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Abstract

Electron-beam (e-beam) lithography is widely employed in a variety of areas such as fab-

rication of photomasks, imprint lithography molds, and experimental circuit patterns, etc., be-

cause of its ability to transfer ultra-fine features onto the resist and eventually to the substrate.

Its main limitations are the low throughput due to the pixel-by-pixel or feature-by-feature writ-

ing and the proximity effect caused by electron scattering. The importance of developing ef-

fective and efficient schemes for correcting the proximity effect has been well recognized for a

long time, and various methods were proposed and implemented by many researchers. As the

feature size decreases well below microns into nanoscale, line edge roughness (LER) becomes

an increasingly important factor that cannot be ignored since it does not scale with the feature

size. It can significantly affect the minimum feature size and maximum feature density realiz-

able in practice, and also the functionality of a device. Therefore, it is unavoidable to minimize

the LER in order to maximize the feature density and enhance the yield of fabricated devices.

One important step required in developing an effective method to minimize the LER is to

understand the characteristics of LER. That is, it is necessary to be able to estimate the LER

accurately. A possible approach is to rely on a simulation. Given a circuit pattern, the stochas-

tic exposure (energy deposited in the resist) distribution is either obtained directly through

the Monte Carlo simulation or computed through the convolution with stochastic point spread

functions generated via the Monte Carlo simulation. Then, the remaining resist profile (from

which the LER is quantified) is derived through a resist development simulation. While the

simulation approach is flexible, the main drawback is that it is computationally intensive, since

it requires an excessive computation to analyze the quantitative relationship between the LER

and e-beam lithographic parameters, e.g., the dose (the amount of electron charge given to a

unit area). Once the set-up of e-beam lithographic process is changed, e.g., for a different type

of resist, such a process needs to be repeated. An analytic approach to LER estimation is an
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alternative, which can avoid the repetitive procedure, since the explicit relationship between

the LER and e-beam lithographic parameters can be derived.

In this dissertation, an analytic method of deriving and minimizing the LER for a single-

line pattern caused by the stochastic variation of developing rate in the resist in the e-beam

lithography is described with a realistic 3-D model. The specific objective is to derive an

accurate analytic expression of the LER from the moments of developing rate distribution,

i.e., the mean and variance. With the developing rate distribution, development paths in the

resist development process are derived and used to estimate the variation of edge locations,

i.e., LER. The analytic expression of LER is used to minimize the critical dimension (CD)

error and LER by optimizing the dose. Then, the analytic method is extended to large-scale

uniform patterns exposed with a uniform dose by modeling the global exposure distribution. In

addition, to verify the analytic method by using the experimental results, a method of extracting

the stochastic information needed by the analytic method from experimental results, i.e., SEM

images, is developed. A specific goal of this study is to obtain an explicit analytic expression of

LER which can be used in the minimization of LER. In order to achieve the goal, in some steps

of derivations, certain assumptions and approximations are made and numerical computations

are employed, i.e., the derivations of LER are not completely analytic.
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Chapter 1

Introduction

Electron-beam lithography (e-beam) is a lithographic process used to transfer circuit patterns

onto the resist and eventually to the substrate such as silicon. It employs a focused beam of

electrons to expose a circuit pattern on the resist coated on the surface of substrate. In nanofab-

rication, the e-beam lithography plays an important role because of its ability to transfer cir-

cuit patterns with a much higher patterning resolution than the conventional optical lithogra-

phy which is limited by the diffraction of light. Therefore, it is suitable for the fabrication

of nanoscale features, e.g., photomasks, imprint lithography molds, and experimental circuit

patterns, etc. [1, 2, 3, 4, 5, 15].

A well-known issue in the e-beam lithography is the proximity effect due to electron scat-

tering, which causes a deviation from the target dimensions of a feature in the written pattern.

The importance of developing effective and efficient schemes for correcting the proximity effect

has been well recognized for a long time, and various methods were proposed and implemented

by many researchers [6, 7, 9, 10]. However, as the feature size decreases well below micron

into nanoscale, line edge roughness (LER) eventually puts a fundamental limit on the minimum

feature size and maximum pattern density that can be realized, since the LER does not scale

with the feature size [12, 15]. Therefore, it is essential to minimize the LER in order to achieve

the highest resolution possible by the e-beam lithographic process.

1.1 Line Edge Roughness

The LER refers to the random deviation of a feature boundary from the designed boundary

(see Fig. 1.1). It can be caused by a number of statistically fluctuating effects in the e-beam
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lithographic process, e.g., the unevenness of chemical species in the resist such as photoacid

generators, the random walk nature of acid diffusion during chemical amplification, and the

nonzero size of resist polymers being dissolved during development, etc. The LER analyzed

in this dissertation is the random variation of edge location due to the stochastic fluctuation of

exposure (energy deposited into the resist) caused by the shot noise (variation of electron flux)

and random scattering of electrons.

Figure 1.1: An example of SEM image in a top-down view of a line-space pattern.

1.2 Review of Previous Work

Many of the previous efforts made to estimate and reduce the LER are based on an empirical

or trial-and-error approach via experiment or simulation [13, 14, 15]. However, such a method

can be very time-consuming and expensive since repetitive simulations or experiments may be

required.

1.2.1 Simulation Approach

In the previous study [15], a computational approach to minimizing the LER was taken. Before

minimizing the LER, the dependency of LER on various lithographic parameters needs to be
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analyzed through an extensive simulation. In the simulation results, the following behaviors of

LER were observed. (1) The LER is substantially larger at a lower layer of resist. (2) The LER

decreases as the dose (the amount of electron charge given to a unit area) increases (within a

reasonable range of dose). (3) As the edge location is moved from the inside of a feature to the

outside, the LER decreases. (4) The LER is smaller for a smaller exposing interval. (5) For

different types of resist, though the LER level may be different, the similar behaviors of LER

are exhibited.

Based on the behaviors of LER, two LER minimization methods have been developed.

Unlike the conventional methods [7, 8] where a two dimensional (2-D) model is mostly used,

i.e., ignoring any variation along the resist depth dimension, a 3-D model of the substrate

system is employed in these two methods to consider the different behaviors of LER and CD

error at different resist layers. In one method, only the shape of a feature is adjusted with a

uniform dose to minimize the LER, taking the critical dimension (CD) error also into account.

In the other method, both the shape of a feature and the spatial distribution of dose within the

feature are controlled.

Even though the methods are flexible and accurate, they require an excessive computation

in analyzing the relationship between various lithographic parameters and the LER. And such

a process needs to be repeated once the set-up of e-beam lithographic process, e.g., resist type,

changes.

1.2.2 Analytic Approach

In order to avoid the simulation and experiment, one may take an analytic approach to estimat-

ing and minimizing the LER. Most of the efforts of using an analytic approach are in the direc-

tion of estimating the effects of LER on the device behaviors [16, 17]. In the work of Croon in

2002 [16], the simple analytical expressions were presented, which calculate the impact of LER

on MOSFET parameter fluctuations. It is experimentally demonstrated that the LER has no im-

pact on 80 nm gate length transistors. Simulations show that the LER becomes significant for

32 nm channel length devices. In another study of Diaz in 2001 [17], an analytical model was
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introduced to represent the effects of LER on both off-state leakage and drive currents for sub-

100-nm devices. The model partitions a given device into small unit cells along its width, and

each unit cell assumes a constant gate length (i.e., the cell width is small compared to the LER

spatial frequency). An analytical model is used to represent the saturated-threshold-voltage

dependency on the gate length of unit cell. Even though these theoretical models can be simple

and accurate, an analytic expression of LER was not derived. Therefore, the minimization of

LER by optimizing the e-beam lithographic parameters analytically is impossible.

Mack has made a lot of efforts in studying and developing analytically the model of LER.

In one of his work in 2009 [18], a stochastic approach to modeling resist development was

presented. A continuous approximation to the critical ionization (CI) model was derived and

shown to closely match the CI model, i.e., the mechanistic model of phenolic polymer-based

resist dissolution [34]. It has the potential for providing the theoretical framework required

to determine the variance of developing rate in the dissolution path. Since one of the main

sources of LER is from the randomness in the resist development process, this model may

provide a way of modeling the LER due to such randomness. Later in his work in 2010 [19],

a stochastic modeling of resist development was extended in two and three dimensions. The

concepts of dynamic scaling in the study of kinetic roughness were applied to the problem of

resist development. To verify the results, simulations of resist development in 1 + 1 and 2 + 1

dimensions were carried out with various amounts of random, uncorrelated noise added to an

otherwise uniform developing rate. Even though these studies provide good understandings in

the stochastic factors that affect the LER, an analytic expression of LER was not derived.

In another study [20], a comprehensive stochastic model of LER in the optical lithography

was formulated with the expression of the standard deviation of the final deprotection level of

polymer molecules in the resist. In the optical lithographic process, the variations of photon

shot-noise, chemical concentration (spatially distributed molecules in the resist), exposure, and

acid-catalyzed reaction diffusion are first analyzed individually. Then, all these variations are

combined to get the standard deviation of the final deprotection level of polymer molecules in

the resist, which is used to estimate the LER by setting a threshold. However, the physical and

chemical mechanisms in the e-beam lithography may not be the same as those in the optical
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lithography. More importantly, during the derivation, an infinite contrast of development pro-

cess was assumed to obtain the LER directly from the blocked-polymer latent image without

modeling the development process, which is unrealistic.

Even though the LER estimated by our previous analytic method [21] is close to that

generated by the simulation, the final expression of LER is not derived as a function of the

e-beam lithographic parameters such as dose and, therefore, it is not suitable for the analytic

procedure of minimizing the LER with respect to those parameters.

1.3 Objectives

In the previous efforts, either an analytic expression of LER is not derived, or the LER expres-

sion is not a function of e-beam lithographic parameters. Another problem is that it may not be

accurate enough to be employed in the minimization procedure.

This dissertation addresses a specific issue of estimating and minimizing the LER in the

e-beam lithography through an analytic method, i.e., deriving the explicit relationship between

the LER and an e-beam lithographic parameter, i.e., dose, and minimizing the LER with respect

to the dose. More specifically, optimize the dose with all the other parameters, i.e., beam

energy, developing time, etc., fixed. Without having to obtain and refer to the remaining resist

profile, the mathematical expression of LER is derived explicitly from the stochastic fluctuation

of developing-rate distribution on which the remaining resist profile mainly depends. One

of the main advantages is that the proposed method should be able to analyze and minimize

the LER caused by the stochastic variation of developing rate in the resist without excessive

experiments and simulations. It should be pointed out that even though this study focuses on

the stochastic variation of the developing rate, it is expected that other factors can be considered

in this method, by adjusting the stochastic developing rate to reflect their direct or equivalent

effects on the developing rate. For example, to consider the randomness in the developing

process, an additional fluctuation may be added to the developing rate.

The main objectives of this study are

• the analytic estimation and minimization of LER for a single-line pattern,
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• the analytic estimation and minimization of LER for a large-scale uniform pattern, and

• the verification of the analytic results through the simulation and experiments.

A specific goal of this study is to obtain an explicit analytic expression of LER which can

be used for minimization of LER. In order to achieve the goal, in some steps of derivations,

certain assumptions and approximations are made. Therefore, it needs to be pointed out that

the derivations of the LER in this dissertation are not completely analytic.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows:

• Chapter 2 introduces the essential analytic model of e-beam lithography. The concepts

are defined and the simulation procedure used to verify the results of the analytic method

is described.

• Chapter 3 describes the analytic method of estimating and minimizing the LER for a

single-line pattern.

• Chapter 4 extends the analytic method to large-scale uniform patterns, i.e., patterns of

lines/spaces.

• Chapter 5 describes a method of extracting the essential information required by the ana-

lytic method from the experimental results by modeling the e-beam lithographic process

from SEM images.

• Chapter 6 verifies the results of the analytic method using the experimental results first.

Then, a thorough comparison between the results of the analytic method and those from

the simulation is made by individually controlling the parameters that affect the LER.

• Chapter 7 presents the conclusions of this dissertation and the possible future work.
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Chapter 2

Analytic Model and Simulation

In this chapter, the model of e-beam lithographic process is described first. The main concepts

in the analytic estimation and minimization of LER are explicitly defined. Then, the simulation,

which is used to verify the results of the analytic method, is depicted.

2.1 Analytic Model

2.1.1 Substrate Model

X

Z

H

Y

Feature

D

Substrate

Resist

Figure 2.1: A typical 3-D model of substrate system with a resit layer on top of the substrate
where a line feature is exposed with a certain dose level D.

A 3-D (three-dimensional) model of substrate system is employed in this study. As shown

in Fig. 2.1, a resist layer is on the top of the substrate where the X-Y plane corresponds to the
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top surface of resist, and the resist depth is along Z dimension. A line feature is exposed with a

certain dose level D. In the e-beam lithography, the dose depicts the amount of electron charge

given to a unit area, and its unit is µC/cm2.

2.1.2 Exposure Model

The exposure in the e-beam lithography depicts the energy deposited in the resist. Its distri-

bution can be computed from the dose distribution of a circuit pattern through the convolution

with a proximity function or point spread function (PSF), which shows how the energy is dis-

tributed throughout the resist when a single point is exposed [24, 25].

In this study, the 3-D PSF, denoted by psf(x, y, z), is generated by the CASINO Monte

Carlo simulation software [33]. By generating a set of stochastic PSF’s through the Monte

Carlo simulation for the same set-up of e-beam lithographic parameters, i.e., beam energy,

resist thickness, etc., the moments of the stochastic PSF’s can be extracted. For example, the

mean and standard deviation of PSF for the resist thickness, dose, beam diameter, and beam

energy of 300 nm PMMA on Si, 640 µC/cm2, 3 nm, and 50 keV, respectively, are illustrated in

Fig. 2.2 for the 1-D case.

Let the dose distribution on the surface of resist be denoted by D(x, y) and the exposure

at the point (x, y, z) in the resist by e(x, y, z). Then, the 3-D spatial distribution of exposure

can be expressed by the following convolution as illustrated in Fig. 2.3 for the 1-D case:

e(x, y, z) =
∫ ∫

D(x− x′, y − y′)psf(x′, y′, z)dx′dy′. (2.1)

The exposure e(x, y, z) is stochastic when the PSF psf(x, y, z) is stochastic. For a uniform

substrate and a stable e-beam tool, the stochastic properties of PSF must be space-invariant.

