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Abstract 

The focus of this dissertation is the investigation of approaches to address the 

computational challenges of solving multistage stochastic programs (MSSPs) with 
both endogenous and exogenous uncertainty.  My work to date has considered two 
MSSP case study problems. The first problem is the pharmaceutical R&D pipeline 

management problem where the objective is to determine the clinical trial schedule 
which maximized expected net present value considering uncertainty in the outcome 
of each clinical trial. The second is a new technology evaluation problem where the 

objective is to determine an optimal investment strategy for new technology 
development given uncertainty in the cost of capacity expansion, yield, technology 
success, and product demand. The computational complexity of MSSPs increases as 

the size of the problem (i.e. number of uncertain parameters) increases. To address 
this complexity, this dissertation introduces three different approaches. In the first 
approach, the goal was to find a feasible solution for computationally intractable 

MSSPs. To accomplish this, two heuristic algorithms that generate feasible solutions 
for the pharmaceutical clinical trial planning problem were developed. The first 
heuristic solves a series of two-stage stochastic programs with shrinking planning 

horizon. The second one uses a knapsack problem based approach to select clinical 
trial investments. The knapsack problem-based heuristic was generalized to 
Expected Value Decomposition Algorithm (EVDA) and used to solve instances of the 

NTIP problem. The EVDA algorithm provided tight feasible bounds on the solution 
of the deterministic MSSP for the NTIP problem. 

In the second approach, the computational complexity of the MSSPs is 
addressed using a branch and bound algorithm to find the true MSSP solution. The 

algorithm pairs the knapsack problem based decomposition heuristic with  either an 
upper bound generated and updated using progressive hedging or optimal scenario 
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solutions (OSS) to solve the clinical trial planning problem. The results reveal that 
both approaches reduce the computational resources required for solving large 

instances of the pharmaceutical clinical trial planning problem. The branch and 
bound algorithm with the OSS yielded a solution with a relative gap of 8% for a 7 
product clinical trial planning problem which had previously been too large to 

generate and solve. The solution time for both algorithms makes the developed 
branch-and-bound algorithm unattractive for small problems, however, it can be used 
for problems which are too large to be generated using currently available 

computational resources.  

The third approach to reduce the computational complexity of MSSPs is to 
reduce the number of constraints needed to ensure that the solution does not 
anticipate the outcome of the uncertain parameters. Often the MSSP is written where 

the scenarios included do not represent the full set of scenarios. As such, it can be 
difficult to solve the problem as the traditional approaches for constraint reduction 
do not necessarily apply. This dissertation introduces an algorithm for generating the 

minimum cardinality non-anticipativity constraint set for MSSPs where the scenario 
set is a subset of the full set of scenarios. The approach is generalizable for MSSPs 
with gradually or instantaneously realized, endogenous and exogenous uncertainty. 
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CHAPTER 1   
INTRODUCTION 

 

 

Multistage stochastic programming (MSSP) is a scenario-based solution 

approach used to solve optimization problems under uncertainty. In chemical 
engineering, these problems arise in production planning and scheduling where the 
future demand is unknown, location selection and transportation management with 

uncertain transportation costs and market demand, and chemical product and 
process design where process performance is not known. Some example problems 
previously explored include the pharmaceutical clinical trial planning problem 

(Colvin and Maravelias, 2008), the oil field infrastructure planning problem (Gupta 
and Grossmann, 2011), the process synthesis problem (Goel & Grossmann, 2006), the 
open pit mining problem (Boland et al., 2008), and the vehicle routing problem 

(Khaligh and Mirhassani, 2015). The ability to solve multistage stochastic 
programming formulations is limited computationally by problem size. The growth 
in problem size is impacted by the number of uncertain parameters and the number 

of realizations for each uncertain parameter. As a result, most MSSPs solved in 
literature are limited to a few uncertain parameters with a few realizations for each 
parameter. These problems generally have between 8 and 1000 scenarios. 

Often real-world size problems have many uncertain parameters with multiple 

realizations. The MSSPs of these problems quickly become computationally 
intractable. The goal of my work is to develop solution approaches which address the 
computational complexity of multistage stochastic programs. To address the 
computational complexity of MSSPs I have used two approaches. The first one 

investigates heuristic approaches which provide feasible solutions. The second 
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approach seeks to address the computational complexity through the development of 
improved bounding and constraint reduction procedures.  

 Objectives 

• Exploration of heuristic approaches to generate approximate solutions for 
MSSPs 

• Identification of approaches to address the computational complexity of 
solving large-scale MSSPs 

• Investigation of approaches for non-anticipativity constraint generation in 
in MSSPs with incomplete scenarios sets and gradually realized 
endogenous and exogenous uncertainty 

 Organization 

Chapter 2 introduces the theoretical background which includes a section 

describing different approaches used for solving optimization problems where there 
is uncertainty in parameter values (Section 2.1). Chapter 2 also describes the 
stochastic programming framework (Section 2.2) and covers the relevant literature 

describing the application and advancements in multistage stochastic programming 
(Section 2.3). In Chapter 3, two different motivating problems and their multistage 
stochastic programming formulations are introduced. Section 3.1 introduces the 

pharmaceutical clinical trial planning problem and Section 3.2 describes a new 
technology investment planning problem. The proposed heuristic algorithms are 
introduced in Chapters 4 and 5. Chapter 4 introduces a multiple two-stage 

decomposition algorithm (Section 4.1). The algorithm was applied to the 
pharmaceutical clinical trial planning problem, and the results are summarized and 
discussed in Section 4.2. In Chapter 5, a knapsack decomposition algorithm (KDA) is 

introduced (Section 5.1). Section 5.2 presents and discusses the results of solving 
pharmaceutical clinical trial planning problem using the knapsack decomposition 
algorithm. Variations to the heuristic rules of the KDA are introduced in Section 5.4. 

Descriptions of the case studies used to test the variations are presented in Section 
5.5. Impacts of these algorithm variations on the solution time and the objective 
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function value of these computational experiments are compiled in Section 5.6. The 
KDA is generalized to accommodate continuous decision variables and non-trivial 

recourse actions in Section 5.7. A branch and bound algorithm to solve large scale 
MSSPs is presented in Chapter 6, where Section 6.1 introduces the branch and bound 
algorithm, and Section 6.2 presents two approaches for generating dual bounds for 

the MSSP. The first approach employs a progressive hedging algorithm. The second 
uses Optimal Scenario Solutions (OSS). In Section 6.3, a variation of the KDA 
algorithm is presented. The variation provides a primal bound for MSSPs. Section 6.4 

presents a set of pharmaceutical clinical trial planning case studies. The results and 
discussion of the case studies is covered in Section 6.5. Conclusions on the branch and 
bound algorithm are summarized in Section 6.6. Chapter 7 presents an algorithm for 

generation of the minimum cardinality set of non-anticipativity constraints. The 
algorithm can be used to generate constraint sets for MSSPs with either gradually or 
instantaneously realized endogenous or exogenous uncertainty when the scenario set 

is a subset of the full set. Background for the algorithm is presented in Section 7.1. 
The algorithm itself is given in Section 7.2. Case studies with varying number of 
uncertain parameters and number of realizations for each uncertain parameter, and 
the results of applying the algorithm to generate NACs for these case studies are 

discussed in Section 7.3, followed by conclusion in Section 7.4. Overall conclusions 
and future directions are summarized in Chapter 8. 
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CHAPTER 2  
BACKGROUND 

 

 

 Solving Optimization Problems with Uncertainty 

Simulation optimization (SIMOPT), dynamic programming, robust 
optimization, and stochastic programming are used to solve optimization problems 
under uncertainty in literature. Dynamic programming, robust optimization, and 

stochastic programming can be classified as conventional optimization approaches 
where the uncertainty is explicitly incorporated in the problem formulation. On the 
other hand, SIMOPT is a non-conventional optimization approach which combines 

discrete event simulation and combinatorial optimization frameworks (Pekny, 2002). 
Algorithms utilizing a SIMOPT strategy often use a two-loop process where the inner 
loop generates and solves a set deterministic optimization problems where the 

parameters of each problem correspond to unique realizations of the uncertain 
parameters. The outer loop then gathers the information found in the inner loop and 
uses the information to perform risk analysis or update parameters in the inner loop 
(Blau et al., 2004).  

Dynamic programming is a mathematical programming technique used to 

handle multistage decision processes. In dynamic programming, uncertainty is 
considered an inherent part of the multistage decision process (Bellman, 1954). 
Uncertainty is handled by decomposing the problem into series of sub-problems 

(decision stages) over time. For each decision stage, there is a value associated with 
each state of the problem. The state of the problem, in this case, refers to the 
knowledge of the values of uncertain parameters at the current decision stage. Values 

at each decision stage are calculated recursively. The effectiveness of dynamic 
programming relies on the problem having an optimal substructure and overlapping 
sub-problems. An optimal substructure refers to a problem having a globally optimal 
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solution which can be constructed with locally optimal sub-problems. The problem is 
said to have overlapping sub-problems if the problem can be broken down into a sub-

problem where the structure of the sub-problem is identical for all sub-problems. 
Solving dynamic programming problems is computationally intensive because it 
suffers from the curse of dimensionality.   

Robust optimization is an approach for handling stochastic optimization 

problems. The approach uses a deterministic optimization framework coupled with a 
set-based approach to handle the parameter uncertainty. (Brown and Caramanis, 
2011) The first step in solving the robust problem is to formulate the robust 

counterpart problem. (Ben-Tal et al., 2009) The robust counterpart problem is formed 
by incorporating the uncertainty set directly into deterministic formulation.  Solving 
the robust counterpart problem results in the optimal solution which satisfies all 

realizations of uncertainty. Often considering the full set of uncertainty results in a 
worst-case solution. Recent work in robust optimization has looked at approaches to 
improve the quality of the solution by limiting or modifying the uncertainty set.  

Stochastic programming (SP) frameworks rely on the knowledge of the 
distribution or the ability to estimate the distribution of the uncertain parameters. 

(Birge & Louveaux, 2011) Unlike robust optimization, SP uses the knowledge of the 
distribution of the uncertain parameters to find a solution that is feasible for all 
considered realizations (scenarios). Uncertainty is explicitly accounted for by 

incorporating the realizations of uncertainty directly into the objective function. 
Uncertainty is accounted for using a statistical measure. Often a statistic such as 
expected value (EV) or conditional value at risk (CVAR) is used. Of the conventional 

approaches discussed, the stochastic programming approach is easiest to formulate. 
Stochastic programming is not limited to uncertainty in either the objective function 
or in the constraints. Incorporation of uncertainty through expected value allows for 

a mathematical measure of tradeoff between robustness and performance which is 
not the case in the robust optimization formulations. Sahinidis (2004) presents a 
thorough review of each of the conventional approaches discussed.   
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 The Stochastic Programming Framework  

The stochastic programming framework uses a scenario based approach. The 

major components in a multistage stochastic program are (1) the set of scenarios 
which represent the set of all possible outcomes of uncertainty, and (2) a set of stages 
where decisions can be made and recourse actions can be taken (Birge and Louveaux, 

2011). Scenarios in SPs are generated using the possible realizations of the uncertain 
parameters. When all uncertain parameters can be considered independent, the 
scenario set can be generated using the Cartesian product of the outcomes of each 
uncertain parameter (Apap and Grossmann, 2015). Suppose that the outcomes of an 

uncertain parameter, 𝜇𝜇𝑘𝑘, can be represented using a probability density function 𝑝𝑝𝑘𝑘. 

Generally, the parameter distributions are either assumed to be discrete or 
approximated with a discrete distribution,𝑓𝑓𝑘𝑘, with 𝑛𝑛 possible realizations (Ω𝑘𝑘 =

𝜔𝜔1,ω2, … ,ω𝑛𝑛).  Discretizing the probability density function also discretizes the 

scenario set. This yields a finite number of scenarios. The full set of scenarios for |𝑲𝑲| 

independent uncertain parameters is then constructed using the Cartesian product 
of the realizations of each uncertain parameter (Ω1× Ω2× …×Ω𝑘𝑘). In cases where the 

uncertain parameters are not independent, scenarios may or may not accurately be 

represented using the Cartesian product.  

Assuming each uncertain parameter is independent, the probability of a 
scenario occurring can be obtained as, 𝑃𝑃(Ω1 ∪ Ω2 ∪ …∪ Ω𝑘𝑘) = ∏ 𝑃𝑃(Ω𝑘𝑘 = 𝜔𝜔)𝑘𝑘∈𝑲𝑲   (Ross, 

2006a). If independence assumption is not valid, the probability of a scenario 
occurring is calculated using conditional probabilities. (Ross, 2006b) 

The second component of SPs is stages. Stages represent points where 
uncertainty is realized and new decisions can be made. In SPs, stages are typically 

tied to time periods, meaning that decisions will be made at one time period, and 
uncertainty realizations and new decisions will occur at a later time period. Two-
stage SPs have one decision stage, and one stage where uncertainty realizations 

occur. When realizations occur, scenario specific recourse actions can be taken. 
Multistage stochastic programs have multiple stages where decisions are made and 
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multiple stages where uncertainty is realized and recourse actions are taken (Birge 
and Louveaux, 2011). Figure 2.1 illustrates the relationship between the decision 

stages and the realization stages in MSSPs. 

t = 0 t = 1 t = 2

Decision Decision

Uncertainty Realization
+

Recourse Action

Uncertainty Realization
+

Recourse Action  

Figure 2.1 Relation of decision stages, uncertainty realization, and 
recourse action stages in MSSPs 

The uncertainty in SPs can be grouped into two broad categories, endogenous 
and exogenous. The realization of exogenous uncertain parameters is not affected by 

the problem decisions. (Jonsbraten et al., 1998) For instance, demand is usually 
considered an exogenous uncertain parameter. In contrast, values of endogenous 
uncertain parameters are impacted by decisions. The impact can either be in the 

resolution or in the distribution of the uncertain parameter. For example, when new 
product development is considered, the realization of a product completing a stage 
successfully is not revealed until that development stage is completed, and to 

complete that stage, the decision to start that development stage should be made. 
This type of uncertainty is called Type-2 endogenous uncertainty. The second type of 
endogenous uncertainty considers uncertainty in the distribution of the uncertain 
parameters. An example of this type of uncertainty would be facility protection 

problem where the likelihood of a facility failing to deliver goods or services after a 
disruptive event depends on the level of resources allocated as protection to that 
facility (Medal et al., 2016). 

At the beginning of the planning horizon and before any decisions are made, 

all scenarios are indistinguishable because no uncertainty has been realized. 
Therefore, the initial decisions must be identical for every scenario. As uncertainty is 
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revealed, either through decisions or naturally, the scenarios begin to be 
distinguishable. Once a scenario or set of scenarios is differentiable from the other 

scenarios, decisions for that scenario or set of scenarios may be made independently. 
This concept called non-anticipativity can either be enforced implicitly through 
variable definition or through the use of logical constraints, called non-anticipativity 

constraints (NACs). In SPs, NACs ensure that decisions for indistinguishable 
scenarios do not anticipate the realization of the uncertain parameter.  

The ability to solve stochastic programming formulations are limited 
computationally by problem size. The problem grows exponentially with a linear 

increase in number of uncertain parameters. The exponential growth is caused by the 
growth in the number of scenarios. When considering independent realizations of 
uncertain parameters, the scenario set is defined by the Cartesian product. For 𝑛𝑛 

uncertain parameters with 𝑘𝑘 realizations, the result of the Cartesian product is a set 

of 𝑘𝑘𝑛𝑛 ordered pairs (scenarios). The number of scenarios affects the size of variables 

and the number of constraints in a stochastic program. Increasing the number of 
scenarios requires the addition of new NAC to ensure that a feasible solution is 

produced. Adding NACs directly affects the solution time of the problem.  

Most literature to date has studied strictly exogenous uncertainty. In this 
work, we are specifically interested in solving problems with both endogenous and 
exogenous uncertainty. Literature considering both endogenous and exogenous 

uncertainty is extremely limited. As such, the literature review discusses works 
considering endogenous uncertainty and works with both endogenous and exogenous 
uncertainty.  

 Literature on Solving Multistage Stochastic Programs with 
Endogenous Uncertainty 

Jonsbraten et al. (1998) was one of the first to study optimization under 
endogenous uncertainty. The authors developed a branch-and-bound algorithm 
coupled with complete enumeration to generate scenario trees. Their approach was 

designed to tackle problems where only the first-stage decisions were impacted by the 
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endogenous uncertainty and the endogenous uncertain variables were represented 
by Bernoulli distributions. They solved several instances of sub-contracting problems 

which have endogenous uncertainty in the in-house production costs of the parts. 
Their results illustrated the impact of decision-dependent uncertainty on the optimal 
decisions. 

Goel and Grossmann (2004) considered an approximation approach, which 

searched a sub-space of the feasible region to find a “good” solution. They used this 
approach for solving an offshore oil infrastructure planning problem. The goal was to 
determine the optimal placement of production platforms in order to minimize the 

risk of obtaining a negative net present value. The sub-space is obtained by removing 
the scenario dependency of investment decisions for uncertain fields, yielding a more 
constrained version of the original problem. Then, this constrained version is solved 

to optimality. The results revealed that the solutions obtained to the constrained 
formulation were significant improvements compared to the deterministic solutions.  
Goel et al. (2006) presented a branch-and-bound algorithm that generates upper-

bounds using the solution of the Lagrangean dual problem with relaxed NACs. The 
lower bounds were generated heuristically based on the solution of the Lagrangean 
dual problem. The results suggested that the branch-and-bound algorithm achieved 
significantly better solutions and tighter optimality gaps than the heuristic presented 

in Goel and Grossmann (2004). 

Tarhan and Grosmann (2008) presented a MSSP for solving process synthesis 
problems with decision-dependent uncertainty. Uncertainty was assumed to be in the 
yields of process equipment and was revealed gradually as investments in process 

equipment occurred. The authors proposed a solution strategy that used a duality 
based branch-and-bound algorithm. The strategy was able to solve a 16 scenario 
example to within 3% optimality.  Tarhan et al. (2009) explored an offshore oil 

planning problem with endogenous uncertainty in the initial maximum oil flowrate. 
Extending the work of Goel and Grossmann (2004, 2006), Tarhan et al. (2009) 
considered a single oil field with non-linear reservoir model and a gradual realization 
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of uncertainty. Using a duality-based branch-and-bound, the authors located 
solutions that were up to 22% better than solutions obtained using an expected value 

approach. They, however, noted that the solution times for the MSSP were “rather 
long”.  

Mercier (2009) proposed a multi-step anticipatory algorithm, which uses a 
sample average approximation approach to generate a Markov Decision Process 

(MDP). The MDP is then solved, and the greedy solution is returned. The algorithm 
was tested using 12 instances of the pharmaceutical R&D pipeline management 
problem. Solution qualities for the algorithm were 10% better than the dynamic 

programming equivalent for all instances. The authors concluded that the algorithm 
was, nevertheless, computationally expensive when applied to the pharmaceutical 
R&D pipeline management problems. 

Colvin and Maravelias (2009) explored a rolling-horizon approximation 

approach, which yielded tight feasible solutions for large instances of the 
pharmaceutical clinical trial planning problem. The authors divided the planning 
horizon into a finite number of subsets. A relaxed MSSP is generated for the first 
subset by removing all inequality non-anticipativity constraints (NACs) for the stages 

beyond the first subset. The solution of the relaxed MSSP is implemented for the first 
subset, and related uncertainty is realized. Then, the process is repeated for each 
subset until the end of the planning horizon is reached. The authors were able to 

successfully solve cases with more than 1000 scenarios. Another approach, a branch-
and-cut algorithm (Colvin and Maravelias, 2010), initially adds a percentage of NACs 
and then iteratively adds constraints based on violations. The authors concluded that 

the algorithm reduces the number of NACs that should be included in the problem 
formulation significantly and that this method would be advantageous for any 
problem where the majority of constraints are NACs. 

Solak et al. (2010) proposed a sample average approximation (SAA) based 

algorithm to generate candidate solutions for the R&D project portfolio optimization 
problem. The presented approach generates M sample subsets of scenarios and M 
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number of MSSPs for each scenario subset. For each of the smaller MSSPs, the upper-
bound is obtained via solving its Lagrangean dual using a modified sub-gradient 

algorithm to update the Langrange multipliers. The lower bound is generated via a 
heuristic that searches for a feasible solution in the vicinity of the Lagrangean dual 
solutions obtained during each iteration of the sub-gradient algorithm. The authors 

suggest that a branch-and-bound algorithm may be used to close the duality gap if 
necessary. The solutions of the M MSSPs are called candidate solutions. The quality 
of the first-stage decisions of the candidate solutions are evaluated using a larger 

sample set of the scenarios. By repeating the process, the variance of the results is 
used to find a bound on the true solution. Computational studies included two 
technology portfolio examples where five and 10 projects were considered.  The 

results revealed that the algorithm was able to generate solutions with an estimated 
optimality gap of around two percent.  

Tarhan et al. (2013) presented an approach that improves upper bounds for 
solving non-convex MINLPs with decision-dependent uncertainty. The algorithm 

solves the Lagrangean relaxation of the dual problem where NACs have been 
removed to obtain the upper bound. The lower bound is generated by locating a 
feasible solution using a rolling-horizon approach. The authors solved two non-convex 

non-linear problems. The first problem is a version of the process synthesis problem 
presented in Goel and Grossmann (2006). The second is an offshore oil field planning 
problem originally presented in Tarhan et al. (2008). The authors concluded that 
using the outer approximation solution to upper bound the intermediate problems 

generated during the branch-and-bound algorithm rather than solving them to 
optimality reduced the solution time of both problems by 60%, and the solutions of 
the intermediate problems remained within 0.01% of their optimal solutions. 

More recently, Gupta and Grossmann (2014) proposed a Lagrangean 

decomposition scheme that utilizes a scenario grouping strategy, which allows partial 
decomposition of the full space model. Scenarios are grouped based on differences in 
one endogenous parameter. The strategy was applied to the oilfield planning problem 
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from Goel and Grossmann (2004) and the process network problem originally 
presented in Goel and Grossmann (2006). The authors concluded that their scenario 

grouping strategy yielded tight lower bounds on medium sized problems; however, 
further work is needed to test its effectiveness on larger problems. 

Apap and Grossmann (2015) developed a sequential scenario decomposition 
heuristic. The heuristic solves a series of endogenous sub-problems to determine 

binary investment decisions, fixes the binary investment decisions to satisfy the first-
period endogenous and exogenous non-anticipativity constraints, and solves the 
resulting model to obtain a feasible solution. The author used their heuristic in 

conjunction with Lagrangean relaxation strategy (lower bound) to solve the fullspace 
problem with endogenous and exogenous uncertainty. To test their algorithm, the 
authors considered process synthesis problem (Goel and Grossmann ,2006) and the 

offshore oil planning problem (Gupta and Grossmann, 2014). The authors concluded 
that the heuristic found a high-quality feasible solution several orders of magnitude 
quicker than solving the full space model.  

A preprocessing step for NAC reduction in the vehicle routing problem was 
presented in Khaligh and Mirhassani (2015). Non-anticipativity constraint reduction 

was achieved by removing constraints that would never be active due to the problem 
formulation. The authors tested their preprocessing step using several instances of 
the vehicle routing problem.  The results showed that the preprocessing step reduced 

the necessary computation time in each instance. The authors concluded that the 
develop NAC preprocessing step did not impact the quality of the lower-bound of the 
problem.
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CHAPTER 3  
MULTISTAGE STOCHASTIC PROGRAMS FOR TWO PLANNING PROBLEMS 

 

 

 The Pharmaceutical R&D Pipeline Management Problem 

Motivation for frameworks which guide decision-making for new-product-
portfolio management are being prompted by rising attrition (failure to succeed) rates 
for new drug products. (PwC, 2012) Rates of attrition in the Phase II-proof of concept 

and Phase III clinical trials for the top 100 companies have increased by 10% since 
1990. (PwC, 2012) The rise in these rates is attributed to poor management of 
candidate products. Often the decision of which products to invest in are determined 

by researchers, as a results candidate products which showed only marginal efficacy 
are frequently selected for investment. As such, it is important to develop a 
framework which balances the potential value of a candidate product with the risk of 

failure. Mathematical approaches provide a flexible non-biased way of representing 
new-product portfolios.  

The clinical trial planning portion of the pharmaceutical R&D pipeline 
management problem can be characterized by a set of new product development 
projects. Each candidate product is required to complete a series of ordered clinical 

trials before reaching the market. Investments in the development of candidate 
products is limited based on resource availability. Whether a product successfully 
completes each trial, the trial duration, and the total required resources of each trail 

are not necessarily known a priori. The goal of the problem is to determine the clinical 
trial schedule which results in the maximum expected return. Solutions to the 
mathematical program have been obtained for problems with as many as seven 

candidate products (Colvin & Maravelias, 2010), however, the solution approaches 
have failed to solve real-world sized problems which can have up to 500 candidate 
products. (PwC, 2012).  
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Each fixed duration clinical trial has a known monetary and resource(s) cost. 
Decisions as to when to start each trial are made along a discrete 𝑛𝑛-month planning 

horizon divided into evenly spaced time steps. The number of investment decisions 

are limited by resource availability. Once a new product successfully completes all 
clinical trials, revenue associated with achieving market availability is realized. It is 
assumed that the revenue for reaching market availability is known with certainty. 

Penalties are accessed for delay of active patent life and reduced market share. The 
objective of the problem is to determine the clinical trial schedule which maximizes 
the expected net present value (NPV) given that the outcome of each clinical trial is 

not known with certainty. The problem is constrained to ensure that (1) each clinical 
trial is only performed once, (2) to ensure that clinical trials are performed in the 
correct order, and (3) the utilized resources at any given time period do not exceed 

the available resources.  Uncertainty in clinical trial outcome can be visualized in Fig. 
3.1. 

 

Figure 3.1 Representation of uncertainty in the clinical trial planning 
problem 

 Uncertainty in the clinical trial planning problem is assumed to only exist in 

the outcome of each clinical trial. For simplicity, it is also assumed that each clinical 
trial is a Bernoulli trial with a known probability of success. For each product, there 
is a set of three uncertain parameters, ξd,j, which can be viewed as discrete random 

variables.  The uncertain parameters refer to the outcomes of each clinical trial. 
Outcomes for each clinical trial can either be pass (P) or fail (F). For each product, we 
can enumerate all possible outcomes. Because a clinical trial will not be carried out 

Phase 1Discovery MarketPhase 2 Phase 3

Fails to 
Complete 
Phase 1

Fails to 
Complete 
Phase 2

Fails to 
Complete 
Phase 3

Ωd = I/F Ωd = II/F Ωd = III/F

Ωd = III/P
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if the predecessor trial is a failure, we can reduce the number of outcomes to |J|+1. 
In the case of three clinical trials, J = {Phase I, Phase II, Phase III}, the possible 

outcomes of each product are given as Ωd = {I/F, II/F, III/F, III/P}. In set Ωd, the first 
term of each element represents the trial, and the second one represents the outcome. 
For example, the element I/F corresponds to the outcome of a product’s failure of the 

first trial. The probability of each outcome is calculated assuming that the trials are 
a set of independent Bernoulli trials. For instance, if a drug has a 30% chance of 
passing trial one, a 50% chance of passing trial two, and an 80% chance of passing 

trial three, P(Ωd=II/F) would be expressed as P(ξd,1=Pass)P(ξd,2=Fail) = 0.3 (1 - 0.5) = 
0.15.  Scenarios are created using combinations of possible outcomes for each product. 
This notation reduces the number of scenarios from 2|J||D| to |J+1||D|. Assuming 

the outcome of each product is independent, the probability for realizing each scenario 
is expressed as P(Ω1 ∩ Ω2 ∩… ΩD) = ∏P(Ωi). For a detailed discussion of outcomes 

and scenario generation, we refer the reader to Colvin and Maravelias (2008). Non-
anticipativity constraints are added to ensure that all decisions regarding clinical 
trials are identical until the differentiating trial is completed.  

The objective is to maximize the expected net present value (ENPV) of the 
decision tree. The net present value of each scenario is calculated by deducting the 

cost(s) of the decisions and the penalties from the total realizable revenue. The 
realizable revenue includes the depreciated revenue of the products that successfully 
completed all trials and the depreciated potential revenue of products whose trials 

were continuing or were not started within the planning horizon. The rigorous MSSP 
of the problem described in this section was originally developed by Colvin and 
Maravelias (2008), and is included in Appendix A. 

3.1.1 Clinical Trial Planning Case Studies 
In this section, we will define six clinical trial planning case study problems. 

The case study problems are used throughout this dissertation as benchmark 
problems for testing algorithms. Case studies have between two and six candidate 

products. The parameters for each case study are shown in Tables 3.1-3.6 
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Table 3.1 Parameters of the two-drug case study 

 
Duration 

(time periods) 

Probability of 

Success 
Cost($1M) 

Resource 1 

(max =2) 

Resource 2 

(max=3) revmax γL γD 

Drug PI PII PI PII PI PII PI PII PI PII 

D1 2 4 0.3 0.5 10 90 1 1 1 2 3100 19.2 44 

D2 2 3 0.4 0.6 10 80 1 2 1 1 3250 19.6 56 

** Clinical trial plan for a 15-month planning horizon divided into five equal time period 

 

 

 

 

 

Table 3.2 Parameters for a two-drug, three-trial case study 

Drug 

Duration 

(time periods) 

Probability  of 

Success 
Trial Cost ($M) 

Resource 1 

(max =2) 

Resource 1 

(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 

D1 2 4 4 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 

D2 2 3 5 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 

** Clinical trial plan for a 15-month planning horizon divided into five equal time periods 
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Table 3.3 Parameters for a three-drug case study 

Drug 

Duration 

(time periods) 

Probability  of 

Success 
Trial Cost ($M) 

Resource 1 

(max =2) 

Resource 1 

(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 

D1 2 4 4 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 

D2 2 3 5 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 

D3 2 3 4 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 

** Clinical trial plan for a 36-month planning horizon divided into 12 equal time periods 

 

 

 

Table 3.4 Parameters for a four-drug case study 

Drug 

Duration 

(time periods) 

Probability of 

Success Trial Cost ($M) 

Resource 1 

(max =4) 

Resource 2 

(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 

D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 

D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 

D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 

** Clinical trial plan for a 36-month planning horizon divided into six equal time periods 
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Table 3.5 Parameters for a five-drug case study 

Drug 

Duration 

(time periods) 

Probability of 

Success Trial Cost ($M) 

Resource 1 

(max =4) 

Resource 2 

(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 

D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 

D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 

D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 

D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24 

** Clinical trial plan for a 36-month planning horizon divided into six equal time periods 

 

 

Table 3.6 Parameters for a six-drug case study 

Drug 

Duration 

(time periods) 

Probability of 

Success Trial Cost ($M) 

Resource 1 

(max =4) 

Resource 2 

(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 

D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 

D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 

D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 

D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24 

D6 1 2 3 0.45 0.45 0.8 10 85 195 1 2 2 2 1 3 3050 19 25 

** Clinical trial plan for a 36-month planning horizon divided into six equal time periods 
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For each case study we were able to generate and solve the deterministic 
equivalent MSSP using the formulation presented in Colvin and Maravelias (2008). 

The objective function values, solution times, and optimality gaps for each problem 
are shown in Table 3.7. 

Table 3.7 Objective function values, optimality gaps, and solution times for 
the six clinical trial benchmark problems 

  

MSSP 
Objective 
Function 

Value 

Optimality 
Gap 

MSSP 
Solution Time 
(CPU Second) 

Two-Product Two-Trial $1104 M 0.1% 0.09 
Two-Product Three-Trial $800 M 0.1% 0.22 

Three-Product $1189 M 0.1% 2.85 
Four Product $1697 M 0.1% 8.00 
Five-Product $2083 M 0.1% 44.90 

Six-Product  $2407 M 3.0%  253.64 
 

 The New Technology Investment Planning Problem (NTIP) 

An expanding middle class, urbanization, and pushes for sustainability, have 
driven growth in chemical demand. (ExxonMobil, 2015) Demand for chemicals is 
expected to grow by 45% over the next 10 years (ExxonMobil, 2015). ExxonMobil is 

“progressing strategic investments that will capture low-cost feedstocks and increase 
premium product capacity to supply growing markets”. DuPont plans to continue to 
drive innovation and accelerate growth in developing markets (DuPont, 2015). Bayer 

states that “being successful as a Life Science company requires a pronounced 
innovation culture that is the breeding ground for new ideas and facilitates their 
translation into successful products” (Bayer, 2015). These trends suggest that the 

feedstock and product portfolios along with utilized technologies of the chemical 
process industry (CPI) may grow and be quite different compared to today’s in the 
near future. As such, there is tremendous opportunity for investigating the impacts 

of these new technologies/feedstocks/products on the chemical process industry. 
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Determining which feedstock or technology to develop is a challenging task. Often 
there are many emerging feedstocks and processing technology alternatives. 

Incorporating new feedstocks and technologies into the chemical process industry 
(CPI) is an expensive and time consuming process. Beyond initial discovery, 
investments into new technology serve two purposes: (1) to improve the efficiency of 

the process, and (2) to expand the production capacity of the technology to meet 
market demands. Generally, the performance of a technology is not known with 
certainty until after the technology is fully developed. Large investments into 

technology projects do not guarantee successful development or favorable results. 
Often new technology projects are mishandled or mismanaged leading to investments 
without a return or loss of investment due to project abandonment (Cooper, 2007). 

Furthermore, the development of technologies is partially driven by product demand, 
which is not known with certainty at the time of the investments. Therefore, to 
incorporate new feedstocks and technologies into the existing CPI infrastructure, a 

systematic approach is necessary to answer the following questions: how much to 
invest, which new technologies to invest in, and when to invest in each technology for 
research and development (R&D) and for capacity expansions? 

New chemical technologies start as ideas. Investments in these ideas lead to 
laboratory experimentation and if successful, pilot plant and commercial 

installations. Determining when and how much to invest in a new technology is a 
complicated decision, which relies on knowledge of the cost, yield, and the success of 
the new technology, as well as, the continued demand for the product that the 

technology produces. Figure 3.2 provides a visual for the development and 
incorporation of new technologies into the CPI. The mini CPI depicted in Fig. 3.2 
contains three chemicals (CHEM1, CHEM2, and CHEM3) and two technologies 

(TECH1 and TECH2). Each chemical can be purchased, produced (arrows connecting 
to technologies), and/or sold to meet demand. Technologies connected with solid lines 
represent established production routes. Connections between chemicals and 

technologies which appear as dashed lines are considered potential production routes. 
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They are defined as technologies which can be used to produce its output chemical(s) 
but have not yet been developed enough for commercial production. The goal of new 

technology investment planning (NTIP) problem is to determine when and how much 
to investment in the development of potential production routes in order to minimize 
the total cost of production over a planning horizon. 

 

Figure 3.2 The NTIP Problem 

The NTIP problem contains components of three well-established problems: 
production planning (Mula et al., 2006), capacity planning (Martínez-Costa et al., 
2014), and R&D pipeline management (Verderame et al., 2010). The first problem 

deals with determining which route to use for the production of each chemical, and 
the second one determining how much capacity to install for each technology to 
produce each chemical. Technology development portion of the NTIP problem can be 

treated as a special case of the R&D pipeline management problem. 

The remainder of this section introduces a multistage stochastic programming 
(MSSP) formulation that determines an optimal investment decision strategy for the 
NTIP problem considering uncertainties in the costs and future performances of new 
technology alternatives, and in the demands of the products. In Section 3.2.1, we 

present a literature review, which discusses different modelling and solution 
approaches that combines production and capacity planning. Section 3.2.1 also 
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reviews relevant literature on R&D pipeline management under uncertainty. The 
NTIP model incorporates models for the cost of capacity expansion, the network 

representation of the CPI, and the R&D pipeline management. The forms and 
limitations of these models are discussed in Section 3.2.2. The MSSP formulation of 
the NTIP problem is presented in Section 3.2.3. The deterministic equivalent 

formulation of the MSSP is a large-scale non-convex mixed integer nonlinear program 
(MINLP), and cannot be solved to optimality due to its complexity. Here, we develop 
a linear approximation of the MINLP, and solve this model to bound the MINLP and 

provide an approximate solution. To construct the linear approximate model, the non-
linear terms of the MINLP are replaced using linearly-segmented tight relaxations 
(Misener et al., 2011) and are linearized using exact linearization (Muhittin and 

Ossama, 1992) as appropriate. The linear approximate model is presented in Section 
3.2.4. In Section 3.2.5, we solve the linear approximate model to determine the 
investment plan for four case studies. The first case study considers whether to 

replace production from one technology with a new undeveloped technology. The 
second case study involves simultaneous development of two competing technologies 
for a product that is new to the market with no existing technology to produce it. A 
third case study evaluates the development and penetration of a new technology for 

an existing product. The final case study considers a biomass to commodity chemical 
system, which evaluates investment decisions for the development of technologies for 
conversion of biomass to ethylene. Conclusions and future directions are summarized 

in Section 3.2.6. 

3.2.1 Literature Review 
3.2.1.1 The Production and Capacity Planning Problems 

The NTIP includes aspects of both capacity and production planning problems. 
A review of literature considering uncertainty in the capacity and production 
planning problems can be found in Mula et al. (2006). In this section, we limit our 

discussion to works simultaneously considering capacity and production planning 
under uncertainty. Often the objective of the problem is to minimize the cost of 
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production given uncertainty in either supply or demand, which can either be 
associated with the internal production route (i.e., the yield of a production 

technology) or can be external (i.e., the market demand of the product) (Kempf et al., 
2011). 

Gardner and Buzacott (1999) addressed the uncertainty of technology 
development for a direct steel making process for the production of steel plates. 

Decisions included the capacity utilization of alternative production routes, levels of 
capacity expansion, and amount of commodity to purchase. The authors concluded 
that their approach found a compromise solution bridging over 60 percent of the gap 

between the highest expected value and perfect information scenario. Goyal and 
Netessine (2007) used a game-theory approach to determine capacity and production 
decisions. The authors considered which technologies to use, how much capacity each 

technology should have, and the production route. The model included uncertainty in 
the demand of the final product based on competing firms. Dal-Mas et al. (2011) 
developed a formulation for strategic capacity investment decisions in the conversion 

of biomass to ethanol. The authors considered uncertainty in market prices. They 
used a case study optimizing the strategic decisions for the conversion of biomass to 
ethanol in northern Italy. 

One modelling approach used by several authors is a real-options approach. 
Dangl (1999) solved the capacity planning problem using a real options approach 

combining optimal investment timing with optimal capacity choices. Demand was 
considered uncertain. Hagspiel et al. (2016) solved for optimal investment strategy 
under demand uncertainty using a real options approach. Decisions included timing 

of investments, quantity of production, and level of capacity. The authors considered 
two cases, the first was a flexible production case where the amount produced could 
be adjusted to meet demand. The second case considered an inflexible scenario where 

production levels were fixed at capacity level. The authors hypothesized that high 
uncertainty and high flexibility would result in later and larger investments. 
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Several other authors have considered stochastic programming solutions to the 
capacity and production planning problem. Eppen et al. (1989) developed a stochastic 

programming model for capacity planning of automobile production with the goal of 
maximizing profits. Decisions in the model were to determine automobile production 
levels at different locations given uncertainty in the future demand. In their problem, 

each production location could be retooled in order to produce a different set of 
products. Chen et al. (2002) considered a multi-product fixed and flexible capacity 
expansion problem with stochastic demand motivated by pharmaceutical production. 

The authors used a SP approach to solve problems with up to 5000 scenarios. Kostin 
et al. (2011) considered an integrated capacity and supply chain model under demand 
uncertainty. The authors modelled the process of sugarcane conversion to bioethanol 

including transportation and facility capacity expansion. The model was formulated 
using a two-stage SP approach where design decisions such as capacity expansion 
plans and the number of production and transportation units were made in the first 

stage. In the second stage, “wait-and-see” decisions such as production levels were 
determined.  

3.2.1.2 The R&D Pipeline Management Problem 

The second portion of the NTIP problem considers new technology development 
under uncertainty. The new technology development is an instance of the general 
new product/process development problem (Cooper, 2007). We define the new 

product/process development problem using a set of potential new development 
projects, a set of required tasks, and a set of limiting resources. The success of each 
project is conditional on successfully completing each of required tasks. Execution of 

tasks is limited based on the availability of a set of resources. The objective of the 
problem is to determine the schedule of tasks, which provides the maximum returns. 
In the NTIP problem, each new technology can be considered a new development 

project where the stages of development (i.e. laboratory, pilot plant, etc.) represent 
the tasks that need to be completed.  
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The general new product/process development problem has been studied 
extensively in literature. Verdereme et al. (2010) provides a comprehensive review of 

relevant literature on the general new product/process development problem under 
uncertainty. The problem has been modeled and solved using several approaches. The 
main approaches seen in literature are, simulation-optimization (Blau et al, 2004; 

Blau et al., 2000; Subramanian et al., 2003; Subramanian et al. , 2001; Varma et al, 
2008), real options (Davis and Owens, 2003; Rogers et al, 2002; Wang and Hwang, 
2007), and stochastic programming. For brevity, we limit our discussion to SP for new 

product development, which are most relevant to the work presented in this paper.  

Schmidt and Grossmann (1996) formulated a SP, and solved the deterministic 
equivalent MILP model for the scheduling of testing tasks in the agricultural and 
pharmaceutical industries. Maravelias and Grossmann (2001) develop a Lagrangean-

relaxation based heuristic to solve the integrated new product development and batch 
scheduling problem. Varma et al. (2007) introduced a Lagrangean-relaxation based 
heuristic to solve the pharmaceutical R&D pipeline version of the new 

product/process development problem originally presented in Blau et al. (2004). The 
authors showed greater than 30% improvement on strategies using a priority based 
system. Colvin and Maravelias (2008) developed a multistage stochastic program to 
solve the clinical trial scheduling portion of the pharmaceutical R&D pipeline 

management problem. The authors solved larger instances of the problem using a 
non-anticipativity constraint reduction approach (Colvin and Maravelias, 2009), a 
rolling horizon approach (Colvin and Maravelias, 2009), and a branch-and-cut 

algorithm (Colvin & Maravelias, 2010). The branch-and-cut algorithm gradually 
enforced constraints as they are violated. Solak et al. (2010) used a sample average 
approximation approach, where candidate solutions of the R&D pipeline 

management problem were generated using subsets of the full problem space. 
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3.2.1.3 Literature Combining the Production Planning, Capacity Planning 
and R&D Pipeline Management Problems 

Most available literature is limited to either integrated production and capacity 
planning problems or integrated production and new technology development 

problems. Tsang et al. (2007) considered an application of new product development 
and capacity planning for a multi-product case study for vaccine production in the 
pharmaceutical industry. The authors formulated the problem using a two-stage 

stochastic program where investment decisions (i.e. production selection and 
manufacturing site selection and construction) are made in the first stage. In the 
second stage, recourse actions such as production decisions are taken. Yang et al. 

(2014) used a flexible capacity approach to address demand uncertainty. The flexible 
capacity approach allows the firm to realize demand before production decisions are 
made to avoid waste. The authors modeled technology investments using a quadratic 

production cost. To solve the model, they used a three-step decision making process 
to maximize profits. Fahmi and Cremaschi (2013) developed a simulation-
optimization approach to study the evolution of different technology pathways in the 

biomass to commodity chemical system with uncertainty in technology performance 
and product demand. Fahmi et al. (2014) developed a deterministic model which 
extended the model originally presented in Fahmi and Cremaschi (2013). The authors 

performed sensitivity analysis to determine the impact of the model parameters on 
the solution. In this work, we develop a multistage stochastic programming 
formulation which determines investment decisions (i.e. capacity expansion and 

research and development) considering uncertainty in the technology development 
process, as well as, uncertainty in the demand.  

