
Android Malware Detection through Machine Learning on Kernel Task
Structure

by

Xinning Wang

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
December 16, 2017

Keywords: Android Phones, Malware Detection, Machine Learning, In-memory
classification, RBF network, EBP network

Copyright 2017 by Xinning Wang

Approved by

Bo Liu, Chair, Assistant Professor of Computer Science and Software Engineering
Kai Chang, Professor of Computer Science and Software Engineering

Wei-Shinn Ku, Associate Professor of Computer Science and Software Engineering
Sanjeev Baskiyar, Associate Professor of Computer Science and Software Engineering

Abstract

The popularity of free Android applications has risen rapidly along with the advent of

smart phones. This has led to malicious Android apps being involuntarily installed, which

violate the user privacy or conduct attack. According to the survey of Android malware from

Kaspersky Lab, the proportion of malicious attacks for Android software has increased by

a factor of two since 2009. Therefore malware detection on Android platforms is a growing

concern because of the undesirable similarity between malicious behavior and benign behav-

ior, which can lead to slow detection, and allow compromises to persist for comparatively

long periods of time in infected phones. Meanwhile a huge number of malware detection

techniques have been proposed to address the serious issue and safeguard Android systems.

In order to distinguish malicious apps from Android software, the traits of malware applica-

tions must be tracked by software agents or built-in programs. However, these researchers

only utilize a short list of the Android process features without considering the completeness

and consistence of the entire system level information.

In this dissertation, we present a multiple dimensional, kernel feature-based frame-

work and feature weight-based detection (WBD) designed to categorize and comprehend the

characteristics of Android malware and benign apps. Furthermore, our software agent is

orchestrated and implemented for data collection and storage to scan thousands of benign

and malicious apps automatically. We examine 112 kernel attributes of executing the task

data structure in the Android system and evaluate the detection accuracy with a number

of datasets of various dimensions. We observe that memory- and signal-related features

contribute to more precise classification than schedule-related and other descriptors of task

states listed in this dissertation. Particularly, memory-related features provide fine-grain

classification policies for preserving higher classification precision than the signal-related

ii

features and others. Furthermore, we study and evaluate 80 newly infected attributes of

the Android kernel task structure, prioritizing the 70 features of most significance based

on dimensional reduction to optimize the efficiency of high-dimensional classification. Our

experiments demonstrate that, as compared to existing techniques with a short list of task

structure features, our method can achieve 94%-98% accuracy and 2%-7% false positive rate,

while detecting malware apps with reduced-dimensional features that adequately abbreviate

online malware detections and advance offline malware inspections.

To strengthen the online framework on a parallel computing platform, we propose a

Spark-based Android malware detection framework to precisely predict the malicious appli-

cations in parallel. Apache Spark, as a popular open-source platform for large-scale data, has

been used to deal with iterative machine learning jobs because of its efficient parallel com-

putation and in-memory abstraction. Moreover, malware detection on Android platforms

requires to be implemented in a data-parallel computation platform in consideration of the

rapid increase of data size of collected samples. We also scrutinize 112 kernel attributes of

kernel structure (task struct) in the Android system and evaluate the detection precision for

the whole datasets with different numbers of computing nodes on Apache Spark platform.

Our experiments demonstrate that, our technique can achieve 95%-99% of the precision rate

with a faster computing speed by a Decision Tree Classifier on average, the other three

classifiers lead to a lower precision rate while detecting malware apps with the in-memory

parallel-data.

We have designed a Radial Basis Function (RBF) network-based malware detection

technique for Android phones to improve the accuracy rate of classification and the training

speed. The traditional neural network with the Error Back Propagation method cannot

recognize the malicious intrusion through Android kernel feature selection. The RBF hidden

centers can be dynamically selected by a heuristic approach and the large-scale datasets of

2550 Android apps are gathered by our automatic data sample collector. We implement the

iii

algorithms of the RBF network and the Error Back Propagation (EBP) network. Further-

more, compared to the traditional neural network, the EBP network which achieves 84%

accuracy rate, the RBF network can achieve 94% accuracy rate with the half of training and

evaluation time. Our experiments demonstrate the RBF network can be used as a better

technique of the Android malware detection.

iv

Acknowledgments

First, I want sincerely to thank my advisor Dr. Liu for his thorough academic guidance,

patient cultivation, encouragement and continuous support during my doctoral study. I

have been really fortunate to become his student and conduct interesting and cutting-edge

research work in the outstanding academic environment he created in the research lab. As my

advisor, he has been helping me identify novel research topics and solve critical challenges,

and giving me all kinds of precious opportunities to hone my skills, broaden my horizons

and shape my professional career. He has also been a most helpful friend of me, helping me

in my life and encouraging me during the tough moments. I greatly appreciate his priceless

time and efforts for nurturing me during my Ph.D experience.

Second, I would also like to thank my committee members: Dr. Chang, Dr. Ku and and

Dr. Baskiyar, my university reader Dr. Fan and Dr. Skjellum. Their precious suggestions

and patient guidance help to improve my dissertation. Third, I feel really grateful to my

group-mates: Austin Hancock, Ye Wang, Tian Liu. Their cooperation in work and help in

life make Auburn cyber security lab a big and warm family and an excellent place where we

learn, create, improve and enjoy.

My deepest gratitude and appreciation go to my husband, my parents, my parents-in-

law, my brother, and my son. They are the charming gardeners who help me grow strong

and make my life blossom. Their love and sacrifice have paved this long journey for me to

pursue my dreams.

v

Table of Contents

Abstract . ii

Acknowledgments . v

List of Figures . ix

List of Tables . xiii

1 Introduction . 1

1.1 Background, Opportunity,and Challenges . 1

1.2 Dissertation Statement . 3

1.3 Assumptions and Definition of Terminology 4

1.3.1 Measurement of Binary Classification Effectiveness 4

1.3.2 Receiver Operating Characteristic . 5

1.4 Overview of Approaches to the Solution . 5

1.5 Contribution . 7

1.6 Impacts . 8

1.7 Structure of this Dissertation . 9

2 Literature Review . 11

2.1 Android Malware . 11

2.2 Apache Spark architecture . 13

2.3 Artificial Neural Network . 15

2.4 Android PCB kernel structure . 16

2.5 112 Android Kernel Variables . 18

2.6 Brief Summary of Previous Malware Detection through Behavior 21

3 Problem Statement . 23

3.1 Android Architecture . 23

vi

3.2 Dynamic Android Malware Detection in Linux Kernel Layer 24

3.3 Static Android Malware Detection in Other Layers 25

3.4 Challenges in TstructDroid and Our Goals 27

3.5 In-Memory Large-Scale Data Training . 28

3.6 Artificial Neural Network . 29

4 System Design . 30

4.1 Overview of Multiple Kernel Features . 30

4.1.1 Overview of Malware Behavior in Kernel Level 30

4.1.2 A Case Study of Features in Malware Vs. Goodware Distribution . . 31

4.1.3 Measurements of Multiple Dimensional Kernel Features 35

4.2 Data Processing . 43

4.2.1 Data Cleaning and Data Filling . 43

4.2.2 Dimensional Reduction Methods . 44

4.3 Local Machine Learning Methods . 49

4.4 Parallel Malware Detection . 50

4.4.1 In-Memory Classification . 50

4.4.2 Parallel Classifiers . 51

4.5 Designs of Neural Network . 53

4.5.1 Traditional Neural Network (EBP) 53

4.5.2 Enhanced Neural Network . 55

4.5.3 RBF Network Design and Implementation 57

4.6 Multiple Dimensional Kernel Feature Collector 60

4.7 Normalized Feature Weights . 62

4.7.1 Distribution of Normalized Feature Weights 62

4.7.2 Details of Normalized Feature Weights 66

5 Analysis of Experimental Results . 70

5.1 Experimental Configuration . 70

vii

5.1.1 Experimental Setup for Data Collection 70

5.1.2 Experimental Setup for Data Processing 71

5.1.3 Experimental Setup for Classification 71

5.2 Results of Local Classifiers . 73

5.2.1 Distribution and Analysis of Kernel Features 73

5.2.2 Comparison of newly infected and previously infected parameters . . 75

5.2.3 Cross-Validation Results . 78

5.3 Results of Parallel Classifiers . 88

5.3.1 Execution Time . 88

5.3.2 Classification Precision . 91

5.4 Evaluation of RBF . 95

5.4.1 Resource Allocation Results . 95

5.4.2 Comparison of Accuracy Rate . 96

6 Summary and Future Work . 98

viii

List of Figures

2.1 Framework of Spark on Mesos . 13

2.2 Apache Spark Ecosystem . 15

3.1 Android Architecture . 23

4.1 2D Distribution of 100 benign and 100 malware samples with Shared vm and
Total vm . 32

4.2 2D Distribution of 100 benign and 100 malware samples with Signal nvcsw and
Total vm . 33

4.3 2D Distribution of 100 benign and 100 malware samples with Signal nvcsw and
Shared vm . 34

4.4 3D Distribution of 100 benign and 100 malware samples: with the increase of the
number of dimensions, benign and malware samples cluster together in different
areas. 35

4.5 total vm . 36

4.6 exec vm . 37

4.7 reserved vm . 37

4.8 shared vm . 38

4.9 map count . 38

4.10 hitwater rss . 39

4.11 nivcsw . 39

4.12 nvcsw . 40

4.13 maj flt . 40

4.14 nr ptes . 41

ix

4.15 signal nvcsw . 41

4.16 stime . 42

4.17 ROC Curve of four classifiers . 52

4.18 Architecture of Error Back Propagation Algorithm 53

4.19 Architecture of Radial Basis Function . 54

4.20 Overview of Multiple Dimensional Kernel Feature’s (Raw Data) Collector. In (b),
Message Communication Module in Local Computer . In (c), Data Processing
Module in Android Kernel. 61

4.21 Normalized Weights Distribution of 112 Parameters with PCA method (mem info
& signal info top 2 most popular) . 63

4.22 Normalized Weights Distribution of 112 Parameters with Correlation method
(mem info & signal info top 2 most popular) 63

4.23 Normalized Weights Distribution of 112 Parameters with Chi-square method
(mem info & signal info top 2 most popular) 64

4.24 Normalized Weights Distribution of 112 Parameters with Info Gain method (mem info
& signal info top 2 most popular) . 64

5.1 Comparison of Currently Infected Parameters and Previously Infected Parameters 75

5.2 Non-Zero Normalized Weights of Previously-Infected Task Parameters (There are
32 previously-infected task parameters shown in Fig. 5.1 in detail.) 76

5.3 Non-Zero Normalized Weights of Newly-Infected Task Parameters (There are 80
newly-infected/currently infected task parameters shown in Fig. 5.1 in detail.) 76

5.4 True Negative Rate by Decision Tree With the Increasing Number of Selected
Features: VBD is proposed in [75] and WBD denotes our methods, on average
WBD achieves 6% improvement of TN. 78

5.5 True Positive Rate by Decision Tree With the Increasing Number of Selected
Features: VBD is proposed in [75] and WBD denotes our methods, on average
WBD achieves 12% improvement of TP. 78

5.6 Accuracy Rate by Decision Tree With the Increasing Number of Selected Fea-
tures: VBD is proposed in [75] and WBD denotes our methods, on average WBD
achieves 10% improvement of accuracy. 79

x

5.7 True Negative Rate by Naive Bayes Kernel With the Increasing Number of Se-
lected Features: Correlation method leads to the highest TN than PCA, Chi-
square, and Info Gain on average. 80

5.8 True Positive Rate by Naive Bayes Kernel With the Increasing Number of Se-
lected Features: PCA achieves the best TP compared to others on average. . . . 80

5.9 Accuracy Rate by Naive Bayes Kernel With the Increasing Number of Selected
Features: 4 methods achieves the similar accuracy results on average, PCA
achieves slightly higher accuracy. 81

5.10 True Negative Rate by Decision Tree With the Increasing Number of Selected
Features: Correlation and Chi-square methods lead to the highest TN than PCA
and Info Gain. 82

5.11 True Positive Rate by Decision Tree With the Increasing Number of Selected
Features: Chi-square method achieves the best TP compared to others on average. 82

5.12 Accuracy Rate by Decision Tree With the Increasing Number of Selected Fea-
tures: 4 methods achieve the similar accuracy results on average, Chi-square can
achieve a bit higher accuracy. 83

5.13 True Negative Rate by Neural Net With the Increasing Number of Selected Fea-
tures: Info Gain method leads to the highest TN than PCA, Correlation, and
Chi-square. 84

5.14 True Positive Rate by Neural Net With the Increasing Number of Selected Fea-
tures: Correlation method achieves the best TP compared to others on average. 84

5.15 Accuracy Rate by Neural Net With the Increasing Number of Selected Features: 4
methods achieves the similar accuracy results on average, Correlation can achieve
slightly higher accuracy. 85