That is, the mean and variance of PSF (See Fig. 2.2), denoted as mpsf (x, y, z) and σ2
psf (x, y, z),

respectively, are space-invariant. Then, the mean exposure, me(x, y, z), can be expressed as

me(x, y, z) =
∫ ∫

D(x− x′, y − y′)mpsf (x
′, y′, z)dx′dy′. (2.2)
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Figure 2.2: The moments of stochastic PSF generated by the Monte Carlo simulation for 300
nm PMMA on Si with a dose of 640 µC/cm2, beam diameter of 3 nm, and beam energy of 50
keV: (a) mean and (b) standard deviation.

Also, assuming that psf(x, y, z) and psf(x′, y′, z) are uncorrelated, the variance of expo-

sure, σ2
e(x, y, z), can be derived as

σ2
e(x, y, z) =

∫ ∫
D(x− x′, y − y′)σ2

psf (x
′, y′, z)dx′dy′. (2.3)

2.1.3 Exposure-to-Rate Conversion Formula

The relationship between the exposure and developing rate is generally not linear. During the

writing process on a resist, electrons come across the resist and deposit their energy (exposure)

which ionizes the phenol groups in the polymer. Each initially blocked (protected) phenol

group in the polymer has a chance to be ionized. If the number of ionized phenol groups
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PSF

x

Multiple Lines Pattern

x

Exposure

x

Figure 2.3: From the PSF to the exposure through the convolution.

exceeds the critical fraction, the polymer becomes soluble [18]. The probability of a given

phenol group being ionized is directly related to the energy (exposure) deposited in that group,

and thus the developing rate in the resist can be derived from the exposure. The developing rate

is also related to other factors such as molecular weight and pH of the developer.

In this study, the developing rate R(x, y, z) at each point in the resist is calculated from

the exposure e(x, y, z) through a nonlinear exposure-to-rate conversion formula F [·]. The con-

version formula may be derived experimentally as follows. A single line is exposed with a

spatially-uniform dose, and after the resist development process, the depth in the cross-section

of remaining resist profile is measured at the center of line. This process is repeated with dif-

ferent dose levels. Note that the resist is developed only vertically at the center of line when the

dose is spatially uniform. The resist profile can also be obtained through the resist development

simulation by computing the exposure distribution in the resist and converting the exposure into

the developing rate. The relationship between the exposure and developing rate (i.e., conver-

sion formula), which minimizes the difference between the measured and simulated depths, is

obtained. The following conversion formula F [·] was derived (also refer to Fig. 2.4) using the

experimental results where the substrate system is composed of 300 nm PMMA on Si:

R(x, y, z) = F [e(x, y, z)] = 3700 · exp

−(e(x, y, z)− 1.0e11

5.8e10

)2
− 152.5 (2.4)

where R(x, y, z) is in nm/minute and e(x, y, z) in eV/nm3.
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Figure 2.4: The experimentally derived nonlinear exposure-to-rate conversion formula F [·].
For the experiments, the Si wafer was pin-coated with 300 nm PMMA and soft-baked at 160
◦C for 1 min. The line pattern was exposed with different doses with beam energy of 50 keV,
and the sample was developed in MIBK:IPA = 1:2 for 40 s.

The validity of this conversion formula was verified in the previous work [11]. The mean

and variance of R(x, y, z) are denoted by mR(x, y, z) and σ2
R(x, y, z), respectively.

2.1.4 Resist-Development Model

The resist layer is partitioned into cubic cells, and the stochastic exposure is calculated at each

cell. The stochastic developing rate R(x, y, z) of each cell is calculated from the exposure

e(x, y, z) through the nonlinear exposure-to-rate conversion formula. Given a spatial distribu-

tion of the developing rate, the remaining resist profile is determined through the resist devel-

opment process. Assume that the resist development process can be modeled by “development

paths” where a development path is defined as a path along which the resist is developed, as

illustrated in Fig. 2.5. Each development path starts from the resist surface toward the bound-

ary of resist profile. Given a possible edge location (x, y, z), there exists only one development

path that depicts the development process from the top surface of the resist layer to that edge

location, and its length is denoted by s. Note that the LER is proportional to the length fluctu-

ation of the development path of an edge location. The developing rate along the development
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path is expressed by R(p) where 0 ≤ p ≤ s (see Fig. 2.5). The analytic expression of LER is

derived utilizing the concept of development path later.

Possible 

profiles

Resist

s(x|T)

s

pR(p)

Figure 2.5: The development path in the resist and the variation (σ(x|T )) of edge location with
a fixed developing time. Note that p = 0 and p = s correspond to the starting and ending points
of a development path, respectively. R(p) is the developing rate at p.

2.1.5 Definition of LER

The LER is defined as the variation of the edge location at a layer of the remaining resist profile

shown in Fig. 2.6, and is quantified as the standard deviation of the edge location x measured

in the lateral dimension given a developing time T , i.e.,

LER = σ(x|T ). (2.5)

2.1.6 List of Notations

A summary of the notations is shown in Table 2.1.

2.2 Resist-Development Simulation

Given the stochastic developing rate distribution generated by the Monte Carlo simulation,

a resist-development simulation is used to derive the remaining resist profile where the CD
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(a)

(b)

Figure 2.6: (a)The LER in a 3-D model of substrate system. (b) The LER at each layer is
quantified individually as the standard deviation of edge location along the length dimension
of a feature.

and LER can be calculated. There are several commonly used simulation methods, e.g., cell

removal method, fast marching method.

The Cell removal method is widely used [26, 27, 28] because it has been proved to be

stable and robust, and easy to implement. In the 3-D version of the cell removal method,

the resist layer is partitioned into cubic cells. The developing process is started from the top

surface of the resist layer. In each iteration of the simulation, the surface (sides) of a cell that

is in contact with the developer is determined and each side is adjusted (developed) based on

the developing rate. If a cell is fully developed, the states of its neighbors are updated, i.e.,
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Notation Defination
psf(x, y, z) Point spread function which depicts the energy distribution when a single

point is exposed
mpsf (x, y, z) Mean of a set of PSF’s at the point (x, y, z)
σpsf (x, y, z) Standard deviation of a set of PSF’s at the point (x, y, z)
D(x, y) Dose distribution in a pattern
e(x, y, z) Exposure at the point (x, y, z)
R(x, y, z) Developing rate at the point (x, y, z)
R(p) Resist developing rate at p on the development path
mR(p) Mean of developing rate at p on the development path
σR(p) Standard deviation of developing rate at p on the development path
T Developing time
D0 Uniform-dose level

Table 2.1: Notations and definations

mores sides are considered to be exposed to the developer or the undeveloped cells start to

be developed. Given a specified developing time, the remaining resist profile is derived from

the boundary between the developed and undeveloped cells. A fast marching level set method

[26] is based on level set methods which are numerical techniques for computing the position of

propagating fronts. It relies on an initial value of the partial differential equation for propagating

a level set function and uses the techniques borrowed from the hyperbolic conservation laws

[29].

In this study, a novel method for 3-D resist development simulation [22] is utilized in

order to reduce the simulation time of an iterative method such as the cell removal method.

It employs the concept of “L-shape development paths,” (see Fig. 2.7) which start from the

top surface of resist toward the boundaries of the final resist profile, to model the development

process.

The resist development process is isotropic as the resist is developed in all possible di-

rections. However, in the path-based method, the development process is modeled by two

orthogonal processes, i.e., vertical development and lateral development, in order to simplify

the simulation procedure. Accordingly, each L-shape development path (just path hereafter)

consists of two orthogonal path segments, i.e., vertical (to depict vertical development) and

lateral (to depict lateral development) path segments (refer to Fig. 2.7). More specifically, each
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Figure 2.7: Illustration of a development path with the vertical and lateral development where
the dashed curve represents a cross-section of resist profile.

path has one vertical path segment (along the Z dimension) and may have one or more lateral

path segments (along the X dimension or Y dimension). Each path is “computed” (followed)

individually, i.e., finding the farthest point in the resist the path can reach given a developing

time T . The computation of each path terminates when the sum of the times spent on its path

segments is equal to the given developing time T . The final resist profile is determined by trac-

ing the boundaries between the developed and undeveloped points after all possible paths are

computed (refer to Fig. 2.8). The method has been shown to be as accurate as the widely-used

methods, e.g., cell-removal and fast-marching methods, but with a much less requirement of

computation [22].
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(a) (b)

(c) (d)

Figure 2.8: (a) All the points in the resist are marked as “undeveloped” (‘·’) before the resist
development simulation. (b) After a path is computed, the points which it passes through are
marked as “developed” (‘x’). (c) After another path is computed, more points are marked as
“developed”. (d) The final resist profile is determined by tracing the boundaries between those
developed points and those which are not.
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Chapter 3

A Single Line Feature with a Uniform Dose

In this chapter, an analytic method of estimating the LER at any layer of resist is described

for the case where a long single line is exposed with a uniform dose. The line is sufficiently

long along the Y dimension that any variation, i.e., the mean and variance of developing rate,

along the Y dimension can be neglected. The analytic (mathematical) expression of LER is

derived explicitly from the stochastic fluctuation of developing rate distribution on which the

remaining resist profile mainly depends. Also, the LER is minimized analytically with respect

to the dose with all the other e-beam lithographic parameters, i.e., beam energy, developing

time, etc., fixed. Note that the goal is to obtain an explicit analytic expression of LER for a

single line feature with a uniform dose, which can be used for minimization of LER, and to

achieve the goal, the derivation of LER is not completely analytic, i.e., in some steps certain

approximations are made or an iterative method is employed.

The rest of the chapter is organized as follows. The analytic estimation of LER is described

in Sec. 3.1. The procedure for minimizing the LER is presented in Sec. 3.2. The results of

estimating and minimizing the LER are discussed in Sec. 3.3, followed by a summary in Sec.

3.4.

3.1 Estimation of LER

In this section, the LER is analytically estimated as a function of the edge location with the

dose fixed at a certain level D and, therefore, D is not explicitly considered in the estimation

procedure. However, in Sec. 3.2, to minimize the LER and CD error with respect to the dose
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level, the relationship of edge location versus D is included where D is a variable and will be

explicitly considered.

The derivation of the analytic expression of LER is carried out in three steps: (1) given an

edge location x at a layer (z0) at which the LER is to be estimated, find the development path

reaching the location and derive the fluctuation of developing time T taken by the development

path, (2) estimate the direction of development path at the edge location x, and (3) derive the

expression of LER given a developing time T .

3.1.1 Development Path and Fluctuation of Developing Time

An edge location is determined by the development path reaching the location. To estimate the

LER at an edge location (x, z0), its development path needs to be found first. However, since

the developing process is isotropic, it is not easy to derive the development path analytically

in one step. From the distribution of developing rate, the time taken by a path (from the top

surface of the resit layer to the edge location (x, z0)) can be calculated. Given the idea that

the development path of an edge location is the path that consumes the minimum time to reach

(x, z0) among all possible paths, i.e., any path from the top of the resist surface to (x, z0) (see

Fig. 3.1), an iterative method is employed to derive the development path shown in Fig. 3.1).

0
T

2
T

1
T

X

Z

Figure 3.1: The illustration of iterative method to derive the development path by tracing back
and forth from (x, z0). The time consumed by each path is calculated along the path, i.e., T0,
T1, and T2, where T0 > T1 > T2.
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The iterative method may be described as follows. In the first step, the iterative method

traces back from the edge location to the top surface of resist. For example, given the edge lo-

cation (x, z0), the point (x1, z1) that takes the minimum developing time from (x, z0) to (x1, z1)

among all possible x1, where z1 < z0, is found. From (x1, z1), the next point (x2, z2) can be

derived by the same procedure. Repeating this procedure until zi = 0 which corresponds to the

top surface of resist. Then, {(x, z0), (x1, z1), (x2, z2), ...} represents a possible development

path to (x, z0). Note that even though the developing time between two adjacent points on

the path is the minimum, the time consumed by this path may not be the minimum among all

possible paths. Therefore, in the second step, with (x, z0) fixed, additional possible paths are

found by adjusting each of the remaining points and tracing back from the point as in the first

step. Of all the derived paths, the path that takes the minimum time is taken as the development

path for the edge location (x, z0).

The fluctuation of developing time can be directly derived from the fluctuation of devel-

oping rate on the development path. Given R(p) on the development path (see Fig. 2.5), the

developing time T is expressed as the integral of 1
R(p)

along the path,

T =
∫ s

0

dp

R(p)
. (3.1)

Assuming that the correlation of 1
R(p)

at any two points (p1, p2) on the development path

denoted as Cov 1
R
(p1, p2) is known, according to Eq. 3.1, the mean and variance of developing

time are computed as

m(T |s) =
∫ s

0
m 1

R
(p)dp,

σ2(T |s) =
∫ s

0
σ2

1
R
(p)dp+

∫ s

0

∫ s

0
Cov 1

R
(p1, p2)dp2dp1. (3.2)

3.1.2 The Direction of the Development Path

The direction of resist development is normal to the surface of remaining resist profile, and is

not always lateral (X dimension). Therefore, the variation of the development-path length may

not be quantitatively the same as the LER to be measured in the lateral dimension shown in
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Fig. 3.2. The direction of the development path is expressed as the angular deviation θ from

the lateral direction and needs to be derived to get an accurate estimate of LER.

Possible 

profiles

θ
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path

)|( Txs
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Figure 3.2: The fluctuation of the development-path length is “projected” onto the X (lateral)
dimension.

To facilitate the derivation of angle θ, the resist development process is modeled by “L-

shape” paths (see Sec. 2.2). Note that the remaining resist profiles estimated using L-shape

paths are as accurate as those by the cell removal and fast marching methods [22].

In the region close to the feature edge, the resist development usually progresses both

laterally and vertically (see Fig. 3.3(a)). On the other hand, the resist development progresses

mostly vertically in the region sufficiently away from the feature edge (see Fig. 3.3(b)). Let xB

represent the boundary between the two regions.