3.2.2 The NTIP Problem Model Components 
3.2.2.1 The Problem Statement 

The NTIP problem is defined as follows. Given, 

(1) a fixed length planning horizon divided into equal time periods [𝑡𝑡 ∈ 𝑻𝑻],  

(2) a set of chemical processing technologies [𝑖𝑖 ∈ 𝑰𝑰],  
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(3) a set of chemicals [𝑛𝑛 ∈ 𝑵𝑵], and  

(4) a set of technology maturity stages [𝑠𝑠𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺], 

the objective of the problem is to determine the technology investment schedule which 
provides the expected minimum production cost. We assume that investment 
decisions can either be to develop a new technology or to expand the capacity of an 

existing technology. Investment in new technologies are assumed to be limited with 
a fixed level monetary resource. To ensure that demand at each time period is met, 
we assume that a product can either be produced using existing capacity or can be 
purchased at market price. 

The total cost of production for a desired product can be represented as the sum 

of the raw material costs (𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖) and the costs of technology development and 

expansion (𝐷𝐷𝐷𝐷𝐶𝐶𝑖𝑖)  (Eq. 3.2) 

𝐶𝐶 =  �𝑅𝑅𝑅𝑅𝐶𝐶𝑖𝑖 +  𝐷𝐷𝐷𝐷𝐶𝐶𝑖𝑖
𝑖𝑖

 (3.1) 

The raw material cost includes the cost of feedstocks and materials used to 

produce intermediates. Costs for technology development and expansion are incurred 
either by direct research investment in technology improvement or by increasing its 
capacity. For this work, we model the cost as the feedstock cost, however the model 

can be easily modified to include operational costs as a function of production rate.  
Research investment costs are calculated as the sum of all investments in any 
technology used in the production of a product. Investments in capacity expansion 

are estimated by multiplying the cost of unit capacity expansion by the total capacity 
expansion. The cost of unit capacity expansion is assumed to be represented by a two-
factor learning curve.  

3.2.2.2  Two Factor Learning Curve to Model Unit Capacity Expansion 
Cost 

The concept of learning curves was first introduced in Wright (1936). The author 

observed that the number of hours required to produce one unit decreased at a 
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constant rate as the number of items produced doubled. In general, the function of 
the learning-curve model is to link the capacity, the labor hours, or the output to the 

unit cost. The learning curve developed by Wright (1936) is considered a single factor 
learning curve. Single factor learning curves relate a single observation (e.g., the 
labor hours) to the unit cost (e.g., unit manufacturing time). The factor associated 

with single factor learning curves is called the learning-by-doing factor.  

In two-factor learning curves, in addition to the learning-by-doing factor, a 
learning-by-searching factor, which generally models the impact of R&D on reduction 
of cost, is incorporated. Kouvaritakis et al. (2004) used a two-factor learning curve 

approach to model the cost of unit capacity expansion for large scale energy models. 
Fahmi et al. (2014) used a two-factor learning curve to model the cost of unit capacity 
expansion for renewable energy technologies. Here, we consider a two-factor learning 

curve of the form shown in Eq. 3.2. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =  𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,0 �
𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖
𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖,0

�
𝐵𝐵

�
𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖
𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,0

�
𝐴𝐴

 (3.2) 

The two-factor learning curve shown in Eq. 3.2  uses the initial cost of capacity 

expansion (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,0) and two-factors. The first factor, � 𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖
𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖,0

�
𝐵𝐵
, is the ratio of the 

current capacity of the technology (𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖) to the initial capacity (𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖,0). The factor 

represents the reduction in the cost of unit capacity expansion due to learning-by-

doing. The coefficient B is called the elasticity of the learning-by-doing factor. The 
elasticity is a measure of the impact the factor of interest has on the cost of unit 

capacity expansion. The second factor, � 𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖
𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,0

�
𝐴𝐴
, is the ratio of the cumulative research 

investment level (𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖) and the initial research investment level (𝐶𝐶𝐶𝐶𝐷𝐷𝑖𝑖,0). The second 

factor represents the cost reduction associated with learning-by-searching. The factor 
is modified with an elasticity A.Figure 3.3 plots the learning-by-doing and the 
learning-by-searching ratios versus the factor value for a sample case with a learning-

by-doing elasticity of -0.21 and a learning-by-searching elasticity of -0.07. In Figure 
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3.3, the curves for each factor start at one and gradually decrease as the ratio 
increases. When the elasticity is smaller (i.e. -0.07) the rate at which the factor value 

decreases is lower. 

 

Figure 3.3 Plot of the Learning-By-Doing and the Learning-By-Searching 
Ratios vs. Factor Value 

In the new product development process, the elasticity values for new 
technologies are not known with certainty. The values that the elasticities take are 

known to be strictly negative between 0 and -1, and are realized after capacity 
expansion and research investments are made. To represent the uncertainty in the 
values of the elasticities for each new potential technology, we introduce uncertain 

parameters 𝛼𝛼 and 𝛽𝛽 to represent the values of A and B in the formulation of the two 

factor learning curve. In the model, the values of the initial capacity cost, the initial 
R&D expenditures, and the initial installed capacity is assumed to be known.  

3.2.2.3 Network Representation of the CPI 

Flow of material through the processes or chemical process industry is generally 
modeled using network representations. The most commonly used network 
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representations are state-task networks (STN), state-equipment networks, or 
resource task networks (Floudas and Lin, 2005). State-task networks provide an 

intuitive approach to modeling material flow (Floudas and Lin, 2005). For NTIP 
model, the material flow is represented using a STN. In a STN, there are two types 
of nodes: state nodes which contain information about the state of the chemical, such 

as composition, pressure, temperature, and/or flowrate, and task nodes which contain 
process information (Floudas and Lin, 2005). The STN uses a predefined set of 
directed arcs to connect the chemical states to the tasks (processes).  

For the NTIP model, the state nodes in the network represent feedstocks, 

intermediates, and products. Task nodes represent different processes. Arcs connect 
state nodes and task nodes to relate material flow between chemical states and 
processes. Flow within the network is constrained using a set of mass balances 

written around the state nodes.  In the model, we do not allow storage of 
intermediates and feedstocks. This implies that all intermediates produced must also 
be consumed in the time period in which they are produced. We also prohibit the sale 

of intermediates. The only way to obtain feedstocks or intermediates is either 
purchasing or production. To ensure that demand is always met, we assume that the 
product may be purchased from another manufacturer if not produced at enough 
quantities. Figure 3.4 shows an example of a state task network with three 

technologies (tasks) and four chemicals. In Fig. 3.4, CHEM 1 and CHEM 2 represent 
feedstock chemicals. The only way to procure CHEM 1 and CHEM 2 is to purchase 
them (i.e., there are no arrows entering CHEM 1 or CHEM 2). CHEM 3 is considered 

an intermediate because it can either be purchased or produced by TECH 1 or TECH 
2, and it is not the desired product. CHEM 4, for this example, is the desired product, 
and it may be purchased or produced using TECH 3. 
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Figure 3.4 An example STN for the NTIP problem. 

Mathematically, we can represent the material flow through the network in 
Fig. 3.4 using a set of balances written around each chemical (CHEM 1-4). The 
general form of the balances is shown in Eq. 3.3, where 𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛, 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛,𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛 

and 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛 represent the level of storage of chemical 𝑛𝑛, the amount of chemical n 

purchased, the amount of chemical 𝑛𝑛 produced, and the amount of chemical 𝑛𝑛 
consumed. The demand of chemical 𝑛𝑛 is defined by 𝛿𝛿𝑛𝑛.   

𝑀𝑀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 + 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛 −𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛 − 𝛿𝛿𝑛𝑛   ∀𝑛𝑛 ∈ 𝑵𝑵 (3.3) 

For feedstock nodes, CHEM 1 and CHEM 2 in Fig. 3.4, we can reduce Eq. 3.3 

to Eq. 3.4 by setting storage, production and demand variables equal to zero. 

0 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 − 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑛𝑛    ∀𝑛𝑛 ∈ 𝑵𝑵𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 (3.4) 

Intermediate chemicals can be consumed, produced and purchased. Therefore, 
we can reduce equation 3 for CHEM 3 in Fig. 3.4 to Eq. 3.5.  

0 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 + 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛 − 𝑀𝑀𝑐𝑐𝑐𝑐𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑛𝑛   ∀𝑛𝑛 ∈ 𝑵𝑵𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 (3.5) 

The final equation is the balance is for the product, CHEM 4, which can be 
purchased, produced, or used to meet the demand. Reducing Eq. 3.3 results in Eq. 

3.6. 

0 = 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 + 𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑛𝑛 − 𝛿𝛿𝑛𝑛   ∀𝑛𝑛 ∈ 𝑵𝑵𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (3.6) 
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In addition to the balances written in Eqs. 3.4- 3.6, the consumption and 
production of some chemicals are related through the technologies connecting them. 

For example, the production of CHEM 3 consumes CHEM 1, and this relationship is 
defined in Eq. 3.7. 

𝑀𝑀𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 =
𝜈𝜈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3 ⋅ 𝑀𝑀𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶3

𝜈𝜈𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 ⋅ 𝑀𝑀𝑊𝑊𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1
 ⋅ 𝜂𝜂𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇1 ⋅ 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1 (3.7) 

Equation 3.7 uses the stoichiometric coefficient (𝜈𝜈) from the reaction occurring 

in technology (TECH 1) and the yield of the technology (𝜂𝜂) to calculate the amount of 

CHEM 3 produced. In cases where there may be no reaction occurring in the 

technology, the yield (𝜂𝜂) can be seen as an efficiency of the technology and the 
stoichiometric ratio becomes a mass ratio of the product to the feed.  

3.2.2.4 Representation of the Technology Development Process 

The development of new technology is a time consuming and expensive process. 

The cost of introducing a new technology varies by sector. Generally, introducing a 
new technology into the CPI requires hundreds of millions of dollars after accounting 
for R&D and process development costs (Miremadi et al., 2013). New technology 

development can be considered a portion of the new product/process development 
process (PDP). The PDP does not require that the product be new to the market; it 
may be an existing commodity chemical.  

The PDP has been studied extensively. A review of relevant product 

development research is presented in Krishnan and Ulrich (2001). Representation of 
the PDP depends on the types of decisions in the planning. In this work, we 
emphasize the decision between competing projects where either the product or the 

production route is different. The five-stage generalized PDP presented in Cooper 
(1990), shown in Fig. 3.5, is adopted for this work. The first stage, the Preliminary 
Assessment Stage, provides an initial technical and market assessment for the new 

product. Technical assessments during this stage gauge the product’s manufacturing 
feasibility and the estimated time and cost of production. The Definition Stage is the 
second stage. The technical portion of this phase provides a more detailed technical 
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analysis of the project. The analysis examines the do-ability of the project and ensures 
that the project is economically viable. 

 

Figure 3.5 The five-stage PDP presented in Cooper (1990) 

The Development Stage or Laboratory, is the first heavy spending stage. In 
this stage, the product is developed. Development of the product in the CPI often 
requires extensive laboratory experimentation. Detailed plans for operation are also 

developed during this stage. After the Laboratory Stage, the product proceeds to the 
Validation or Pilot Plant stage. The validation stage tests the feasibility of producing 
the product in a relevant environment. The test includes verification of the processes 

used through pilot production, field testing, and/or in-house testing. The final stage 
is the Market Availability, or commercialization, stage. This stage implements the 
market launch plan, and the production and operation plans.  

The PDP can be represented using a stage-gate framework. The stage-gate 

framework creates a discrete set of stages. Each stage corresponds to one of the 
technology development stages. The stage-gate framework has been successfully 
applied to product development in several different industries including the 
development of medical devices (Pietzsch et al, 2009), project management in the tech 

industry (Conforto and Amaral, 2016), new feedstock development in the chemical 
process industry (Fahmi and Cremaschi, 2012b), sustainability planning (Tingstro, 
2006), and the pharmaceutical R&D pipeline planning (Subramanian et al., 

2003,Colvin and Maravelias, 2008). Seider et al. (2009) gives a perspective on the use 
of the stage-gate process for product design. 

The first two stages of the PDP consist of idea generation and viability studies. 
The overall cost of these stages is negligible compared to the cost of the last three 

stages, which are related to process development and commercialization. In this 
work, we assume that all new technology development projects considered have 
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completed the first two stages of the PDP and that projects still need to complete the 
laboratory and pilot plant stages before reaching the commercialization stage. The 

current stage of a technology is determined based on its installed capacity. 
Furthermore, we assume that each stage can be associated with a pre-defined 
minimum capacity. Figure 3.6 shows the stage-gate framework used for this work. 

 

Figure 3.6 The stage-gate representation of the general NTIP problem 

The actual yield of a technology is not known until the technology reaches the 

commercialization stage. To reach a stage, the installed capacity of a technology must 
reach the minimum capacity threshold for that stage. After a technology completes a 
stage, an assessment is performed to determine whether or not investment in the 

technology should continue. Whether or not a project will be abandoned is not known 
with certainty until the previous stage is completed. In this work, we represent the 
uncertainty in project abandonment at each stage using a random Bernoulli trial with 

known probability, 𝜌𝜌𝑠𝑠𝑠𝑠, where the possible outcomes are either project abandonment 

(PA) or continued investment (CP). Assuming that the decision of project 
abandonment is independent of the previous stage realizations, we can combine the 
uncertainty in each stage of the PDP and use a single uncertain parameter, 𝜓𝜓. Figure 

3.7(A) shows the four possible outcomes of a series of two Bernoulli trials, 

representing the laboratory and pilot plant stages. Once a project is abandoned, 
investment in later stages ceases. This implies that outcomes can be aggregated. 
Colvin and Maravelias (2008) used a similar approach to aggregate uncertain 

parameter outcomes in the clinical trial planning problem.  Figure 3.7(B) shows the 
aggregated form of the outcomes, 𝜓𝜓 ∈ {𝐼𝐼/𝑃𝑃𝑃𝑃, II/PA, II/CP}. 
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Figure 3.7 Uncertainty representation in the NTIP product development 
process 

Once the technology reaches the commercialization stage, the underlying value 
for the yield of the technology is realized. Technologies that are in the 
commercialization stage at the beginning of the planning horizon are assumed to be 

fully mature, and hence, their capacity expansion costs and yields are known with 
certainty and do not change throughout the planning horizon.  

3.2.2.5 Scenario Representation 

Scenarios are obtained using the Cartesian product of the realizations of the 
uncertain parameters. The number of uncertain parameters in this problem depends 
on the number of technologies below commercialization stage at the beginning of the 

planning horizon (i.e., new technologies), and the length of the planning horizon. 
There are four uncertain parameters associated with each new technology.  The first 
two uncertain parameters, 𝜓𝜓 and 𝜒𝜒, are associated with the outcome of technology 

development (𝜓𝜓) and the yield of the process (𝜒𝜒). The other two uncertain parameters 

are related to the values of A and B represented by 𝛼𝛼 and 𝛽𝛽 in the two-factor learning 

curve (Eq. 2.1). These parameters define how the capacity expansion cost may change 

with investments. The demand for the desired product is not known with certainty, 
and for each time period beyond first, there is an uncertain parameter representing 
the demand of the desired product(s).  
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Because the uncertain parameter 𝜓𝜓 is discrete, we can represent the uncertainty 

exactly. Unlike 𝜓𝜓, the parameters 𝛼𝛼, 𝛽𝛽, yield (𝜒𝜒), and the demand at each time period 

(𝐷𝐷𝑡𝑡) are continuous uncertain parameters. For each continuous uncertain parameter, 

it is assumed that the parameter can be approximated by a set of discrete values. 
These values represent the set of potential realizations for the uncertain parameter. 

As an example, consider the installed capacity elasticity, 𝛽𝛽, of a new technology. The 
value of the elasticity is not known with certainty but there is a set of possible 

outcomes that are known. The set 𝛽𝛽 ∈ {𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑘𝑘}  represents all k possible 

outcomes. This definition yields |U| sets, where |U| is the number of uncertain 
parameters. The n-fold Cartesian product of these sets yields the scenario set. For a 

single new technology where the planning horizon is three years divided into three 
equal time periods, the uncertain parameters would be 𝜓𝜓 representing the success of 

developing the technology, and, 𝛼𝛼 and 𝛽𝛽 representing the elasticities of the two-factor 

learning curve. Additionally, the product demand throughout the planning horizon, 
denoted by 𝐷𝐷2 and 𝐷𝐷3 for time periods two and three, is uncertain. The n-fold 

Cartesian product 𝜓𝜓×𝛼𝛼×𝛽𝛽×𝐷𝐷2×𝐷𝐷3×𝜒𝜒 yields the scenario set, i.e., the set of n-tuples 

with |𝜓𝜓| ⋅ |𝛼𝛼| ⋅ |𝛽𝛽| ⋅ |𝐷𝐷2| ⋅ |𝐷𝐷3| ⋅ |𝜒𝜒| number of elements. Each n-tuple in this set 

represents a unique combination of the outcomes of the uncertain parameters. There 

are three possible outcomes for 𝜓𝜓. Assuming that there are two possible outcomes for 
each of the remaining uncertain parameters, a high and a low value, the total number 

of scenarios would be equal to 3 ⋅ 24or 48 for a problem with a single new technology 

and a planning horizon of three time periods.   

3.2.3 The Multi-stage stochastic programming formulation of the NTIP 
problem  

3.2.3.1 The Objective Function 

The objective of the NTIP problem is to minimize the expected total cost (ETC) 
of production over the planning horizon. This cost is calculated via Eq. 3.8.  

𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝑝𝑝𝑠𝑠(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠)
𝑠𝑠

 (3.8) 
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In Eq. 3.8, the expected total cost of production, 𝐸𝐸𝐸𝐸𝐸𝐸, is equal to the probability 

of each scenario occurring, 𝑝𝑝𝑠𝑠, multiplied by the total production cost of each scenario 

s. Total production cost for each scenario includes the total raw material costs 
(𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑠𝑠), total capacity expansion costs (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝑠𝑠), and the total R&D costs 

(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡𝑠𝑠).  

The total raw material cost includes expenditures to procure all materials, i.e., 
feedstock, intermediates, and final products (if necessary) to meet the demands, and 

is calculated using Eq. 3.9 for each scenario. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 = ��𝑐𝑐𝑑𝑑𝑡𝑡 ⋅ 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑛𝑛,𝑡𝑡 ⋅ 𝐹𝐹𝑛𝑛,𝑡𝑡,𝑠𝑠
𝑡𝑡𝑛𝑛

        ∀𝑠𝑠 (3.9) 

At each time period, the unit price of chemical 𝑛𝑛 ($/tonne) is given as a constant 
value, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛,𝑡𝑡. Material cost for chemical n at time period t is calculated as the 

product of the amount required, 𝐹𝐹𝑛𝑛,𝑡𝑡,𝑠𝑠, and its unit price. The material cost at each 

time period is then discounted using the factor 𝑐𝑐𝑑𝑑𝑡𝑡 to account for the time value of 

money. The factor 𝑐𝑐𝑑𝑑𝑡𝑡 is defined as (1 + 𝐼𝐼𝑅𝑅)1−𝑡𝑡 where 𝐼𝐼𝐼𝐼 is the discount rate. The total 

raw material cost of each scenario is the sum of all the material costs over the 
planning horizon. 

The R&D costs are direct investments into improving technologies. The total 
research investment of each scenario is simply the sum of all research investments 

(𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡−1,𝑠𝑠) into all technologies. Equation 3.10 shows how the total R&D cost 

for each scenario is calculated.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠 = ��𝑐𝑐𝑑𝑑𝑡𝑡 ⋅ (𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡−1,𝑠𝑠)
𝑡𝑡𝑖𝑖

          ∀𝑠𝑠 (3.10) 

The final term in the objective function is the total capacity expansion cost. 

This cost represents the investments for installing or increasing the production 
capacity of technologies. Here, we assume that the capacity expansion cost of 
technology i at time t under scenario s can be estimated using its unit capacity-

expansion cost (𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠) ($/𝑘𝑘𝑘𝑘) and level of capacity expansion �𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠� . Then, the total 
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capacity expansion cost for each scenario is calculated by multiplying the capacity 
expansion cost of technology i at time t by the discounting factor for the time value of 

money, and by summing the costs over all technologies and time periods (Eq. 3.11). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 =  ��1000 𝑐𝑐𝑑𝑑𝑡𝑡 ⋅ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 ⋅ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑡𝑡𝑖𝑖

     ∀𝑠𝑠 (3.11) 

3.2.3.2 The Unit Capacity-Expansion Cost 

Section 3.2.2. discussed the use of a two-factor learning curve to describe how 
the cost of unit capacity expansion changes with the cumulative capacity and R&D 
expenditures. The current cumulative installed capacity is linked to the capacity 

expansion at each time period using Eq. 3.12. The level of capacity expansion is 
defined as the difference between the cumulative installed capacity of technology i at 
the current time period (t) under scenario s, 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠, and the cumulative installed 

capacity at the previous time period, 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1,𝑠𝑠. 

𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 =  𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡−1,𝑠𝑠            ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.12) 

Equation 3.13 shows the cost of unit capacity expansion for technology i at time 
t under scenario s as a function of the initial capacity expansion cost, 𝐶𝐶𝐶𝐶0𝑖𝑖 , the initial 

and current installed capacities, and the initial and current total R&D investments. 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶0𝑖𝑖 �
𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝐶𝐶𝐶𝐶𝑖𝑖,0

�
𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠

�
𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠

             ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.13) 

The rates of cost reductions due to capacity expansion (learning-by-doing 
elasticity) and research investments (learning-by-searching elasticity), given as 𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠 

and 𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠, are not known with certainty at the time of the investments. To incorporate 

this uncertainty, Eqs. 3.14 and 3.15 are used to represent 𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠 and 𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠. 

𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝛽𝛽𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  (3.14) 
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𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝛼𝛼𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼  (3.15) 

 In Eq. 3.14, 𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠 either takes a value of 0 when the value of 𝛽𝛽 is unknown or 

𝛽𝛽𝑖𝑖,𝑠𝑠 after the true value of 𝛽𝛽𝑖𝑖 is realized. The binary variable 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  takes a value of 

one if the realization of 𝛽𝛽𝑖𝑖 has occurred and zero otherwise. The value for 𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠 is 

calculated using the same approach as 𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠. Whether the realization of 𝛼𝛼𝑖𝑖 has 

occurred is represented using a binary variable 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 . The value of 𝛼𝛼𝑖𝑖,𝑠𝑠 represent the 

scenario specific realization of the value of 𝛼𝛼𝑖𝑖. Inserting Eqs. (3.14) and (3.15) into Eq. 

(3.13), and applying log transformation to the resulting expression yields Eq. 3.16. 

log𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝛽𝛽𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 log�

𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝐶𝐶𝑋𝑋𝑖𝑖,0
� + 𝛼𝛼𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 log �
𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑅𝑅𝑅𝑅𝑖𝑖,0
� + log(𝐶𝐶𝐶𝐶0𝑖𝑖) (3.16) 

3.2.3.3 Constraints Related to Material Flow in CPI 

The topology of the CPI is modeled using a state-task network. Each 
technology/process in the CPI is represented with a task network, and the state nodes 

represent the feedstocks, intermediates, and products. To track material flow 
between each technology, material balances are written around state nodes. The 
general mass balance for each state node in the NTIP problem is given in Eq. 3.17 

0 =  𝐹𝐹𝑛𝑛,𝑡𝑡,𝑠𝑠 −  𝐷𝐷𝑛𝑛,𝑡𝑡,𝑠𝑠 +  𝐺𝐺𝑛𝑛,𝑡𝑡,𝑠𝑠          ∀𝑛𝑛, 𝑡𝑡, 𝑠𝑠 (3.17) 

Eq. 3.17 states that, for chemical n at time t for scenario s, the amount 
purchased, 𝐹𝐹𝑛𝑛,𝑡𝑡,𝑠𝑠, combined with the amount produced, 𝐺𝐺𝑛𝑛,𝑡𝑡,𝑠𝑠, must be equal to the 

demand, 𝐷𝐷𝑛𝑛,𝑡𝑡,𝑠𝑠. The amount produced is calculated using Eq. 3.18. 

𝐺𝐺𝑛𝑛,𝑡𝑡,𝑠𝑠 =  �𝑔𝑔𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠
𝑖𝑖

= �𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃𝜒𝜒𝑖𝑖,𝑡𝑡,𝑠𝑠𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠
𝑖𝑖

   ∀ 𝑛𝑛, 𝑡𝑡, 𝑠𝑠 (3.18) 

Notice that the total production of chemical n, 𝐺𝐺𝑛𝑛,𝑡𝑡,𝑠𝑠 (kmol), is calculated by 

summing over the amount produced by each technology i, 𝑔𝑔𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠. We represent the 

production of each technology using a mass ratio �𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑅𝑅�, the yield �𝜒𝜒𝑖𝑖,𝑡𝑡,𝑠𝑠�, and the 

amount of primary reactant/feedstock used in technology i at time t �𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠�. For 
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technology i, the mass ratio is given as the ratio of the stoichiometric coefficient of 
the chemical n and the primary reactant/feedstock PR, multiplied by the ratio of the 

molecular weights (𝑀𝑀𝑀𝑀) �𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃 = 𝜈𝜈𝑖𝑖,𝑛𝑛⋅𝑀𝑀𝑊𝑊𝑛𝑛

𝜈𝜈𝑖𝑖,𝑃𝑃𝑃𝑃⋅𝑀𝑀𝑊𝑊𝑃𝑃𝑃𝑃
� (Section 3.1.2.3). Equation 3.19 

calculates the conversion for technology i.  

𝜒𝜒𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝑌𝑌𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠 ⋅ 𝜒𝜒𝑖𝑖,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.19) 

The conversion of a technology i before the commercialization stage (COM) is 
considered to be zero (it is assumed that product cannot be used for satisfying demand 
before reaching the commercialization stage). In Eq. 3.19, the value 𝜒𝜒𝑖𝑖,𝑠𝑠 is the realized 

conversion for technology i at the commercialization stage. The binary variable 
𝑌𝑌𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠 becomes one if technology i has reached the commercialization stage at time 

t or before under scenario s. 

3.2.3.4 Formulation of the Technology Development Process 

Whether or not technology i has successfully completed stage sg at time t under 
scenario s is represented by a binary variable 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠. The stage of a technology is 

determined based on the cumulative installed capacity. Equations 3.20 and 3.21 

establish the value of 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠 using the current cumulative installed capacity, 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠. 

The parameter 𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 represents the minimum installed capacity of a technology 

in stage 𝑠𝑠𝑠𝑠. Equation 3.21 uses the variable 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠 to ensure that the installed 

capacity does not exceed the minimum capacity of the next development stage. 
Equation 3.22 enforces that for a technology to be in stage 𝑠𝑠𝑠𝑠, it must have completed 

stage (𝑠𝑠𝑠𝑠 − 1). Equation 3.23 relates the technology stages along the planning 

horizon. Eq. 3.23 states that if a technology has completed a stage at (𝑡𝑡 − 1) then the 

technology must have also completed the stage at time 𝑡𝑡. This constraint ensures that 

the technology stage only increases along the planning horizon. 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠  ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠         ∀𝑖𝑖, 𝑠𝑠𝑠𝑠, 𝑡𝑡, 𝑠𝑠 (3.20) 

 



41 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤ � �𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠+1𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚�𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠
𝑠𝑠𝑠𝑠 < 3

         ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.21) 

 

𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠 ≤ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠−1,𝑡𝑡,𝑠𝑠       ∀𝑖𝑖, 𝑠𝑠𝑠𝑠 > 1, 𝑡𝑡, 𝑠𝑠 (3.22) 

 

𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠 ≤ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡−1,𝑠𝑠       ∀𝑖𝑖, 𝑠𝑠𝑠𝑠, 𝑡𝑡 > 1, 𝑠𝑠 (3.23) 

To ensure that production is less than the current installed capacity in the 
commercialization stage, the constraint shown in Eq. 3.24 is introduced. Equation 
3.24 bounds the maximum amount of production and ensures that the production of 
a technology is zero before the technology reaches the final stage. In Eq. 3.24, 𝜃𝜃𝑖𝑖,𝑠𝑠 is a 

binary parameter representing the successful completion of the technology 

development process. Recall, 𝜓𝜓 represents the outcome of the technology 
development. In scenarios where the uncertain parameter 𝜓𝜓𝑖𝑖 has a realization of 

II/CP, the parameter 𝜃𝜃𝑖𝑖,𝑠𝑠 takes a value of one. Otherwise, the value of the parameter 

is zero.    

𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠  ≤ 𝑌𝑌𝑖𝑖,3,𝑡𝑡,𝑠𝑠𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 𝜃𝜃𝑖𝑖,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.24) 

3.2.3.5 Non-Anticipativity Constraints 

The MSSP formulation of the NTIP problem introduces separate decision 

variables for each scenario, and hence, non-anticipativitiy constraints (NACs) should 
be added explicitly to the formulation to ensure that decisions are identical before the 
realization of uncertain parameters. The first step in developing the NACs is to 

identify when two scenarios differ. The decisions for both scenarios must be identical 
until the time the differentiating event occurs. If the uncertain parameter that 
differentiates two scenarios is exogenous, the time of differentiation is known a priori. 

For instance, the demand of a product at time period t will be revealed at the end of 
time-period t. Therefore, the decision-variable values for the capacity expansion of 
each technology (𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠) must be identical for scenarios 𝑠𝑠 and 𝑠𝑠′ that only differ in their 
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demand realizations until the differentiating time period (𝑡𝑡𝑠𝑠,𝑠𝑠′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑). Mathematically, this 

is represented with the equality constraint shown in Eq. 3.25. 

𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠′      ∀𝑖𝑖, 𝑡𝑡 < 𝑡𝑡𝑠𝑠,𝑠𝑠′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (3.25) 

For the case of endogenous uncertain parameters, however, 𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑is not known 

a priori and depends on when the decisions associated with the differentiating events 

are made. For example, the value for the uncertain parameter 𝛽𝛽𝑖𝑖 for technology i is 

only realized after there is an expansion in the capacity of technology i. This means 
that all decisions for scenarios 𝑠𝑠 and 𝑠𝑠′, where scenario 𝑠𝑠 and 𝑠𝑠′ differ only in the 

realization of 𝛽𝛽𝑖𝑖, must be identical until the capacity of technology i is expanded 

sufficient number of times. We can represent this using a disjunction as shown in Eq. 
3.26. 

�
𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠′

𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 � ⋁�¬𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 �   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.26) 

The binary variable 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  takes a value of one when there has been sufficient 

number of investments for expansion of capacity in technology i at time t under 
scenario s and a value of zero otherwise. We can write the binary disjunction using 

big-M constraints. Equation 3.27 shows the form of these constraints for the case of 
the elasticity parameter 𝛽𝛽. The big-M constraints are written for the set 𝝓𝝓𝜷𝜷 which 

contains all (𝑠𝑠, 𝑠𝑠′) which differ only in the realization of 𝛽𝛽𝑖𝑖. 

−𝑀𝑀 ⋅ 𝑁𝑁𝑁𝑁
𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 ≤ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤  𝑀𝑀 ⋅ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽    ∀𝑖𝑖, 𝑡𝑡 < 𝑡𝑡𝑠𝑠,𝑠𝑠′

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜷𝜷 (3.27) 

An appropriate value for 𝑀𝑀 can be calculated as the maximum difference 

between the decision variables. In this case, the value for 𝑀𝑀 would be the maximum 

level of capacity expansion (𝐶𝐶𝐶𝐶𝑝𝑝𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀). To minimize the number of NACs, the NAC 

reduction approaches introduced in Goel and Grossmann (2004), Goel et al. (2006), 

and Goel and Grossmann (2006) are used. 
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The SP formulation of the NTIP problem contains three decision variables for 
each scenario, the cumulative installed capacity (𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠), the cumulative research 

expenditures (𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠), and the amount of each chemical generated/consumed (𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠) 

by each technology. The problem also has a recourse action variable which describes 
the amount of material purchased (𝐹𝐹𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠). It is important to note that NACs only 

need to be written for decision variables. The formulation also contains four different 
uncertain parameters, 𝜓𝜓𝑖𝑖 ,𝛼𝛼𝑖𝑖,𝛽𝛽𝑖𝑖, and 𝐷𝐷𝑡𝑡. For each uncertain parameter k, we generate 

sets, 𝝓𝝓𝒌𝒌, which include scenario pairs which are differentiable in outcome by k. For 

the exogenous uncertain parameter demand (𝐷𝐷𝑡𝑡), the differentiating time period is 

known a priori. This implies the NACs can be written using the form shown in 
Eq.3.25. These NACs are given in Eqs. 3.28-3.29. 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠′       ∀𝑖𝑖, 𝑡𝑡 < 𝑡𝑡𝑠𝑠,𝑠𝑠′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝑫𝑫 (3.28) 

 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠′       ∀𝑖𝑖, 𝑡𝑡 < 𝑡𝑡𝑠𝑠,𝑠𝑠′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 , (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝑫𝑫 (3.29) 

Equations 3.28-3.29 ensures that the decision variables (𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 and  𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠) are 

equal to each other for scenarios 𝑠𝑠 and 𝑠𝑠′ before the time period of differentiation 

�𝑡𝑡𝑠𝑠,𝑠𝑠′
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�.  

For endogenous uncertain parameters, the differentiating time period depends 

on when differentiating event(s) occurs. In the NTIP problem, there are four 
endogenous uncertain parameters, 𝜓𝜓𝑖𝑖, 𝜒𝜒𝑖𝑖 𝛼𝛼𝑖𝑖, and 𝛽𝛽𝑖𝑖. For each endogenous uncertain 

parameter, we introduce a binary variable similar to the one for 𝛽𝛽𝑖𝑖 in Eq. 3.27. The 

binary variable represents whether or not the differentiating event has occurred.  

The differentiating event for 𝜓𝜓𝑖𝑖 (whether or not the project is abandoned) 

occurs when the technology reaches the minimum capacity of the next stage, e.g., the 
technology may or may not be abandoned after the laboratory investigations are 
completed. The value of binary variable, 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡,𝑠𝑠, can be used to represent the 
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differentiating event for 𝜓𝜓𝑖𝑖. To generate the NACs associated with 𝜓𝜓𝑖𝑖, the same 

procedure outlined for the example with 𝛽𝛽𝑖𝑖 is used. This requires the generation of a 

disjunction and subsequent conversion of the disjunction into a set of Big-M 
constraints. For each parameter, a NAC is written for each decision variable, and 

they can be seen in Eqs. 3.30-3.32.   

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠𝐶𝐶𝑋𝑋𝑖𝑖,3
𝑚𝑚𝑚𝑚𝑚𝑚      ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝍𝝍 (3.30) 

 

−|𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠𝑅𝑅𝑅𝑅
𝑚𝑚𝑚𝑚𝑚𝑚|𝑻𝑻|  ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝍𝝍 (3.31) 

 

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠 ≤ 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠 −𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑠𝑠𝑔𝑔𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠𝐶𝐶𝑋𝑋𝑖𝑖,3
𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝍𝝍 (3.32) 

In Eqs. 3.30-3.32, the big-M values are set using information from the NTIP 
problem. For each decision variable, we calculate big-M values by finding the 

theoretical maximum differences between variable values in different scenarios. To 
illustrate this, consider Eq. 3.30 where the installed capacity is constrained. In one 
scenario, the installed capacity may have not been expanded leaving the cumulative 

installed capacity at its initial value, (𝐶𝐶𝐶𝐶0𝑖𝑖); however, in another scenario, the 

capacity of a technology may have been expanded in order to produce enough product 
to meet all the demand. The difference in the installed capacity between the two 
scenarios represents the maximum difference in the installed capacity. Thus, this 

value is used as the big-M value. A similar approach is used for Eq. 3.31. Using the 
same logic of Eq. 3.30, we can calculate the maximum total research investment, 
𝑅𝑅𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚, as the sum over all time periods of the maximum research investment. 

Equation 3.35 constrains the maximum difference in the production amounts of 
chemical n by technology i at time t between two scenarios. The big-M value is the 

maximum possible cumulative installed capacity, (𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚). We calculate this value 

using the logic used in Eqs. 3.30 and 3.31.  
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The disjunctions of non-anticipativity are constructed for endogenous 
parameters 𝜒𝜒𝑖𝑖 ,𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖. The realization of the process yield (𝜒𝜒𝑖𝑖) occurs after a 

technology reaches the commercial stage of development. In order to determine when 

this event occurs we use the decision variable 𝑌𝑌𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠, which indicates whether 

technology i at time t is in the commercial stage for scenario s or not. Non-

anticipativity is ensured using big-M constraints shown in Eqs. 3.33 -3.35. 

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠 ≤ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠𝐶𝐶𝑋𝑋𝑖𝑖,3
𝑚𝑚𝑚𝑚𝑥𝑥      ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝌𝝌 (3.33) 

 

−|𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠𝑅𝑅𝑅𝑅
𝑚𝑚𝑚𝑚𝑚𝑚|𝑻𝑻|   ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝌𝝌 (3.34) 

 

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠 ≤ 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠 − 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,3,𝑡𝑡,𝑠𝑠𝐶𝐶𝑋𝑋𝑖𝑖,3
𝑚𝑚𝑚𝑚𝑚𝑚      ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝝌𝝌 (3.35) 

In the case of 𝛼𝛼𝑖𝑖, the value of the parameter is realized after investments are 

made in research expenditures, and the value of 𝛽𝛽𝑖𝑖 is realized after investments in 

capacity expansion are made. Here we introduce two binary variables, 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 , 

which take a value of one if an investment has been made for research expenditures 

and for capacity expansion in technology i at time period t in scenario s, respectively. 

The value of 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽  are calculated using Eqs. 3.36 and 3.37. 

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡−1,𝑠𝑠 ≥ 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.36) 

 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡−1,𝑠𝑠 ≥ 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.37) 

The value of 𝑅𝑅𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 represent the maximum research investment and 

capacity expansion investment at each time period. In order to relate the variables, 

𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 , to the realization of the uncertain parameters 𝛼𝛼 and 𝛽𝛽, we use 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 

𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 . The function of these binaries is to indicate when sufficient numbers of 



46 

investments have been made for differentiation scenarios. We define 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽  

using Eqs. 3.38 and 3.39. 

� 𝑁𝑁𝑖𝑖,𝑡𝑡′,𝑠𝑠𝛼𝛼

𝑡𝑡′< 𝑡𝑡

 ≤  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 − 1 + 𝑉𝑉𝛼𝛼      ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.38) 

 

� 𝑁𝑁𝑖𝑖,𝑡𝑡′,𝑠𝑠𝛽𝛽

𝑡𝑡′< 𝑡𝑡

 ≤  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 − 1 + 𝑉𝑉𝛽𝛽   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.39) 

Equations 3.38 and 3.39 relate the investment decisions at each time period 

(𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 and 𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 ) to the total number of investments needed to realize the uncertain 

parameters 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 (𝑉𝑉𝛼𝛼 and 𝑉𝑉𝛽𝛽). After representing the differentiating event with 

binary variables, disjunctions are used to write the NACs associated with 𝛼𝛼 and 𝛽𝛽. 

The non-anticipativity constraints for 𝛼𝛼𝑖𝑖 can be seen in Eqs. 3.40-3.42.  

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 ≤ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚      ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜶𝜶 (3.40) 

 

−|𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁
𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 |𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜶𝜶 (3.41) 

 

−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 ≤ 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠 − 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛼𝛼 𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚      ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜶𝜶 (3.42) 

Big-M values for Eqs. 3.40-3.42 are the same as the big-M values used in Eqns. 

34-3.35. Each of the NACs in Eqs. 3.40-3.42 are written for the set of scenarios (𝑠𝑠, 𝑠𝑠′) 

which differ only in the realized value of 𝛼𝛼𝑖𝑖 (𝝓𝝓𝜶𝜶).  

Equations 3.43-3.45 are the Big-M representations of the disjunctions written 

for the uncertain parameter 𝛽𝛽𝑖𝑖. Big-M values are identical to the ones used in Eqns. 

34-3.35. We write the constraints for the set of scenarios (𝑠𝑠, 𝑠𝑠′) which differ only in 
the realized value of 𝛽𝛽𝑖𝑖 (𝝓𝝓𝜷𝜷). 
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−𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 ≤ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 𝐶𝐶𝑋𝑋𝑖𝑖,3𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜷𝜷 (3.43) 

 

−|𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑎𝑎𝑎𝑎𝑁𝑁𝑁𝑁
𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 ≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 |𝑻𝑻|𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜷𝜷 (3.44) 

 

−𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑁𝑁
𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 ≤ 𝑀𝑀𝑖𝑖,n,𝑡𝑡,𝑠𝑠 − 𝑀𝑀𝑖𝑖,n,𝑡𝑡,𝑠𝑠′ ≤ 𝑁𝑁𝑁𝑁

𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠
𝛽𝛽 𝑅𝑅𝑅𝑅𝑚𝑚𝑚𝑚𝑚𝑚     ∀𝑖𝑖, 𝑡𝑡, (𝑠𝑠, 𝑠𝑠′) ∈ 𝝓𝝓𝜷𝜷 (3.45) 

 

The objective function of the model, the minimum expected total cost of 
production, is given in Eq. 3.8. The decision variables in the formulation include the 
installed capacity (𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠), the level of R&D investment (𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠), the production level 

(𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠), and the amount of material purchased (𝐹𝐹𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠). Decision variables are 

constrained using four different sets of equations.  The four sets of equations 
represent production and capacity planning constraints (Eqs. 3.17-3.19), process 
development constraints (Eqs. 3.21-3.24), economic constraints (Eqs. 3.9-3.15), and 

NACs (Eqs. 3.28-3.45). The resulting optimization model is a large scale non-convex 
MINLP. 

3.2.3.6 An Approximate Linear Model for Tight Upper Bounds 

The nonlinear terms in the NTIP problem are in Eqs. 3.11, 3.13, and 3.18. 
Equation 3.11 contains bilinear terms, i.e., the product of the capacity expansion cost 
and the capacity expansion. Equation 3.13 contains two exponential terms and the 

product of the two exponential terms. The non-linear term in Eq. 3.18 is the product 
of 𝑌𝑌𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠 and the molar amount produced (𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠). We applied a combination 

of approaches to remove and approximate these nonlinear terms with linear ones. 
Specifically, the bilinear terms in Eq. 3.11 and the bilinear term formed by the 
product of the exponential terms in Eq. 3.13 are approximated using linearly-

segmented tight relaxations (Misener et al., 2011). The exponential terms are 
approximated using tight piece-wise linear lower and upper estimators (Fahmi and 
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Cremaschi, 2015) and the non-linear term in Eq. 3.18 is removed using exact 
linearization (Muhittin and Ossama, 1992).  

The detailed steps of the linearization of the bilinear terms in Eqs. 3.11 using 

linearly-segmented tight convex under-estimators and concave over-estimators 
(Misener et al., 2011) are shown below. The resulting constraints are given in Eqs. 
3.46-3.55, and these constraints replace Eqs. 3.11 in the original model. We first 

define a new continuous variable, 𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠, and substitute this variable 

into Eq. 3.11. This substitution yields Eq. 3.46. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 =  ��𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑡𝑡𝑖𝑖

     ∀𝑠𝑠 (3.46) 

  

We select the variable 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 to partition, and assume that three is a sufficient 

number of partitions to accurately represent 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠.  Equation 3.47 shows the 

calculation of the length of each segment,  𝑎𝑎𝑋𝑋.  

