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Abstract

After addressing the issue of reducing power consumption by computing nodes in data

centers, in recent years, computer scientists are focusing on reducing cooling cost of the data

centers, thereby making the data centers thermal-aware. Due to the dramatic increase in

power-density of data centers, thermal-management strategies are gaining more and more

significance in the area of high performance computing data centers. Most of the previous

studies towards achieving this goal focus on the nodes performing computation-intensive

tasks, in which, the processors are the major consumer of the node’s power. However, there

is a lack of study on the ways of thermal-aware data placement in storage clusters housing

thousands of storage nodes, where the disk subsystems are the major power consumer.

In this dissertation, we propose thermal-aware file and resource allocation policies to

reduce the cooling cost of data centers. We first propose a thermal-aware file assignment

policy -TIGER- to make file assignments in distributed storage clusters, followed by out re-

source allocation policy- TASH, which addresses the issue of thermal management in specific

framework (Hadoop). Our proposed thermal-aware policies utilize nodes’ contributions to-

wards heat re-circulation in data centers while making file and resource allocation decisions.

The proposed policies make use of cross-interference matrix to calculate node’s contribution

in heat re-circulation. Our experimental results show that the proposed policies significantly

reduce the cooling cost of data centers as compared to existing thermal-aware policies, and

at the same time, maintains performance penalties within acceptable margin.
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Chapter 1

Introduction

Advent of applications such as YouTube and Facebook initiated a need of large scale

data centers to support Internet-scale services [2]. These data centers house storage clusters

as well as High Performance Computing (HPC) clusters. There is a dramatic increase in the

processing and storage capacity of nodes in the data centers, as a result of continuous im-

provements in hardware technologies. This increased processing and storage capacity comes

at a cost of high power density resulting in thermal emergencies in the data centers. Unfor-

tunately, these thermal emergencies have to be resolved using sophisticated and expensive

cooling infrastructure, which parts substantially towards annual operational cost of the data

centers [3].

We believe that an efficient way to address these thermal emergencies is to proactively

target the cause of the problem; heat re-circulation; and attempt to avoid the thermal emer-

gencies in the first place. Minimizing the heat re-circulation in the data centers has proven

to be crucial in avoiding thermal emergencies. In particular, dynamic workload placement

strategies that consider heat re-circulation in the data center while making workload place-

ment decision can avoid thermal emergencies more effeciently at very low cooling cost. The

objective of this dissertation is to investigate workload placement strategies to reduce the

cooling cost in data centers housing both storage clusters and HPC clusters.

This chapter first presents the problem statement (see Section 1.1). In section 1.2, we

describe the scope of this research. Section 1.3 highlights the contributions of this disserta-

tion, and section 1.4 outlines the dissertation organization.
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1.1 Problem Statement

In this section, we first summarize emerging trends in large-scale data centers. Sec-

tion 1.1.2 provdies an overview of several challenges that big data industries are facing from

the perspective of thermal emergencies and cooling cost. Finally, section 1.1.3 presents

the initial motivation for the dissertation research by illustrating the limitations of existing

solutions.

1.1.1 New Trends

Data centers (e.g., Facebook’s Oregon data center) house thousands of servers arranged

in the form of clusters. Initially, these data centers are meant to support High Performance

Computing application such as medical imaging, DNA mapping, heavy bio-scientific simu-

lations, and business operations for the organizations. In order to provide high processing

power required to run such applications, the HPC clusters consist of computational nodes

comprising high power processors and few disks. They are also known as clusters of com-

modity machines.

In the last decade, with the emergence of social media; an invention that reformed data

mining and business intelligence; huge amount of data is being created and used everyday.

To store this terabytes of data being created everyday, current data centers house storage

clusters comprising of storage nodes. Typically, these storage clusters stores humongous

amount of data, usually in redundant replicas to provide data reliability and to improve data

processing efficiency by offering parallel access to the data. Each such data node typically

consists of low power processors and RAID arrays containing multiple (e.g., 4 to 32) disks.

Current trends show exponential growth in both compute and storage capacity with the

emergence of blade servers and disks arrays. However, the increased compute and storage

density comes at the cost of associated power and heat density [4]. On one side, due to

ever increasing storage and processing capacity requirements, data centers are growing in

2



size. On the other hand, due to deployment of power hungry hardware components and

decreasing form factor, power density of data centers is increasing drastically [4][5].

As a result of these technological advancements and growing needs of data centers, huge

amount of power is being consumed by the data centers and the rate of increase in power

consumption is escalating per year. According to recent report, electricity used in global

data centers in 2010 likely accounted for between 1.1% and 1.5% of the total electricity used.

For U.S., this number was between 1.7% and 2.2% [6]. The annual power costs of the data

centers are in the order of millions of dollars [7]. High operation cost of data centers are

attributed to two sources 1) power consumed by the nodes in the data centers, 2) power

consumed by the cooling systems in the data centers. Previous research have confirmed that

the cooling cost is almost half of the total energy cost of a data center [8].

In 2004, Google introduced MapReduce, a simplified programming model and an as-

sociated implementation for processing and generating large data sets[9]. Users specify a

map function that processes a key/value pair to generate a set of intermediate key/value

pairs, and a reduce function that merges all intermediate values associated with the same

intermediate key. Programs written in this functional style are automatically parallelized

and executed on a large cluster of commodity machines [9].

It is been originally optimized for large batch jobs such as web index construction.

However, a use case where MapReduce being shared by multiple users and runs a mix of long

batch jobs and short interactive queries over a common data set has soon become a common

picture in most of the data centers [10]. Apache Hadoop - an open source implementation

of MapReduce framework- has now become the platform of choice for developing large-scale

data intensive applications [11].

3



1.1.2 Thermal Emergencies in Data Center

Recall that the power and heat density in the data centers are growing at exponential

rate. In a typical data center layout, the hot air exiting from the outlet of the node re-

circulates through the data center and contributes to the inlet temperature of other nodes

in the data center. The heat re-circulation causes the inlet temperatures of some nodes in

the data center to rise above the allowed operational temperature (also known as Redline

temperature). The nodes with inlet temperatures higher than the redline temperature are

called as hot spots and should be avoided as the operation outside the accepted temperature

exponentially decreases the reliability of hardware [12][13][5].

Figure 1.1: Data center layout with hot and cold aisles and CRAC.

Situations like creation of hot spots are called for thermal emergencies and need to be

resolved as early as possible in order to improve the data center reliability and to reduce

the failure rate. In order to keep the inlet temperatures below the redline temperature,

Computer Room Air Conditioners (CRACs) are deployed in the data center [1]. Typical

4



data center layout with CRAC is depicted in FIG.1.1.2. The racks are arranged in alternate

cold and hot aisles with all the inlets of the nodes facing towards the cold aisle and outlets

facing hot aisle. The hot air is extracted from the ceiling of the data center, passed through

CRAC, where it is cooled down and supplies thorough the vents from the raised floor. Recall

that the cooling cost is almost hald of the total energy cost of the data centers. Therefore,

in today’s power dense data centers it is very important to reduce the cooling cost in order

to control the operational cost of the data centers.

Heat re-circulation is not only the cause we need to have a cooling system but it is also

the reason for low cooling system efficiency. Heat re-circulation in the data center results in

the increased inlet temperatures and may cause creation of hot spots [14]. A large amount

of heat re-circulation forces computer room air conditioners to continuously work at lower

supply temperatures, decreasing the efficiency of the CRAC. In order to improve the cooling

system efficiency, we should run the CRAC at higher supply temperature (see section 3.2).

Therefore, it is very important to reduce the heat re-circulation, which is the cause of low

cooling efficiency, in order to reduce the cooling cost.

The best way to minimize the heat re-circulation for a given data center layout is by

controlling the power profile of the data center [1]. A workload placement algorithms can be

optimized to distribute the workload among the available nodes in a way to reduce the power

consumption of particular nodes, in order to reduce the heat re-circulation [1] [15]. Recall

that data centers house two different types of clusters: HPC clusters and storage clusters.

Each type of clusters service different workloads and have different types of nodes.

In the case of HPC clusters, each node consists of a chassis containing multiple blade

servers. A blade server is essentially a server on a card and represents further minimization

and modularity from the rack optimized form factor [4]. Each blade server consists of very

powerful multicore, multiprocessors and few (typically 2 to 4) disks. In such setups, pro-

cessors consume most of the power drawn by the server. As compared to processors, disks

consume very little power and can be neglected from heat re-circulations point of view. The
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power consumption of the processor is linearly proportional to the processor’s utilization.

Therefore, in order to control the power consumption by the node containing multiple blade

servers, it is important to control the utilization.

Unlike blade servers, storage clusters consist of storage nodes. The main task of storage

nodes is to store and retrieve large amount of data as requested by the client. In order

to provide such functionality, a storage node requires huge storage capacity and little pro-

cessing capabilities. Therefore, a storage node contains low power processor and a disk

sub-system comprised of multiple disks (typically 4 to 32). Modern storage systems ac-

count for almost 27% of the total energy consumption and have non-negligible impact of

the heat re-circulation [16] [17]. Recent study indicates that data placement has impacts on

I/O workloads, which in turn affect heat dissipation in the node [18]. Therefore, control-

ling power consumption by disks sub-systems is crucial in minimizing heat re-circulation in

storage clusters.

An important point to note here is, unlike processors, which exhibits linear correlation

between power consumption and utilization, disks have three different modes of operations,

namely, active, idle, and sleep mode, each of which has specific power needs. In the case of

storage nodes, lowering the power needs can be achieved by transitioning disks into the sleep

mode when large idle periods are observed [19]. Disk idle periods largely depends upon both

the file assignment and access pattern of data placed on the disks. Therefore, in order to file

assignment policies must be incorporated with other I/O techniques (e.g., prefetching and

write off-loading) [16] [20], which are applied to generate large idle periods. Therefore, data

placement policy must take thermal profile into account while making file allocation decisions.

In most of the today’s storage systems, file assignment decisions are made on the fly, i.e.,

decisions are made for the files (or data) as they are created and not in the batch process.

Though it represents a scenario, where a separate decision is made for each files, as these

systems usually consist of thousands of storage nodes servicing hundreds of client, the file
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placement problem can be view as a problem of assigning m number of files on D available

disks residing in N nodes. To support our argument, we present following two examples:

Example 1: Hadoop Distributed File System or HDFS is one of the most popular

distributed file systems developed in today’s data centers [21]. HDFS offers scalable and

reliable data storage for hosting terabytes of data and supporting an enormous number of

clients. In HDFS, data placement is accomplished by the NameNode, which is the centerpiece

keeping the directory tree of all files in the file system. Therefore, NameNode manages a

pool of files to be allocated in Hadoop clusters.

Example 2: Parallel File Systems (e.g., GPFS [22] and PVFS [23]) have been employed

in many of the world’s largest supercomputers. To achieve high I/O performance, parallel

file systems partition large files into small fragments placed across multiple disks or storage

nodes. Therefore, it can be assumed that considering each partition as a separate file, these

file systems address the problem of assigning m file to D disks.

In the first half of this dissertation, we present a thermal aware file assignment policy

to reduce the cooling cost by addressing the problem of assigning m files to D disks residing

on N nodes in the storage clusters in a way to reduce the heat re-circulation. In the next

half, we present thermal aware scheduling policy to reduce the cooling cost of the data center

housing Hadoop clusters.

1.1.3 Limitations of Existing Approaches

A large body of work can be found in the literature that addresses the issue of saving

energy in data centers by improving energy efficiency of nodes in the data centers. At node

level, Springer et al proposed a policy to conserve energy consumed by the node by using

Dynamic Voltage and Frequency Scaling (DVFS) technique, in which, a working frequency of

the processor is changed based on workload on system [24]. The right sizing technique offers

energy conservation at data center level, by adjusting the size of the data center according to

workload demands [25]. On the other hand, many researchers focused on improving storage
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system energy efficiency [26] [27]. Although all these techniques affect heat re-circulation as

they control the power consumption by the nodes in the data center, they cannot guarantee

to reduce the heat re-circulation as they do not consider thermal profile while attempting to

improve the energy efficiency of the data nodes. This dissertation focuses on the improving

the energy efficiency of the cooling system.

In the last decade, many researchers have have focused on addressing an issue of thermal

management in the data centers. The research in the area of thermal management in data

centers can be divided into two sub-streams: thermal modeling and thermal management.

Former stream includes developing different models to capture the thermal profile of the

data centers, while later focuses on designing workload placement strategies to control the

thermal profile of the data center. For example, Moore et al developed a simple yet effective

method to infer the detailed model of thermal behaviors within a data center from a stream

of instrumentation data [28]. Many researchers have proposed novel thermal aware workload

placement strategies to reduce the cooling cost of the data centers [1] [15]. Although these

strategies offer significant improvements in cooling efficiency of the data centers, most of

them focus on HPC clusters, where processors are the major power consumers. Recall, disk

sub-systems consume 27% of the total energy consumption of data centers and have non-

negligible impacts on cooling cost of the data center. Therefore, while addressing the issue

of thermal management in storage clusters, impact of disks sub-systems cannot be ignored.

This dissertation investigates plausible way to conserve the cooling energy of storage clusters

by offering thermal aware file assignment.

1.2 Scope of the Research

This dissertation research focuses on thermal-aware workload placement strategies for

data centers housing storage clusters as well as HPC clusters.

We have proposed thermal-aware workload placement scheme to reduce cooling needs of

data centers. This approach is able to reduce the cooling cost while keeping the performance
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penalties to minimum. Importantly, we have extended the research efforts in the area of data

center thermal management in three different ways. First, we have incorporated modified

power consumption and heat re-circulation model to characterize impact storage clusters in

the thermal profile of data centers. Second, we have proposed a thermal-aware file assign-

ment policy to reduce cooling cost of data centers through heat re-circulation minimization.

Finally, we have proposed a thermal-aware resource allocation policy for data centets housing

Hadoop clusters.

1.3 Contributions

To address the challenges of thermal-management in a diversified cluster environment,

our research investigates dynamic file and resource allocation policies that are capable of

achieve high cooling energy conservation in both storage and HPC clusters. In what follows,

we list the key contribution of the dissertation.

• Thermal Models for Data Centers: We have extended existing thermal models

presented by [29], to characterize the impact of storage nodes in the heat re-circulation

of the data centers. We have also extended the existing model to incorporate power con-

sumption by disks and to calculate contributions of each node in the heat re-circulation

of the data centers.

• A New File Assignment Policy: We hve developed a novel, generic file assignment

policy to reduce the cooling cost of the data centers. The proposed strategy aims

at minimizing the maximum inlet temperature of nodes in the data centers through

controled power distribution among data center nodes.