5.16 Execution Time (min) of DT Classifier . 88

5.17 Execution Time (min) of LR Classifier . 89

5.18 Execution Time (min) of SVM Classifier . 89

5.19 Execution Time (s) of NB classifier . 90

5.20 Classification Precision by DT Classifier . 91

5.21 Classification Precision by LR Classifier . 92

5.22 Classification Precision by SVM Classifier . 93

xi

5.23 Classification Precision by NB Classifier . 93

5.24 Precision Comparison of DT, NB, LR, and SVM Classifiers 94

5.25 Memory Usage of RBF and EBP . 95

5.26 CPU Usage of RBF and EBP . 95

5.27 Accuracy Rate of RBF and EBP with Hidden Neurons 97

xii

List of Tables

2.1 112 Android Kernel Features . 18

4.1 Key Variables of Active Processes . 36

4.2 Contingency Table of i-th Feature and Category in Training Set X 49

4.3 Normalized Weights of 112 Task Parameters with PCA, Correlation, Chi-square
and Info Gain . 66

5.1 Hadoop Configurations . 72

5.2 Spark Configurations . 72

5.3 Distribution of 112 Task Parameters Normalized Weights with PCA, Correlation,
Chi-square and Info Gain Methods: mem info, the most correlated feature set
for classification, achieves the maximum number of large weights between 50%
and 100% in 4 different techniques, next is signal info, sche info, others and
task state also contribute to precise classification. The details are located in
Table 5.4. 74

5.4 TP Rate, TN Rate and Accuracy Rate According to Select Different Numbers of
Features by PCA, Correlation, Chi-square and Info Gain with 3 Different Machine
Learning Algorithms (Decision Tree, Naive Bayes and Neural Network) 86

xiii

Chapter 1

Introduction

1.1 Background, Opportunity,and Challenges

The growing market share of Android smart phones has been accompanied by the un-

precedented rise of malicious threats, including web-based threats and application-based

threats [2]. As compared to web-based malicious threats, which exploit vulnerable websites

to inject malware into users’ phones, application-based threats focus on masquerading as

legitimate apps in order to deceive users into installing and executing them. According to

a 2015 survey of Android security [82], there were numerous shortcomings in its system se-

curity, in part because of its open-source framework, install-time permission, and because

of the lack of isolation with third-part applications. As a result, a large number of Android

devices have become routinely susceptible to malware.

In terms of severe damage inflicted by malicious apps, attackers regularly attempt to

steal user private information, obtain administrator privilege, or misuse resources. Recently,

Kaspersky Lab reported that the proportion of malicious attacks in 2015 for Android software

increased by a factor of two in Trojan Banking malware families [42]. Consequently, a myriad

of malware detection techniques [26, 49, 95, 55, 31] have been proposed to address this issue

and safeguard Android systems. Among them, kernel-based detection [49] has grown in

popularity because this approach can audit all applications of an Android phone and obtain

detailed log information from a Linux1 kernel layer. Moreover, kernel feature-based malware

prediction achieves a detecting accuracy rate of 95%, analyzing task structures [76] in the

Linux system rather than the Android system.

1Linux 14.04.1-Ubuntu

1

Normally, the Android permission system denies access to user sensitive data (SMS,

business (trade secrets, contracts, or call information), etc.) from potentially malicious

apps. Through a straightforward SMS operation in Google Play, a SMS related permission

can not grant the access of sending messages or receiving messages to an untrustful app

from threatening apps websites. In addition, when installing an app that attempts to be

granted permission of important business data, users can adjust and limit the app permissions

of disclosing the business information. However, some malicious applications, authorized

unwittingly by users, such as Trojan horse apps which masquerade as legitimate apps, are

difficult to detect only via def-use based behavior analysis [53].

On the other hand, because of middleware code’s obfuscation and polymorphism, signature-

or configuration-based malware detection [79] also face constraints of application commu-

nication processing based on Binder IPC or shared memory mapping. Therefore, kernel

feature-based malware detection technique [76] is considered as an effective option of iden-

tifying robust features of a running process. This technique is classified into two categories:

static analysis without executing programs and dynamic analysis of executing programs [38],

both of which vary in terms of performance.

Under kernel feature-based malware detection, the number of features (attributes of task

structure in the kernel layer) influences the correctness and scalability of malware detection.

In [76], a short list of kernel variables (16 attributes) is used to identify malicious applications.

However, such few attributes may cause overfitting issue [37] as the size of data rises.

Moreover, cumulative variance of each feature after discrete transformation heavily degrades

the performance of malware detection from both theory and experimental perspectives [75].

We observe that a small number of kernel features dataset may lead to a low accuracy rate

of Android malware detection, and incur the limitation of the feature extract and feature

select if acquiring less kernel features. Thus, there is still a need of malware detection with

high dimensional features that can lead to a good overview for all relevant features of the

2

current task structure, and more importantly, sustain stable results of malware detection in

case of training model overfitting.

1.2 Dissertation Statement

In this study, we investigate and explore a multiple dimensional kernel feature-based

solution for malware detection in an Android platform. Additionally, we examine the genetic

footprints of 112 kernel features (task struct) of Android smart phones and empirically

analyze the influences of memory- and signal- related features. Furthermore, we calculate

the weights of 112 features for dimension reduction with linear and nonlinear algorithms [40]

and compare their results to provide an insight to predict impacts of newly-injected attributes

of the task structure. Our experimental results demonstrate that the multiple dimensional

kernel-based malware detection can reduce the false positive rate, while choosing the right

number of features and applying proper algorithms. Our methods can be used to detect the

Android malware locally with the 112 kernel features or reduced attributes.

Furthermore, in order to retain the scalability of the large-scale data computation, we

propose a parallel malware detection framework to analyze and evaluate Android datasets.

Our methods can systematically examine the 112 kernel features on physical Android phones

and categorize these kernel features. Moreover, from our experiments, the sensitivities of

algorithms (Receiver Operating Characteristic (ROC) space), illustrate which algorithm

can achieve the best classification precision. Our parallel methods can efficiently find the

best algorithm to detect the Android malware online by transmitting the data to remote

server.

In order to satisfy the expected requirements of Neural Network in the exascale compu-

tation, our RBF network-based Android malware detection method, in which the heuristic

approach of clustering, K-means algorithm, is used to select the initial clustering centers.

Our methods use the Euclidean distances among the large amount of data points to measure

the similarity of malicious or benign samples. Our methods can capture more characteristics

3

from the undisciplined data samples and lead to a good classification result. Additionally,

our methods can be used to improve the classification performance of the traditional neural

network with the large-scale dataset.

1.3 Assumptions and Definition of Terminology

1.3.1 Measurement of Binary Classification Effectiveness

In binary classification, classifying an app as benign is commonly accounted to be pos-

itive and vice versa. Likewise, a malware app is to be negative. The performance of the

binary classification is measured and quantified by the four elements in a confusion matrix:

True Positive (TP) (the proportion of identifying benign instances as being nonmalware),

True Negative (TN) (the proportion of recognizing malicious instances as being malware)

, False Positive (FP) (the proportion of identifying malicious instances as being benign),

and False Negative (FN) (the proportion of identifying benign instances as being malware).

Generally, a good machine learning algorithm should prevent FP and FN, and conserve the

TP and TP.

High TP rate and TN rate, in malware detection of Android devices, indicate that

malicious and benign instances are mostly categorized as correct categories. In order to

reduce the risk of posing a threat, a high FN rate and low FP rate are useful for ruling out

malicious apps. Indeterminate instances are treated as FN cases without any damage to

the whole system, unlike FP case resulting in serious damage to customer or system. The

standard metrics used in our experiments are shown as below:

True Positive (TP) Rate This measures the proportion of the benign that is recog-

nized as nonmalware, as calculated by the equation: TP rate = TP/(TP + FN).

True Negative(TN) Rate This represents the proportion of the malicious that is

classified as malware using the equation: TN rate = TN/(TN + FP).

4

Accuracy Rate (Acc.) This evaluates the portion of all the benign and malware which

are correctly categorized as calculated with the equation: Acc. rate = (TP + TN)/(TP +

TN + FP + FN).

In addition, we can use the above equations to derive the FP rate and FN rate as shown

as the following: FP rate = 1− TN rate and FN rate = 1− TP rate.

1.3.2 Receiver Operating Characteristic

A Receiver Operating Characteristic (ROC) visually illustrates the performance of a

binary classifier in graphical plot. Commonly, the curve is plotted by the true positive (TP)

rate of the vertical axis against the false positive (FP) rate of the horizontal axis with different

discrimination threshold. For each sample, there is a probability value which decides whether

this sample is positive or not. If the probability of the testing sample is more than or equal

to the discrimination threshold ([0, 1]), this testing sample is recognized the positive one.

Moreover, all the testing samples satisfying this condition are recognized the positive ones

regardless of their original categories. The others are recognized the negative ones. While

choosing different discrimination thresholds, we can achieve different groups of FP rate and

TP rate. Through a ROC analysis of several models, the optimal model can be selected

possibly by comparing the area under the ROC curve, which is a natural method to analyze

the models. Area Under the ROC Curve (AUC) can compare the classifier performance with

a scalar value or a graphics demonstration. In general, the larger AUC value represents the

better and more accurate results from a classifier.

1.4 Overview of Approaches to the Solution

Firstly, we explore a multiple dimensional kernel feature-based solution for malware

detection in an Android platform and examine the genetic footprints of 112 kernel features

(task struct) of Android smart phones and empirically analyze the influences of memory-

5

and signal- related features. Furthermore, we calculate the weights of 112 features for di-

mension reduction with linear and nonlinear algorithms [40] and compare their results to

provide an insight to predict impacts of newly-injected attributes of the task structure. Our

experimental results demonstrate that the multiple dimensional kernel-based malware de-

tection can reduce the false positive rate, while choosing the right number of features and

applying proper algorithms.

Apache Spark [93], as a popular large-scale data processing framework, has been used

to improve the performance of iterative machine learning algorithms in parallel. Due to a

read-only collection of objects, Resilient Distributed Dataset (RDD), Spark can easily cache

parallel data in memory and iteratively exploit RDD in parallel operations, which elimi-

nates the overhead of I/O communications. Therefore, we propose a Spark-based malware

detection framework to effectively distinguish malware in parallel. We systematically ex-

amine 112 kernel features on physical Android phones and categorize these kernel features.

Furthermore, we evaluate the methods of linear and nonlinear machine learning algorithms,

including Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM) and Lo-

gistic Regression (LR) to identify malicious apps.

We propose a RBF network-based Android malware detection method for the large-scale

dataset of Android apps, in which the heuristic approach of clustering, K-means algorithm, is

used to select the initial clustering centers. The Euclidean distances among the large amount

of data points measure the similarity of malicious or benign samples. In Artificial Neural

Network (ANN) approaches, the Android malware can be detected based on techniques

of machine learning through training linear or nonlinear classification models. With the

advantage of ANN detection approaches, ANN successfully recognizes the malicious intrusion

through feature selection and analysis of critical infrastructures [57, 32, 81].

In both of our solutions, we use the 112 kernel features of task struct to construct the

training models. However, for the multiple dimensional kernel-based method, we only use

550 Android applications (275 malicious apps and 275 benign apps) to train the models due

6

to the constrains of computation resources. Both spark-based malware detection and the

RBF network train the classification models with 2550 Android applications (1275 malicious

apps and 1275 benign apps).

1.5 Contribution

At first, we only collect a small number of Android dataset, 550 Android apps (15,000

× 550 records). The computation needs few CPU cores (4 cores in our experiment) and a

small memory (16 GB). We implement the design and analyze the results in the powerful

computers. Therefore, We propose a multiple dimensional kernel feature-based framework

to detect unknown malware apps dynamically in Android platforms. We systematically

examine as many as 112 kernel features from 275 malware apps and 275 nonmalware apps on

physical phones facilitated by our automated software agent of collecting their information.

Furthermore, we conduct a comprehensive analysis of these kernel features and compare

112 task attributes (parameters) with 32 previously infected attributes and analyze their

normalized weights’ distribution to discover 112 task attributes’ impacts on the malware

detection.

Because we have collected a large number of Android dataset in total 2550 android apps

(15,000 × 2550 records), a more powerful platform is required to effectively calculate the

probabilities of data samples. We implement and deploy the previous framework to the par-

allel platform, Apache Spark. Our further studies are summarized as following We propose a

Spark-based malware detection framework to effectively identify malware. We systematically

examine the 112 kernel features from 1275 malware apps and 1275 benign apps on physi-

cal Android phones and categorize these kernel features. Moreover, our experiments show

the sensitivities of algorithms change rapidly from Receiver Operating Characteristic (ROC)

space. We evaluate the methods of linear and nonlinear machine learning algorithms, includ-

ing Naive Bayes (NB), Decision Tree (DT), Support Vector Machine (SVM) and Logistic

Regression (LR) to identify malicious apps.