For a possible edge location (x, z0) close to the feature (left) edge (x ≤ xB), the L-shape

path starting from (xB, 0) with its lateral segment on the X-Y plane at z = z0 is the development

path reaching (x, z0) shown in Fig. 3.3(a). Consider another L-shape path from (xB, 0), which

reaches an adjacent X-Y plane at z = z0 + dz, ending at (xB − dx, z0 + dz). When dz is

sufficiently small, the angle θ is derived as

θ(x, z0) = tan−1

(
dx

dz

)
= tan−1

(
mR(x, z0) ·∆T1

mR(xB, z0 + dz) ·∆T2

)
(3.3)

where ∆T1 is the difference of developing time between the two development paths in the

lateral dimension, and ∆T2 is that in the vertical dimension as illustrated in Fig. 3.3(a).
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Figure 3.3: The direction of development path in a region (a) close to the left edge of a feature
and (b) close to the feature center.

Since the two paths take the same developing time and share the segments which also take

the same amount of developing time except ∆T1 and ∆T2, ∆T1 must be equal to ∆T2 when dz

is close to 0. The angle θ can be simplified to

θ(x, z0) = tan−1

(
mR(x, z0)

mR(xB, z0)

)
. (3.4)

For an edge location close to the feature center (x > xB), the L-shape path can be approx-

imated to consist of only a vertical segment as shown in Fig. 3.3(b). Consider two adjacent

paths starting from (x, 0) and (x+dx, 0) reaching the edge location (x, z0) and (x+dx, z0+dz),

respectively. Since the two paths take the same developing time, the following relationships are
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derived:

T1 =
∫ z0

0
m 1

R
(x, z)dz,

T2 =
∫ z0

0
m 1

R
(x+ dx, z)dz,

T1 = T2 + dz ·m 1
R
(x+ dx, z0). (3.5)

From Eq. 3.5,

∫ z0

0
m 1

R
(x, z)dz =

∫ z0

0
m 1

R
(x+ dx, z)dz + dz ·m 1

R
(x+ dx, z0) (3.6)

and

dz

dx
=

∫ z0
0 m 1

R
(x, z)dz −

∫ z0
0 m 1

R
(x+ dx, z)dz

dx
· 1

m 1
R
(x+ dx, z0)

= −
∫ z0

0

∂m 1
R
(x, z)

∂x
dz · 1

m 1
R
(x+ dx, z0)

. (3.7)

When dz → 0 and dx → 0, the angle θ is derived as

θ(x, z0) = tan−1

(
dx

dz

)
= tan−1

− m 1
R
(x, z0)∫ z0

0

∂m 1
R
(x,z)

∂x
dz

 . (3.8)

In the region close to the feature edge, the angle θ evaluated by Eq. 3.4 is larger than that

by Eq. 3.8 since the developing rate varies fast in the lateral dimension. On the other hand,

in the region close to the feature center, the angle θ by Eq. 3.8 is larger than that by Eq. 3.4.

Therefore, in this study, instead of deriving xB analytically which is not straightforward, the

angle θ is evaluated with the approximation of mR(xB, z0) ≈ mR(
W
2
, z0) as follows:

θ(x, z0) = max

tan−1

(
mR(x, z0)

mR(
W
2
, z0)

)
, tan−1

− m 1
R
(x, z0)∫ z0

0

∂m 1
R
(x,z)

∂x
dz


 . (3.9)

As can been seen from the equation, the angle θ is determined by the average developing-

rate distribution in the resist. When it is close to the feature edge, the angle θ is only determined
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by the mean of developing rate R at the layer (z = z0). However, when it is close to the feature

center, the angle θ is affected accumulatively by the mean of 1
R

from resist surface (z = 0) to

the edge location (z = z0).

3.1.3 LER at a Layer

The fluctuation of the development-path length (s given T ) may be related to the fluctuation

of developing time taken by this path. If the developing rate is constant (R) around s, the

fluctuation of developing time can be directly converted into the fluctuation of s given T as

σ(s|T ) = σ(T |s) ·R. (3.10)

In reality, the developing rate varies spatially and is stochastic at each point. However, it

would be a reasonable approximation that the developing rate around s is represented by the

mean of developing rate at s, i.e., mR(s) (refer to Fig. 3.4). Then, a more realistic relationship

between σ(s|T ) and σ(T |s) can be expressed as

σ(s|T ) ≈ σ(T |s) ·mR(s). (3.11)

T

)|( Tss

)|( sTs

s
)(sm

R

Figure 3.4: The σ(s|T ) is derived from σ(T |s) through the mean of developing rate (mR(s)).
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Since the LER is measured in the lateral dimension (X dimension), σ(s|T ), which is de-

rived along the direction of development path, needs to be projected onto the X dimension (see

Fig. 3.2). According to the definition of LER,

LER(x, z0) = σ(x|T ) = σ(T |s) ·mR(x, z0)

cos(θ(x, z0))
. (3.12)

As can be seen from the equation, the LER at (x, z0) is determined by three parts, the

standard deviation of developing time T given s, average developing rate, and angle θ, i.e.,

σ(T |s), mR, and cos(θ). The mR and cos(θ) are both functions of the location (x, z0). Given

an edge location (x, z0), its development path and the length s of this path are determined and,

therefore, σ(T |s) calculated along this path at s is uniquely determined by (x, z0), i.e., σ(T |s)

is a function of (x, z0).

3.1.4 Adjustment

It needs to be pointed out that the interaction between adjacent development paths is not taken

into account in the above derivation. The interaction tends to decrease the variation (of path

length) and reduce the LER. Therefore, an adjustment factor needs to be employed to compen-

sate the interaction between the paths.

�����

� �

����

(a)

�������

� �

����

(b)

����

� �

����

(c)

Figure 3.5: The interaction between paths when the correlation of developing time between
adjacent paths is (a) ρt = −1, (b) −1 < ρt < 1, (c) ρt = 1.
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The correlation coefficient of developing time (ρT (s)) between adjacent development paths

is used to derive the adjustment factor, which is derived by the integral of the covariance of 1
R
(s)

along the path. When ρT (s) is closer to -1 (illustrated in Fig. 3.5 (a)), the developing time for

the same edge location shows a larger difference between adjacent development paths. This

leads to a higher level of interaction between the adjacent paths and, therefore, a larger adjust-

ment (reduction) is to be made. On the other hand, when ρT (s) is closer to 1 (illustrated in

Fig. 3.5 (c)), the adjacent development paths share the same edge location, i.e., a lower level

of interaction, and thus the adjustment (reduction) needs to be smaller. A reasonable multi-

plicative adjustment factor may be formulated as 1−α 1−ρT
2

where α determines the maximum

adjustment and 0 < α < 1. Note that the adjustment factor is 1 (i.e., no adjustment) when ρT

is 1 and 1− α when ρT is -1. And a reasonable adjustment factor may be expressed as

(
1− α

1− ρT (s)

2

)
. (3.13)

The correlation coefficient ρT is computed between adjacent development paths and, there-

fore, is affected by the distance between the adjacent paths, i.e., sampling interval, denoted by

∆y. For example, a smaller ∆y makes ρT (s) larger (closer to 1). Hence, this effect needs to be

considered. Also, the larger σ(s|T ) is, a larger adjustment is to be made in general. If σ(s|T ) is

much smaller than ∆y, e.g., σ(s|T )
∆y

close to zero, there is almost no interaction between adjacent

development paths even when ρT (s) = −1 shown in Fig. 3.5 (a). On the other hand, when

σ(s|T ) is much larger than ∆y and ρT (s) = −1, most of the difference (LER) between adjacent

development paths can be compensated due to the interaction. Considering these two facts and

noting that α needs to be limited to 1, α must be quantified to be min(1, σ(s|T )
∆y

). In this study,

the ∆y is fixed to 1 nm and σ(s|T ) is normally larger than 1 nm. Therefore, to simplify the

equation, the adjustment factor is expressed as

(
1− 1− ρT (s)

2

)
=

ρT (s) + 1

2
. (3.14)
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Finally, the estimate of LER is given as

LER(x, z0) =
ρT (s) + 1

2

√(∫ s
0 σ

2
1
R

(p)dp+
∫ s
0

∫ s
0 Cov 1

R
(p1, p2)dp2dp1

)
·mR(x, z0)

cos(θ(x, z0))
. (3.15)

As can be seen from Eq. 3.15, given a location (x, z0), the fluctuation of 1
R

and the average

developing rate at (x, z0) together determine the fluctuation of developing-path length and have

a positive relationship (correlation) with the LER. When the direction of development process

is more lateral (angle θ is closer to 0), this fluctuation leads to a larger LER. And the interaction

between paths tends to reduce the LER.

3.2 Minimization of LER

The analytic method of minimizing the LER based on Eq. 3.15 is described in this section.

In this study, the LER is minimized with respect to the dose which is uniformly applied to the

entire area of a feature. Since the LER and CD error are both functions of edge location, the

optimal edge location is first derived without explicitly involving the dose, and then the optimal

dose is related to the optimal edge location, without introducing an extra complexity. The LER

minimization is specific to a certain layer, e.g., the bottom layer as it has the largest LER among

all layers and, therefore, the notation of LER, i.e., LER(x, z0), is simplified to LER(x).

3.2.1 Optimal Path Length

As the dose increases, the edge location moves from the inside of a feature to the outside. Inside

the exposed area of a feature, the LER decreases rapidly toward the boundary of the exposed

area [15]. It continues to decrease over the boundary and right outside the exposed area, and

then almost levels off or slightly increases in some cases. Therefore, the LER is not minimal

at the feature boundary (where the CD error is minimal, i.e, zero) in general. That is, the LER

and CD error cannot be minimized at the same time (the same edge location or equivalently the

same dose). The cost function C(x) employed in this study involves both CD error and LER as
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follows:

C(x) = CD error + 3 · LER = |x− xt|+ 3 · LER(x) (3.16)

where xt is the target edge location and its corresponding path length is denoted by st.

Since the LER is the standard deviation of edge location, the cost function of CD error+

3 · LER may be considered practically as the worst-case deviation of edge location from the

target location (e.g., 99.7% in the case of Gaussian distribution). Also, 3 ·LER corresponds to

the 3σ-LER typically used in the research and industry communities.

When the edge location is inside the feature, e.g., x < xt close to the right edge, both LER

and CD error decrease as x increases. Therefore, the optimal x cannot be inside the feature.

When x ≥ xt,

C(x) = x− xt + 3 · LER(x). (3.17)

Around the target edge location xt, the remaining resist profile is almost vertical and,

therefore, θ(x) ≈ 0 and cos θ(x) ≈ 1.

The st denotes the corresponding path length for the target location xt. Since σ(T |s)

changes very slowly around st,

σ(T |s) ≈ σ(T |st) =
√(∫ st

0
σ2

1
R

(p)dp+
∫ st

0

∫ st

0
Cov 1

R
(p1, p2)dp2dp1

)
. (3.18)

A similar approximation can be made to the ρT (s), i.e., ρT (s(x)) ≈ ρT (st).

From Eq. 3.18, the LER (Eq. 3.15) around xt may be expressed as

LER(x) =
ρT (st) + 1

2
· σ(T |st) ·mR(x) (3.19)

=
ρT (st) + 1

2

√(∫ st

0
σ2

1
R

(p)dp+
∫ st

0

∫ st

0
Cov 1

R
(p1, p2)dp2dp1

)
·mR(x).
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Assuming that the cost function is a simple convex function, the optimal edge location sopt

is obtained from

dC(x)

dx
= 1 +

3(ρT (st) + 1)

2
· σ(T |st) ·m′

R(x) = 0 (3.20)

where m′
R(x) is the first order derivative of the mean developing rate mR(x) with respect to x.

The optimal edge location xopt is derived as

xopt = m′
R
−1

(
2

3(ρT (st) + 1) · σ(T |st)

)

= m′
R
−1

 2

3(ρT (st) + 1) ·
√(∫ st

0 σ2
1
R

(p)dp+
∫ st
0

∫ st
0 Cov 1

R
(p1, p2)dp2dp1

)
(3.21)

where m′
R
−1( ) is the inverse function of m′

R( ).

3.2.2 Optimal Dose

From this point on, the dose D is considered explicitly, which affects the developing rate. Let

m 1
R
(x,D) denote the mean of 1

R
at x when the dose is D. Dt and Dopt are the doses required to

reach xt and xopt in T , respectively. Dt is assumed to be known, e.g., derived by the simulation

or experiment. Note that Dopt > Dt since xopt > xt.

In order to relate the optimal dose to the optimal edge location, the developing time, ∆T ,

taken by the development path to go from xt to xopt when D = Dopt is computed. Since T

is the same for both Dt and Dopt, ∆T is approximately equal to the change (decrease) in the

developing time, required to reach xt when the dose is changed (increased) from Dt to Dopt.

∆T =
∫ xopt

xt

m 1
R
(x,Dopt)dx ≈ st ·

(
m̄ 1

R
(Dopt)− m̄ 1

R
(Dt)

)
(3.22)

where m̄ 1
R
(D) is defined as 1

st

∫ st
0 m 1

R
(p,D)dp (see Eq. 3.2), i.e., the average time required to

develop a unit length.
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The relationship between the dose and developing rate is non-linear and, therefore, m̄ 1
R
(D)

is a non-linear function of D. However, a first-order approximation may be employed to eval-

uate Eq. 3.22. That is,

st ·
(
m̄ 1

R
(Dopt)− m̄ 1

R
(Dt)

)
≈ st · m̄′

1
R
(Dt) · (Dopt −Dt) (3.23)

where m̄′
1
R

( ) is the first-order derivative of m̄ 1
R
( ) with respect to D.

As an approximation, ∆T may be computed with D = Dt instead of D = Dopt in Eq.