• A New Resource Allcation Piolicy: We have proposed a thermal-aware resource

allocation policy to control heat re-circulation in the data center housing Hadoop clus-

ter. The proposed strategy dynamically allocates resource on the nodes based on node’s

contribution in heat re-circulation and resource demand in the system.
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1.4 Organization

This dissertation is organized as follows. In Chapter 2, existing research efforts in the

area of thermal management are briefly reviewed.

In Chapter 3, we have developed different models to characterize power consumtion of

storage nodes, heat re-circulation, and cooling cost of data centers.

In Chapter 4, we have developed a novel thermal-aware file assignment policy to reduce

cooling cost of the storage clusters in the data centers.

In Chapter 5, we describe our resource allocation policy to reduce the cooling cost of

the data centers housing Hadoop clusters.

In Chapter 6, we present our experimental results to evaluate the proposed file and

resource allocation policies.

In Chpater 7, we provide approaches to improve the proposed policies and to extend

them for legacy framework such as MR1.

Finally, Chapter 8 concludes the dissertation by summarizing the main contributions of

this dissertation and providing details on future directions for the research.
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Chapter 2

Related Work

Exponentially increasing operational cost is a growing concern for data centers offering

enormous storage and computing capabilities, and a variety of techniques have been pro-

posed to improve the energy efficiency of the data centers. This chapter briefly presents

previous approaches found in the literature that are most relevant to our research from three

perspectives - 1) energy efficiency of data centers, 2) thermal efficiency of data centers, and

3) energy efficiency of MapReduce clusters.

2.1 Energy Efficient Data Center Nodes

In general, energy conservation techniques control the workload distribution when the

system is within appropriate workload range in order to achieve energy benefits enduring

performance penalties. There is always a trade-off between energy savings and performance

of the system, and one should assure that the performance penalties are within acceptable

range when aiming for energy conservation. This section presents a summary of work related

to conserving energy consumption by nodes in the data center. Specifically, we describe the

important features in a wide range of energy saving techniques. These approaches can be cat-

egorized into two main categories: energy saving in computational nodes (see section 2.1.1),

and energy savings in storage nodes/disks subsystems (see section 2.1.2).

Figure 2.1 depicts the high level taxonomy of the approaches to the problem of energy

conservation in the data centers. Each category can be further divided based on certain

specific attributes to a group of schemes. It can be observed from the figure that this

dissertation focuses on the issue of thermal management of data center through job scheduling

and data placement.
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Figure 2.1: A simplified taxonomy of the approaches to the energy conservation problem in
data centers.

2.1.1 Computational Node Energy Savings

A variety of literature is available on the issue of energy conservation in comptational

nodes. One of the most popular approaches for energy conservation is Dynamic Voltage

and Frequency Scaling (DVFS). Dynamic voltage scaling takes advantage of the fact that

lowering voltage can reduce power quadratically to reduce the enrgy consumption [30]. A

voltage scheduler is deployed, which decides when and to what level to change the voltage

and operational frequency of the processor based on workload conditions [31]. A rich set of

policies for the voltage scheduler have been proposed ranging from simple earliest deadline

first (EDF) [32] to sophisticated adaptive policies based on recursive learning and empirical

studies [33].

Shin and Choi proposed a power conscious version of fixed priority scheduling to yield

power reduction by the processor [34]. This method exploits slack time inherently present

in the system as well as arising from variations of execution time. The scheduler is invoked
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when the run queue is empty and based on the system conditions the processor will either

be switched to power-down mode if there is no current active jobs or adjust the operational

frequency such that the current active job finishes at its deadline or at the release time of

the next job.

In another research study, Quan and Hu presented two novel energy efficient DVFS

policies for real-time systems with job having pre-defined release time, deadlines and required

number of CPU cycles [35]. The policies offer two fold benifits. First, it provides the

minimum constant voltage (or speed) needed to complete a set of jobs as constant voltage

tends to result in low power consumption. Second, it produces the voltage schedule which

results in even lower energy consumption as compared to using the minimum constant voltage

and shutting down the system when it is idle.

Weirman et al studied the problem of optimally scale the speed to balance the trade-

off between mean response time and mean energy consumption under processor sharing

environment [36]. They provided bounds and asymptotic for the speeds used by optimal

dynamic speed scaling scheme, and showed that it significantly improves the robustness of

the system to bursty traffic along with energy efficiency improvements. Springer et al also

proposed a variation of DVFS scheme. They proposed a policy to create a frequency schedule

based on a target program and constraints on power consumption in the cluster to minimize

execution time while staying within the power constraints [24].

In the right-sizing technique offered at the data center level, the size of a data center is

adjusted according to workload demands [25]. This approach conserves energy by turning

as many servers as possible to the power-saving mode while maintaining desirable system

performance. The right-sizing scheme allows requests to be dispatched to a small group

of servers under light loads while keeping a large number of servers in the power-saving

mode [37][38][39]. All these approaches focus on energy conservation in computing nodes.

On the other hand, our study focuses on thermal impact of workload placement on cooling

energy conservation.
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2.1.2 Energy Savings in Storage Nodes

In the era of internet, enormous amount of data is being generated every day. Data

centers usualy deploy a storage clusters to manage such amount of data. Since, power

consumption by storage clusters is a problem impacting total cost of owernship, exten-

sive amount research efforts have been dedicated to provide energy efficient storage sys-

tems [20] [26] [27] [40] [41]. Most of these techniques try to create longer idle preriods for

the disks so that the disks can be spun down to reduce power consumption by the disk

subsystems. In this section, we will take a closer look at some of such techniques.

Write off-loading is a technique used to create longer idle periods by allowing write

requests on spun down disks to be temporarily redirected to persistent storage elsewhere

in the data centers. Naraynan et al provided a policy that can off-load write requests

transparentlly and efficiently at the block level, withot sacrificing cosistency and failure

resilience [20]. Another set of techniques use buffer disks to allow access to the popular

data while other disks can be spun down to save energy. Zong et al developed a heat-based

dynamic caching policy (a.k.a. BUD) to minimize energy consumption in storage systems.

BUD strives to allocate as many requests as possible to buffer disks, thereby keeping a large

nuber of idle data disks in low-power mode [27]. Zhu et al proposed an on-line power-aware

cache replacement policy called PB-LRU, to further improve the caching policies used to

conserve the energy consumption by disks [26].

Papathanasiou and Scott presented a new rule for prefetching and caching- mechanisms

previously designed to maximize performance- to maximize power-down opportunities by

creating an access pattern characterized by intense bursts of activity separated by long idle

times [41]. On the other hand, PRE-BUD uses aggressive prefetching along with buffer disk

architecture to improve the energy efficiency of disks subsystems [40]. Many other prefetching

and caching techniques use prediction or machine learning techniques to offer energy savings

in storage systems (e.g.[42][43][44]). All the above mentioned strategies focused on energy

consumption by the nodes in the data centers and do not pay attention to its impact on heat
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re-circulation and thermal profile of the data centers. On the other hand, in this study we

focused on the thermal impact of the power consumption by nodes, and have used energy

efficiency policies to control heat re-circulation in the data centers.

2.2 Thermal Efficiency of Data Centers

The research in the area of thermal management in the data center can be categorized

in two main streams: first stream of studies focus on deriving models to characterize the

heat re-circulation and thermal profile of the data centers whereas second stream aims at

developing the policies to control the thermal profile in order to reduce the cooling cost

of the data centers. Thermal models include C-Oracle [5], ThermoCast [45] and Cross-

Interference Matrix [29]. There are several thermal management policies such as XInt [1],

ZBD, MinHR [15], Weatherman [28]. This section sheds some light on these models and

techniques.

2.2.1 Thermal Modeling

Thermal profile can be created by using Computational Fluid Dynamics (CFD) sim-

ulations, which are time consuming and very expensive in terms of processing power. To

overcome this drawback, thermal models are developed to captured the thermal profile of

the data centers. From this thermal profile, many useful information such as the location of

hot and cold spots, contribution of the nodes in the heat re-circulation in the data center

can be derived. In this section we take a look at few such models.

Ramos and Bianchini developed a software infrastructure called C-Oracle that dynam-

ically predicts the temperature and performance impacts of different thermal management

reaction into future [5]. Such prediction facilitates the employed thermal management pol-

icy to select the best reaction at each point. C-Orace calculates heat transfers between

nodes by using power consumption of the nodes. While C-Oracle uses power consumption

of nodes, ThermoCast ; a cyber-physical forecasting model proposed by Lei et al ; makes use
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of continuous stream of temperature and airflow measurements to predict the temperatures

of surrounding servers in the data center [45]. ThermoCast then uses predicted temper-

atures to identify future potential overheating events. Tang et al derived a matrix called

Cross-Interference Matrix in order to model the heat re-circulation in the data center [29].

All the above mentioned models either uses linear power model or temperature mea-

surements through temperature sensors. Linear power models assumes that the processor’s

power consumption is linearly proportional to its utilization. While in computation nodes,

the processor is the major power consumer, same cannot be said in terms of storage nodes.

In storage nodes disks sub-systems containing multiple disks are the major consumers of

power and disks do not follow linear model for power consumption. Therefore, our study

focuses on the power utilization by disks and its impact on the heat re-circulation of the

data centers.

2.2.2 Thermal Management

Thermal management policies aim at making use of existing models to capture the ther-

mal profile of the data center and control the workload or power distribution in the data

center to reduce the cooling cost. Thermal-aware workload placement strategies were pro-

posed in recent studies, which indicate that energy efficiency of the CRAC can be improved

by reducing the peak inlet temperature of nodes in data center. XInt is one of such policies,

which manages workload in a way to reduce the maximum inlet temperatures [1]. Moore

et al designed the ZBD scheme that uses poaching where the effect of heat re-circulation is

observed to reduce the inlet temperature of nodes in a data center [15].

The MinHR approach manages workload in a way that each pod in a data center gen-

erates the same amount of heat, minimizing the heat re-circulation [15]. Wang et al have

proposed a different approach, where jobs are sorted in descending order of their hotness (i.e.,

heat generated by jobs) and nodes are sorted in ascending order of their inlet temperatures,

16



then, hottest jobs are placed on the coldest nodes [46]. Abbasi et al addresses the issue of

temperature profiles and workload distribution in the context of Internet data centers [47].

2.3 Energy Conservation in MapReduce Clusters

In recent years, use of distributed framework such as MapReduce to support the data

intensive applications running in the data centers is increasing dramatically. Therefore,

much attention has been paid to develop energy-efficient data centers running Hadoop and

MapReduce clusters. For example, Leverich et al. introduced the concept of Covering

Subset to assure 100% data availability when a cluster is running on reduced capacity to

save energy [48]. Lang et al. proposed the All-In Strategy (AIS) that drives a cluster to run

in its full capacity and brings down the entire cluster after completing jobs [49]. GreenHDFS

- an energy-efficient distributed file system - divides a cluster into hot zones and cold zones

based on access frequency of data [50].

We summarize the differences between TIGER and the existing solutions in Table 2.1.

Table 2.1: Comparison of TIGER and the existing solutions
Techniques Thermal Model Thermal Management Job Scheduling File Placement

Thermal Characteristics [29] X — — —
XInt [1] — X X —

C-Oracle [5] X — — —
MinHR [15] X X X —
TIGER X X — X

2.3.1 Energy Efficiency

In recent years, cloud computing and MapReduce frameworks have become standard

data center frameworks. Number of algorithms have be proposed and extensively evaluated

to reduce the energy consumption by the clusters deploying these frameworks. Kaushik et

al present Lightning- an energy conserving, self adapting Commodity Green Cloud Storage,

which uses data-classification driven data placement algorithm. It dynamically configures

data center servers into hot and cold zones in order to achieve energy conservation while
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maintaining data availability [51]. GreenHDFS [50] uses similar approach to provide energy

efficient storage for Hadoop framework.

GEMS is an online energy minimization path algorithm used to schedule MapReduce

tasks in cooperation with sleeping policies on serves as well as switched [52]. Zhu et al

proposed an energy aware scheduling algorithm; EARH; which employs a rolling-horizon

optimization policy to achieve energy conservation in cluster servicing real-time, aperiodic,

independent tasks [53]. ECCO is another distributed system, which dynamically redefine

the set of active resources of a data center with a purpose of drastically reducing energy cost

without degrading the performance of the system within acceptable range [54]. However, all

the above strategies focus of conserving energy consumed by the nodes in the data center.

Although, the power consumption of the nodes affect cooling cost of the data centers, different

set of parameters must be considered to achieve drastic energy conservation in cooling system

of the data center.

2.3.2 Thermal Efficiency

Number of approaches to manage thermal emergencies in data centers is discussed in

section 2.2. We mention few more studies in this section as these are closely related to our

study. Goiri et al proposed a run time system, CoolAir, that embodies different strategies

to limit absolute temperature, temperature variations, humidity, and cooling energy in free-

cooled data centers [55]. Unlike TASH, CoolAir makes scheduling decisions based on web

data and data collected from the sensors from all the nodes. Tang et al [56] proposed a data

locality aware power controller with thermal consideration to dynamically switch the power

state and to switch the executing frequency of each server. While it changes the power state

and executing frequency of each server to control the power profile of the data center, TASH

employs resource allocation policy to manage power profile. GreFar is an online algorithm,

which addresses the problem of scheduling batch jobs to multiple geographically distributed

data centers [57]. It delays job execution until sufficient number of jobs are in the queue
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or power is sufficiently cheap, in order to maintain the maximum server inlet temperature

constraints. It decides when to schedule a job as opposed to TASH, which decides how many

containers to run.

Another interesting area of research focuses on using "Green Energy" to power the data

centers in an effort to reduce CO2 emission of data centers. Many of such studies proposed

methodologies to predict the amount of Green energy (photo-voltaic and solar energy) that

will be available in near future and schedules jobs to maximize the green energy consump-

tion. GreenHadoop [58] proposes such strategy for Hadoop framework, while GreenSlot [59]

proposes parallel batch job scheduler for Green data center. Number of scheduling poli-

cies have been proposed to offer optimal geographical load balancing aiming to minimizing

the brown energy (fossil fuel energy) consumption of geographically distributed data cen-

ters [60] [61] [62]. JouleMR is another such cost-effective and green-aware data processing

framework, spefically focusing on data processing by Hadoop cluster [63]. Although, all

of these strategies maximize the use of renewable energy, they rarely focus on conserving

cooling cost.
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Chapter 3

Modeling

In this section, we describe three models used o characterize heat re-circulation (see

section 3.1), cooling cost of a data center (see section 3.2), and power consumption (see Sec-

tion 3.3). These models provide a foundation for building our thermal-aware file assignment

scheme to reduce cooling cost.