7

In addition, we find the traditional artificial neural network with Error Back Propa-

gation (EBP) technique detect the malware with a lower accuracy rate when the number

of Android dataset increases greatly. Thereby, we propose a RBF (Radial Basis Function)

network-based Android malware detection method, in which heuristic approach of clustering,

K-means algorithm, is used to select the initial clustering centers. The Euclidean distances

among the large amount of data points measure the similarity of malicious or benign sam-

ples. We implement and evaluate the methods of RBF network and EBP network. Our

experiments demonstrate, compared to the EBP network, the RBF network can achieve an

higher accuracy rate and reserve less resource allocation and execution time.

1.6 Impacts

At first, we analyze the performance issues for selecting relevant features that are effec-

tive for detecting malicious apps on the Android platform. Accordingly, we design a multiple

dimensional kernel feature-based malware detection infrastructure and implemented a mul-

tiple dimensional kernel feature’s collection agent so as to dynamically collect, transfer, and

store our 112-dimension data. We have examined 275 malware apps each of which has 15,000

instances and 275 benign apps with the same number of instances. The effective dimensional

reduction algorithms, PCA, Correlation, Chi-square and Info Gain, are also employed to dig

out the more important features to malware detection. The results show that, by using more

signal- and memory-related features of Android kernel, classifiers of Naive Bayes, Decision

Tree and Neural Network efficiently achieve the 94%-98% of accuracy rate and less than

10% of false positive rate. In contrast to Naive Bayes , Decision Tree and Neural Network

can predict more precisely the malicious apps while avoiding the issue of overfitting. These

results demonstrate that characterization of kernel features is directly relevant to predicting

the malware presence accurately.

Secondly, we propose a Spark-based malware detection framework. The Spark-based

malware detection architecture accurately deals with the original data sample from the data

8

collector and efficiently predict the malicious behaviors in memory. To the end, this work

demonstrates the sensitiveness of NB, DT, SVM and LR classifiers on Apache Spark platform,

in which the DT classifier can preserve a higher precision rate and eliminate the execution

cost. Moreover, our Spark-based malware detection technique improves the performance

when the data size dramatically increases and decreases the time consumption caused by

frequent I/O communications. In summary, our results indicate the parallel DT classifier

is the best algorithm to detect Android malware with the most accurate precision and the

lowest cost.

Finally, we proposed a RBF network based malware detection technique with a heuristic

approach of clustering. To measure the similarity in Android datasets, the K-means algo-

rithm calculates the center’s position for initializing the hidden neurons of the RBF network,

which assigns each data point from the large-scale dataset into different regions. According

to the initialized hidden centers, the RBF network can quickly and precisely compute the

positions for unknown data samples through the correct Gaussian functions. Our results

demonstrates that the RBF network can preserve a higher accuracy rate with less execution

cost and time. Moreover, compared to the EBP network, the RBF network improves the

performance for the exascale computation of the large-scale dataset. Therefore the RBF net-

work is proved to improve the classification performance while the traditional neural network

can not meet the criteria of availability or performance for exascale data computation.

1.7 Structure of this Dissertation

The rest of this dissertation is organized as follows. Chapter 2 introduces related research

of malware detection, including malware software, benign software, Apache Spark architec-

ture, Artificial Neural Network, and Process Control Block (PCB) Task Kernel Structure.

Chapter 3 illustrates the problems of Android malware detection. Chapter 4 presents the de-

signs of the local malware detection, parallel malware detection and the RBF network-based

9

malware detection. Chapter 5 shows the analysis of the experimental results and Chapter 6

shows the summary of this study and some suggestions of future work.

10

Chapter 2

Literature Review

This chapter introduces several areas of research which are closely related to our de-

signs, including Android malware, Apache Spark architecture, Artificial Neural Network,

and Android PCB kernel structure.

2.1 Android Malware

The penetration of malware applications [62] in Android Phones is categorized into

three types: repackaging, downloading, and updating. Among these, repackaging legitimate

apps and hiding malicious code in them is the most common method to fool the user to

install malware apps. Customers accidentally update nonmalware apps, injecting pieces of

malicious code and download malicious apps that camouflage themselves as benign (e.g.,

Trojan horses).

To “trojanize” a well-known legitimate app, the attacker may employ highly effective

renaming, utilize executable wrappers, manipulate source code, and even disguise items

through polymorphic code [78]. For example, an attacker may change the name of malicious

code to the similar name into the system process so that the malicious appears to belong to

the normal process. More seriously, the attacker can open a backdoor to the system allowing

for remote administrations. Trojans as the malicious programs, unlike computer virus and

worms injecting themselves into other programs, disguise themselves to be unsuspicious and

mislead the users of the true intent. Here we provide a brief description of Trojans to gain

the obvious characteristics of malicious programs.

11

Trojan.DDoS

The DDos (Denial of Service) Trojan can form a botnet from injected computers [6].

The program can attack SSH connection, Linux executable files and encryption methods.

Initially, the DDos Trojan attempts to destroy SSH credentials of the root account. If

successfully breach the root credentials, then the Trojan program is installed through a shell

script.

Trojan.Ransom.Gen

The Trojan can disguise a common email or social connection to attack computer users

and steal users’ money [10]. Trojan.Ransom.Gen utilizes a ransomware threat to block other

accesses of injected computers so that the users of injected computers can not gain accesses

to their computers. Because this Trojan program blocks the access of infected computers,

removing Trojan.Ransom.Gen becomes difficult from injected computers.

Trojan.Rootkit

Trojan.Rootkit can hide files and registry entries through tampering with these files’

suffixes [11]. The Trojan program can remove the task manager, disable commands prompt

and Registry Editing, deactivate Firefox and security software, pop up a “Blue Screen of

Death” screen and make “Log off” button disappear.

Trojan.Spy

Trojan.Spy can monitor the user’s operations on an infected computer [12]. This threat

can steal user’s personal information on hard disks and download the malware to the injected

computer. Even Trojan.Spy can send and receive the sensitive files over the network.

12

Mesos Cluster

Master
Mesos Master

Node
Mesos Slave

Name Node
Executor

Spark Node
Executor

Task1 … Task1 …

Spark Framework

Node
Mesos Slave

Data Node
Executor

… …

Disk

Spark Scheduler

Sched. Job1

Spark Storage

In-­memory RDD Data

Hadoop Filesystem

Parallel Hadoop
distributed file system

...

Figure 2.1: Framework of Spark on Mesos

Trojan.ArcBomb

Trojan.ArcBomb [9] attempts to freeze or slow the disk’s performance with a large

amount of unpacked empty archived data. This program can easily crash a data server

with three types of “bomb”: archive headers, repeated data, and identical documents of the

archive. It is a destructive Trojan to attack the computer and damage the data.

2.2 Apache Spark architecture

Apache Spark [93], as a popular large-scale data processing framework, has been used

to improve the performance of iterative machine learning algorithms in parallel. Due to a

read-only collection of objects, Resilient Distributed Dataset (RDD), Spark can easily cache

the parallel data in memory and iteratively exploit the RDD in the parallel operations, which

13

eliminates the overhead of I/O communications. Apache Spark is implemented in Scala [8],

which is an object-oriented programming language. Moreover, Spark provides the easy-

to-use MapReduce-like [33] interfaces to perform parallel computations. In addition, there

are pipeline APIs to process the raw data, extract data features, train models and validate

results in the prediction procedure [60]. Therefore, Spark efficiently predicts the malicious

and benign behaviors of popular applications in Android through large-scale datasets.

Spark provides the RDD to construct a shared dataset for iterative machine learning [60].

Moreover, it supports multiple programming languages [93], e.g., Scala, Java, and R. It inte-

grates other high-level applications and management tools. Spark on Mesos can dynamically

partition jobs between Spark and other frameworks, or among the tasks of Spark.

Fig. 2.1 shows the framework of Spark on Mesos. Mesos [47] interpolates a Mesos

Master and Mesos slaves to coordinate Spark Scheduler and other applications. When Mesos

slaves exist free resources, they report the information to the Mesos Master and the Mesos

master then informs the Spark Scheduler. After the Spark Scheduler receives the detailed

information, it will decide which job should be launched firstly and send the feedback to

Mesos Cluster and Mesos slaves. Spark loads the data into RDDs from Hadoop filesystem

(HDFS), which translates parallel disk-based data to in-memory data.

The Apache Spark ecosystem in Fig. 2.2 consists of three layers, Spark optional manager,

Spark core and Spark applications. For Spark applications, Spark SQL [15] is used for storing

structured data or executes queries via Apache Hive Query Language; Spark Streaming [94] is

used to process the live data streams and analyze them; MLlib, as a library [60] is designed for

machine learning interfaces; Spark GraphX [89] is implemented to process and manipulate

graphics. Spark core provides the mechanism of scheduling, fault tolerance and resource

management. Mesos [47], Yarn [85], and Hadoop [77], as the optional managers, contribute

to visualize the usage of resources and manage the limited devices.

14

Spark
SQL

Spark
Streaming MLlib GraphX

Apache Spark

Mesos Yarn Hadoop

Figure 2.2: Apache Spark Ecosystem

2.3 Artificial Neural Network

In the feedforward Artificial Neural Network (ANN), to minimize the errors between

outputs and targets, EBP is generally considered as an efficient training algorithm [67].

Fig. 4.18 shows the architecture of the simplest ANN form and the schematic of the EBP

network where they have a layer of inputs, a hidden layer of training neurons, and a layer

of outputs. For the simple ANN, the dimension of the input layer equals to the dimension

of the original dataset or the reduced dataset. The number of hidden neurons is uncertain

due to the characteristic of the different input data. The output layers correlate the desired

output which has been known before training an ANN model.

The simple bipolar ANN framework can be expressed by the following equations 2.1

and 2.2:

netj =
n∑
i=1

xiwji + biasj (2.1)

15

output = sign(net) =

 1 net ≥ 0

0 net < 0
(2.2)

where i, j represents the number of feature patterns from 1 to n and the number of neu-

rons decided by different algorithms (e.g., convolution calculation, adaptive clustering), netj

stands for the j-th neuron’s net value and equals to the summation of the product of n

patterns and their weights wji and the bias biasj. Equation 2.2 shows the simple methods of

how to determine the output value in output layers. If the net value, net from equation 2.1,

is greater than or equals to 0, the output value is 1, otherwise, the output value becomes to

0.

2.4 Android PCB kernel structure

The data structure, task struct [59] in process control blocks, as a descriptor of process

interaction, has approximately 100 elements to store the information of executing programs.

It gives us an elaborate description of a running process, e.g., process state, process priority,

scheduling policy, etc., after being allocated by the slab allocator. While measuring the

variables constantly invoked by a malware process, some of the noticeable features can be

used for delimiting the malicious behaviors. Process control blocks dynamically update and

maintain the process identification data, process current state and process control informa-

tion, so a method of mining PCB in the Linux operating system is proposed to detect and

predict malware applications in [65, 76, 84].

To attain the footprint of task management in the data structure (task struct), we

implement a software agent to retrieve the element’s trace and transform the complicated

data structure to a relational data record stored in the local database. Thereby, each data

record of the relational database is a tuple with the form:

〈hash key, classifier, task state,mem info, sche info, signal info, others〉.

16

hash key The hash table is an efficient data storage and lookup structure that is imple-

mented with a key-value pair. Here hash key means the unique non- or malware software

applications applied in smart telephones. Hash key denotes the application’s name or appli-

cation’s MD5 serial number.

classifier The supervised machine learning algorithms require labeled samples to train a

precise classifying model. Classifier represents whether the sample belongs to a malicious

app or a benign app. Note that in the experiment Benign and Malware are their identifiers.

task state The overview of task execution is defined to describe the exiting case in the

task structure. Its return value consists of the special macros to reflect the status of task

exiting. Meanwhile, to avoid orphan or zombie processes, the relative signal between parent

and children processes is also elemental.

mem info The traces of memory usage indicate resource demand and process interaction.

The data structure generalizes data, code, environment, heap, and stack arguments in detail

when a program is executing. It is often referenced by parent and children processes and

updated to the latest value by them.

sche info When the ability of computation of an OS exceeds its threshold, a reasonable

scheduling strategy is introduced to increase the system’s tolerance. The scheduling informa-

tion necessitates the system’s recovery from a suddenly crashing state. Here, the scheduling

information only focuses on the last operation and execution delay.

signal info The task structure reserves the space for handling received signals. Each process

must apply or utilize the limited resources to restrict or make excessive use of CPU, memory,

or disk. Moreover, all the threads in the same process share the same signal block. Here the

signal information includes the counts of signal variables.

others It conserves the rest of the information of task struct.

In our study, we collect training and testing data sets with 114 features shown in Table

2.1, where 112 features can be used to malware detection and 2 hash key parameters are

used to uniquely store data records. In other words, the instance of experimental samples,

17

the row data record, is a 112-dimension vector. Each dimension (column) represents a feature

(a variable in raw data set). From a large amount of multi-dimensional data, the unknown

malicious examples are recognized via machine learning algorithms according to the known

training dataset.