3.22, i.e.,
∫ xopt
xt

m 1
R
(x,Dopt)dx ≈

∫ xopt
xt

m 1
R
(x,Dt)dx. Then,

∫ xopt

xt

m 1
R
(x,Dt)dx = st · m̄′

1
R
(Dt) · (Dopt −Dt). (3.24)

From Eq. 3.24, the optimal dose is derived as

Dopt =

∫ xopt
xt

m 1
R
(x,Dt)dx

xt · m̄′
1
R

(Dt)
+Dt (3.25)

=

∫ (m′
R)−1

(
2

3(ρT (st)+1)

(√∫ st

0
σ2

1
R

(s′)ds′+
∫ st

0

∫ st

0
Cov 1

R
(p1,p2)dp2dp1

)−1
)

xt

m 1
R
(x,Dt)dx

xt · m̄′
1
R

(Dt)
+Dt.

Note that Dopt can be computed given the distribution of developing rate in the resist.

3.3 Results and Discussion

In order to verify the accuracy of the proposed analytic method, the estimation and minimiza-

tion results are compared with those obtained through the simulation. A typical substrate sys-

tem is employed where a resist layer of PMMA with a certain thickness is on the top of the

Si substrate. A single feature of size 90 nm × 400 nm (W × L) is exposed with a uniform

dose. The LER computed from the analytic expression is compared with that obtained by the

simulation for varying edge location (x) where x = 0 corresponds to the target edge location

on the right edge, i.e., x < 0 and x > 0 correspond to the inside and outside of a feature. The
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edge location is controlled by changing the developing time with the same exposure (develop-

ing rate) distribution. In the simulation, the development process continues until the boundary

of developed feature reaches each edge location.
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Figure 3.6: The LER estimated by the analytic method and simulation: (a) 300 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2, (b) 300 nm PMMA on Si, beam energy of
30 keV, dose of 640 µC/cm2, (c) 100 nm PMMA on Si, beam energy of 50 keV, dose of 600
µC/cm2, and (d)300 nm PMMA on Si, beam energy of 50 keV, dose of 640 µC/cm2.

While the analytic method can be applied to any layer of resist, the results for the bottom

layer are provided since the LER is usually largest at the bottom layer. In Fig. 3.6(a), the results

for the resist thickness of 300 nm, beam energy of 50 keV, and dose level of 640 µC/cm2 are

provided. It can be seen that the LER estimated by the analytic method is well matched with the

LER by the simulation. In Fig. 3.6(b), the results for a lower beam energy of 30 keV with the

same dose are shown. Since the exposure is higher for 30 keV than 50 keV, for the same edge

location, the developing time is shorter for 30 keV than for 50 keV. In Fig. 3.6(c), the results
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for a thinner resist (100 nm) are given, with a lower dose level of 600 µC/cm2. A similar

observation, i.e., a close match between the analytic and simulation results, can be made.

One observation to make is that the LER outside the feature (x > 0) in Fig. 3.6(c) increases

while it continues to decrease in Fig. 3.6(a) and Fig. 3.6(b). Given a stochastic exposure

distribution, the LER generally depends on two factors, the exposure fluctuation and contrast.

A higher exposure contrast makes the LER smaller. On the other hand, ignoring the effect of the

exposure contrast, the LER would be larger at a more positive edge location (i.e., further outside

or equivalently a longer development path) since the exposure fluctuation is accumulated over

a longer development path. These effects compete with each other. The LER may increase

or decrease outside a feature depending which effect becomes more dominant. That is, the

exposure contrast outside the feature in Fig. 3.6 (a) and (b) is relatively higher than that in Fig.

3.6(c).

For an edge location, the developing time is the same for both the analytic method and

simulation. In Fig. 3.6(d), the LER is plotted as a function of developing time for both the

analytic method and simulation (for the case of Fig. 3.6(a)). However, the shape of LER with

the developing time does not have a turning point even when it is developed to the outside. A

possible reason is that it normally takes a much longer time to develop further outside. That is,

the turning point has not been reached in Fig. 3.6(d).

The cost function is evaluated by both the analytic method and simulation and the optimal

dose, which minimizes the cost function, is computed by the analytic method, i.e., evaluating

Eq. 3.26. The analytic minimization of LER and CD error by controlling the dose is compared

with the minimization by the simulation with a fixed developing time. In Fig. 3.7(a), the results

for the resist thickness of 300 nm and beam energy of 50 keV are provided. The cost function

evaluated by the analytic method is well matched with that by the simulation, and the optimal

dose obtained by the analytic method is very close to the optimal dose by the simulation. In

Fig. 3.7(b) and Fig. 3.7(c), the results for a lower beam energy of 30 keV and the results for a

thinner resist (100 nm) are shown, respectively. It is noted in Fig. 3.7(c) that the cost function

shows a flat portion. When the exposure contrast over the feature edge is high (in general,

higher for an upper layer of resist, a thinner resist, a higher beam energy, etc.), the exposure
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outside (even right outside) a feature is very low. In such a case, the width of developed feature

increases very slowly as the dose (or developing time) increases, leading to the flat portion of

the cost function (see Fig. 3.7(c)). One may still use the optimum dose or the lowest dose in

the flat portion in practice since the cost function does not vary substantially in that region.

3.4 Summary

In this chapter, an analytic method of estimating and minimizing the LER is described. It has

been shown that the results obtained by this analytic method of estimating and minimizing

the LER are closely matched with the simulation results. Although this method focuses on

the stochastic variation of developing rate, the analytic method described in this chapter is still

applicable even when other factors contributing to the LER are taken into account, e.g., the ran-

domness in the development process may be converted into an extra fluctuation in developing

rate and reflected in the LER estimation.
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Figure 3.7: The minimization results (minimization of the cost function with respect to the
dose) by the analytic method and simulation: (a) 300 nm PMMA on Si, beam energy of 50
keV, developing time of 50 s, (b) 300 nm PMMA on Si, beam energy of 30 keV, developing
time of 20 s, and (c) 100 nm PMMA on Si, beam energy of 50 keV, developing time of 10
s. The optimal dose computed by the analytic method is indicated by the vertical line in the
graphs.
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Chapter 4

A Large-scale Uniform Pattern with a Uniform Dose

In Chapter 3, an analytic method of estimating and minimizing the LER at any layer of resist

is described for the case where a long single line is exposed with a uniform dose, denoted by

D0. In this chapter, an extension of the analytic method to a large-scale uniform pattern is

described. In general, it is not straightforward to apply the single-line result of LER expression

to a large circuit pattern since the exposure level varies with the location within the pattern (see

Fig. 4.1).

…. ……
X

Y

Figure 4.1: The exposure at the edge (red curve) and center (blue curve) of a line-space pattern
generated by the Monte Carlo simulation: 300 nm PMMA on Si, dose of 640 µC/cm2, beam
energy of 50 keV, and pattern size of 50 µm × 50 µm where both the line-width and space are
50 nm.

However, for a large uniform pattern such as a line-space (L/S) pattern where the same

feature is replicated uniformly, the exposure level varies gradually in space. Therefore, given

34



the LER expression for a single line (Eq. 3.15), it is possible to derive the LER at a location in

a large uniform pattern analytically by adjusting this expression depending on the location in

the pattern. To simplify the derivation procedure and the final expression of LER, the analytic

expression of LER is derived at three critical locations, i.e., the center, edge and corner (see Fig.

4.2), by modeling the differences of the stochastic exposure distribution among the locations

and incorporating them into the single-line result. The LER at other locations may be obtained

through an interpolation using the LER’s at the critical locations.

…. ……

Corner Center

Edge

W

W

Y

X

(x,y)

r

Figure 4.2: A large-scale uniform pattern with line features where three critical regions (corner,
edge and center) are shown. The size of the pattern is W ×W .

The rest of this chapter is organized as follows. The analytic method of estimating the

LER in a large uniform pattern is described in Sec. 4.1. The analytic method of minimizing

the LER in a large uniform pattern is described in Sec. 4.2. The results of estimating and

minimizing the LER in a large-scale uniform pattern are provided and discussed in Sec. 4.3,

followed by a summary in Sec. 4.4.

4.1 Estimation of LER

The exposure level in a large pattern significantly varies with the location (see Fig. 4.1) and,

therefore, the LER is also location-dependent. Given a location in such a pattern, it is possible
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to use the analytic expression of LER (Eq. 3.15) derived for a single line, i.e., compute the mean

and variance of exposure along the development path reaching the location through a feature-

by-feature convolution (Eq. 2.2 and Eq. 2.3), derive the mean and variance of the developing

rate from the exposure and conversion formula (Eq. 2.4), and apply the analytic method for a

single line, i.e., derive the LER from the distribution of developing rate. However, this approach

requires the repetitive efforts of computing the exposure distribution at each location.

In this study, the LER expression for a single line is adjusted by considering the location

dependency of exposure. In a large pattern, the exposure at a location may be decomposed into

the “local” and “global” exposures [10] where the former refers to the exposure contribution

from the forward-scattering of electrons and the latter to that from the back-scattering. The

exposure distribution in the case of a single line is mainly of local exposure. Therefore, the

difference in the exposure distribution between a single line and a large pattern comes from the

global exposure which varies significantly with the location, as shown in Fig. 4.3. The adjust-

ment of the analytic expression of LER for a single line is done according to the distribution of

global exposure.

Figure 4.3: The global exposure distribution in a large-scale uniform pattern: 300 nm PMMA
on Si, dose of 640 µC/cm2, beam energy of 50 keV, and pattern size of 50 µm × 50 µm.
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4.1.1 Modeling of Global Exposure

To model the global exposure, a PSF may be decomposed into two components [23], the local

component, which has a relatively large magnitude and is sharp, describes the energy deposited

by the forward-scattering of electrons, and the global component, which has a relatively low

magnitude and is flat, describes that by the back-scattering (see Fig. 2.2). One common way to

model PSF’s is to employ a double-Gaussian function, which was proposed by Chang in 1975

[31], where one Gaussian function models the local component and the other models the global

component. Therefore, the PSF at a layer (z) in the resist can be expressed as

psf(r, z) = psfF (r, z) + psfB(r, z)

= aF (z) exp

(
− r2

bF (z)

)
+ aB(z) exp

(
− r2

bB(z)

)
(4.1)

where r =
√
x2 + y2, psfF (r, z) is to model the local component with parameters of aF (z) and

bF (z), and psfB(r, z) the global component with parameters of aB(z) and bB(z).

As in Eq. 2.1, the global exposure can be calculated by the convolution of the global

component of a PSF, i.e., psfB, and the dose distribution as

eG(x, y, z) =
∫ W

2

−W
2

∫ W
2

−W
2

D(x, y) · psfB(x− x′, y − y′, z)dx′dy′ (4.2)

where D(x, y) depicts the dose distribution in a L/S pattern shown in Fig. 4.2, i.e., D(x, y) =

D0 when the point (x, y) is inside a line, and D(x, y) = 0 otherwise.

In the case of a large uniform pattern in Fig. 4.2, since the psfB spatially varies slow

(see Fig. 2.2), the global exposure may be computed without performing the feature-by-feature

convolution. Instead, the entire pattern may be considered to be a single feature with the size of

W ×W where the effective dose is the actual dose scaled by the feature density d (e.g., d = 0.5

when the line-width and space are equal in a L/S pattern as shown in Fig. 4.2). From Eq. 4.1

and Eq. 4.2, the global exposure eG can be computed by

eG(x, y, z) =
∫ W

2

−W
2

∫ W
2

−W
2

D0d · psfB(x− x′, y − y′, z)dx′dy′
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=
∫ W

2

−W
2

∫ W
2

−W
2

D0d · aB(z) exp
(
−(x− x′)2 + (y − y′)2

bB(z)

)
dx′dy′. (4.3)

Note that the integral of Eq. 4.3 does not lead to an explicit expression. Since the psfB

changes slowly over the space, the mean and variance of psfB are approximated as follows (see

Fig. 4.4):

mpsfB
(r) =

{
MB when r ≤ r0

0 when r > r0

,

σ2
psfB

(r) =

{
VB

2 when r ≤ r0

0 when r > r0

(4.4)

where MB and VB
2 are the average mean and variance of the global component of PSF within

the PSF domain, respectively, and r0 is the radius of the PSF domain. An example of this

approximation is shown in Fig. 4.4 where r0 is 20 µm.

Then, computing the global exposure at a point is equivalent to finding the overlapped area

between the pattern and the domain of a PSF, which is a circle with the radius of r0 centered at

(x, y). Therefore, from Eq. 4.3 and Eq. 4.4, the mean of global exposure meG can be derived

as

meG(x, y) =


MBπr

2
0d when r < W

2
− r0 1

2
sin θ1 ·

(
W
2
− |x|

)
r0 +

1
2
sin θ2 ·

(
W
2
− |y|

)
r0+(

W
2
− |x|

) (
W
2
− |y|

)
+ 1

2

(
3π
2
− θ1 − θ2

)
MBd when r ≥ W

2
− r0

.(4.5)

Similarly, the fluctuation of global exposure σ2
eG

, which affects the LER, can be derived as

σ2
eG
(x, y) =


VB

2πr20d when r < W
2
− r0 1

2
sin θ1 ·

(
W
2
− |x|

)
r0 +

1
2
sin θ2 ·

(
W
2
− |y|

)
r0+(

W
2
− |x|

) (
W
2
− |y|

)
+ 1

2

(
3π
2
− θ1 − θ2

)
VB

2d when r ≥ W
2
− r0

(4.6)
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Figure 4.4: The approximated (a) mean, MB, and (b) standard deviation, VB, of the global
component of a PSF obtained from the Monte Carlo simulation: 300 nm PMMA on Si, dose of
640 µC/cm2, and beam energy of 50 keV. MB and VB are indicated by the dashed lines.

where

θ1 = cos−1

(
W
2
− |x|
r0

)
,

θ2 = cos−1

(
W
2
− |y|
r0

)
. (4.7)

The mean and variance of global exposure generated by the Monte Carlo simulation are

compared with those by the approximate models (Eq. 4.5 and Eq. 4.6) in Fig. 4.5 where

the pattern size (W = 50 µm) is larger than the PSF domain (r0 = 20 µm). As shown in

the figure, the mean and variance of global exposure derived by the approximate models are

closely matched with those from the simulation at the critical locations where (X = Y = 0),
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(X = 25, Y = 0), and (X = Y = 25) correspond to the center, edge, and corner regions in

Fig. 4.2.