Table 3.1 summarizes all the symbols used in this paper.

3.1 Heat Re-circulation Model

Heat re-circulation is one of the main reasons for creating hot spots in a data center; hot

spots adversely affect the cooling cost of data centers [15]. Therefore, it is very important

to characterize the heat re-circulation and its impact on inlet temperatures of nodes.

A number of approaches have been designed to characterize the heat re-circulation in

data centers [45][5][29]. All these approaches are well investigated and well validated and

they predict the inlet temperature of nodes with reasonable accuracy. We start from the

approach described in [29] and modify it to accommodate contribution of disks in data center

heat re-circulation.

In a typical data center, hot air is extracted from the ceiling and cold air is supplied

from a raised floor [64]. The outlet heat rate Qout
i of chassis i is affected by chassis i’s inlet

heat rate Qin
i and the heat generated by the chassis component. Thus, the outlet heat can

be expressed as (3.1).

Qout
i = Qin

i +QNode
i (3.1)
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Table 3.1: Notations
Symbol Definition

N Number of nodes in the storage cluster
m Number of files to be placed
sk Service time of kth file
λk Arrival rate of kth file
Di Number of disks in ith node
D Total number of disks in the storage cluster
UTh
i threshold on the utilization of disks in ith node

PC Power consumed by the nodes in the data center
PNode
i Power consumed by ith node
P base
i Power consumed by the hardware other than CPU and disks (e.g. fans) of ith node
PCPU
i Power consumed by CPU of ith node
P d
i Power consumed by the disks subsystem of ith node
P d
i,j Power consumed by jth disks of ith node
PAC Power consumed by the cooling system of the data center
ρ Air density (typical value 1.19 Kg/m3)
cp specific heat of air (typical value 1005JKg−1K−1)
ai Air flow rate of ith node (typical value 0.2454 m3/s)
αi,j Cross-interference co-efficient from node i to node j
Si Sum of all the cross-interference coefficients of ith node, normalized over sum of all the cross-

interference coefficients of all the nodes in the data center
Qin

i Inlet heat of ith node
Qout

i Outlet heat of ith node
QNode

i Heat rate of ith chassis
T in
i Inlet temperature of ith node
T out
i Outlet temperature of ith node

where QNode
i is heat rate of chassis i. Because power drawn by the chassis is dissipated as

heat and according to the law of energy conservation, QNode
i can be measured as the amount

of power consumed by the chassis per unit time [29]. Also, by the law of thermodynamics,

Qin
i = ρcpaiT

in
i and Qout

i = ρcpaiT
out
i . Therefore, substituting the values in (3.1):

ρcpaiT
out
i = ρcpaiT

in
i + PNode

i (3.2)

where ρ, cp, ai are thermo-physical values. Specifically, ρ is the density of air measured

in grams per cubic meter; the typical value of ρ is 1.19 Kg/m3. cp is the specific heat

of air measured in joules per gram Kelvin; the typical value of cp is 1005 JKg−1K−1. ai

is the airflow rate of node i ; ai can be measured in cubic meters per second. A typical

value of ai is 520 CMF, which equals to 0.2454 m3/s [1]. These values can be expressed as
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thermodynamic constant Ki. Two similar models for outlet temperatures were validated in

the recent studies [5][1].

The hot air exiting from the outlet of a chassis recirculates in the data center and

contributes to the inlet temperature of other chassis in data centers including itself. There

are a few efficient ways of characterizing the effect of heat re-circulation in a data center.

The best way is to use Computational Fluid Dynamics (CFD); however, it is computationally

expensive and CFD models take a long time to produce results. Some other models, such

as Supply Heat Index (SHI) and Heat Re-circulation Index (HRI) [15][28], characterize heat

re-circulation in different ways. In this study, we use a similar model that characterizes heat

re-circulation as cross-interference coefficient matrix An×n = {αir}, where αir denotes the

fraction the outlet heat of ith node contributes to the inlet temperature of rth node [29].

Therefore, the inlet heat at node i can be calculated as:

Qin
i =

n∑
r=1

(
αri
(
Qin
r + PNode

r

))
+Qsup

i (3.3)

where Qsup
i is the amount of heat supplied by the air blown by the cooling system. It

can be calculated by using (3.4).

Qsup
i = ρcp

(
ai −

n∑
r=1

αirar

)
T sup (3.4)

Let
−→
T in =< T in1 , T

in
2 , ..., T

in
n > be a vector of inlet temperatures of all servers in a data

center. We denote
−→
P =< P1, P2, ..., Pn > as a power consumption vector of all the servers.

Let us organize the thermodynamic constants Ki into an n by n diagonal matrix K =

diag(K1, K2, ..., Kn). Thus, we can express the inlet temperature vector as a function of the

cooling supply temperature
−−→
T sup, thermodynamic constant matrix K, and cross-interference

coefficient matrix A (see details in [1]).

−→
T in =

−−→
T sup + [(K − ATK)−1 −K−1]

−→
P . (3.5)
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Equation (3.5) suggests that supply temperature T sup has a direct and measurable

impact on inlet temperature of nodes in data centers. Intuitively, inlet temperatures can

be lowered by reducing the supply temperature. A reduction δT in supply temperature is

derived from the maximum value (i.e. max(T ini )) of all the inlet temperatures and redline

temperature T redline. Thus, the supply-temperature reduction δT can be expressed as δT =

max(T ini )− T redliine [1].

3.2 Cooling Cost Model

Heat re-circulation and node power consumption lead to an increase in inlet temperature.

To control the raised inlet temperatures, a cooling system is applied. Temperature of the

air supplied by the cooling system is adjusted according to the maximum inlet temperature.

Supply temperature Tsup affects the efficiency of the cooling system. The efficiency of a

cooling system is quantified in terms of Coefficient of Performance (COP) [15][1] as:

COP (Tsup) = 0.0068T 2
sup + 0.0008Tsup + 0.458 (3.6)

The Coefficient of Performance can be used to calculate the power consumption by using

the following equation:

PAC =
PC

COP (Tsup)
(3.7)

where PC is the total power consumed by the storage nodes in a data center [1].

Previous studies demonstrate that as supply temperature T sup of a cooling system de-

creases, cooling system’s efficiency COP(T sup) drops accordingly, which in turn increases the

power consumption (PAC) of the cooling system. Equation (3.5) and (3.6) immediately in-

dicate that cooling cost can be significantly reduced by minimizing the inlet temperature of

data nodes in a cluster. An efficient approach to managing inlet temperature is to control the

power distribution among the date nodes. In other words, we handle the power distribution

in a data center in a way to reduce the maximum inlet temperature without lowering cooling
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system’s supply temperature. To judiciously manage the power distribution in a data center,

TIGER controls the workload distribution of data nodes, where power distribution largely

depends on the utilization of the nodes.

3.3 Power Model

It is worth mentioning that equation (3.2) in section 3.1 makes use of the storage node’s

power consumption to derive the node’s outlet heat, which in turn is used (see equation

(3.5) and (3.5) in section 3.1) to calculate the inlet temperature of the node in a data center.

Equation (3.3) and (3.5) suggest that for a storage cluster with a fixed physical layout, the

power consumption of the cluster’s storage nodes plays a vital role in affecting the inlet

temperatures of the nodes. The TIGER algorithm judiciously makes the file placement

decisions in a way to control
−→
P , which is the power consumed by the storage nodes in the

data center. In this subsection, we analyze; in detail; the factors affecting power consumed

by the storage nodes.

The power consumption of node i (P node
i ) can be derived from a fixed amount of power

P base consumed by node i’s hardware (e.g., fans) other than processor and disks, power P cpu

consumed by node i’s CPU, and power P d consumed by disks residing in the node. Thus,

we can calculate P node
i as:

PNode
i = P base

i + PCPU
i + P d

i (3.8)

Most storage nodes contain multiple (e.g., 16) disks. The measurement of power con-

sumption P d
i in (3.8) is computed as a summation of all the disks equipped in storage node

i.

P d
i =

Di∑
j=1

P d
i,j (3.9)

where Di represents total number of disks in storage node i and P d
i,j is the power consumed

by jth disk in the node.
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Two factors make it reasonable to model the power consumed by processors in storage

nodes as a constant. First, low-power processors are used in the storage nodes to build

energy-efficient storage clusters, as storage nodes are unlikely to perform computing-intensive

tasks. Second, power consumption in storage nodes is dominated by a large number of disks

rather than processors.

In what follows, we model the power consumption P d
i,j of disk j in ith node. We denote

the power consumed by a single disk in the active, idle, and in sleep mode as P d,active, P d,idle,

and P d,sleep, respectively. Power overhead is incurred when disks are transitioning among

the mode (e.g., from the sleep mode to active or vice versa). We denote the power required

to spin down a disk as PSdown
and power needed to spin up a disks as PSup . Given a time

interval T , let tactivei,j , tidlei,j , and tsleepi,j represent time periods when disk j in node i is active,

idle, and sleep, respectively. We denote N t
i,j as the number of power-state transitions. Now,

we model the disk power consumption P d
i,j as:

P d
i,j =

1

T

(
tactivei,j × P d,active

i,j + tidlei,j × P
d,idle
i,j

+tsleepi,j × P d,sleep
i,j +

N t
i,j

2

(
PSdown

+ PSup

))
(3.10)
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Chapter 4

Thermal-Aware File Assignment in Storage Clusters

TIGER faces a unique challenge of reducing cooling costs by placing files to minimize

heat re-circulation. File placement decisions made by TIGER are guided by a disk utilization

threshold. Furthermore, TIGER is focused on the issues of load balancing across all disks as

well as minimizing variance of the service time at each disk.

In this chapter, we first present the basic idea behind the TIGER algorithm with two

scenarios in which TIGER can be ivoked (see Section 4.1). Then, we discuss; in detail;

how TIGER calculates disk utilization thresholds based on the workload and contribution

of nodes in the heat re-circulation in data centers (see section 4.3). Finally, we present our

file assignment algorithm in section 4.4.

4.1 Overview

TIGER is a software infrastructure that allows storage clusters to achieve a thermal

friendly, low power, and scalable I/O architecture in future data centers. Fig. 4.1 outlines the

design of the TIGER framework, which includes clients that issue file requests, a file-access-

pattern monitor that collects file access and temperature information, meta-data manager

that organizes file attributes (e.g., permissions, namespace, and disk space quotas), a request

handler that receives file-assignment requests from the client and the monitor, and the file

placement policies that make important file-assignment decisions. The meta data manager,

the file placement policies, and the request handler are implemented in a storage cluster’s

master node, which coordinates the I/O activities of all the peer data nodes of the cluster.

The TIGER infrastructure can be applied in the following two use case scenarios to

manage the file placement issues:
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Figure 4.1: TIGER:System Overview

• the creation of new files and

• the migrations of existing files.

It is worth mentioning that Algorithm 1 is invoked to deal with both scenarios. From

the perspective of TIGER, the difference between the two scenarios lies in the list of the

files used as an input (i.e., file_info)to the algorithm. In the file creation case, the file list

contains newly created files; in the file migration case, TIGER makes file assignment (a.k.a.,

file relocation) decisions for existing files. TIGER can be applied to make file assignment

and relocation decisions in both file creation and migration scenarios.
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4.1.1 Creation of New Files

In the file-creation case, TIGER assigns newly created files to data nodes according

to a file-placement policy. A client follows four steps to create new files and store them

into TIGER-enabled storage clusters. First, the client contacts TIGER where the request

handler processes the file-creation requests. Second, the request handler drives TIGER’s file-

placement policy to make file assignment decisions using meta data and file access pattern

information. Third, the file assignment decisions determined by the policy are delivered to

the client. Last, the client directly transfers the newly created files to the storage nodes

according to the file assignment decisions provided by TIGER. This procedure of handling

newly created files is similar to many cluster file systems (e.g., HDFS [21]).

In a large-scale storage cluster servicing an enormous number of users, multiple file

requests may be simultaneously issued from the clients. In such a case, the master node

handles a pool of file requests in a batch manner. Thus, after receiving file assignment

decisions from TIGER, the clients organize a pipeline to send the new files to the cluster’s

data nodes. TIGER can be incorporated into a parallel file system, where a large file is

partitioned into multiple fragments. Before TIGER makes assignment decisions for file

fragments, the parallel file system partitions large files into a set of fragments.

4.1.2 File Migration and Access Pattern Monitor

Considerable evidence shows that dynamically changing workload patterns (e.g., diurnal

workload variations) are observed across all servers in a data center; more importantly,

workload patterns shift during a certain period of time. Although the pattern changing rate

differs from one data center to another, such a pattern shift widely exists in data centers.

Access pattern information initially facilitated to TIGER making file assignment decision

becomes obsolete over time; therefore, the utilization of nodes is dynamically changing.

There is a considerable demand for TIGER to yield file assignment decisions under

dynamic workload conditions to maintain thermal benefits. To address this issue, TIGER
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incorporates an access pattern monitor, which is a software module that runs on each storage

node and continuously monitors access patterns of all files residing on the node. The monitor

collects the metadata of all the files, thereby keeping track of drastic changes in file access

patterns. File migration requests are issued by the monitor and forwarded to the master

node in a storage cluster. Upon receiving these requests, the file migration procedure in

TIGER can be triggered in three ways.

• First, the master node initiates the file migration procedure periodically (e.g., hourly,

daily, or weekly). The period length affects file migration performance, which in turn

makes impact on thermal efficiency. Specifically, a large period is incapable of optimiz-

ing I/O performance in a timely manner; a small period introduces high file migration

overhead. Choosing an appropriate file migration period can make good trade-offs

between file placement optimization and file migration overhead.

• Second, the procedure starts migrating files when the percentage of files to be migrated

exceeds a threshold, which is referred to as file migration threshold. Like the aforemen-

tioned file migration period, this threshold varies across different data centers. Both

the threshold and the file migration overhead can be tuned by system administrators

based on the characteristics of I/O load, access patterns, and the types of workload in

data centers.

• Third, system administrators may manually launch the file migration procedure in

accordance to the workload change rate, which is quantified as a percentage change in

the current I/O load.

It is noteworthy that the file migration period, file migration threshold, and workload

change rate are three vital factors affecting the thermal efficiency and performance of data

centers. In one of our future studies, we will further investigate the impact of these three

parameters on the system performance of storage clusters.
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4.2 Design Goal

The overall goal of TIGER is to place a set F of m files to a group of N storage nodes in

such a way to reduce cooling cost of a data center while maintaining high I/O throughput.

The cooling cost is reduced by minimizing heat re-circulation; whereas the I/O performance

is improved by assigning files with similar I/O service times to the same disk within a storage

node.