2.5 112 Android Kernel Variables

The following table 2.1 describes the 112 Android kernel features which are used to

detect Android malware. These kernel variables can be classified into 7 categories shown in

Section 2.4 and the details are listed in the following table. In order to simplify the variable’s

names, we assign the related number to the 112 Android features. Among them, the first

two variables are useless to detect Android malware. They are the unique identifiers to store

the records to database.

Table 2.1: 112 Android Kernel Features

Parameters Description

hash key
1 hash unique apk apps name.

2 time instance time of sampling data.

task state

3 exit state flags of children tasks exiting.

4 exit code a process termination code.

5 exit signal a signal received from exit notify() function.

6 pdeath signal a signal from dying parent process.

7 jobctl reserved to handle siglock.

8 personality process execution domain.

mem info

9 maj flt major page faults.

10 min flt minor page faults.

11 arg end ending of arguments.

12 arg start beginning of arguments.

13 end brk final address of heap.

14 start brk start address of heap.

15 cache hole size size of free address space hole.

Continued on next page

18

Continued from previous page

Parameters Description

16 def flags default access flags.

17 start code start address of code component.

18 end code end address of code component.

19 start data start address of data.

20 end data end address of data.

21 env start start of environment.

22 env end end of environment.

23 exec vm number of executable pages.

24 faultstamp global fault stamp.

25 mm flags access flags of linear address space.

26 free area cache first address space hole.

27 hiwater rss peak of resident set size.

28 hiwater vm peak of memory pages.

29 last interval last interval time before thrashing.

30 locked vm number of locked pages.

31 map count number of memory areas.

32 mm count primary usage counter.

33 mm users address space users.

34 mmap vmoff offset of vm files.

35 mmap base base of mmap areas.

36 nr ptes number of page table entries.

37 pinned vm number of pages pinned permanently.

38 reserved vm number of reserved pages.

39 shared vm number of shared pages.

40 stack vm number of pages in stack.

41 total vm total number of pages.

42 task size size of current task.

43 token priority priority of task token.

44 nivcsw number of in-volunteer context switches.

45 nvcsw number of volunteer context switches.

46 start stack initial stack pointer address.

47 rss stat events used for synchronization threshold.

48 usage counter reference count for task struct of process.

49 nr dirtied used in conjunction with nr dirtied pause.

50 nr dirtied pause used in conjunction with nr dirtied pause.

Continued on next page

19

Continued from previous page

Parameters Description

51 dirty paused when start of a write-and-pause period.

52 normal prio priority without taking RT-inheritance into account.

53 utime user time

54 stime system time

55 utimescaled scaled user time

56 stimescaled scaled system time

sche info

57 last queue time when the last queue to run.

58 pcount number of times running on the CPUs.

59 run delay time spent on waiting for a running queue.

60 state flag of unrunable/runnable/stopped tasks.

61 on cpu flag of locking or unlocking running queue (default 0).

62 on rq flag of migrating a process among running queues.

63 prio denotes normal priority (0-99) and realtime (100-140).

64 static prio holds processes initial prio.

65 rt priority Denotes normal priority (0) and realtime (1-99).

66 policy scheduling policy used for this process.

67 rcu read lock nesting Flag denoting if read copy update is occurring.

68 stack canary Canary value for the -fstack-protector gcc feature.

69 last arrival when last request runs on CPU.

70 flags Denotes need to use atomic bitops to access the bits.

71 ptrace flag. denotes if ptrace is being used.

signal info

72 group exit flag of group exit in progress.

73 signal nr threads denotes number of threads.

74 signal notify count compared with count. If equal, group exit task is notified.

75 signal flags used as support for thread group stop as well as overload of group exit code.

76 signal leader boolean value for session group leader.

77 signal utime same as task struct but used as cumulative resource counter.

78 signal cutime cumulative user time.

79 signal stime used as cumulative resource counter.

80 signal cstime Cumulative system time.

81 signal gtime Group time. Cumulative resource counter.

82 signal cgtime Cumulative group time. Cumulative resource counter.

83 signal nvcsw used as cumulative resource counter.

84 signal nivcsw used as cumulative resource counter.

85 signal cnvcsw Cumulative nvcsw.

86 signal cnivcsw Cumulative nivcsw.

Continued on next page

20

Continued from previous page

Parameters Description

87 signal maj flt used as cumulative resource counter.

88 signal cmaj flt Cumulative maj flt.

89 signal cmin flt Cumulative min flt.

90 signal inblock Cumulative resource counter.

91 signal oublock Cumulative resource counter.

92 signal cinblock cumulative inblock.

93 signal coublock Cumulative oublock. Cumulative resource counter.

94 signal maxrss Denotes memory usage. Cumulative resource counter.

95 signal cmaxrss Denotes cumulative maxrss. Cumulative resource counter.

96 signal sum sched runtime Cumulative schedule CPU time.

97 signal audit tty Denoted status of audit event resulting from tty input.

98 signal oom score adj Denoted status of audit event resulting from tty input.

99 signal oom score adj min minimum.

100 sas ss sp signal handler pointer.

101 sas ss size size of signal handler pointer.

others

102 gtime guest time

103 link count number of symbolic links

104 total link count total number of symbolic links.

105 sessionid process session ID

106 parent exec id execution domain belonging to parent thread ID.

107 self exec id execution domain belonging to self thread.

108 ptrace message result block of ptrace messages.

109 timer slack ns Used to round out poll() and select() etc timeout values. Value is in nanoseconds.

110 default timer slack ns Same as timer slack ns.

111 curr ret stack index of current stored address in ret stack.

112 trace state flags for use by tracer.

113 trace recursion bitmask and counter of trace recursion.

114 plist node prio priority value belonging to a node on a plist.

Concluded

2.6 Brief Summary of Previous Malware Detection through Behavior

In general, malware detection falls into a plethora of categories based on different classi-

fication methodology. Kim et al. [50] proposed power-aware malware detection by collecting

power consumption samples and calculating the Chi-distance. Afterwards, Liu et al. [58]

21

designed the state machine matrix to collect power consumption data and use machine learn-

ing algorithms to identify malware apps. Behavior-based analysis for malware detection was

proposed by Shabtai et al. [74], where they offer a high level framework of malware detec-

tion, including feature selection and the number of top features. However, Shabtai et al. did

not evaluate what kind of features should be selected and how many of them could be used

to detect malware.

Rastogi et al. [64] researched the anti-malware software and provided a method, named

DroidChameleon, which listened to the system-wide message broadcast and compared their

footprints with a single rule. In addition, Lanzi et al. [55] proposed a system-centric model

of performing a large-scale data collection of call sequence and training the data with n-

gram methods. Demme et al. [34] proposed a machine learning based detection technique

with performance counter. They analyzed the feasibility of online malware detector and

came up with a tentative plan of hardware implementation of malware detector. Shahzad

et al. [76] proposed a dynamic malware detection technique in the Linux system, in which

they acquired a short list of Linux kernel features to train their model of machine learning.

Nevertheless, these techniques just focus on collecting history traces with low dimension,

where data sets from kernel or other applications contain few features.

22

Chapter 3

Problem Statement

In this chapter, we summarize the problems of Android malware detection, including the

brief review of the Android architecture, problems for dynamic Android malware detection

and static Android malware detection. Additionally, we show the challenges in TstructDroid

and our goals for Android malware detection. Furthermore, the problems for in-memory

large-scale data training and artificial neural network are discussed in this chapter as well.

3.1 Android Architecture

Applications

Application Framework

Libraries

Linux Kernel

Home Contacts Phone Browser …

Activity
Manager

Window
Manager

Content
Providers

View
System ...

Surface
Manager

Media
Framework

SQLite

OpenGL FreeType ...

Android Runtime

Libraries Core

Virtual Machine

Display
Driver

Camera
Driver

Flash
Driver

Binder
Driver

...

Figure 3.1: Android Architecture

Fig. 3.1 shows the components of Android system [80] is comprised of Applications,

Application Framework, Libraries & Android Runtime, Linux Kernel. The application layer

23

is located on the top of the Android system, with the responsibility for installation and

operation of the user software, e.g., mail, browser, or music, etc. The application framework

contains the high-level services in the form of java classes for the communication between the

application layer and the Android libraries. The Android libraries layer provides the resource

access from the second layer, in addition to those C/C++ based applications. The Android

runtime encompasses two important components, core libraries for the standard java lan-

guage and light-weight Android virtual machine. The bottom layer, the Linux kernel, is the

core of Android architecture, which handles the process scheduling, memory management,

power management, communication between hardware and software, etc.

In this open-source software platform, our data collection mainly focuses on the bottom

layer, the Linux kernel, where task struct [59] elaborates process interaction, memory usage,

signal utilization and the information of other resources. The data structure, task struct,

contains 112 features of executing programs which can be used to detect Android malware.

3.2 Dynamic Android Malware Detection in Linux Kernel Layer

There are a lot of Android malware detection techniques using machine learning classi-

fiers. Schmidt et al. described a malware detection mechanism from Linux kernel perspec-

tive [71]. They came up with an Event Detection Module (EDM) to extract the Android

kernel features and attempted to use machine learning technique to classify the malicious

apps. However, they did not implement the EDM to further obtain the training model for

malware detection. In our study, we have completed the data collector with the same func-

tionality as EDM and trained the machine learning models for malware detection. Bläsing et

al. proposed a sandbox to print the kernel information for static and dynamic analysis [23],

but did not employ the technique to Android malware detection in practice.

The “ Andromaly “ framework [74] also collected the Android kernel features to find

the best combination using machine learning methods. They ranked those features with the

different dimensional reduction methods and achieved top 10 features that outperformed the

24

other combinations. Among those 10 features, there were 4 memory-related features with the

highest ranks. A Multi-level Anomaly Detector for Android Malware, MADAM [35], could

monitor Android activities at the kernel level and the application level to detect malicious

intrusion with machine learning techniques. However, only 4 kernel features were monitored.

In [46], Ham et al. collected 32 resource features of network, SMS, CPU, power, memory,

virtual memory and process. The random forest classifier achieved the best performance for

35 Android applications and the features of memory and virtual memory were appropriate

to accurate classification. B. Amos et al. presented a STREAM framework to rapidly

validate mobile malware machine learning classifiers [14]. Only 30 similar kernel features

were collected, including process, CPU, memory and network considering few application

resource constraints.

In [75], F. Shahzad et al. proposed a TstructDroid framework to discriminate Android

benign and malicious apps. They gathered the dataset consisting of 110 malicious apps and

110 benign apps for 32 Android kernel features. Due to the difficulty in training a suitable

machine learning model with the relatively large dataset, they used the techniques, Discrete

Cosine Transform and Cumulative Variance to detect the small changes in kernel features.

In fact, the two methods introduced the overfitting issue when training a suitable model

instead of improving the accuracy rate.

T. Isohara et al. [49] designed an audit application called logcat on virtual machine to

monitor the application behaviors and proposed a kernel-based behavior analysis to inspect

the Android malware. However, they only collected 2 types of system logs, process manage-

ment and file I/O. Due to the lack of empirical evaluation, the offline analysis of log data

might detect the Android malware via the pattern matching in large log files.

3.3 Static Android Malware Detection in Other Layers

Static analysis of executable binaries has been applied to Android malware detec-

tion [70]. In [19], L. Batyuk et al. proposed a static analysis method for automated

25

binary assessment and malicious event mitigation, which depended on the open-source de-

compilation tools to decode binary applications to initial forms. A. Shabtai et al. [73] further

investigated the code of Android applications and evaluated XML-based features with di-

mensional reduction methods and machine learning classifiers.

Yerima et al. implemented an automated tool to reverse Android applications for col-

lecting the useful features and evaluated the Bayesian classifiers [90]. To select the most

relevant features, 58 Android application properties were ranked with dimension reduction

methods. It waw discovered that 15 to 20 features were enough to detect Android malware.

ComDroid [30] analyzed the intents of Android applications to discover the vulnerabilities in

Android system. Similarly, DroidMat [87] extracted the features of permissions and intents

and used the K-means method to recognize Android malware. DroidChecker [28], as an

Android malware detection tool, used the interprocedural control flow to find the capabil-

ity leaks in Android applications. Other methods, e.g., FlowDroid [17], ProfileDroid [86],

RiskRanker [44], ScanDal [51], AndroidLeaks [43], also statically analyzed the information

to detect Android malware. Our method can detect the Android malicious applications

when they are executing. DroidAPIMiner [13] extracted the API-level features in Android

and statically evaluated the data samples with different classifers. Additionally, the authors

analyzed the frequently invoked features in API calls to gain the Android malware behavior.