𝑎𝑎𝑋𝑋 =  
𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀

3
 (3.47) 

The range of variable 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 is between zero (corresponding to no capacity 

expansion at time t for technology i under scenario s) and 𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 , which is the 

maximum allowable capacity expansion at each time period. Equation 3.48 

introduces a new binary variable, 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑋𝑋 , which indicates whether or not the value of 

𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 is in the partition np. The summation shown in Eq. 3.48 ensures that 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 is only 

in one partition. 

� 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑋𝑋 = 1

𝑛𝑛𝑛𝑛∈{1,2,3}

   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.48) 

The partition that 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 exists in is calculated using the inequalities given in 

Eq.3.49. Since the partitions are equally spaced, the value of 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 should fall between 

the lower value of the partition and the upper value of the partition.   
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� 𝑎𝑎𝑋𝑋 ∙ (𝑛𝑛𝑛𝑛 − 1) ∙ 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑋𝑋

𝑛𝑛𝑛𝑛∈{1,2,3}

 ≤ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤   � 𝑎𝑎𝑋𝑋 ∙ 𝑛𝑛𝑛𝑛 ∙ 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑋𝑋

𝑛𝑛𝑛𝑛∈{1,2,3}

    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.49) 

The value of 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 is calculated using Eq. 3.50. Equation 3.50 segments the 

value of 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 into a minimum value, 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀, plus a segment value, ∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛. The 

value for 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 represents the minimum value that 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 can take, and is calculated 

using Eq. 3.13 with the scenario specific realizations of 𝛼𝛼𝑖𝑖,𝑠𝑠 and 𝛽𝛽𝑖𝑖,𝑠𝑠.  

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 =  𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + �∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛

   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.50) 

By definition ∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 must be strictly non-negative. The maximum for 

∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 is calculated based on the maximum difference in capacity expansion cost 

in each partition. The inequalities generated from these bounds is shown in Eq. 3.51. 

0 ≤  ∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 ≤  �𝐶𝐶𝐶𝐶0𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑋𝑋    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝑛𝑛𝑛𝑛 (3.51) 

The tight upper and lower estimators for 𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 are defined using Eqs. 3.52-

3.55.   

𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ≥ 𝑋𝑋𝑖𝑖,𝑡𝑡𝑡𝑡  ∙  𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 +  � �𝑎𝑎𝑋𝑋 ∙ (𝑛𝑛𝑛𝑛 − 1)� ∙

𝑛𝑛𝑛𝑛∈{1,2,3}

∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.52) 

 

𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ≥ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ∙  𝐶𝐶𝐶𝐶0𝑖𝑖

+  � (𝑎𝑎𝑋𝑋 ∙ 𝑛𝑛𝑛𝑛) ∙
𝑛𝑛𝑛𝑛∈{1,2,3}

�∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 − �𝐶𝐶𝐶𝐶0𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀�𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑋𝑋 �  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.53) 

𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ∙  𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 +  � (𝑎𝑎𝑋𝑋 ∙ 𝑛𝑛𝑛𝑛) ∙

𝑛𝑛𝑛𝑛∈{1,2,3}

∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.54) 

 

𝐶𝐶𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤ 𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 ∙  𝐶𝐶𝐶𝐶0𝑖𝑖

+ � �𝑎𝑎𝑋𝑋 ∙ (𝑛𝑛𝑛𝑛 − 1)��∆𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 − �𝐶𝐶𝐶𝐶0𝑖𝑖 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝜆𝜆𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑋𝑋 �
𝑛𝑛𝑛𝑛∈{1,2,3}

   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.55) 

To remove the nonlinear terms of Eq. 3.13, we start by defining two new 

variables as 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 = �𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 

𝐶𝐶𝐶𝐶𝑖𝑖,0
�
𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠

 and 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 = �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 

𝑅𝑅𝑅𝑅𝑖𝑖,0
�
𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠

. Substituting Eqs. 3.14 and 
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3.15 for 𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠 and 𝛽𝛽𝑖𝑖,𝑡𝑡,𝑠𝑠 yields Eqs. 3.56 and 3.57 for 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  and 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 . Here, we will 

detail the procedure for generating tight linear upper and lower estimators for the 

factor 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 ; the process for 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼  is identical. (The equation set that define tight 

linear upper and lower estimators for 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼  are in Appendix B.)  

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 =  �

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝐶𝐶𝐶𝐶𝑖𝑖,0

�
 𝛽𝛽𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽

∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.56) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 =  �

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
 𝛼𝛼𝑖𝑖,𝑠𝑠𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼

    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.57) 

Because 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 is a binary variable, Eq. 3.58 is equivalent to Eq. 3.56. 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 =  �1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽� + 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  �

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝐶𝐶𝐶𝐶𝑖𝑖,0

�
𝛽𝛽𝑖𝑖,𝑠𝑠

 (3.58) 

 

Expanding Eq. 3.58 yields Eq. 3.59. Notice that Eq. 3.59 contains an 
exponential term. We use linearly segmented upper and lower estimators to linearize 
this term. (Fahmi and Cremaschi, 2015) 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 + 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  �

1
𝐶𝐶𝑋𝑋𝑖𝑖,0

�
𝛽𝛽𝑖𝑖,𝑠𝑠

�𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝛽𝛽𝑖𝑖,𝑠𝑠 (3.59) 

To obtain linearly segmented upper and lower estimators, we first define the 

exponential term using a continuous variable, 𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠 =  �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝛽𝛽𝑖𝑖,𝑠𝑠
1

 and substitute 

the new variable into Eq. 3.59 to obtain Eq. 3.60. 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 + 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  �

1
𝐶𝐶𝑋𝑋𝑖𝑖,0

�
𝛽𝛽𝑖𝑖,𝑠𝑠

𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠 (3.60) 

We divide the base variable, 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠, into m partitions of equal lengths. Note 

that different partition lengths and number of partitions for base variable and each 
exponent can also be defined to tighten the estimators, if necessary. Here, we use m 
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= 3. The domain of the variable,  𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠, is represented as a series of m segments of 

length 𝑎𝑎𝑖𝑖
𝛽𝛽. 

𝑎𝑎𝑖𝑖
𝛽𝛽 =

𝐶𝐶𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐶𝐶𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀

3
    ∀𝑖𝑖 (3.61) 

To determine which partition each variable is in, binary variable, 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽 , is 

introduced. This binary variable takes a value of one if the variable is currently in 

the associated partition and zero, otherwise. Equation 3.62 ensures that only one 
partitions is active for each variable, and Eq. 3.63 bounds the installed capacity 
(𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠) within the appropriate partition values. 

� 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽

𝑛𝑛𝑛𝑛∈{1,2,3}
= 1   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.62) 

 

     𝐶𝐶𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 + � 𝑎𝑎𝑖𝑖
𝛽𝛽 ⋅ (𝑛𝑛𝑛𝑛 − 1) ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝛽𝛽

𝑛𝑛𝑛𝑛∈{1,2,3}

≤ 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠      

≤ 𝐶𝐶𝑋𝑋𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 + � 𝑎𝑎𝑖𝑖
𝛽𝛽 ⋅ 𝑛𝑛𝑛𝑛 ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝛽𝛽

𝑛𝑛𝑛𝑛∈{1,2,3}

   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 
(3.63) 

For each partition, the tangent line at its beginning yields the lower bound. 

Because the exponents, i.e., elasticities of the two-factor learning curve, are negative, 
the slope of the exponential term is strictly decreasing as the base variable increases. 
This property ensures that the tangent line at the beginning of the partition always 

produces a value lower than the value of the exponential within the partition. 

Equation 3.64 shows the lower estimators for �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝛽𝛽𝑖𝑖,𝑠𝑠.  

𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥ 𝛽𝛽𝑖𝑖,𝑠𝑠1 �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖

𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�
𝛽𝛽𝑖𝑖,𝑠𝑠−1

�𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 − �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖

𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)��

+ �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖

𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�
𝛽𝛽𝑖𝑖,𝑠𝑠

          ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝑛𝑛𝑛𝑛 ∈ {1,2,3} 
(3.64) 

We obtain the upper estimator by connecting the function values at the 

beginning and end of the partition with a line. Again, the strictly decreasing nature 
of the exponential function with negative exponent ensures that the upper estimators 
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always provide a value that is higher than the exponential function. The upper 

estimator for the �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝛽𝛽𝑖𝑖,𝑠𝑠is shown in Eq. 3.65. 

𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤  �
�𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽 ⋅ 𝑛𝑛𝑛𝑛�

𝛽𝛽𝑖𝑖,𝑠𝑠
− �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�

𝛽𝛽𝑖𝑖,𝑠𝑠

𝑎𝑎𝑖𝑖
𝛽𝛽 𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑛𝑛𝑛𝑛∈{1,2,3}

− 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽 �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽

⋅ 𝑛𝑛𝑛𝑛�
�𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽 ⋅ 𝑛𝑛𝑛𝑛�

𝛽𝛽𝑖𝑖,𝑠𝑠
− �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�

𝛽𝛽𝑖𝑖,𝑠𝑠

𝑎𝑎𝑖𝑖
𝛽𝛽

+ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽 �𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖
𝛽𝛽 ⋅ 𝑛𝑛𝑛𝑛�

𝛽𝛽𝑖𝑖,𝑠𝑠
    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 

(3.65) 

 

Notice that the upper estimator depends on the partition. We use the binary 

variable, 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽  , to determine the active upper estimator line, which results in a non-

linear term due to the multiplication of the binary variable with the continuous 
variable 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠. We use exact linearization for removing this nonlinearity (Muhittin 

and Ossama, 1992). Replacing the product of 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛽𝛽  and 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠 with a continuous 

variable, 𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠, in Eq. 3.66 and bounding this new variable via Eqs. 3.66 - 3.68 

removes this nonlinearity. 

𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛  ≤ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝑛𝑛𝑛𝑛 (3.66) 

 

𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 ≥ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀     ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝑛𝑛𝑛𝑛 (3.67) 

 

𝑏𝑏𝑏𝑏𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛  ≤ 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠, 𝑛𝑛𝑛𝑛 (3.68) 

Finally, the nonlinear term resulting from the multiplication of the binary 

variable, 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 , and the continuous variable, 𝐶𝐶𝐶𝐶𝐶𝐶1, at the exponent in Eq. 3.60 is 

linearized. We define this product with a continuous variable, 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠, substitute 

this variable into Eq. 3.60, and bound 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠 with Eqs. 3.70-3.72.  
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𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽 +  �
1

𝐶𝐶𝑋𝑋𝑖𝑖,0
�
𝛽𝛽𝑖𝑖,𝑠𝑠

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.69) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.70) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠  ≥  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 ⋅ 𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.71) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤  𝐶𝐶𝐶𝐶𝐶𝐶1𝑖𝑖,𝑡𝑡,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.72) 

After linearizing the exponential terms, we substitute the continuous 

variables, 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  and 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 , into Eq. 3.13. This substitution yields Eq. 3.73. 

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝐶𝐶𝑖𝑖,0𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼      ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (3.73) 

A linear approximation of Eq. 3.73 is obtained using linearly-segmented tight 
relaxations (Misener et al., 2011), and the resulting constraint set is given in 

Appendix B.  

Substituting Eq. 3.19 into Eq. 3.18 yields Eq. 3.74, in which the binary variable 
𝑌𝑌𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠 is multiplied by the continuous variable 𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃(𝑖𝑖),𝑡𝑡,𝑠𝑠. To linearize product of a 

continuous variable and a binary variable, we use exact linearization (Muhittin and 
Ossama, 1992). We start by replacing the product with a continuous variable 𝑍𝑍𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 

and adding appropriate bounds for the new continuous variable, 𝑍𝑍𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠. The 

bounding constraints are given in Eqs. 3.75-3.77 

𝐺𝐺𝑛𝑛,𝑡𝑡,𝑠𝑠 = �𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃𝜒𝜒𝑖𝑖,𝑠𝑠
𝑖𝑖

𝑍𝑍𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃(𝑖𝑖),𝑡𝑡,𝑠𝑠   ∀ 𝑛𝑛, 𝑡𝑡, 𝑠𝑠 (3.74) 

 

𝑍𝑍𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 ≤ 𝑍𝑍𝑖𝑖,𝐶𝐶𝐶𝐶𝐶𝐶,𝑡𝑡,𝑠𝑠 ⋅ 𝑃𝑃𝐷𝐷𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 (3.75) 

 

𝑍𝑍𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 ≥ 0 (3.76) 
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𝑍𝑍𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 ≤ 𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃(𝑖𝑖),𝑡𝑡,𝑠𝑠 (3.77) 

Replacing Eq. 3.11 with Eqs. 3.46-3.55, Eq. 3.13 with Eqs. 3.61-3.68 and Eqs. 
3.70-3.73, and Eq. 3.18 with Eqs. 3.74-3.77 of the original NTIP problem formulation 
yields a large scale MILP, which is a tight relaxation of the original MINLP. 

3.2.4 Case Studies 
To demonstrate how the proposed MSSP model can be used to support new 

technology investment planning decisions, we present and discuss the results of three 
case studies. Each case study considers a different number of developing technologies 
and a different network architecture. The MINLP and the MILP relaxation models of 

the case studies were implemented using PYOMO 4.1 (Hart et al., 2012), and solved 
using Auburn University Hopper Cluster. We used BARON 17.1 (Tawarmalani and 
Sahinidis, 2005) as the MINLP solver, IPOPT 3.12 (Belotti, Lee, Liberti, Margot, & 

Wächter, 2009) as the nonlinear programming (NLP) solver, and CPLEX 12.63 as the 
MILP and LP solver. The solutions of the MILP relaxations provide a tight lower 
bound for the MINLP problems. For case studies where MINLP problems were not 

solved to optimality within 5%, the values of the integer variables were fixed to the 
relaxed MILP solution, and the resulting NLP problem was solved to obtain a feasible 
solution and an upper bound.  

3.2.4.1 Case Study 1- Considering a New Technology 

The first case study compares a new non-mature technology, TECH 1, and a 

mature technology, TECH 2. Both technologies can be used to produce the same 
product, CHEM 3 (Fig. 3.8).  
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Figure 3.8 The network topology for Case Study 1  

In the network, CHEM1 can be converted to CHEM3 using developed TECH1, 

or CHEM2 can be converted to CHEM3 using under-development TECH2. For this 
case study, the investment decisions should be made along a planning horizon of 
three year-long time periods. The conversion of chemicals that occur in each 

technology and their corresponding 𝛾𝛾 values are shown in below the technology boxes 

in Fig. 3.15. Despite the simple network topology and the short planning horizon, 
Case Study 1 has seven uncertain parameters. We assume that all uncertain 
parameters, besides those associated with project abandonment, have two 

realizations, a High and a Low value. The possible realizations for each of these 
parameters (Elasticity Parameters(𝛼𝛼 and 𝛽𝛽), Yield (𝜒𝜒), and Demand (𝐷𝐷)) can be found 

in Tables 3.8 and 3.9.  

 

Table 3.8 The possible realizations of 𝜶𝜶, 𝜷𝜷, and 𝝌𝝌 for Case Study 1. 

Technology 
α Values β Values  χ Values 

High Low High Low High Low 
TECH1 N/A N/A 0.85 
TECH2 -0.18 -0.20 -0.06 -0.08 0.98 0.95 

  

CHEM 
1

CHEM 
2 TECH 2

TECH 1

CHEM 
3

Purchase

Purchase

Purchase

Demandγ = 0.55

γ = 0.6
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Table 3.9 The possible realizations of demand in Case Study 1 

Chemical 
Demand Values (Mtonnes) 

2 3 
High Low High Low 

CHEM1 0 0 
CHEM2 0 0 
CHEM3 23.5 28 22.1 26 

 

Given the possible realizations of the parameters shown in Tables 3.8 and 3.9 
and the outcomes of project abandonment for each technology, the number of 

scenarios in this problem is calculated to be 3 ⋅ 25 =  96. Values of the remaining 
parameters are summarized in Table 3.10. 

Table 3.10 Parameters for Case Study 1 

Parameter   Value 

  TECH1 TECH2  

Maximum Capacity Expansion (Mtonnes)  6 6  

Initial R&D Investment (Billion Dollars)  1 5  

Initial Installed Capacity (Mtonnes)  1 2.5  

Initial Capacity Expansion Cost ($/kg)  1 1.4  
  CHEM1 CHEM2 CHEM3 

Raw Material Cost ($/tonne)  724 845 1200 

Molecular Weight (kg/kmol)  50 62 72 

  
TECH2, 

Laboratory 
TECH2, 

Pilot Plant  

Probability of Success  95% 99%  

 

The MINLP model of Case Study 1 has 1728 binary variables, 9409 continuous 
variables, and 46,561 constraints. In 10,000 CPU s, BARON Version 17.1 completed 
two iterations and was not able to find a feasible solution. The MILP model, which is 

a relaxation of the original model, has 6336 binary variables, 13,153 continuous 
variables and 64,705 constraints, and was solved to optimality by CPLEX version 
12.63 in 4.08 CPU s. The optimum objective value of the MILP was found to be $147 

billion. The MILP solution was used to fix the integer variables in the MINLP, 
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yielding a NLP. The NLP had 7680 variables and 46,560 constraints, was solved to 
optimality by IPOPT Version 3.12 in 12.4 CPU s. The optimum was $188 billion, 

which yielded a gap of 21%.  

Figure 3.9 plots the empirical cumulative distribution functions (CDFs) of the 
minimum total costs of MILP and NLP optimum solutions.  

 

Figure 3.9 The empirical cumulative distribution functions of minimum 
total cost for MILP and NLP optimum solutions for Case Study 1. The 

MILP model is a tight relaxation of the original MINLP formulation, the 
NLP model is obtained by fixing the integer variables of the original 

MINLP to the solution of MILP model. 

The true CDF would lie between the MILP and the NLP CDFs shown in Fig. 
3.9. To illustrate the expansion and production strategies, we discuss the capacity 

expansion decisions of two scenarios for MILP and NLP solutions. In the first 
scenario, TECH1 successfully completes the laboratory and pilot-plant stages, and 
reaches the commercial stage. For the second scenario, the project is abandoned (i.e., 

fails) at the pilot plant stage. At the first time period, both scenarios have identical 
decisions. The MILP solution recommends expanding TECH2 capacity by 2 Mtonnes 
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and investing 1 million dollars in research. The level of capacity expansion for 
developed TECH1 is 6 Mtonnes. After the first time period, the two scenarios become 

differentiable. In the second time period, the scenario where TECH2 is successfully 
developed, capacity expansions to both TECH1 and TECH2 are observed. The 
solution favors TECH1 by expanding it by the maximum allowable level (6 Mtonnes). 

A capacity expansion of 5.885 Mtonnes is recommended for TECH2 in time period 
two. At time period three, TECH2 capacity is increased by 1.8 Mtonnes in order to 
meet the entirety of the observed demand. The capacity of TECH1 does not change in 

the third time period. In contrast, for the second scenario where TECH2 fails to 
complete pilot plant stage successfully, the capacity of TECH1 is expanded at a level 
of 6 Mtonnes during the second and third time periods. At each time period in both 

scenarios, the demand is met using the currently installed capacity and any demand 
that cannot be met is made up by purchasing the product. 

The NLP solution is identical to the MILP solution. By fixing the integer 
variables in the MINLP, the solution is fixing the decisions on whether or not to 

expand or invest. This implies that the decision variables will be very similar to the 
MILP case. The only difference is in the value of the objective function. The NLP does 
not approximate the capacity expansion cost, as such the NLP solution has an 
objective function value higher than that of the MILP solution.    

3.2.4.2 Scaling of the NTIP Problem 

We consider two additional hypothetical case studies to study how the NTIP 

MSSP model scales with the number of under-development technologies and network 
size. Case Study 2 compares two under-development technologies (TECH1 and 
TECH2) for producing the same chemical from different feedstocks (Fig. 3.10(A)). 

Case Study 3 considers a retrofitting problem, which consists of a larger network with 
two under-development technologies (Fig. 3.10(B)). In Case Study 2, the product 
(CHEM3) can either be produced using CHEM1 and TECH1 or CHEM2 and TECH2. 

The planning horizon is three year-long time periods. For each under-development 
technology, there are four uncertain parameters. For Case Study 2, we assume that 
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there are two possible outcomes for 𝛼𝛼, 𝛽𝛽, and 𝜒𝜒, similar to Case Study 1. The values 

for the realizations of the uncertain parameters and the fixed parameters of Case 
Study 2 are compiled in Tables B.1-B.5 in Appendix B. The number of scenarios for 

Case Study 2 is 32 ⋅ 28 = 2304, which is a 24-factor increase when compared to Case 

Study 1.  

 

Figure 3.10 The state-task networks for Case Studies 2 (A) and 3 (B) 
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In Case Study 3 (Fig. 3.10(B)), the network has a total of four technologies 
(TECH1-TECH4) and five chemicals (CHEM1-CHEM4). There are two under-

development technologies, TECH2 and TECH4, and each of the uncertain 
parameters, 𝛼𝛼, 𝛽𝛽, and 𝜒𝜒 has two realizations. Further, we assume that the demand 

at each time period will also take one of two values. The planning horizon is four 
years divided into one-year increments. The MSSP of Case Study 3 has nine 

uncertain parameters and 32 ⋅ 29 = 4,608 scenarios. The values of the Case Study 3 

fixed parameters and uncertain parameters can be found in Tables B.6-B.10 in 
Appendix B.  

The deterministic equivalents of the MSSP for Case Study 2 has 343,297 
variables, 41,472 of which are binary variables, and has 1.884 million constraints. 
Case Study 3 has 294,912 binary variables, 3.866 million continuous variables, and 

7.963 million constraints. For both MINLP problems, Baron Version 17.1 did not 
complete an iteration in 10,000 CPU s.  

The MILP model of Case Study 2 has 262,336 binary variables, 481,537 
continuous variables, and 2.755 million constraints. CPLEX Version 12.6.3 solved the 

MILP to an optimality gap of 1% within 1074 CPU s, and yielded an optimum solution 
of $91.3 billion dollars. After solving the MILP, we generated a NLP by fixing the 
values of the binary variables to the MILP solution. The resulting NLP problem had 

301,825 continuous variables and 1.884 million constraints.  IPOPT Version 3.12 
failed due to lack of available allocated memory for the linear equation solver, MA27 
(the linear equation solver compiled with IPOPT). We gradually increased the factor 

that changes the size of the workspace allocated for solving the linear equations from 
its default value of 5 to a value of 10000, but failed to obtain a solution to the NLP 
problem. 

The solution of the MILP for Case Study 2 recommended to expand capacities 

of TECH1 1 Mtonne and TECH2 1 Mtonne at first time period. The solution also 
recommends investing 1 million in researching each technology. This indicates that 
producing the demanded chemical using either technology is advantageous to not 
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producing the CHEM3 (i.e. purchasing the demanded amount). After the first time 
period, the capacity expansions result in the realization of whether or not each 

technology successfully completed pilot-plant stage. There are four different 
outcomes: both TECH1 and TECH2 fail, only TECH1 fails, only TECH2 fails, or both 
TECH1 and TECH2 successfully complete pilot-plant stage. In time periods two and 

three, the MILP solution only recommends capacity expansions in the scenarios 
where both TECH1 and TECH2 successfully complete pilot-plant stages. At time 
period two, the levels of expansion for TECH1 depends on the realized yield value in 

each scenario and ranges between 5.7 Mtonnes and 5.9 Mtonnes, whereas, the level 
of expansion for TECH2 is 5.9 Mtonnes. At time period three, there is expansion in 
both technologies. The level of capacity expansion is 3 Mtonnes for both technologies. 

The scenarios where both technologies do not successfully complete pilot-plant stage 
represent a small portion of the objective function value caused by their probability 
of occurrence. A tighter optimality gap should result in capacity expansions in 

scenarios where only one of the technologies successfully complete pilot-plant stage. 
As with Case Study 1, the solution prioritizes the production of CHEM3 using 
installed capacity rather than purchasing it.  

The MILP of Case Study 3 has 811,008 binary variables, 1.682 million 
continuous variables, and 13.312 million constraints. A solution for Case Study 3 was 

obtained in 138 CPU s with an optimality gap of one percent. Similar to Case Studies 
2 and 2, we generated a NLP by fixing the integer variable values to the MILP 
solution. This resulted in an NLP with 3.866 million continuous variables and 7.963 

million constraints. Similar to Case Study 2 we were unable to find a solution for the 
NLP using IPOPT Version 3.12. IPOPT encountered memory errors in the linear 
equation solver. Case Study 3 is both larger and represents a different type of problem 

than both Case Studies 1 and 2. In Case Study 3, there is already sufficient capacity 
to produce CHEM4. The problem considers whether or not it is financially 
advantageous to introduce a new technology which may replace an existing one. The 

MILP solution suggested the cheapest way to produce CHEM4 is to use the existing 
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technologies to produce. In every scenario, there is no investment in either of under-
development technologies. Unlike Case Studies 1 and 2, there is sufficient installed 

capacity to satisfy the demand for CHEM4 at all time periods, and the demand is 
satisfied by production either through TECH1 or TECH3 from CHEM1.  

The size of the problem (i.e. the number of variables and number of constraints) 
is largely impacted by the number of uncertain parameters. The number of uncertain 

parameters directly impacts the number of scenarios and the scenarios cause the non-
linear scaling of MSSPs. The number of scenarios grow exponentially with additional 
uncertain parameters. This causes exponential growth in the number of variables. It 

also causes super-linear growth in the number of non-anticipativity constraints. 
Thus, it is important to understand how the number of uncertain parameters can 
grow in the NTIP problem. For each additional undeveloped technology, there are 

four additional uncertain parameters. Two representing the elasticities 𝛼𝛼 and 𝛽𝛽, one 
representing the success of technology development, and one representing the yield. 

When each parameter has two outcomes (except the success of technology 
development which always has three outcomes), the scenario set has a 24 factor 
increase in the number of scenarios with the addition of each under-development 

technology. Increasing the number of possible outcomes also increases the number of 
scenarios although not exponentially. Similarly, increasing the number of time 
periods increases the number of uncertain demand parameters. For each additional 

time period, the scenario set is increased a factor equal to the number of realizations 
for the demand parameter. The nature of the scaling of the problem is observed in 
both Case Studies 2 and 3. For instance, Case Study 2 has a 24 factor increase in the 

number of scenarios. This increase results in an additional 330,000 variables and 
more than 1.5 million additional constraints. With the increase in problem size, it 
was possible to solve the tight MILP relaxation of the problem, however the NLP 

became computationally intractable. Similar scaling is observed when comparing the 
Case Study 3 to Case Study 1. 
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3.2.4.3 A Biomass to Commodity Chemicals (BTCC) Case Study 

The BTCC case study (Fahmi et al. (2014)) considers a segment of the CPI where 
the desired product is ethylene (Fig. 3.11). Ethylene can be produced from naphtha 

using existing cracking technology and from biomass using two routes, Fermentation-
Catalytic Dehydration or Gasification-Catalytic Conversion-Catalytic Dehydration. 
We assume that Fermentation, which produces ethanol from biomass, and Catalytic 
Dehydration, which converts ethanol to ethylene, are mature technologies, and that 

Gasification, which produced syngas from biomass, and Catalytic Conversion, which 
converts syngas to ethanol, are under-development technologies. 

 

Figure 3.11 The state-task network for the ethylene production case study 

The planning horizon is three years separated into one-year time periods. The 

demand for ethylene at time periods two and three is not known with certainty. 
Values for the problem parameters and values for the realizations of uncertain 
parameters are compiled in Tables B.11-B.15 in Appendix B. The MSSP of the BTCC 

case study has 10 uncertain parameters, including two demand parameters for time 
periods two and three, and the four uncertain parameters for each under-
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development technology representing the elasticity parameters (𝛼𝛼 and 𝛽𝛽), the yield 

(𝜒𝜒), and whether or not the technology successfully completes laboratory and pilot-

plant stages (𝜓𝜓). This results in an MSSP with a total of 32 ⋅ 28 = 2304 scenarios.  

The deterministic equivalent of the MSSP, the MINLP model, for the BTCC 
problem has 1.983 million variables, of which are 89,856 binary variables, and 3.905 
million constraints. Baron Version 17.1 was unable to complete the pre-solve step of 

the problem in the allotted 10,000 CPU s and as a consequence was unable to 
generate a bound on the MINLP. The MILP (tight relaxation of the MINLP) resulted 
in 326,241 binary variables and 751,105 continuous variables, and 6.641 million 
constraints. CPLEX Version 12.63 solved the MILP to an optimality gap of 1% in 2313 

CPU s. Using the MILP solution we developed an NLP by fixing the binary variables 
in the MINLP to the values of the solution of the MILP. We attempted to solve the 
NLP using IPOPT Version 3.12, however IPOPT encountered an ‘out of memory error’ 

caused by the linear equation solver MA27. Increasing the memory allocated to the 
linear equation solver did not change the outcome, similar to Case Studies 2 and 3.  

The objective function value of the MILP solution for BTCC Case Study is $161 
billion. Figure 3.12 plots the empirical CDF (ECDF) for the total cost.  

 

Figure 3.12 The empirical cumulative distribution function for the total 
cost of the MILP solution 
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Notice that the total cost of production ranges between $152 billion and $172 
billion (Figure 3.12). The MILP solution does not invest in either research or capacity 

expansion for any of the under-development technologies under any scenario. Instead 
the demand for ethylene is satisfied by using the installed capacity of naphtha 
cracking. If there is not sufficient capacity to meet the demand through cracking, the 

remainder of the ethylene is purchased. Given the current prices, a solution favoring 
the cracking route is consistent with what one would expect to see. It is widely 
accepted that using biomass for the production of commodity chemicals is not 

financially advantageous at current market conditions (Uytvanck et al., 2014). The 
ECDF shown in Fig. 3.12 has four steps, which corresponds to cost differences in the 
realizations of the demand uncertainty. As there is no capacity or R&D investments 

to under-development technologies, the values of the uncertain parameters of these 
technologies are not realized throughout the planning horizon, and that there is only 
uncertainty realization associated with the demand. An interesting aspect of the 

optimal solution is lack of investments on capacity expansion of naphtha cracking to 
meet the demand of ethylene. Instead the solution suggests that existing capacity be 
used to produce ethylene and any demand that could not be met should be purchased. 
This indicates that the opportunity cost of producing ethylene versus purchasing 

ethylene was not high enough to outweigh cost of installing additional cracking 
capacity.  

3.2.5 Conclusion 
In this work we have presented a multistage stochastic programming (MSSP) 

formulation for the evaluation of new technology development projects. The 
formulation considers uncertainty in the success of developing a new technology, in 
the demand, and in the cost of installing new capacity. Uncertainty in the problem is 

modelled using both endogenous and exogenous parameters. The cost of capacity 
expansion is modelled using a two factor learning curve where the elasticities are 
treated as endogenous uncertain parameters. The deterministic equivalent of the 

MSSP formulation yielded a large-scale mixed integer nonlinear programming 
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(MINLP) model. Non-linearities in the model were linearized using tightly-
segmented linear relaxations (Misener et al., 2011), exact linearization (Muhittin and 

Ossama, 1992), and upper and lower estimators (Fahmi and Cremaschi, 2015). 
Whether or not a technology successfully completes laboratory and pilot-plant staged 
and reaches commercial stage was modelled using a stage gate representation. The 

outcome of the development of the technology and the final yield were modelled as 
endogenous uncertain parameters. Demand was assumed to be uncertain and was 
treated as an exogenous uncertain parameter.  

This work considered four different case studies. The first case study was a toy-

box sized problem which considered the addition of a new technology. The second and 
third case studies were larger and examined the scaling of the MINLP and MILP 
models of the NTIP problem. In Case Study 2, two under-development technologies 

were compared. In Case Study 3, a longer planning horizon retrofitting problem was 
examined. In both cases, only the MILP models were solved to optimality, and, due 
to the size of the problem, it was not possible to solve the MINLP and NLP models 

(using BARON version for MINLP and IPOPT version for NLP) to optimality in 
10,000 CPU s. The final case study considered biomass to ethylene production for 
supplementing or replacing ethylene production via cracking of naphtha. The 
problem considered uncertainty in the development of the gasification of biomass to 

produce syngas and uncertainty in the conversion of syngas to ethanol. The solution 
of the MILP model suggested that, at the current prices, biomass is not a viable 
investment for the production of ethylene, which is consistent with investment 

decisions shown in literature. 

The NTIP model provides a flexible approach to find the optimal investment 
planning strategy under capacity cost and demand uncertainty. The approach can be 
used to model new technology investments and retrofits. Tuning of the model to 

account for side products and operating costs can be accomplished simply by adding 
linear terms to the objective function.  
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The challenge of solving the NTIP problem is two-fold. On one hand, the models 
within the NTIP problem are non-linear. The solution of non-linear optimization 

problems is challenging for even small problems creating a need for specialized 
approaches/algorithms for solving MINLPs and NLPs of this size.  On the other hand, 
the NTIP problem grows rapidly as the size of the problem increases. For instance, 

an additional undeveloped technology to the model increases the number of variables 
by a factor of at least 24 and significantly increases the number of constraints. The 
scaling of the NTIP problem is not unique, MSSPs in general suffer from the curse of 

dimensionality. The growth of the number of constraints is particularly effected by 
endogenous uncertainty. Multistage stochastic programs present a particular 
challenge to researchers There exist many opportunities to develop algorithmic 

advances which are capable of addressing the computational complexity of solving 
real-world sized MSSPs.  
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CHAPTER 4  
MULTIPLE TWO-STAGE SP DECOMPOSITION (MTSSP) 

 

 

 Description of the MTSSP Algorithm 

The shrinking horizon MTSSP approach (Figure 4.1) generates and solves a 
series of two-stage stochastic programs (SPs). A similar approach in 
Balasubramanian and Grossman (2004) solves a series of two-stage SPs using a 

shrinking horizon for MSSPs with exogenous uncertainty. The authors considered 
the short-term scheduling of a multiproduct batch plant taking into account demand 
uncertainties. They formulated an approximate two-stage stochastic programming 

model for the entire planning horizon. After solving the model, decisions for the first 
time period are retained, and a new model is generated for the remaining time 
periods. Their results revealed that the objective functions values obtained by the 

approximation approach fell within a few percent of the rigorous MSSP objective 
value. Our work modifies and extends this approach to accommodate endogenous 
uncertainty. Furthermore, as will be explained in the remainder of this section, in 
order to keep the number of NACs and the problem size for the two-stage SPs to a 

minimum, our approach only implements the NACs associated for the first time 
period.  

At each time period, MTSSP approach generates a new two-stage SP based on 
the availability of resources.  The first one is solved at the beginning of the planning 

horizon (i.e., at t = 0). The two-stage problems are generated by removing all NACs 
except for the current (i.e., first) time-period. For the problem solved at the root node, 
this means that all the decisions at t = 0 must be the same for all scenarios, however, 

decisions made at later time periods anticipates the outcomes of each individual 
scenario. The resource and scheduling constraints are retained from the multistage 
stochastic programming formulation. 
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Figure 4.1 The MTSSP Algorithm 

Additionally, a constraint preventing overscheduling is implemented, viz. Eq. 
4.1. Eq. 4.1 ensures that any decisions made at the current time period have enough 

resources to be completed within a time period that is equal to the planning horizon. 
This equation only takes into account the current decisions, ignoring decisions that 
were made for the previous time-periods, and considers the resource availability for 
the overall length of the planning horizon. Using the length of the planning horizon 

results in less over-scheduling for earlier stages in a drug’s development (trial PI) 
and more over-scheduling as the products progress through the trials (trial PIII). The 
total necessary resources for trials that are selected for investment, i.e., Xd,j,t,s = 1, is 

calculated by multiplying the resource cost [ρd,j,r] of the remaining trials by their 
durations [τd,j].  
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Eq. 4.2 forces to start at least one trial of a product at the time the two-stage 
SP is solved. Without this constraint, the solution to the two-stage problem will delay 
all investments beyond the current time as it lacks the NACs for the remainder of the 

time-periods.  

Eq. 4.3 replaces all NACs in the original MSSP, and is the set of first time-
period NACs. The formulation for the two-stage SPs is obtained by adding Eqs. 4.1- 

4.3 to Eqs. A.1-A.8 of the MSSP. 

𝑋𝑋𝑑𝑑,1,1,𝑠𝑠 = 𝑋𝑋𝑑𝑑,1,1,1       ∀𝑖𝑖, 𝑠𝑠 (4.3) 

Once the solution to the initial two-stage SP is obtained, only the first-time 
period decisions are implemented and time is incremented by one (Fig. 4.1). Next, the 

algorithm checks if there are any resources available for investment and if there are 
any realizations based on the first-time period decisions at the current time point. If 
there are resources available and there have not been any realizations, one new two-

stage SP is constructed. For this child two-stage SP, the decisions for all scenarios for 
t < current time are fixed to the first-time period decisions recommended as the 
solutions of two-stage SP problems solved up to that time point, and the only NACs 

for the current time point are included. This two-stage SP is solved and time is 
incremented. On the other hand, if there are resources available and there have been 
realizations, the number of children two-stage SPs is equal to the number of realized 

outcomes. The set of scenarios is divided into subsets, each of which contains the 
scenarios that correspond to one of the realized outcomes. For each scenario subset, 
a two-stage SP is generated and solved with NACs of the current time. The algorithm 

���𝜏𝜏𝑑𝑑,𝑗𝑗𝜌𝜌𝑑𝑑,𝑗𝑗,𝑟𝑟𝑋𝑋𝑑𝑑,𝑗𝑗′,𝑡𝑡,𝑠𝑠
𝑗𝑗𝑗𝑗′≥𝑗𝑗𝑑𝑑

≤ |𝑻𝑻|𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚            ∀𝑟𝑟, 𝑠𝑠 (4.1) 

�𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠
𝑖𝑖,𝑗𝑗

≥ 1     ∀𝑠𝑠 (4.2) 
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continues to march through time until each scenario is realized or until the end of the 
planning horizon is reached. 

Table 4.1 Parameters for the Two-Product Case Study 

 

Here, we will demonstrate the approach using a two-product two-trial case 
study of the pharmaceutical R&D pipeline management problem. Parameters for the 
two product example are shown in Table 4.1. The example consists of two products, 

A and B, each of which is required to complete two clinical trials, PI and PII. The 
planning horizon is 15-months divided into three-month increments. The rigorous 
MSSP formulation of the two-product case-study is given by a set of nine scenarios 

corresponding to the combination of outcomes of each of the two products. The 
objective function for the MSSP formulation is the ENPV of the decision tree, viz. Eq. 
(A.1). In order to ensure that the decisions do not violate scheduling rules, three 

binary variables are defined: (1) trial j for product d is started at time t for scenario s 

[Xd,j,t,s = 1], (2) trial j for product d is complete at time t for scenario s [Yd,j,t,s = 1], and 
(3) trial j for product d is ready to start at time t for scenario s [Zd,j,t,s  = 1] (Colvin and 

Maravelias 2008). The constraints are used to ensure that a trial cannot be started 
until its predecessor trials are started (Eqs. A.3-A.5 and Eq. A.7), that trials can only 
start once (Eq. (A.6)), and that a trial is complete after the associated duration (Eq. 

A.2). Additionally, decisions are constrained by available resources, which are 
implemented by Eq. A.8. Eqs. A.9 and A.10 are the NACs. 

Solving the small two-product case using the rigorous MSSP given in Appendix 
A yields a solution with an ENPV of $1104 M and the decision tree shown in Figure 

4.2a. For the two-product example, the root node SP solution recommends starting 
trial (B, PI) as the first-stage decisions (Fig. 4.2b).  After incrementing the time (t = 
1), the algorithm determines that there are idle resources, and a new two-stage SP is 

  Duration Probability Cost 
($1M) 

Resource 1 
(ρmax=2) 

Resource 2 
(ρmax=3) revmax γL γD 

product PI PII PI PII PI PII PI PII PI PII 
A 2 4 0.3 0.5 10 90 1 1 1 2 3100 19.2 44 
B 2 3 0.4 0.6 10 80 1 2 1 1 3250 19.6 56 
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generated. In this new two-stage SP, the decisions at t = 0 are fixed to the first-time 
period decisions of the initial SP for all scenarios, and the NACs for t = 1 are added. 

For our two-product example, the optimal solution to the two-stage SP at t = 1 
recommends investing in trial PI of product A, (A,PI) (Fig. 4.2b). At this point, the 
time is incremented to t = 2. At t = 2, the algorithm checks to see if there are resources 

available and if there have been realizations. There are two realizations at t = 2, 
yielding two outcomes: product A passes or fails trial PI. For this problem, there are 

a total of nine scenarios, and in three of them, product A fails the first trial, PI. These 
three scenarios are grouped as one scenario subset. The other scenario subset 
includes the remaining six scenarios where product A passes the first trial. Normally, 

two two-stage SPs would be generated, however, there are not enough resources to 
start any trials at t = 2, and hence, no SPs are generated at this time. Time is 
incremented to t = 3. The algorithm again checks to see if there are resources 

available for investment and whether or not there are investment decisions available. 
There are two realizations at t = 3. The realizations are: product B passes or fails trial 
PI. The scenario sets from t = 2 are further divided based the outcome of trial (B,PI).  

This yields four scenario sub-sets and thus four sub-problems. For each of the four 
sub-problems, the algorithm checks whether there are enough resources or not. For 
three of the four sub-problems, there are sufficient resources and investment 

opportunities. For scenario set where both (A,PI) and (B,PI) fail, there is no 
investment decision available, i.e., both products failed their first trials. The solutions 
of the remaining three two-stage problems at t = 3 can be seen in Figure 4.2b. 

Incrementing the time to t=4, we realize that there are no resources available for 
investment for each child, and we reach the end of the planning horizon. Given this 
decision tree (Fig. 4.2b), the ENPV of the MTSSP solution is $1081 M compared to 

the optimum of $1104 M. 
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Figure 4.2 Results of the (a) MSSP and (b) MTSSP for the Two-Product 
Case Study 

 Pharmaceutical R&D Pipeline Management Problem Case Studies 

In this section, we apply the MTSSP algorithm to solve three instances of the 
pharmaceutical R&D pipeline management problem. These instances include three, 
five, and six products. Each should successfully complete three critical trials before 

reaching market. Parameters for all cases are included in Table 3.3, Table 3.5, and 
Table 3.6 in Section 3.1.1.  Each trial consumes two different resources while running. 
The MTSSP heuristic was implemented using Pyomo 3.3 (Sandia Corporation, 2013) 

on 64-bit Ubuntu 12.04. Unless otherwise noted, all programs (including the rigorous 
MSSPs) were solved to optimality with 0.01% gap using CPLEX 12.51 on IntelCore 
i7 4770K @ 3.4 GHz x 8 with 16GB RAM. The problems that had extensive memory 

requirements (more than 16GB RAM) were solved using CPLEX 12.51 on Intel Xeon 
CPU E5606 @2.13 GHz x 8 with 32GB RAM running 64-bit Ubuntu. The solution 
times for each method are given in CPU seconds. 

4.2.1 Solution to a Three Product Case Study 
The percent difference between the objective function obtained with the 

MTSSP approach ($1169 M) and the rigorous MSSP ($1189 M) solution for the three-
product case is 1.6% (Figure 4.3). The to the MTSSP decomposition algorithm was 
obtained in 25.8 CPU seconds, which is comparable to the solution time of the 

rigorous MSSP (29.98 CPU seconds).  