The file access-pattern monitor (see, for example, [65]) offers TIGER with the service

time si and access rate λi of file fi in set F . The file assignment procedure in TIGER is

comprised of two phases. In the first phase, thresholds for disk utilization are determined by

the file-access-pattern monitor (see Section 4.3). In the second phase, files with similar service

times are assigned to each disk until its utilization threshold is reached (see Section 4.4).

4.3 Disk Utilization

Now we discuss how to calculate disk utilization threshold to be used in the second

phase of our approach. Recall that the utilization threshold is introduced to guide the file

assignment.

4.3.1 Computing Disk Utilization Threshold

In the process of calculating the disk utilization threshold, we take into account both

performance and thermal management. To improve I/O performance, we apply a load

balancing strategy to uniformly distribute I/O load among all the disks. When it comes

to thermal management, we follow the principle that workload placed on the node should

be inversely proportional to the contribution of the node in the heat re-circulation in a data

center. To place workload uniformly according to this principle, one has to ensure that all the

nodes should contribute equally in heat re-circulation. Achieving this goal may be difficult;
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therefore, it is normally useful to have a calibration phase, where we adjust the calculated

threshold according to each node’s contribution in the heat re-circulation.

As mentioned above, we first calculate the threshold using the load balancing strategy.

The utilization of the disk di is increased by uk due to the allocation of file fk. The utilization

uk is a product of service time sk and access rate λk of the file. Therefore:

uk = sk ∗ λk (4.1)

Our file assignment algorithm aims to distribute the total utilization U generated by

all the files to D disks. We use the greedy algorithm to uniformly balance load among all

the available disks. Disk utilization threshold UTh
avg can be calculated using the following

expression:

UTh
avg =

1

D

m∑
k=1

sk × λk (4.2)

4.3.2 Considering Heat Re-circulation

Equation (4.2) can be used to uniformly distribute the workload in the data center.

Although it is desirable to uniformly distribute the workload among the available nodes

to gain performance benefits, our goal is to imbalance the workload to control the heat

re-circulation in the data center. We use the principle that the workload to be assigned

on a node should be inversely proportional to the contribution of the node in the heat re-

circulation in the data center. If we apply this principle, uniformly distributing the workload

means each node controbutes the same amount towards the heat re-circulation in the data

center.

The heat re-circulation is characterized as the cross-interference coefficient, which is the

fraction of total outlet heat of the node i that contributes to the inlet temperature of node j

(see section 3.1). Then, the total contribution of a node in the heat re-circulation of a data

center can be obtained as:
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Si =
n∑
j=1

αij (4.3)

Si =
Si
Stotal

(4.4)

where Stotalis the sum of all the cross-interference coefficients of all the nodes. Si > Sj means

node i contributes more in heat re-circulation than node j.

Therefore, uniformly distributing workload makes all the nodes identical in terms of

heat re-circulation. Thus:

Si = Savg, ∀i ∈ N (4.5)

where N is the set of all nodes and Savg = 1
N

∑N
i=1 Si.

Equation (4.5) does not hold for most of the nodes in the data center. In real-world

scenarios, a node’s contribution to heat re-circulation might be either higher or lower than

the average contribution Savg. To handle such situation we first calculate the normalized

difference between Si and Savg.

∆S =
Si − Savg
Savg

(4.6)

There are two possible cases, which are discussed next.

Case 1: Si > Savg. This case holds for most nodes that are nearer to the floor, which

contribute more towards the heat re-circulation. We decrease the disk utilization threshold

by the normalized difference ∆S.

UTh
1 = UTh

avg −
(
|∆S| × UTh

avg

)
(4.7)

Case 2: Si < Savg.This case holds for most of the nodes nearer to the ceiling. As

these nodes contribute less to the total heat re-circulation, we increase the disk utilization

threshold by the normalized difference ∆S, at the same time, making sure that the disk

utilization threshold does not exceed maximum utilization (i.e. 100%).
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UTh
high = UTh

avg +
(
|∆S| × UTh

avg

)
(4.8)

UTh
2 =


UTh
high if U threshold

high < 1.0

1.0 if U threshold
high > 1.0

(4.9)

The disk utilization can be determined by the following expression derived from (4.7) -

(4.9). Thus, we have:

UTh
i =



UTh
1 if Si > Savg

UTh
2 if Si < Savg

UTh
avg if Si = Savg

(4.10)

4.4 The File Assignment Algorithm

TIGER solves the thermal management problem in data centers by applying thermal-

aware file assignment to storage clusters. TIGER imbalances I/O workload in order to

achieve significant thermal benefits. Such imbalanced workload conditions tend to degrade

system performance due to a few highly utilized disks. TIGER takes two measures to mit-

igate the adverse impact caused by imbalanced workload. First, TIGER ensures that the

utilization of any disk does not exceed a given threshold specified based on I/O require-

ments. Second, TIGER assigns files sharing similar service times to the same disks, thereby

minimizing the variance in service times among requests in each disk [66]. To achieve this

goal, TIGER sorts files in a decreasing order of their service times.

During the file assignment procedure, storage nodes are sorted in an increasing order of

their heat re-circulation and the list of files is sorted in a decreasing order of their service

times. For each node in the list, files are assigned to each disk on the node until the threshold
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Algorithm 1 TIGER(file_info, node_info)
1: U ← 0
2: for fi ∈ m do
3: U ← U + si × λi
4: end for
5: UTh

avg ← 1
D
U

6: Stotal ← 0
7: for node i = 1→ N do
8: Si ←

∑n
j=0 αij

9: Stotal ← Stotal + Si
10: end for
11: Savg ← 1

N

12: sort the nodes according to Si
13: sort files according to service time
14: k ← 0
15: for all node i ∈ sorted list do
16: Si ← Si

Stotal

17: if Si > Savg then
18: Calculate threshold using (??)
19: end if
20: if Si < Savg then
21: Calculate threshold using (??)
22: else
23: UTh

i ← UTh
avg

24: end if
25: for all disk j ∈ Di do
26: while Uj < UTh

i do
27: assign file fk to disk j
28: Uj ← Uj + (λk × sk)
29: k ← k + 1
30: end while
31: end for
32: end for
33: if k < m then
34: {still some files are remaining}
35: Start from the first node of the sorted list,
36: keep assigning files to the disk in the node until the utilization of the disks reaches 0.9
37: Repeat line 35 for consequent nodes in the sorted list until k=m.
38: end if
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has been reached. We keep doing this until either the node list is empty or there are no files

remaining. If the node list is empty and there are some files remaining, then we will start

from the first node in the node list and keep assigning files until either utilization reaches

90% or all files have been assigned.

Prior to making any file placement decision, TIGER calculates the average disk utiliza-

tion threshold UTh
avg (see lines 2-6), thereby using greed method to uniformly distribute I/O

load among available disks. After the initial assignment is complete, TIGER computes three

important factors (i.e., Savg, Si, and Stotal), which are used to calibrate the disk utilization

threshold of each node(see lines 6-11). Next, TIGER sorts the list of nodes in an ascending

order of their heat re-circulation contribution Si, which is determined using equation (4.4)

(see line 12). TIGER then picks the first node from the sorted list, and adjusts the disk

utilization threshold for all the disks in the selected node depending upon the values of S

and Savg (see lines 16-22). Finally, TIGER assigns files to each disk in the selected node

until either the threshold is reached or the disk’s free capacity becomes empty (lines 24-28).

TIGER repeatedly performs steps 15-31 until all the files are placed to the disks.

Please note that after assigning files to all the available disks according to the tuned

utilization thresholds, some files may remain unassigned. TIGER checks whether there exists

any unassigned files (see line 32) and starts assigning these files to the nodes using Steps

34-36. TIGER stops placing files to a disk if its utilization reaches 90% or there is no free

capacity.

The time complexity of making file placement decisions is O(m), where m is the number

of files to be placed. We conduct an experiment to measure the execution time of making

file placement decisions. Our finding reveals that it takes 15 ms to make the decisions of

placing 23,000 files to a 50-node storage cluster. Both time-complexity analysis and run-time

analysis confirm that the overhead of making file placement decisions is negligible.
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Chapter 5

Thermal-Aware Scheduling in Hadoop Cluster

In the past decade, most of the large companies like Facebook, Google, Amazon etc

are shifting MapReduce as a main framework in their data centers. MapReduce framework

enables automatic parallelization and distribution of large-scale computation on large clusters

of commodity machines [9]. Apache Hadoop is one the most popular MapReduce framework,

where each file is partitioned into several equal size chunks, and for each chunk, multiple

replicas (typically 3) are stored to improve the performance and data reliability. The primary

job on most of the applications running on the Hadoop clusters is to deliver data or to run

simple computations on large data sets, which at the lowest level, can be viewed as associating

each data request to a specific replica among multiple available replicas.

As most of the businesses are shifting to Hadoop as their main framework for their

data centers, it is very important to address the thermal emergencies in such clusters. We

developed as scheduling policy to reduce the cooling cost the data center housing Hadoop

clusters. We used the model proposed in Section 3.3 to calculate the contribution of each

node in the heat re-circulation in the data center. Then, we assign the load on the nodes

based on its contribution and the current load on the entire system. We implement our

approach in Apache Hadoop 1.0.3 by modifying FIFO Scheduler, which is already available

in Hadoop 1.0.3.

The remainder of the chapter is organized as follows: Section 5.1 explains the revised

power model we have used for this particular study. In section 5.2, we presented an overview

of existing scheduling policies and their commonalities in Apache Hadoop 1.0.3. Next, we

presented out thermal-aware job scheduling approach in detail. Finally, we provided imple-

mentation details to incorporate our approach into Apache Hadoop 1.0.3.
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5.1 Revised Power Model

Unlike storage clusters, where each node consists of large number of disks and disk

sub-system is the major consumer of node power, in the case of Hadoop clusters, each

node consists of multiple blade servers installed in a chassis. Though each blade server

has multiple disks, usually their number is small (typically 2 to 4) and each server also

has powerful processor which draws large amount of power. Therefore, in case of Hadoop

clusters. processors are the major consumer of power. Hence, we cannot use the same power

model presented in section 3.3. In this section, we present our revised power model which

accounts for blade servers in the Hadoop clusters.

Apart from blade servers, chassis also draws constant amount of power to run its power

unit. This constant power consumption can be denoted as P base
Node and has two parts (1)

constant amount of power consumed by chassis and (2) constant amount of power consumed

by each blade server in the chassis. Therefore, P base
Node can be calculated as sum of base power

consumption of chassis and sum of base power consumption of all the servers in the chassis:

P base
Node = P base

chassis +
n∑
j=1

P base
j (5.1)

where P base
chassis is the base power consumption by the chassis, P base

j is the base power con-

sumption by blade server j in the chassis, and n is the number of servers in the chassis.

As mentioned above, processors are the major contributor to the power consumption

in blade servers. Most of the blade servers are multicore, multiprocessor systems with 2-4

disks. As a result, disks consume very little power as compared to processors and can be

neglected. Now, due to the linearity of power consumption of processor with the processor

utilization [1], the power consumed by server j with CPU utilization uj can be calculated as:

PCPU
j (uj) =

(
PCPU
j (100)− PCPU

j (0)
)
× uj (5.2)
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where PCPU
j (100) and PCPU

j (0) are the power consumption by the processor at utilizations

of 100% and 0% respectively.

Therefore, the power consumption by node i can be calculated as sum of constant base

power consumption (see equation (5.1)) and sum of variable power consumed by all the blade

servers (see equation (5.2)).

PNode
i = P base

Node +
n∑
j=1

PCPU
j (uj) (5.3)

It is important to note that to characterize the heat re-circulation in the data center

and to calculate the cooling power required by the data center, we are using the same models

described in section 3.1 and section 3.2 respectively. Equation (5.3) is used to calculate the

power consumption of each node and replaces the variable
−→
P in equation (3.5).

5.2 Apache Hadoop: A MapRedue Framework

In order to understand our thermal-aware scheduling algorithm, it is very important

to introduce the underlying MapReduce and Hadoop framework. In this section, we will

take a quick overview of both MapReduce programming model and Hadoop Framework (see

section 5.2.1). Then, we briefly describe existing scheduling policies available in Hadoop (see

section 5.2.2). Finally, we explain the impact of job scheduling on power consumption and

thermal profile of data center (see Section 5.2.3).

5.2.1 The MapReduce Framework

MapReduce is one of the most popular programming models processing and generating

large data sets [9]. A MapReduce program typically make use of simple operations to perform

on a huge amount of data. A MapReduce program consists of a pair of map and reduce

functions. A map function is invoked for each record in the input data sets, producing

intermediate records in the form of 〈key, value〉 pairs. These intermediate records, in turn,

38



are sorted in the way that all the records with the same "key" are sent to the same reducer.

A reduce function, then, applies processing logic to combine these records and generates final

output in the form of 〈key, value〉 pairs.

Hadoop is an open source software, initially developed to run MapReduce application.

Data in a Hadoop system is typically stored in the Hadoop Distributed File System or HDFS,

which is responsible for storing and managing data. HDFS consists of multiple DataNodes

coupled with a NameNode allocating data to DataNodes and maintaining all the meta-data.

The runtime system in MR1 consists of two main processes, namely, a master process called

as JobTracker(JT) and multiple slaves referred to as TaskTrackers. The recent version of

Hadoop provides multiple NameNodes and ability to port range of frameworks apart from

MapReduce. YARN achieves this by decoupling programming model from resource man-

agement infrastructure, and delegating many scheduling functions to per-application com-

ponents. YARN breaks down the functionalities of into two modules- ResourceManager (or

RM for short) and ApplicationMaster (or AM for short). Per-cluster RM tracks resource

usage, enforces allocation invariant, and arbitrates contentions among tenants. Responsibil-

ities of per-application AM include coordinating logical plan of a single job by requesting

resources from RM, generating a physical plan, and coordinating the execution of that plan

around faults [67]. YARN also runs NodeManager, which is similar to TaskTracker of MR1.

NodeManager(NM) communicates with RM to update it about the available resources and

executes applications assigned by AM using resources assigned to the AM by RM.

5.2.2 Hadoop Scheduling Policies

A handful of scheduling policies have been developed as a plugin for the Hadoop frame-

work. Popular schedulers include FIFO, FairScheduler, and CapacityScheduler. In the FIFO

approach, all resource requests are queued and served in a first in first out manner. Resource

allocation requests are serviced based on their arrival times rather than their priorities. To

overcome this drawback, FairScheduler allocates the resources to the AM in a way that each
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AM obtains an equal share of available resources. The FairScheduler implementation creates

a set of pools, to each of which the resource requests are assigned. FairScheduler monitors

each pool to ensure that each application gets fair share of available resources. A third in-

triguing scheduling policy is the Capacity scheduler, which offers great control as well as the

minimum capacity guarantee. This policy also provides an ability to share excess resources

among available application managers.

