/F 

band 4
S/F 

band 5
S/F 

band 7 Elevation

Slash 0.923 -0.060 -0.051 -0.033 -0.043 0.020 - -0.160 0.374 -0.163 0.150 -0.026 - -0.009 
Hardwood 1.626 0.225 0.320 -0.297 -0.254 0.250 - 0.332 -0.741 -0.617 0.206 0.106 - -0.002 

Mixed Hardwood/Pine -6.648 0.267 0.206 -0.327 -0.146 0.236 - 0.115 -0.149 -0.305 0.057 -0.044 - 0.012 
Mountain Longleaf 1.969 0.149 0.083 0.107 -0.021 -0.027 - -0.349 -0.103 -0.007 0.066 0.006 - 0.025 

1 

Loblolly -7.415 0.340 0.182 -0.312 -0.075 0.069 - 0.304 -0.173 -0.485 -0.162 0.106 - 0.024 
Slash -0.508 - - - - - - -0.212 0.321 -0.151 0.105 -0.034 0.032 -0.012 

Hardwood -4.733 - - - - - - 0.642 -0.875 -0.820 0.188 0.435 -0.169 0.012 
Mixed Hardwood/Pine -10.663 - - - - - - 0.420 -0.186 -0.508 0.039 0.155 -0.009 0.019 

Mountain Longleaf -0.650 - - - - - - -0.168 0.013 -0.013 0.055 0.087 -0.146 0.034 
2 

Loblolly -10.427 - - - - - - 0.580 -0.067 -0.555 -0.198 0.209 -0.177 0.030 
Slash -2.315 -0.008 0.047 -0.041 0.055 -0.091 0.132 - - - - - - -0.010 

Hardwood -16.141 0.459 0.205 -0.487 -0.253 0.346 -0.135 - - - - - - 0.012 
Mixed Hardwood/Pine -13.610 0.361 0.197 -0.470 -0.127 0.235 -0.091 - - - - - - 0.015 

Mountain Longleaf -13.584 0.102 0.004 0.090 0.025 0.016 -0.111 - - - - - - 0.031 
3 

Loblolly -12.831 0.423 0.211 -0.377 -0.150 0.178 -0.254 - - - - - - 0.024 
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Table 5. Predicted 95% class count confidence intervals (CI) vs. observed class counts for level 1 validation data set. 

  
 

 

 

 

 

 

 

 

 

* Land use change 

+Temporal features

Stage 1 Stage 2 Stage 3 Land Cover, LUC*, 
and TF+ classes Lower 

95% CI Observed Upper 
95% CI 

Lower 
95% CI Observed Upper 

95% CI 
Lower 
95% CI Observed Upper 

95% CI 
LUC W, S/F 86.9 107 147.4 - - - - - - 

Burnt W 90.1 118 151.4 - - - - - - 
LUC W 71.8 98 129.6 - - - 179.0 205 247.5 

Smoke W 15.7 19 24.8 - - - - - - 
Burnt S/F 95.4 143 189.1 - - - - - - 
LUC S/F 89.7 115 131.4 202.7 222 254.1 - - - 

Clouds S/F 108.9 149 179.9 - - - - - - 
Shadow S/F 69.0 69 71.7 - - - - - - 
Smoke S/F 83.4 108 147.8 - - - - - - 

Fields 237.5 286 322.0 245.7 286 308.9 252.0 286 322.3 
Urban / Trans. / 

Bare 228.9 246 287.2 228.2 246 266.9 234.2 246 283.0 

Deciduous 272.9 315 389.7 294.2 315 372.6 270.0 315 368.4 
Evergreen 292.8 356 379.0 307.8 356 380.9 308.5 356 368.5 

Water 340.0 356 363.5 347.3 356 361.6 341.5 356 372.5 
Wet Vegetated 129.7 182 219.1 144.4 182 211.8 135.5 182 209.5 
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Table 6. Predicted 95% confidence intervals (CI) for class counts vs. weighted observed class counts for level 2 validation data sets. 

The observed number of samples (actual) were weighted to remove the effect of prior probabilities.  