(a) MSSP

(B,PI)

(B,PII)(A,PI)

(A,PII)

(b) MTSSP

t
0

1

2

3

4

(B,PI)

(A,PI)

(B,PII)(A,PII)



74 

Total of five two-stage SPs were solved to generate the decision tree shown in 
Figure 4.4b. Comparison of this decision tree to the one obtained as the MSSP 

solution shows that the decisions up to t = 3 (Figures 4.4a and 4.4b) are same, and 
they begin to differ starting at t = 3, where the solution of the rigorous MSSP 
recommends to wait rather than start trial (D2,PI). The current implementation of 

the MTSSP approach does not allow any “wait-and-see” decisions, and hence at times, 
leads to over-scheduling. One example of the overscheduling effect in the three 
product case can be seen at t = 6. 

In the MTSSP approach, there are too few resources available to start (D2,PII). 

If (D1,PI) is successful this causes penalties to be accessed for D2 being idle in the 
R&D Pipeline. This tendency to overschedule causes several products to sit idle in 

the pipeline due to resource unavailability at later times of the planning horizon, and 
thus yields a lower objective function value. 

 

Figure 4.3 Percent differences between the rigorous MSSP solution and 
the objectives obtained by the MTSSP, Linear Relaxation, and ENPV of 
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Figure 4.4 Solutions to the three-product case obtained using the (a) the 
deterministic equivalent MSSP and (b) MTSSP Approach 

4.2.2 Application of the MTSSP Algorithm to Larger MSSPs 
Other than the two- and three-product problems, the MTSSP approach yielded 

solutions for five- and six-product problems. Considering all cases, the differences 
between the ENPVs obtained with the MTSSP algorithm and the ENPVs of the 

rigorous MSSP solution (the optimum) are all below 3.0 % (Fig. 4.3). The difference 
between the objective values obtained by the MTSSP approach and the optimal is 
similar for all instances of the clinical trial planning problem. As the MTSSP 

approach only considers first-stage decisions at each sub-problem, it makes decisions 
here-and-now as it marches through the planning horizon, and as such, is unable to 
consider wait-and-see strategies. This behaviour of the algorithm translates into two 

limitations while solving multi-stage stochastic programs with endogenous 
uncertainty: (1) decisions are made based on the highest current NPV, and (2) trials 
are over-scheduled early in the planning horizon leading to some products sitting idle 

in the pipeline due to resource limitations that were not anticipated. The MTSSP 
approach can not anticipate the availability of resources beyond the here-and-now 
decisions, therefore if the optimal solution were to invest in a lower value product 
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now and a higher value product later in order to exploit resource availability, the 
MTSSP solution will not capture it.  Similar arguments apply for the smaller cases, 

however this behaviour is often difficult to spot due to shorter planning horizons and 
fewer products. For medium size cases, such as the three-product case, this behaviour 
of the approach can be seen at t = 2 where the MTSSP solution decides to start (D1,PI) 

rather than wait until the realizations of trial (D3,PI) outcome. Making the correct 
decisions early in the planning horizon had the largest effect on the ENPVs of the 
solutions. When considering the differences between the MTSSP solution and the 

MSSP solution for the five-product case, the MSSP root node decision starts the first 
trials of D3, D4, and D5. The resource requirement to start all of the trials 
continuously suggests that there will be bottlenecking. The MSSP solution allows for 

resource overscheduling because the likelihood of all products being successful is low. 
The MTSSP results for the five-product case also selected items that will exceed the 
number of available resources if all clinical trials are successful. However, the items 

selected (D2, D4, and D5) by the MTSSP algorithm had a higher resource cost. Most 
notably the resources required to start the second trials for the drugs selected by the 
MTSSP algorithm require four of each type of resources whereas the ones selected by 

the MSSP solution requires three and four of each type of resource. Decisions beyond 
the root node for the five-product case are similar in that both will attempt to start 
the product with the highest expected value that fits within the resource limitations. 

In the five-product case, if all root node trials fail both remaining products can be 
started. The solution times for the MTSSP approach were comparable to that of the 
rigorous MSSP, and were two orders of magnitude faster for the five- and six-product 

problems (Table 4.2).  

Table 4.2 Computational Results for the MTSSP, MSSP, Linear Relaxation, 
and ENPV of Optimal Scenario Solutions problems 

 

First Problem Time Solver Time Objective Solver Time Objective Solver Time Objective

(CPU Sec) (CPU Sec) ($M) (CPU Sec) ($M) (CPU Sec) ($M)

Two-Product 5 0.05 0.2 1081 0.41 1104 0.07 1110
Three-Product 33 1.4 9.17 1169 29.98 1189 2.95 1233
Five-Product 96 19.37 100.23 2049 6620.35 2083 163.55 2111
Six-Product 235 96.35 478.59 2359 20233.79** 2412 2549 2510

1148
1277
2233
2634

ENPVof Optimal 
Scenario Solutions 

($M)

MTSSP Approach
Two-Stage 
Problems 
Solved

MSSP Linear Relaxation
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The solution time for the MTSSP approach depends on the number of two-stage 
SPs that should be solved. This number changes based on the number of products 

and trials, and the length of the planning horizon. For the worst case scenario, the 
MTSSP approach will need to solve 2|D||T| two-stage SPs for a problem with |D| 
products that should complete |J| trials over |T| time-periods. This estimate 

assumes that at each stage there are realizations of |D| products. In our examples, 
five, 33, 96, 235 two-stage SPs were solved to obtain the solutions for the two-, three-
, five-, and six-product problems. Comparing the number of actual problems solved to 

the theoretical maximum shows that only a fraction of the maximum number of 
problems are actually solved. Based on our experience with the MTSSP 
decomposition algorithm, the solution times were typically dominated by the time 

required to solve the initial two-stage programs as the size of the two-stage SPs 
diminishes as the planning horizon shrinks. For instance, the initial two-stage 
problem for the six-product case required 96.35 CPU seconds, whereas the total 

solution time for the 235 two-stage problems for the six-product case was 478.59 CPU 
seconds.   

The MTSSP approach is easy to implement given an MSSP formulation with 
endogenous uncertainty and shortens solution times considerably without suffering 

too much in the solution quality. However, its main limitation is the similarity of its 
formulation to that of the original MSSP. The two-stage programs of the MTSSP 
approach have the same number of scenarios as the original problem. Despite the 

removal of all NACs except the current time-period ones, each of these two-stage 
programs requires considerable computational memory to generate with the increase 
in the number of scenarios. Therefore, the MTSSP approach, like the rigorous MSSP 

formulation, suffers from rapid model growth, and hence, failed to solve the seven- 
and ten-product instances of the R&D pipeline clinical trial planning problem.  
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CHAPTER 5  
KNAPSACK DECOMPOSITION HEURISTIC (KDA) 

 

 

 Description of the KDA algorithm 

Throughout this section, two-product (toy) example of the pharmaceutical R&D 
pipeline clinical trial planning problem used in Chapter 4 is used to illustrate the 
KDA. Penalty coefficients, the duration of each trial, the probability of success for 

each trial, the maximum revenue, and the cost of each trial are summarized in Table 
4.1.  

The knapsack decomposition algorithm (Figure 5.1) solves a series of knapsack 
problems at allowable time periods, which are determined based on the outcomes of 

uncertainty and availability of resources for investment. The algorithm starts by 
generating a set of items. The items [𝑖𝑖 ∈ 𝑰𝑰] are created by enumerating all possible 

decisions, i.e., the product-trial pairs. As an example, the two product problem would 
have four items corresponding to (A,PI), (A,PII), (B,PI), and (B,PII).  Then, the time 

is set to zero and the first knapsack problem is generated and solved at the root node. 
At each time point where a knapsack problem is solved, the algorithm starts by first 
generating a subset of items [𝑬𝑬𝑖𝑖,𝑡𝑡,𝑘𝑘 ] that are eligible to be packed in the knapsack. 

For instance, at the root node, the two-product example would have two eligible items, 
(A,PI) and (B,PI). The other two items would be ineligible because the prerequisite 

trials have not been completed. Then, the values and the weights of each eligible item, 
and the maximum knapsack weights are calculated. 
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Figure 5.1 The KDA Algorithm 

Each item’s value is calculated based on the probability that the product passes 

the remaining clinical trials and the potential revenue for successfully completing all 
trials, viz. Eq. 5.1. 

𝑉𝑉𝑖𝑖,𝑡𝑡 =  �𝑅𝑅𝑅𝑅𝑑𝑑(𝑖𝑖) − 𝛾𝛾𝑑𝑑(𝑖𝑖)
𝐿𝐿(𝑡𝑡 + � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′

𝑗𝑗′ ≥𝑗𝑗(𝑖𝑖)

+ 1)� � 𝑃𝑃�𝑃𝑃𝑑𝑑(𝑖𝑖),𝑗𝑗 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�
𝑗𝑗 ≥𝑗𝑗(𝑖𝑖)

 (5.1) 

In Eq. 5.1, Rvd(i) represents the potential revenue for the product associated 
with item i. The potential revenue is calculated by taking the maximum revenue 

[Revd(i)max] and deducting the linearly depreciated trial costs [Cd(i),j(i)] as shown in Eq. 
(5.2). The potential revenue is depreciated linearly from loss of active patent life 
[γd(i)L]. The loss of revenue due to products being idle in the pipeline is not included 

in this formulation because the revenue is calculated assuming that trials are 
conducted continuously. In Eq. 5.1, the probability of the product d associated with 
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item i passing the remaining clinical trials is used to weigh the depreciated potential 
revenue.  

𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑(𝑖𝑖)
𝑚𝑚𝑚𝑚𝑚𝑚 − � 𝐶𝐶𝑑𝑑(𝑖𝑖),𝑗𝑗′ �1 − 0.025 � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′′−1

𝑗𝑗′≥𝑗𝑗′′

𝑗𝑗′′>𝑗𝑗(𝑖𝑖)

�
𝑗𝑗′≥𝑗𝑗(𝑖𝑖)

 (5.2) 

Using Eq. 5.1, the value of each item can be calculated at each time period. For 
the root node of the toy problem, the values of the eligible items are given as follows: 

𝑉𝑉1,0 = [3004.5 − 19.2(0 + (2 + 4) + 1)](0.3)(0.5) = 430.5 (5.3) 

 

𝑉𝑉3,0 = [3164 − 19.2(0 + (2 + 3) + 1)](0.4)(0.6) = 731.1 (5.4) 

Item weights are calculated based on resource requirement(s) for each item. 

The number of constraints depends on the number of resource types. The maximum 
capacity of knapsack for each constraint is set to the available resource for investment 
for each resource type. The capacity constraints for the two product example at the 

root node are given in Eqs. 5.5 and 5.6.  

1𝐼𝐼𝐼𝐼(𝐴𝐴,𝑃𝑃𝑃𝑃) + 1𝐼𝐼𝐼𝐼(𝐵𝐵,𝑃𝑃𝑃𝑃) ≤ 2 (5.5) 

 

1𝐼𝐼𝐼𝐼(𝐴𝐴,𝑃𝑃𝑃𝑃) + 1𝐼𝐼𝐼𝐼(𝐵𝐵,𝑃𝑃𝑃𝑃) ≤ 3 (5.6) 

In Eqs. 5.5 and 5.6, Iti is a binary, which is equal to one if item i is packed in 
the knapsack and zero otherwise. To avoid bottlenecks in the pipeline due to lack of 

resources, an additional constraint, Eq. 5.7, requires that items packed into the 
knapsack can complete all trials without idling in the pipeline.  

�� � 𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗,𝑟𝑟𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗
𝑗𝑗≥𝑗𝑗(𝑖𝑖)

�
𝑖𝑖

𝐼𝐼𝐼𝐼𝑖𝑖

≤ max � � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′

𝑗𝑗′>𝑗𝑗(𝑖𝑖)

 + 1       ∀𝑖𝑖 ∈ 𝑬𝑬�𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚             ∀𝑟𝑟∈𝐑𝐑  

(5.7) 
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In Eq. 5.7, ρd(i),j,r  is the required amount of resource type r to complete trial j 
for each product d associated with knapsack item i.  The duration of each trial for 

each product is given by ωd(i),j. For the knapsack problem solved at the root node of 
the two-product problem, Eq. 5.7 is expressed as: 

6𝐼𝐼𝐼𝐼(𝐴𝐴,𝑃𝑃𝑃𝑃) + 8𝐼𝐼𝐼𝐼(𝐵𝐵,𝑃𝑃𝑃𝑃) ≤ 14 (5.8) 

 

10𝐼𝐼𝐼𝐼(𝐴𝐴,𝑃𝑃𝑃𝑃) + 5𝐼𝐼𝐼𝐼(𝐵𝐵,𝑃𝑃𝑃𝑃) ≤ 21 (5.9) 

 

The objective of the knapsack problem is to maximize the value of the packed 

items. The objective of the root node knapsack problem for the two product case is 
given in Eq. 5.10. Eqns. 5.5, 5.6, 5.8, 5.9, and 5.10 give the Knapsack problem solved 
at the root node of the two-product problem. 

𝐌𝐌𝐌𝐌𝐌𝐌           (1)(450.6)𝐼𝐼𝐼𝐼(𝐴𝐴,𝑃𝑃𝑃𝑃) + (1)(756.5)𝐼𝐼𝐼𝐼(𝐵𝐵,𝑃𝑃𝑃𝑃) (5.10) 

 

Figure 5.2 The MSSP and KDA results for the two product case study 

The optimal solution for the root node selects items (A,PI) and (B,PI), which 

recommends investing in the first trials of both products (Figure 5.2b). Once the 
solution for the root node is found, sets of smaller knapsack problems are generated 
based on the outcomes of uncertainty associated with the items packed in the 
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previous knapsack. Based on the solution, there are 2n outcomes, and hence, children 
nodes, each containing a knapsack sub-problem, where n is the number of items that 

were packed into the previous knapsack. For the two product case, the root node 
solution packed two item meaning four additional knapsack sub-problems (K2,0) are 
generated. These knapsack problems represent the four possible outcomes of trial 

(B,PI) and trial (A,PI): both products successfully complete trial PI, both products 
fails at trail PI, trail (B,PI) is successful and trial (A,PI) is failed, and trial (B,PI) is 

failed and trial (A,PI) is successful.  In the current version of the algorithm, we 
assume that the sibling Knapsack problems are solved after all outcomes associated 
with the items that were packed in the parent knapsack are realized. Since more than 

one item was packed in the knapsack, the subsequent knapsack problems are solved 

at t=t+φ whereφ = Argmax{τi ∀i∈current knapsack}, i.e., t = 2. The knapsack 

decomposition algorithm continues to generate children knapsack problems and 
solving them until the end of the planning horizon is reached or until all products 
have been pushed through the pipeline and the outcomes of the trials are realized.  

For the two-product example, at the second level, one knapsack problem 

considers the items E2,1= {(A,PII), (B,PII)}, which is obtained when both products 
successfully complete trial PI.  The other sub-problems represent the cases where 
product B fails trial PI and product A passes trial PI, product A fails trial PI and 

product B passes trial PI, and both trials are failed. The subset of items that can be 
packed in each of these cases is given as E2,2= {(A,PII)}, E2,3= {(B,PII)},and E2,4= {}, 
respectively. The solutions to each of the child problems are shown in Figure 5.2b. In 

the case where  ≠  ∅ , decisions are to continue investing in products that successfully 

completed trial PI. For the realization that both products pass trail PI, the optimal 
solution to the child problem is to invest in (B, PII). The sub-problem where 𝑬𝑬 =  ∅ 

corresponds to the scenario realization that both products fail their first trial. As the 
eligible item set is empty, a knapsack problem is not solved for this realization.  

Repeating the process of determining φ for each sub-problem, we realize that the time 

(t) in which new child problems would be generated lies outside the planning horizon, 
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and hence, the KDA terminates. In other words, for two-product example, the KDA 
terminates after making decisions at t = 2.  The decision tree recommended by the 

KDA is shown in Figure 5.2b. The ENPV of the KDA solution is $1097 M, which is 
within 0.7% percent of the rigorous MSSP solution. 

 Pharmaceutical R&D Pipeline Management Problem Case Study 

5.2.1 Solution to a three product case study 
The KDA was used to solve a three product case considering a 36-month 

planning horizon divided into 12 three-month increments. The decision trees 
obtained by the KDA, as well as, the decision tree obtained as the solution of the 
rigorous MSSP can be seen in Figure 5.3.  The objective values and the solution times 

are shown in Table 5.1. The optimum ENPV is obtained at $1189 M with a solution 
time of 30.0 CPU seconds. The optimal decision tree is given in Figure 5.3. 

 

Figure 5.3 Solutions to the three-product case obtained using the (a) the 
deterministic equivalent MSSP and (b) KDA Approach 

For the three-product problem, the KDA produces a decision tree yielding an 
ENPV of $1178 M, which is within one percent of the optimal. The KDA solution takes 

0.52 CPU second to obtain, which is two orders of magnitude faster than the rigorous 
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MSSP solution time. The KDA solved a total of 44 knapsack problems, largest of 
which contained two items, and the smallest one item. Although the difference in 

ENPVs is small, there are differences between the two decision trees (Figure 5.3a and 
b). Most notably, the rigorous MSSP solution at t = 0 recommends starting trial 
(D1,PI), whereas the KDA recommends starting trial (D2, PII) initially (Figure 5.3a 

and b). The KDA chooses the “best value” item where the items’ values are calculated 
based on the likelihood of success and the return when the product reaches market. 
In its current implementation, after a set of decisions are identified (a knapsack 

problem is solved) for the current time period, the KDA does not generate a new 
Knapsack problem until the uncertainty regarding all decisions are realized. In other 
words, the KDA waits to make new investments until all currently invested products 

complete their trials. This implementation of the KDA may result in underutilization 
of resources. For instance in the three-product case, the root node decision for the 
KDA is to start (D2,PI). The next decision point for the KDA occurs at t = 2. In the 

MSSP solution, the root node decision is to select (D1,P1). Since the MSSP is not 
limited to making decisions after all realizations have occurred, the approach chooses 
to start (D3,P1) at t = 1. This difference causes the KDA solution to be sparser than 

both the MTSSP solution and the MSSP solution. The sparsity in the decision tree of 
the KDA solution (comparison of Figure 5.3a and b) suggests that the decision to wait 
until all uncertainties related to the selected items are realized may be too limiting. 

5.2.2 Application of the KDA to Larger Pharmaceutical R&D Pipeline 
Management Problem 
The KDA was able to solve all of case studies very quickly (less than 1500 CPU 

seconds).  The solutions obtained using the KDA were within three percent of the 
solution of the rigorous MSSP (Figure 5.4). In the six-product case, there is less than 

one percent difference between the CPLEX 12.51 solution of the rigorous MSSP and 
the KDA solution. However, it must be noted that the CPLEX optimality gap for the 
six-product case was set to five percent.  
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Figure 5.4 Percent differences between the rigorous MSSP solution and 
the objectives obtained by the KDA, Linear Relaxation, and ENPV of 

Optimal Scenarios  

When the KDA solutions are compared to the actual MSSP solution, it can be 
seen that the solutions deteriorate as the problem size and planning horizon increase 
(Table 5.1). A close examination of the three-product-case decision tree  revealed that 

the solutions obtained using the KDA tended to be sparser than the rigorous MSSP 
algorithm. The decision to wait until all selected items have completed their trials 
before generating new knapsack problems may have partially contributed to the 

deterioration of the solution, although some deterioration is expected with the 
increase in problem size. When considering the decision tree for the five-product case 
the sparsity of the KDA solution is less noticeable than with the three-product case. 

In the three- product case, the durations of the trials  range from two to four time 
periods whereas with the five-product case the durations of clinical trials range 
between one and three time periods. With the durations of the trials being shorter 

realizations occur more frequently allowing for more products to be scheduled. For 
instance, in the three-product case, the KDA was required to wait until t = 2 to start 
new clinical trials, however in the five-product case, the realization of root node 

decisions occurs at t = 1. Additionally, the KDA solution for the five-product case 
selects fewer items than the MSSP for the root node problem.  
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Table 5.1 Computational results for the KDA, MSSP, Linear Relaxation, 
and ENPV of Optimal Scenarios problems 

 

The KDA solution for the four product case study selects the first trials for 

products D2 and D4 at the first time period.  (D2,PI) and (D4,PI) correspond to the 
items with the highest expected value. The resource overscheduling constraint 
prevents the KDA from starting clinical trials if the subsequent trials will be resource 

constrained. The MSSP solution also selects three products at the root node however 
the MSSP considers resource availability beyond the root node decision point. In the 
five-product case, the MSSP selects the first trials of products D3, D4, and D5. The 

solution overschedules resources for the five product case because the likelihood of a 
failure exceeds the potential loss associated with products that are idle in the 
pipeline. This result yields the solution that has the highest expected net present 

value. Decisions that occur beyond the root node decision point favor high value items 
that are within the available number of resources. In the five product case, if all 
products selected as the root node decisions fail their initial clinical trials the 

remaining items may all be started, and this is reflected in the solution. It should be 
noted that the KDA was the only approach that generated and implementable (i.e., 
feasible) solutions for problems where the rigorous MSSP cannot be solved.   

For seven- and ten- product cases, for which we were not able to obtain the 

optimum as the solution of the deterministic equivalent of the MSSP formulation due 
to computational memory constraints, an upper bound of the optimal was calculated  
using the ENPV of the optimal solutions of each individual scenario. The solution 

generated by the KDA is within 25% of the solution obtained by the Expected value 

Algorithm 
Time

Solution 
Evaluation

Objective Solver 
Time

Objective Solver 
Time

Objective

(CPU Sec) (CPU Sec) ($M) (CPU Sec) ($M) (CPU Sec) ($M)
Two-Product 4 0.06 0 1097 0.41 1104 0.07 1110
Three-Product 44 0.34 0.03 1178 29.98 1189 2.95 1233
Five-Product 96 0.76 0.36 2043 6620.35 2083 163.55 2111
Six-Product 109 1.09 1.82 2403 20233.79** 2412 2549 2510

Seven-Product 496 5.25 12.52 2870 --- ---
Ten-Product 3236 298.35 1462.01 4012 --- --- -- --

1148
1277
2233
2634
3107
5026

KDA Approach

Knapsacks  
Solved

Deterministic Equivalent 
MSSP Linear Relaxation ENPVof Optimal 

Scenario Solutions

Objective

($M)
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of the Expected Value of Perfect Information (EVPI) approach for the ten-product 
case. When the optimum solution for the three-, five-, and six-product cases are 

compared to the ENPV obtained using the EVPI approach, it is observed that they 
are within 9.2 % of the MSSP solution. Based on these results, we can argue that for 
the ten-product case, the solution of the KDA is, at the worst case, within 15% of the 

optimal MSSP solution. 

Unlike the MSSP, the KDA does not require using a full set of scenarios to 
generate the problem, which considerably reduces the number of variables. This 
reduction translates into substantially smaller optimization problems. In the six-

product case, the rigorous MSSP had 1,359,873 variables. In contrast, the largest 
knapsack problem the KDA approach solved had 19 variables.  

The overall solution time for the KDA is impacted by two steps: (1) executing 
the KDA, and (2) generating the corresponding decision tree and calculating the 

ENPV of this decision tree. The CPU seconds required to complete each step for all 
cases are given in Table 5.1. As can be seen from Table 5.1, the overall solution times 
for the KDA are dominated by the second step, generation of decision tree and 
evaluation of the corresponding ENPV for the seven- and ten-product cases. For 

instance, the time required to execute the algorithm was 298.35 CPU seconds, and 
the time to generate the ENPV was 1462.01 seconds in the ten-product case.  The 
time to generate the decision tree and evaluate the ENPV grows exponentially due to 

the exponential growth in the number of scenarios. For smaller instances of the KDA, 
instances with few scenarios, the times to generate the corresponding decision tree 
and to evaluate the ENPV is almost negligible when compare to the time to complete 

the KDA. Nevertheless, the total solution times for KDA are several orders of 
magnitude lower than the ones for the rigorous MSSP. 

The execution times for the KDA depend on the number of knapsack problems 
solved. A theoretical bound on the maximum number of knapsacks generated can be 

given by Eq. 5.11.  
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𝑀𝑀𝑀𝑀𝑀𝑀 𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 =  2
|𝑻𝑻|𝜉𝜉

min {𝜏𝜏𝑑𝑑,𝑗𝑗 ∀𝑑𝑑,𝑗𝑗} (5.11) 

ξ is given by either the solution to the fractional knapsack problem assuming 
that all of the items can be packed or the number of products. The minimum of these 
two values is selected. Using the number in Eq. 5.11 yields a very high bound on the 

number of knapsacks that can possibly be solved. The cause of the high bound is two-
fold, (1) the assumption that realizations occur as often as the minimum trial 
duration, and (2) the assumption that the knapsack always packs the maximum 

number of products. For most cases considered in this work, the durations of trials 
vary significantly. For instance, in the three-product case, the duration of the phase 
III clinical trials is at least twice as long as the phase I clinical trials. The result is 

an over estimate of the total number of realizations. Additionally, in our experience 
the number of items packed in each knapsack rarely reaches the maximum number 
that can be packed. Eq. 5.11 does provide a maximum bound despite the actual 

number of knapsacks solved being only a fraction of the maximum. 

 Compared to the bound, the number of knapsacks that needed to be solved 
when implementing the KDA was much smaller. In two-product case, the case with 
the highest percentage of the total knapsack problems solved, four knapsack 

problems were solved. These knapsack problems account for 12.5% of the total 
possible number of knapsack problems.  For cases with more than three-products, 
solving many smaller knapsack problems is orders of magnitude faster than solving 

the rigorous MSSP. The KDA provided the quickest solutions with small 
deterioration in the solution quality when compared to the MTSSP approach 
presented in Chapter 4..   

 Evaluating Sensitivity of the KDA Solution Quality and Time to 
Original Problem Parameter Values and Size 

The parameters of the pharmaceutical R&D pipeline management problem are 
the lengths and the costs of the clinical trials, the revenue realized after successful 
completion of all clinical trials, and the penalty factors associated with delay of 

products already in the pipeline and loss of patent life. We test the sensitivity of the 
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KDA solution to the values of these parameters by perturbing each one individually. 
The size of the R&D pipeline management problems changes with the number of 

trials, the length of the planning horizon, and the number of resources. To study the 
impact of problem size on the KDA performance, we constructed a set of problems 
where the number of products, the number of trials, the length of the planning 

horizon, and the number of resources are varied independently.  

 Variants of KDA Decision Rules 

The KDA has two decision rules. The first one determines when new knapsack 
problems are generated. The previous computational studies revealed that although 
the KDA yielded tight feasible solutions (within three percent), for some problems, 

particularly the ones with large differences in clinical trial lengths, it generated very 
sparse decision trees. For these problems, the quality of the solution was worse (closer 
to three percent). We hypothesize that the sparse decision tree may be a result of the 

algorithm requiring that all started trials must be completed prior to starting new 
trials. 

The second decision rule specifies the constraint that aims to prevent products 
from being idle in the pipeline. We refer to this constraint as the resource 

overscheduling constraint. The original KDA formulation introduces a hard resource 
overscheduling constraint, which ensures that for every item packed there will be 
sufficient number of resources to continue subsequent trials. Because this constraint 

does not consider the possibility that a product may fail a trial, it may significantly 
limit future investments in additional products, and hence, may lead to sparse 
decisions trees.  

5.4.1 Sub-problem generation rules 
Here, two additional approaches are proposed for determining when knapsack 

problems are generated: (1) at Each Time Period (ETP), and (2) After Each 
Realization (AER). The ETP generates knapsack problems at each time period where 
there are idle resources and clinical trials that can be started. When a realization 

occurs, i.e., one or more of the started clinical trials are completed, new knapsack 
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problems are generated for each realized value. If any items remain in the knapsack 
(trials that have been started but not yet completed), they are passed as already 

selected items to each newly generated knapsack problem. Figure 5.5 graphically 
depicts the knapsack generation schemes using ETP (Fig. 5.5(a)), the original KDA 
(Fig. 5.5(b)), and AER (Fig. 5.5(c)) for three time periods. The solution of the first 

knapsack problem is to pack items 1 and 2 (Figure 5.5, 𝑡𝑡 = 0). The trial associated 

with item 1 is completed at 𝑡𝑡 = 1, while the trial of item 2 is completed at 𝑡𝑡 = 3. The 

ETP approach generates two new knapsack problems at 𝑡𝑡 = 1 (Fig. 5.5(a)). Each 
knapsack problem corresponds to a unique realization associated with item 1. The 

binary associated with item 2 is set equal to one (𝑥𝑥2 = 1) in both knapsack problems. 

For this example, we assume that there are not sufficient resources to add any more 
items at 𝑡𝑡 = 1. At 𝑡𝑡 = 2, there are no realizations, i.e., the trial associated with item 

2 is not completed. The ETP algorithm generates and solves two new knapsack 
problems. In each knapsack problem, the value of x2 is set equal to one. The solutions 

of these knapsack problems are different. In one case, the algorithm selects item 6. 
In the other case, the algorithm does not have sufficient resources to add another 
item. The uncertainty realization associated with item 2 occurs at 𝑡𝑡 = 3. As can be 

seen in Fig. 5.5(a), the KDA generates two knapsack problems for each branch. In the 

case where item 6 is selected, the knapsack problem corresponding to one realization 
is able to add item 5. The other knapsack problem does not have sufficient resources 
to add another item. 

Figure 5.5(b) depicts the knapsack problem generation rule used in the original 

KDA. The solution at 𝑡𝑡 = 0 selects items 1 and 2. The original KDA does not generate 

any knapsack problems until the clinical trials associated with both items are 
completed, i.e., until 𝑡𝑡 = 3 (Fig. 5.5(b)). At 𝑡𝑡 = 3, the original KDA generates and 

solves four new knapsack problems, each one corresponding to one of the possible 
outcomes of uncertainty. 

The AER approach (Fig. 5.5(c)) generates and solves knapsack problems when 
any of the selected trials is completed, i.e., the outcome of an uncertain parameter is 
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realized. Unlike the original KDA, if more than one item were packed in the 
knapsack, the AER approach generates new knapsack problems at the completion of 

the shortest clinical trial. Similar to ETP approach, if there are any remaining items 
in the knapsack (trials that have been started but not yet completed), they are passed 
as already selected items to each newly generated knapsack problem. 

Figure 5.5(c) shows that the solution of the first knapsack problem is the 

selection of items 1 and 2 at 𝑡𝑡 = 0.  The uncertainty associated with item 1 is realized 

at 𝑡𝑡 = 1. The AER approach generates new knapsack problems for each realization. 

Similar to the ETP approach, the AER approach finds that there are insufficient 
resources to start any new trials. Unlike the ETP approach, the AER approach does 
not generate new knapsack problems unless there is a realization. Therefore, no 
knapsack problems is generated at 𝑡𝑡 = 2. At 𝑡𝑡 = 3, four knapsack problems are 

generated, two for each branch. The two knapsack problems in each branch represent 

the possible realizations of uncertainty associated with item 2. Solutions for each of 
the four knapsack problems at 𝑡𝑡 = 3 are shown in Fig. 5.5(c). 
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Figure 5.5 The knapsack generation schemes, (a) ETP, (b) Original KDA, 
(c) AER 
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5.4.2 Formulations for Resource Overscheduling Constraint 
The original resource overscheduling constraint in the KDA does not allow for 

items (drug-trial pairs) to be packed as part of the solution if there will not be enough 
resources to pack items corresponding to subsequent trials of the same drug. For 
instance, assume that two potential drugs need to complete two trials before reaching 

market, the duration of all trials are equal, and the resource costs are 10 and 30 for 
drug A trial one and trial two, and 20 for both trials for drug B, and the maximum 
amount of available resources is 30. The first trials of products A and B cannot be 
started at the same time because the number of resources needed to start the second 

trials exceeds the maximum amount.  This constraint leads to a conservative solution 
because it does not consider the possibility of a drug failing to successfully complete 
the selected trial or the subsequent trials when trying to anticipate the future 

resource requirements. 

We present two new formulations for avoiding possible resource 
overscheduling. The first one modifies the knapsack problem formulation by adding 
a penalty term to the objective function rather than an additional constraint. The 

penalty term grows proportional to the number of resources that exceed the number 
of available resources, and is shown in Eq. 5.12.  

𝑃𝑃𝑟𝑟 = 𝜆𝜆�� � 𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗,𝑟𝑟𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗
𝑗𝑗≥𝑗𝑗(𝑖𝑖)

�
𝑖𝑖

𝑥𝑥𝑖𝑖

− �max� � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′

𝑗𝑗′>𝑗𝑗(𝑖𝑖)

 + 1       ∀𝑖𝑖 ∈ 𝑬𝑬�𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝑟𝑟� 

(5.12) 

The amount each resource in excess affects the penalty, 𝑃𝑃𝑟𝑟, is given by a rate 

constant 𝜆𝜆. Penalties are only incurred if the number of resources used exceeds the 

number of available resources. The number of resources that exceed the number of 
available resources is calculated by subtracting the maximum resources available 

�max�∑ 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′𝑗𝑗′>𝑗𝑗(𝑖𝑖)  + 1       ∀𝑖𝑖 ∈ 𝑬𝑬�𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚� from the resources allocated for items that 

have been previously packed in the knapsack but have not been completed, 𝐶𝐶𝑟𝑟, and 
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resources allocated for newly packed items. To enforce that the penalty is only 
imposed when the number of resources is exceeded, a disjunction is introduced with 

a binary variable, 𝑦𝑦𝑟𝑟, which is one when the number of resources used exceeds the 

number of resources available and zero, otherwise. The disjunction can be seen in Eq. 
5.13. 

�
𝑦𝑦𝑟𝑟

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑟𝑟� ∨ �
¬𝑦𝑦𝑟𝑟

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0� (5.13) 

We use big-M formulation to convert this disjunction. The objective function 
with the penalty term is given in Eq. 5.14. 

max ��𝑉𝑉𝑖𝑖𝑥𝑥𝑖𝑖 −
𝑖𝑖

�𝑃𝑃𝑟𝑟𝑦𝑦𝑟𝑟
𝑟𝑟

� (5.14) 

Expanding the penalty term in Eq. 5.14 yields Eq. 5.15, whose first term is 

non-linear due to the multiplication of the binary variables 𝑦𝑦𝑟𝑟 and xi.  

�𝑃𝑃𝑟𝑟𝑦𝑦𝑟𝑟
𝑟𝑟

=  �𝜆𝜆�� � 𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗,𝑟𝑟𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗
𝑗𝑗≥𝑗𝑗(𝑖𝑖)

�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑦𝑦𝑟𝑟
𝑟𝑟

− �max� � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′

𝑗𝑗′>𝑗𝑗(𝑖𝑖)

 + 1       ∀𝑖𝑖 ∈ 𝑬𝑬�𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 + 𝐶𝐶𝑟𝑟�𝑦𝑦𝑟𝑟 

(5.15) 

This term is linearized by introducing a new binary variable z where 𝑧𝑧𝑖𝑖,𝑟𝑟 = 𝐼𝐼𝐼𝐼𝑖𝑖 ⋅

𝑦𝑦𝑟𝑟 and adding the following constraints, Eq. 5.16, to the knapsack problems.  

𝑧𝑧𝑖𝑖,𝑟𝑟 ≤ 𝑥𝑥𝑖𝑖     ∀𝑖𝑖, 𝑟𝑟 

𝑧𝑧𝑖𝑖,𝑟𝑟 ≤ 𝑦𝑦𝑟𝑟     ∀𝑖𝑖, 𝑟𝑟 

𝑧𝑧𝑖𝑖,𝑟𝑟 ≥ 𝑦𝑦𝑟𝑟 +  𝑥𝑥𝑖𝑖 − 1     ∀𝑖𝑖, 𝑟𝑟 
(5.16) 

The second formulation replaces the original resource overscheduling 

constraint with a probabilistic constraint, which uses the probability that resources 
will be needed. The probability that a drug will require resources for a given trial is 
equivalent to the probability that the drug passes the previous trial(s). The 

probability that a drug passes a set of trials can be calculated using the probabilities 
of success in each individual trial. The probability of a series of events occurring, 𝑃𝑃𝑃𝑃, 

where the outcome of each event (𝑒𝑒1, 𝑒𝑒2, … , 𝑒𝑒𝑁𝑁) is assumed to be independent, can be 
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written as 𝑃𝑃𝑃𝑃 = 𝑃𝑃(𝑒𝑒1 ∪ 𝑒𝑒2 ∪ … 𝑒𝑒𝑁𝑁) = ∏ 𝑃𝑃(𝑒𝑒𝑁𝑁)𝑛𝑛 . Assuming the trial outcomes are 

independent, the probability that a drug will pass a set of trials is calculated as the 
geometric sum of the probability of each trial’s success. Eq. 5.17 shows the modified 

constraint.  

��𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗(𝑖𝑖),𝑟𝑟 ⋅ 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗(𝑖𝑖) + � � � 𝑃𝑃(𝑗𝑗′
𝑗𝑗>𝑗𝑗′>𝑗𝑗(𝑖𝑖)

= 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)� 𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗,𝑟𝑟 ⋅ 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗
𝑗𝑗>𝑗𝑗(𝑖𝑖)

�
𝑖𝑖

≤  max � � 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗′

𝑗𝑗′>𝑗𝑗(𝑖𝑖)

 + 1       ∀𝑖𝑖 ∈ 𝑬𝑬�𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚            ∀𝑟𝑟∈𝐑𝐑  

(5.17) 

Notice that the new constraint is a relaxation of the original constraint. 

Resources for the current trial are allocated (𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗(𝑖𝑖),𝑟𝑟 ⋅ 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗(𝑖𝑖)) but the resources for 

subsequent trials are weighted using the probability that all of the previous trials are 

successful �∑ �∏ 𝑃𝑃(𝑗𝑗′𝑗𝑗>𝑗𝑗′>𝑗𝑗(𝑖𝑖) = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)�𝜌𝜌𝑑𝑑(𝑖𝑖),𝑗𝑗,𝑟𝑟 ⋅ 𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗𝑗𝑗>𝑗𝑗(𝑖𝑖) �. 

 Computational Studies 

The first set of computational studies investigates the impact of the problem 

parameters on the KDA performance. The parameters are the trial cost, the revenue 
for successful completion of the pipeline, the penalties for loss of patent life and non-
investment in products currently in the pipeline, the length of each clinical trial, and 

the overall resource availability. The original two-product (2_2_5_2), three-product 
(3_3_12_2), four-product (4_3_6_2), and five-product (5_3_6_2) cases are the base case 
problems. In all but the two-product case, three trials are required to be completed. 

The two-product case requires the completion of only two clinical trial. Each case has 
two resources constraining investment decisions. Planning horizons in each base case 
range from five time periods to 12 time periods. The parameters for each of the base 

case problems is given in Appendix C. The values of the cost, revenue, and penalty 
parameters are perturbed by ±10% and ±25% for each case. The sensitivity of the 
KDA performance to the lengths of the clinical trials is studied by extending the 

length of each trial by one and two time periods. To study the impact of overall 
resource availability, four problems are constructed with varying degrees of overall 
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resource constraints: (1) unconstrained, (2) 40 percent unconstrained, (3), 70 percent 
unconstrained, and (4) fully constrained. The base case problems are assumed to be 

fully resource constrained. The unconstrained case provides enough resources for 
each product to enter the pipeline and all eligible clinical trials to be completed 
simultaneously without delay. The number of resources in the 40 percent 

unconstrained case is calculated by increasing the available resources of the fully 
constrained case by 40 percent of the difference between the available resources in 
the unconstrained and the fully constrained cases. In the 70 percent unconstrained 

case, this increase is 70%.  

The second set of computational studies investigates the effect of the problem 
size on the KDA solution times. For each of the base case problems, the size of the 
problem is increased by increasing the number of trials, the length of the planning 

horizon, and the number of resources. Table 5.2 summarizes the considered 
variations. 
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Table 5.2 Problem specifications used for studying the sensitivity of KDA 
solution time to problem size. 

Variation Variation 
Value 

Number of 
Trials 

+1 
+2 
+3 

Number of 
Resources 

+1 
+2 
+3 

Length of 
Planning 
Horizon 

-1 
+1 
+2 
+3 

Trial Cost 

-25% 
-10% 
+10% 
+25% 

Active Patent 
Life Loss 
Penalty 

-25% 
-10% 
+10% 
+25% 

Idle Product 
Penalty 

-25% 
-10% 
+10% 
+25% 

Trial Duration 
+1 
+2 

Percent 
Unconstrained 

0% 
40% 
70% 

 

A plus sign (+) in a Table 5.2 refers to an increase in magnitude, and a minus 
sign (-) refers to a decrease. The number next to the sign indicates the magnitude of 

the increase/decrease. A total of 124 problems were developed to test the sensitivity 
of the KDA to parameter values and problem size. Information for the variations of 
the specific problems is summarized in Appendix E. 
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The performance of knapsack generation approaches (ETP and AER) are 
tested using the six base case problems. The resource overscheduling constraints 

were analyzed using the original six problems.  

Performance of the KDA is evaluated based on its solution quality and 
computational time requirements. The quality of the solution is assessed by 
comparing the KDA solution objective function value with that of the rigorous MSSP 

solution. They are expressed as the percent difference from the rigorous MSSP 
solution. The computation times are given in CPU seconds. Because the KDA 
generates solutions orders of magnitude faster compared to the time it takes to obtain 

the solution for the rigorous MSSP using commercially available solvers, the 
computation times for the variants of the KDA are compared to that of the original 
KDA.  

The KDA and the deterministic equivalent formulation of the rigorous MSSP 

have been implemented using python 3.5 with Pyomo 4.1 (Sandia Corporation, 2013) 
on Auburn Hopper. Pyomo solves each knapsack sub-problem using CPLEX 12.63 to 
an optimality gap of 0.1%. The rigorous MSSPs are solved to an optimality gap 1% 
for the two-, three-, and four-product variations and a gap of 5% for the five- and six-

product variations. In both cases, the rigorous MSSP is solved using CPLEX 12.63.  

 Results and Discussion of Computational Studies  

5.6.1 The Impact of Changes in the R&D Pipeline Management Problem 
Parameters 
The computational experiments revealed that the changes in the trial cost(s), 

the revenue(s), and both penalty parameters had very little effect on the decision 
trees generated by the KDA. Changes in the parameters, however, (as expected) did 
have fairly large changes in the value of the objective function. The numerical results 

of these studies are compiled in Appendix D. Similarly, variations in lengths of 
clinical trials did not have a significant impact on the solution quality.  
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Figure 5.6 plots the fraction of the ENPV of the KDA and MSSP for each of the 
trials vs the ENPV of the fully unconstrained case for each of the base cases. One can 

observe that the rigorous MSSP ENPVs asymptotically approach the unconstrained 
solution. A similar behavior is observed for the KDA solutions. However, the KDA 
solution asymptotically converges to a solution that has a lower ENPV than the 

MSSP in all but the two-product base case (Fig. 5.6). This behavior is an artifact of 
the knapsack problem generation schema. In the original KDA, knapsack problems 
are only generated after all realizations occur. Therefore, unless all clinical trials 

have the same duration penalties are accessed for products sitting idle in the pipeline, 
and the resulting ENPV is lower than the ENPV of the rigorous MSSP solution. 

As for the impact of the size of the problem on the quality of the KDA solution, 
when the length of the planning horizon and the number of resources were varied the 

KDA remained within five percent of the deterministic MSSP solution. However, 
when the number of trials was increased the KDA produced solutions greater than 
30% lower. After examining the decision trees for both the KDA and the deterministic 

MSSP where the difference in ENPVs exceeded five percent, it revealed that the 
solution for the MSSP was the “do nothing” solution. Since the KDA only has positive 
value items (see Eq. 5.2), it is unable to yield the “do nothing” solution.  