 

Along X axis: 

  
Along X=Y diagonal: 

  
 

Figure 4.5: The analytic estimates of the mean and variance of global exposure are compared
with the corresponding simulation results: 300 nm PMMA on Si, dose of 640 µC/cm2 and
beam energy of 50 keV.

4.1.2 Relationship Between Global Exposure and LER

The LER at a location may be modeled by two parts: the contribution from the local exposure,

which is independent of the location, and the contribution from the global exposure. The expo-

sure distribution in the case of a single line is mainly of the local exposure and, therefore, the

LER derived for a single line (Eq. 3.15) may approximate the LER contribution from the local

exposure in a large pattern.

Given a location at which the LER is to be estimated, the location is referred to by (x, y)

for computing the global exposure as in Section 4.1.1 (see Fig. 4.2) and by xl for expressing the

edge location in the local coordinate (see Fig. 4.6), to be distinguished from the global variable

x. The xl represents the relative location of edge with respect to the (right) target edge location
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of a feature. That is, xl = 0, xl < 0 and xl > 0 correspond to the cases where the actual edge

is on the target location, inside the feature, and outside the feature, respectively. In the case of

a single line, xl is the same as x in Eq. 3.15. It should be mentioned that xl is only an auxiliary

variable, not independent of x.

F
eatu

re

Y

0

Edges after 

development
X

Target edges

Figure 4.6: xl is defined with respect to the target edge of a feature. After the development
process, the boundary (edge) of remaining resist profile can be inside (xl < 0) or outside
(xl > 0) the feature. For example, the two dashed curves represent the two possible boundaries
for two different developing times, T1 and T2 where T1 < T2.

Let ∆σ(xl|T, (x, y)) denote any change of the LER due to the global exposure, compared

to the LER for a single line. The fluctuation in the global exposure is relatively small compared

to that in the (total) exposure and does not vary substantially within a small region. Also, the

LER tends to increase as the exposure fluctuation increases. Therefore, ∆σ(xl|T, (x, y)) may

be approximated to be linearly proportional to the added exposure fluctuation σeG(x, y).

∆σ(xl|T, (x, y)) = A · σeG(x, y) (4.8)

where A is is a positive proportional constant (change rate).
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The proportional constant A may be found using the LER for a single line, denoted by

σsingle(xl|T ), where σeG = 0 and the LER at the center in a large pattern, σcenter(xl|T ), where

σeG(0, 0) = VBr0
√
πd (see Eq. 4.6). The LER at the center can be derived by the analytic

method for a single line, but with the distribution of developing rate at the center region. Then,

A is expressed as

A =
σcenter(xl|T )− σsingle(xl|T )

VBr0
√
πd

. (4.9)

And the LER at (x, y) can be derived as

σ(xl|T, (x, y)) = ∆σ(xl|T, (x, y)) + σsingle(xl|T )

=
(σcenter(xl|T )− σsingle(xl|T ))σeG(x, y)

VBr0
√
πd

+ σsingle(xl|T ). (4.10)

The exposure contrast over a feature edge also affects the LER. A larger exposure contrast

tends to lead to a smaller LER [30], since the room for variation among neighboring edge lo-

cations becomes smaller when the exposure decreases faster (over the edge). Therefore, this

inverse relationship between the LER and exposure contrast is approximated to be linear. Then,

the LER expression may be further adjusted according to the location-dependent exposure con-

trast. The exposure contrast Contrast(x, y) is quantified as the exposure difference between

the center of a feature and the middle point between features. An example of the location

dependency of exposure contrast is provided in Fig. 4.7.

Finally, the LER is expressed as follows:

σ(xl|T, (x, y))

=

(
(σcenter(xl|T )− σsingle(xl|T ))σeG(x, y)

VBr0
√
πd

+ σsingle(xl|T )
)

Contrastsingle
Contrast(x, y)

(4.11)

where Contrastsingle is the exposure contrast in the case of a single line.

As can be seen from Eq. 4.11, the LER at a location (x, y) in a large pattern is determined

by the global-exposure fluctuation and exposure contrast.
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Figure 4.7: The location dependency of exposure contrast in a large pattern with 300 nm
PMMA on Si, beam energy of 50 keV, dose of 640 µC/cm2, and pattern size of 50 µm × 50 µm
where both the line-width and space are 100 nm. The exposure contrast for the corresponding
single-line pattern is also provided.

Given the LER expressions at the critical locations (Eq. 4.11), the LER at another location

is computed through an interpolation of the LER’s at the critical locations. Since the exposure

distribution does not linearly vary with the location, the global exposure distribution (Fig. 4.3)

is used as a reference for the interpolation. For example, if the value of global exposure at a

location is between those at the center and edge, the LER at that location is derived according to

the ratio of global exposure at those three locations, i.e., the ratio of LER at the three locations

is same as that of global exposure.

4.2 Minimization of LER

As the exposure level varies with the location in a large pattern (Fig. 4.3), after the resist

development process, the CD at a location can be significantly different from those at other

locations, and so is the LER. Therefore, to minimize the LER and CD error in a large unform

pattern, each location (x, y) requires a different dose level denoted by Dopt(x, y). A two-step

procedure is employed to derive the optimal dose distribution for a large uniform pattern.

4.2.1 Deconvolution Surface

Since given a developing time, the xl at a location can be significantly different from others,

a deconvolution surface is used to compensate the differences of exposure level among the
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locations in the first step (Fig. 4.3). The deconvolution surface is derived as [5]

Ds(x, y) = et ⊗−1 psf(x, y) (4.12)

where et is the target (average) exposure within the feature, i.e., the exposure needed to reach

the target location (xl = 0) after the resist development, which can be calculated from the Dt

for a single-line pattern (see Sec. 3.2) and psf(x, y, z) through Eq. 2.1.

An example of the deconvolution surface is shown in Fig. 4.8.

Figure 4.8: An example of the deconvolution surface generated by a PSF obtained from the
Monte Carlo simulation: 300 nm PMMA on Si, dose of 640 µC/cm2, and beam energy of 50
keV. And the pattern size is 50 µm × 50 µm.

According to Eq. 2.1, with the dose distribution of Ds(x, y), all the locations in a large

pattern have the same average exposure level of et inside the line. Since xl is mostly determined

by the exposure inside the line, especially when xl ≤ 0, the edge location xl at all locations

should be approximately the same, i.e., xl ≈ 0.

4.2.2 Optimal Dose

As explained in Sec. 3.2, since the LER and CD error may not be minimized simultaneously,

the same cost function is employed, i.e.,

C(xl) = |xl − 0|+ 3 · LER. (4.13)
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To avoid the the feature-by-feature optimization, the optimal doses for the critical locations

are derived first, and the optimal dose distribution Dopt(x, y) is obtained through an interpola-

tion using the optimal doses at the critical locations. For each critical location, since the LER is

expressed as a function of xl (Eq. 4.11), the same method described in Sec. 3.2 is used to derive

the optimal xl and, eventually, the optimal dose Dopt. Define ∆Dopt as Dopt − Ds, and given

the ∆Dopt’s at the critical locations, the ∆Dopt(x, y) for a large pattern can be approximated

through a 2-D interpolation as

∆Dopt(x, y) ≈ a0 + a1x+ a2y + a3xy (4.14)

where the coefficients are found by solving the following equation:



1 0 0 0

1 0 W
2

0

1 −W
2

0 0

1 −W
2

W
2

−W 2

4


·



a0

a1

a2

a3


=


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(
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2
, 0
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(
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2
, W

2

)


. (4.15)

With respect to Fig. 4.2, ∆Dopt(0, 0), ∆Dopt

(
−W

2
, W

2

)
, and ∆Dopt

(
0, W

2

)
and ∆Dopt

(
−W

2
, 0
)

are the ∆Dopt for the center, corner, and two edge regions, respectively. Therefore, the optimal

dose distribution Dopt(x, y) can be expressed as

Dopt(x, y) = Ds(x, y) +
(

1 x y xy

)
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. (4.16)
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4.3 Results and Discussion

In order to verify the accuracy of the proposed analytic method, its results are compared with

those obtained through the simulation. A typical substrate system is employed where a resist

layer of PMMA with a certain thickness is on the top of the Si substrate. A large L/S pattern

with a size of 50 µm × 50 µm (W ×W ) is exposed with a uniform dose.

While the analytic method can be applied to any layer of the resist, the results for the bot-

tom layer are provided since the LER is usually largest at the bottom layer. The LER estimated

by the analytic method is compared with that obtained through the simulation for varying edge

location xl where xl = 0 corresponds to the target edge location (see Fig. 4.6). The edge lo-

cation is controlled by changing the developing time with the same exposure (developing rate)

distribution (see Fig. 4.6).

In Fig. 4.9, the results for a L/S pattern with the line-width of 100 nm are provided at

the three critical locations, the corner, edge and center. The beam energy is 50 keV, the resist

thickness is 300 nm, and the dose level is 64 µC/cm2. Note that the developing time is different

for the same edge location in a different region since the exposure distribution varies with

location. It can be seen that the LER’s estimated by the analytic method are well matched with

those by the simulation. In Fig. 4.10, the results for a L/S pattern with a narrower line-width

of 50 nm and a thicker resist (500 nm) are provided where the beam energy is 50 keV, and the

dose level is 64 µC/cm2.

One observation to be made is that the behavior of LER varying with the edge location

varied (i.e., the shape of LER curve) does not change substantially with the location within a

pattern. This is due to the fact that the spatial distribution of exposure cross a line feature has

a similar shape that is independent of the location though the exposure level varies with the

location. Note that the shape of exposure distribution mainly depends on the local exposure.

The exposure fluctuation at the center is larger than that at the edge or corner. Therefore,

at the same edge location xl, the LER at the center is also larger than that at the edge or corner,

as a larger exposure fluctuation leads to a larger LER in these cases. Comparing Fig. 4.9 with

Fig. 4.10, the LER’s in Fig. 4.10 are significantly larger than those in Fig. 4.9. It is because the
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exposure for 500 nm resist usually has a smaller contrast than the exposure for 300 nm resist

with the same beam energy of 50 keV, and the LER is inversely proportional to the contrast.

Also, since the development process is cumulative from the top surface of resist to the bottom

layer (see Fig. 2.5), the fluctuation σ(T |s) for the resist thickness of 500 nm can be larger than

that for the resist thickness of 300 nm, which also leads to a larger LER.

The LER’s at other locations than the three critical locations are computed through an

interpolation of the LER’s analytically estimated at the critical locations. In Fig. 4.12, the

LER’s obtained through the interpolation are compared with the simulation results at three test

locations shown in Fig. 4.11. The results in the figure verify that the LER’s estimated at the

three critical locations are sufficient to accurately compute the LER at any other location in a

large uniform pattern through the interpolation.

The results of analytic minimization of the LER and CD error for a large uniform pattern

are compared with those obtained from the simulation where the developing time is fixed. As

can be seen in Fig. 4.13 where the beam energy is 50 keV, the resist thickness is 300 nm, for the

critical locations, the optimal doses derived by the analytic method of a single line are closely

matched with those by the simulation. And the optimal dose distribution of a large pattern

derived by the interpolation also minimizes the LER and CD error at the test locations.

4.4 Summary

In this chapter, an analytic method of estimating the LER in a large-scale uniform pattern is de-

scribed based on the LER expression for a single line. The analytic expression of LER derived

for a single-line pattern is adjusted for the critical locations according to the stochastic infor-

mation on the global exposure at those locations. Then, the LER at another location is derived

through an interpolation of the LER’s at the critical locations. Due to the global exposure, the

CD varies significantly with the location in a large pattern. Therefore, a two-step minimization

procedure is employed to derive the optimal dose distribution for a large pattern, which can

minimize the CD error and LER at all locations. It has been shown that the results obtained by

the analytic method are closely matched with those from the simulation.
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Figure 4.9: The LER estimated by the analytic method and simulation at the (a) corner, (b)
edge, and (c) center: line-width of 100 nm, 300 nm PMMA on Si, beam energy of 50 keV, and
dose of 64 µC/cm2.
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Figure 4.10: The LER estimated by the analytic method and simulation at the (a) corner, (b)
edge, and (c) center: line-width of 50 nm, 500 nm PMMA on Si, beam energy of 50 keV, and
dose of 64 µC/cm2.
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c

Figure 4.11: Three test regions (a, b, and c) marked by circles in a large uniform pattern.
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Figure 4.12: The LER estimated by the analytic method and simulation at at the test locations
(in Fig. 10): line-width of 50 nm, 500 nm PMMA on Si, beam energy of 50 keV, and dose of
64 µC/cm2.
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Figure 4.13: The minimization results (minimization of the cost function with respect to the
dose) by the analytic method and simulation: 300 nm PMMA on Si, beam energy of 50 keV.

52



Chapter 5

Modeling Lithographic Process

In the previous chapters, the analytic method is verified using the results of the simulation

described in Chapter 2. It is not uncommon that the results derived by the simulation are sub-

stantially different from the actual experimental results, since the simulation may not capture

completely all the characteristics of e-beam lithographic process. Therefore, the experimental

results can be used to verify the analytic method. However, unlike the simulation, the stochastic

parameters, i.e., the mean and variance of exposure distribution in the resist, etc., required by

the analytic method cannot be directly measured from the experimental results.

Therefore, in this chapter, a method to extract the stochastic information from the experi-

mental results, i.e., SEM images, is described. In the first step, the line spread function (LSF)

and conversion formula are modeled by matching the CD’s measured from the SEM images,

i.e., through iterations, the LSF and conversion formula are adjusted such that the difference

between the modeled (through simulation) and measured (from SEM images) CD’s is mini-

mized. In the second step, the exposure fluctuation is modeled by matching the LER through

iterations. Since the proposed method utilizes the experimental results of SEM images, its re-

sults are likely to be realistic. Another important aspect of the proposed method is that the LSF,

conversion formula, and exposure fluctuation are modeled considering their interaction rather

than individually. Therefore, a minor inaccuracy in one of them may be compensated by the

others such that the modeled CD and LER can achieve a high accuracy compared with those

measured from SEM images.

The rest of the chapter is organized as follows. The preprocessing of SEM images and

the edge detection are described in Sec. 5.1. The modeling of e-beam lithographic process is
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described in Sec. 5.2. The results of modeling SEM images are discussed in Sec. 5.3, followed

by a summary in Sec. 5.4.