 
 
 
 
 

Stage 1 Stage 2 Stage 3 Forested Ecosystem 
classes Lower 

95% CI 
Observed 
(actual) 

Upper 
95% CI 

Lower 
95% CI 

Observed 
(actual) 

Upper 
95% CI 

Lower 
95% CI 

Observed 
(actual) 

Upper 
95% CI 

Slash 80.7 118 (55) 150.1 98.5 129 (58) 156.3 93.3 127 (58) 152.6 
Hardwoods 95.9 123 (83) 142.7 109.2 136 (85) 153.0 105.0 129 (83) 159.9 
Mixed Hardwood/Pine 81.1 111(72) 173.7 98.8 123 (78) 177.4 95.7 117 (74) 175.2 
Mountain Longleaf 63.0 79 (19) 105.7 79.4 86 (19) 113.7 74.5 84 (19) 109.6 
Coastal Plain Longleaf 78.3 126 (126) 154.5 94.9 143 (143) 159.5 84.5 136 (136) 148.3 
Loblolly 79.9 120 (51) 150.8 101.7 136 (61) 166.7 88.9 128 (52) 155.3 
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Figure 1. An overlay of the historical range of longleaf ecosystems (after Little, 1971) and our study area. The extent of our study 

area was defined as the counties within the state of Alabama and the counties that intersected United States Fish and Wildlife Service 

econumber 29 and 30 (USFWS, 2000). 

Study Area

Longleaf Range Map
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Figure 2. An overlay of our study area (outlined in gray), and Landsat scenes by path row (PR; outlined in red) showing the dates of 

ETM+ image acquisition for a winter leaf-off (W), a summer/fall leaf-on (F), and a spring leaf-on (S) season. Dates followed by an 

M or X indicate master images and images that could not be brought to a common radiometric scale, respectively. N/A identifies 

scenes for which we were unable to obtain a suitable image representing a spring leaf-on season.  
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Figure 3. Hierarchical classification scheme for two seasons. W and S/F identify land use change (LUC) and temporal feature (TF) classes found 

in the normalized ETM+ imagery representing a winter leaf-off and summer/fall leaf-on season, respectively. 
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Figure 4. Three maps illustrating the spatial configuration of forested ecosystem prior abundance estimates. Maps A, B, and C 

correspond to the prior abundance estimates, relative to a maximum abundance estimate of 100, for Mountain Longleaf, Coastal 

Plain Longleaf, and Slash ecosystems, respectively. Prior abundance estimates for Hardwood, Mixed Hardwood/Pine, and Loblolly 

ecosystems were set at 100 across our study area.   
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Figure 5. Level 1 Land cover and land use change probabilistic classifications.
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Figure 6. Level 2 Forested ecosystem probabilistic classifications. 
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Figure 7. Average area (m2) per pixel for Coastal Plain Longleaf Ecosystems within Blackwater State Forest. Blackwater State 

Forest is located in the northwest portion of the Florida panhandle and is depicted as the red area in the location map.  
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Figure 8. Probability distribution of the Coastal Plain Longleaf ecosystem within and around Conecuh National Forest located in 

southern Alabama (identified as the red area within the location map).
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APPENDIX 1 
Standardized slope and intercept estimates for each stage of level 1 in our hierarchical classification scheme (HCS). 

 

HCS 
stage Class W Band 

1 
W Band 

2 
W Band 

3 
W Band 

4 
W Band 

5 
W Band 

7 
S/F band 

1 
S/F band 

2 
S/F band 

3 
S/F band 

4 
S/F band 

5 
S/F band 

7 
LUC W, S/F -3.1161 -0.2767 -1.7509 3.4166 -2.0383 2.7979 5.3104 -3.334 -1.1294 3.9077 2.6607 2.4798 

LUC W -1.2517 -1.5296 -4.0133 5.1994 -7.0932 6.8795 6.5879 -1.4274 -3.5158 4.9499 2.2323 1.2464 
LUC S/F -0.4954 -2.198 1.3685 3.5964 -0.2254 -0.123 3.1765 -4.7399 -1.8856 4.5854 -3.4976 5.9296 

Burnt Areas W 5.6347 -1.1848 -5.4059 6.7049 -6.3506 4.7961 -4.3463 -4.6395 -6.6306 5.0609 1.7377 5.9921 
Burnt Areas 