All the aforementioned scheduling policies are imported to YARN. Instead of scheduling

jobs, RM allocates resources to AMs, each of which then runs actual jobs using those re-

sources. Therefore, the FIFO scheduler maintains a queue to add the resource requests from

AMs and serves the requests in the first-in-first-out manner. Resource requests are made

in terms of containers. Each container contains resources like memory and processor cores.

While processing resource request from an AM, RM calculates how many containers can be

assigned on a given NodeManager governed by one of the scheduling policy. The policies

pick an AM to which the available containers are assigned. Once the resources are allocated

to the AM, the resources are fully utilized at the AM’s discretion.

5.2.3 Impact of Resource Allocation on Power Consumption

Recall that RM assigns containers to the AM, which decides how to utilize the allocated

resources (see Section 5.2.2). AM may make use of partial or all of the allocated resources.

The goal of the AMs are to complete jobs as early as possible. Therefore, it is safe to

assume that AM aggressively utilizes all of the allocated resources. Most of the containers

are consists of processor core and memory. Thus, container allocation can be converted

to the actual utilization of the nodes in a data center. Previous studies have shown that

processor utilization is linearly proportional to the power consumption of a node, which in

turn results in heat dissipation [1].

TASH aims at minimizing the heat re-circulation in a data center by controlling the

power utilization of the nodes in the data center. TASH achieves this by manipulating
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utilization of the nodes in the data center. As we explained, utilization is related to the

resource allocation by the RM. Hence, in order to minimize the heat re-circulation in the

data center, TASH controls the power utilization of the nodes in the data center.

5.3 TASH : Thermal-Aware Scheduling in Hadoop

TASH addresses the problem of reducing data center’s cooling cost by minimizing the

heat re-circulation in data centers. In order to achieve this goal, TASH controlls power

consumption of computing nodes by constraining allocated resources on the nodes. TASH

judiciously determines the amount of resources to be allocated to each node by examining

contribution of the node towards heat re-circulation of a data center. In this Section, we

first lay out an overview of TASH (see Section 5.3.1), followed by a detailed description of

the algorithm (see Section 5.3.2).

5.3.1 Overview

TASH is a thermal-aware scheduler, which can be seamlessly integrated with any ex-

isting scheduling mechanism in clusters (e.g., Hadoop and Spark). Specifically, TASH fa-

cilitates ResourceManager to make thermal-aware resource allocation decisions. Fig. 5.3.1

depicts three collaborative modules in TASH ; we show how the modules interact with each

other. Recall that (see section 5.2.2) NodeManager sends HeartBeats to update the node’s

resource availability to RM and ApplicationMaster makes resource requests in the form of

containers. TASH calculates each node’s heat re-circulation contribution to a data center.

Based on the contribution coupled with the overall resource demands from the systems,

TASH determines the amount of resources (i.e., number of containers) allocated on the

node. Once the number of containers are been determined, ResourceManager uses selected

scheduling policy (e.g. FIFO, FairScheduler etc.) to decide which ApplicationMaster should

acquire the available resources.
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Figure 5.1: The system architecture of TASH, which integrates (1) a schedule, (2) the cross-
interference matrix (CIM), and (3) the main module (a.k.a., resource manager).

It is important to note that TASH is independent of specific scheduling policy that se-

lects ApplicationMasters to allocate available resources on a node; rather, TASH determines

the amount of available resources should be allocated. Such a flexibility allows Hadoop clus-

ter administrators to pair TASH with any existing policy like the Fair scheduler and the

Capacity scheduler. A compelling feature of TASH is that it can be readily combined with

existing schedulers to offer cooling-cost reduction, thereby allowing TASH to fully benefit

from the perks of the existing scheduling algorithms.

Important parameters affecting resource allocation decisions in TASH include (1) con-

tribution of each node in the heat re-circulation of a data center, (2) the maximum number

of allowable containers on the node, (3) total resource demand in the system. Each node’s

contribution in the heat re-circulation is derived from the cross-interference matrix of a vali-

dated model. Recall that (see Section 3.1) the cross-interference matrix depicts the fraction

of outlet heat from each node that contributes to the inlet temperature of all the other nodes.
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The number of containers that can be allocated on the node is dependent of the node’s hard-

ware configuration like the number of cores and memory capacity as well as current resource

allocation on the node. Given the available resources and the container’s specification for

an ApplicationMasters, ResourceManager determines the number of containers with given

specifications that can be allocated on the node. TASH is aware of thermal factor while

determining the number of containers. In particular, TASH incorporates the contribution

of the node towards heat re-circulation in the data center.

5.3.2 The Thermal-Aware Scheduler

In this section, we shed light on the design of the TASH resource allocation policy. As

mentioned earlier, TASH is driven by three decisive parameters, namely, contribution of a

node in heat re-circulation, available resources on a node, and resource requests from the

ApplicationMaster (see Section 5.3.1). The existing YARN scheduler takes into account the

resource requests and available resources, ignoring thermal profiles of data centers during

the process of resource allocation.

Recall that (see Section 3.1) cross-interference matrix AN×N stores values αi,j fraction

of outlet heat from node i contributing to the inlet heat of node j. In order to calculate

the contribution of node i towards the heat re-circulation of data center, we calculate a sum

of all the values from ith row normalized over sum of all the values from cross-interference

matrix. We express this contribution as follows:

Si =

∑N
j=1 αi,j

Stotal
(5.4)

where N is the total number of nodes in a data center. Stotal, the overall heat contribution,

can be written as Stotal =
∑N

i=1

∑N
j=1 αi,j.

One way of calculating the number of containers to be allocated on a node is to uni-

formly distribute all the requested containers among all the nodes. For example, if the total
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number of containers requested by all the available ApplicationMaster is 10 and there are

five nodes in the cluster, then each node will be assigned two containers. In our design, we

consider a container as a basic unit of resource allocation. We refer to this baseline policy

as the uniform resource allocation. On the other hand, a fundamental principle that governs

resource allocation decisions in TASH is that resources allocated to a node is inversely pro-

portional to the contribution of the node in the heat re-circulation in a data center. In other

words, TASH attempts to distributes available resources among all available nodes such that

a node contributing highest heat re-circulation should consume the least amount of power.

In an ideal scenario where all the nodes equally contribute towards data center’s heat

re-circulation, we simply uniformly distribute containers among all the nodes. Let Savg be

an average heat re-circulation contribution. Applying normalized value of heat contribution,

we express average contribution Savg as:

Savg =
1

N
(5.5)

where N is the total number of nodes in a data center.

The YARN scheduler calculates the number of containers Ci to be allocated based on the

container specification and available resources. Unlike YARN, TASH fosters the awareness

of thermal efficiency by incorporating the node contribution of heat re-circulation into the

management of container assignment. In order to incorporate thermal awareness into the

resource allocation process, TASH compares two vital parameters, namely, (1) the ideal heat

re-circulation contribution (see Savg in Eq. 5.5) and (2) normalized contribution of node i

in the heat re-circulation (see Si in Eq. (5.4)). Such a heat-related comparison may yield

three results. First, a node’s contribute is larger than the average heat contribution (i.e.,

Si > Savg). Second, a node’s heat contribution is smaller than that of the average one (i.e.,

Si < Savg). Finally, a node’s heat contribution is on a par with the average contribution

(i.e., Si = Savg), which is an ideal scenario. To integrate the heat comparison process into
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ResourceManager’s capacity calculation, TASH observes the difference (i.e., ∆S) between

the average heat contribution (i.e.,Savg) and the normalized contribution of node i (i.e., Si).

We express comparison difference ∆S as:

∆S =
Si − Savg
Savg

(5.6)

Once the heat-contribution comparison is completed (see (5.6), TASH calculates the

number of containers to be allocated. We show the following three cases to illustrate how

TASH dynamically configures the number of containers.

Case 1: Si > Savg. In the first case, node i’s heat contribution is larger than the average

contribution. According to our design principle, TASH reduces the number of containers

to be assigned to node i. The reduced number of containers (i.e., C ′i) is derived from the

previous containers assignment (i.e., Ci) and the heat-contribution comparison result ∆S.

We express updated containers C ′i as:

C ′i = Ci − (|∆S| × Ci) (5.7)

Case 2: Si < Savg. Node i’s heat contribution is smaller than the average contribution,

meaning that this node is eligible for processing an increased number of containers. Pushing

up the number of containers on node i alleviates the over-heating problem illustrated in case

1. TASH modifies the container allocation using following equation. Thus, we have

C ′i = Ci + (|∆S| × Ci) (5.8)

Case 3 : Si = Savg. The last case resembles an ideal scenario, in which TASH keeps

the container allocation unchanged. Thus, we conclude that there is no change in containers

number Ci (i.e., C ′i = Ci).
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It is worth mentioning that resource requests issued by an ApplicationMaster are ser-

viced by an underlying scheduler, where TASH determines the number of containers to be

allocated for that ApplicationMaster on a given node. By judiciously managing the number

of allocated containers, TASH controls the nodel’s in a thermal-friendly way.

Algorithm 2 TASH
1: Stotal ← 0
2: for node i = 1→ N do
3: Si ←

∑n
j=0 αij

4: Stotal ← Stotal + Si
5: end for
6: Savg ← 1

N

7: for given node i
8: use selected policy to select the application request
9: get the number of containers that can be allocated on the node Ci

10: Si ← Si

Stotal

11: if Si > Savg then
12: Calculate new number of containers using (5.7)
13: end if
14: if Si < Savg then
15: Calculate new number of containers using (5.8)
16: end if
17: Allocate calculated number of containers for the application.

TASH computes the average and normalized heat re-circulation contribution of each

node (see Lines 1-6). ResourceManager initiates the containing assignment process in re-

sponse to the node’s update event on receipt of a HeartBeat. After assessing available

resources, ResourceManager invokes the scheduler to allocate containers to the Applica-

tionMaster by carrying out the following four steps. First, depending upon the employed

scheduling policy, the scheduler picks the application request for a resource allocation. Next,

the scheduler determines an initial number of containers to be allocated Ci. Then, TASH

calibrates the number of containers based on the node’s heat contribution (see lines 9-15).

Finally, ResourceManager assigns the containers to the node.
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5.4 Implementation Details

Recall that (see Section 5.2.1) there are two popular implementations of the Apache

Hadoop computing platform. An earlier implementation of Apache Hadoop (a.k.a., MR1) is

restricted in a sense that it is mainly focused on executing batch style mapreduce jobs. The

newer version (i.e., MR2 or YARN) fully supports interactive jobs in addition to batch style

mapreduce jobs. The two implementations are quite different from design’s point of view and;

therefore, we have to address these design issues differently for both the implementations.

This section is dedicated to the design issues for the Yarn implementations (see section 7.2

for MR1 design issues).

YARN architecture (see also Section 5.2.2) decouples the programming model from the

resource management infrastructure [67]. In this architecture, ResourceManager assigns re-

sources to ApplicationMasters in terms of containers. Due to the different architecture, we

face various design issues in this infrastructure. In this section, we shed light on the config-

uration of the thermal-aware resource manager. We also elaborate a way of implementing

TASH by modifying the FairScheduler module.

5.4.1 Configuration

It is important to note that we provide TASH as a pluggin to the existing YARN

implementation. We provide the number of parameters to facilitate configuration of TASH

in Hadoop clusters. These parameters can be set in configuration file yarn-site.xml. Table

5.1 summarizes these parameters. In yarn-site.xml:

There are three parameters prescribed in the yarn-site.xml file. The first parameter

(yarn.thermal.awareness) sets the mode of the ResourceManager. Before determining con-

tainer assignments, ResourceManager first checks if the thermal-aware mode is enabled or not

and; then container assignment decisions are made. When parameter yarn.thermal.awareness

is set to ’true‘, ResourceManager will run in the thermal-aware mode. If the value of this

parameter is ’false‘, the ResourceManager will run in the normal mode.
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Parameter Value Note
yarn.thermal.awareness if thermal aware mode is on or

off
boolean value, default is false.

yarn.matrix.file.path path to the CIM matrix file If not specified, resourceman-
ager will run in normal mode

yarn.cluster.node.count number of nodes available in
the CIM

optional

Table 5.1: A list of configuration parameters for YARN.

While running in the thermal-aware mode, ResourceManager assigns containers on

nodes based on the nodes’ contributions towards heat re-circulation of a data center. In order

to calculate a node’s contribution in heat re-circulation, the scheduler and the resource man-

ager should have access to the cross-interference matrix. We implement a cross-interference

matrix API, which loads the matrix from a file and calculates normalized contribution of

each node in the data center. The second parameter (yarn.matrix.file.path) specifies the

path under which the cross-interference matrix is stored. For the sake of simplicity, third

parameter defines the number of rows available in the cross-interference matrix.

Recall that (see Section 5.2.1) the cross-interference matrix is dependent of the physical

layout of a data center; such a matrix is unlikely to frequently and dramatically change.

Therefore, it is straightforward for administrators to calculate the cross-interference matrix

using either CFD software or the XInt methodology [29]. Our cross-interference matrix API

first calculates the normalized contribution of each node in the data center hear re-circulation;

then the API maintains a map of node’s address and its normalized contribution. One of

the API’s perk is to offer an interface to query the contribution of a particular node by

the node’s IP address. The next subsection (Section 5.4.2) articulates the implementation

details of TASH, which incorporates FairScheduler, our cross-interference matrix API, and

the configuration parameters.
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5.4.2 Thermal-Aware Yarn

Recall that (Section 5.2.2) ResourceManager dynamically allocates resources in terms of

containers to ApplicationMasters to run on computing nodes [67]. Governed by the selected

scheduling policy (e.g., FIFO, FairScheduler), ResourceManager handles resource requests

from ApplicationMasters, thereby assigning available containers to service ApplicationMas-

ters’ resource requests. We implement TASH through the modification of FairScheduler.

Hence, let us first introduce the implementation of FairScheduler.

NodeManager or NM periodically communicates with ResourceManager through heart-

beats, which contains information pertaining to available resources. A scheduler also main-

tains its own map of all the nodes to keep track of all the containers launched on the nodes.

While processing a heartbeat, the scheduler first frees completed containers on the node,

followed by scheduling new containers on the node. If the continuous scheduling mode is

enabled, FairScheduler first sorts all the nodes in a descending order of available resources.