5.1 Analysis of SEM Images

In the experiment, a typical substrate system is employed where a resist layer with a certain

thickness is on top of the substrate. A pattern of multiple long lines with the fixed line-width and

space is exposed with different levels of a uniform dose, while all the other e-beam lithographic

parameters, i.e., beam energy, developing time, etc., are fixed. After the resist development

process, SEM images are taken in a top-down view of the remaining resist profile. An example

of SEM image is shown in Fig. 5.1, which is to be used in illustrating the steps of analyzing

SEM images. Using image processing techniques, the feature boundaries (edges) are detected

to measure the CD (line-width) and LER.

Figure 5.1: An example of SEM image taken in a top-down view of the remaining resist profile
for a large L/S pattern where the line-width and space are 120 nm. The pixel interval is 1.4 nm.
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5.1.1 Preprocessing

SEM images typically include a significant level of “salt and pepper” noise (see Fig. 5.1) and

their quality, e.g., brightness or contrast, may vary from image to image or spatially within an

image. Since the proposed method utilizes the information (the CD and LER) extracted from

SEM images, it is important to reduce the noise level and enhance the image quality.
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Figure 5.2: An illustration of preprocessing the SEM image in Fig. 5.1: (a) noise reduction, (b)
contrast enhancement, and (c) background removal.

A spatial-averaging filter such as a Gaussian filter reduces the noise level, but at the same

time tends to smooth out the image detail such as the roughness of feature boundary. Also, such

a filter is not very effective on the salt-and-pepper noise. On the other hand, the median filter is

effective in reducing the salt-and-pepper noise without destroying the image detail significantly.

Therefore, a median filter is employed in this study. The larger the size of median filter is, the
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more image detail can be lost. The smallest size of the median filter that removes most of the

noise is found to be 9 × 9 pixels (12.6 nm × 12.6 nm). The SEM image (Fig. 5.1) after the

noise reduction is shown in Fig. 5.2(a).

Since the boundary detection is based on the change of brightness, an SEM image with

a low contrast is prone to a detection error. The contrast of such an image is enhanced by the

histogram equalization for the better detection. The result of contrast enhancement is shown in

Fig. 5.2(b). The contrast enhancement is carried out after the noise reduction not to increase

the noise level.

5.1.2 Detection of Feature Boundaries

In SEM images, boundary (edge) regions are brighter than the background. To facilitate de-

tecting feature boundaries, the background is removed by using a threshold, which is set to be

the half of the average brightness in the edge regions assuming most of the background is set

to zero after the contrast enhancement, as shown in Fig. 5.2(c).

However, as the noise in SEM images is not completely removed, using the threshold,

i.e., half of the average brightness in the edge regions, may not be sufficient to remove all

the background, e.g., some small regions may have a brightness higher than the threshold and

survive the thresholding (see Fig. 5.3). Therefore, a window centered at each peak of brightness

is employed to define the edge region and any area outside the edge regions is set to be zero.
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Figure 5.3: Edge region defined by a window centered at the peak brightness.
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A 3 × 3 differential edge detector is employed (laterally) in edge regions, to obtain the

gradient of the preprocessed SEM images. The maximum positive and negative gradients are

searched to find the inner and outer edge locations (see Fig. 5.4(b)). The feature boundaries are

normally continuous in space. Isolated edges such as a single pixel of edge are most probably

due to the noise and thus are removed. In Fig. 5.4, the detected edges are overlaid with the

original image where a high-fidelity result can be observed.

(a)

Inner edges

Outer edges

Inner line width

Outer line width

(b)

Figure 5.4: (a) Detected edges are overlaid with the original SEM image and (b) a zoomed-in
region (the white box shown in (a)) where inner and outer edges are illustrated.

The outer and inner edges shown in Fig. 5.4(b) may correspond to the edges at the top

and bottom layers of resist, respectively, in the case of an overcut resist profile. To utilize as

much information extracted from SEM images as possible, both the inner and outer edges are

considered, i.e., the CD is evaluated as the average of the inner and outer line-widths, and the

LER is evaluated as the standard deviation of the inner and outer edge locations. The CD’s and

LER’s measured from the SEM images with 4 different normalized dose levels (from 0.705 to

1.082) are plotted in Fig. 5.5. The proposed method does not require the absolute dose levels

to be known, and the normalized dose is used only to distinguish different doses, i.e., relative

dose levels, and the normalized dose of 1.0 does not have any special meaning.
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Figure 5.5: (a) The average line-widths and (b) the LER’s measured from a set of SEM images
with different normalized dose levels.

The detected edge locations are indicated by the pixel index, i.e., (i, j), of SEM image,

e.g., for a 1024 by 1024 image, both i and j are from 1 to 1024. The physical edge loca-

tion (xi, yj) are derived by (i, j) multiplied by the pixel size, e.g., if the pixel size is 1.4 nm,

(xi, yi) = (1.4i, 1.4j). To measure the LER accurately, the tilt angel η of the lines in the SEM

images is estimated using the image moments [35]. The corrected edge locations are obtained

by rotating the detected edge locations by the angle η as

x′
i = xi cos η − yj sin η,

y′j = xi sin η + yj cos η (5.1)

where (x′
i, y

′
j) is the corrected edge location of (xi, yj).

5.2 Modeling of E-beam Lithographic Process

In this section, the procedures of modeling the e-beam lithographic process, i.e., estimating

the LSF, conversion formula, and exposure fluctuation based on the CD and LER measured

from SEM images, are described. In the proposed method, the LSF, conversion formula, and

exposure fluctuation are modeled by considering their interaction rather than individually. This

approach allows a modeling error in one to be compensated in the others as long as the modeled

CD and LER closely match with the measured ones. Also, the approach makes it unnecessary to
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know certain experimental details such as the absolute dose and developing time. For example,

through the modeling process, the LSF and conversion formula adapt themselves to an assumed

developing time.

5.2.1 Models

In the SEM images (see Fig. 5.1), only the line-space patterns are considered and, therefore,

the exposure distribution in the resist can be computed using the LSF, denoted by lsf(x, z),

which describes the exposure distribution at a layer (z) when an infinitely long line with the

single-pixel width is exposed. The 3-D spatial distribution of exposure e(x, y, z) in the resist

can be computed by the following convolution:

e(x, y, z) =
∫

D(x− x′, y)lsf(x′, z)dx′. (5.2)

The conversion formula may be modeled by a Gaussian function as in Eq. 2.4 where only

the left portion of the curve before its peak is used, i.e.,

R(x, y, z) = k1 · exp
(
−(e(x, y, z)− k2)

2

k3

)
+ k4. (5.3)

In Eq. 5.3, k1 + k4 is the maximum developing rate, k2 is the lowest exposure leading

to the maximum developing rate, k3 is the rate contrast with respect to the exposure, and k4

is the minimum developing rate for a non-zero exposure. Through the modeling process, the

parameters {ki} are determined.

In the modeling process, given a distribution of developing rate, R(x, y, z), the path-based

simulation method [22] is used to derive the remaining resist profile from which the CD and

LER are calculated and compared with the measured ones from SEM images.

5.2.2 Matching the Line-Width

Since the average line-width is most affected by the average developing-rate distribution which

can be calculated from the LSF and conversion formula, the LSF and conversion formula can
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be modeled first by matching the average line-widths. To reduce the computation required by

the modeling process, a two-step procedure is employed.

Without the Exposure Fluctuation

Adjust 
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by adjusting the LSF YesWhether the error 

is acceptable
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Adjust 
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Figure 5.6: The flowchart of the iterative procedure for determining the conversion formula
(and the LSF).

In the first step, without considering the effects of exposure fluctuation, an iterative pro-

cedure is employed, i.e., the LSF and conversion formula are adjusted through iterations such

that the total difference (error) between the modeled and measured average line-widths is min-

imized. The total difference is the sum of the differences for all SEM images. The iterative

procedure is described below and also in Fig. 5.6. Note that since the exposure fluctuation

is not included in this step, only the 2-D (the X-Z plane) development simulation is needed,

which makes practical the optimization of all the points of LSF along with the parameters in

the conversion formula.

Step 1: Adjust the parameter k1 in the conversion formula.

Step 2: Adjust the parameter k2 in the conversion formula.
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Step 3: Adjust the parameter k3 in the conversion formula.

Step 4: Adjust the parameter k4 in the conversion formula.

Step 5: Adjust the LSF.

Step 6: Check whether the total error is acceptable (minimized). If yes, stop the iteration. Oth-

erwise go to step 7.

Step 7: Check whether the total error can be reduced by further adjusting the LSF. If yes, go to

step 5. Otherwise, go to step 8.

Step 8: Check whether the total error can be reduced by further adjusting k4. If yes, go to step 4.

Otherwise, go to step 9.

Step 9: Check whether the total error can be reduced by further adjusting k3. If yes, go to step 3.

Otherwise, go to step 10.

Step 10: Check whether the total error can be reduced by further adjusting k2. If yes, go to step 2.

Otherwise, go to step 1.

Since both the LSF and conversion formula affect the line-width, after the adjustment

of one parameter (ki) in the conversion formula, each point in the LSF needs to be adjusted

to derive the current “optimal” LSF, i.e., given a set of parameters ({ki}) in the conversion

formula, there only exists one optimal LSF that minimizes the total error. The flowchart of

adjusting the LSF is shown in Fig. 5.7.

The overall procedure (see Fig. 5.6) terminates when the total error is acceptable (mini-

mized), which indicates that both the LSF and conversion formula are optimized. To make the

results realistic, in adjusting the conversion formula, the following constraints are imposed: the

ki’s are positive and the conversion formula is a monotonically increasing function. Also, the

following constraints are imposed on adjusting the LSF (see Fig. 5.7):

• The LSF is adjusted point-wise from the center to the outside iteratively until the local

optimal value is found for each point.
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Figure 5.7: The flowchart of the iterative procedure for adjusting each point of the LSF.

• All the previous points are set slightly lower than their optimal values so that the follow-

ing points have more room to be adjusted.

• Each adjustment is linearly proportional to the current total error, since usually a larger

error requires more adjustment.

• The current point of LSF is always set smaller than the previous points, since the LSF is

a monotonously decreasing function.
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Figure 5.8: (a) The LSF and (b) conversion formula estimated without the exposure fluctuation.

The results of the modeled LSF and conversion formula are shown in Fig. 5.8, and the

modeled line-widths at different doses and patterns are compared with their corresponding
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Figure 5.9: The line-widths modeled through the simulation without the exposure fluctuation
are compared with those measured from the SEM images : (a) L = S = 60 nm and (b) L = S =
120 nm.

measured ones from SEM images in Fig. 5.9. It can be seen that with the modeled LSF and

conversion formula, the line-widths from the simulation are well matched with those measured

from the SEM images.

With Exposure Fluctuation

Another factor that affects the line-width is the exposure fluctuation. For the same average

developing-rate distribution, the exposure fluctuation can accelerate the development process

and enlarge the line-width. This is due to the interaction between paths, i.e., the fast paths (paths

with positive fluctuations) help the slow paths (paths with negative fluctuations) to achieve a

larger average line-width, with the average developing-rate distribution unchanged. Therefore,

in the second step, the results from the first step are further adjusted in an iterative procedure

shown in Fig. 5.10 to compensate the effects of the exposure fluctuation.

In the second step, only the points in the LSF are adjusted assuming that the conversion

formula derived in the first step is accurate enough. As the LSF and conversion formula together

determine the line-width, a small error in the conversion formula may be compensated by

adjusting the LSF. Also, to evaluate the effects of the exposure fluctuation, i.e., the interaction

between development paths, the 3-D development simulation of the stochastic exposure needs

to be used, which is significantly slower than the 2-D development simulation used in the first

step. Therefore, adjusting each parameter in the conversion formula while optimizing the LSF
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Figure 5.10: The flowchart of the iterative procedure for adjusting the LSF to compensate the
effects of the exposure fluctuation on the line-width.

for the stochastic exposure is not practical. Without knowing the actual exposure fluctuation (in

the experiments), a simple uniformly-distributed exposure fluctuation is added. To approximate

the effects of the exposure fluctuation on the line-widths in the experiments, different levels of

the exposure fluctuation are tested, and the one that can generate the same or similar LER level

in the experiments is used in the optimization procedure (Fig. 5.10). The results are shown in

Fig. 5.11.
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Figure 5.11: (a) The line-width and (b) LER modeled through the simulation with the exposure
fluctuation are compared with those measured from the SEM images.

64



As can be seen from Fig. 5.11, after the adjustment of the LSF, the modeled line-widths

are well matched with the measured ones, i.e., the effects of the exposure fluctuation on the

line-widths are compensated. Note that the LER is not modeled in this step and, therefore, the

difference between the LER’s from the simulation and experiment can be significant, e.g., the

LER’s for the low doses in Fig. 5.11(b). Only the overall LER level is considered in this step

to evaluate and compensate the effects of the exposure fluctuation on the line-widths.

5.2.3 Matching the LER

The (stochastic) fluctuation of exposure is modeled by matching the LER values obtained from

the modeled exposure fluctuation to those measured in the SEM images. A Gaussian random-

ness is used to model the fluctuation of exposure, i.e., a zero-mean Gaussian noise, en(x, y, z),

is added to the (deterministic) exposure, ed(x, y, z), as follows:

es(x, y, z) = ed(x, y, z) + en(x, y, z),

en(x, y, z) = G(x, y, z) · σn(x, y, z) (5.4)

where G(x, y, z) is generated by a Gaussian random number generator with (µ, σ) of (0, 1),

es(x, y, z) represents the stochastic exposure, and σn(x, y, z) determines the level of exposure

fluctuation.

In general, a higher exposure level leads to a higher absolute fluctuation but a lower relative

fluctuation. This property is incorporated into the implementation of exposure fluctuation as in

Eq. 5.5.

σn(x, y, z) = σ0

 ed(x, y, z)

max
∀x,y,z

(ed(x, y, z))


α

(5.5)

where 0 < α < 1.