 

Figure 5.6 Change in ENPV of the KDA and MSSP solutions with resource 
availability 
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5.6.2 The Impact of R&D Pipeline Management Problem Size on KDA 
Solution Time 
Figure 5.7 plots how KDA solution times and the number of knapsack problems 

solved change with number of resources, number of clinical trials, and length of 
planning horizon. The top row of charts in Figure 5.7 plot the KDA solution times 
versus the variation of resources, number of clinical trials, or length of planning 

horizon. The charts plotting KDA solution time reveal that the number of resources 
and clinical trials have negligible impacts on KDA solution times. The number of 
resources affects the number of weight constraints in the knapsack problems. Adding 

weight constraints increases the complexity of an individual knapsack problem, and 
hence, may increase its solution time. For the level of variation considered in the 
number of resources for this computational study, the solution times for individual 

knapsack problems did not change significantly. The number of trials affects the total 
number of items in knapsack problems, but does not change the number of items that 
can be packed in any given time. The maximum number of items that may be packed 

in any knapsack is equal to the number of products.  

The KDA solution times appear to grow significantly when the length of the 
planning horizon is increased. (Fig. 5.7). The increase in planning horizon 
corresponds to an increase in potential decision points. An increase in decision points 

increases the number of knapsack problems solved, and hence, the KDA solution 
time.  

The bottom row of charts in Fig. 5.7 plots the number of knapsacks generated 
versus the variation of the number of resources, number of trials, and length of the 

planning horizon. One of the trends revealed in these plots is the positive correlation 
between the KDA solution time and the number of knapsack problems solved. The 
trend is most noticeable when comparing the solution time and the number of 
knapsack problems solved when the variation is in the length of the planning horizon. 
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Figure 5.7 The impact of problem size on the KDA solution time and the 
number of knapsack problems 

The knapsack problem is an np-complete problem, and, hence, the solution 
time for each knapsack problem increases in non-polynomial time based on the 
number of items and the dimensionality of the problem (number of weight 

constraints). The KDA solution time is equal to the cumulative solution time of all 
the knapsack problems plus the additional time consumed for logic operations (e.g., 
for determining eligible items). Figure 5.8 plots the KDA solution time against the 
number of knapsack problems solved. The plot suggests that the KDA time 

complexity is linearithmic (O(𝑛𝑛 log(𝑛𝑛))) where n is defined as the number of knapsack 

problems solved. In Christian and Cremaschi (2015), we presented a loose theoretical 
upper-bound on the number of knapsack problems that may be solved. For all 
problems considered in this computational study, the actual number of knapsack 

problems solved are significantly lower than the theoretical bound. Improving the 
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theoretical bound on the number of knapsack problems solved will allow for better 
prediction of KDA solution times. 

 
Figure 5.8 The correlation between number of knapsack problems solved 

and the solution time in CPU seconds of the KDA 

The number of knapsack problems generated depends on the number of 
realizations that occur in the planning horizon and the number of items. The number 
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number of items based on the items weights (resource requirements) and the 
maximum number of resources available. It also assumes that the same knapsack is 

packed at each realization regardless of the availability of items to pack and outcomes 
of items. Realizations are assumed to occur every 𝐦𝐦𝐦𝐦𝐦𝐦 (𝜏𝜏𝑑𝑑,𝑗𝑗 ∀𝑑𝑑, 𝑗𝑗) time periods. These 

assumptions cause the bounding approach to calculate the number of knapsacks 
solved if the maximum number of items allowed by the available resources is packed 

in every knapsack at each realization. 

Here, we introduce an algorithm that improves the bound by considering that 
each branch in the decision tree is limited to packing each item once. It assumes that 
realizations occur when the first item packed in the knapsack is completed. Similar 

to the previous approach, the algorithm does not consider the value of the uncertain 
parameter after it has been realized. It assumes that subsequent items can be packed 
whether or not the clinical trial is successful. This assumption creates an upper bound 
on the number of knapsack problems solved. The algorithm is presented in Eq 5.18. 

 

𝐴𝐴 =  ∅ 
𝑡𝑡𝑡𝑡 = 0 
𝐸𝐸𝐸𝐸𝐸𝐸 = 1 
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡 < |𝑻𝑻| 𝑑𝑑𝑑𝑑 

    𝐶𝐶 = 𝑰𝑰\𝐴𝐴 
    𝐵𝐵 = solution(max(∑𝑥𝑥𝑖𝑖  𝑠𝑠. 𝑡𝑡.  ∑𝑤𝑤𝑖𝑖𝑥𝑥𝑖𝑖  ≤ 𝜌𝜌𝑚𝑚𝑚𝑚𝑚𝑚  ∀𝑖𝑖 ∈ 𝐶𝐶 ))  
    𝐴𝐴 = 𝐴𝐴 ∪ 𝐵𝐵 
    𝑡𝑡𝑡𝑡 = 𝑡𝑡𝑡𝑡 + min (𝜏𝜏𝑑𝑑(𝑖𝑖),𝑗𝑗(𝑖𝑖) ∀𝑖𝑖 ∈ 𝐵𝐵) 

    𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐸𝐸𝐸𝐸𝐸𝐸 + 𝐸𝐸𝐸𝐸𝐸𝐸 ⋅ 2|𝐵𝐵| 
𝑒𝑒𝑒𝑒𝑒𝑒 

(5.18) 

 

The algorithm calculates the estimated number of knapsacks (𝐸𝐸𝐸𝐸𝐸𝐸) by 

stepping through the planning horizon. At each step, the algorithm finds the 
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maximum number of items that can be packed assuming that items that have been 
packed previously are no longer eligible. The algorithm is applied to the original set 

of problems presented in Christian and Cremaschi (2015). For the two-product case, 
it predicted a total of five knapsack problems. Using the KDA approach, the number 
of knapsack problems solved was four. The difference is due to the generation of 

knapsack problems regardless of the trial outcomes. In the two-product case, the 
number of failures that result in counting fictitious knapsack problems is low. This 
count increases with the size of the problem (number of products and trials). 

Therefore, as the size of the problem increases the estimate provided by Eq. 5.18 
degrades. For the three product case, the ratio of the number of actual knapsack 
problems solved to the estimated number is 0.20. For the largest problem (the ten-

product case), the ratio is the lowest at 0.05.  

Another measure of problem size is the number of scenarios, and Figure 5.9 
shows the change in the number of knapsack problems solved with the number of 
scenarios. Notice that the general trend of Fig. 5.9 shows an increase in the number 

of knapsack problems solved as the number of scenarios increases. The number of 
scenarios does not directly impact the number of knapsack problems solved, however 
the number of scenarios in a problem does depend on the number of uncertain 
parameters and the number of realizations for each uncertain parameter. The 

number of uncertain parameters in pharmaceutical R&D pipeline management 
problem depends on the number of products. For each additional product, there is one 
additional uncertain parameter, and for each additional clinical trial, there is one 

additional realization per uncertain parameter. For each additional uncertain 
parameter, there are (|𝑱𝑱| + 1) times more scenarios. Similarly, for each realization, 

there are �|𝑱𝑱|+1
|𝑱𝑱|
�

|𝑫𝑫|
 times more scenarios. Both the number of knapsack problems and 

the number of scenarios increase with increases in number of products, and hence, 
the positive trend in Fig. 5.9. Unlike increasing the products, increasing the number 

of clinical trials does not have a significant effect on the number of knapsack problems 
solved. In Fig. 5.9, this phenomenon is observed with the points that sit on an almost 
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horizontal line at 28 knapsack problems. This horizontal line represents an increase 
in scenarios without an increase in the number of knapsack problems solved. At 1024 

scenarios, Fig. 5.9 shows that the number of knapsack problems solved increases from 
24 to 559 without an increase in the number of scenarios. This occurs when the length 
of the planning horizon is increased. Increasing the length of the planning horizon 

neither adds new uncertain parameters nor adds new realizations, thus not 
impacting the number of scenarios. However, it increases the number knapsack 
problems solved because there are more decision points.  

 

 

Figure 5.9 The number of knapsack problems solved using the KDA plotted 
against the number of scenarios in the equivalent MSSP 

5.6.3 Impact of the Proposed Knapsack Problem Generation Rules 
The ENPVs and solution times for the KDA using all three knapsack problem 

generation rules are summarized in Table 5.3. For completeness, the same 

information is provided for the solution of the rigorous MSSP. The solution quality 
does not change significantly among different knapsack problem generation schemes 
(Table 5.3). All ENPVs obtained using the KDA approach remain within 5% of the 

rigorous MSSP ENPVs.   
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Table 5.3 Solution times and percent error for original knapsack, AER, and 
ETP knapsack generation schemes 

 

MSSP Original KDA  Every Time 
Period (ETP) 

After Every 
Realization 

(AER) 

ENPV Solve Time 
(CPU sec) 

Percent 
Error 

Solve 
Time 

(CPU sec) 

Percent 
Error 

Solve Time 
(CPU sec) 

Percent 
Error 

Solve Time 
(CPU sec) 

two-product 1110 0.02 1.17 0.05 1.17 0.09 1.17 0.07 
three-product 1189 0.84 0.93 0.37 5.05 0.96 1.51 0.35 
four-product 1683 2.71 0.42 0.81 0.30 1.26 0.30 0.87 
five-product 2083 16.95 1.92 1.24 1.44 2.12 1.44 1.7 
six-product 2412 97.67 0.37 1.63 0.21 3.18 0.21 2.45 
seven-product -- -- -- 8.17 -- 21.33 -- 16.67 

Average   0.96  1.63  0.93  

 

The ENPVs obtained by the ETP and the AER knapsack generation rules are 

identical for all but the three-product case. The difference in the three-product case 
is due to the lack of realizations at every time period. The decision trees obtained by 
the KDA using each of the knapsack problem generation schemes and from the 

solution of the rigorous MSSP for this case are given in Fig. 5.10. In the figure, the 
nodes correspond to decisions. The information in the parentheses represent the 
(drug, trial) selected at the decision point.  

Visually the decision trees obtained using the original KDA (Fig. 5.10(a)) and 

the AER decision rule appear (Fig. 5.10(b)) sparser than the MSSP decision tree (Fig. 
5.10(d)). In contrast, the decision tree for the ETP approach (Fig. 5.10(c)) is denser 
than the MSSP decision tree. The ETP approach results in the densest decision tree 

because it generates new knapsack problems at each time period. The solutions of 
these knapsack problems, in turn, may result in investment decisions at each time 
period. For the three-product case, the ETP approach overschedules the trials 

compared to the original KDA, partly due to how the resource overscheduling 
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constraint functions. This constraint ensures that the total number of resources 
needed to complete the remaining clinical trials without delay is less than the 

available number of resources during that same time period. This is implemented 
using a cumulative approach. For instance, consider a product that requires one 
resource for the first trial, two resources for the second trial, and three resources for 

the third trial. The total number of resources needed to complete all three trials is 
six. The cumulative approach ensures that for the duration of product’s clinical trials 
there are six resources available. It does not account for the fact that the first trial 

only requires one resource while the third trial requires three. Because the resource 
requirements for each trial are not differentiated, the algorithm may run into 
instances where the cumulative number of resources needed is available but the 

resources needed to start a particular trial at a specific time are not available. Solving 
problems at every time period provides more opportunities for this behavior.  

Figure 5.10(b) shows the decision tree generated using the AER approach has 
more decision points than the original KDA decision tree but fewer than the MSSP 

decision tree. Notice that despite considering new knapsack problems at each 
realization, the approach fails to obtain the first two decisions correctly, whereas the 
ETP approach captures this behavior. The AER approach is unable to do so because 
knapsack problems are only generated after realizations. 
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Figure 5.10 The decisions trees obtained by KDA for the three product case 
using (a) the original KDA (Christian and Cremaschi, 2015), (b) the AER, 
and (c) ETP knapsack generation schemes; and (d) the MSSP (Christian 

and Cremaschi, 2015) decision tree. 

The KDA solution times are orders of magnitudes faster than the time required 

to solve the deterministic equivalent MSSP for all variations of the knapsack sub-
problems generation schemes (Table 5.3). When solution times among different 
knapsack problem generation schemes are considered, in general, the original KDA 

yields the solutions the fastest and the KDA using the ETP approach the slowest. The 
only exception is the solution times for the three-product case in which the times are 
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small enough that the measurement error may exceed the measured time. In the 
original KDA, fewer knapsack problems were generated because all realizations are 

required to occur before new problems are generated. With both proposed methods, 
more knapsack problems are generated. Figure 5.11 shows the total number of 
knapsacks solved using each of the knapsack generation approaches. The problems 

used are the original problems from Christian and Cremaschi (2015). The 
computational studies on problem size revealed that the solution time increases with 
the number of knapsack problems generated. Notice that for the two-product and 

three-product cases, the differences between the number of knapsack problems solved 
are small. In the two-product case, the difference between the number of knapsack 
problems generated in the original KDA (least) and the ETP approach (most) is only 

two. In the larger cases (six- and seven-products), the difference in the number of 
knapsack problems solved increases considerably. In the seven-product case, the 
difference between the number of knapsack problems generated in the original KDA 

algorithm (least) and the ETP approach (most) was 462. For all cases, the AER 
approach generated more knapsack problems than the original KDA but as many or 
fewer than ETP scheme. In the cases where the realizations for decisions occur at 
each time period, generating knapsack problems using the ETP scheme is identical 

to generating knapsack problems using the AER scheme.  

5.6.4 Impact of Different Formulations of Resource Overscheduling 
Constraint 
The resource overscheduling constraint implemented in the original KDA tries 

to ensure that there will be resources available to start the subsequent clinical trial 
if a clinical trial is successful. Using the six problems originally solved in Christian 
and Cremaschi (2015), the impact of different formulations for avoiding resource 

overscheduling are investigated using: (1) the original resource overscheduling 
constraint, (2) a penalty term in the objective function, and (3) a probabilistic resource 
overscheduling constraint. 
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Figure 5.11 The number of knapsack problems solved using the original 
KDA, the ETP, and the AER knapsack generation approaches. 

We varied the penalty coefficient between 1 and 500 and solved each of the 
base case problems. Varied values of the penalty coefficient resulted in solutions with 

identical equivalent ENPVs. A closer investigation of the decision trees generated 
using different values of the penalty coefficient revealed that they did not change for 
the range considered. This suggests that investments in additional products is 
primarily limited by the availability of ‘here-and-now’ resources.  

The results for the implementation of the probabilistic approach are 

summarized in Table 5.4. Comparing the objective function values in Table 5.4 
reveals that values are lower when the probabilistic overscheduling constraint is used 
in all but the seven product case. In the seven product case, the improved value 

suggests that the value of allowing additional items to be packed outweighs the losses 
incurred for products being idle in the pipeline. 
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Table 5.4 The objective functions and solution times of the probabilistic 
resource constraint and the original resource constraint 

 Original KDA Sub-Problem Generation 

 

Probabilistic Resource 
Overscheduling 

Constraint 

Original Resource 
Overscheduling 

Constraint 

Objective 
Value 

Solve Time 
(CPU Seconds) 

Objective 
Value 

Solve Time 
(CPU Seconds) 

two-product 1097 0.05 1097 0.05 
three-product 1165 0.47 1178 0.37 
four-product 1665 1.17 1676 0.81 
five-product 2038 2.06 2043 1.24 
six-product 2399 2.86 2403 1.63 
seven-product 2871 17.48 2870 8.17 

 

The KDA solution times for the proposed approaches to formulating resource 

overscheduling constraint are similar to that of the original one for the smaller 
problems (two- and three-product cases). For the larger problems (six- and seven-
product cases), there is a noticeable increase in the solution times. For the penalty 

approach, this increase stems from the increase in the solution times of individual 
knapsack problems. The time for solving knapsack problems with the penalty term 
in the objective function was twice as long as solving the original knapsack problems. 

In each of the case studies, the average time needed to solve a knapsack problem with 
the penalty term was 0.04 CPU seconds whereas solving the original knapsack 
problems required 0.02 CPU seconds. In the smaller cases, the number of knapsack 

problems solved is small, and thus, the difference in the total solution times is 
insignificant. In larger cases, however, the total number is large, which leads to 
longer overall solution times for the penalty approach. The difference in the time to 

solve each knapsack problem with the penalty term can be attributed to the 
additional variables that were added to linearize the penalty term in the objective 
function.  
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Similar to the penalty approach, the probabilistic approach also shows 
increased solution time for larger problems (six- and seven-products). The knapsack 

problems with the probabilistic resource overscheduling constraint use a similar 
formulation to the original knapsack problems. For smaller problems (two- and three-
products), the solution times for the knapsack problems with the probabilistic 

constraint and the original knapsack problems are identical (0.02 CPU seconds). The 
larger problems revealed that the knapsack problems with probabilistic constraint 
take longer to solve (0.03 CPU seconds). The linear relaxation of the knapsack 

problem with the probabilistic constraint yields a larger feasible region than the 
original knapsack problem, which yields a looser upper bound. Therefore, for larger 
instances of the problem with more items that can be packed in a knapsack (i.e., 

products), it takes longer to solve the problems with the probabilistic constraint.  

 Generalization of the Knapsack Decomposition Algorithm 

The knapsack decomposition approach efficiently provided tight feasible 
bounds for all studied instances of the clinical trial planning problem. We hypothesize 
that the KDA would provide tight bounds for other MSSPs. Here, we extend the KDA 

to solve the NTIP problem. A complete description of the MSSP formulation for the 
NTIP problem can be seen in Section 3.2.3.  

The clinical trial planning problem consists of an objective function dependent 
on a set of discrete decisions. The decisions are constrained by a set of resources. In 

the construction of the KDA for the clinical trial planning problem, the discrete 
decision variable (whether each clinical trial is started at each time period) is 
converted into a set of items. The value of the items roughly corresponds to the 

expected value of the decision. The weights correspond to the resource requirements 
of the decision variables.  

The first step of the KDA algorithm is the identification of items of the 
knapsack problems. For the clinical trial planning problem, the items corresponded 

to the discrete decision variables. The NTIP problem has continuous decision 
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variables. If the items in a knapsack problem are continuous, the knapsack is a 
special case of the knapsack problem, where the true solution can be found using a 

greedy algorithm. Recalling from the formulation, the NTIP problem has three 
decision variables: the level of production in each technology (𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠), the level of 

capacity expansion of each technology (𝑋𝑋𝑖𝑖,𝑡𝑡,𝑠𝑠), and the level of research expenditures 

(𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡,𝑠𝑠 − 𝑅𝑅𝐷𝐷𝑖𝑖,𝑡𝑡−1,𝑠𝑠). In addition to the decision variables, the NTIP problem also has 

non-trivial recourse actions. After the realization of uncertainty (i.e. yield) there may 
be a need to purchase additional product to assure that demand is met. In contrast, 

the clinical trial planning problem has trivial recourse actions.  

To address the differences in recourse actions, modifications to the KDA are 
required. Figure 5.12 shows an overview of the modified KDA. From this point 
forward, we refer to the generalized version of the KDA where the decision variables 

can be either continuous or discrete and the recourse actions are non-trivial as the 
Expected Value Decomposition Algorithm (EVDA). The algorithm begins by setting 
the time period 𝑡𝑡 equal to zero and storing information on the initial sub-problem. At 

𝑡𝑡 = 0, there is a single sub-problem. In addition to the set of sub-problems at time t, 

𝑘𝑘𝑛𝑛,𝑡𝑡 ∈ 𝑁𝑁(𝑡𝑡), there exists a set 𝑅𝑅, which represents the realizations that have occurred 

prior to time period 𝑡𝑡 for sub-problem 𝑘𝑘𝑛𝑛,𝑡𝑡. At t = 0, R is the empty set. This is 

consistent with the case where no uncertainty has been realized. The algorithm then 
generates and solves each of the sub-problems 𝑘𝑘𝑛𝑛,𝑡𝑡 ∈ 𝑁𝑁(𝑡𝑡) at time 𝑡𝑡. After solving each 

sub-problem, the EVDA realizes the uncertainty associated with the decisions made 
in the sub-problem, 𝐸𝐸𝑛𝑛. From the realized uncertainty 𝐸𝐸𝑛𝑛, a set Θ is constructed. The 

set Θ represents the unique realizations of uncertainty for the realized parameters 

𝐸𝐸𝑛𝑛. For each unique realization of uncertainty 𝑚𝑚 ∈ Θ, sub-problems at time 𝑡𝑡 + 1 are 

constructed 𝑁𝑁(𝑡𝑡 + 1). The recourse actions for each unique realization of uncertainty 

are calculated. The recourse actions represent actions taken after the realization of 
uncertainty in time 𝑡𝑡 but prior to decisions made at time period 𝑡𝑡 + 1. After solving 

all sub-problems at time 𝑡𝑡, the algorithm increments the time and repeats the process 

of  generating EVDA problems, solving EVDA problems, realizing uncertainty, and 
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determining recourse actions. The process continues until the end of the planning 
horizon is reached. 

 

Figure 5.12 The EVDA algorithm. 

5.7.1 Formulation of the Knapsack Sub-Problem for the NTIP Problem 
The EVDA sub-problem is constructed as a knapsack problem. If the decision 
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be represented as the items in the continuous knapsack problems . The next step is 
to determine the value of each item. In general, the value of the item is the expected 

contribution to the objective function for making the decisions associated with the 
item at a particular time period 𝑡𝑡. For the NTIP problem, the objective function 

minimizes the cost of production where the cost of production at each time period is 
defined using Eq. 5.19 where 𝐶𝐶𝐶𝐶𝑖𝑖 is the cost of capacity expansion, 𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛 is the 

purchase cost of chemical 𝑛𝑛, 𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖 is the level of research spending, and 𝐹𝐹𝑛𝑛 is the 

amount purchased of chemical 𝑛𝑛.  

 �𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛 ⋅ 𝐹𝐹𝑛𝑛
𝑛𝑛

+  �𝐶𝐶𝐶𝐶𝑖𝑖𝑋𝑋𝑖𝑖
𝑖𝑖

+  �𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖
𝑖𝑖

 (5.19) 

Notice that the variable 𝐹𝐹𝑛𝑛 is not a decision variable. Instead, 𝐹𝐹𝑛𝑛 is a derived 

from the decision variable 𝑀𝑀𝑖𝑖,𝑛𝑛,𝑡𝑡,𝑠𝑠 in the MSSP. To better visualize the derivation of 

the EVDA sub-problem we include Eq. 5.20. 

𝐹𝐹𝑛𝑛 = 𝐷𝐷𝑛𝑛 −�𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃𝜒𝜒𝑖𝑖𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃
𝑖𝑖

 (5.20) 

Equation 5.20 represents the mass balance where the amount purchased at 
each time period depends on the level of demand and on the amount produced. 

Substituting Eq. 5.20 into Eq. 5.19 results in Eq. 5.21. 

�𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛 ⋅ �𝐷𝐷𝑛𝑛 −�𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃𝜒𝜒𝑖𝑖𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃
𝑖𝑖

�
𝑛𝑛

+  �𝐶𝐶𝐶𝐶𝑖𝑖𝑋𝑋𝑖𝑖
𝑖𝑖

+  �𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖
𝑖𝑖

 (5.21) 

 Equation 5.21 naturally represents the contribution of each decision, and the 

corresponding item, to the objective function value, therefore its expected value is 
used as the objective function of the knapsack sub-problems. The objective function 
for the NTIP knapsack sub-problems is given in Eq. 5.22.  

min𝐸𝐸 ��𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛 ⋅ �𝐷𝐷𝑛𝑛 −�𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃𝜒𝜒𝑖𝑖𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃
𝑖𝑖

�
𝑛𝑛

+  �𝐶𝐶𝐶𝐶𝑖𝑖𝑋𝑋𝑖𝑖
𝑖𝑖

+  �𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖
𝑖𝑖

� (5.22) 

Since expected value is a linear operator, equation can be reduced to,  
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min�𝑀𝑀𝑀𝑀𝑀𝑀𝑡𝑡𝑛𝑛 ⋅ �𝐸𝐸[𝐷𝐷𝑛𝑛] −�𝛾𝛾𝑖𝑖,𝑛𝑛,𝑃𝑃𝑃𝑃 ⋅ 𝐸𝐸[𝜒𝜒𝑖𝑖] ⋅ 𝑀𝑀𝑖𝑖,𝑃𝑃𝑃𝑃
𝑖𝑖

�
𝑛𝑛

+ �𝐸𝐸[𝐶𝐶𝐶𝐶𝑖𝑖] ⋅ 𝑋𝑋𝑖𝑖
𝑖𝑖

+  �𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖
𝑖𝑖

 (5.23) 

 

The values of expected demand (𝐸𝐸[𝐷𝐷𝑛𝑛]), and expected yield 𝐸𝐸[𝜒𝜒𝑖𝑖], and 𝐸𝐸[𝐶𝐶𝐶𝐶𝑖𝑖] are 

straight forward to calculate. As with any expected value calculation, the equivalent 
value is equal to the probability of the outcome occurring multiplied by the value of 
the outcome. In the case of 𝐸𝐸[𝐶𝐶𝐶𝐶𝑖𝑖], the value of the outcome depends on the variable 

𝑋𝑋𝑖𝑖. As such, the equation is incorporated as a constraint to the EVDA sub-problems. 

This constraint is shown in Eq. 5.24. In Eq. 5.24, 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1 and 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡−1 represent the 

cumulative installed capacity and research investment at the previous time period. 
In the case of the EVDA solution, this value may be calculated as the sum of 𝑋𝑋𝑖𝑖 and 

𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖 for all parent EVDA sub-problems which have been solved previously. 

𝐸𝐸[𝐶𝐶𝐶𝐶𝑖𝑖] =  ��𝑃𝑃�(𝑎𝑎, 𝑏𝑏)� ⋅ 𝐶𝐶𝐶𝐶0𝑖𝑖 ⋅ �
𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖

𝐶𝐶𝑋𝑋𝑖𝑖,0
�

𝑏𝑏∈𝛽𝛽𝑎𝑎∈𝛼𝛼

𝑏𝑏

⋅ �
𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡−1 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖

𝑅𝑅𝑅𝑅𝑖𝑖,0
�
𝑎𝑎

 (5.24) 

 Any constraint scenario specific constraint of the MSSP persists as a constraint 

in the EVDA sub-problem. In the NTIP problem, these are shown in Eq 5.25–5.29. 
Notice that when uncertain parameters appear in a constraint they are treated 
identical to that of the objective function (i.e., the expected value is substituted) 

𝑀𝑀𝑖𝑖,𝑛𝑛  ≤ 𝑌𝑌𝑖𝑖,3�𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖� 𝐸𝐸[𝜃𝜃𝑖𝑖] ∀𝑖𝑖,𝑛𝑛    (5.25) 

 

𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖  ≥ 𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠         ∀𝑖𝑖, 𝑠𝑠𝑠𝑠 (5.26) 

 

𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1 + 𝑋𝑋𝑖𝑖  ≤ � �𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠+1𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐶𝐶𝐶𝐶𝑖𝑖,𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚�𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠
𝑠𝑠𝑠𝑠 < 3

         ∀𝑖𝑖 (5.27) 

 

𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠 ≤ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠−1       ∀𝑖𝑖, 𝑠𝑠𝑠𝑠 > 1 (5.28) 
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𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠 ≤ 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡−1       ∀𝑖𝑖, 𝑠𝑠𝑠𝑠 (5.29) 

 Similar to the 𝐶𝐶𝑋𝑋𝑖𝑖,𝑡𝑡−1, the value of 𝑌𝑌𝑖𝑖,𝑠𝑠𝑠𝑠,𝑡𝑡−1 is calculated using the solutions from 

the previous EVDA sub-problem. The overall formulation for the EVDA sub-problem 
for the NTIP problem includes Eqs. 5.23-5.29. In addition, the problem bounds the 
value of 𝑋𝑋𝑖𝑖 between 0 and 𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, and 𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖 between 0 and 𝑅𝑅𝑅𝑅𝑋𝑋𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚. The resulting sub-

problem is a mixed integer non-linear program (MINLP).  

5.7.2 Case Studies 
The EVDA was implemented using Python 3.5.2 and Pyomo 5.1, and it uses 

BARON 17.1 (Tawarmalani and Sahinidis, 2005) to solve MINLP sub-problems to 
0.1% optimality. We used the EVDA to generate bounds on a total of four NTIP case 

studies. The case studies are identical to the ones described in Section 3.2.4. The first 
case study considers the comparison of a mature technology and an undeveloped 
technology. Investment decisions are made on a planning horizon of three years 

divided into one-year time periods.  

For Case Study 1, the EVDA solved 217 MINLP sub-problems to optimality 
generating a feasible solution with an objective value of 151.8 billion dollars. Each 
sub-problem required an average of 0.01 CPU seconds to solve and resulted in a total 

algorithm time of 40 CPU seconds. The linear relaxation of the case study has an 
objective function value of 146.4 billion. The bounds provided are tighter than the 
bounds obtained by solving the NLP after fixing the integer variables to the value of 

the MILP solution (188.2 billion). The relative gap between the EVDA solution and 
the linear relaxation model of the MSSP is 3.5%. In comparison, the relative gap 
between the linear relaxation solution and the NLP solution fixing the integers from 

the linear relaxation solution is 22.1 %. The experimental cumulative distribution 
function (ECDF) for the linear relaxation of the MSSP, the EVDA, and NLP are 
shown in Fig. 5.13. 



118 

 

Figure 5.13 The Experimental CDF (ECDF) for the Linear Relaxation 
(MILP) of the MSSP, the NLP fixing the integers from the linear relaxation 

solution, and the EVDA algorithm. 

The ECDF shown in Fig. 5.13 shows that the MILP solution for the MSSP a 
lower total cost for every scenario compared to the NLP and the EVDA. This type of 

solution is expected as the non-linearity in the cost of capacity expansion is under-
estimated by the upper and lower estimators. The EVDA algorithm provides a 
solution which is superior to the solution obtained by solving the NLP obtained by 

fixing the integer variables to the value of the MILP solution.  

At time period one, the primary difference between the MILP solution and the 
feasible solution provided by the EVDA is the investment in research expansion. The 
value for the research expansion at time period one of the MILP solution is 1 million. 

In contrast, the EVDA algorithm suggests a research investment of 10 million dollars 
(the maximum allowable). Since the EVDA solves the MINLP, the cost of capacity 
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expansion is not estimated with linear lower and upper estimators. An investment in 
research indicates that the value of the investment (10 million dollars) is worth the 

reduction in capacity cost. Since the cost is approximated in the linear relaxation of 
the MSSP, the value of research is underestimated. 

Capacity expansion at the first time period also differs. The EVDA 
recommends installing 6 Mtonnes per technology despite the possibility of TECH2 

failing to be developed. The expected success (i.e. the joint probability of successfully 
completing all stages) of developing TECH2 is greater than 95%. The EVDA 
determines investment decisions based on the expected outcomes. In this case study, 

the expected success is high enough to justify a full development of TECH2. The MILP 
solution suggests a more conservative approach. It recommends installing 6 Mtonnes 
of capacity for TECH1 (the developed technology) and 2 Mtonnes for TECH2.  

At time period two, the solution provided by the EVDA recommend maximum 

research and capacity expansion investment in TECH2 if the development of TECH2 
is successful. If the development of TECH2 is unsuccessful, the algorithm suggests 
installing 6 Mtonnes of TECH1 capacity. The MILP solution is more conservative. 
The level of capacity expansion of TECH2 depends not only on whether or not it is 

successful but also on the realized values of the uncertain parameters (𝛼𝛼 the R&D 

elasticity, 𝛽𝛽 the capacity expansion elasticity, and 𝜒𝜒 the yield of the process). 

Assuming that the development of TECH2 is successful, in the scenarios where the 
elasticities and yield are the highest (corresponding to the lowest cost of capacity 
expansion), the investment in capacity expansion for TECH2 is highest at 5.885 

Mtonnes. In contrast, the scenarios with the lowest elasticities and yield only install 
5.644 Mtonnes of TECH2 capacity. Expansion of TECH1 is identical to time period 1 
in the linear relaxation solution. The solution recommends installing 6 Mtonnes (the 

max allowable expansion).  

At time period three, in the scenarios where the development of TECH2 is 
successful both the MILP solution and the EVDA solution can expand the capacities 
of the technologies to meet the entire demand. In these scenarios, the difference 
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between the expected demand and amount that can be produced with the capacity 
levels from time period two, is such that the installation of additional capacity from 

a single technology is sufficient. Both algorithms select to install capacity for TECH2. 
The level of installation depends on the realized yield value but is approximately 2 
Mtonnes. In the scenarios (both the linear relaxation of the MSSP and the EVDA) 

where TECH2 is not successful, 6 Mtonnes of TECH1 capacity is installed.   

We solved the competing technologies case study (Case Study 2), the 
retrofitting case study (Case Study 3), and the biomass to commodity chemical 
(BTCC) case study using the EVDA. The case study specific parameters can be found 

in Appendix B. A complete discussion of the results for the MSSP problem can be 
found in Section 2.3.4. In each case study, we were unable to find a feasible solution 
due to the computational complexity of the NTIP problem formulation.  

The EVDA yielded a feasible solution in 1.1 CPU seconds for case study 2 which 

compares two undeveloped technologies TECH1 and TECH2. The algorithm solved 
four MINLP sub-problems to an optimality gap of 0.1%. Each sub-problem required 
0.12 CPU seconds to solve. The solution for Case Study 2 bounded the problem with 
a 9% gap. Overall, the decisions in the MILP solution and the EVDA solution differed 

substantially. The EVDA recommended no investment in either technology. In 
contrast, the linear relaxation solution had invested in both technologies. The 
investment decisions between the MILP soltuion and the EVDA differ due to the 

approximation of the capacity expansion cost. In the linear relaxation solution, the 
capacity expansion cost is under-estimated thus the value of expanding the 
undeveloped technologies is higher. The probability of success is not high enough to 

offset the potential loss in the EVDA resulting in a do-nothing solution. 

Case Study 3 considers retrofitting an existing production network. Two 
existing technologies can produce CHEM4 (Figure 3.10(B) ). TECH1 converts CHEM1 
to CHEM3 and TECH3 converts CHEM3 to CHEM4. The problem has two potential 

new technologies. If successfully developed, TECH2 can be used to convert CHEM2 
to CHEM3. Alternatively, there exists the possibility that if successfully developed 
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TECH4 can be used to directly convert CHEM1 to CHEM4. The parameters for the 
NTIP MSSP are given in Appendix B. The case study had an EVDA objective function 

value of $6.884 billion which bounds the problem with an 0% percent gap. The EVDA 
and MILP solution to Case Study 3 are identical. In both solutions, the optimal 
investment strategy is to use existing capacity to produce the chemical. The EVDA 

algorithm was able to find the optimal solution in 0.60 CPU seconds by solving eight 
MINLP sub-problems. Sub-problem solution times averaged 0.02 CPU seconds. The 
difference in the solution times between Case Study 1, Case Study 2 and Case Study 

3 demonstrate that the solution time of the EVDA algorithm depends on the number 
of sub-problems. The number of sub-problems solved during the implementation of 
the EVDA algorithm is a function of the uncertainty realizations that occurs during 

the planning horizon.  

The final case study considered was the BTCC case study, which consists of a 
process flow network where biomass can be fermented to ethanol and can be 
dehydrated to ethylene. Alternatively, ethylene can be produced by cracking naphtha. 

The problem considers a new production route consisting of two undeveloped 
technologies. The first is a gasification process which can potentially convert biomass 
to syngas. The second is a catalytic conversion technology which may be used to 
convert syngas to ethylene if successfully developed. When applied to the BTCC case 

study, the EVDA obtained a solution of $168 billion dollars. The linear relaxation of 
the MSSP provided a solution of $161 billion. This results in an optimality gap of 
4.1%. To obtain a solution, the EVDA solves 19 MINLP sub-problems. Each sub-

problem required 0.03 CPU seconds to solve. The total runtime of the EVDA was 1.68 
CPU seconds. The EVDA solution is very similar to the MILP solution. In the MILP 
solution, ethylene is only produced using the cracking technology. Any ethylene that 

cannot be produced by cracking naphtha is purchased. No capacity expansion in any 
technology occurs. The EVDA solution also recommends not installing any new 
capacity. However, the EVDA does recommend using existing fermentation and 

dehydration technologies to produce ethylene from biomass.  
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5.7.3 Conclusions 
In this work, we extended the knapsack-problem based decomposition 

algorithm to solve MSSPs with continuous variables and non-trivial recourse actions. 
The EVDA provided tight feasible solutions for the each of the NTIP case study 
problems considered. In Case Study 1, the EVDA provided a solution which was 

superior to the NLP solution where the integer variables were fixed to their MILP 
solution values. Case study 2 was bounded at 9% percent using the EVDA solution.  
In Case Study 3 where there is no capacity expansion, the EVDA confirmed that the 
MILP solution was the optimal one. The runtime of the EVDA algorithm depends on 

the size of the decision tree. In cases where there are few realizations of uncertainty 
(i.e., a small decision tree) the EVDA yields a feasible solution very quickly. However, 
when the decision tree is larger, the solution time grows as a function of the number 

of sub-problems solved. Depending on the size of the MINLP solved, this time may 
become prohibitive. Future work may investigate using approximation approaches to 
solve the MINLP sub-problem.  
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CHAPTER 6  
A BRANCH AND BOUND ALGORITHM TO SOLVE LARGE-SCALE MULTI-STAGE 

STOCHASTIC PROGRAMS WITH ENDOGENOUS UNCERTAINTY 

 

 

 The Branch and Bound Algorithm 

The general algorithm is summarized in Fig. 6.1. At the initialization step, the 
values for the relative gap between the dual bound and the primal bound (α), the 

tolerance (ε), and the maximum number of iterations (𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚) are set. Next, the 

iteration count, i, is set to zero. The algorithm starts by generating a feasible solution, 
φi, using the KDA, which is a heuristic algorithm that solves the original MSSP by 
decomposing it into a series of knapsack problems. The Equivalent Expected Net 

Present Value (EENPV) for the KDA solution provides the initial primal bound, PB0. 
The algorithm next determines the branching variable(s) by comparing the values of 
decision variables that have been fixed in the current branch to values of decision 

variables in the KDA solution, φi. From the decision variables in the KDA solution 
(φi) that have not yet been fixed in the current branch, the ones that occur at the 
earliest time period are selected as the branching variable(s).  

Assuming that there is one binary branching variable, two new optimization 

problems are generated; in one, the branching variable takes the value of one, in the 
other, the value of zero. In both problems, the values of decision variables that were 
fixed in the parent branch are carried over. The solution of each of these optimization 
problems provides a dual bound, Dn, for each branch n. The optimization problems 

are added to the set of active branches, N, and the parent branch is removed. After 
determining the dual bound for each branch, the algorithm determines the dual 

bound for the problem, DBi, for iteration i. It is defined as max {𝐷𝐷𝑛𝑛  ∀𝑛𝑛 ∈ 𝐍𝐍}, and Q is 

the set of fixed decisions corresponding to the dual bound of the problem, DBi. 
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Figure 6.1 The branch and bound algorithm 

The algorithm continues by comparing the decisions in Q with values of the 
decision variables in the KDA solution, φi-1. If the values of the decision variables 

match then the primal bound of the problem, PBi, is equal to the primal bound of the 
previous iteration, PBi-1. Otherwise, the algorithm tries to update the primal bound 
by solving the MSSP where the values of the decision variables in Q are fixed using 

the GreedyKDA (Section 6.2.2). A new feasible solution to the problem, φi, is 
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generated. If the EENPV of the new feasible solution (φi) is greater than the previous 
iteration primal bound (PBi-1), the primal bound, PBi, takes the value of the EENPV 

of the new feasible solution (φi). If the EENPV of the KDA solution is lower than 
previous iteration primal bound (PBi-1), the value of primal bound, PBi, is set equal 
to PBi-1. The algorithm updates the relative gap, α, using the primal and dual bounds 

of the current iteration, PBi and DBi. If the gap is lower than the tolerance, ε, or the 
maximum iteration count, 𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚, is reached the algorithm terminates. Otherwise, the 

algorithm increments the iteration count and selects new branching variables. At 
termination, the feasible solution at current iteration, φi, provides the solution of the 

MSSP at a relative gap of α. 

 Generation of Dual Bounds 

6.2.1 A Progressive Hedging (PH) Bounding Approach 
he first approach for generating dual bounds solves linear programming (LP) 

relaxations of a modified version of the original MSSP formulation using the 

Progressive Hedging (PH) approach originally presented in Rockafellar and Wets13 
and adapted by Watson and Woodruff15. The PH approach decomposes the MSSP into 
individual scenario quadratic programs (QPs) with a modified objective function, and 

uses the solutions of these QPs to converge to the MSSP solution. This scenario-wise 
approach allows solving linear MSSPs with exogenous uncertainty without 
generating the full MSSP.  

The SP formulation with exogenous uncertainty can be written using Eqs. 6.1- 

6.5, 

𝐦𝐦𝐦𝐦𝐦𝐦�𝑝𝑝𝑠𝑠 ���𝐶𝐶𝑡𝑡,𝑠𝑠
′ 𝜒𝜒𝑡𝑡,𝑠𝑠 + 𝑓𝑓𝑡𝑡,𝑠𝑠

′ 𝛾𝛾𝑡𝑡,𝑠𝑠�
𝑡𝑡∈𝒯𝒯

�
𝑠𝑠

 (6.1) 

 

� �𝒜𝒜𝑡𝑡′,𝑡𝑡,𝑠𝑠𝜒𝜒𝑡𝑡′,𝑠𝑠 + ℬ𝑡𝑡′,𝑡𝑡,𝑠𝑠𝛾𝛾𝑡𝑡′,𝑠𝑠�
𝑡𝑡′∈ 𝒯𝒯:  𝑡𝑡′< 𝑡𝑡 

≤ ℋ𝑡𝑡,𝑠𝑠   ∀𝑠𝑠 ∈ 𝕊𝕊,∀𝑡𝑡 ∈ 𝒯𝒯 (6.2) 
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𝜒𝜒1,𝑟𝑟 = 𝜒𝜒1,𝑠𝑠   ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ∶ 𝑟𝑟 > 𝑠𝑠 (6.3) 

 

�
𝜒𝜒𝑡𝑡+1,𝑟𝑟 = 𝜒𝜒𝑡𝑡+1,𝑠𝑠
𝛾𝛾𝑡𝑡,𝑟𝑟 = 𝛾𝛾𝑡𝑡,𝑠𝑠

�     ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ∶ 𝑟𝑟 > 𝑠𝑠     ∀𝑡𝑡 ∈ 𝒯𝒯 ∶ 𝑡𝑡 ≤ 𝝉𝝉(𝑟𝑟, 𝑠𝑠) (6.4) 

 

 𝛾𝛾𝑡𝑡,𝑠𝑠 ,𝜒𝜒𝑖𝑖,𝑡𝑡,𝑠𝑠 ∈ ℝ    ∀𝑡𝑡 ∈ 𝒯𝒯, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 (6.5) 

 

where 𝐶𝐶𝑡𝑡,𝑠𝑠 is the cost associated with the decision vector 𝜒𝜒𝑡𝑡,𝑠𝑠, ps is the probability that 

the scenario s will occur, and 𝑓𝑓𝑡𝑡,𝑠𝑠 represents the cost of the scenario specific decisions 

𝑦𝑦𝑡𝑡,𝑠𝑠.  Equation 6.2 shows scenarios specific constraints which limit the value decision 

variables 𝜒𝜒𝑡𝑡,𝑠𝑠 and 𝑦𝑦𝑡𝑡,𝑠𝑠 can take. Non-anticipativity is enforced using Eqs. 6.3 and 6.4, 

where Eq. 6.3 ensures that first time period decisions are identical and Eq. 6.4 
enforces that decision variable values must be identical until the time period in which 

the scenarios become differentiable, 𝝉𝝉(𝑟𝑟, 𝑠𝑠). The MSSP formulation given in Eqs. 6.1-

6.5 can be converted to its implicit form as shown in Eqs 6.6-6.8.  