S/F -1.1742 0.0216 -4.1659 5.339 -1.6305 0.7172 6.0852 -2.0864 -3.7443 2.132 -0.5385 4.6576 

Smoke W -2.5441 -0.4788 -4.1895 4.1024 0.4597 -1.4046 7.4427 -5.2787 -1.8632 3.7648 2.4116 4.1279 
Smoke S/F -2.7135 1.3773 -2.5504 4.7307 -2.172 1.1576 9.767 -0.9951 -3.9054 6.2497 -1.2994 4.2329 
Clouds S/F -5.9394 4.1031 -6.8712 10.254 2.397 1.6716 11.7622 -17.2281 -1.8363 -2.0867 -7.8979 -4.6273 
Shadow S/F -4.4426 0.1945 -2.1934 5.8292 -2.5155 2.9003 14.7463 -1.379 -9.9206 4.7731 -0.1159 4.4327 

Fields -2.7271 1.7116 -3.1128 6.2186 -5.0633 4.2753 3.8808 -4.3941 -1.2421 6.9918 2.2538 3.2201 
City -1.2263 1.0165 -1.8775 5.4121 -5.0909 3.434 6.5285 -2.6768 -0.1623 5.8117 -3.5973 5.4114 

Deciduous -1.0227 -1.2741 -2.1514 5.7059 -2.3372 1.3384 4.643 -3.8568 -9.3526 5.2498 4.8278 0.4449 
Evergreem -2.2348 0.9975 -1.6391 6.4748 -3.2161 -0.9606 1.0293 -2.7864 -3.9582 4.895 0.2099 2.5405 

1 

Wet Vegetated 
Areas 0.0306 -0.1799 -0.8438 2.908 -1.5621 -0.4837 4.2482 3.2286 -5.0042 3.1406 3.7382 -1.8564 

LUC S/F - - - - - - 2.1235 -5.6794 1.6586 4.0858 4.577 2.2241 
Fields - - - - - - 1.4017 -4.9152 1.676 7.341 2.5559 3.7537 
City - - - - - - 2.5168 -2.2715 1.5472 5.5785 -0.8337 3.6504 

Deciduous - - - - - - 1.7535 -4.4902 -2.614 4.7194 7.8462 -3.8358 
Evergreem - - - - - - 1.369 -2.6778 -0.7064 4.7138 1.3701 -1.5604 

2 

Wet Vegetated 
Areas - - - - - - 2.1805 0.8503 -1.8881 2.0731 6.7956 -4.3077 

LUC W 0.4676 -4.7482 1.0839 4.123 2.018 1.1106 - - - - - - 
Fields -0.5458 -0.8013 -1.8264 7.6573 -0.7847 3.4555 - - - - - - 
City 0.5427 -0.0548 -0.897 6.7515 -4.1107 3.9544 - - - - - - 

Deciduous 1.3189 -5.8125 -1.9078 6.4299 3.0132 -0.019 - - - - - - 
Evergreem -0.513 -4.6406 -0.3922 6.9721 2.0607 -3.3962 - - - - - - 

3 

Wet Vegetated 
Areas 2.5668 -2.9023 -0.7863 3.6629 3.0243 -2.5741 - - - - - - 
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Standardized slope estimates for each stage of level 2 in our hierarchical classification scheme. 

 

stage Ecosystem W 
band 1 

W 
band 2 

W 
band 3 

W 
band 4 

W 
band 5 

W 
band 7 

S/F 
band 1 

S/F 
band 2 

S/F 
band 3 

S/F 
band 4 

S/F 
band 5 

S/F 
band 7 Elevation 

Slash -0.214 -0.117 -0.123 -0.251 0.177 - -0.421 0.711 -0.369 0.777 -0.144 - -0.742 
Hardwood 0.799 0.735 -1.119 -1.500 2.206 - 0.873 -1.409 -1.399 1.065 0.588 - -0.192 

Mixed 
Hardwood/Pine 0.946 0.473 -1.228 -0.864 2.079 - 0.301 -0.283 -0.691 0.297 -0.248 - 1.026 

Mountain Longleaf 0.526 0.191 0.402 -0.124 -0.241 - -0.920 -0.197 -0.017 0.341 0.032 - 2.197 

1 

Loblolly 1.205 0.418 -1.174 -0.443 0.609 - 0.801 -0.330 -1.100 -0.840 0.591 - 2.106 
Slash -  - - - - -0.576 0.638 -0.369 0.573 -0.200 0.098 -1.033 

Hardwood -  - - - - 1.745 -1.740 -2.004 1.025 2.530 -0.519 1.045 
Mixed 

Hardwood/Pine -  - - - - 1.141 -0.370 -1.240 0.215 0.901 -0.027 1.641 

Mountain Longleaf -  - - - - -0.456 0.027 -0.033 0.301 0.507 -0.448 2.960 

2 

Loblolly -  - - - - 1.577 -0.132 -1.354 -1.083 1.212 -0.544 2.616 
Slash -0.027 0.111 -0.156 0.342 -0.810 0.811 - - - - -  -0.906 