Next, the scheduler picks a node from the beginning of the sorted list; containers are allocated

to ApplicationMaster on the node based on the available resources and resource-request spec-

ification. We provide an API to manipulate available resources on a node based on the node’s

contribution towards heat re-circulation. This API is invoked twice: (1) in the node-sorting

procedure and (2) in the resource assignment module in which the scheduler determines

whether a container should be allocated to the node or not.

It is noteworthy that container specifications and available resources are represented in

terms of memory and CPU cores. When it comes to such physical resources, we cannot apply

Eq. (5.8) to allocate the amount of resources that exceeds the physical capacity. Nevertheless,

we are able to manage available resources on the nodes that are major heat re-circulation

contributors. Therefore, we calculate ∆S for a nodes with high contributions and then

deduct the resources from available resources to adjust the available resources (see Eq. (5.7).

Importantly, TASH is orthogonal to the existing scheduling policies, which assign containers

to ApplicationMaster. For example, FairScheduler, advised by the scheduling policy, selects
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an ApplicationMaster followed by allocating containers to that ApplicationMaster based on

its resource requests. TASH is in charge of deciding the number of containers be allocated

on a given node.
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Chapter 6

Experimental Results

We evaluated our proposed thermal-aware file and resource allocation policies through

extensive experimentation. In this chapter, we present detailed analysis of results gath-

ered during our experimentation. The remaining chapter is organized as follows: we first

present the experimentation results of TIGER (see Section 6.1), our file assignment pol-

icy. In section 6.2, we present experimental results for our thermal-aware resource allocatio

policy-TASH.

6.1 TIGER Evaluation

We evaluate the energy efficiency and performance of the TIGER algorithm. First,

we explain the existing algorithms, which we used for the evaluation of the TIGER. We

chose one load balancing algorithm and one thermal-aware file assignment algorithm for the

comparison of performance of TIGER in terms of enegy efficiency and system response time.

Next, we presented few preliminary results to evaluate the performance of TIGER.

6.1.1 Baseline Algorithms

As mentioned above, we chose two algorithms to compare against TIGER. First one is

Greegy Load Balancing algorithm while the second one is CoolestInlet algorithm.

The Greedy Load-balancing Algorithm

The greedy load balancing algorithm uniformly distributes I/O load among all available

disks in storage clusters. We assume that service time and access rate of file is known a

priori. The greedy algorithm applies equation (4.2) to calculate the average threshold of
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each disk. Next, the algorithm picks a node in which files are assigned to each disk until

load threshold is reached. The algorithm follows this strategy to assign all the files, thereby

uniformly distributing the workload among the storage nodes in a cluster.

CoolestInlet

The CoolestInlet algorithm distributes the workload according to inlet temperatures of

the nodes. The algorithm places more workload on the nodes with lower inlet temperatures.

We consider the range of inlet temperatures with upper and lower bound on the inlet tem-

perature. In our study, we set the upper bound (TUB) to 25oC, which is a common redline

temperature; we set the lower bound (TLB) to 15oC, which is an ideal temperature supplied

by real world cooling systems. If a temperature of a node is equal to or greater than upper

bound (i.e. 25oC, in our case), then no load is assigned to the node. If the node’s inlet

temperature is equal to or less than lower bound (i.e. 15oC, in our case), then the threshold

for all the disks in a node is configured as 100%. For node i ’s inlet temperature (T ini ), that

is in the range between 15oC and 25oC, we calculate the node’s threshold by using following

equation:

UTh
i =

TUB − T ini
TUB − TLB

(6.1)

The above threshold largely depends on the inlet temperature and the lower bound.

Thus, a low inlet temperature and high lower bound give rise to high workload thresh-

old. Similar to TIGER, the CoolestInlet scheme sorts files according to their service times.

CoolestInlet then sorts the nodes according to their inlet temperatures. Next, starting from

the first node, CoolestInlet calculates disk-utilization thresholds and places files to disks until

their corresponding threshold is reached.
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TIGER Vs. Workload Placement Algorithms

Storage clusters are focused on addressing I/O performance problems encountered in

I/O-intensive workload conditions, under which storage nodes claim to offer high I/O through-

put for data-intensive applications. The utilization of nodes in a data center is mainly driven

by data placement (a.k.a. file allocation) and file access patterns. Modern cluster file systems

(see, for example, [68] and [69]) leverage data replicas to boost I/O performance. Workload

placement and file placement strategies are of equal importance in the context of thermal-

aware replica management, because data placement algorithms are in charge of determining

location of data replicas, among which workload placement algorithms judiciously pick the

most appropriate replicas to make I/O accesses thermal friendly.

Workload and file placement algorithms are comparable in the sense that both types of

algorithms are contributing factors of node utilization in a data center. Although, the Greedy

Load Balancing and CoolestInlet algorithms are focusing on the workload placement issues,

workload placement decisions made by these two algorithms ultimately affect the utilization

of storage nodes. Similarly, TIGER manages node utilization through file placement. TIGER

and the other algorithms are comparable, because all the three schemes can be applied to

make trade-offs between cooling efficiency and I/O performance.

6.1.2 Experimental Setup and Workload Characteristics

Fig. 6.1 shows the layout of a data center, which contains two rows of five racks. Each

rack is comprised of five chassis or nodes, each of which consists of six 1U RAID systems.

Each RAID system has a RAID controller and four hot swappable disks. And each RAID

draws 118 W power when no disks are active or attached.

P idle
a = 118W (6.2)
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Figure 6.1: Data Center Layout [1]

We generate I/O workload that resemble online access patterns, which follow the Zipf

like distribution [70][71][72][73]. For example, a recent study shows that the Youtube video

popularity is closely correlated with the Zipf distribution [73]. As such, in our experiments

files are accessed following the Zipf distribution. Evidence also shows that most popular files

are small in size [66]. To reinforce the results of access patterns obtained from the previous

studies, we inversely correlate the distribution of access rates and service time of the files

used in our experiments.

6.1.3 Thermal Impact of Energy Efficient Disks

Scenario 1

Fig. 6.2 shows the experimental results for the best case scenario. In this case, we test

an energy-saving algorithm that spins down disks to the sleep mode when the disks are idle.

Under the control of this algorithm, the power consumed by a disk have three components

- power consumed by the disk when it is in the active mode and the sleep mode, and the
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power consumed by the disk when it is transitioned between the two modes. The total power

P d
i,j consumed by disk j in node i is expressed as (6.3) below:

P d
i,j =

1

T

(
tactivej × P d,active

i,j + tsleepj × P d,sleep
i,j

+
N t
j

2

(
PSdown

+ PSup

))
(6.3)

We observe from both Figs. 6.2(a) and 6.2(b) that TIGER conserves more cooling

energy than CoolestInlet and SortPart - two existing solutions. Compared with these two

algorithms, TIGER significantly reduces the cooling cost of the data center by more than 15%

when the data center’s utilization is in a range of 30% to 60%. The cooling cost discrepancy

between TIGER and the two existing schemes diminishes when the utilization is either below

30% or above 70%.

Scenario 2

Fig. 6.3 shows the results for the second case where no energy-saving techniques are

deployed to spin up and spin down disks. This experiment can be considered as the worst

case scenario from the perspective of energy conservation. A disk is either in the active mode

or the idle mode. There are no transitions from the active/idle mode to the sleep mode and

vice versa. The disk’s total power P d
i,j can be rewritten as (6.4).

P d
i,j =

1

T

(
tactivej × P d,active

i,j + tidlej × P d,idle
i,j

)
(6.4)

Fig. 6.3 reveals that TIGER slightly outperforms the other two algorithms when none of

the three tested schemes incorporate the disk energy-saving technique. We observe that the

power discrepancy between the active and the idle mode is almost negligible. Therefore, the

workload distribution does not significantly manipulate the power distribution among the

nodes in the data center. Furthermore, because idle disks consume an equally large amount
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(b) Cooling Cost

Figure 6.2: Inlet temperatures and cooling cost of CoolestInlet, SortPart, and TIGER al-
gorithms in scenario 1, where idle disks are transitioned into the sleep mode to conserve
energy.

of energy as active disks, the overall energy consumption in the data center is very high.

This power feature results in high cooling cost for scenario 2 for all the three solutions.

Impact of Sleep mode percentage

Section 6.1.3 and 6.1.3 delineate the extreme-case scenarios. Disks are put into sleep

mode to conserve energy if disk-idle-time percentage is larger than a threshold. In this group

of experiments, we investigate the impact of such an idle-time-percentage threshold (a.k.a.,

sleep mode percentage) on storage clusters. We keep the system utilization at the level of
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(b) Cooling Cost

Figure 6.3: Inlet temperatures and cooling cost of CoolestInlet, SortPart, and TIGER algo-
rithms in scenario 2, where idle disks are never transitioned into the sleep mode.

50% while varying the idle-time-percentage threshold referred to as sleep mode percentage

(see Fig. 6.4).

Fig.6.4(a) shows the minimum inlet temperatures of the nodes in a data center governed

by all three strategies. We observed from the experimental results that regardless of sleep

mode percentage, TIGER outperforms the other two schemes. Also, as the energy saving

policy becomes more aggressive (i.e. the sleep mode percentage is large), the performance

gains offered by TIGER become more pronounced.
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(b) Cooling Cost

Figure 6.4: Impact of sleep mode percentage on inlet temperatures and cooling cost of
CoolestInlet, SortPart, and TIGER. The system utilization is kept at 50%

An intriguing observation drawn from Fig.6.4 is that when it comes to CoolestInlet

and SortPart, the maximum inlet temperatures tend to go up with the increasing value

of the sleep mode percentage. In contrast, with TIGER, the maximum inlet temperature

drops when the sleep mode percentage increases. This performance trend is driven by the

workload distribution of three strategies. More specifically, CoolestInlet attempts to assign

an excessive amount of workloads to nodes exhibiting low temperatures. Therefore, some

nodes in the data center are likely to be over utilized while others may be sitting idle. When
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the number of disks’ power transitions increases, energy consumption incurred by disk power

transitions becomes a significant overhead, which offsets energy savings provided by placing

idle disks into the sleep mode. On the other hand, TIGER slightly imbalances I/O load in

a way to control the heat re-circulation in the data center. Consequently, even if the energy

consumed by the nodes is high, TIGER reduces the maximum inlet temperature of the nodes

in the data center.

6.1.4 Scalability

Due to the tremendous rate of growth in the data center size, scalability is one of the

most important features any software framework developed to support ever-growing data

centers. In order to investigate the sensitivity of TIGER towards data center size, we ran

experiments on cluster with three different sizes keeping the data center utilization constant

at 50%. Fig. 6.5 shows the impact of the number of nodes on maximum inlet temperature

and cooling cost of data center under the three schemes. Fig. 6.5 shows that compared

with CoolestInlet and SortPart, TIGER reduces both inlet temperature and cooling cost

of the data center. More importantly, the improvements offered by TIGER become more

pronounced with the increasing number of nodes. This observation is attributed to the fact

that heat re-circulation becomes more severe when the number of nodes scales up.

Fig. 6.5(a) shows that the inlet temperature discrepancy between the 20-node case and

the 50-node case is almost 5 ℃ ; Fig. 6.5(b) reveals that the cooling cost of the 50-node

case is more than four times larger than that of the 20-node case. The cooling cost is

comprised of two components (see equation (3.7)): co-efficient of performance COP (Tsup)

and power consumption PC of computing resources. COP (Tsup) relies on the data center’s

supply temperature, which in turn depends upon maximum inlet temperature. When the

data center scales up in terms of the number of nodes, the increased inlet temperatures cause

a reduction in COP (Tsup). Furthermore, expanded computing resources increase the total
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Figure 6.5: Impact of the number of nodes on maximum inlet temperature and cooling cost.

power consumption of the data center’s computing facility, which considerably increases the

cooling cost.

Figs.6.7- 6.8 plot maximum inlet temperatures and cooling cost of the data center when

the initial supply temperature is set to 12 ℃ and 13.5 ℃ . In our measurement method, we

configure the supply temperature followed by distributing I/O load among the nodes in the

data center; then we measure inlet temperatures of the nodes affected by heat re-circulation

and the supply temperature. According to the newly collected inlet temperatures, we set the

new supply temperature and calculate the cooling cost derived from the supply temperature.
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We repeatedly perform the above procedure to measure inlet temperatures, which determines

the changes in the supply temperature.
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(b) Scenario 2
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(c) Scenario 3

Figure 6.6: Total power consumption (i.e., cooling and operational cost) of the data center
managed by TIGER, CoolestInlet, and SortPart in a) Scenario 1 (see Section 6.1.3), b)
Scenario 2 (see Section 6.1.3), and c)sleep mode percentage 50%

6.1.5 Impact of Initial Supply Temperature

Figs.6.7- 6.8 plot maximum inlet temperatures and cooling cost of the data center when

the initial supply temperature is set to 12 ℃ and 13.5 ℃ . In our measurement method, we

configure the supply temperature followed by distributing I/O load among the nodes in the

data center; then we measure inlet temperatures of the nodes affected by heat re-circulation

and the supply temperature. According to the newly collected inlet temperatures, we set the

new supply temperature and calculate the cooling cost derived from the supply temperature.
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We repeatedly perform the above procedure to measure inlet temperatures, which determines

the changes in the supply temperature.
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(b) Cooling Cost

Figure 6.7: Impact of initial supply temperature on maximum inlet temperature and cooling
cost. Initial Tsup = 120C

Given an initial supply temperature, in the first phase cooling cost for all the three

schemes partially depends upon the energy-conservation technique employed to spin down

idle disks. By the end of the first phase, we measure the inlet temperatures, from which we

calculate the new supply temperature. The supply temperatures of the data center governed

by the three schemes are different from each other; therefore, the cooling cost of the data
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center controlled by the three strategies vary substantially (see Figs. 6.2(b), 6.3(b), and

6.4(b)).
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(b) Cooling Cost

Figure 6.8: Impact of initial supply temperature on maximum inlet temperature and cooling
cost. Initial Tsup = 13.50C

Comparing Figs. 6.7(a) and 6.8(a), we observe that the maximum inlet temperature in

the case where the initial supply temperature is 120C is much lower than that in another case

where the initial supply temperature is set to 13.50C. This trend is not surprising because

of the nature of the initial supply temperature. Due to a lower maximum inlet temperature,

at the beginning of the next phase there is ample room to increase the supply temperature
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to gain cooling cost benefits. Therefore, the cooling cost shown in Fig. 6.8(b) is much lower

than that plotted in Fig. 6.7(b).
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Figure 6.9: Average response time of the data center managed by TIGER, CoolestInlet, and
SortPart.