𝐦𝐦𝐦𝐦𝐦𝐦�𝑝𝑝𝑠𝑠 ���𝐶𝐶𝑡𝑡𝑥𝑥𝑡𝑡 + 𝑓𝑓𝑡𝑡𝑦𝑦𝑡𝑡,𝑠𝑠�
𝑡𝑡∈𝒯𝒯

�
𝑠𝑠

 (6.6) 

 

� �𝐴𝐴𝑡𝑡′,𝑡𝑡𝑥𝑥𝑡𝑡′ + 𝐵𝐵𝑡𝑡′,𝑡𝑡,𝑠𝑠𝑦𝑦𝑡𝑡′,𝑠𝑠�
𝑡𝑡′∈ 𝒯𝒯:  𝑡𝑡′< 𝑡𝑡 

≤ 𝐻𝐻𝑡𝑡,𝑠𝑠   ∀𝑡𝑡 ∈ 𝒯𝒯 (6.7) 

 

 𝑦𝑦𝑡𝑡,𝑠𝑠 , 𝑥𝑥𝑡𝑡 ∈ ℝ    ∀𝑡𝑡 ∈ 𝒯𝒯, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 (6.8) 

 

The PH algorithm used in this work is given in Fig. 6.2,which follows the 

notation given in Watson and Woodruff15.  The first step is to initialize the iteration 
counter (k) to zero, the algorithm then solves the deterministic optimization problem for each 

scenario, finding x(k) (Fig. 6.2, Step 2). The construction of the deterministic optimization problem 

is done using the implicit form of the MSSP shown in Eqs. 6.6-6.8. Next, the average values for 
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the decision vector, 𝒙𝒙�(k) , and the weights, ws
(k)

, are calculated (Fig. 2, Steps 3 and 4). In Step 5, 

the iteration counter is incremented, and new QPs are constructed using the values of average 

values for the decision vector, 𝒙𝒙�(k), and the weights, ws
(k). Solutions of these QPs are used to update 

the average values and weights (Fig. 6.2, Steps 7 and 8). The convergence of the algorithm is 

checked in Step 10 using the value of g(k) calculated in Step 9 (Fig. 6.2). If g(k) is below a pre-set 

tolerance value, ℰ , it terminates. Otherwise, it returns to Step 5. 

 

Figure 6.2. The progressive hedging algorithm (Watson & Woodruff, 2011) 

Progressive hedging approach has been proven to converge to the optimal 
solution for convex multistage stochastic programs with exogenous uncertainty and 
continuous decision variables15. The problems of interest in this work are MSSPs with 

integer decision variables and endogenous uncertainty, where the differentiating 
events can be specified but not when and if they would occur. To ensure that the 
solutions obtained by the PH algorithm are true dual bounds for the MSSPs with 

integer decision variables and endogenous uncertainty, the integrality constraints of 
the MSSP are relaxed, and appropriate upper and lower bounds for these variables 
are introduced. Relaxing the integrality constraints does not significantly change the 

difficulty of solving the full space model. The difficulty in solving the full space model 

 

1. 𝑘𝑘 ≔ 0 
2. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆, 𝑥𝑥𝑠𝑠

(𝑘𝑘) ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑐𝑐𝑐𝑐 + 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠): (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑄𝑄𝑠𝑠  
3. 𝑥̅𝑥(𝑘𝑘) ≔ ∑ Pr⁡(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)

𝑠𝑠∈𝑆𝑆  
4. 𝑤𝑤𝑠𝑠(𝑘𝑘) ≔  𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − 𝑥̅𝑥(𝑘𝑘)� 
5. 𝑘𝑘 ≔ 𝑘𝑘 + 1 
6. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆, 
7. 𝑥𝑥𝑠𝑠(𝑘𝑘) ≔ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �𝑐𝑐𝑐𝑐 + 𝑤𝑤𝑠𝑠(𝑘𝑘−1)𝑥𝑥 + 𝜌𝜌

2� �𝑥𝑥 − 𝑥̅𝑥(𝑘𝑘)�2 + 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠� : (𝑥𝑥, 𝑦𝑦𝑠𝑠) ∈ 𝑄𝑄𝑠𝑠  

8. 𝑥̅𝑥(𝑘𝑘) ≔ ∑ Pr⁡(𝑠𝑠)𝑥𝑥𝑠𝑠(𝑘𝑘)
𝑠𝑠∈𝑆𝑆  

9. 𝐹𝐹𝐹𝐹𝐹𝐹 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 ∈ 𝑆𝑆,𝑤𝑤𝑠𝑠
(𝑘𝑘) ≔ 𝑤𝑤𝑠𝑠(𝑘𝑘−1) +  𝜌𝜌�𝑥𝑥𝑠𝑠(𝑘𝑘) − 𝑥̅𝑥(𝑘𝑘)� 

10. 𝑔𝑔(𝑘𝑘) ≔  ∑ Pr⁡(𝑠𝑠)𝑠𝑠∈𝑆𝑆 �𝑥𝑥 − 𝑥̅𝑥(𝑘𝑘)� 
11. 𝐼𝐼𝐼𝐼 𝑔𝑔(𝑘𝑘) < ℰ, 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 𝑔𝑔𝑔𝑔 𝑡𝑡𝑡𝑡 5.𝑂𝑂𝑂𝑂ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑒𝑒 
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arises from number of variables and the interconnection between the variables. 
Relaxation of the NACs can simplify problem however it cannot address the growth 

in the number of variables associated with the increase in the number of scenarios. 
Despite having a more complex objective function, the PH algorithm is capable of 
reducing the complexity of the relaxed MSSP by separating the problem into scenario 

sub-problems.  

The PH algorithm requires the knowledge of the scenarios and their 
differentiation time periods. When handling endogenous uncertainty the time period 
of differentiation is not known a priori. The endogenous uncertain parameters 

considered in this work are of Type II14, where only the timing of the realization is 
impacted by the value of the decision variables. As such, the relaxed MSSPs can be 
converted to two-stage linear SP formulations that resemble linear SP models with 

only exogenous uncertain parameters by removing all but the current-stage NACs 
and by reducing the current-stage NACs to a subset of NACs where the time period 
of differentiation is “known”. 

In the formulation of the MSSP with endogenous uncertainty, NACs are 

conditionally enforced based on the value of the indicator variable. To convert the 
conditional NACs to the form shown in Eq. 6.4, we start by identifying the subset of 
current-stage NACs which do not require any additional decisions to be taken for 

realizing their outcome. Note that for this subset of current-stage NACs, the time 
period of differentiation is known, therefore their NACs can be written similar to Eq. 
6.4 until the earliest time period at which the scenarios can become differentiable. 
After identifying this subset of current-stage NACs, a set 𝝉𝝉′(𝑖𝑖, 𝑟𝑟, 𝑠𝑠) is constructed. The 

set 𝝉𝝉′(𝑖𝑖, 𝑟𝑟, 𝑠𝑠) contains the earliest time period at which scenarios 𝑟𝑟 and 𝑠𝑠 can become 

differentiable with respect to endogenous uncertain parameter 𝑖𝑖 ∈ ℐ ∈ 𝕀𝕀 (i.e. the time 

earliest time period at which 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 can become equal to one.). This allows for the 

construction of Eqs. 6.9-6.13 which are identical in form to Eqs. 6.1-6.5 but include 
endogenous uncertain parameters. 
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min�𝑝𝑝𝑠𝑠 �����𝐷𝐷𝑖𝑖,𝑡𝑡𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝑖𝑖∈𝕀𝕀

+ 𝑓𝑓𝑡𝑡,𝑠𝑠𝛾𝛾𝑡𝑡,𝑠𝑠�
𝑡𝑡∈𝒯𝒯

�
𝑠𝑠

 (6.9) 

 

� ���𝐺𝐺𝑖𝑖,𝑡𝑡,𝑡𝑡′,𝑠𝑠𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝑖𝑖∈𝕀𝕀

+ 𝐵𝐵𝑡𝑡′,𝑡𝑡,𝑠𝑠𝛾𝛾𝑡𝑡′,𝑠𝑠�
𝑡𝑡′∈ 𝒯𝒯:  𝑡𝑡′< 𝑡𝑡 

≤ 𝑎𝑎𝑡𝑡,𝑠𝑠   ∀𝑠𝑠 ∈ 𝕊𝕊,∀𝑡𝑡 ∈ 𝒯𝒯 (6.10) 

 

𝑏𝑏𝑖𝑖,1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,1,𝑠𝑠   ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊,∀𝑖𝑖 ∈ 𝕀𝕀 (6.11) 

 

�
𝑏𝑏𝑡𝑡+1,𝑟𝑟 = 𝑏𝑏𝑡𝑡+1,𝑠𝑠
𝛾𝛾𝑡𝑡,𝑟𝑟 = 𝛾𝛾𝑡𝑡,𝑠𝑠

�     ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ∶ 𝑟𝑟 > 𝑠𝑠     ∀𝑡𝑡 ∈ 𝒯𝒯 ∶ 𝑡𝑡 ≤ min{𝝉𝝉′(𝑖𝑖, 𝑟𝑟, 𝑠𝑠)  ∀ 𝑖𝑖 ∈ ℐ} (6.12) 

 

 𝛾𝛾𝑡𝑡,𝑠𝑠 , 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 ∈ ℝ    ∀𝑡𝑡 ∈ 𝒯𝒯, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 (6.13) 

The solutions obtained by the PH algorithm (Fig. 6.2) to these relaxed two-
stage linear SPs are used to update the dual bounds of the MSSP (Fig. 6.1) at each 

iteration. We will refer to the branch-and-bound algorithm with progressive hedging 
approach as PH-KDA. 

6.2.2 An Optimal Scenario Solution (OSS) Bounding Approach 
The second bounding approach for generating dual bounds solves the original 

MSSP without enforcing any non-anticipativity constraints, practically decomposing 
the MSSP into individual scenario sub-problems. The optimum solutions of individual 
scenario sub-problems provide a weaker bound than the PH approach, however, 

unlike PH, the dual bound is obtained without multiple iterations for convergence. 
This approach may be particularly useful when the size of the scenario set is 
prohibitively large.  

Implementing the procedure starts by removing all non-anticipativity 

constraints from the original MSSP. The resulting formulation is, 

min�𝑝𝑝𝑠𝑠(𝐶𝐶𝑥𝑥𝑠𝑠 + 𝑓𝑓𝑠𝑠𝑦𝑦𝑠𝑠)
𝑠𝑠
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𝑠𝑠. 𝑡𝑡. (𝑥𝑥𝑠𝑠,𝑦𝑦𝑠𝑠) ∈ 𝑄𝑄𝑠𝑠 ∀ 𝑠𝑠 ∈ 𝑆𝑆 

where the objective function is simply the probability weighted cost of each 
scenario. It should be noted that the formulation assumes that the constraint set, 𝑄𝑄𝑠𝑠, 

is separable and that the integrality constraints are not relaxed. Furthermore, the 
problem can be separated such that the value of the objective function for the original 
problem is given as the probability weighted Optimal Solution of each Scenario sub-

problem (OSS).  Computing the optimal solution to each scenario sub-problem is 
highly parallelizable and considerably less complex than solving the original MSSP 
problem. We will refer to the branch-and-bound algorithm that uses optimal solution 

of individual scenario problems for generating dual bounds as OSS-KDA.  

 Generating Feasible Solutions and Primal Bounds Using the 
GreedyKDA 

The primal bound of the problem is updated using a modified version of the 
KDA12. The original KDA uses a series of knapsack problems to find a feasible 

solution for MSSPs with endogenous uncertainty. The KDA begins at 𝑡𝑡 = 0 by 

decomposing each of the decision variables 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 into a set of items. Each item has an 

associated value. The value for each item is calculated as the contribution of the 

item’s corresponding decision variable to the objective function. If the value of the 
item depends on the underlying value of an uncertain parameter, the expected value 
of the uncertain parameter is used to calculate the value. The knapsack problem also 

has a set of weight constraints. The weight constraints in the KDA are composed of 
constraints (e.g., available resources) from the original MSSP which limit the number 
of items that can be packed in the knapsack.  

The KDA starts by packing an initial knapsack. The knapsack problem is used to 

determine which items are packed and the fraction of the item packed if items 
represent continuous variables. The selected items and their fractional values are 
used to determine the value of the decision variables at the first time period in the 

planning horizon. The uncertainty associated with those decision variables are 
realized, and the KDA generates a new knapsack problem for each realization. Based 
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on the realizations, the algorithm decides which items are eligible to be considered in 
each of the newly created knapsack problems, and solves them. Solution of each 

knapsack problem determines the values of the decision variables, which in turn 
results in realizations of associated uncertain parameters. The KDA continues until 
the end of the planning horizon.  

In some instances it may be beneficial to introduce additional weight constraints 

to the knapsack problems solved by the KDA to direct its solution away from the 
greedy one. These constraints, which we refer as heuristic overscheduling 
constraints, may help KDA to avoid over-utilizing resources early in the planning 

horizon by preventing the selection of items where there are not sufficient resources 
for investment in future.12 A full, in depth description of the KDA applied to clinical 
trial planning can be found in Christian and Cremaschi12.  

Primal bound updates are constructed using a version of the KDA, GreedyKDA, 

where no additional weight constraints are added. Without the heuristic 
overscheduling constraints, the GreedyKDA is able to pack any eligible item in any 
knapsack while keeping the feasibility of its solution. In the original KDA, new 
knapsacks are only generated after all uncertainty associated with selected items was 

realized. In the GreedyKDA, new knapsack problems are generated at every time 
period allowing non-zero decision variable values if there are enough resources at any 
time period. 

 Case Studies 

We use the branch and bound algorithm to solve several instances of the 
pharmaceutical R&D pipeline clinical trial planning problem. Both PH-KDA and 
OSS-KDA are used to solve a small two-product case. The two-product case has two 

instances ‘2P2T’ and ‘2P3T’, which represent two products (2P) with two clinical trials 
(2T) and two products (2P) with three clinical trials (3T). We also consider a three 
product instance (3P3T), a four-product instance (4P3T), and a five-product instance 

(5P3T) all with three clinical trials. In the case of the OSS-KDA, preliminary results 
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prompted us to also solve six-product (6P3T) and seven-product (7P3T) case studies. 
A brief overview of the clinical trial planning problem is provided in the section below. 

Parameter values for each case can be found in Christian and Cremaschi12 and 
Christian and Cremaschi16. The branch and bound algorithm is implemented in 
Python 3.5. Both dual bounding approaches and the GreedyKDA utilize Pyomo 4.117 

and CPLEX 12.6. The solutions to the deterministic equivalent MSSPs for all cases 
were found using Pyomo 4.1 and CPLEX 12.6. All of the problems in this work were 
solved using the Auburn University Hopper Cluster.   

 Results and Discussion 

The branch and bound algorithm is first demonstrated using a toy-box sized two-

product two-clinical-trial (2P2T) case. We present the first five iterations of each 
algorithm in Fig. 6.3. The initial primal bound obtained by KDA is 1097. The 
algorithm uses the solution from the initial primal bound to select decisions variables 

to branch on. In this problem, the algorithm selects starting first clinical trials of both 
Drug 1 and Drug 2 at first time period, i.e., (D1, P1, 0) and (D2, P1,0). Selecting two 
decision variables to branch on creates four branches marked as 1A, 1B, 1C, and 1D 

in Fig. 3. In case of PH-KDA, the LPs are generated, and their solutions – obtained 
by the PH algorithm – are 1141.83 (1A – Fig 6.3(A)), 1139.53 (1B – Fig 6.3(A)), 
1138.34 (1C – Fig 6.3(A)), and 1136.03 (1D – Fig 6.3(A)). In case of OSS-KDA, the 

individual scenario mixed integer linear programs (MILPs) are generated, and their 
solutions are 1148.19 (1A – Fig 6.3(B)), 1142.19 (1B – Fig 6.3(B)), 1142.03 (1C – Fig 
6.3(B)), 1136.03 (1D – Fig 6.3(B)). At first iteration, the dual bounds are 1141.83 and 

1148.19 for PH-KDA and OSS-KDA, which yield relative bounds of 0.041 and 0.047, 
respectively (Table 6.1). 
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Figure 6.3. Five iterations of the branch and bound algorithm for the two-
product two-clinical trial case study for (A) the PH-KDA and (B) OSS-KDA 

Decisions:
(D1,P1,0)=0, (D2,P1,0)=0    ∀s ∈S

ENPV(D): 1141.83
ENPVφ1: 1095.12

1A

Decisions:
(D1,P1,0)=0, (D2,P1,0)=1    ∀s ∈S

ENPV(D): 1139.53
ENPVφ2: 1081.43

1B

Decisions:
(D1,P1,0)=1, (D2,P1,0)=0    ∀s ∈S

ENPV(D): 1138.34
ENPVφ4: 1087.70

1C

Decisions:
(D1,P1,0)=1, (D2,P1,0)=1  ∀s ∈S

ENPV(D): 1136.03

1D

Decisions:
(D1,P1,1)=0, (D2,P1,1)=0    ∀s ∈S

ENPV(D): 1126.15

2A

Decisions:
(D1,P1,1)=1, (D2,P1,1)=0    ∀s ∈S

ENPV(D): 1121.29

2B

Decisions:
(D1,P1,1)=0, (D2,P1,1)=1   ∀s ∈S

ENPV(D): 1128.44

2C

Decisions:
(D1,P1,1)=1, (D2,P1,1)=1    ∀s ∈S

ENPV(D): 1136.03

2D

Decisions:
(D1,P1,1)=0    ∀s ∈S
ENPV(D): 1139.53
ENPVφ3: 1104.21

3A

Decisions:
(D1,P1,1)=1   ∀s ∈S
ENPV(D): 1126.24

3B

Decisions:
(D2,P1,1)=0    ∀s ∈S
ENPV(D): 1134.68

5A

Decisions:
(D2,P1,1)=1    ∀s ∈S
ENPV(D): 1138.34

5B

Decisions:
(D1,P1,2)=0    ∀s ∈S s.t. (D2,P1) Passes

ENPV(D): 1108.78

4A

Decisions:
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ENPV(D): 1134.68

4B

(A)

(B)
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(D1,P1,1)=0, (D2,P1,1)=0    ∀s ∈S

ENPV(D): 1141.83
ENPVφ4: 1093.04
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(D1,P1,2)=0, (D2,P1,2)=0    ∀s ∈S

ENPV(D): 1017.39

5A
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(D1,P1,0)=0, (D2,P1,0)=0    ∀s ∈S

ENPV(D): 1148.19
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(D1,P1,0)=1, (D2,P1,0)=0    ∀s ∈S

ENPV(D): 1142.19
ENPVφ2: 1087.70

1B

Decisions:
(D1,P1,0)=0, (D2,P1,0)=1    ∀s ∈S

ENPV(D): 1142.03
ENPVφ3: 1104.21

1C

Decisions:
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1D

Decisions:
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ENPV(D): 1136.05
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ENPV(D): 1136.87
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Decisions:
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ENPV(D): 1131.09

2D
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ENPV(D): 1138.34
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3B
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(D1,P1,1)=0    ∀s ∈S
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4A

ENPVφ0:
1097.21

ENPVφ0:
1097.21
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Because the upper bound of 1A is the highest, the algorithm sets the values of 
the decision variables associated with (D1, P1, 0) and (D2, P1,0) equal to zero, and 

calls GreedyKDA. The solution obtained by the GreedyKDA suggests starting the 
first clinical trials of D1 and D2 at the second time period (t=1). The algorithm 
generates four new branches (2A-D), and finds the dual bounds. The algorithm 

continues by selecting the end branch with the highest upper bound (e.g, 1B for the 
third iteration) until the stopping criteria are met. The progression of the primal 
bound, dual bound, and relative gap for each iteration shown in Fig. 6.3 are tabulated 

in Table 6.1. 

Table 6.1 Values for the primal bound, dual bound, and relative gap for the 
first five iterations of the PH-KDA and OSS-KSA shown in Figure 6.3. 

Iteration 
PH-KDA OSS-KDA 

PB DB Gap PB DB Gap 
1 1097.21 1141.83 0.041 1097.21 1148.19 0.047 
2 1097.21 1139.53 0.039 1097.21 1142.19 0.041 
3 1104.21 1139.53 0.032 1097.21 1142.03 0.041 
4 1104.21 1138.35 0.031 1097.21 1141.83 0.041 
5 1104.21 1138.35 0.031 1104.21 1139.52 0.032 
 

We tested PH-KDA on a two-product, three clinical trial (2P3T) and a three 
product, three clinical trial (3P3T) case. Figure 6.4 plots the log (base 10) of the CPU 
time consumed by the PH-KDA versus the relative gap ((DBi-PBi)/DBi) for the two- 

and three-product cases. Labels on the marker on the graph identify the number of 
completed iterations. In all three cases, the slopes in Fig. 6.4 are approximately linear 
indicating a logarithmic relationship between the CPU time and the relative gap. 

Therefore, the decision variables branched on in earlier iterations have a larger 
impact on the relative gap then the decisions branched on in later iterations, which 
initially improves the dual bound rapidly. The quality of the PH dual bound is limited 

due to the linear relaxation of the MSSP and use of only a subset of next stage NACs. 
For the two-product two-trial (2P2T) case, the algorithm terminated when relative 
gap was below the specified tolerance of 0.5% at the 44nd iteration. In contrast, for 
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the two-product three-trial (2P3T) case, the algorithm was able reduce the relative 
gap to 1.7% in 50 iterations and terminated. Premature termination of the algorithm 

in the two-product three-trial case was also caused by the PH dual bound. To ensure 
that the PH algorithm solution provides a true dual bound for the problem, all 
integrality constraints are relaxed. Hence, the solutions at the dual bound allows 

partial investments (i.e. non-integer results) on some of the clinical trials. The 
GreedyKDA only generates feasible solutions, in which these non-integer decision 
variables become zero and are never branched on. For the three-product three trial 

(3P3T) case study, the algorithm ran for the maximum allowable wall time of ten 
days. At termination, the relative gap was 2.6%. The time needed to run each 
algorithm to completion is shown in Table 6.2. As expected, compared to the 

deterministic equivalent MSSP (also in Table 6.2), the PH-KDA takes significantly 
longer to close the gap. The MSSPs for the case studies considered in this work are 
quick to solve however, it should be noted that the time and memory required to solve 

MSSPs grows exponentially which makes the development of case studies which have 
MSSPs which sufficiently complex and still solvable very difficult. For completeness 
we included case studies which span from trivial (2P2T) to unsolvable (7P3T). As the 
size of problem increases, the time of convergence of the PH algorithm increases. This 

results in very slow convergence of the PH-KDA for large instances of the clinical trial 
planning problem (i.e. six or more products). In the six-product three clinical trial 
case, the PH-KDA was only able to complete a few iterations. It should be noted that 

the first iteration of PH-KDA provide a feasible solution and its quality (via the first 
dual bound) for the original MSSP. The algorithm generated an initial relative gap of 
6.8% for the six-product case. 



136 

 

Figure 6.4. Plot of CPU time vs. relative gap for the pharmaceutical 
clinical trial planning case studies for the PH-KDA algorithm 

Figure 6.5 shows the log (base 10) of the CPU time vs the relative gap for OSS-
KDA algorithm on three clinical trial two- (2P3T), three- (3P3T), four- (4P3T), five-
(5P3T), six-(6P3T), and seven- (7P3T) product case studies in addition to the two-
product two clinical trial (2P2T) instance. Comparing the performances of the PH-

KDA (Figure 6.4) and the OSS-KDA (Figure 6.5), it can be seen that the PH-KDA 
provides a tighter initial dual bound, and a smaller relative gap, than the OSS-KDA. 
The tighter initial bound on the problem suggests that the subset of current-stage 

NACs in the PH bounding approach play a non-trivial role in the quality of the dual 
bound. The slope of the lines in Fig. 6.5 are less steep than the lines in Fig. 6.4. The 
steepness of the lines is an indicator that the bound improvement is faster when for 

the PH-KDA where the problem includes a subset of the NACs. Unlike the PH-KDA, 
the OSS-KDA converges to the optimal solution for both the two-product, two-trial 
(2P2T) instance and the two-product, three-trial (2P3T) instance. This is because the 

OSS-KDA does not require relaxation of the integrality constraints. From Fig. 6.5, 
we can conclude that given sufficient time, the algorithm would eventually converge 
to the optimal solution. 

CPU Time (CPU Seconds)

10 0 10 1 10 2 10 3 10 4 10 5 10 6

R
el

at
iv

e 
G

ap

0

0.02

0.04

0.06

0.08

0.1

0.12

5

10

25

40

5

10

25

50

5
10

25

50

100
200

500
1000

5
10

25
50 100

5 10 20

2P2T
2P3T
3P3T
4P3T
5P3T



137 

Applying the OSS-KDA to the seven-product clinical trial planning problem 
generated an initial relative gap of 10%; after 200 iterations, the gap was reduced to 

8%. To date, we have been unable to generate and solve the deterministic equivalent 
MSSP of the seven-product clinical trial planning problem. The problem has 16,384 
scenarios, more than 11 million variables, and more than 39 million constraints. 

Generating the problem requires a random-access memory (RAM) more than 126 GB, 
and CPLEX 12.63 was not able to solve the problem on a node with sixteen cores and 
256 GB of RAM. Based on information collected from the solution log files, CPLEX is 

unable to complete the pre-solve routine for the seven product case. 

 

Figure 6.5. Plot of CPU time vs. relative gap for the two-, three-, five-, six-, 
and seven-product cases using OSS-KDA. 

For both PH-KDA and OSS-KDA, the branch and bound algorithm closes the 
gap quicker at the early iterations and its convergence slows down with the number 

of iterations because both approaches branch on more decision variables early on. 
Because fewer scenarios are differentiable at the earlier iterations, the algorithm 
branches on a larger number decision variables, and fixing the values of these 

decision variables, in general, makes a significant impact on the gap. As the 
algorithm continues, more scenarios become differentiable and the number of 
variables branched on at each iteration decreases. It is worth noting that the 
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convergence of the PH-KDA cannot be guaranteed due to the convergence criteria of 
the PH approach (i.e., the convergence of PH-KDA may not converge at every 

iteration. Unlike PH-KDA, the OSS-KDA is guaranteed to converge to the optimum 
given sufficient time. The branch and bound algorithm only closes a branch whose 
dual bound is lower than that of the primal bound, overall convergence of the 

algorithm is quite slow. As the number of iterations increases, the optimality gap for 
larger case studies (Fig. 6.5) will continue to slowly decrease as decision variables 
(although at lower numbers of them) are fixed and dual bound tightens. Then, there 

will be sudden drops (of the optimality gap) at time periods where fixing the decision 
variables improves the primal bound. We would also expect for the drops to gradually 
become smaller and farther apart because the algorithm branches on fewer variables 

with each iteration similar to the PH-KDA.  

One of the challenges with solving real-world size MSSPs is the space 
complexity of the problem (i.e. the RAM required to generate the problem). As can be 
seen from Table 6.2, the PH-KDA and OSS-KDA use significantly less RAM than its 

deterministic equivalent counterpart for most case studies. The RAM usage of the 
both the PH-KDA and the OSS-KDA are higher for the three product case that the 
deterministic algorithm. This is caused by the nature of the algorithms. The primary 
source of memory usage in the branch and bound algorithms is in the storage of 

branches. The storage of these branches gradually increase memory requirements of 
the algorithm. In this implementation of the algorithm, the information for each 
branch is stored in RAM. Storing branch information in RAM is not required and 

memory usage would be improved if branch information was databased. In both the 
OSS-KDA and the PH-KDA the 3P3T problem required more memory than the 5P3T 
problem. This is caused by the number of iterations completed. In both cases, the 

3P3T case completes significantly more iterations which results in a larger number 
of branches being stored.   

Table 6.2 also shows a large difference between the OSS-KDA and the PH-
KDA in terms of the amount of time it takes to solve the problem. In even the smallest 
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cases OSS-KDA provides results faster than the PH-KDA. This is caused by the 
nature of the dual bounding approaches. In the PH approach bounds are found using 

a scenario-based iterative scheme whereas the OSS, also a scenario-based scheme, 
solves in a single iteration. This suggests with the current implementation, the trade-
off for a better initial bound with PH-KDA may not be worth the additional 

computation time. 

Table 6.2 Resource usage, relative gap, and computational time results for 
the deterministic equivalent MSSP and the branch and bound algorithm 

 

The impact of parallelizing the PH algorithm of PH-KDA is studied for the five-
product three-clinical trial (5P3T) case study. The problem has a total of 1024 
scenarios. Table 6.3 shows the number of threads used for parallelization for each 

instance of the problem along with the approximate number of problems solved per 
thread per PH iteration. Because CPLEX 12.6 recommends allocating additional 
processor cores for solution of the QPs when available, six cores were allocated for 

each thread. This also improved the efficiency of the PH algorithm. Based on the 
number of iterations completed, parallelization has the greatest impact when nine 
threads are used. In the case where nine threads were used, 183 iterations were 

completed and the relative gap of the problem was reduced to 6.4%. However, our 
limited computational experiments showed that increasing from three threads to six 
threads had an inverse effect on the solution quality. The impact of parallelizing the 

OSS-KDA is straight forward. Since the OSS scenario MILP sub-problems are trivial, 
it is sufficient to say that sub-problems should be divided evenly between available 
cores unless the number of sub-problems solved on each core is not sufficient to 

outweigh the additional time required to parallelize the algorithm. 

2P2T 2.45 0.001 0:00:01 0.05 0.005 0:03:08 0.00 0.009 0:00:21
2P3T 5.93 0.001 0:00:01 0.48 0.017 0:01:01 0.04 0.000 0:01:31
3P3T 89.79 0.001 0:00:03 26.07 0.026 615:07:05 174.70 0.013 257:30:18
5P3T 1430.15 0.001 0:00:42 2.12 0.068 643:41:52 60.02 0.068 8:10:17
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Table 6.3 The Impact of running PH algorithm of PH-KDA in parallel for 
the five-product case study 

Number 
of 

Threads 
Completed 
Iterations 

Relative 
Gap 

Problems 
Per 

Thread 
3 39 0.0684 341 
6 41 0.0772 170 
9 183 0.064 113 

 

The current implementation of the branch and bound algorithm selects decisions 
to branch on from the KDA decision tree. In general, the algorithm selects decision 

variables from the GreedyKDA solution that have non-zero values starting with the 
variables earliest in the planning horizon. When the algorithm selects which decision 
variables to branch on, it selects all the decisions in one particular branch of the KDA 

decision tree. Because the object that holds the decision tree is not ordered, the 
algorithm may not always select the same branch (i.e., corresponding to the same 
realizations) from the KDA decision tree. The performance of the algorithm when the 
parallelization studies were conducted suggests that it is particularly sensitive to the 

order in which decision variables are selected for branching. 

 Conclusions 

In this work, we introduced a branch and bound algorithm for solving multistage 
stochastic programs (MSSPs) with endogenous uncertainty. The algorithm uses our 

novel Knapsack-problem based Decomposition Algorithm (KDA) to efficiently 
generate feasible solutions and primal bounds for the MSSPs. We investigated two 
approached to generate dual bounds. The first one generated two-stage linear 

stochastic programs by relaxing the integrality constraints of the original MSSP and 
removing all but the current-stage non-anticipativity constraints (NACs) and by 
reducing the current-stage NACs to a subset of NACs where the time period of 

differentiation is “known”. Then, these two-stage linear stochastic programs are 
solved using used progressive hedging (PH). The second approach solved the 
individual scenario sub-problems to optimality, and estimated and updated the dual 
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bound as probability weighted Optimal Solution of each Scenario sub-problem (OSS). 
Both implementations of the branch and bound algorithm were applied to solve 

several instances of the pharmaceutical clinical trial planning problem. Our studies 
reveal that, in all case studies and for both implementations, the CPU time for the 
algorithm is higher than the deterministic MSSP if the deterministic MSSP can be 

generated and solved with available computational resources. However, using the 
OSS-KDA, we were able to solve a seven-product instance of the clinical trial planning 
problem to an 8% relative gap, and we have not been able to solve the deterministic 

equivalent MSSP with similar computational resources. Despite having a slower 
convergence time, the first iteration of the algorithm provides a feasible solution, a 
primal bound, and a dual bound for the problem.  

For future work, three paths have been identified to increase the effectiveness 

and efficiency of the algorithm. First, to address the challenge the integrality 
constraints not being enforced in the PH-KDA, an additional step will be modified to 
branch on the variables which take non-integer values and cause the upper bound 

not to converge to the primal bound. Second, we plan to improve implementation of 
both the PH-KDA and the OSS-KDA by investigating different rules for selecting the 
branching variables and further parallelization approaches. One approach for 
selecting branching variables would be to prioritize branching on decision variables 

associated with branches in the decision tree where there exist more scenarios. Third, 
memory management of the algorithm information will be improved by implementing 
a database structure. 
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CHAPTER 7  
A GRAPH THEORY APPROACH TO NON-ANTICIPATIVITY CONSTRAINT 

GENERATION IN MULTISTAGE STOCHASTIC PROGRAMS WITH INCOMPLETE 

SCENARIO SETS 

 

 

The formulation of a multistage stochastic program requires the equality of 
decision variables in different scenarios in order to ensure that the realized values of 

the uncertain parameters are not anticipated. Depending on the type of uncertainty 
in the problem this can be accomplished either implicitly or explicitly. When the 
timing of the realization of uncertainty is known (i.e. exogenous uncertainty), 

anticipation of the underlying value of the uncertain parameters can be prevented by 
defining a variable used to relate the decision variables in two different scenarios. 
Using the same decision variable in multiple scenarios ensures that the decision 

variable values are identical in scenarios where uncertainty has not been realized. 
Alternatively, a set of equality constraints, called non-anticipativity constraints 
(NACs), which sets the values of the decision variables equal to each other at time 

periods before uncertainty is realized can be used. If the time period of differentiation 
is not known (i.e. endogenous uncertainty), a set of non-anticapitivity constraints 
must be used as there is no way to implicitly incorporate the realization of 

uncertainty. 

Approaches for generating NACs for endogenous uncertainty have been studied 
in the literature before. A full set of NACs can be generated by relating each scenario 
to every other scenario. This produces a very large number of constraints which are 

often redundant. Several authors have presented properties of MSSPs, which reduce 
the number of redundant NACs. Applicability of a lot of these properties is limited to 
MSSPs where the scenario set is considered complete (i.e., given by the Cartesian 

product) (Goel & Grossmann, 2006).  
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 Often situations arise where the set of scenarios considered in the MSSP is 
given by a subset of the full set of scenarios. For instance, every scenario in the full 

set generated by the Cartesian product may not be realizable. Alternatively, a sub-
set of the full scenario set may be used in cases where solving the MSSP with the full 
scenario set is computationally prohibitive. Properties used to generate NACs that 

are applicable for the full set of scenarios do not necessarily apply to sub-sets of 
scenarios. Thus, recent advances have focused on the generation of NAC sets for sets 
of scenarios which are not generated by the Cartesian product. Hooshmand and 

Mirhissani (2016) developed two approaches; the first one used a mixed integer linear 
programming formulation (MILP) to find the minimum cardinality NAC set, and the 
second one employed graph theory, which added and removed NACs until there were 

no violations of non-anticipativity. Apap and Grossmann (2016) extended the graph-
theory approach to handle both endogenous and exogenous uncertainty. Boland et al. 
(2016) developed a set of proofs which define the conditions required to omit NACs 

for an incomplete sets from the problem formulation. In all these works, the authors 
used the concept of a differentiator set, i.e., a set of sets which store information on 
the realization of uncertainty required for two scenarios to be differentiable. The 
differentiator set is sufficient if the realization of the uncertain parameter is 

instantaneous, implying that the underlying value is revealed using a single 
indicator. If the realization of uncertainty is gradual there may be several indicators 
which result in partial revelation of uncertainty. The approaches developed to date 

cannot be applied to generate NACs of incomplete scenario sets for this type of 
uncertainty.  

We introduce and describe in detail a graph-theory based approach that 
generates a minimum cardinality NAC set for MSSPs with incomplete scenario set 

where the realization of uncertainty occurs gradually. Section 7.1 introduces the 
general formulations of MSSP with endogenous and with endogenous and exogenous 
uncertainty. The formulation for the MSSP with just endogenous uncertainty is given 

in Section 7.1.1 and the extension to MSSPs with both endogenous and exogenous 
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uncertainty. In Section 7.2, we propose an algorithm which will generate the 
minimum cardinality non-anticipativity constraint set. The algorithm was tested 

using several different case studies. Section 7.3.1 provides a visualization of the 
performance of the algorithm. In section 7.3.2, presents the case studies used to test 
the algorithm. The results of the computational studies are also presented in Section 

7.4. Conclusions and future directions are given in Section 7.5. 

 Background 

7.1.1 Mathematical Representation of Multistage Stochastic Programs 
with Endogenous Uncertainty 

The presentation of the general form of the MSSP with endogenous uncertainty 

is derived from Apap and Grossmann  (2016) and Hooshmand and Mirhassani (2016). 
Suppose that we have a multistage stochastic program where the planning horizon is 
defined as 𝒯𝒯 = {1,2,3, . . ,𝑇𝑇}. For simplicity, the remainder of the paper will define sets 

using the notation [𝒯𝒯] to represent ordered sets. We first define a set of sources of 

endogenous uncertainties, 𝑖𝑖 ∈ 𝕀𝕀, and a vector of uncertain parameters, 𝜃𝜃𝑖𝑖, associated 

with uncertainty source 𝑖𝑖. The realizable values of the uncertain parameter, 𝜃𝜃𝑖𝑖, are 

represented using a finite set Θ𝑖𝑖 = �𝜃𝜃𝑖𝑖1,𝜃𝜃𝑖𝑖2, … ,𝜃𝜃𝑖𝑖ℛ�. The full scenario set is constructed 

using the Cartesian product, namely, the scenario set is defined as, 𝕊𝕊 ∶=   ×𝑖𝑖∈𝕀𝕀{𝜃𝜃𝑖𝑖} . 

The number of scenarios can be calculated using the cardinality of Θ𝑖𝑖 , where |𝕊𝕊| =

 ∏ |Θ𝑖𝑖|𝑖𝑖∈𝕀𝕀 . 

In the problem, we define two decision variables, 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 and 𝑦𝑦𝑡𝑡,𝑠𝑠, the endogenous 

stage decision variables and recourse action variables at each time period, 𝑡𝑡 ∈ [𝒯𝒯] , 

and for each scenario, 𝑠𝑠 ∈ 𝕊𝕊. The model EN which represents the standard 

formulation for the MSSP with endogenous uncertainty is composed of five major 

parts. The objective function (Eq. 7.1) minimizes the expected value of the total cost 
of the decision variables. Constant 𝐷𝐷𝑖𝑖,𝑡𝑡  and 𝑓𝑓𝑡𝑡,𝑠𝑠 represent the cost associated with 

decision variables 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 and the cost of recourse decision variable 𝑦𝑦𝑡𝑡,𝑠𝑠. Equation 7.2 

represents the second component of the MSSP, a set of scenario specific constraints. 

The constraints are functions of the scenario specific decision variables and constants 
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𝐺𝐺𝑖𝑖,𝑡𝑡,𝑡𝑡′ and 𝐵𝐵𝑡𝑡′,𝑡𝑡,𝑠𝑠. The final two components (Eqs. 7.3-7.4) are the non-anticipativity 

constraints. Non-anticipativity constraints for the first time period are written for all 

scenario pairs (𝑟𝑟, 𝑠𝑠) such that, 𝑟𝑟 ≠ 𝑠𝑠. The NAC in Eq. 7.4 ensures that the decision 

variable 𝑏𝑏𝑡𝑡,𝑠𝑠 is identical for scenarios (𝑟𝑟, 𝑠𝑠) until the scenarios are differentiable. With 

endogenous uncertainty, two scenarios are differentiable when the indicator variable 

takes a value of 1. The value of the indicator variable, 𝑍𝑍𝑡𝑡,𝑠𝑠,𝑠𝑠′, is given by Eq. 7.5. It is 

a function of 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠, the endogenous stage decision variables.   

EN: The standard form of an MSSP with endogenous uncertainty. 

min�𝑝𝑝𝑠𝑠
𝑠𝑠∈𝕊𝕊

����𝐷𝐷𝑖𝑖,𝑡𝑡𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝑖𝑖∈𝕀𝕀

+ 𝑓𝑓𝑡𝑡,𝑠𝑠𝑦𝑦𝑡𝑡,𝑠𝑠�
𝑡𝑡∈𝒯𝒯

 (7.1) 

 

� ���𝐺𝐺𝑖𝑖,𝑡𝑡,𝑡𝑡′,𝑠𝑠𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝑖𝑖∈𝕀𝕀

+ 𝐵𝐵𝑡𝑡′,𝑡𝑡,𝑠𝑠𝑦𝑦𝑡𝑡′,𝑠𝑠�
𝑡𝑡′∈ 𝒯𝒯,𝑡𝑡′< 𝑡𝑡 

≤ 𝑎𝑎𝑡𝑡,𝑠𝑠   ∀𝑠𝑠 ∈ 𝕊𝕊,∀𝑡𝑡 ∈ 𝒯𝒯 (7.2) 

 

𝑏𝑏𝑖𝑖,1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,1,𝑠𝑠   ∀𝑠𝑠, 𝑠𝑠′ ∈ 𝕊𝕊,∀𝑖𝑖 ∈ 𝕀𝕀 (7.3) 

 

�𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠� ⋁ �
¬𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠

𝑦𝑦𝑡𝑡,𝑟𝑟 = 𝑦𝑦𝑡𝑡,𝑠𝑠
𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑠𝑠

�      ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊: 𝑟𝑟 ≠ 𝑠𝑠 ,∀𝑡𝑡 ∈ 𝑇𝑇 (7.4) 

 

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠  ⇔ 𝐹𝐹�𝑏𝑏𝑖𝑖′,1,𝑠𝑠, 𝑏𝑏𝑖𝑖′,2,𝑠𝑠, … , 𝑏𝑏𝑖𝑖′,𝑡𝑡,𝑠𝑠�    ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ,∀𝑡𝑡 ∈ 𝑇𝑇 (7.5) 

 

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 ∈ {0,1}       𝑦𝑦𝑡𝑡,𝑠𝑠 , 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 ∈ ℝ    ∀𝑡𝑡 ∈ 𝑇𝑇, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 (7.6) 

 

7.1.2 MSSPs with Endogenous and Exogenous Uncertainty 
The extension of the MSSP framework to include both endogenous and 

exogenous uncertainty was originally presented in Goel and Grossmann (2006) . 
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Here, we include a brief description for completeness. From the endogenous problem, 
the planning horizon, 𝑡𝑡 ∈ 𝒯𝒯, the decision variables, 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 and 𝑦𝑦𝑡𝑡,𝑠𝑠 , and the endogenous 

uncertain parameters, 𝜃𝜃𝑖𝑖, persist. Let 𝒥𝒥 be a set of exogenous uncertain parameters 

defined by 𝒥𝒥 = [𝒥𝒥]. We denote 𝜉𝜉𝑡𝑡 as a vector of exogenous realizations defined for 

parameters 𝑗𝑗 ∈ 𝒥𝒥 and realized at time t. Each exogenous uncertain parameter is 

assumed to have a finite set of possible realization, ℰ𝑗𝑗,𝑡𝑡 ∈ �𝜉𝜉𝑗𝑗,𝑡𝑡
1 , 𝜉𝜉𝑗𝑗,𝑡𝑡

2 , … , 𝜉𝜉𝑗𝑗,𝑡𝑡
ℛ � . To handle 

exogenous parameters, we define a new variable 𝑥𝑥𝑡𝑡,𝑠𝑠 which represents the exogenous 

stage decisions.  Construction of the scenario set is performed similar to that of the 

endogenous problem, 𝕊𝕊 ≔ ×𝑡𝑡∈𝒯𝒯�×𝑗𝑗∈𝒥𝒥ℰ𝑗𝑗,𝑡𝑡� × { ×𝑖𝑖∈𝕀𝕀𝜃𝜃𝑖𝑖}  (Apap & Grossmann, 2016). 