J. Sahs et al. gathered the permission features with an open-source tool and discrimi-

nated the Android malicious and benign applications after refining them with control flow

graphs in [68]. Y. Zhou et al. proposed a scheme, permission-based behavioral footprint-

ing [96], to detect malicious applications in official and unofficial Android markets. I. Bur-

guera et al. proposed Crowdroid [27], a behavior-based malware detection framework, which

built the dataset with behavior system call feature vector. To leverage a Hidden Markov

Model to predict Android malware, L. Xie et al [88] designed a system named pBMDS,

which employed a statistical method to learn the malware behaviors in cellphone devices.

Schmidt et al. propsed an approach to collaborative Android malware detection with the

26

static analysis of executables in [69]. D. Barrera et al. explored permission-based models for

Android malware detection with Self-Organizing Map algorithm in [18]

3.4 Challenges in TstructDroid and Our Goals

In TstructDroid [75], a cumulative Variance Based Detection (VBD) technique with

Android kernel features has been proposed to analyze Android malware. To build a re-

alworld dataset. the framework tests 110 malicious and 110 benign Android applications

from the Android marketplace. In consideration of the large feature dataset, it is difficult

to discriminate malware and benign applications with the entire data samples. Therefore,

cumulative variance of frequency of kernel features obtained with Discrete Cosine Trans-

formation (DCT) is used to detect Android malware. Moreover, the VBD method uses 32

Android kernel features and the decision tree classifier.

TstructDroid presents the detailed procedure to reduce the large dataset. The first

step is that DCT transforms values of kernel features to frequencies. After applying DCT,

the cumulative variance is further used to reduce the data size. However, these methods

degrades the classification performance because of the loss of the original data similarity.

Without changing the dimension of kernel features, DCT can discard the important kernel

information for lossy compresses of data points. In addition, the cumulative variance does

not reduce the data size of Android features, therefore, it can not speed up the classification.

Moreover, the cumulative variance introduces the extra loss of data integrity.

Currently, the Android kernel task structure, task struct, includes 112 features which

has added 23 new features since 2013. TstructDroid, analyzing 32 kernel features, does

not show whether other features are important to Android malware detection. They can not

prove the 32 kernel features are relevant to malware detection. Some features has disappeared

in the current Android system due to system upgrade. Therefore, a comprehensive analysis

of the entire kernel features would be helpful to predict the trend of kernel features modified

by attackers.

27

In our study, we collect 112 latest Android kernel features to construct an accurate

dataset. To remove the redundant records in the original dataset, we apply the dimensional

reduction techniques to rank these features. Furthermore, we design the clustering method

to reduce the data size instead of DCT transformation and cumulative variance calculation.

3.5 In-Memory Large-Scale Data Training

Currently, the Android phones have a rapid growth accompanied by the rise of mali-

cious threats. In terms of the severe damage inflicted by malicious apps, Android attackers

regularly attempt to steal user private information, obtain administrator privilege, or misuse

resources. Recently, Kaspersky Lab reported that the proportion of malicious attacks in 2015

for Android software increased by a factor of two in Trojan Banking malware families [42].

Consequently, a myriad of malware detection techniques [26, 49, 95, 55, 31] have been pro-

posed to address this issue and safeguard Android systems. Among them, kernel-based

detection [49] has grown in popularity because this approach can audit all applications of an

Android phone and obtain detailed log information from a Linux1 kernel layer. However, the

size of data collection of kernel parameters increases dramatically due to scanning the whole

kernel structure (15,000 records / 20 s) while acquiring a training dataset. After collecting

the large-scale dataset with 112 features from more than 1,000 Android applications, the

local computer can not deal with such huge data samples in time.

Obviously, it is difficult to train a good model using a large-scale dataset for malware

detection because of the limitation of memory and CPU. Especially, the memory usage

becomes a bottleneck for improving the accuracy of classification and reducing the training

cost. On the other hand, frequent operations of disk I/O read and write cause performance

degradation and increase the extra overhead while training the detection model. Take an

example, when we use a 6MB dataset to train the Android detection model, the process

of dealing with such dataset needs several hours. In order to shorten the training time

1Linux 14.04.1-Ubuntu

28

and enlarge the memory size, we aim to provide a parallel malware detection framework

to analyze and evaluate Android datasets. A Spark-based malware detection framework is

presented to preserve the prediction performance and reduce the cost of disk I/O.

3.6 Artificial Neural Network

Artificial Neural Network (ANN) approaches can detect the malware based on the tech-

niques of machine learning through training linear or nonlinear classification models. ANN

successfully recognizes the malicious intrusion through feature selection and analysis of crit-

ical infrastructures [57, 32, 81]. The advantage of ANN detection is that ANN approaches

can capture more characteristics from the undisciplined data samples and lead to a good clas-

sification result [36]. However, its main drawback is that ANN approaches can not train a

precise model for the large-scale dataset, even reduce the classification performance. Among

ANN techniques, the EBP (Error Back Propagation) algorithm has been mostly utilized

to solve the issues of classification and approximation [67]. However, in terms of resource

demand, the consumption of training an EBP model is high and the accuracy performance is

not always global optimal. In contrast, the RBF (Radial Basis Function) network can have

a faster training speed and a higher accuracy performance [61] while training the large-scale

data samples.

Compared to the traditional ANN approaches, a RBF network-based Android malware

detection method can improve the performance in which the heuristic approach of clustering,

K-means algorithm, calculate and select the centers of the large dataset. The clustering

method will calculate the Euclidean distance among the large amount of data points which

measures the similarity of malicious or benign samples. The RBF hidden centers can be

dynamically selected by a heuristic approach and the large-scale datasets of 2550 Android

apps are gathered by our automatic data sample collector. We design and implement the

algorithms of the RBF network and the Error Back Propagation (EBP) network.

29

Chapter 4

System Design

In this chapter, we introduce our designs for Android malware detection and present an

automatic data collector design in our study, including local machine learning techniques,

parallel malware detection techniques, and RBF network-based malware detection.

4.1 Overview of Multiple Kernel Features

To differentiate malware applications from benign applications in the Android market,

we have gathered Android information of the kernel block which is similar to the Linux ker-

nel parameters in PCB via cellphones. These samples of parameters of Android applications

reflect the changes of CPU and memory when malicious apps attempt to steal critical infor-

mation of administrators or normal users. With our collection of 550 Android applications,

where each app contains 15,000 data records composed of 112 kernel parameters, scanning

the entire file to locate the analogical attributes is unfeasible manually. Furthermore, each

original data record or reduced data record includes the high dimensional features. There-

fore, choosing a good subset of these features influences the detection results of out-of-sample

malicious data. Typically, short sampling lists ignore the hidden characteristics of learning

data sets.

4.1.1 Overview of Malware Behavior in Kernel Level

Different malware apps can be injected in different layers of operating systems (e.g.,

application layer, kernel image layer, BIOS layer or CPU layers [78]). Potentially, to steal

significant information, such as user passwords or bank account data, attackers inject a virus

in the application level of Android systems by masquerading themselves to useful software

30

or applications. Moreover, a Trojan horse fakes the authentic application to persuade users

to install it, so that the intruder can control a user’s next operation in his cellphone. In

existing user mode of Android systems, it is difficult to dig out anomalous behavior from

good processes since the attacker hides the modification in other applications. A common and

profitable technique to perceive the malicious intrusion is to capture the process’s exceptions

in the kernel module during the systemś execution.

While malicious software is running as a regular program, some programs are altered

with the adjustment of the kernel’s task augments, particularly physical or virtual memory

usage. In total, there are more than 30 parameters of memory usage to facilitate the memory

manipulation in the Linux kernel code. 20 percent of the total parameters, with obvious

behavioral footprints, is helpful to detect malware. In this work, we use 112 kernel parameters

of tasks and processes for the behavior-based malware program detection.

With more bizarre behaviors at the kernel level, malicious programs attempt to grab

more interaction resources (e.g., CPU, memory, disk, or system calls [55, 76]), for obstruct-

ing other normal programs. From the task structure footprint collected in our database, the

information of a memory usage of the current process are referenced and modiified more

frequently than the others. The attributes of the active memory structure can aid defenders

to detect these well-camouflaged malicious processes in Android applications, since the be-

havior models in terms of memory features are different between malware and nonmalware

systems. Retrieving the active process’s footprint, e.g., pages swapping, pages mapping or

pages sharing, is significant in learning kernel behaviors.

4.1.2 A Case Study of Features in Malware Vs. Goodware Distribution

To illustrate the importance of relative kernel parameters, the scatter distribution of

malware and goodware apps is shown in the figures (Fig. 4.1, Fig. 4.2, Fig. 4.3, and Fig. 4.4),

where Shared vm, Total vm and Signal nvcsw stand for the number of shared pages or files

of memory mapping address of a process, the total number of memory pages utilized by all

31

Total_vm
12.8 12.9 13 13.1 13.2

S
h

ar
ed

_v
m

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6
Distr. of Benign and Malware Sampling

Benign
Malware

Figure 4.1: 2D Distribution of 100 benign and 100 malware samples with Shared vm and
Total vm

VMA regions in the current process, and the number of volunteer context switches a process

makes, respectively.

Fig. 4.1 shows the 2D distribution of 100 benign and 100 malware samples, and each

sample contains 10 instances in discrete time points. The benign samples are mainly dis-

tributed in the top-right area comparing the malware locating in the bottom-left quarter.

However, among all the instances, there are a large amount of benign samples overlapping

with the malware at the range: Total vm ∈ [12.9, 13], Shared vm ∈ [3.5, 3.7]. To classify

the two applications precisely, more behavior-based features, in terms of kernel parameters,

have to be introduced for correctly transforming them to a multi-dimensional space.

32

S
ig

n
al

_n
vc

sw

0

1

2

3

4

5

6

7

8

9

Total_vm
12.8 12.9 13 13.1 13.2

Distr. of Benign and Malware Sampling

Benign
Malware

Figure 4.2: 2D Distribution of 100 benign and 100 malware samples with Signal nvcsw and
Total vm

From the distribution in terms of the Total vm horizontal axis and the Signal nvcsw

vertical axis in Fig. 4.2, the benign and malware samples aggregate at upper-right and lower-

left areas, respectively. Furthermore, the non-overlapping fields also apparently present the

discipline of goodware and malware binary classification. In Fig. 4.3, the malware scatters

formally together in the similar position as Fig. 4.1 and Fig. 4.2. Seemingly, malware samples

can be differentiated from the goodmalware via Signal nvcsw and Total vm of Fig. 4.2 or

Signal nvcsw and Shared vm of Fig. 4.3.

Should we add more kernel parameters to classify these samples? To answer this ques-

tion, 3 combined parameters are examined and shown in Fig. 4.4. The majority of malware

33

S
ig

n
al

_n
vc

sw

0

1

2

3

4

5

6

7

8

9

Shared_vm
3.2 3.4 3.6 3.8 4 4.2 4.4 4.6

Distr. of Benign and Malware Sampling

Benign
Malware

Figure 4.3: 2D Distribution of 100 benign and 100 malware samples with Signal nvcsw and
Shared vm

samples are isolated to the local space, which improves the probability of separating them in

multiple dimensions and extracts abnormal behavior’s samples. These 3 features are suffi-

cient to classify the two kinds of samples based on our results under the situation where the

customer does not require an exceedingly high accurate rate of classification (commonly the

rate is lower than 90%). From the 3D view, we also found samples disobeyed straightfor-

ward arithmetical distribution since there exist few malware scatters mixing with the benign.

In fact, to utilize more process’ features is in favor of identifying the malware in Android

platforms.

34

Shared_vm

Distr. of Benign and Malware Samples with 3 Major Parameters

4.5

4

3.5

12.9
Total_vm

1313.1

0

1

2

3

4

5

6

7

8

S
ig

n
al

_n
vc

sv
Benign
Malware

Figure 4.4: 3D Distribution of 100 benign and 100 malware samples: with the increase of
the number of dimensions, benign and malware samples cluster together in different areas.

4.1.3 Measurements of Multiple Dimensional Kernel Features

The data structure, task struct [59] in process control blocks, as the descriptor of pro-

cess interaction, has approximately 100 sub-structures to store the information of executing

program. It gives us an elaborate description of a running process, e.g. process’s state, pro-

cess priority, scheduling policy, etc., after allocated by the slab allocator. While measuring

the variables constantly invoked by a malware process, some of noticeable features can be

used for delimiting the malicious behaviors. Process control blocks dynamically update and

35

Table 4.1: Key Variables of Active Processes

Parameter Description

(a) total vm total number of memory pages over all VMAs
(b) exec vm number of executable memory pages
(c) reserved vm number of reserved memory pages
(d) shared vm number of shared memory pages
(e) map count number of memory mapping areas
(f) hiwater rss high water mark of resident set size
(g) nivcsw number of in-volunteer context switches
(h) nvcsw number of volunteer context switches
(i) maj flt number of major page faults
(j) nr ptes number of page table entries
(k) signal nvcsw number of signals of volunteer context switches
(l) stime time elapsed in system mode

s

POR(Mal.)
MMS(Ben.)