The contribution of storage node in terms of heat re-circulation in a data center largely

depends on the node’s physical location coupled with the other parameters (e.g., power

consumption). The node physical locations in a data center are unlikely to change in a

frequent manner; therefore, given a data center layout, the contributions toward the data

center’s heat re-circulation remain unchanged. Thanks to the constant heat re-circulation

factors, there is no need to calculate the heat re-circulation contributions each time prior to

making file placement decisions. The heat re-circulation factors can be calculated during a

calibration phase whenever there is any change in a data center’s layout. For example, the

calibration phase is invoked when (1) new racks or nodes are added to the data center or;

(2) existing racks or nodes are removed from the data center. In a data center managing an
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enormous number of files hosted on hundreds of nodes, such a one-time cost of calculating

the heat re-circulation contributions is considered negligible.

6.2 TASH Evaluation

We conducted a series of experiments to evaluate the performance of TASH in terms

of cooling cost savings and system’s runtime. In this section, we describe these experiments

in detail. First, we provide detailed description of our test bed and initial condition of our

Hadoop cluster(see section 6.2.1). Section 6.2.2 provides the summary of all the experiments

and conclusions drawn from the results. Finally, section 6.2.3 performs detailed analysis of

our experimental results.

6.2.1 Experimental Setup

Our test bed consists of a Hadoop cluster consisting 18 nodes, where 16 nodes are data

nodes with separate two nodes running ResourceManager and NameNode.

Hardware
Computer Dell OptiPlex 3020
Processor Intel Core i5-4590 Processor Quad 3.3 GHz
Memory 8GB DDR3 SDRAM at 1600 MHz
Network 1 Gigabit Ethernet
Disks 500 GB SATA
Software
Operating System Ubuntu 14.0
Hadoop dist. Apache Hadoop 2.7.3

Table 6.1: Cluster Specifications.

These nodes are arranged in 2 rows, where each row contains two racks. Each rack

contains four nodes. As shown in the table, we used Apache Hadoop 2.7.3 to compare against

our resource allocation policy. In the calibration phase, we calculated cross-interference

coefficient for the cluster using the methodologies described in [29]. Fig. 6.2.1 depicts cross-

interference matrix for our cluster.
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Figure 6.10: Cross Interference Coefficient of Data Center

6.2.2 TASH performance on MapReduce Benchmarks

In this section, we evaluate the performance of TASH against that of existing YARN

implementation. We run multiple map reduce benchmarks on both frameworks. It is impor-

tant to note that we just need to set the configuration parameter to activate TASH. Since we

are not making any changes to HDFS, we can run benchmarks using same data sets. We log

the processor utilization of each node during the application run. Then, by using equations

described in section 3, we calculate the maximum inlet temperature and cooling cost of the

cluster.

Figure 6.11 depicts the results for three mapreduce benchmarks. We run WordCount,

TeraSort, and Grep- three most popular map reduce benchmarks. Each of the benchmark was

run on the input data set of size 100 GB. It is evident from figure 6.11 that TASH outperforms

YARN in all the cases. WordCount represents the computation intensive workloads, where

as TeraSort represents I/O intensive workloads. Though TASH performs better than YARN

in terms of cooling cost conservation, it is important to note that the performance benefits

achieved in computation intensive workloads is better than that of I/O intensive workloads.

Observations from Fig. 6.11 can be explained by taking a closer look at the equation 5.2.
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Equation 5.2 shows that the power consumed by the node is mostly dependent upon the

utilization of the processor.
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Figure 6.11: Inlet temperatures and cooling cost of YARN and TASH in for different bench-
marks. Input size 100GB for each benchmark.

In case of computation intensive workloads like WordCount, processor is extensively

utilized. Therefore, we can see the higher power consumption by the nodes, which results

in higher maximum inlet temperature. On the other hand, I/O intensive workloads like
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Figure 6.12: Average runtime for benchmarks.

TeraSort performs lot of I/O operations, which lead to lower processor utilization. This

lower utilization affects the power utilization by the nodes, which in turn affects the heat

re-circulation (maximum inlet temperature) in data center.

Benchmarks
Max. Inlet temp. (oC) Cooling Cost (W) Avg. Time (s)
YARN TASH YARN TASH YARN TASH

WordCount 20.775985 19.446231 16531.43 14141.85542 1549 1496
TeraSort 20.578716 19.123342 17438.3679 13695.20042 1340 1400
Grep 21.184383 19.949573 19628.25501 16999.95128 1493 1448
Mixed 21.207426 19.950965 19050.26605 16886.58 1673 1732

Table 6.2: Hadoop Benchmarks Results

From the figure 6.11, it can be concluded that not only the container assignment, but

the ApplicationMaster’s policy of how to utilize the container resources affects the heat re-

circulation in the data center. We also run mixed workload containing two jobs- a WordCount

and a TeraSort - running simultaneously. It can be seen from figure 6.11(b) that it yields

higher heat re-circulation than the cluster running exclusive jobs. We interpret this result

as follows. Since the workload is consisting of mixture of I/O intensive and computation
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intensive tasks, a node may have been assigned containers for both the workloads. Therefore,

while some of the containers are fully utilizing the processor cores assigned them, some are

performing I/O operations utilizing disks. Therefore, the power consumption and in turn

heat re-circulation in the data center is higher.

Figure 6.12 depicts the average run time for the benchmarks. The figure shows that

though TASH does not outperform YARN, performance degradation is within acceptable

margin.

6.2.3 Impact of Resource Allocation on Power Consumption

In this section, we will investigate the impact of container allocation on the power

consumption of a node. Recall from section 3, that power profile of a cluster in turn impacts

the thermal profile of the cluster. In order to better understand how TASH affects the power

consumption of a node, we analyze only one of the rack in the data center.
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(a) Number of containers assigned to each node in a rack.
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(b) Power consumed by each node in a rack.

Figure 6.14: Figure depicting number of containers assigned and power consumed by each
node in a rach under YARN and TASH.
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(a) CPU utilization for Node 1
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(b) CPU utilization for Node 4

Figure 6.15: CPU utilization of Original Yarn and TASH for running TeraSort.

First of all, it is very important to know which nodes are the major contributor to the

heat re-circulation. Figure 6.13 shows the normalized contribution of all the nodes in a rack

in the cluster. Note that node 1 is closest to the floor and node 4 is closest to the ceiling
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of the room. It can be seen from the figure that node 1 and 2 are the major contributors

among four nodes. We ran terasort on a data size of 100GB on our cluster. Figure 6.14(a)

depicts the number of containers assigned to each node in a selected rack. It is evident from

figure 6.14(a) that TASH assigns less number of containers on the nodes contributing more

towards heat re-circulation.

Now, we test whether the container assignment actually affects the CPU utilization or

not. In order to understand the CPU utilization of nodes, we selected Node 1 and 4; one

with highest and lowest contribution, respectively. Figure 6.15 plots the CPU utilization of

two selected nodes. It is important to note that for the sake of simplicity, it only shows map

phase of the entire run. It can be observed from figure 6.15 that there is substantial difference

between CPU utilization of a node under two policies. In yarn, both nodes are somewhat

equally utilized, while TASH utilizes Node 4 more than Node 1. We used the model defined

in section 3 to calculate the power consumed by the nodes. Figure 6.14(b) presents the

power consumption of each node in a selected rack. It can be seen that TASH significantly

re-distributes the power profile of a cluster. In the next section, we will demonstrate the

impact of a power profile on inlet temperature and cooling of the data center.
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Chapter 7

Extension of File and Resource Allocation Policies

In this chapter we provide insights about some of the anomalous behaviors we observed

during evaluating TIGER and describe how we provide solutions to observed anamolies.

We also provide detailed guidelines to extend our thermal-aware resource allocation policy

for legacy Apache Hadoop version 1 (a.k.a. MR1). The remaining chapter is organized as

follows: in section 7.1, we provide detailed design of HybridTIGER- an extension of our file

assignment policy TIGER. Section 7.2 talks about implementing resource allocation policy

in MR1.

7.1 Extension of File Assignment Policy

In this section, we proposed HybridTIGER -an extension of our original thermal-aware

file assignment algorithm for storage clusters. Section 7.1.1 describe anomalous behavior

we observed during evaluation of TIGER and provide detailed analysis we performed to pin

point the reason behind such behavior. In light of these observations, we tuned our proposed

algorithm to rectify this performance issue (see Section 7.1.2). Finally, Section 7.1.3 provides

experimental results to confirm that Hybrid TIGER performs better than the TIGER under

high workload conditions.

7.1.1 Anomalous Behavior of TIGER

In section 6.1.3, we evaluate the impact of energy-efficient disks on the performance

of TIGER. We conduct the experiments for given setup and for data center utilizations

ranging from 10% to 90%, increasing in the steps of 10% at each time. We observed that

the performance of TIGER in terms of cooling efficiency is slightly lower than CoolestInlet
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scheme when the data center utilization exceeds 70%. The same trend can be observed fro

Fig. 6.2 and Fig. 6.3 and Fig. 6.7. Moreover, TIGER’s performance in terms of response

time is longer than CoolestInlet under the same utilization 6.9.
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(a) Number of disks with minimum utilization
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(b) Number of disks with maximum utilization

Figure 7.1: The number of disks with minimum utilization and the number of disks with
maximum utilization. (a) Minimum utilization range: from Umin to (Umin+0.1) (b) Maxi-
mum utilization range: from Umax-0.1 to Umax

In order to investigate the aforementioned performance issue, let us take a closer look

at the disk utilization distribution. We focus on two aspects of the utilization distribution.

First, we measure the maximum and minimum disk utilization in a storage cluster. Second,
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we quantify the number of disks with the maximum or close to the maximum (i.e., max - 10)

utilization; we also consider the number of disks with the minimum or close to the minimum

(i.e., min +10) utilization (see Fig. 7.1).We observe from this group of experiments that

regardless of disk utilization, a handful of disks are sitting idle when TIGER or SortPart

is employed. This trend is true for CoolestInlet when disk utilization ranges anywhere

between 10% to 60%; however, when storage cluster’s utilization becomes as high as 80%,

we observe that the minimum disk utilization jumps to almost 60%. We conclude from this

set of experiments that for all the test cases, the maximum disk utilization of CoolestInlet

is always above 90%, which is greater than the maximum disk utilization of TIGER and

SortPart.

Fig. 7.1(a) illustrates that regardless of the data center utilization, the number of disks

with the minimum utilization in CoolestInlet is larger than those in TIGER and SortPart.

Fig. 7.1(b) shows that when the data center’s utilization is higher than 60%, the number

of disks with the maximum utilization in CoolestInlet is smaller than those in TIGER and

SortPart. This analysis confirms that I/O workload is more uniformly distributed by TIGER

and SortPart than that by CoolestInlet. The disks with the minimum utilization in TIGER

and SortPart are sitting idle even when the data center’s overall utilization is very high (e.g.,

80%). These idle disks result in performance degradation in TIGER (see Fig. 6.9).

7.1.2 HybridTIGER

Algorithm 3 HybridTIGER(file_info, node_info, UTh
TIGER)

1: UTh
total ← 0

2: for fi ∈ m do
3: UTh

total ← UTh
total + si × λi

4: end for
5: UTh

avg ← 1
D
UTh
total

6: if UTh
avg < UTh

TIGER then
7: TIGER(file_info, node_info) //see (??)
8: else
9: Coolest_Inlet(file_info, node_info)

10: end if
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To address the aforementioned performance problem, we advocate a simple yet wise

idea of assigning files to idle disks under heavy workload. Our findings show that CoolestIn-

let performs better than TIGER under heavy workload. We develop a hybrid algorithm -

HybridTIGER - that seamlessly integrates both TIGER and CoolestInlet by dynamically

choosing one of these two schemes based on data center utilization. HybridTIGER takes

file information, node information, and a threshold UTh
TIGER as inputs. There are two major

steps in HybridTIGER. First, the average utilization UTh
avg is derived from the file and node

information (see Lines 1-3 in Algorithm 3). Second, if the average utilization is below thresh-

old UTh
TIGER, TIGER will be invoked to assign files to nodes (see Lines 6-7 in Algorithm 3);

otherwise, CoolestInlet will be in charge of the file assignment (see Lines 8-9 in Algorithm 3).

The pseudo code of HybridTIGER is given in Algorithm 3.

7.1.3 Evaluation of HybridTIGER

We evaluate performance of HybridTIGER in terms of cooling energy conservations.

We use the same test described in Section 6.1.2, which contains 50 nodes in two rows of

five racks each and each rack contains five nodes (see Fig. 6.1). We maintain initial supply

temperature of 15℃ C. Sinice Hybrid TIGER takes advantages of TIGER and coolest inlet

policies, we compare Hybrid TIGER’s performace with that of TIGER and coolest inlet.

Fig. 7.2 reveals the inlet temperatures and cooling cost of CoolestInlet, TIGER, and

HybridTIGER in scenario 1 (see section 6.1.3), where the idle disks are transitioned to

sleep mode to offer energy savings. We observed from Fig. 7.2 that when storage cluster’s

utilization goes up to 60%, HybridTIGER and TIGER share similar performance, which is

better than that of CoolestInlet. When utilization become higher than 60%, the performance

of HybridTIGER is on par with that of CoolestInlet.
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Figure 7.2: Inlet temperatures and cooling cost of CoolestInlet, TIGER, and HybridTIGER
in scenario 1, where idle disks are transitioned into the sleep mode to offer energy savings.

7.2 TASH in MR1

Even though YARN is being adapted by most of the data centers, earlier version of

the Apache Hadoop (a.k.a. MR1) is also widely in use. In this section, we provide a de-

tailed guideline about how to taylor our thermal aware resource allocation approach for

Apache Hadoop version 1.X. In the following section, we will first explain the internals of

MR1 to point out the architectural differences between MR1 and MR2 (see section 7.2.1).
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Section 7.2.2 provides an overview of the changes in our resource allocation policies to in-

corporate the architectural differences of MR1, followed by implementation guidelines in

Section 7.2.3.

7.2.1 MR1 Internals

MapReduce is one of the most popular programming model for processing and generating

large data sets. A MapReduce program is typically useful when simple operations are being

performed on huge amount of data. A MapReduce program has a map function and a reduce

function. A map function processes input data and generates some intermediate results in

the form of 〈key, value〉 pairs. These intermediate results are sorted and all the records with

same key are sent to the same reduce. The reducers then apply processing logic to merge

the records and generate final output, which is also in the form of 〈key, value〉 pairs [9].

Apache Hadoop is an open source software that implements MapReduce programming model.

Hadoop framework typically has two parts (1) Hadoop Distributed File System (HDFS),

responsible for managing all the data in the Hadoop cluster (2) Hadoop runtime system,

which is responsible for accepting jobs from authorized users, scheduling them on the cluster

etc. Hadoop library is also designed to detect and handle failures at the application layer

delivering high-availability service on the top of cluster of commodity machines.