It can be seen in Eq. 5.5 that as the exposure level (ed(x, y, z)) increases, the absolute

fluctuation σn(x, y, z) becomes larger but the relative fluctuation, defined as σn(x,y,z)
ed(x,y,z)

, becomes

smaller. Since one of the main sources of the exposure fluctuation is the random process of
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electron-scattering, there may exist a strong correlation of the exposure fluctuations between

pixels. Let CrX and CrY denote the correlations along the X and Y dimensions. To simplify

the model, when CrX = CrY = 1, the es(x, y, z) is independent of the location (x, y, z). When

CrX = k, every k pixels along the X dimension share the same level of fluctuation, and the

same definition is applied to CrY = k but along the Y dimension.

In the optimization, four parameters, i.e., σ0, α, CrX and CrY , are determined by match-

ing the LER. Since the exposure fluctuation also affects the line-width, the first point of LSF

(LSF (0)) is adjusted to compensate the effects. Through a binary search, all of the five param-

eters, i.e., σ0, α, CrX , CrY , and LSF (0), are adjusted such that the total error of the line-width

(CD) and LER is minimized. The total error is defined as

TotalError =
∑

dose level

(|ErrorCD|+ 10 · |ErrorLER|) (5.6)

where the ErrorCD is the difference between the modeled and measure line-widths, and the

ErrorLER is the difference between the modeled and measure LER’s.

In most cases, the LER is much smaller than the CD. In order to achieve the percent LER

error comparable to the percent CD error, a weight of 10 is multiplied to the LER error.

5.3 Results and Discussion

Two sets of SEM images obtained under the same experimental set-up (except the dose) are

used in the modeling. One set includes 4 SEM images corresponding to the 4 normalized dose

levels of 0.845, 0.920, 1.000, and 1.082 where both the line-width and space are 60 nm. The

other set includes 4 SEM images corresponding to the 4 normalized dose levels of 0.705, 0.774,

0.845, and 1.082 where both the line-width and space are 120 nm. The beam energy is 50keV.

Other details of the experiment are unknown.

In order to minimize the statistical uncertainty of the results, all of the lines in each SEM

image, i.e., 12 lines in the pattern of 60 nm lines and 6 lines in the pattern of 120 nm lines,

are utilized in measuring the line-width and LER. The line-width and LER obtained by the

proposed modeling method are compared with those measured from the SEM images for the
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60 nm line pattern in Fig. 5.12. It can be seen that the modeled line-width and LER are closely

matched with the measured results. A similar close match can be observed for the pattern of

120 nm lines in Fig. 5.13.
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Figure 5.12: The line-width and LER modeled through simulation are compared with those
measured from the SEM images of a L/S pattern with L = S = 60 nm: (a) average line-width
and (b) LER.

5.4 Summary

Since the simulation may not be completely realistic, the experimental results may be used

to verify the analytic method. However, the stochastic information, i.e., the mean and vari-

ance of the developing rate, required by the analytic method, cannot be directly measured from

the experiments. In this chapter, a practical and accurate method of extracting the stochastic

information of e-beam lithographic process, i.e., the LSF, conversion formula, and exposure
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Figure 5.13: The line-width and LER modeled through the simulation are compared with those
measured from the SEM images of a L/S pattern with L = S = 120 nm: (a) average line-width
and (b) LER.

fluctuation, is described. One of the main advantages is that the method utilizes only the infor-

mation extracted from SEM images with the normalized dose levels without having to know

the complete set-up of e-beam lithographic process. Since the proposed method utilizes the

experimental results of SEM images, its results are likely to be realistic. Another important

aspect of the proposed method is that the LSF, conversion formula, and exposure fluctuation

are modeled by considering their interaction rather than individually. Therefore, a minor inac-

curacy in one of them may be compensated by the others such that the modeled CD and LER

can achieve a high accuracy compared with the those measured from experimental results.
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Chapter 6

Verification

In this chapter, the analytic method is further verified through a more thorough comparison.

In the first section (Sec. 6.1), the experimental results are used to verify the analytic method,

i.e., the stochastic information (the mean and variance of exposure distribution) extracted from

SEM images (see Chapter 5), is used by the analytic method to derive the CD and LER, which

are compared with those measured from the experimental results. In the second section (Sec.

6.2), all the factors that may affect the LER are controlled individually in generating PSF’s to be

employed in the simulation, and the corresponding results of the analytic method are compared

with those from the simulation.

6.1 Verification from Experimental Results

In the previous charter, a method of extracting the stochastic information from the experimental

results by modeling the e-beam lithographic process, i.e., modeling (estimating) the line spread

function (LSF), conversion formula, and exposure fluctuation, through analyzing SEM images,

is described. With the information extracted, the mean of exposure distribution me(x, y, z) in

the resist can be computed through the convolution of LSF and dose distribution as

me(x, y, z) =
∫

D(x− x′, y)lsf(x′, z)dx′. (6.1)

In addition to the mean of exposure distribution, the variance of exposure distribution is

also required by the analytic method. Since the exposure fluctuation is modeled by a zero-

mean Gaussian noise defined in Eq. 5.4 and Eq. 5.5, the variance of exposure distribution can
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be derived by the variance of the added Gaussian noise as

σ2
e(x, y, z) = σ2

n(x, y, z) = σ2
0

 me(x, y, z)

max
∀x,y,z

(me(x, y, z))


2α

(6.2)

where α and σ0 are the parameters derived by the modeling method.

Note that the deterministic exposure distribution ed(x, y, z) in Eq. 5.5 is equal to the mean

of exposure distribution me(x, y, z), when a zero-mean Gaussian noise is added.

Through the conversion formula (Eq. 5.3) derived in the modeling method, the mean and

variance of developing-rate distribution can be derived from those of exposure. By applying

the analytic method described in Chapter 3, the analytic results (CD and LER) are compared

with the ones measured from SEM images in Fig. 6.1.

(a) (b)

Figure 6.1: The line-width and LER derived by analytic method are compared with those mea-
sured from SEM images of L/S patterns: (a) average line-width and (b) LER.

As can be seen from Fig. 6.1, the results obtained by the analytic method are closely

matched with those measured from SEM images. However, since the sample size of the exper-

imental results is relatively small (4 points for the pattern of 120 nm lines and 4 points for the

pattern of 60 nm lines), the overall tendency (shape) of the LER derived by the analytic method

appears to be different from that of the experimental results. In addition, some difference may

be caused by the errors in the stochastic information, i.e., the mean and variance of exposure,

derived by the modeling method (in Chapter 5), which are included in the analytic results.
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6.2 Verification from Generated PSF’s

In this section, more PSF’s are generated from the Monte Carlo simulation to test the analytic

method. It is shown [15, 32] that the LER is mainly affected by the following parameters: the

fluctuation, contrast, and shape of exposure distribution. Therefore, each of these parameters is

controlled individually in generating different sets of PSF’s, and the corresponding results by

the analytic method are compared with those from the simulation.

6.2.1 The Fluctuation of Exposure

The LER is caused by a number of stochastically fluctuating effects such as shot noise, distri-

butions of chemical species in the resist such as photoacid generator (PAG), resist development

process, etc [15, 32]. All those effects can be described by or equivalently mapped to the fluc-

tuation of exposure. The exposure fluctuation can be quantified in two ways, i.e., the absolution

exposure fluctuation, which is defined as the standard deviation of exposure σe(x, y, z), and the

relative exposure fluctuation, which is defined as

σe(x, y, z) =
σe(x, y, z)

me(x, y, z)
. (6.3)

The Absolute Exposure Fluctuation

To fix the relative exposure fluctuation and change the absolute exposure fluctuation only,

σe(x, y, z) is set to a fixed proportion, e.g., from 5% to 20%, of the me(x, y, z), such that the

relative exposure fluctuation σe(x, y, z) is spatially invariant. In the first set of results, a typical

substrate system is employed with a resist layer of 300 nm PMMA on Si. A single-line feature

with a size of 100 nm × 400 nm (W × L) is exposed with a uniform dose. The corresponding

analytic and simulation results are compared in Fig. 6.2.

As expected, with a larger absolution exposure fluctuation, the LER is larger, especially

inside the feature, i.e., the edge location is less than 0. The results from the analytic are closely

matched with the simulation results. However, it is observed that the analytic method may

generate a larger error for the case of a larger absolute exposure fluctuation. This is due to the
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Figure 6.2: The LER estimated by the analytic method and simulation for 300 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different absolute exposure fluctuations
of (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

interaction between development paths. For example, when the absolute exposure fluctuation is

large, during the resist development process, the interaction is not only from the adjacent paths

but also from the paths of several pixels away (in the Y dimension), which is not considered

in the analytic method. It is also shown that in these cases, with different absolute exposure

fluctuations, the shape of LER (as a function of edge location) does not change significantly,

e.g., the overall shape is approximately scaled by a constant. Another set of PSF’s for a thinner

resist of 100 nm PMMA on Si is generated where the PSF is shaper. With the same absolute

exposure fluctuations added, i.e., from 5% to 20% of me(x, y, z), the analytic and simulation

results are compared in Fig. 6.3.

A similar tendency is observed that with a larger absolute fluctuation, the LER is larger.

For the simulation results in Fig. 6.3, some ripples can be observed where the LER level is low,

i.e., the edge location is outside a feature. The ripples are due to an artificial effect introduced
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Figure 6.3: The LER estimated by the analytic method and simulation for 100 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different absolute exposure fluctuations
of (a) 5%, (b) 10%, (c) 15%, and (d) 20%.

by the simulation, i.e., the developing-rate distribution is discrete rather than continuous. When

the LER level is low, most development paths are located in the same pixel and behave similarly.

Therefore, the variation of the development paths, i.e., LER, can increase within the pixel. This

effect is reduced when some development paths are moving into a different pixel. As a result,

the LER level oscillates with the pixel size of 1 nm in the simulation results. When the LER

level is high, i.e., the edge location is inside a feature, development paths are likely to be located

in the different pixels and, therefore, no ripple can be observed.

By comparing Fig. 6.2 with Fig. 6.3, it can be seen that the LER for 100 nm PMMA is

smaller than that for 300 nm PMMA. One of the reasons is that given the same beam energy

of 50 keV, the contrast of exposure for 100 nm PMMA is much larger than that for 300 nm

PMMA, and the LER is inversely proportional to the exposure contrast. Also, it is noticeable

73



that in the case of a larger absolute fluctuation, the shape of LER is also changed in addition to

its level.

The Relative Exposure Fluctuation

In the writing process of e-beam lithography, the energy deposited inside the feature, which is

mainly contributed from the forward-scattering of electrons, can be significantly different from

the energy deposited outside the feature, which is mainly from the back-scattering of electrons.

As a result, the absolute fluctuation of the exposure inside the feature is much higher than that

outside the feature, but the relative exposure fluctuation behaves in the other way. To model

such a behavior, the following equation is used to derive the exposure fluctuation:

σe(x, y, z) = σ0

 me(x, y, z)

max
∀x,y,z

(me(x, y, z))


α

,

σe(x, y, z) =
σe(x, y, z)

me(x, y, z)
= σ0

 1

max
∀x,y,z

(me(x, y, z))


α

1

me(x, y, z)
1−α . (6.4)

The relative fluctuation is modeled by α where 0 < α ≤ 1, i.e., a smaller α leads to

a larger relative fluctuation outside the feature. The absolute fluctuation is controlled by σ0,

which is set to 17% of max
∀x,y,z

(me(x, y, z)) to match the fluctuations of the stochastic exposure

generated by the Monte Carlo simulation with the resist thickness of 300 nm PMMA, beam

energy of 50 keV, and beam diameter of 3 nm. A single-line pattern with a size of 100 nm ×

400 nm (W × L) is exposed with a uniform dose of 640 µC/cm2. The corresponding analytic

and simulation results are compared in Fig. 6.4.

As can be seen from Fig. 6.4, the relative exposure fluctuation affects the shape of LER,

especially outside the feature. Since the development process is cumulative, with a larger

exposure fluctuation outside the feature, the LER may decrease less and even increase. Such

effects are more significant for a shaper PSF, e.g., the PSF for a thinner resist of 100 nm PMMA

with beam energy of 50 keV. The analytic and simulation results are compared in Fig. 6.5.

Comparing Fig. 6.5 and Fig. 6.4, with the same α (the same level of relative fluctuation),

the LER outside the feature is affected more significantly by the relative fluctuation when the
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Figure 6.4: The LER estimated by the analytic method and simulation for 300 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different values of α: (a) 1, (b) 0.8, (c)
0.6, and (d) 0.4.

PSF is shaper. For a shaper PSF, the exposure decreases faster over the edge and stays flat

outside the feature. Similarly, without considering the cumulative effect, the LER outside the

feature also stays flat. At the same time, when there is more exposure fluctuation outside (a

larger relative fluctuation), the LER tends to increase more as it is cumulative.

6.2.2 The Contrast of Exposure

Another factor, which affects the LER is the contrast of exposure. The contrast of exposure can

be defined as the difference of exposure levels between the inside and the outside of a feature.

Since this study focuses on the LER around the edge, i.e., edge location from −5 nm to 5 nm,

the contrast of exposure is quantified as the difference between the peak of the exposure (at the

middle point of the line feature) and the exposure at the edge, i.e., the edge location is 0 nm. To
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Figure 6.5: The LER estimated by the analytic method and simulation for 100 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different values of α: (a) 1, (b) 0.8, (c)
0.6, and (d) 0.4.

analyze the contrast of exposure without changing other parameters, the stochastic exposure is

generated by the following procedure:

1. Compute the mean and variance of exposure from the mean and variance of PSF.

2. Scale the mean of exposure by a certain factor to change the contrast.

3. Add the same level of exposure fluctuation according to the variance of exposure.

In this procedure, the absolute exposure fluctuation is maintained while the contrast is

changed. The relative exposure fluctuation is spatially invariant. For a typical substrate system

with a resist layer of 300 nm PMMA on Si, define the contrast of exposure, generated by

the Monte Carlo simulation when a single-line feature is exposed, to be 1. The cases of the

exposure contrast changing from 0.8 to 1.2 are tested, and the analytic and simulation results

are provided in Fig. 6.6.
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Figure 6.6: The LER estimated by the analytic method and simulation for 300 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different values of exposure contrast: (a)
0.8, (b) 1, and (c) 1.2.