Figure 4.5: total vm

maintain process identification data, process current state and process control information,

so the method of mining PCB in Linux operating system was proposed to detect and predict

malware applications in [65, 76, 84]. But the researcher calculated cumulative variance in

different time windows after discrete cosine transformation of each instance’s value, which

introduced more noises and errors if choosing an inappropriate window size in time series.

36

s

POR(Mal.)
MMS(Ben.)

Figure 4.6: exec vm

s

POR(Mal.)
MMS(Ben.)

Figure 4.7: reserved vm

Multi-dimensional datasets have more challenges in mathematical statistics and analy-

sis in terms of data collection and storage capability [41]. As a matter of fact, not all the

collected features are useful for distinguishing the malicious software under many cases. In

our work, the dimension of the data is also reduced to a suitably short list for performance

37

s

POR(Mal.)
MMS(Ben.)

Figure 4.8: shared vm

s

POR(Mal.)
MMS(Ben.)

Figure 4.9: map count

improvement. Meanwhile, we also measure the key process’ features and analyze their phe-

nomena illustrated in Table 4.1, Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig 4.10,

Fig. 4.11, Fig 4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15, and Fig. 4.16.

38

s

POR(Mal.)
MMS(Ben.)

Figure 4.10: hitwater rss

s

POR(Mal.)
MMS(Ben.)

Figure 4.11: nivcsw

Table 4.1 shows the names and descriptions of 12 key parameters of tast struct in

PCB. In practice, we collected all the variables of process structure in Table 5 [1] and classi-

fied the two kinds with them, including 48 parameters of memory usages, 30 parameters of

auditing signals, 15 parameters of scheduling information, 6 task state parameters and 13

39

s

POR(Mal.)
MMS(Ben.)

Figure 4.12: nvcsw

s

POR(Mal.)
MMS(Ben.)

Figure 4.13: maj flt

parameters of other information on context switches and parent process execution. Theo-

retically, more dimensions of selected parameters among the total 112 parameters gain more

accurate experimental results. However, high-dimensional features can lead to the classifi-

cation challenges in which data is measured and tracked at a very short sampling interval

along with increment of time overhead and hardware demand in the precise classification. We

40

s

POR(Mal.)
MMS(Ben.)

Figure 4.14: nr ptes

s

POR(Mal.)
MMS(Ben.)

Figure 4.15: signal nvcsw

designed dimensionality reduction models to percolate features and summarized the major

and commonly-used features in Table 4.1 according to the weights of training examples.

We examined the features in Table 4.1 and their variation tendency between the fine

time slices in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig 4.10, Fig. 4.11, Fig 4.12,

Fig. 4.13, Fig. 4.14, Fig. 4.15, and Fig. 4.16. The benign application which is a safe and

41

s

POR(Mal.)
MMS(Ben.)

Figure 4.16: stime

stable finance APK (Android Package Kit) app implemented by Microsoft Corporation,

MSN Money-Stock Quotes & News Free 1, is installed into the Android platform for analyzing

feature trend. A Trojan virus, Porns.apk 2, accesses the information of telephone services,

manipulates the SMS operation, and steals the account privacy. The interesting traits of

the two APK apps are depicted in Fig. 4.5, Fig. 4.6, Fig. 4.7, Fig. 4.8, Fig. 4.9, Fig 4.10,

Fig. 4.11, Fig 4.12, Fig. 4.13, Fig. 4.14, Fig. 4.15, and Fig. 4.16. As we can see from the

12 figures (a)-(l), none of the features of process execution converge at some steady state.

In contrast, the malware lines of the selected features approach a smooth and steady status

after a sharp growth. Take Fig. 4.8 shared vm as an example, the vertical value of the red

line representing benign application exceeds the blue dash line of malware applications at

the 2nd second. The vertical unit of shared vm parameter is 105 and the same as shown in

Fig. 4.1. The points behind the crossing point (1.7, 3.57) fall into two clusters instead of

aggregating to some points again as the value of shared vm, but there are few noise points at

1http://apkpc.com/apps/com.microsoft.amp.apps.bingfinance.apk
2http://www.getjar.com && https://www.virustotal.com

42

point (2.75, 3.58) which disturbs the feature extraction after benign and malware processes

become stable.

Unlike non-malware apps which request reasonable resources discretionarily, malware

apps require resources at the beginning, thereafter maintaining a steady status over a long

time duration. The parameters listed in Table 4.1 exhibit this distinct trends of Fig. 4.5,

Fig. 4.6, Fig. 4.7, and Fig. 4.8, Fig. 4.9, Fig 4.10, Fig. 4.11, Fig 4.12, Fig. 4.13, Fig. 4.14,

Fig. 4.15, Fig. 4.16 between malware and nonmalware. In detail, Fig. 4.5, 4.6, 4.7, and 4.8

indicate the number of different types of memory pages is related to malware detection.

Besides, mapping counts of Fig. 4.9, the maximum of RSS from Fig. 4.10, major page faults

in Fig. 4.13, and page table numbers in Fig. 4.14 are also significant to identify malicious

behaviors. The signal information of volunteer context switches of Fig. 4.15, and system

time from Fig. 4.16 have the similar trends with others. As shown as Fig. 4.11 and Fig. 4.12,

it seems that the two parameters, the number of in-volunteer context switches (nivcsw) and

the number of volunteer context switches (nvcsw), follow the linear distribution as the time

goes on.

4.2 Data Processing

4.2.1 Data Cleaning and Data Filling

Each instance of the Android kernel structure includes 112 fields and each field value

is translated into numerical format during data storage procedure. Detecting or correcting

corrupt data instances is necessary for linear and nonlinear classifiers. Therefore, when half

of the 112 fields of the data instance is inaccurate, we remove this record from its database.

However, if only few fields are missed or corrupted, we replace these fields with their expected

values to preserve data consistence.

Since the data collector analyzes Android applications for a short interval and obtains

15,000 data instances per .apk application while executing an application, there are repeated

and redundant data instances for corrections of randomly missing data. After the data

43

cleaning is accomplished for repairing the data inconsistency, we remove the repeated data

to improve the data quality by comparing each row of datasets with the rest of rows.

In order to approach ideal data for training classification models, standard procedures

are required to improve the quality of data for modeling. After data cleaning and reducing,

all data is converted into numerical value with a [0,1] or [-1,1] range by a normalization or

standardization function for further model training. There are two methods to process these

numerical data samples as shown as below, 0-1 scaling of Eq. (4.1) and Z-score scaling of

Eq. (4.2),

X
′

i = (Xi −Xmin)/(Xmax −Xmin), X
′ ∈ [0, 1] (4.1)

X
′′

i = (Xi − µs)/σs (4.2)

In Eq. (4.1), X
′
i , Xi, Xmin, Xmax represent the new data value after transformation, the orig-

inal data value in a column, the minimal value among all the data samples in the same

column with each original value, the maximal value among all the data samples in the same

column with each original value, respectively. X
′′
i , Xi, µs, σs of Eq. (4.2) represent each new

data value, each original value of a column, the expected value in the same column with

each original value, and the standard deviation value in the same column with each original

value.

The method in Eq. (4.1) is applied to normalize our streaming data generated by using

the smartphones. Moreover, this method guarantees that all new features will be not more

than one and not less than zero. A. Kusiak proved that the classification accuracy generated

from datasets can be improved with this specific feature bundles [54].

4.2.2 Dimensional Reduction Methods

Traditional analytical procedure fails to further authenticate malware and non-malware

data examples with such large dimensions. In mathematical domains, many methodologies

decompose high dimensions to low dimensions, preserving the consistency of the original

44

data. The favorable techniques are mostly used in computer science for constructing pre-

dictive models. Linear and nonlinear dimension reduction techniques are very popular in

machine learning when facing pattern recognition with such high-dimensional features. In

this study, we extract some important features and assign the related weights in both meth-

ods.

Simplifying the issue of dimension reduction, we introduce the statement [40] on the

problem as the following form: given a k-dimensional variable vector x=(x1, x2, ..., xk)
T , find

a low-dimensional alternative, y=(y1, y2, ..., ys)
T with s ≤ k. Each variable of column vector

x represents a feature in our dataset, where dimension k equals to the number of original

parameters in Table 5 [1]. The vector y contains fewer or equal number of original features

with s dimensions.

Assuming there are n data instances in total, each row is a k-dimension variable x with

mean E(x) = µ = (µ1, µ2, ..., µk) and covariance matrix E(x− µ)T (x− µ) , Σk×k. We

denote the training data matrix with n instances by X= xi,j, 1 ≤ i ≤ k, 1 ≤ j ≤ n, moreover

µi as the mean of the i-th variable (feature) and σi as the i-th variable’s standard deviation,

respectively. We normalize the entire training matrix by (xi,j − µj)/σj, where each value

of X subtracts the mean of the i-th variable with µi = 1/n
∑n

j=1 xi,j, divide the standard

deviation σi = 1/n
∑n

j=1(xi,j − uj)2.

The linear dimension reduction yields the result of each s ≤ k component y, being a

linear weighted combination with original variables: yi = wi,1x1 + wi,2x2 + ... + wi,kxk with

i = 1, 2, ..., s. This formula is transformed to describe all the reduced s dimensions as the

below expression:

y = Wx, (4.3)

where W is a s×k weight matrix, so the k dimensional vector x is mapped to a s dimensional

vector y for s ≤ k, the new combination y is the hidden features. There are many state-of-

the-art and matured dimension reduction methods in machine learning literatures. In this

45

study, we investigate these strategies of principle component analysis, chi-squared statistic

and information gain for lowering the dimension of the input data.

Principal Component Analysis (PCA) [48] attempts to find a linear combination of the

original data with its variance in which a larger value represents the more important to

dimension reduction. We have k dimensions in the training data and testing data and PCA

generates k Principal Components (PCs) of the original data where not all PCs are necessary

to reduce dimensions. The most important s variables are determined during the procedure

of spectral decomposition of the covariance matrix Σ. Matrix Σ is a k × k square matrix,

decomposing to be written as

Σ = UTΛU, (4.4)

where Λ = diag {λ1, λ2, ..., λk} is the diagonal matrix of singular values with the descending

order λ1 ≤ λ2 ≤, ...,≤ λk and U is a k × k orthogonal matrix with singular vectors. The

PCs are given by the s rows of s× n matrix S as below,

S = UX, (4.5)

where the first s singular vectors of matrix U contains the smallest standard deviation of

X. Other linear dimension reduction techniques are very similar to PCA, decomposing the

covariance matrix to the form as (4.4). Factor Analysis (FA) [22] proposes some assumptions

of s-factor model where the k-dimension vector x = Ak×sfs×1 +uk×1 becomes the zero-mean

one and A, f, u are constant matrix, common factors and specific factors, respectively.

Additionally, the covariance matrix Σ is written as

Σ = AAT + diag(ϕ11, ϕ22, ..., ϕkk), (4.6)

where diag(ϕ11, ϕ22, ..., ϕkk) is the covariance matrix of µ which has E(µ) = 0, Cov(µi, µj)

= 0 for i 6= j. This technique has several assumptions in decomposing covariance matrix,

46

while PCA seeks to the relevant singular values by decomposing its covariance matrix Σ

without considering the mathematical hypothesis.

Chi-squared statistical dimension reduction [83] has been used in the high-dimensional

data preprocessing as feature selection because it conserves the original data input without

rotating the selected features. In addition, chi-squared technique proves less time-consuming

than PCA in scientific computation. Compared to PCA, chi-squared method does not require

to decompose a large covariance matrix, but rather calculate the values of independence of

each variable. The chi-squared measure [56] evaluates the independence between the feature

and categories. It constructs the contingency table according to the value of input feature

as shown as Table 4.2, in which ni is the number of instances whose feature value equals to

ci, and nmi, nbi are the frequency of the malware and benign instances with feature value ci.

There is the summation (n) of the number of all malware instances (nm) and the number

of all benign instances (nb). The chi-squared metric of the i-th feature is defined in the

following formula (4.7)

χ2
i =

r∑
j=1

(
nmj − µmj

µmj
)2 + (

nbj − µbj
µbj

)2, (4.7)

where µmj = njnm/n, µbj = njnb/n are the expected values of the malware frequency and

benign frequency with the input value cj, respectively. The parameter r stands for the

number of the instances cj. The feature is more relevant to the accurate classification if the

result from (4.7) is much larger than other features. We select s features empirically in all

sorted features.

Correlation method [91] can identify the relevant features for high-dimensional data.

For this approach, correlation coefficient is the most well-known measure to evaluate the

goodness of selected features for classification. Suppose we have a class vector X and an

47

attribute vector Y, the correlation coefficient c is given by the following formula (4.8)

c =

∑
(xi − x̄i)(yi − ȳi)√∑

(xi − x̄i)2
√∑

(yi − ȳi)2
, (4.8)

where x̄i is the mean of X and ȳi is the mean of Y. The higher value of c represents the more

predictive feature to the class concept.