Hardwood 1.648 0.480 -1.855 -1.584 3.099 -0.831 - - - - -  1.056 
Mixed 

Hardwood/Pine 1.296 0.462 -1.789 -0.795 2.105 -0.556 - - - - -  1.311 

Mountain Longleaf 0.367 0.010 0.343 0.155 0.146 -0.684 - - - - -  2.713 

3 

Loblolly 1.517 0.496 -1.438 -0.938 1.597 -1.559 - - - - -  2.080 
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APPENDIX 2 

A)  

Class probabilities for each stage of our hierarchical classification can be calculated using 

tables 3 and 4 as follows: 

given that 
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Using the linear form of the logit 
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πj and πJ are solved as follows; 
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Where πj(x) = the mean probability of group j, with class means and variances = nπj; 

nπj(1-πj) respectively (Agresti 2002) given the values (x) and slope estimates (β) of 

explanatory variables in matrix notation.  
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B) 

Prior probabilities can be incorporated into stage 2 of our hierarchical classification by 

taking the natural log transformation of the odds of a given class, subtracting the natural 

log transformation of the ratio of that given class’ original prior abundance estimates 

divided by the baseline class’ prior abundance, and adding the natural log transformation 

of the ratio of that given class’ prior probability by the baseline class’s prior probability 

as follows: 

Adjusted log oddsj = 





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Jprior
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π
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Manipulating equations 4 and 5 adjusted class probabilities can be estimated as follows; 
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APPENDIX 3 
Standard error estimates for the explanatory variables of each stage of level 1 in our hierarchical classification scheme. 

W and S/F identify the period in which ETM+ bands were acquired and LUC and TF were identified for a winter leaf-off and 
summer/fall leaf-on season, respectively.

HCS 
Stage Logits intercept W 

Band 1 
W 

Band 2 
W 

Band 3 
W 

Band 4 
W 

Band 5 
W 

Band 7 
S/F 

band 1 
S/F 

band 2 
S/F 

band 3 
S/F 

band 4 
S/F 

band 5 
S/F 

band 7 
LUC W, S/F 4.8229 0.1434 0.1463 0.086 0.0878 0.0984 0.1129 0.1185 0.1324 0.0846 0.0465 0.0818 0.1186 

LUC W 4.5928 0.139 0.1438 0.0895 0.0848 0.0986 0.1129 0.116 0.129 0.0889 0.0452 0.0836 0.1231 
LUC S/F 4.6715 0.142 0.1462 0.0866 0.0863 0.0988 0.1149 0.1205 0.1315 0.0865 0.045 0.0832 0.1224 
Burnt W 9.244 0.2891 0.372 0.1904 0.1031 0.1208 0.1193 0.2842 0.4548 0.234 0.0937 0.152 0.2186 
Burnt S/F 4.3171 0.1318 0.13 0.0841 0.0841 0.0971 0.1131 0.1078 0.1196 0.0829 0.0416 0.0799 0.1166 
Smoke W 4.9291 0.1465 0.1608 0.0943 0.0864 0.1047 0.1245 0.1255 0.1473 0.0887 0.048 0.0823 0.1179 
Smoke S/F 4.5308 0.1368 0.1403 0.0833 0.0847 0.0982 0.1135 0.1122 0.1237 0.0843 0.0439 0.0815 0.1177 
Clouds S/F 72.5307 1.4017 1.8499 0.8682 0.4988 1.0174 1.6292 1.791 2.2977 2.1181 0.8093 1.728 1.8594 
Shadow S/F 4.5393 0.1376 0.1414 0.0835 0.0849 0.0981 0.1133 0.1154 0.1265 0.0883 0.0441 0.0814 0.1169 

Fields 4.6617 0.139 0.1423 0.0837 0.0844 0.0974 0.1116 0.1145 0.123 0.0825 0.0434 0.0819 0.1171 
Urban / Trans. 