The objective function (Eq. 7.7) minimizes the cost of the endogenous stage 
decision variables and the recourse actions. Adding exogenous parameters introduces 
the cost of the exogenous stage decisions variable, 𝑥𝑥𝑡𝑡,𝑠𝑠, in the objective function (Eq. 

7). The scenario specific constraints (Eq. 7.8) are updated to reflect the addition of 
exogenous uncertainty. First stage NACs apply to both the endogenous and 

exogenous uncertainty, thus both the exogenous and endogenous variables must be 
identical at the first time period (Eqs. 7.9 and 7.10).  Recalling that the realization of 
exogenous uncertain parameters is decision independent, i.e., the timing of the 

realizations are known a priori, the NACs for the exogenous parameters are written 
using a set of equality constraints shown in Eq. 7.11. The set 𝝉𝝉(𝑟𝑟, 𝑠𝑠), representing the 

time period in which scenario 𝑟𝑟 is distinguishable from scenario 𝑠𝑠, is generated such 

that for any scenario pair (𝑟𝑟, 𝑠𝑠) the value 𝝉𝝉(𝑟𝑟, 𝑠𝑠) = max �𝑡𝑡 |𝑡𝑡′ ∈ 𝒯𝒯 𝑎𝑎𝑎𝑎𝑎𝑎 𝜉𝜉𝑡𝑡′
𝑠𝑠 = 𝜉𝜉𝑡𝑡′

𝑠𝑠′  ∀𝑡𝑡′ ≤ 𝑡𝑡�. 

In the EN formulation if two scenarios 𝑟𝑟, 𝑠𝑠 differ in the realization of an endogenous 

uncertain parameter a disjunction written. When the indicator variable 𝑍𝑍𝑡𝑡,𝑠𝑠,𝑠𝑠′ = 0 

equality constraints are enforced to ensure that decision variables in scenarios 𝑟𝑟 and 

𝑠𝑠 are identical. However, when the formulation is extended to incorporate both 

endogenous and exogenous uncertainty the disjunction changes. When two scenarios 
𝑟𝑟 and 𝑠𝑠 differ in only endogenous uncertain parameters the disjunction is identical to 

the EN formulation. If scenarios 𝑟𝑟 and 𝑠𝑠 differ in both endogenous and exogenous 

parameters, the disjunction shown in Eq. 7.12 is used. The time periods for which the 
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disjunction is written depend on the time period when scenarios 𝑟𝑟 and 𝑠𝑠 are 

differentiable by the exogenous uncertain parameter (given as 𝝉𝝉(𝑟𝑟, 𝑠𝑠)). The 

formulation for the MSSP with endogenous and exogenous uncertainty (ENEX) is 
shown below. 

ENEX: The standard form of an MSSP with endogenous and exogenous 
uncertainty. 

min�𝑝𝑝𝑠𝑠
𝑠𝑠∈𝕊𝕊

����𝐷𝐷𝑖𝑖,𝑡𝑡𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝑖𝑖∈𝕀𝕀

+ 𝐶𝐶𝑡𝑡,𝑠𝑠𝑥𝑥𝑡𝑡,𝑠𝑠 + 𝑓𝑓𝑡𝑡,𝑠𝑠𝑦𝑦𝑡𝑡,𝑠𝑠�
𝑡𝑡∈𝒯𝒯

 (7.7) 

 

� ���𝐺𝐺𝑖𝑖,𝑡𝑡,𝑡𝑡′𝑠𝑠𝑏𝑏𝑖𝑖,𝑡𝑡,𝑡𝑡′�
𝑖𝑖∈𝕀𝕀

+ 𝐴𝐴𝑡𝑡′,𝑡𝑡,𝑠𝑠𝑥𝑥𝑡𝑡′,𝑠𝑠 + 𝐵𝐵𝑡𝑡′,𝑡𝑡,𝑠𝑠𝑦𝑦𝑡𝑡′,𝑠𝑠�
𝑡𝑡′∈ 𝒯𝒯,𝑡𝑡′< 𝑡𝑡 

≤ 𝑎𝑎𝑡𝑡,𝑠𝑠   ∀𝑠𝑠 ∈ 𝕊𝕊,∀𝑡𝑡 ∈ 𝒯𝒯 (7.8) 

 

𝑥𝑥1,𝑟𝑟 = 𝑥𝑥1,𝑠𝑠   ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ∶ 𝑟𝑟 > 𝑠𝑠 (7.9) 

 

𝑏𝑏𝑖𝑖,1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,1,𝑠𝑠   ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊,∀𝑖𝑖 ∈ 𝕀𝕀 (7.10) 

 

�
𝑥𝑥𝑡𝑡+1,𝑟𝑟 = 𝑥𝑥𝑡𝑡+1,𝑠𝑠
𝑦𝑦𝑡𝑡,𝑟𝑟 = 𝑦𝑦𝑡𝑡,𝑠𝑠

𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑠𝑠

�     ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ∶ 𝑟𝑟 > 𝑠𝑠     ∀𝑡𝑡 ∈ 𝒯𝒯 ∶ 𝑡𝑡 ≤ 𝝉𝝉(𝑟𝑟, 𝑠𝑠) (7.11) 

 

�𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠� ⋁�

¬𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠
𝑥𝑥𝑡𝑡+1,𝑟𝑟 = 𝑥𝑥𝑡𝑡+1,𝑠𝑠
𝑦𝑦𝑡𝑡,𝑟𝑟 = 𝑦𝑦𝑡𝑡,𝑠𝑠

𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑟𝑟 = 𝑏𝑏𝑖𝑖,𝑡𝑡+1,𝑠𝑠

�     ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊: 𝑟𝑟 ≠ 𝑠𝑠 ∧ (𝑟𝑟, 𝑠𝑠) ∈ Ψ ,∀𝑡𝑡 < 𝝉𝝉(𝑟𝑟, 𝑠𝑠) 𝒐𝒐𝒐𝒐 𝒯𝒯, 𝑖𝑖 ∈ 𝕀𝕀 (7.12) 

 

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠  ⇔ 𝐹𝐹�𝑏𝑏𝑖𝑖′,1,𝑠𝑠, 𝑏𝑏𝑖𝑖′,2,𝑠𝑠, … , 𝑏𝑏𝑖𝑖′,𝑡𝑡,𝑠𝑠�    ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊 ,∀𝑡𝑡 ∈ 𝒯𝒯 (7.13) 

 

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 ∈ {0,1}       𝑦𝑦𝑡𝑡,𝑠𝑠 , 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠 ∈ ℝ    ∀𝑡𝑡 ∈ 𝒯𝒯, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 (7.14) 
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7.1.3 Linear Representation of Non-Anticipativity Constraints 
Section 7.1.1 and 7.1.2 introduced the mathematical form of the MSSPs for 

problems with endogenous uncertainty (EN) and with endogenous and exogenous 
uncertainty (ENEX). To better illustrate the function of the endogenous NACs, 
specifically endogenous NACs with gradual realizations, we present a simple 
manufacturing example. Suppose that a company produces two different products, 

𝑝𝑝 ∈ {𝑃𝑃1,𝑃𝑃2}. Both products are required to complete three ordered processing stages 

using the same equipment. A product may develop a defect during any of the 
processing steps. If a product develops a defect, it does not complete the next step. 

Whether or not a product completes all processing stages without a defect is not 
known with certainty. We can represent this uncertainty associated with product 𝑝𝑝 

using an uncertain parameter 𝜃𝜃𝑝𝑝. Thus, the possible outcomes for the uncertain 

parameter 𝜃𝜃𝑝𝑝 are Θ𝑝𝑝 = {𝜔𝜔𝑝𝑝1,𝜔𝜔𝑝𝑝2,𝜔𝜔𝑝𝑝3,𝜔𝜔𝑝𝑝4} where 𝜔𝜔𝑝𝑝1, 𝜔𝜔𝑝𝑝2, and 𝜔𝜔𝑝𝑝3 represent a defect 

developed on product 𝑝𝑝 in processing stages one, two, and three. The outcome 

𝜔𝜔𝑝𝑝4 represents the case where the product 𝑝𝑝 was successfully manufactured with no 

defects.  In this example, the uncertainty is realized gradually, completing a 
processing stage will reveal if a defect is developed in that stage (a partial realization 
of uncertainty) but does not necessarily reveal whether or not the product will 
successfully complete all processing stages (complete realization of uncertainty). To 

have complete realization of uncertainty, all processing stages must be completed. 

To illustrate how the non-anticipativity can be enforced for this example with the 
disjunctions given in the MSSP formulations (Eq 7.1 – Eq. 7.6), we begin by defining 
a binary variable, 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑠𝑠 , which takes a value of 1 indicating that processing stage 

𝑠𝑠𝑠𝑠 ∈ [𝑺𝑺𝑺𝑺] of product 𝑝𝑝 ∈ 𝑷𝑷 is started at time period 𝑡𝑡 ∈ 𝑻𝑻 for scenario 𝑠𝑠 ∈ 𝕊𝕊. Depending 

on the objective of the problem, the model may contain additional constraints or 

variables. These variables and constraints do not impact the development of NACs, 
as such, we omit them from this discussion.  Prior to completing any processing stages 
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all scenarios are indistinguishable, this implies that the values for the decision 
variable, 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑠𝑠 , are identical until processing stages are completed. 

Naturally it follows that we define a binary variable, 𝜁𝜁𝑝𝑝,𝑠𝑠𝑔𝑔,𝑡𝑡
𝑠𝑠  which indicates 

whether the processing stage 𝑠𝑠𝑠𝑠 has been completed for product 𝑝𝑝 at time 𝑡𝑡 in scenario 

𝑠𝑠. For simplicity in our example we assume that the each processing stage has a 

known completion time. We then can define Eq. 7.15, which relates the decision 
variable 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑠𝑠  to the indicator variable 𝜁𝜁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡
𝑠𝑠  using the duration (𝛿𝛿𝑝𝑝,𝑠𝑠𝑠𝑠) required to 

complete the processing stage 𝑠𝑠𝑠𝑠 for product 𝑝𝑝.  

𝜁𝜁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡
𝑠𝑠 = 𝜁𝜁𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡−1

𝑠𝑠 + 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡−𝛿𝛿𝑝𝑝,𝑠𝑠𝑔𝑔 (7.15) 

For every scenario pair, {𝑟𝑟, 𝑠𝑠} ∈ 𝕊𝕊 =×𝑝𝑝∈𝑷𝑷�𝜃𝜃𝑝𝑝�, there exists one or more 

differentiating events. In the case of gradually realized uncertainty, the 
differentiating event is an event which causes a partial realization of an uncertain 
parameter.  We demonstrate this concept using the manufacturing example. Consider 

two scenarios with the uncertain parameter realizations (𝜔𝜔𝑃𝑃1
1 ,𝜔𝜔𝑃𝑃2

3 ) and (𝜔𝜔𝑃𝑃1
2 ,𝜔𝜔𝑃𝑃2

4 ). 

The first scenario represents the case where product 𝑃𝑃1 develops a defect after 

processing stage 1 and product 𝑃𝑃2 develops a defect after processing stage 3. In the 

second scenario, product 𝑃𝑃1 develops a defect after processing stage 2 and product 𝑃𝑃2 

successfully completes all processing stages without developing a defect. Before the 
products complete any processing stages the scenarios are not differentiable. Once 
product 𝑃𝑃1 completes first processing stage, these two scenarios become 

differentiable. If product 𝑃𝑃1 develops a defect during processing stage 1, the 

underlying value for 𝜔𝜔𝑃𝑃1 is realized to be 𝜔𝜔𝑃𝑃1
1 . If no defect is developed the value of 

𝜔𝜔𝑃𝑃1 is realized not to be 𝜔𝜔𝑃𝑃1
1 . To realize the value of 𝜔𝜔𝑃𝑃1, 𝑃𝑃1 must complete more 

processing stages .   

For any two scenarios (𝑟𝑟, 𝑠𝑠), we can establish that at each time period two 

scenarios are indistinguishable if no differentiating events have occurred previously. 
Whether or not a differentiating event has occurred can be described using Eq. 3.20. 

The set Ψ(𝑟𝑟, 𝑠𝑠) represents the set of differentiating events that can occur before 
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scenarios 𝑟𝑟 and 𝑠𝑠 are differentiable. In the case of the manufacturing example, these 

events correspond to the completion of a particular processing stage. Equation 7.16 
corresponds to Eq. 7.5 in EN. 

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 = � 𝜁𝜁𝑝𝑝′,𝑠𝑠𝑠𝑠′,𝑠𝑠
(𝑝𝑝′,𝑠𝑠𝑠𝑠′)∈Ψ(𝑟𝑟,𝑠𝑠)

  (7.16) 

In Eq. 7.16, the variable 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 takes a value of zero if the scenarios (𝑟𝑟, 𝑠𝑠) are not 

differentiable and a positive integer otherwise. Equation 7.17 uses the value of 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 

established in Eq. 3.20 to construct a disjunction. The disjunction enforces equality 

constraints on the problem, and ensures that the decision variables in scenarios 𝑟𝑟 and 

𝑠𝑠 are identical (i.e. 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 = 0).  The disjunction presented in Eq. 7.17 functions as the 

disjunction shown in Eq. 7.4 in EN. 

�𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠� ⋁ �
¬𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠

𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡
𝑠𝑠 = 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑟𝑟 �      ∀𝑟𝑟, 𝑠𝑠 ∈ 𝕊𝕊: 𝑟𝑟 ≠ 𝑠𝑠 ,∀𝑡𝑡 ∈ 𝓣𝓣 (7.17) 

The disjunction can be converted to a linear constraint using ‘big-M’ 
representation. From Eq. 7.18, it can be seen that when 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 is equal to zero, the 

decision variables are identical in scenarios 𝑠𝑠 and 𝑟𝑟.  

 

When 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 is no longer equal to zero, the decision variables can take different 

values. It follows that the value of 𝑀𝑀 is calculated as 𝐦𝐦𝐦𝐦𝐦𝐦 |𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡
𝑠𝑠 − 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑟𝑟 |. In addition 

to conditional non-anticipativity constraints, MSSPs with endogenous uncertainty 

also contain a NAC which ensures decision variables are identical at the first time 
period (Eq. 7.3 in EN). This constraint can be seen in Eq. 7.19. 

𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,1
𝑠𝑠 = 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,1

𝑟𝑟    ∀𝑝𝑝 ∈ 𝑷𝑷, 𝑠𝑠𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺, 𝑟𝑟 ∈ 𝕊𝕊: 𝑟𝑟 ≠ 𝑠𝑠 (7.19) 

Goel and Grossmann (2006) established that if the scenario set is given as the 

Cartesian product, the constraints written in Eq. 7.20, only need to be written for any 
two scenarios (𝑟𝑟, 𝑠𝑠) and not for scenarios (𝑠𝑠, 𝑟𝑟). This property referred to as the 

�𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡
𝑠𝑠 − 𝜒𝜒𝑝𝑝,𝑠𝑠𝑠𝑠,𝑡𝑡

𝑟𝑟 � ≤ 𝑀𝑀 ⋅ 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠    ∀ 𝑝𝑝 ∈ 𝑷𝑷, 𝑠𝑠𝑠𝑠 ∈ 𝑺𝑺𝑺𝑺, 𝑡𝑡 ∈ 𝑻𝑻, (𝑟𝑟, 𝑠𝑠) ∈ 𝕊𝕊 ∶ 𝑟𝑟 ≠  𝑠𝑠    (7.18) 
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symmetry property holds because the indicator variable 𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 is identical to 𝑍𝑍𝑡𝑡,𝑠𝑠,𝑟𝑟 (Eq. 

7.20)  

𝑍𝑍𝑡𝑡,𝑟𝑟,𝑠𝑠 = 𝑍𝑍𝑡𝑡,𝑠𝑠,𝑟𝑟. (7.20) 

Boland et al. (2016) showed this property to be applicable also for the sets of 

scenarios which are subsets of the Cartesian product (Boland et al., 2016). 

An analogous framework can be presented to construct linear representation 
for the situations with both endogenous and exogenous uncertainty based on 
formulation 

 Proposed Approach for Generation of NACs for Scenario Subsets 

7.2.1 Graph-based model for NACs 
Generation of NACs relies on knowledge of the scenario structure and how the 

groupings of indistinguishable scenarios change with the realization of uncertainty. 
The goal of this work is to find an efficient approach to generate a minimum 

cardinality set of NACs, which we will denote by 𝒩𝒩. We begin by projecting the 

scenarios onto a undirected lattice graph 𝒢𝒢 = (𝒮𝒮,𝐸𝐸).  Here we assume that vertices 

represent scenarios 𝑠𝑠 ∈ 𝒮𝒮 ⊆ 𝕊𝕊 and the edges will represent the conditional NACs 

which relate pairs of scenarios. Before discussing the algorithm to generate the 
minimum cardinality set 𝒩𝒩, we will establish some properties of the graph and how 

the grouping of vertices on the graph change as the knowledge of the underlying 
values of the uncertain parameters in the system changes.  

For each uncertain parameter, ∈ 𝕀𝕀 ∪ 𝕁𝕁 , there exist a set of events, ℰ𝜎𝜎, which 

represent the events that must occur to fully realize the uncertain parameter 𝜎𝜎. In 

the case of instantaneous uncertainty realization |ℰ𝜎𝜎| = 1 indicating that with a 

single event the underlying value of the uncertain parameter is realized. When 
uncertainty is realized gradually, the definition of ℰ𝜎𝜎 is less straightforward. If the 

gradual realization of uncertainty requires the set of events to be completed in a 

specific order similar to the manufacturing example, ℰ𝜎𝜎 is defined as an ordered set, 

ℰ𝜎𝜎 ∶= {𝑒𝑒𝜎𝜎1, … , 𝑒𝑒𝜎𝜎
𝐾𝐾𝜎𝜎} .    
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Definition 1 

Let ρ be the power set of all events, i.e., ρ = 2∪σ∈𝕀𝕀∪𝕁𝕁ℰσ. We will call a c ∈ ρ a cut. When 

applied to graph 𝒢𝒢 each cut generates a set 𝔊𝔊c of mutually disjoint subsets of vertices 

𝔰𝔰 ∈ 𝔊𝔊c, ⋃𝔰𝔰 = 𝒮𝒮, such that scenarios within each 𝔰𝔰 are indistinguishable given c. 

Further, we will denote by 𝒞𝒞 ⊂ ρ the set of permissible cuts. 

The primary benefit of the lattice graph is that the cuts applied to the graph are 
either vertical or horizontal by construction. Illustrating this concept with the 

manufacturing example, we begin by constructing the lattice. Here we show the 
complete scenario set, however the concept can be generalized to any subset of the 
full scenario set. Figure 7.1a shows the scenarios projected onto the lattice structure 
for the manufacturing example. Recall that for each product there are four possible 

outcomes, resulting in a total of 16 scenarios. 

If there is no order to the gradual realizations (or the realizations are 
instantaneous), the cut set formed is the power set of ℰσ, i.e. 𝒞𝒞 = ρ. When there is an 

of order associated with the gradual realization of uncertainty, i.e., ℰσ is an ordered 

set, the set of cuts 𝒞𝒞 forms a proper subset of ρ as not all sets of events are permissible. 

Clearly, in this case, for any set of cuts c ∈ 𝒞𝒞, if an event e ∈ c, then all events e′ that 

should have occurred prior to e are also in c. The sets of scenarios 𝔰𝔰 ∈ 𝔊𝔊c formed by 

each cut c ∈ 𝒞𝒞 are generated by dividing the full scenario set. For all scnearios in that 

subset, the scenarios share identical information for all events. To illustrate this 
concept, we use two cut sets from the manufacturing example. The first cut set {eP11 }, 

divides the scenario set into two groups based on event 1 for product P1. In the first 
group, all scenarios develop a defect during processing stage 1. In the second group 
all scenarios do not develop a defect during processing stage 1. The division of 

scenarios is shown in Fig. 7.1b. Figure 7.1c shows a second example of scenario 
division. The cut set for Fig. 7.1c contains events eP11  and eP22 . The two events divide 

the scenario set into four groups. One set contains a single scenario and represents 
the case where both products develop a defect in the first processing stage. Two 
scenario sets contain three scenarios each which represent the cases where one 
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product develops a defect in processing stage one. The final group contains nine 
scenarios where defects do not develop in the first processing stage. 
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Figure 7.1 (A) Projection of the full set of scenarios in the manufacturing 
example onto a lattice graph (B) Scenario groups of the manufacturing 

example formed by cut set {𝒆𝒆𝑷𝑷𝑷𝑷𝟏𝟏 }. (C) Scenario groups formed by the cut set 
{𝒆𝒆𝑷𝑷𝑷𝑷𝟏𝟏 , 𝒆𝒆𝑷𝑷𝑷𝑷𝟏𝟏 } 

Remark 

The division of the scenario set into subsets based on the cut sets differ slightly if the 

realization of uncertainty is instantaneous. In the manufacturing example, an event 

would add a single cut to the graph 𝒢𝒢. In contrast, instantaneous realization of a 

parameter θi would results in |Θi| cuts added to the graph 𝒢𝒢. The cuts would create 

groups based on the realized value of the parameter θi. 
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Definition 2  

We will say that a subset of scenarios 𝔰𝔰 is connected if the corresponding restriction of 

graph 𝒢𝒢 is connected.  

Next, we will describe the relationship between a set of constraints sufficient 
to enforce non-anticipativity and connectivity of subsets of nodes. At the initial time 
period no uncertainty no uncertainty has been realized. This implies that all 

scenarios are identical, thus there is one group of scenarios (the whole set). 
Throughout the planning horizon uncertainty is realized. As uncertainty is realized, 
the scenario set is divided into subsets based on the realization of uncertainty. Figure 

7.2 shows the progression of uncertainty realization in the manufacturing example. 
Below each vertex set presented in Fig. 7.2, the cut set 𝑐𝑐 ∈ 𝒞𝒞 corresponding to the 

vertex set is shown. 

 Definition 3 

We will say the degree of uncertainty realization of any cut set c ∈ 𝒞𝒞 is given by |c|, or 

in other words, |c| represents the number of differentiating events which have occurred 

in order to reach the state of uncertainty realization. 

Proposition 1 

Any set of subsets 𝔖𝔖c: 𝔰𝔰 ∈ 𝔖𝔖c with order |c| can be transformed into a set of subset 

𝔖𝔖c′: 𝔰𝔰′  ∈ 𝔖𝔖c′   with order |c| + 1 if  |c′\c| = 1. Moreover, 𝔰𝔰′ ⊂ 𝔰𝔰 if 𝔰𝔰 ∩ 𝔰𝔰′ ≠  ∅ for all 𝔰𝔰 ∈ 𝔊𝔊c 

and 𝔰𝔰′ ∈ 𝔊𝔊c.  

Proof 

The order of the cut set refers to the number of differentiating events which have 
occurred to reach the state of uncertainty realization. Two scenarios 𝑟𝑟, 𝑠𝑠 ∈ 𝔰𝔰 ∈ 𝔊𝔊𝑐𝑐 if 

they are indistinguishable with respect to the differentiating events in 𝑐𝑐. Increasing 

the number of differentiating events in the cut set 𝑐𝑐 (i.e. |𝑐𝑐′| = |𝑐𝑐| + 1 and 𝑐𝑐 ⊂ 𝑐𝑐′) 

results in formation of a new set of subsets 𝔊𝔊𝑐𝑐′. If two scenarios {𝑠𝑠, 𝑠𝑠′} ∉ 𝔰𝔰 ∈ 𝔖𝔖𝑐𝑐 then 

the event differenting scenarios 𝑠𝑠 and 𝑠𝑠′ exists in the set 𝑐𝑐. This implies that if an 
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additional differentiating event is added to the cut set 𝑐𝑐 to form a cut set 𝑐𝑐′, then 
{𝑠𝑠, 𝑠𝑠′} ∉ 𝔰𝔰 ∈ 𝔖𝔖𝑐𝑐′. 

 If two scenarios r, s ∈ 𝔰𝔰 ∈ 𝔊𝔊c for some cut c ∈ 𝒞𝒞, then they are indistinguishable 

for some permissible state of the system, and hence, non-anticipativity should be 
enforced for these two scenarios. On the other hand, a direct non-anticipaticity 

constraint for (r, s) can be eliminated if another path 𝒫𝒫 exists within 𝔰𝔰 connecting r 

and s due to transitivity of the constraints. Further, since while uncertainty is 

gradually realized new scenario sets are constructed as subsets of existing sets, the 
sets formed by the differentiating event must exist as connected sets prior to the 
occurrence of the differentiating event. This observation leads to the following 
characterization of relationship between NACs and lattice graphs. 

Proposition 2 

A set of constraints is sufficient to enforce non-anticipativity, if and only if for all cuts 

c ∈ 𝒞𝒞 all of the corresponding scenario subsets 𝔰𝔰 ∈ 𝔊𝔊c are connected. 

 Proof 

Follows by construction, from the discussion above. 

 Next, we will demonstrate how using the knowledge of the structure of the 

subsets of vertices formed by each cut set and the relationship between cut sets, it is 
possible to develop an algorithm which generates a set of edges for the graph 𝒢𝒢 such 

that it satisfies Proposition 2 with the minimal number of corresponding NACs. 

Definition 4 

An edge (r, s) ∈ E will be called necessary for a set of nodes 𝔰𝔰 ∈ 𝔊𝔊c if r, s ∈ 𝔰𝔰, and r, s ∉ 𝔰𝔰′ 

for all 𝔰𝔰′ ∈ 𝔊𝔊c′ and c′ ∈ 𝒞𝒞 such that |c| < |c′|: 
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Figure 7.2 The sets formed by each cut set 𝒄𝒄 ∈ 𝓒𝓒 for the manufacturing 
example 
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By this definition an edge (𝑟𝑟, 𝑠𝑠) is necessary for 𝔰𝔰 ∈ 𝔊𝔊𝑐𝑐 if non-anticipativity for 

scenarios 𝑟𝑟, 𝑠𝑠 is required (as 𝑟𝑟, 𝑠𝑠 ∈ 𝔰𝔰), yet it cannot be established based on edges that 

are within subsets 𝑠𝑠′ ∈ 𝔊𝔊𝑐𝑐′ for |𝑐𝑐′| > |𝑐𝑐|, i.e., when more information on uncertainty 

realization is available. In other words, unless non-anticipativity for 𝑟𝑟, 𝑠𝑠 is enforced 

with a path within 𝔰𝔰, then it will not follow for any other set of NACs. Note that it is 

not required in the definition above to |𝑐𝑐′\𝑐𝑐| = 1, as non-anticipativity can be enforced 

based on paths in 𝒢𝒢 created based on a cut set which has a higher order in lieu of 

adding a new edge. 

Definition 5 

Any set of necessary edges E′ required to ensure the connectivity of 𝔰𝔰 is said to be 

minimal if there exists no other set of edges E′′which also guarantees connectivity in 𝔰𝔰, 

such that ∑ |Ψ(r, s)| + |τ(r, s)|(r,s)∈E′′ < ∑ |Ψ(r, s)| + |τ(r, s)|(r,s)∈E′ .  

Note that the value of |Ψ(r, s)| + |τ(r, s)| represents the number of NACs required for 
a pair of scenarios r, s. 

Proposition 3 

Any graph 𝒢𝒢 such that all subsets of nodes 𝔰𝔰 ∈ 𝔊𝔊c are connected and the restriction of 

𝒢𝒢 on any of these subsets of nodes is composed of only minimal necessary edges 

provides a minimum cardinality NAC set. 

Proof 

The result follows immediately from the definitions of necessary edges and 
minimal necessary edge sets. Suppose there is another graph 𝒢𝒢′ that does not consist 

of only minimal, yet provides a lower cardinality set of NACs than 𝒢𝒢. Clearly, all 

edges in such a graph have to be necessary (in the sense of Definition 4), as any non-

necessary can be removed without any change in the validity of NACs, which would 
reduce the cardinality of the NAC set. Further, then we can substitute all edges in 
this restriction with minimal edges. This would have no effect on non-anticipativity 
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for any other subsets 𝔰𝔰′ since 𝔰𝔰 will remain connected, and hence the new graph will 

imply a reduction in the total cardinality. 

 Note that this result does not describe how such a graph can be 
constructed. In the next Section we will present an algorithm for constructing a graph 

𝒢𝒢 which satisfies the requirements in Proposition 3, at the same time proving its 

existence. 

7.2.2 Sample non-anticipaticity constraint (SNAC) algorithm to find 
minimum cardinality NAC set 

The proposed algorithm is presented in Algorithm 1. It is constructed as a greedy 
procedure, which begins by considering fully realized uncertainty sets (𝑘𝑘 =

�⋃ ℰ𝜎𝜎𝜎𝜎∈𝕀𝕀∪𝕁𝕁 �) and then generates minimal subsets of necessary edges separately for 

each possible cut set 𝑐𝑐 ∈ 𝒞𝒞 such that |𝑐𝑐| = 𝑘𝑘. The process of generating subsets is 

repeated for cut set with |𝑐𝑐| = 𝑘𝑘. Any edge deemed necessary is stored, then the value 

of 𝑘𝑘 is decreased. The process is repeated until 𝑘𝑘 = 0. The minimum cardinality NAC 

set is represented by edges deemed necessary in all iterations. For each 𝔰𝔰 the set of 

minimal necessary edges is found as a Minimum Spanning Tree (MST), taking into 
account any of the previously identified necessary edges. The weight of the edges 

correspond to |Ψ(𝑟𝑟, 𝑠𝑠)| + |𝜏𝜏(𝑟𝑟, 𝑠𝑠)|, i.e., the number of NACs for a pair of scenarios 𝑟𝑟, 𝑠𝑠. 

An example progression of the algorithm is presented in section 7.2.3. 

Theorem 1 

Algorithm 1 terminates with a subset of edges which correspond to a minimum-

cardinality set of NACs. The algorithm can be implemented in a way that guarantees 

that the time complexity grows as 𝑂𝑂(|𝒞𝒞|)𝑂𝑂(𝒮𝒮3) as |𝒞𝒞|,𝒮𝒮 → +∞, where 𝒮𝒮 is the number 

of the scenarios and 𝒞𝒞 is the set of permissible cuts. 

Proof 

The correctness result follows by construction from Proposition 3. Observe that since 
the algorithm proceeds from the state of full uncertainty, edges added earlier can be 
used in lieu of new edges. Hence, as long as previously added edges are taken into 
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account, MST procedure on subset 𝔰𝔰 by definition outputs a minimal set of necessary 

edges for 𝔰𝔰, i.e., a subset of edges that enforce connectivity at minimum cost which 

implies the result.  

 In order to establish time-complexity, observe that the algorithm iterate 𝑐𝑐 ∈ 𝒞𝒞 

and then over all 𝔰𝔰 ∈ 𝔊𝔊𝑐𝑐. For each 𝔰𝔰 it then generates the set of scenarios in 𝔰𝔰 and 

performs an MST procedure. The number of subsets 𝔰𝔰 for each 𝑐𝑐 is bounded by 𝑆𝑆. In 

a simplest implementation an MST can be found in 𝑂𝑂(𝑛𝑛2), where 𝑛𝑛 is the number of 

nodes in a graph. In our case, the number of nodes in each subset 𝔰𝔰 is bounded by 𝑆𝑆. 

Further, generation of each subset 𝔰𝔰 can be organized in 𝑂𝑂(𝑆𝑆) by enumeration. This 

then results in overall 𝑂𝑂(|𝐶𝐶|𝑆𝑆3) complexity. 

Remark 

Note that MST can be identified faster than 𝑂𝑂(𝑛𝑛2), depending on the 

implementation used. Further, for a lattice graph even more efficient 

implementations are possible. 

Remark 

Each component 𝔰𝔰 ∈ 𝔊𝔊𝑐𝑐 for |𝑐𝑐| = 𝑘𝑘 is treated “in parallel”, i.e., MSTs are 
constructed without regard to edges that are added at the same iteration of 𝑘𝑘. This 

can lead to creation of cycles in 𝒢𝒢. When MST procedure is applied to any subset, each 

connected component is treated as a single node. 

The running time is proportional to 𝑂𝑂(|𝒞𝒞|) which in the worst case is a powerset 

of the set of uncertainty realization events, i.e., it is exponential in the number of 

events. On the other hand, if the number of uncertain parameters and events is fixed, 
and 𝑆𝑆 ≪ |𝒞𝒞|, which is often the case, then the running time is polynomial in the 

number of scenarios.  
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𝑘𝑘 ∶= �� Eσ
σ∈I∪J

� 

𝒩𝒩 ≔  ∅ 
𝑤𝑤ℎ𝑖𝑖𝑖𝑖𝑖𝑖 𝑘𝑘 ≥ 0 

 for c ∈ 𝒞𝒞 ∶ |c| = k 
        STEP 1: Generate subsets 𝔰𝔰 ∈ 𝔖𝔖c 

        STEP 2: Use MST to identify necessary edges for each subset 𝔰𝔰 with     

existing edges 𝒩𝒩 

        STEP 3:  Add edges identified in STEP 2 to 𝒩𝒩 
     𝑘𝑘 = 𝑘𝑘 − 1 

Algorithm 1 The Sample Non-Anticipativity Constraint (SNAC) Algorithm 
for minimum cardinality NAC generation 

7.2.3 Illustration of the Algorithm Progression for a Simple 
Manufacturing Example 

The manufacturing problem considered is described in detail in Section 7.1.3. The 
cardinality of the full set of scenarios for a manufacturing problem with two products 
and three processing stages is 16 (calculated as 42 = 16). For this example, we sample 

6 random scenarios, 𝒮𝒮 ∈ {(𝜔𝜔𝑃𝑃1
1 ,𝜔𝜔𝑃𝑃2

1 ), (𝜔𝜔𝑃𝑃1
4 ,𝜔𝜔𝑃𝑃2

3 ), (𝜔𝜔𝑃𝑃1
2 ,𝜔𝜔𝑃𝑃2

1 ), (𝜔𝜔𝑃𝑃1
3 ,𝜔𝜔𝑃𝑃2

2 ), (𝜔𝜔𝑃𝑃1
4 ,𝜔𝜔𝑃𝑃2

1 ), 

 (𝜔𝜔𝑃𝑃1
3 ,𝜔𝜔𝑃𝑃2

3 )}. Projection of these scenarios can be seen in Fig. 7.3. 

 

Figure 7.3 The projection of the six sampled scenarios onto the integer 
lattice 
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Since the uncertainty is realized gradually and there is an order to the 
realizations, the set 𝒞𝒞 is a proper subset of the power set of the full set of 

differentiating events. The set of differentiating events is calculated as ⋃ ℰ𝜎𝜎𝜎𝜎∈{𝜔𝜔𝑃𝑃1,𝜔𝜔𝑃𝑃2} , 

where ℰ𝜎𝜎 ≔ {𝑒𝑒𝑝𝑝1, 𝑒𝑒𝑝𝑝2, 𝑒𝑒𝑝𝑝3} where 𝑒𝑒𝑝𝑝1 represents the completion of processing stage 1 for 

product 𝑝𝑝. Table 7.1 shows the cut set 𝒞𝒞. 

Table 7.1 The cut sets 𝓒𝓒 for the manufacturing example 

Order 𝓒𝓒 
0 {} 
1 {𝑒𝑒𝑃𝑃11 }, {𝑒𝑒𝑃𝑃21 } 
2 {𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 },{𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃21 }, {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 } 

3 {𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 , 𝑒𝑒𝑃𝑃23 }, {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 }, {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃21 },  
 {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃13 } 

4 {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 }, {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃13 , 𝑒𝑒𝑃𝑃21 } 
{𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 , 𝑒𝑒𝑃𝑃23 } 

5 {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 , 𝑒𝑒𝑃𝑃23 },{𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃13 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 } 
6 {𝑒𝑒𝑃𝑃11 , 𝑒𝑒𝑃𝑃12 , 𝑒𝑒𝑃𝑃13 , 𝑒𝑒𝑃𝑃21 , 𝑒𝑒𝑃𝑃22 , 𝑒𝑒𝑃𝑃23 } 

   

The algorithm starts by initializing 𝑘𝑘 to a value of |⋃ ℰ𝜎𝜎𝜎𝜎∈{𝜔𝜔𝑃𝑃1,𝜔𝜔𝑃𝑃2} |. In this case, 

the value of 𝑘𝑘 is set to six. The next step is to divide the scenarios into subsets for 

each 𝑐𝑐 ∈ 𝒞𝒞: |𝑐𝑐| = 𝑘𝑘. The cut set 𝑐𝑐 with |𝑐𝑐|=6 produces subsets where each scenario 

forms its own subset. As a result, no edges are deemed necessary. Reducing 𝑘𝑘 by one 

and generating new subsets results in the subsets shown in Fig. 7.4. The 
corresponding cut set with five elements is shown below each set of subsets. In Fig. 

7.4(A), two scenarios fall into the same subset and MST provides the list of necessary 
edges represented with a dotted line.  
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Figure 7.4 Subsets formed by the cut sets of length five 

After identifying the necessary edges, the edges are added to the set 𝒩𝒩, and 

the value of 𝑘𝑘 is decreased by one. Subsets are then generated for cut sets with four 

elements. These sets are shown in Fig. 7.5. The edges which were deemed necessary 

in the previous iteration are shown as solid lines in Fig. 7.5. In Fig. 7.5(B), the edges 
adding during the previous iterations are sufficient to satisfy property 1 for all 
subsets. In both Fig. 7.5(A) and 7.5(C), there exists at least one subset where 

additional edges are needed. The additional edges deemed necessary by the MST for 
each subset are shown with dotted lines. The edges deemed necessary are then added 
to the set 𝒩𝒩.  

 

Figure 7.5 Subsets for the iteration where 𝒌𝒌 = 𝟒𝟒  

 

Product 1

Pr
od

uc
t 2

Stage 1 
Defect

Stage 2 
Defect

Stage 3 
Defect

No
Defects

St
ag

e 
1 

D
ef

ec
t

St
ag

e 
2 

D
ef

ec
t

St
ag

e 
3 

D
ef

ec
t

N
o

D
ef

ec
ts

{𝑒𝑒𝑃𝑃1
1 , 𝑒𝑒𝑃𝑃1

2 , 𝑒𝑒𝑃𝑃2
1 , 𝑒𝑒𝑃𝑃2

2 , 𝑒𝑒𝑃𝑃2
3 } 

 

Product 1

Pr
od

uc
t 2

Stage 1 
Defect

Stage 2 
Defect

Stage 3 
Defect

No
Defects

St
ag

e 
1 

D
ef

ec
t

St
ag

e 
2 

D
ef

ec
t

St
ag

e 
3 

D
ef

ec
t

N
o

D
ef

ec
ts

{𝑒𝑒𝑃𝑃1
1 , 𝑒𝑒𝑃𝑃1

2 , 𝑒𝑒𝑃𝑃1
3 , 𝑒𝑒𝑃𝑃2

1 , 𝑒𝑒𝑃𝑃2
2 } 

(A) (B)

Product 1

Pr
od

uc
t 2

Stage 1 
Defect

Stage 2 
Defect

Stage 3 
Defect

No
Defects

St
ag

e 
1 

D
ef

ec
t

St
ag

e 
2 

D
ef

ec
t

St
ag

e 
3 

D
ef

ec
t

N
o

D
ef

ec
ts

{𝑒𝑒𝑃𝑃1
1 , 𝑒𝑒𝑃𝑃2

1 , 𝑒𝑒𝑃𝑃2
2 , 𝑒𝑒𝑃𝑃2

3 } 

Product 1

Pr
od

uc
t 2

Stage 1 
Defect

Stage 2 
Defect

Stage 3 
Defect

No
Defects

St
ag

e 
1 

D
ef

ec
t

St
ag

e 
2 

D
ef

ec
t

St
ag

e 
3 

D
ef

ec
t

N
o

D
ef

ec
ts

{𝑒𝑒𝑃𝑃1
1 , 𝑒𝑒𝑃𝑃1

2 , 𝑒𝑒𝑃𝑃1
3 , 𝑒𝑒𝑃𝑃2

1 } 

Product 1

Pr
od

uc
t 2

Stage 1 
Defect

Stage 2 
Defect

Stage 3 
Defect

No
Defects

St
ag

e 
1 

D
ef

ec
t

St
ag

e 
2 

D
ef

ec
t

St
ag

e 
3 

D
ef

ec
t

N
o

D
ef

ec
ts

{𝑒𝑒𝑃𝑃1
1 , 𝑒𝑒𝑃𝑃1

2 , 𝑒𝑒𝑃𝑃2
1 , 𝑒𝑒𝑃𝑃2

2 } 

(A) (B) (C)



163 

The value of 𝑘𝑘 is decreased again, and iterations continue until the value of 𝑘𝑘 

is equal to zero. The subsets and necessary edges for the remaining iterations are 
summarized in Fig. 7.5. The iteration with 𝑘𝑘 = 3 adds the final two edges to the 

necessary set of edges. The algorithm generated a total of five non-anticipativity 

constraints to connect six scenarios. Without reductions the number of NACs would 
have been 15 calculated by 0.5 ⋅ [|𝒮𝒮| ⋅ (|𝒮𝒮| − 1)]. 

 Computational Studies 

In this section, we present results of a computational study investing the SNAC 
algorithm run time and the number of NACs generated by the algorithm. he study 
compares the number of NACs generated by SNAC algorithm to the number of NACs 

that will be added to the MSSP without any reductions. All computational studies 
were implemented in Python Version 3.5.0 and performed on a 64-bit machine 
running Windows 7 with Xeon E3-1241 with 32 GB RAM. 

We vary the number of uncertain parameters, the number of outcomes that each 

parameter can take, and the number of scenarios considered. In each case, all 
uncertain parameters are endogenous  with gradual realizations of uncertainty where 
the realization of uncertainty is ordered. The scenarios are then randomly sampled 

from the Cartesian product. For each set of parameter values 30 random instances 
were generated. Figure 7.7 plots the average running time of the SNAC algorithm for 
each set of parameter values. 

In Fig. 7.7, as the number of uncertain parameters increases so does the 

algorithm running time. Considering the time complexity of the algorithm, this is 
expected. Additional uncertain parameters increase the number of cut sets which 
need to be considered when determining the minimum cardinality set. Similarly, the 

algorithm running time also increases when the number of scenarios is increased. 
Note that for larger values of the number of scenarios (larger than 100) we observe a 
linear growth of running time in log-log coordinates which corresponds to polynomial 
time complexity. 
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Figure 7.6 The last four iterations of the SNAC algorithm for the two 
product manufacturing example 

Non-anticipativity constraint reduction using the SNAC algorithm is dependent 
on the number of scenarios. In Table 7.2, the number of NACs that are generated 
without the SNAC algorithm (NACs without Reductions) represent the number of 

different handshakes for the hand shake problem with |𝒮𝒮| people calculated using 
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0.5[|𝒮𝒮|(|𝒮𝒮| − 1)]. The SNAC algorithm uses knowledge of the relationships between 

scenarios to make substantial reductions in the number of NACs required. Table 7.2 
illustrates the reduction observed for several case studies. For instance, with six 

scenarios there are 15 NACs without reduction. The SNAC algorithm returns a 
maximum of nine NACs resulting in a 40% reduction. Contrasting that to the case 
where there are 512 scenarios, the number of NACs without reduction total 130,816. 