Information Gain [63] which is based on the information theoretical concept of entropy,

can evaluate the association between features and categories as well as correlation technique.

The entropy of a class vector X is defined as Eq. (4.9)

H(X) = −
∑
i

P (xi)log2P (xi), (4.9)

and the conditional entropy of X after an attribute variable Y is defined as Eq. (4.10)

H(X|Y) = −
∑
j

P (yj)
∑
i

P (xi|yj)log2P (xi|yj), (4.10)

where P (xi) is the probability of values of the variable X, P (xi|yj) is the probability of the

variable X given the values of Y, and P (yj) is the probability of Y. The information gain

(IG) is given by the formula (4.11)

IG(X|Y) = H(X)−H(X|Y). (4.11)

For the sake of dimension reduction, other linear and nonlinear techniques gain similar

results of feature selection as well, such as information gain, correlation, gini index and

SVM. Although these techniques contain a bit of differences in mathematical theory and

implementation, the order of their weighted features exists similarity.

48

Table 4.2: Contingency Table of i-th Feature and Category in Training Set X

Value M(Malware) B(Benign) SUM
c1 = xi1 nm1 nb1 n1 = nm1 + nb1
c2 = xij nmj nbj n2 = nmj + nbj
c3 = xik nmk nbk n3 = nmk + nbk
...

cr = xil nml nbl nr = nml + nbl
j, k, l ∈ (1, n] nm nb n = nm + nb =

∑r
s=1 ns

4.3 Local Machine Learning Methods

Naive Bayes This probabilistic model [66] trains the dataset based on Bayes’ theorem

considering the strong independence between each features. The Naive Bayes classifiers are

highly scalable and linear in the number of features of a learning problem, which requires

a number of parameters. Maximum-likelihood training can be done by evaluating a closed-

form expression, which takes linear time, in stead of expensive iterative approximation as

other types of classifiers. This statistical model requires to achieve the expected values and

variances from a large amount of input data while training a suitable detection model.

Decision Tree Decision tree classifier [52] is one of the predictive modelling approaches

for data mining and machine learning. This classifier models can take a finite set of values.

In these tree structures, leaves represent class labels and branches represent conjunctions

of features that lead to those class labels. The classifier of decision tree adopts recursive

partition to find the best tree from a given dataset. Thus it utilizes the divide and conquer

method to perform the training of the input data. In contrast to other methods, decision

tree is straightforward to interpret in a clear graph with nodes (denotes the relevant feature),

leaves (denotes the categories), and edges (denotes the range of node values).

Neural Network Neural Network applies the mathematical model [45] to learn the charac-

teristics of the input dataset. It can construct neurons of first layers according to the input

features, then decide the weights of each feature in a feed-forward neural network by back-

propagation. The second layer contains two neurons as the output, generally, the number

49

of the hidden layers does not exceed four. More complicated neural network will have more

layers of neurons, some have increased layers of input neurons and output neurons. The

synapses parameters are called weights that manipulate the data during the calculation of

the whole network.

4.4 Parallel Malware Detection

4.4.1 In-Memory Classification

Resilient Distributed Datasets (RDDs) of a Spark system are used to perform in-memory

computations and stored in shared memory for machine learning’s iterations [93]. RDD pro-

gramming can be implemented in Scala [8], which is an object-oriented, efficient programming

language. The Spark system loads gigabytes of datasets to a HDFS file [24] from a local node

and transforms them into a RDD for the further data processing. There are fundamental

RDD operations [92], such as map(f: T ⇒ U), filter(f: T ⇒ Bool), reduceByKey(f: (K,V)

⇒ V), etc., to promote iterative machine learning algorithms.

To expedite the computation for a large dataset, we introduce the in-memory classifi-

cation algorithm on Spark systems. As shown in Algorithm 1, Mesos cluster [47] and Spark

master [93] are configured by Spark configuration parameters and functions (Line 3 and Line

4). conf and sc denote the configuration parameters. Then the original data is processed

into the RDDs format (Data) stored in memory and is mapped to (K, V) pairs for further

predictions (Lines 7-8). RDDs are cleaned and transformed for precise classifications when

the flags CleanData and TransformData are set by customers (Lines 9-13). When training

the predicting models, the detailed parameters, Pre MSE(Mean Squared Error), Pre Iter

(# of Iterations) are specified by users. Through training the data iteratively, finally the

customer can obtain a model stored in memory until the status reaches the convergence

(Lines 15-19). Predicting the new data samples by applying the in-memory model will be

executed in Line 21 and then the predicted results will be returned to the user.

50

Algorithm 1 In-Memory Classification on Spark

1: Initialization
2: // Set Configuration of Mesos and Spark Masters
3: conf ← SparkConf().setMaster();
4: sc← SparkContext(conf);
5: Data Processing
6: // Parse Input of .CSV files to fields and map data to (K, V) pairs in memory
7: Data← sc.textF ile().split();
8: Data.map(r ⇒ (Labels, V ectors));
9: if (CleanData ∧ TransformData) then

10: CleanAndTransform(Data);
11: else if (CleanData) then
12: Clean(Data);
13: end if
14: Train Models and Predict Results
15: while (MSE < Pre MSE) ∨ (Iter < Pre Iter) do
16: Model ← TrainModelWithAlgo(Data);
17: Outputs← ApplyModel(Data);
18: MSE ← SUM((Outputs− Labels)2);
19: end while
20: while (PredictData) do
21: Output← ApplyModel(PredictData);
22: Return Output;
23: end while

4.4.2 Parallel Classifiers

In our design, four popular classifiers are used to detect the Android malware: Deci-

sion Tree, Naive Bayes, Logistic Regression and Support Vector Machine. Here we denote

Decision Tree, Naive Bayes, Logistic Regression and Support Vector Machine as DT, NB,

LR, and SVM. In addition, we compare the four algorithms based on the ROC (Receiver

Operating Characteristic) curve which is a metric for binary classifiers [25] and execution

time with different computing nodes. Fig. 4.17 shows the ROC space of four classifiers,

DT, NB, LR, and SVM. When applying these classifiers to our datasets, they generate four

separate confusion matrices that in turn correspond to ROC points [39]. The X-axis denotes

the false positive rate which equals to # of negatives incorrectly classified divides by # of

total negatives. The Y-axis denotes the true positive rate which equals to # of positives

51

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

 False positive rate

 T
ru

e
 p

o
si

tiv
e

 r
a
te

DT
NB
LR
SVM

Figure 4.17: ROC Curve of four classifiers

correctly classified divides by # of total positives. These results indicate our kernel features

from Android can be used to detect malware with a high accuracy. As we can see, DT curve

as the best classifiers among the four classifiers raises rapidly and sharply to the maximum

y-axis value. In contrast to DT, NB curve as a less accurate classifier increases slowly and

smoothly. Area Under an ROC Curve (AUC) [25] is an easy way to compare classifier per-

formance with a scalar value or a graphics demonstration. From Fig. 4.17, DT classifier

has the largest AUC area, the next are SVM and LR classifiers, and NB classifier has the

smallest AUC area (a larger AUC value represents a better and more accurate classifier).

52

Input
Layers

..
..

..
..

..

..
..

..
..

..
..

..

Hidden
Layers

Output
Layers

Input
Layers

x

x

x

x

..
..

..

f

f

f

f

f

f

g

g

..
..

..
..

..

Hidden
Layers

Output
Layers

err

∆2 =	
 g’× err

∆1 =	
 f’	
 ∑	
 w2× g’× err

w1 w2

∑	
 w2	
 × g’× err

w1 +	
 c	
 × ∆1	
 × X	

Architecture of Simple Neural Network Architecture of Error Back Propagation

Figure 4.18: Architecture of Error Back Propagation Algorithm

4.5 Designs of Neural Network

4.5.1 Traditional Neural Network (EBP)

In the EBP network, there are similar layers to the simple ANN architecture. However,

EBP requires to return errors between the outputs and the targets of the previous step of

numerical calculation. In Fig. 4.18, the errors are propagated back to all the former layers.

The error vector, err, is the difference between the known target value target → t and the

calculated value output→ o given by the activation function 4.12

oj = f(netj) = 1

1+e−βnetj
(4.12)

53

Input
Layers

..
..

..
..

..

..
..

..
..

..
..

..

Hidden
Layers

Output
Layers

Input
Layers

x

x

x

x

..
..

∑

∑

..
..

..
..

..

Hidden
Layers

Output
Layers

(𝒄, 𝝈) w

Architecture of Simple Neural Network Architecture of Radial Basis Function

..

𝐞𝐱𝐩 −∥ 𝒙 − 𝒄 ∥ 𝟐/𝝈𝟐

Clustering
Centers

Calculating
Net Value

Normalizing
Outputs

Figure 4.19: Architecture of Radial Basis Function

where β is the constant of the activation function. A smaller value of β leads to a soft

transition and a larger value of β can cause a hard transition in activation levels. In our

experiments, we set β to 1 by default.

EBP algorithm [67] provides a canonical derivation using the squared errors as in equa-

tion 4.13:

err =
n∑
j=1

(tj − oj)2 =
n∑
j=1

(tj − f(netj))
2 (4.13)

where j is the number of patterns from 1 to n, tj, oj are the target value and the output value

of the j-th pattern and function f is the same function as in equation 4.12. To reduce the

error rate of the feedforward computation, ANN needs to backward pass the error signal for

each neuron and update the weights of each neuron in hidden layers. The weight updating

54

rule is demonstrated as the following equation:

Wk+1 = Wk + c×∆× Input (4.14)

where Wk+1,Wk represent the new weight vector and the former weight vector in the same

hidden layers, respectively. Parameter c is the learning constant to control the step size of

correcting the errors and ∆ denotes the inner product of the errors of the present layer and

the derivatives of the output function. Input is the input value of each layer, note that

middle hidden layers receive their input value from the previous layer unlike the first hidden

layer which directly obtains its input value from the original or reduced input without the

calculation of intermediate ANN layers.

Fig. 4.18 indicates the procedure of updating weights for neurons in the same hidden

layer as in equation 4.14. The value of ∆2 in the output layer is computed by multiplying err

to the derivative of the output function g
′
. In hidden layers, the errors have to be calculated

by summating the product of weight W2 and ∆2. Similarly, the value of ∆1 of the hidden

layers is given by equation 4.15:

∆1 = f
′ ×

∑
W2 ×∆2 = f

′ ×
∑

W2 × g
′ × err (4.15)

Following the weight updating rules of 4.14, the weights of the hidden layers, W1, can be

updated by adding the product of learning rate c, ∆1 and the input value X, which are also

shown in Fig. 4.18. With thousands of iterations of updating weights, the overall error rate

can be reduced to a lower level.

4.5.2 Enhanced Neural Network

Radial Basis Function (RBF) [29] network is proposed to solve the problems of nonlinear

classifications or nonlinear approximation. A typical EBP network attempts to reduce the

global error rate through less iterative calculations. However, EBP network is not suitable

55

for the exascale computation of millions of data samples. RBF network utilizes a Gaussian

kernel in the hidden layers to accomplish the nonlinear transformation of input samples,

which enhances the training performance of exascale datasets.

Fig. 4.19 shows the architecture of a RBF network, where the RBF network contains

three similar layers to EBP, input layers, hidden layers and output layers. Traditionally,

its input layers provide the original or reduced datasets for its hidden layers. However, its

hidden layers perform nonlinear transformation and maps the original space to a new space

using the following equation 4.16:

netj = exp(−‖X − Cj‖2 /σ2
j) (4.16)

where netj, X, Cj, σ represent the j-th neuron’s net value, the input vector, the j-th neuron’s

center position, and the j-th neuron’s standard deviation, respectively. ‖.‖ denotes the

Euclidean norm and ‖X − Cj‖ stands for the Euclidean distance between the pattern and

the center. The RBF network utilizes the center’s information C and its standard deviation

between input layers and hidden layers.

The output layers of a RBF network need to combine each output from hidden layers

as in given function 4.17:

o =

np∑
j=1

W × netj (4.17)

where o, j,W, netj represent the output value of output layers, the number of neurons from

1 to np, and the j-th neuron’s net value, respectively. Actually, this step of RBF network

demonstrates how to select the closest center (normalizing the output) for the input value

among all the net values by 4.16. RBF network includes three steps: clustering centers,

calculating net values and normalizing outputs. The step of clustering centers is demanded

to be finished by the clustering algorithms before applying the RBF transformation. Then,

the transformation given by equation 4.16 can calculate the net values, meanwhile output

values also can be calculated according to the output function 4.17.

56

4.5.3 RBF Network Design and Implementation

In this section, we explain how to design a practical RBF network and implement it for

effectively classifying Android malware and goodware. From the brief description of the RBF

network in Section 2.3, a RBF network needs retrieve the centers of data points’ before its

nonlinear transformation. Therefore, we choose the K-means algorithm to calculate the data

points’ centers. Then, according to the data centers, we can train easily the RBF neurons

for each data point and evaluate its accuracy rate.