As can be seen from the results, a larger contrast of exposure leads to a smaller LER, as the

LER is inversely proportional to the exposure contrast. Also, the cases of the exposure contrast

for a sharper PSF, i.e., the PSF for the resist thickness of 100 nm PMMA on Si with the bean

energy of 50 keV, are tested. The simulation and analytic results are compared in Fig. 6.7, and

a similar tendency can be observed.

6.2.3 The Shape of Exposure

The shape of exposure distribution over the feature edge, which is determined by the shape of

PSF, is one of the main factors that affect the LER. To test the analytic method thoroughly,

a factor k is used to control the shape of PSF, i.e., when k = 0, the exposure distributions

of all layers (z) share the same shape, and a larger difference among the layers is introduced

as k increases. More specifically, when k increases, the exposure distribution at the top layer
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Figure 6.7: The LER estimated by the analytic method and simulation for 100 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different values of exposure contrast: (a)
0.8, (b) 1, and (c) 1.2.

becomes sharper, and the exposure distribution at the bottom layer becomes broader. Given the

exposure distribution at the middle layer (emid(x, y)) fixed, the exposure distributions at other

layers, e.g., e(x, y, z) at a layer z, are calculated by the following equation:

e(x, y, z) =


 e0(x, y, z)

max
∀x,y

(ei(x, y))
·
max
∀x,y

(emid(x, y))

emid(x, y)
− 1

 k + 1

 emid(x, y)max
∀x,y

(ei(x, y))

max
∀x,y

(emid(x, y))
(6.5)

where e0(x, y, z) is generated by the Monte Carlo simulation.

For a typical substrate system of a resist layer of 300 nm PMMA on Si, different values of

k are tested, and the analytic and simulation results of LER at the bottom layer are compared

in Fig. 6.8.
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Figure 6.8: The LER estimated by the analytic method and simulation for 300 nm PMMA on
Si, beam energy of 50 keV, dose of 640 µC/cm2 with different shapes of exposure defined by
k: (a) 0, (b) 1, and (c) 2.

As can be seen from the results, the shape of LER, i.e., the LER varying with the edge

location, has a strong correlation with the shape of exposure. With a sharp exposure shape, i.e,

k = 0, the LER decreases rapidly as the edge location increases. And with a flatter shape of

exposure, i.e., k = 2, the LER decreases slower from the inside to the outside of a feature.
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Chapter 7

Concluding Remarks and Future Work

7.1 Conclusions

As the feature size decreases, the LER will eventually become a resolution-limiting factor in

the e-beam lithography since the LER does not scale with the feature size. Therefore, it is

essential to minimize the LER in order to achieve the highest resolution possible by the e-beam

lithographic process. An simulation based approach may be employed. However, since the

quantitative relationship between the LER and e-beam lithographic parameters is unknown, it

is not easy to minimize the LER by optimizing those parameters.

This dissertation describes the efforts of developing an analytic method of estimating and

minimizing the LER in e-beam lithography. First, a complete analytic model is briefly de-

scribed including the models of PSF, exposure, conversion formula from exposure to devel-

oping rate, and development path, which are used in the analytic method. The simulation

procedure whose results are used to verify the analytic method is also depicted. Then, an ana-

lytic method of estimating and minimizing the LER for a single-line pattern is developed based

on the mean and variance of developing-rate distribution in the resist. It has been shown that

the results obtained by the analytic method are closely matched with the simulation results.

Then, the analytic method is extended to a large-scale uniform pattern based on the LER

expression for a single line, by relating the location dependency of LER to the spatially-varying

global exposure. The analytic LER expressions at the critical locations are derived first, and

the LER’s at other locations are calculated through an interpolation of the LER’s at the critical

locations. It has been shown that the results obtained by the analytic method of estimating the

80



LER are closely matched with the simulation results. Then, the deconvolution surface is used

to derive the optimal dose distribution of a large pattern, which can minimize the LER and CD

error at all the locations in a large pattern.

Since the simulation may not be completely realistic, the experimental results (SEM im-

ages) can be used to verify the analytic method. However, since the stochastic information

required by the analytic method cannot be directly measured from SEM images, a practical and

accurate method of modeling the LSF, conversion formula, and exposure fluctuation directly

from SEM images has been developed. One of the advantages is that the developed method uti-

lizes only the information extracted from SEM images with the normalized dose levels without

having to know the complete set-up of e-beam lithographic process. The results (CD and LER)

obtained from the modeling method are shown to be closely matched with those measured from

SEM images.

To verify the results of the analytic method, a set of experimental results is first utilized,

i.e., by using the stochastic information extracted from SEM images, the LER estimated by the

analytic method are compared with those measured from SEM images. It has been shown that

the analytic estimates of LER are closely matched with the measured ones. Then, more PSF’s

are generated by the Monte Carlo simulation to control the factors that affect the LER. The

fluctuation, contrast, and shape of exposure are controlled individually, and the corresponding

analytic results are compared with the simulation results where a close match can be observed.

In conclusion, an analytic method of estimating and minimizing the LER for a single

line and a large-scale uniform pattern exposed with a uniform dose has been developed. This

method provides an alternative to the time-consuming and costly experiment and simulation in

a LER study. Though the method is not completely analytic and requires numerical compu-

tation in some steps, the good accuracy achieved indicates that it has a potential to be further

developed into a practical and useful tool in the area of e-beam lithography.

7.2 Future work

A possible future work is to make the method (described in this dissertation) more analytic and

the results more explicit in terms of parameters such as the dose and developing time. In some
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steps of the analytic method, a numerical computation or an iterative procedure is required. It

would be necessary to remove or minimize such computation and procedure in order to have a

more analytic method. Also, it might be possible to improve the accuracy and applicability of

the method such that the assumptions made in developing the method are not necessary.

Another possibility is to extend the analytic method for the cases where each feature is ex-

posed with a non-uniform dose. A straightforward approach would be to compute the exposure

distribution through the convolution given a spatial distribution of dose, convert the exposure

into the developing rate, and then follow the procedures developed for a single line. However,

the final expression of LER is likely to be too complicated to be practical and useful. An ap-

proach which can utilize the result of a single line for each region of a uniform dose within a

feature might lead to a useful method.

82



References

[1] R. Rau, J. McClellan, and T. Drabik, “Proximity effect correction for nanolithography,” J.

Vac. Sci. Technol. B 14, 2445 (1996).

[2] G. P. Watson, L. A. Fetter, and J. A. Liddle, “Dose modification proximity effect cor-

rection scheme with inherent forward scattering corrections,” J. Vac. Sci. Technol. B 15,

2309 (1997).

[3] G. P. Watson, S. D. Berger, and J. A. Liddle, “Characterizing GHOST proximity effect

correction effectiveness by determing the worst-case error,” J. Vac. Sci. Technol. B 16,

3256 (1998).

[4] R. Murali, D. Brown, K. Martin, and J. Meindl, “Proximity effect correction using blur

map in electron projection lithography,” J. Vac. Sci. Technol. B 24, 2936 (2006).

[5] Q. Dai, S.-Y. Lee, S.-H. Lee, B.-G. Kim, and H.-K. Cho, “Three-dimensional proximity

effect correction for large-scale uniform patterns,” J. Vac. Sci. Technol. B 29, 06F314

(2011).

[6] H. Eisenmann, T. Waas, H. Hartmann, “PROXECCO-Proximity effect correction by con-

volution,” J. Vac. Sci. Technol. B 11, 2741 (1993).

[7] S.-Y. Lee and B. D. Cook, “PYRAMID-a hierarchical, rule-based approach toward prox-

imity effect correction. I. Exposure estimation,” IEEE Trans. Semicond. Manuf. 11, 108

(1998).

83



[8] S.-Y. Lee and K. Anbumony, “Accurate control of remaining resist depth for nanoscale

three-dimensional structures in electron-beam grayscale lithography,” J. Vac. Sci. Tech-

nol. B 25, 2008 (2007).

[9] M. Osawa, K. Takahashi, M. Sato, and H. Arimoto, K. Ogino, H. Hoshino, and Y.

Machida, “Proximity effect correction using pattern shape modification and area density

map for electron-beam projection lithography,” J. Vac. Sci. Technol. B 19, 2483 (2001).

[10] Q. Dai, S.-Y. Lee, S.-H. Lee, B.-G. Kim, and H.-K. Cho,“New types of dose distribu-

tions for vertical sidewall minimizing total dose in 3-D electron-beam proximity effect

correction of nanoscale features,” J. Vac. Sci. Technol. B 30, 06F307 (2012).

[11] Q. Dai, S.-Y. Lee, S.-H. Lee, B.-G. Kim, and H.-K. Cho, “Estimation of resist profile for

line/space patterns using layer-based exposure modeling in electron-beam lithography,”

Microelectron. Eng. 88, 902 (2011).

[12] M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, K. Murase and T. Makino, “Critical

Dimension Measurement in Nanometer Scale by Using Scanning Probe Microscopy,” Jpn.

J. Appl. Phys. 35, 4166 (1996).

[13] J. Bolten, T. Wahlbrink, M. Schmidt, H. Gottlob, and H. Kurz, “Implementation of elec-

tron beam grey scale lithography and proximity effect correction for silicon nanowire

device fabrication,” Microelectron. Eng. 88, 1910 (2011).

[14] I. W. Cho, J.-M. Park, H. Kim, J.-Y. Hong, S.-S. Kim, H.-K. Cho, and H.-K. Oh, “Re-

duction of line width and edge roughness by resist reflow process for extreme ultra-violet

lithography,” Advances in Resist Materials and Processing Technology, 7273 (2009).

[15] X. Zhao, S.-Y. Lee, J. Choi, S.-H. Lee, I.-K. Shin, and C.-K. Jeon, “Minimization of line

edge roughness and critical dimension error in electron-beam lithography,” J. Vac. Sci.

Technol. B 32, 06F505 (2014).

84



[16] J. A. Croon, G. Storms, S. Winkelmeier, I. Pollentier, M. Ercken, S. Decoutere, W. Sansen,

and H. E. Maes, “Line edge roughness: characterization, modeling and impact on device

behavior,” in IEDM02 International Electron Devices Meeting, 307 (2002).

[17] C.H. Diaz, H. Tao, Y. Ku, A. Yen, K. Young, “An experimentally validated analytical

model for gate line-edge roughness (LER) effects on technology scaling,” Electron Device

Letters, IEEE , 22, 287 (2001).

[18] C. A. Mack, “Stochastic approach to modeling photoresist development,” J. Vac. Sci.

Technol. B 27, 1122 (2009).

[19] C. A. Mack, “Stochastic modeling of photoresist development in two and three dimen-

sions,” J. Micro/Nanolith. MEMS MOEMS 9(4), 041202 (2010).

[20] C. A. Mack, A Simple Model of Line-Edge Roughness,” Future Fab International, 34, 64

(2010).

[21] R. Guo, S.-Y. Lee, J. Choi, S.-H. Lee, I.-K. Shin, C.-U. Jeon, B.-G. Kim, and H.-K. Cho,

J. Vac. Sci. Technol. B 31, 06F408 (2013).

[22] Q. Dai, R. Guo, S.-Y. Lee, J. Choi, S.-H. Lee, I.-K. Shin, C.-U. Jeon, B.-G. Kim, and H.-K.

Cho, “A fast path-based method for 3-D resist development simulation,” Microelectron.

Eng. 127, 86 (2014).

[23] S.-Y. Lee, Q. Dai, S.-H. Lee, B.-G. Kim, and H.-K. Cho, “Enhancement of spatial reso-

lution in generating point spread functions by Monte Carlo simulation in electron-beam

lithography,” J. Vac. Sci. Technol. B 29, 06F902 (2011).

[24] K.-S. Chen, I-K. Lin, and F.-H. Ko, “Fabrication of 3D polymer microstructures using

electron beam lithography and nanoimprinting technologies,” J. Micromech. Microeng.

15, 1894 (2005).

[25] H.-M. Yeh, and K.-S. Chen, “Development of a Digital-Convolution-Based Process Em-

ulator for Three-Dimensional Microstructure Fabrication Using Electron-Beam Lithogra-

phy,” IEEE Trans. Industrial electronics. 56, 926 (2009).

85



[26] W. Guo, and H. H. Sawin, “Review of profile and roughening simulation in microelec-

tronics plasma etching,” Journal of Physics D: Applied Physics, 40, 194014 (2009).

[27] L. Lallement, A. Rhallabi, C. Cardinaud, and M. C. P. Fernandez, “Modelling of fluorine

based high density plasma for the etching of silica glasses,” J. Vac. Sci. Technol. A 29,

051304 (2011).

[28] M. Kotera, K. Yagura, and H. Niu, “Dependence of linewidth and its edge roughness on

electron beam exposure dose,” J. Vac. Sci. Technol. B 23, 2775 (2005).

[29] J.A. Sethian, “A fast marching level set method for monotonically advancing fronts,” Proc.

Natl. Acad. Sci. 96, 1591 (1996).

[30] X. Zhao, S.-Y. Lee, J. Choi, S.-H. Lee, I.-K. Shin, C.-U. Jeon, B.-G. Kim, and H.-K. Cho,

“Dependency analysis of line edge roughness in electron-beam lithography,” Microelec-

tron. Eng. 133, 78 (2015).

[31] T. H. P. Chang, Proximity effect in electron-beam lithography, J. Vac. Sci. Technol., 12,

1271 (1975).

[32] K. Suzuki, J. Shears, and B. Smith, “Microlithography: Science and Technology,” (Marcel

Dekker, New York, 1998).

[33] D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, CASINO V2.42 -

A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis

users, Scanning 29, 92 (2007).

[34] P. Tsiartas, L. Flanagin, C. Henderson, W. Hinsberg, I. Sanchez, R.Bonnecaze, and C. G.

Willson, “The Mechanism of Phenolic Polymer Dissolution: A New Perspective,” Macro-

molecules 30, 4656 (1997).

[35] M. K. Hu, ”Visual Pattern Recognition by Moment Invariants”, IRE Trans. Info. Theory

8, 179 (1962).

86