HDFS has two types of nodes and exhibits master-slave paradigm, where each file is

partitioned into equal sized chunks and for each chunk, multiple replicas are stored. The

master node of the HDFS is called as Namenode. It manages the file system namespace by

maintaining the file system tree and the metadata for all the files and directories in the tree.

It also stores the information of where all the blocks for a given file are located. Datanodes,

on the other hand, work as slaves. They store and retrieve blocks when requested by client

or namenode, and they report back to namenode periodically with list of blocks that they

are storing.
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Hadoop runtime system also works on master-slave paradigm with Jobtracker is a master

and Tasktrackers as slaves. Jobtracker receives a job from the client, and manages the

execution of the job whereas, tasktrackers actually execute the tasks assigned to them by

the jobtracker. When a jobtracker receives a job from the client, it divides the job into

multiple map tasks; one map task for each chunk; and reduce tasks. It maintains a queue

of all the submitted jobs and all the tasks associated with each job. Then it distributes the

tasks among all the available tasks based on the scheduling policy (see section). Tasktrackera

are slaves and it periodically reports to jobtracker through Heartbeat. A heartbeat indicates

that the tasktracker is alive and it also provides the important information such as whether

tasktracker is ready to run a new tasks. Once the tasktracker is ready to execute a new task,

jobtracker will allocate the tasks from the pool of tasks to be allocated.

7.2.2 Overview

tHadoop addresses the problem of minimizing the heat re-circulation through controlling

power consumption of nodes in order to reduce the cooling cost of the data center. It controls

the power consumption of the nodes in the data center by constraining the number of tasks

to be run on the nodes. tHadoop utilizes the contribution of a node in the heat re-circulation

to calculate the number of tasks to be assigned to the node.

tHadoop is a thermal aware scheduler, which can be integrated with any of the existing

scheduler in Hadoop to facilitate the JobTracker to make thermal aware workload placement.

tHadoop calculates the contribution of nodes in heat re-circulation by using cross interference

matrix (see section 4.3.2). Based on the node’s contribution and overall workload on the

system, tHadoop determines the nummber of tasks to be assigned to particular node. It is

important to note that tHadoop does not determines which tasks to schedule on the node,

but how many tasks to schedule on the node. This fact allows the Hadoop administrator

to pair tHadoop with any of the existing schedule (e.g., Fair Scheduler, Capacity Scheduler

etc.) in order to reduce the cooling cost while enjoying the perks of existing algorithms.
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architecture.png

Figure 7.3: tHadoop: System Overview

Fig. 7.3 outlines the tHadoop architecture, which has all the important entities of reg-

ular Hadoop framework such as clients, JobTracker, Scheduler, and TaskTracker. Although,

scheduler is considered as a part of the JobTracker, it is implemented as a separate pluggable

class; therefore; in Fig. 7.3, it is shown as a separate entity. The basic sequence of actions

can be explained as follows: JobTracker maintains a queue of all the jobs submitted by the

clients. It also maintains the information regarding the contribution of each node in the

heat re-circulation. Whenever a TaskTracker requests new tasks through Heartbeat mech-

anism, JobTracker passes the TaskTracker information to the Scheduler. In the Scheduler,

tHadoop first fetches the node’s contribution and system workload from the JobTracker and

calculates the number of tasks to be scheduled on the TaskTracker. Then, based on the

underlying scheduling policy, the Scheduler will create the list of tasks to be scheduled on

the TaskTracker. Finally, JobTracker will send the list of assigned tasks to the TaskTracker

through HeartBeat response.
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It is important to note that two building blocks of tHadoop; cross interference matrix and

the scheduler; are divided into two entities (JobTracker and Scheduler) from implementation

point of view. We will discuss this in detail in section 7.2.3. The parameters affecting

scheduling decisions by tHadoop are contribution of the node in the heat re-circulation,

maximum capacity of the TaskTracker to run the tasks, total workload on the system at

the time, and the number of tasks currently running on the system. Recall from section 3.1,

Cross-Interference Matrix depicts the fraction of outlet heat from each node that contributes

to the inlet temperature of every other node. The TaskTracker capacity is nothing but the

maximum number of tasks a TaskTracker can run simultaneously. This capacity is based

on the hardware configuration of the TaskTracker. Finally, the total number map load or

reduce load in the system is nothing but the number of tasks waiting in the JobQueue for

being launched on the TaskTrackers.

7.2.3 Implementation

In order to implement our thermal aware scheduler in existing Hadoop framework, we

need to address two main challenges. First, we have to incorporate our Heat Re-circulation

model in the Hadoop Framework (see section 7.2.3). Second, we need to calculate the current

TaskTracker capacity based on the contribution of the node in the heat re-circulation (see

section 7.2.3).

Cross-Interference Matrix

Recall from section 3.1, Cross-Interference Matrix AN×N depicts the fraction of outlet

heat of each node contributing towards the inlet heat of every other node. As this fraction

depends upon the physical layout of the data center, which is very unlikely to change over

the long period of time, it is safe to assume that the contribution (fraction of outlet heat) of

the node towards heat re-circulation is constant. Therefore, administrator can calculate the
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Cross-Interference Matrix every time the physical layout changes, using procedure described

in [29].

Table 7.1: Properties in core-site.xml
Sr.
No.

Property Value Note

1 mapred.cim.path path of the file containing cross-
interference matrix

If not specified,
causes fatal error

2 mapred.node.count Number of nodes in the data center If not specified,
causes fatal error

The administrator has to pass this matrix as a text file, where first field of each line

contains the ip address of the node and the remaining fields contain the values for that node.

In order to facilitate the administrator to store this file anywhere on the master node, we

added two properties; described in Table 7.1; in the configuration file "core-site.xml".

Current TaskTracker Capacity

As mentioned in section 3.1, scheduler can access the node’s contribution towards hear

re-circulation and modifies the number of tasks assigned to the TaskTracker(s) running on

the node. Apache Hadoop implementation provides three pluggable schedulers- FIFO, Fair,

and Capacity scheduler. In this study we have implemented our strategy to FIFO scheduler.

Before diving into design issues, lets get the internals of FIFO scheduler.

At any given time, the scheduler has access to the all the jobs (being scheduled, run and

waiting in the queue) available in the system. Scheduler can also calculate the maximum

capacity of all the TaskTrackers in the system. Based on this data, FIFO scheduler first

calculates map load factor and reduce load factor for the TaskTracker. These two values

depicts the map workload and reduce workload on the system. Map load factor of 1 indicates

that the system is under 100% workload and all the available map slots should be used to

run the map tasks. Depending upon the map load factor and empty map slots on the

TaskTracker, the FIFO scheduler calculates the number of available map slots. It is assumed
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that each map tasks requires one map slot. Since it is a FIFO scheduler, the scheduler then

creates of a list of map tasks in round robin fashion until all the available map slots are

filled. This list is then sent to the TaskTracker as a response to the heartbeat received from

the TaskTracker.

It is important to note that to calculate the map load factor, scheduler divides the total

number of map tasks yet to be assigned by the total capacity of the the cluster available

(still free) at that time. Therefore, we can consider map load factor as current capacity (Ci)

of the TaskTracker i. Therefore, available map slots can be calculated by using following

equation:

AvailableMapSlots = Ci × totalAvailableMapSlots (7.1)

Therefore, we can use equations (5.7) or (5.8) to modify the map load factor and reduce

load factor, which in turn will be used to calculate available map slots and available reduce

slots. As mentioned in section 5.2.2, we are not modifying the which tasks to be scheduled,

but we are modifying how many tasks to be scheduled. When used with FIFO scheduler,

the tasks are selected in round robin fashion. When used with other schedulers, like Fair

and Capacity scheduler, the tasks selection is done according to the algorithm provided by

the scheduler.
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Chapter 8

Conclusion and Future Work

In this dissertation, we have developed thermal-aware file and resource allocation poli-

cies to reduce the cooling cost of data centers. This chapter concludes the disseration by

summarizing the contributions and describing future directions. The cpater is organized as

follows: Section 8.1 highlights the main contributions of the dissertations. In Section 8.2,we

concentrate on some future directions, which are extensions of our past and current research

on thermal-aware file and resource allocation in data centers.

8.1 Main Contributions

Irrespective of the services offered and client-pool catered, data centers housing thou-

sands of nodes and providing enormous computation and storage capacity have become the

backbone of most of the businesses. Maintaining low operational cost of such data centers

is one of the principle challenges faced by the designers of the data centers. Since cooling

cost incurs significant and re-curring portion of the operational cost, reducing cooling cost

plays an important role in maintaining low operational cost. To help achieve this goal, our

research has investigated thermal-aware file and resource allocation policies to minimize the

heat re-circulation in the data center. In what follows, we summarize the main contribution

of this dissertation.

8.1.1 Theraml-Aware File Assignment

In the first phase of this study, we have investigated the impact of file assignment of

power consumption and heat re-circulation of the storage clusters in data centers. We have

proved that the linear power consumption model used for processors does not work well in
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case of storage clusters where disks are major power consumers. In the second phase, we have

proposed and implemented TIGER, a file assignment approach to reducing cooling energy

requirements of data centers [74].

TIGER first decides disk utilization threshold based on contribution of each node to-

wards the heat re-circulation in data center. TIGER then sorts the nodes according to

their heat re-circulation contributions, and files are assigned to disks in each node provided

that disk utilization is below the corresponding threshold. We applied cross-interference

coefficients to estimate the re-circulation of hot air from the outlets to the inlets of storage

nodes.

We have evaluated TIGER’s performance against existing policies that considers inlet

temperature of nodes through simulation studies. Our experimental results confirmed that

TIGER outperforms existing strategies in terms of cooling cost conservations. Furthermore,

TIGER successfully in maintains performance penalties withing acceptable margines. More

importantly, our research highlights the necessity of different approach to address thermal

management issues in storage clusters.

8.1.2 Thermal-aware Resource Allocation

Most data centers now-a-days house some flavors of Hadoop frameworks to support

big data analytics workload. In this study, we have addressed the probelm of thermal-

management in Hadoop clusters by investigating the impact of resource allocation policies

on the heat re-circulation in data center.

The proposed resource allocation approach called TASH calculates each node’s con-

tribution towards heat re-circulation using cross-interference matrix in a calibration phase.

TASH then uses this contribution to judiciously allocate resources on the nodes, in order to

minimize the heat re-circulation in data centers. The main goal is to minimize the maximum

inlet temperature of the nodes in a data center in order to reduce the cooling cost of Hadoop

clusters.
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We have implemented TASH in Apache Hadoop 2.7.3 by modifying the FairScheduler

to consider heat re-circulation while making container assignments. We have evaluated our

implemented approach through extensive benchmarking using sixteen (16) node in-house

cluster. The results showed that our proposed policy achieves significant cooling cost con-

servation over existing resource allocation policies.

8.2 Future Work

While addressing design challenges to develop a thermal-aware file and resource al-

location policies for data centers, we came across serveral interesting issues that are still

unresolved. This section overviews some of thse open issues that need further investiga-

tion. In addition, this section presents opportunities for future work by highlighting thermal

management issues in other application domains that have to be studied in details.

8.2.1 Data Replication

Most of the services supported by big data clusters follow a typical access pattern,

where data is written once and read multiple times. Also, there is strong possibility that

some of noodes may become unavailable due to system failure. Therefore, most of frameworks

supporting such big data analytics services utilizes multiple replicas of data. Data replication

plays as important role in improving data avaiability, throughput, and reducing latency.

We are planning to investigate the ways TIGER can be extended to accommodate data

replicas. Since TIGER sorts the files according to the service time and each replica will

have the same service time, it is important to establish guidelines to differtiate between

replicas of the same file. By differtiating between replicas of the same file, it can be assured

that primary and backup copies of the file are placed on different nodes. We will conduct

experinents to show that data replica offer TIGER ample opportunities to assign files in a

away to further reduce cooling cost.
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8.2.2 Machine learning in thermal management

Recall (see Section 4.1) that TIGER assumes that the access patterns of new files are

known a priori. In the first phase, we inted to incorporate a prediction technique to predict

file access patterns in a dynamic computing environment. In doing so, TIGER no longer

relies on file access patterns given a priori. We firmly beleive the importance of using machine

learning algorithms to analyze profiled data in order to make future predictions.

Most of the existing thermal management solutions either employ profiling techniques

to predict systems workload or assume that users feed resource requirements beforehand.

Although a number of algorithms have been developed to profile and predict the future

workload, unfortunately, in a large number of cases workload may dramatically change due

to a combination of reasons (e.g., data streaming and changing access patterns). Therefore,

it is important to investigate approaches that not only proactively makes resource allocation

decisions based on workload predictions but also improves over the time by learning from

observed workload and their impact on thermal management.

Machine learning algorithms facilitate us to continuously analyze the data and im-

prove our algorithms based on observed trends. We believe that it is worth investigating

machine-learning algorithms to improve thermal-aware scheduling policies. Machine learning

algorithms can also be used to extend existing workload-based power consumption models.

In this future direction, we aim at developing a set of machine-learning-based file and re-

source allocation policies, which will enable systems to be self-configured in accordance to

dramatically changing workload.

8.2.3 Thermal Management in Other Applications

Number of different big data frameworks(e.g., Spark [75] and Storm [76]) co-exists along

with MapReduce framework. Each big data framework supports a specific type of workload

(e.g., batch, real-time, inter-active) and offers optimized performnace for that workload
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through smart scheduling and optimization policies. We plan to explore opportunities to

integrate thermal awareness into such workloads (especially Spark and Storm).

Parallel and distributed databases have been widely used to store massive structured

data and to perform data analysis. Databases systems use underlying storage clusters to store

database tables and indexes, imposing diversified workload conditions on storage systems.

It is our plan to delve into the impacts of parallel and distributed database systems on

the thermal efficiency of data centers. Such investigation will lead to productive designs of

thermal management in modern data centers. In a long term research, we inted to provide a

ubiquitous thermal management strategy that can be self-configured based on the application

framework.

8.3 Conclusions

This dissertation has presented thermal-aware file and resource allocation policies for

data centers. The experimental results shown in the dissertation have shown that the pro-

posed thermal-aware policies can deliver significant cooling cost reduction by minimizing the

heat re-circulation in the data centers housing various types of clusters. In particular, the

proposed policies improve cooling energy conservation over existing policies under light to

medium-high workload conditions. In a scenario where the system workload is high, our

policies can maintain the same level of performance in terms of cooling energy conservation.

Furthermore, proposed policies maintains performace penalties within acceptable margine.

We have also presented the guidelines to implement the proposed policies in existing big

data frameworks - Hadoop.
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