/ Bare  4.605 0.1373 0.144 0.0832 0.0849 0.0976 0.1109 0.1143 0.1241 0.083 0.0442 0.0814 0.1168 

Deciduous 4.4273 0.1338 0.1341 0.082 0.0842 0.0973 0.1129 0.111 0.119 0.0836 0.0433 0.0823 0.1208 
Evergreen 4.4878 0.1355 0.1388 0.0874 0.0845 0.0995 0.1178 0.1149 0.1245 0.0888 0.0445 0.0839 0.1235 

1 

Wet  
Vegetated  4.3485 0.1286 0.1214 0.0753 0.0828 0.0957 0.1095 0.1047 0.1046 0.0726 0.0417 0.0786 0.115 

LUC S/F 3.9467 - - - - - - 0.1069 0.1303 0.0745 0.0473 0.0797 0.1161 
Fields 3.8998 - - - - - - 0.1056 0.1263 0.0737 0.046 0.0797 0.1162 

Urban / Trans. 
/ Bare 3.9505 - - - - - - 0.1056 0.124 0.0725 0.0469 0.0793 0.1158 

Deciduous 3.6805 - - - - - - 0.1014 0.122 0.076 0.0451 0.0797 0.1191 
Evergreen 3.5706 - - - - - - 0.1012 0.1206 0.0749 0.045 0.0794 0.1195 

2 

Wet 
Vegetated  3.5777 - - - - - - 0.0957 0.1091 0.0658 0.0421 0.076 0.1108 

LUC W 2.4528 0.0699 0.0942 0.0526 0.0453 0.0534 0.0676 - - - - - - 
Fields 2.5061 0.0711 0.0957 0.0525 0.0441 0.0533 0.0674 - - - - - - 

Urban / Trans. / 
Bare 2.5085 0.0703 0.0965 0.0527 0.0447 0.0533 0.0671 - - - - - - 

Deciduous 2.3743 0.0676 0.0928 0.0524 0.0438 0.0539 0.0688 - - - - - - 
Evergreen 2.6171 0.0742 0.103 0.0648 0.0443 0.0596 0.0809 - - - - - - 

3 

Wet 
Vegetated  2.1213 0.056 0.0685 0.0435 0.0411 0.0491 0.0616 - - - - - - 
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Standard error estimates for the explanatory variables of each stage of level 2 in our HICS. 

 

HCS 
stage Logits intercept W  

band 1
W 

band 2
W  

band 3
W  

band 4
W  

band 5
W  

band 7 
S/F 

band 1
S/F 

band 2
S/F 

band 3
S/F 

band 4
S/F 

band 5
S/F 

band 7 Elevation

Slash 2.399 0.055 0.078 0.056 0.020 0.027 - 0.070 0.083 0.052 0.029 0.030 - 0.003 
Hardwood 3.439 0.085 0.121 0.082 0.029 0.035 - 0.109 0.122 0.084 0.037 0.041 - 0.004 

Mixed Hardwood/Pine 2.592 0.062 0.090 0.065 0.022 0.030 - 0.082 0.093 0.062 0.031 0.033 - 0.002 
Mountain Longleaf 4.532 0.087 0.127 0.098 0.029 0.040 - 0.119 0.133 0.089 0.046 0.048 - 0.003 

1 

Loblolly 2.705 0.066 0.095 0.070 0.024 0.032 - 0.086 0.101 0.068 0.035 0.036 - 0.003 
Slash 2.050 - - - - - - 0.053 0.075 0.051 0.022 0.030 0.053 0.003 

Hardwood 2.677 - - - - - - 0.070 0.100 0.072 0.028 0.047 0.087 0.003 
Mixed Hardwood/Pine 2.026 - - - - - - 0.052 0.076 0.055 0.022 0.033 0.059 0.002 

Mountain Longleaf 3.812 - - - - - - 0.095 0.118 0.084 0.036 0.054 0.101 0.003 
2 

Loblolly 2.223 - - - - - - 0.058 0.087 0.061 0.026 0.037 0.065 0.002 
Slash 1.619 0.046 0.070 0.049 0.017 0.033 0.049 - - - - - - 0.003 

Hardwood 1.943 0.060 0.092 0.066 0.024 0.041 0.057 - - - - - - 0.002 
Mixed Hardwood/Pine 1.657 0.050 0.076 0.056 0.019 0.036 0.051 - - - - - - 0.002 

Mountain Longleaf 2.922 0.071 0.110 0.087 0.025 0.051 0.077 - - - - - - 0.002 
3 

Loblolly 1.745 0.052 0.080 0.059 0.020 0.038 0.056 - - - - - - 0.002 
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