The SNAC algorithm finds that at most 3338 NACs are needed. The result is more 
than a 97% reduction. 

 

Figure 7.7 Average algorithm running times for the SNAC algorithm 
plotted against the number of scenarios. 
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Table 7.2 Summary of case studies used to test the SNAC algorithm 

 

 Conclusion 

The premise of this paper was to develop an algorithm which would generate the 

minimum cardinality non-anticipativity constraint set for multistage stochastic 
programs where the uncertainty is endogenous and the realization of the endogenous 
parameter is gradual. The algorithm utilized knowledge of the subsets of scenarios 
formed by the realization of uncertainty in order to construct necessary and minimal 

sets of non-anticipativity constraints. An algorithm analysis showed that algorithm 
scaled in 𝑂𝑂(𝑆𝑆3) as 𝑆𝑆 → ∞ as long as the number of uncertain parameters remain 

constant. Illustrative computational experiments confirm the scalability of the 
algorithm with respect to the number of scenarios and demonstrate significant 

reduction in the number of NACs generated.  

  

5 6
Possible Outcomes 4 10 4 5 3 4 5 4 4

Scenarios in Sample 12 24 6 24 12 128 24 64 512
Maximum Number of NACs 17 33 9 46 27 337 70 287 3338

Average Number of NACs 16.2 31.2 6.9 40.2 21.3 322.2 58.5 251.9 3119.7
NACs without Reductions 66 276 15 276 66 8,128 276 2,016 130,816

3 4
Number of Uncertain Parameters

2
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CHAPTER 8  
CONCLUSIONS AND FUTURE DIRECTIONS 

 

 

 Development of Heuristics for Planning and Scheduling 

The development of heuristics for solving large-scale MSSPs has shown promise 
in providing tight feasible bounds. Both the KDA and MTSSP generate bounds for 
the clinical trial planning problem. Both heuristics provided feasible solutions for the 

problem within three percent of the optimal ENPV. The KDA was also extended to 
solve the NTIP problem. To do this several generalizations were made resulting in a 
new algorithm, EVDA, which includes a framework to solve any MSSP. The EVDA 

provided tight feasible solutions for the NTIP problem. Neither the EVDA nor the 
KDA excel at scheduling. Both represent greedy approaches when selecting variable 
values. Future work in this area should address the challenges of the scheduling 

under endogenous uncertainty. One potential approach would to be to consider an 
algorithm which combined both  bottom-up and a top-down solution approaches. By 
weighing both the top-down solution and the bottom up solution, it may be possible 
that a hybrid solution may provide a solution with a better schedule.  

 Building Scalable Algorithms to Solve Multistage Stochastic Programs 

The KDA algorithm explored in this dissertation is utilized as a primal 
bounding approach to solve the clinical trial planning problem. The development of 
the EVDA provides a framework for the generation of feasible bounds on MSSPs with 

non-trivial recourse action. The EVDA algorithm was capable of producing tight 
bounds on the NTIP problem. In future, the EVDA can be used as the primal 
bounding approach in the branch and bound algorithm. The branch and bound 

algorithm should then be applied to other MSSPs including the NTIP problem. 
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Branch and bound algorithms require both primal and dual bounding 
approaches. In the work presented in this dissertation, the dual bounding approaches 

considered were a modified progressive hedging approach and an optimal solution of 
each scenario (OSS) approach. The progressive hedging approach required the 
conversion of the MSSP with endogenous uncertainty (and exogenous realizations) to 

a MSSP with exogenous uncertainty. The resulting problem was separable but still 
required substantial computational resource to solve with the progressive hedging 
approach. In contrast, the OSS bounding approach was completely separable and 

resulted in a large number of very small problems. The downside to the OSS is that 
the dual bound showed very slow convergence. Many opportunities exist to explore 
approaches which are simple to solve similar to the OSS but provide tighter dual 

bounds. One such approach would be Lagrangean decomposition. The Lagrangean 
decomposition approach has been shown to be effective in solving MSSPs. (Gupta and 
Grossmann, 2011)  

The branch and bound algorithm, particularly in its implementation on the 

clinical trial planning problem, spent many iterations evaluating solutions where the 
entire decision tree was delayed a single time period. In future, the development of a 
cutting approach which would remove non-optimal solutions may provide substantial 
increase in time required for the branch and bound algorithm to reach the optimal 

solution.  

 Structured Sampling for MSSP Approximation 

The work in this dissertation developed a NAC generation algorithm for 
generating the minimum cardinality NAC set for MSSPs where the scenario set was 

a subset of the full set of scenarios. The use of the NAC generation algorithm is 
particularly useful when considering sample average approximation approaches for 
solving MSSPs. Sample average approximation uses a subset of scenarios randomly 

sampled from the full set to generate approximate solutions to the MSSP. In its limits, 
the sample average approximation converges to a dual bound on the MSSP. In future, 
an analysis of the impact of structured sampling approaches on the sample average 
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approximation approach may be useful for the construction of tighter dual bounds as 
well as generating improved feasible solutions for the MSSP.  
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Appendices 

 Formulation of the Pharmaceutical R&D Pipeline Management 
Problem 

The multistage stochastic programming formulation presented originally by 
Colvin and Maravelias (2008) 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝑝𝑝𝑠𝑠(𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠 +  𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠)
𝑠𝑠

 (A.1) 

𝑌𝑌𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠 = 𝑌𝑌𝑑𝑑,𝑗𝑗,𝑡𝑡−1,𝑠𝑠 + 𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡−𝜏𝜏𝑖𝑖,𝑗𝑗,𝑠𝑠         ∀𝑑𝑑, 𝑗𝑗, 𝑡𝑡, 𝑠𝑠 (A.2) 

𝑍𝑍𝑑𝑑,1,1,𝑠𝑠 = 1 − 𝑋𝑋𝑑𝑑,1,𝑡𝑡,𝑠𝑠          ∀𝑑𝑑, 𝑠𝑠 (A.3) 

𝑍𝑍𝑑𝑑,1,𝑡𝑡,𝑠𝑠 = 𝑍𝑍𝑑𝑑,1,𝑡𝑡−1,𝑠𝑠 − 𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠          ∀𝑑𝑑, 𝑡𝑡 > 1, 𝑠𝑠 (A.4) 

𝑍𝑍𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠 =  𝑍𝑍𝑑𝑑,𝑗𝑗,𝑡𝑡−1,𝑠𝑠 + 𝑋𝑋𝑑𝑑,𝑗𝑗−1,𝑡𝑡−𝜏𝜏𝑖𝑖,𝑗𝑗−1,𝑠𝑠 − 𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠       ∀𝑑𝑑,  𝑗𝑗 > 1, 𝑡𝑡, 𝑠𝑠 (A.5) 

�𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠
𝑡𝑡

≤ 1          ∀𝑑𝑑, 𝑗𝑗, 𝑠𝑠 (A.6) 

�𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡′,𝑠𝑠
𝑡𝑡′≤𝑡𝑡

≤  𝑌𝑌𝑑𝑑,𝑗𝑗−1,𝑡𝑡,𝑠𝑠      ∀𝑖𝑖, 𝑗𝑗 > 1, 𝑡𝑡, 𝑠𝑠 (A.7) 

�� � 𝜌𝜌𝑑𝑑,𝑗𝑗,𝑟𝑟𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡′,𝑠𝑠 ≤ 𝜌𝜌𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡′≤𝑡𝑡

𝑡𝑡′>𝑡𝑡−𝜏𝜏𝑖𝑖,𝑗𝑗𝑗𝑗𝑑𝑑

∀𝑟𝑟, 𝑡𝑡, 𝑠𝑠 (A.8) 

𝑋𝑋𝑑𝑑,1,1,𝑠𝑠 = 𝑋𝑋𝑑𝑑,1,1,1           ∀𝑖𝑖, 𝑠𝑠 (A.9) 

−𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′,𝑗𝑗𝑠𝑠,𝑠𝑠′,𝑡𝑡,𝑠𝑠 ≤  𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑠𝑠 − 𝑋𝑋𝑖𝑖,𝑗𝑗,𝑡𝑡,𝑠𝑠′ ≤ 𝑌𝑌𝑖𝑖𝑠𝑠,𝑠𝑠′ ,𝑗𝑗𝑠𝑠,𝑠𝑠′ ,𝑡𝑡,𝑠𝑠      ∀𝑖𝑖, 𝑗𝑗,  (𝑠𝑠, 𝑠𝑠′) ∈ 𝛹𝛹,  𝑡𝑡 > 1 (A.10) 

𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠 = �𝑐𝑐𝑐𝑐𝑡𝑡𝐶𝐶𝑑𝑑,𝑗𝑗𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠
𝑑𝑑,𝑗𝑗,𝑡𝑡

   ∀𝑠𝑠 (A.11) 
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𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠 = ���𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑋𝑋𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 − 𝛾𝛾𝑑𝑑𝐷𝐷�𝑍𝑍𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠 + 𝑍𝑍𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠� − 𝛾𝛾𝑑𝑑𝐿𝐿(𝑡𝑡
𝑡𝑡𝑑𝑑

+ 𝜏𝜏𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃)𝑋𝑋𝑑𝑑,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑡𝑡,𝑠𝑠�         ∀𝑠𝑠 
(A.12) 

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑠𝑠 = ��𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑓𝑓𝑑𝑑,𝑗𝑗𝑍𝑍𝑑𝑑,𝑗𝑗,|𝑇𝑇|,𝑠𝑠

𝑗𝑗𝑑𝑑

+ � � � 𝑟𝑟𝑒𝑒𝑣𝑣𝑑𝑑,𝑗𝑗,𝑡𝑡
𝑟𝑟𝑟𝑟𝑟𝑟𝑓𝑓𝑑𝑑,𝑗𝑗+1𝑋𝑋𝑑𝑑,𝑗𝑗,𝑡𝑡,𝑠𝑠

𝑡𝑡>|𝑇𝑇|−𝜏𝜏𝑑𝑑,𝑗𝑗𝑗𝑗 ∈{𝑃𝑃𝑃𝑃,𝑃𝑃𝑃𝑃𝑃𝑃}𝑑𝑑

           ∀𝑠𝑠 
(A.13) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑,𝑗𝑗
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛾𝛾𝑑𝑑𝐿𝐿 �|𝑇𝑇| + �𝜏𝜏𝑑𝑑,𝑗𝑗′

𝑗𝑗′≥𝑗𝑗

� (A.14) 

𝑟𝑟𝑟𝑟𝑟𝑟𝑑𝑑,𝑗𝑗
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛾𝛾𝑑𝑑𝐿𝐿 �𝑡𝑡 + �𝜏𝜏𝑑𝑑,𝑗𝑗′

𝑗𝑗′≥𝑗𝑗

� (A.15) 

𝑓𝑓𝑑𝑑,𝑗𝑗 = 0.9 �
𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛾𝛾𝑑𝑑𝐿𝐿|𝑇𝑇| − ∑ 𝐶𝐶𝑑𝑑,𝑗𝑗′𝑗𝑗′≥𝑗𝑗

𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 − 𝛾𝛾𝑑𝑑𝐿𝐿|𝑇𝑇| � (A.16) 
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 The NTIP Problem 

 Linearization of 𝑵𝑵𝑭𝑭𝒊𝒊,𝒕𝒕,𝒔𝒔𝜶𝜶  

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 = �1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼� �
𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
𝛼𝛼𝑖𝑖0

+ 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 �

𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
𝛼𝛼𝑖𝑖,𝑠𝑠1

 (B.1) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 + 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  �

1
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

�𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

 (B.2) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 + 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  �

1
𝑅𝑅𝑅𝑅𝑖𝑖,0

�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠 (B.3) 

 

𝑎𝑎𝑖𝑖𝛼𝛼 =
𝑅𝑅𝐷𝐷𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑅𝑅𝐷𝐷𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀

3
  ∀𝑖𝑖 (B.4) 

 

� 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

𝑛𝑛𝑛𝑛∈{1,2,3}
= 1    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.5) 

 

𝑅𝑅𝑅𝑅𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 + � 𝑎𝑎𝑖𝑖𝛼𝛼 ⋅ (𝑛𝑛𝑛𝑛 − 1) ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

𝑛𝑛𝑛𝑛∈{1,2,3}

≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠

≤ 𝑅𝑅𝑅𝑅𝑖𝑖𝑀𝑀𝑀𝑀𝑀𝑀 + � 𝑎𝑎𝑖𝑖𝛼𝛼 ⋅ 𝑛𝑛𝑛𝑛 ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

𝑛𝑛𝑛𝑛∈{1,2,3}

   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 
(B.6) 

 

𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥ 𝛼𝛼𝑖𝑖,𝑠𝑠1 �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼(𝑛𝑛𝑛𝑛 − 1)�

𝛼𝛼𝑖𝑖,𝑠𝑠
1 −1

�𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠 − �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼(𝑛𝑛𝑛𝑛 − 1)��

+ �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼(𝑛𝑛𝑛𝑛 − 1)�

𝛼𝛼𝑖𝑖,𝑠𝑠
1

          ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠,𝑛𝑛𝑛𝑛 ∈ {1,2,3} 
(B.7) 

 

𝑏𝑏𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛  ≤ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.8) 



180 

 

𝑏𝑏𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛 ≥ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.9) 

 

𝑏𝑏𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛  ≤ 𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.10) 

 

𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤  𝑏𝑏𝑏𝑏𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

�𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼 ⋅ 𝑛𝑛𝑛𝑛�

𝛼𝛼𝑖𝑖,𝑠𝑠
1

− �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖

𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

𝑎𝑎𝑖𝑖𝛼𝛼

−  𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼 �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼

⋅ 𝑛𝑛𝑝𝑝�  
�𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼 ⋅ 𝑛𝑛𝑛𝑛�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

− �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖

𝛽𝛽(𝑛𝑛𝑛𝑛 − 1)�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

𝑎𝑎𝑖𝑖𝛼𝛼

+ �𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡,𝑠𝑠
𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑖𝑖𝛼𝛼 ⋅ 𝑛𝑛𝑛𝑛�

𝛼𝛼𝑖𝑖,𝑠𝑠
1

 ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 

(B.11) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 =   1 − 𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼 +  �
1

𝑅𝑅𝑅𝑅𝑖𝑖,0
�
𝛼𝛼𝑖𝑖,𝑠𝑠
1

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.12) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.13) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥  𝑁𝑁𝑁𝑁𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠

𝑀𝑀𝑀𝑀𝑀𝑀   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.14) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁1𝑖𝑖,𝑡𝑡,𝑠𝑠 ≤  𝑅𝑅𝑅𝑅𝑅𝑅1𝑖𝑖,𝑡𝑡,𝑠𝑠   ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.15) 

 

  



181 

 Linearization of 𝑪𝑪𝑪𝑪𝒊𝒊,𝟎𝟎𝑵𝑵𝑭𝑭𝒊𝒊,𝒕𝒕,𝒔𝒔
𝜷𝜷 𝑵𝑵𝑭𝑭𝒊𝒊,𝒕𝒕,𝒔𝒔𝜶𝜶  

𝐶𝐶𝐶𝐶𝑖𝑖,𝑡𝑡,𝑠𝑠 = 𝐶𝐶𝑖𝑖,0𝑁𝑁𝑁𝑁𝑁𝑁𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.16) 

 

𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 =  
𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀

3
 (B.17) 

 

� 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑁𝑁𝑁𝑁𝑁𝑁 = 1

𝑛𝑛𝑛𝑛∈{1,2,3}

    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.18) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 +  � 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ (𝑛𝑛𝑝𝑝 − 1) ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛∈{1,2,3}

 ≤ 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  

≤  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 +  � 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ 𝑛𝑛𝑛𝑛 ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁𝑁𝑁

𝑛𝑛𝑛𝑛∈{1,2,3}

      ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 
(B.19) 

 

𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼 =  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀 + � ∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

𝑛𝑛𝑛𝑛∈{1,2,3}

  ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.20) 

 

0 ≤  ∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼 ≤  �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛

𝑁𝑁𝑁𝑁𝑁𝑁     ∀𝑛𝑛𝑛𝑛 ∈ {1,2,3} (B.21) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠  ≥ 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  ∙  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀

+ � �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ (𝑛𝑛𝑛𝑛 − 1)� ∙

𝑛𝑛𝑛𝑛∈{1,2,3}

∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼     ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.22) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠 ≥ 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  ∙  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀

+  � �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ 𝑛𝑛𝑛𝑛� ∙

𝑛𝑛𝑛𝑛∈{1,2,3}

�∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

− �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑁𝑁𝑁𝑁𝑁𝑁 �    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 

(B.23) 



182 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤ 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  ∙  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀

+ � �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ 𝑛𝑛𝑛𝑛� ∙

𝑛𝑛𝑛𝑛∈{1,2,3}

∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼     ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 (B.24) 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝛼𝛼𝑖𝑖,𝑡𝑡,𝑠𝑠  ≤ 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽  ∙  𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀

+  ��𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛽𝛽,𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑎𝑎𝑁𝑁𝐹𝐹𝛽𝛽 ∙ (𝑛𝑛𝑛𝑛 − 1)� ∙

𝑛𝑛𝑛𝑛

�∆𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝛼𝛼

− �𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠
𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑁𝑁𝐹𝐹𝑖𝑖,𝑡𝑡,𝑠𝑠

𝛼𝛼,𝑀𝑀𝑀𝑀𝑀𝑀� ∙ 𝑏𝑏𝑖𝑖,𝑡𝑡,𝑠𝑠,𝑛𝑛𝑛𝑛
𝑁𝑁𝑁𝑁𝑁𝑁 �    ∀𝑖𝑖, 𝑡𝑡, 𝑠𝑠 

(B.25) 
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 Case Study 2 

Table B.1 Uncertain parameter realizations for Case Study 2 

Technology α Values β Values  χ Values 
High Low High Low High Low 

TECH1 -0.19 -0.14 -0.09 -0.08 0.96 0.93 
TECH2 -0.18 -0.20 -0.08 -0.06 0.98 0.95 

 
Table B.2 Probability of a technology completing each stage 

Technology Probability of Project Success 
Laboratory Pilot Plant 

TECH1 98% 99% 
TECH2 95% 99% 

 
Table B.3 Demand Realizations for Case Study 2 

Chemcial 
Demand (Mtonnes) 

2 3 
High Low High Low 

CHEM1 0 0 
CHEM2 0 0 
CHEM5 23.5 28.8 22.1 26 

 

 

Table B.4 Case Study 2 Technology specific fixed parameters 

  Technology 
TECH1 TECH2 

MaximumCapacity Expansion 
(Mtonnes) 6 6 
Initial R&D Investment 
(Trillion Dollars) 1 5 
Initial Installed Capacity 
(Mtonnes) 1.0 2.5 
Initial Capacity Expansion Cost 
($/kg) 1.0 1.4 
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Table B.5 Case Study 2 Chemical specific fixed Parameters 

Chemcial Initial Cost 
Molecular 

Weight 
($/tonne) (kg/kmol) 

CHEM1 742 50 
CHEM2 845.00 62 
CHEM3 1200 72 

 

 Case Study 3 

Table B.6 Uncertain parameter realizations for Case Study 3 

Technology α Values β Values  χ Values 
High Low High Low High Low 

TECH1 0 0 0.60 
TECH2 -0.17 -0.15 -0.10 -0.09 0.96 0.91 
TECH3 0 0 0 
TECH4 -0.21 -0.13 -0.09 -0.07 0.98 0.94 

 

Table B.7 Demand Realizations for Case Study 3 

Chemcial 
Demand (Mtonnes) 

2 3 4 
High Low High Low High Low 

CHEM1 0 0 0 
CHEM2 0 0 0 
CHEM3 0 0 0 
CHEM4 0 0 0 
CHEM5 28 23.5 26 22.1 25 23.6 
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Table B.8 Probability of a technology completing each stage 

Technology Probability of Project Success 
Laboratory Pilot Plant 

TECH1 N/A 
TECH2 58% 96% 
TECH3 N/A 
TECH4 63% 91% 

 

 

Table B.9 Chemical specific fixed parameters for Case Study 3 

Chemcial Initial Cost 
Molecular 

Weight 
($/tonne) (kg/kmol) 

CHEM1 500 60 
CHEM2 800 100 
CHEM3 900 51 
CHEM4 1100 62 
CHEM5 1200 72 

  

 

 

Table B.10 Technology specific fixed parameters for Case Study 3 

  Technology 
TECH1 TECH2 TECH3 TECH4 

Maximum Capacity Expansion 
(Mtonnes) 6 6 6 6 
Initial R&D Investment 
(Trillion Dollars) 1 1 1 1 

Initial Installed Capacity 
(Mtonnes) 22 2.5 e-7 34 1e-7 
Initial Capacity Expansion Cost 
($/kg) 1.0 6 0.4 10 
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 Biomass To Commodity Chemical 

Table B.11 Values for the different realizations of 𝜶𝜶,𝜷𝜷, and 𝝌𝝌, and 
Probabilities of Success 

Technology α Values β Values  χ Values 
High Low High Low High Low 

Gasification -.021 -0.19 -0.05 -0.07 0.95 0.92 
Catalytic 
Conversion -0.19 -0.21 -0.08 -0.06 0.35 0.46 
Fermentation 0 0  
Catalytic 
Dehydration 0 0 0.55 
Cracking 0 0 0.45 

 

Table B.12 Probability of a technology completing each stage 

Technology Probability of Project Success 
Laboratory Pilot Plant 

Gasification 75% 88% 
Catalytic Conversion 89% 90% 
Fermentation N/A 
Catalytic Dehydration N/A 
Cracking N/A 

 

 

Table B.13 Demand Realizations for Case Study 3 

Chemcial 
Demand (Mtonnes) 

2 3 
High Low High Low 

Biomass 0 0 
Syngas 0 0 
Naphtha 0 0 
Ethanol 0 0 
Ethylene 28 23.5 26 22.1 
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Table B.14 Chemical specific fixed parameters for Case Study 3 

Chemcial Initial Cost 
Molecular 

Weight 
($/tonne) (kg/kmol) 

Biomass 150 342.3 
Syngas 250 30.28 
Naphtha 350 99 
Ethanol 837 46.07 
Ethylene 1500 28.05 

  

Table B.15 Technology specific fixed parameters for Case Study 3 

  
Technology 

Gasification Cracking Fermentation Catalytic 
Conversion 

Catalytic 
Dehydration 

Maximum Capacity 
Expansion (Mtonnes) 6 6 6 6 6 

Initial R&D 
Investment 
(Trillion Dollars) 

1 1 1 1 1 

Initial Installed 
Capacity 
(Mtonnes) 

1e-7 18 1e-4 1e-7 1e-4 

Initial Capacity 
Expansion Cost 
($/kg) 

10 1.2 1.4 1 10 
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 Parameters for Base Case Problems 

Table C.1 Parameters for the Two-Product Base Case (2_2_5_2) 

 Duration Probability of 
Success Cost($1M) Resource 1 

(max =2) 
Resource 2 

(max=3) revmax γL γD 
Product PI PII PI PII PI PII PI PII PI PII 

D1 2 4 0.3 0.5 10 90 1 1 1 2 3100 19.2 44 
D2 2 3 0.4 0.6 10 80 1 2 1 1 3250 19.6 56 

 

Table C.2 Parameters for the Three-Product Base Case (3_3_12_2) 

Product 

Duration Probability  
of Success 

Trial Cost 
($M) 

Resource 1 
(max =2) 

Resource 1 
(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 
D1 2 4 4 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 
D2 2 3 5 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 
D3 2 3 4 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 

 

Table C.3 Parameters for the Four-Product Base Case (4_3_6_2) 

Product 
 Duration 

Probability of 
Success 

Trial Cost 
($M) 

Resource 1 
(max =4) 

Resource 2 
(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 
D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 
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Table C.4 Parameters for the Five-Product Base Case (4_3_6_2) 

Product 
 Duration 

Probability of 
Success 

Trial Cost 
($M) 

Resource 1 
(max =4) 

Resource 2 
(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 
D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 
D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24 

 

Table C.5 Parameters for the Six-Product Base Case (6_3_6_2) 

Product 
 Duration 

Probability of 
Success 

Trial Cost 
($M) 

Resource 1 
(max =4) 

Resource 2 
(max =3) revmax γL γD 

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII 
D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22 
D2 1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28 
D3 1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26 
D4 1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24 
D5 1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24 
D6 1 2 3 0.45 0.45 0.8 10 85 195 1 2 2 2 1 3 3050 19 25 
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 Computational Results for Parameter and Size Variations 

Table D.1 Parameter and Size Perturbation Results for the Two-Product 
Base Case (OP) 

File Name ENPV 
Percent 

Difference 
(MSSP) 

Percent 
Difference 

(OP) 

Same as 
Base KDA 
solution? 

Knapsack 
Problem 

Count 

KDA 
Solve 
Time 

MSSP 
ENPV 

MSSP 
Total 
Time 

2_2_5_3 1097 -0.63 0.00 TRUE 4 0.07 1104 0.15 
2_2_5_4 1097 -0.63 0.00 TRUE 4 0.07 1104 0.16 
2_2_5_5 1097 -0.63 0.00 TRUE 4 0.07 1104 0.19 
2_3_5_2 709 -3.26 -35.36 FALSE 4 0.07 733 0.33 
2_4_5_2 523 -5.72 -52.30 FALSE 4 0.07 555 0.58 
2_5_5_2 422 -5.03 -61.56 FALSE 5 0.09 444 1.15 
2_2_4_2 1101 0.19 0.35 FALSE 4 0.07 1099 0.11 
2_2_6_2 1110 0.00 1.17 TRUE 6 0.09 1110 0.15 
2_2_7_2 1110 -0.10 1.17 TRUE 6 0.11 1111 0.19 
2_2_8_2 1110 -0.39 1.17 TRUE 6 0.11 1114 0.21 
2_2_5_2_C.75 1115 -0.52 1.62 TRUE 4 0.08 1121 0.24 
2_2_5_2_C.9 1104 -0.59 0.65 TRUE 4 0.07 1111 0.14 
2_2_5_2_C1.1 1090 -0.68 -0.65 TRUE 4 0.08 1098 0.13 
2_2_5_2_C1.25 1079 -0.75 -1.62 TRUE 4 0.08 1088 0.14 
2_2_5_2_R.75 791 -0.88 -27.94 TRUE 4 0.06 798 0.13 
2_2_5_2_R.9 975 -0.71 -11.18 TRUE 4 0.08 982 0.16 
2_2_5_2_R1.1 1220 -0.57 11.18 TRUE 4 0.07 1227 0.16 
2_2_5_2_R1.25 1404 -0.49 27.94 TRUE 4 0.08 1411 0.15 
2_2_5_2_GL.75 1110 -0.75 1.14 TRUE 4 0.08 1118 0.15 
2_2_5_2_GL.9 1102 -0.68 0.46 TRUE 4 0.08 1110 0.15 
2_2_5_2_GL1.1 1092 -0.59 -0.46 TRUE 4 0.07 1099 0.15 
2_2_5_2_GL1.25 1085 -0.52 -1.14 TRUE 4 0.08 1090 0.14 
2_2_5_2_GD.75 1099 -0.45 0.18 TRUE 4 0.16 1104 0.15 
2_2_5_2_GD.9 1098 -0.56 0.07 TRUE 4 0.08 1104 0.15 
2_2_5_2_GD1.1 1096 -0.71 -0.07 TRUE 4 0.08 1104 0.14 
2_2_5_2_GD1.25 1095 -0.81 -0.18 TRUE 4 0.07 1104 0.15 
2_2_5_2_TD1 1087 0.87 -0.89 FALSE 4 0.03 1078 0.14 
2_2_5_2_TD2 1077 0.72 -1.81 FALSE 4 0.03 1070 0.14 
2_2_5_2_PC60 1097 -0.63 0.00 TRUE 4 0.08 1104 0.15 
2_2_5_2_PC30 1097 -0.63 0.00 TRUE 4 0.08 1104 0.15 
2_2_5_2_PC0 1121 0.00 2.13 FALSE 4 0.08 1121 0.15 
Average  -0.84       
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Table D.2 Parameter and Size Perturbation Results for the Three-Product 
Base Case (OP) 

File Name ENPV 
Percent 

Difference 
(MSSP) 

Percent 
Difference 

(OP) 

Same as 
Base KDA 
solution? 

Knapsack 
Problem 

Count 

KDA 
Solve 
Time 

MSSP 
ENPV 

MSSP 
Total 
Time 

3_3_12_3 1180 -0.67 0.17 FALSE 21 0.46 1188 5.44 
3_3_12_4 1180 -0.67 0.17 FALSE 21 0.43 1188 5.82 
3_3_12_5 1180 -0.79 0.17 FALSE 21 0.48 1189 5.88 
3_4_12_2 761 -1.60 -35.38 FALSE 21 0.75 773 16.44 
3_5_12_2 417 -15.29 -64.60 FALSE 21 0.51 492 44.90 
3_6_12_2 240 -22.10 -79.64 FALSE 31 0.94 308 109.61 
3_3_11_2 1177 -0.92 -0.04 FALSE 20 0.78 1188 4.68 
3_3_13_2 1174 -1.24 -0.31 FALSE 27 1.07 1189 5.68 
3_3_14_2 1178 -1.25 0.02 FALSE 28 1.10 1193 10.16 
3_3_15_2 1177 -1.68 -0.10 FALSE 33 1.41 1197 6.46 
3_3_12_2_C.75 1225 -0.92 4.03 FALSE 23 0.61 1237 5.39 
3_3_12_2_C.9 1197 -0.96 1.61 FALSE 23 0.58 1208 5.46 
3_3_12_2_C1.1 1159 -1.01 -1.61 FALSE 23 0.58 1171 5.32 
3_3_12_2_C1.25 1130 -1.00 -4.03 FALSE 23 0.58 1142 5.35 
3_3_12_2_R.75 804 -1.11 -31.76 FALSE 23 0.61 813 5.34 
3_3_12_2_R.9 1028 -1.03 -12.71 FALSE 23 0.55 1039 5.25 
3_3_12_2_R1.1 1327 -1.00 12.71 FALSE 23 0.57 1341 5.40 
3_3_12_2_R1.25 1552 -0.92 31.79 FALSE 23 0.56 1567 5.20 
3_3_12_2_GL.75 1209 -0.96 2.67 FALSE 23 0.59 1221 5.28 
3_3_12_2_GL.9 1190 -0.99 1.07 FALSE 23 0.60 1202 5.36 
3_3_12_2_GL1.1 1165 -1.04 -1.07 FALSE 23 0.60 1177 5.24 
3_3_12_2_GL1.25 1146 -1.11 -2.67 FALSE 23 0.55 1159 5.42 
3_3_12_2_GD.75 1179 -1.02 0.08 FALSE 23 0.57 1191 5.28 
3_3_12_2_GD.9 1178 -1.02 0.03 FALSE 23 0.57 1190 5.28 
3_3_12_2_GD1.1 1177 -1.02 -0.03 FALSE 23 0.58 1189 5.40 
3_3_12_2_GD1.25 1177 -1.02 -0.08 FALSE 23 0.58 1189 5.28 
3_3_12_2_TD1 1132 -1.85 -3.95 FALSE 13 0.31 1153 5.60 
3_3_12_2_TD2 1083 -2.39 -8.09 FALSE 7 0.28 1109 5.66 
3_3_12_2_PC60 1183 -1.61 0.48 FALSE 33 0.82 1203 5.28 
3_3_12_2_PC30 1213 -0.58 2.96 FALSE 31 0.77 1220 5.37 

3_3_12_2_PC0 1214 -0.59 3.09 FALSE 27 0.67 1221 5.27 

Average  -2.24       
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Table D.3 Parameter and Size Perturbation Results for the Four-Product 
Base Case (OP) 

File Name ENPV 
Percent 

Difference 
(MSSP) 

Percent 
Difference 

(OP) 

Same as 
Base KDA 
solution? 

Knapsack 
Problem 

Count 

KDA 
Solve 
Time 

MSSP 
ENPV 

MSSP 
Total 
Time 

4_3_6_3 1619 -2.63 -3.39 FALSE 63 1.65 1663 22.76 
4_3_6_4 1619 -2.25 -3.39 FALSE 63 1.90 1656 23.58 
4_3_6_5 1624 -1.67 -3.09 FALSE 49 1.43 1651 24.40 
4_4_6_2 1095 -3.64 -34.65 FALSE 50 1.42 1136 126.59 
4_5_6_2 687 -13.17 -58.99 FALSE 24 0.93 791 554.35 
4_6_6_2 405 -22.59 -75.80 FALSE 24 1.35 524 2067.58 
4_3_5_2 1664 -0.73 -0.67 FALSE 32 2.30 1677 17.83 
4_3_7_2 1687 -0.01 0.67 FALSE 80 5.46 1687 25.58 
4_3_8_2 1695 0.10 1.15 FALSE 111 7.74 1693 29.49 
4_3_9_2 1699 -0.01 1.39 FALSE 139 9.73 1699 59.11 
4_3_6_2_C.75 1747 -0.66 4.24 FALSE 54 3.20 1758 24.45 
4_3_6_2_C.9 1704 -0.67 1.70 FALSE 54 3.13 1716 23.45 
4_3_6_2_C1.1 1647 -0.37 -1.70 FALSE 54 2.84 1653 24.05 
4_3_6_2_C1.25 1605 -0.54 -4.24 FALSE 54 2.18 1613 23.53 
4_3_6_2_R.75 1160 -0.86 -30.75 FALSE 54 2.14 1170 23.48 
4_3_6_2_R.9 1469 -1.07 -12.30 FALSE 54 2.06 1485 23.48 
4_3_6_2_R1.1 1882 -0.59 12.30 FALSE 54 2.06 1893 23.55 
4_3_6_2_R1.25 2191 -0.70 30.76 FALSE 54 2.05 2206 23.29 
4_3_6_2_GL.75 1699 -0.84 1.42 FALSE 54 2.07 1714 23.46 
4_3_6_2_GL.9 1685 -0.54 0.57 FALSE 54 2.02 1694 23.70 
4_3_6_2_GL1.1 1666 -0.77 -0.57 FALSE 54 2.04 1679 23.62 
4_3_6_2_GL1.25 1652 -0.79 -1.42 FALSE 54 2.04 1665 23.46 
4_3_6_2_GD.75 1677 -0.68 0.10 FALSE 54 1.98 1689 23.55 
4_3_6_2_GD.9 1676 -0.78 0.04 FALSE 54 1.99 1689 23.38 
4_3_6_2_GD1.1 1675 -0.51 -0.04 FALSE 54 1.91 1684 23.63 
4_3_6_2_GD1.25 1674 -0.56 -0.10 FALSE 54 1.88 1683 23.48 
4_3_6_2_TD1 1602 -2.04 -4.40 FALSE 19 0.21 1636 24.09 
4_3_6_2_TD2 1486 -1.55 -11.32 FALSE 18 0.21 1510 23.86 
4_3_6_2_PC60 1676 -1.57 0.02 FALSE 85 3.10 1703 23.66 
4_3_6_2_PC30 1706 -0.74 1.79 FALSE 81 2.97 1718 23.23 

4_3_6_2_PC0 1714 -0.40 2.31 FALSE 81 3.02 1721 23.46 

Average  -2.06       
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Table D.3 Parameter and Size Perturbation Results for the Five-Product 
Base Case (OP) 

File Name ENPV 
Percent 

Difference 
(MSSP) 

Percent 
Difference 

(OP) 

Same as 
Base KDA 
solution? 

Knapsack 
Problem 

Count 

KDA 
Solve 
Time 

MSSP 
ENPV 

MSSP 
Total 
Time 

5_3_6_3 1982 -2.82 -2.95 FALSE 90 1.96 2040 286.94 
5_3_6_4 1982 -2.62 -2.95 FALSE 90 3.81 2036 294.54 
5_3_6_5 1994 -1.90 -2.35 FALSE 87 4.11 2033 296.37 
5_4_6_2 1323 -3.77 -35.24 FALSE 68 3.35 1375 2963.13 
5_5_6_2 860 -10.83 -57.91 FALSE 26 2.28 964 21376.09 
5_6_6_2 509 -18.86 -75.08 FALSE 26 0.61 627 112356.45 
5_3_5_2 2038 0.11 -0.25 FALSE 51 1.10 2035 227.08 
5_3_7_2 2059 -0.10 0.79 FALSE 147 3.10 2061 321.21 
5_3_8_2 2064 0.03 1.05 FALSE 194 4.15 2063 366.56 
5_3_9_2 2084 0.44 2.01 FALSE 293 6.32 2075 414.11 
5_3_6_2_C.75 2128 -0.28 4.18 FALSE 75 1.59 2134 278.36 
5_3_6_2_C.9 2077 -0.25 1.67 FALSE 75 1.60 2082 278.04 
5_3_6_2_C1.1 2008 -0.50 -1.67 FALSE 75 1.60 2019 851.48 
5_3_6_2_C1.25 1957 -0.54 -4.18 FALSE 75 1.55 1968 313.37 
5_3_6_2_R.75 1413 -0.30 -30.80 FALSE 75 1.61 1418 288.00 
5_3_6_2_R.9 1791 -0.41 -12.32 FALSE 75 1.67 1798 280.77 
5_3_6_2_R1.1 2294 -0.15 12.32 FALSE 75 1.62 2298 280.53 
5_3_6_2_R1.25 2672 -0.66 30.82 FALSE 75 1.62 2690 279.43 
5_3_6_2_GL.75 2074 -0.47 1.53 FALSE 75 1.61 2084 279.67 
5_3_6_2_GL.9 2055 -0.31 0.61 FALSE 75 1.62 2061 284.72 
5_3_6_2_GL1.1 2030 -0.77 -0.61 FALSE 75 1.63 2046 282.60 
5_3_6_2_GL1.25 2011 -0.65 -1.53 FALSE 75 1.65 2025 283.77 
5_3_6_2_GD.75 2045 -1.20 0.11 FALSE 75 1.58 2069 280.57 
5_3_6_2_GD.9 2043 -0.84 0.04 FALSE 75 1.56 2061 287.98 
5_3_6_2_GD1.1 2042 -0.19 -0.04 FALSE 75 1.57 2046 280.94 
5_3_6_2_GD1.25 2040 -0.37 -0.11 FALSE 75 1.65 2048 285.80 
5_3_6_2_TD1 1957 -2.32 -4.20 FALSE 21 0.12 2004 279.89 
5_3_6_2_TD2 1840 -1.22 -9.96 FALSE 5 0.25 1862 286.54 
5_3_6_2_PC60 2097 -1.10 2.68 FALSE 215 9.72 2121 282.39 
5_3_6_2_PC30 2118 -0.45 3.68 FALSE 243 11.21 2127 280.09 

5_3_6_2_PC0 2120 -0.39 3.78 FALSE 243 11.28 2128 282.89 

Average  -1.73       
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 Knapsack Variation Case Study Information 

 

Table E.8.1 Parameter variation values from base case values 

 

Table E.8.2 Number of resources required for each trial when +1,+2 and +3 
resources are added for each 

Base Case 
PI PII PIII 

+1 +2 +3 +1 +2 +3 +1 +2 +3 
Two-Product          

Product1 2 0 0 1 1 2 N/A N/A N/A 
Product2 1 0 2 2 1 2 N/A N/A N/A 

Three-Product          
Product 1 2 0 0 1 1 2 1 4 3 
Product 2 1 0 2 3 0 3 1 3 3 
Product 3 0 0 1 2 1 0 3 3 2 

Four-Product          
Product 1 2 0 0 1 1 2 1 4 3 
Product 2 1 0 2 3 0 3 1 3 3 
Product 3 0 0 1 2 1 0 3 3 2 
Product 4 1 2 1 0 0 3 3 4 2 

Five Product          
Product 1 2 0 0 1 1 2 1 4 3 
Product 2 1 0 2 3 0 3 1 3 3 
Product 3 0 0 1 2 1 0 3 3 2 
Product 4 1 2 1 0 0 3 3 4 2 
Product 5 1 2 2 0 0 0 3 2 1 

 

  

Parameter Varied Variation 
Trial Cost -25% -10% +10% +25% 
Revenue -25% -10% +10% +25% 
Gamma-L -25% -10% +10% +25% 
Gamma-D -25% -10% +10% +25% 
Percent Constrained 30% 60% 100% 
Planning Horizon Length -1 +1 +2 +3 
Number of Trials +1 +2 +3 
Number of Resources +1 +2 +3 
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 SNAC Algorithm Case Studies 

Number of 
Uncertain 

Parameters 

Number of 
Realizations for 
Each Uncertain 

Parameter 

Number of 
Scenarios 
Sampled 

30 Iteration 
SNAC Time 

(CPU 
Seconds) 

Average 
Sample 

SNAC Time 
(CPU 

Seconds) 

NAC 
Count 

(Average) 

NAC Count 
(Maximum) 

2 4 6 4.73 0.16 5.57 7 
2 4 12 4.96 0.17 16.20 17 
2 10 6 18.60 0.62 5.10 6 
2 10 12 18.74 0.62 12.30 15 
2 10 24 19.34 0.64 31.17 33 
2 10 64 25.78 0.86 108.17 109 
3 5 6 11.76 0.39 7.27 11 
3 5 12 12.05 0.40 17.43 20 
3 5 24 12.16 0.41 40.23 46 
3 5 64 19.14 0.64 128.03 133 
4 3 6 7.43 0.25 7.67 12 
4 3 12 7.65 0.25 21.33 27 
4 3 24 8.01 0.27 49.90 61 
4 3 64 15.22 0.51 152.20 157 
4 4 6 12.79 0.43 7.93 10 
4 4 12 12.96 0.43 22.70 31 
4 4 24 12.82 0.43 53.60 66 
4 4 64 20.81 0.69 159.37 178 
4 4 128 74.44 2.48 322.20 337 
4 4 256 706.71 23.56 768.00 768 
4 5 6 21.17 0.71 7.90 11 
4 5 12 20.59 0.69 23.13 29 
4 5 24 21.26 0.71 58.53 70 
4 5 64 31.82 1.06 179.27 201 
4 5 128 91.12 3.04 352.10 385 
4 5 256 700.00 23.33 687.73 714 
4 5 512 9573.22 319.11 1557.20 1564 
6 4 6 45.93 1.53 11.07 14 
6 4 12 48.94 1.63 36.70 47 
6 4 24 54.50 1.82 105.50 134 
6 4 64 87.97 2.93 389.60 473 
6 4 128 210.40 7.01 867.53 951 
6 4 256 1158.03 38.60 1709.43 1837 
6 4 512 12423.79 414.13 3119.70 3338 
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3 4 6 8.08 0.27 6.90 9 
3 4 12 8.22 0.27 17.37 23 
3 4 24 8.62 0.29 39.57 48 
3 4 64 15.55 0.52 144.00 144 
5 4 6 21.17 0.71 9.53 13 
5 4 12 21.51 0.72 30.17 39 
5 4 24 22.83 0.76 79.40 99 
5 4 64 37.12 1.24 251.93 287 
5 4 128 107.32 3.58 507.47 547 
5 4 256 765.87 25.53 937.60 990 
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