K-means to Calculate RBF Centers

K-means algorithm can separate a clustering of data points into K regions. It selects

the K centers randomly before its first iteration and then iteratively performs the following

steps:

1. Calculate the centroid which is closest to the current data point and assign the current

data point to this cluster.

2. Update the selected cluster which is the closest to the current data point with the

mean of the new dataset including the current data point.

Algorithm 2 explains how K-means clustering methods are used to find a locally optimal

partition of large datasets. Firstly, we initialize them by randomly choosing k data samples

from the dataset or using the previous results (Lines 2-6). Sj is the sum of all the data

points belonging to the j-th center, nj is the total number of all the data points belonging

to the j-th center. During the procedure of iterative computation of k clustering regions,

additional variables, sumj and nj, are required to temporally save the intermediate results

(Line 7). The K-means algorithm assigns each data point xi to a region Dj that has the

closest centroid to xi, and calculates the relevant cluster statistics (Lines 9-16). Meanwhile,

the centroids of the k clusters are updated with the mean of the dataset of these clusters

(Lines 17-19). The execution of this algorithm can be terminated until all the centroids of the

57

Algorithm 2 K-means clustering

1: Input: Training dataset D, number of clusters k
2: if the first iteration then
3: Initialize the k clusters randomly
4: else
5: Read the k clusters cj from the last step
6: end if
7: Set sumj = 0 and nj = 0 for j = {1, ..., k}
8: while TRUE do
9: for xi ∈ D do

10: for j ∈ {1, ..., k} do
11: jmin= arg min ‖xi − cj‖
12: sumjmin = sumjmin + xi
13: njmin = njmin + 1
14: Dj ← xi
15: end for
16: end for
17: for j ∈ {1, ..., k} do
18: cj = sumj/nj
19: end for
20: end while

k clusters rarely changes or the number of iterations exceeds the threshold that customers

set.

Select the Kernel Widths (σ)

From the activation function of the RBF network, we require the centroid cj and the

standard deviation σj to decide the curve of the Gaussian Function. Section 4.5.3 has

introduced how to calculate the centroid cj and we explain how to effectively select the

kernel width σj in this section. A very larger or small σj, the kernel width [21], can cause

the numerical issues with gradient descent algorithms. Therefore, we adjust the kernel widths

dynamically based on the different parameters of the Gaussian basis function.

The kernel width can be determined by different setting schemes [72]. In this study,

we investigate a popular method for the setting of the kernel widths. In these cases, the

K-means method is utilized to calculate the centroid cj. The kernel width σj is set to the

58

mean of Euclidean distances between data points and their cluster centroid as the following

equation (4.18)

σj = 1
nj

∑
x∈Dj

‖x− cj‖ = 1
nj

∑
x∈Dj

(xi − cij)2 (4.18)

In this situation of kernel widths, the values of the parameters nj, Dj, cj, which represent

the number of data points belonging to the j cluster, the collection of the j cluster, and the

j clustering center, respectively, are retrieved from the Algorithm 2.

Gradient Descent to Reduce the Error Rate

The RBF network can iteratively reduce the error rate by gradient descent to obtain

the minimal error (4.19)

TE =
n∑
i=1

k∑
j=1

(ti,j − oi,j)2 (4.19)

where ti,j is the target response of the i-th output from the j-th neurons and oi,j is the

actual response of the i-th output from the j-th neuron. Actually, the value of ti,j is known

and the value of oi,j is achieved by the equation (4.17). The minimal error is that the

derivatives of the parameters clustering center cj, kernel width σj and the output weight wj

vanish. Therefore, an iterative computation of the gradient descent with the direction of the

negative gradient −∂TE
∂w

,−∂TE
∂c
,−∂TE

∂σ
can solve this issue.

Combining the Gaussian basis function with the error reduction of the gradient descent,

the updating rules of the RBF network can be obtained as the following equations (4.20),

(4.21), and (4.22):

∆wj = −α
n∑
i=1

netj(xi)(ti,j − oi,j) (4.20)

∆cj = −α
n∑
i=1

netj(xi)
xi−cj
σ2
j

k∑
j=1

wj(ti,j − oi,j) (4.21)

∆σj = −α
n∑
i=1

netj(xi)
(xi−cj)2

σ3
j

k∑
j=1

wj(ti,j − oi,j) (4.22)

59

Algorithm 3 Gradient Descent with Constant Learning Rate

1: Input: Training dataset D, α, TEmin, clustering centers set C, kernel width set σ
2: Randomly choose the weights vector W , initialize the target output vector TP and the

input vector X with dataset D
3: while TE > TEmin do
4: NET = EXP (−||X − C||2/σ2)
5: OP = W ∗NET
6: ∆w = −α ∗NET ∗ (TP −OP)
7: ∆c = −α ∗NET ∗ (X − C)/σ2 ∗W ∗ (TP −OP)
8: ∆σ = −α ∗NET ∗ (X − C)/σ3 ∗W ∗ (TP −OP)
9: W = W + ∆w,C = C + ∆c, σ = σ + ∆σ

Compute the new total errors TE
10: OP2 = W ∗NET
11: ERR = TP −OP2
12: TE = sum(sum(ERR. ∗ ERR))
13: end while

where α is the learning rate constant which is significant to control the convergence to a

minimum [16]. Here we set the learning rate to a small constant value to simplify the training

procedure and avoid overshooting the minimal errors. Algorithm 3 shows the procedure of

the gradient descent with the constant learning rate. The input values of Line 1 are obtained

from Algorithm 2. In the iterative computation, the three values, ∆w,∆c,∆σ, are used to

update the previous values of W,C, σ (Lines 6-9). Then the new total errors can be triggered

(Lines 10-12).

4.6 Multiple Dimensional Kernel Feature Collector

The multiple dimensional kernel feature’s collector shown in Fig. 4.20(a), running both

on Android devices and storage servers, is mainly composed of three components: (1) The

scheduling mechanism of a malware repository, (2) message (package) communication, and

(3) data processing of compression in the Android kernel module, transformation and storage

via several User Datagram Protocol (UDP) services of lightweight data package transmission

and Hypertext Transfer Protocol (HTTP) of the request-response module. In particular,

with our stated aim of automatically scanning the malicious information of the current task

60

Process A

M1

Task Resources

S1
Mn

Sn

Message Comm.

...

...

Time

Data Processing

Data Storage

S
c
h
e
d
u
li
n
g

M
e
c
h
a
n
is
m

Computer
Side

Android
Side

……

Retreive PID

Proc File
Direcotry

Proc File
Directory

Create Write

Listen Proc

Temporal Storage

Send to UDP services

UDP
5UDP

4UDP
3UDP

2UDP
1

Data Transformation

Data Compression

HTTP Server

Database Storage

(a) Architecture of Feature’s Collector (b) Message Communication (c) Data Processing

1

2

3

Figure 4.20: Overview of Multiple Dimensional Kernel Feature’s (Raw Data) Collector. In
(b), Message Communication Module in Local Computer . In (c), Data Processing Module
in Android Kernel.

structure, the scheduling mechanism is designed and implemented to dispatch the setup of

malicious apps concurrently. Note that in fact, customers do not demand to retrieve such

large amount of data since they probably have installed a few malicious apps in their devices.

Here for convenience of scanning a lot of Android apps, we utilize our lightweight scheduler

based on First Come First Serve (FCFS) to manage their execution and scanning.

In our study, the scheduling component (1) in Fig. 4.20(a), is responsible for managing

the task switching between malware repositories located in the hard disk and Android devices

connected with the computer. The malware repository contains hundreds of malicious and

benign APK files with the format of .apk. The scheduler running on the computer side

61

can issue APK files from the temporal queuing pool in the Android side. To ensure the

atomicity of data records for all APK files, the process identifier of current programs as a

unique attribute is utilized to differentiate repetitive applications.

Furthermore, the message communication shown in Fig. 4.20(b) creates the intermediate

files with the format of proc file that is a hierarchical virtual filesystem and is able to read

the information of all task structures (task struct) from the Android kernel. While loading

the module into Android devices, message communication assignments, such as memory

allocation, file read operation, file write operation, are executed in coordination with the

scheduling component. Likewise, monitoring the available data and reducing the repeated

data are indispensable procedures to the system’s maintenance and succinctness. In this

part, a temporal storage pool saves the data package from running processes and transits

these messages via a UDP connection.

Additionally, the data processing component in Fig. 4.20(c) is in charge of data format

conversion, data compression and data transferring, which is divided into two parts: UDP

and HTTP. UDP services offer the data format conversion from binary to string format

for facilitating numerical calculation in future work. Meanwhile, some of the data is also

compacted to another format with less bytes. When the conversion and compression are

finished, this wrapped data pushes ahead by means of a HTTP server, triggering the data

transference from the temporal storage pool to the local database.

4.7 Normalized Feature Weights

4.7.1 Distribution of Normalized Feature Weights

Fig. 4.21, Fig. 4.22, Fig. 4.23, and Fig. 4.24 demonstrate the normalized weights’ dis-

tribution of 112 task parameters with PCA, Correlation, Chi-square and Info Gain meth-

ods and Table 5.3 shows the detailed distribution of these parameters. As we can see in

Fig. 4.21, 4.22, 4.23, 4.24, and Table 5.3, 2.1 [1], mem info and signal info achieves the

62

0%

20%

40%

60%

80%

100%

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103108113

task_state mem_info sche_info signal_info others

Normalized Weights by PCA

Figure 4.21: Normalized Weights Distribution of 112 Parameters with PCA method
(mem info & signal info top 2 most popular)

0%

20%

40%

60%

80%

100%

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103108113

task_state mem_info sche_info signal_info others

Normalized Weights by Correlation

Figure 4.22: Normalized Weights Distribution of 112 Parameters with Correlation method
(mem info & signal info top 2 most popular)

maximum number of normalized weights in (50%-100%). Theoretically, the 2 sets of task

parameters precisely identify malware behaviors from similar behaviors.

In Fig. 4.21 of normalized weights distribution of 112 task parameters with PCA, x-axis

value denotes the parameter’s number and category in Table 5 [1] and y-axis denotes the

63

0%

20%

40%

60%

80%

100%

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103108113

task_state mem_info sche_info signal_info others

Normalized Weights by Chi-­square

Figure 4.23: Normalized Weights Distribution of 112 Parameters with Chi-square method
(mem info & signal info top 2 most popular)

0%

20%

40%

60%

80%

100%

3 8 13 18 23 28 33 38 43 48 53 58 63 68 73 78 83 88 93 98 103108113

task_state mem_info sche_info signal_info others

Normalized Weights by Info Gain

Figure 4.24: Normalized Weights Distribution of 112 Parameters with Info Gain method
(mem info & signal info top 2 most popular)

value of normalized weights; mem info reserves the maximum number of higher normalized

weights (above 50%), signal info also holds larger normalized weights than sche info and

others. First of all, mem info features indicate the correlation of categorizing malware

and nonmalware behaviors. Among 48 mem info parameters, 16 out of 48 mem info

parameters retain the range (50% - 100%] of normalized weights , 8 parameters retain the

64

range [10% - 50%], 16 parameters retains the range (0% - 10%) of normalized weights,

the 8 rest of mem info do not achieve any weights. Secondly, signal info exhibits more

correlated to classification than sche info, task state and others. As we can see from the

Fig. 4.21, in 28 signal info parameters, 7 parameters achieve the range (50% - 100%] of

normalized weights and 7 parameters spread in the range [10% - 50%], 5 of them achieves the

weights in (0% - 10%), the 9 rest parameters have 0 weights. For 15 sche info parameters, 4

parameters achieve the range (50% - 100%] of normalized weights, 3 out of them locate in the

range [10% - 50%], 6 parameters only achieve (0% - 10%) of normalized weights, the 2 rest

parameters are 0 weights. Furthermore, 6 task state parameters and 14 others parameters

achieve smaller weights 10%.

From Fig. 4.22, we can see the weights distributions of mem info and signal info

are similar by 2 different dimensional reduction algorithms. 48 mem info parameters are

comprised of 13 parameters in (50% - 100%], 15 parameters in (10% - 50 %], 16 parameters

in (0% - 10%] and 8 parameters equal to 0%. signal info parameters contain more param-

eters with large weights than sche info, task state and others. 7 out of 28 signal info

parameters achieve larger normalized weights (above 50%), 9 parameters locate in the range

[10% - 50%] of normalized weights, 3 parameters attain the weights in (0% - 10%), the 9 rest

parameters have 0 weights. sche info does not achieve larger normalized weights, which

only includes 7 parameters in the range [10% - 50%], 5 parameters in (0% - 10%) and the 3

rest equal to 0. 6 task state parameters and 14 others parameters achieve smaller weights

10% like PCA results.

In Fig. 4.23, x-axis value denotes the parameter’s number and category in Table 2.1 [1]

and y-axis denotes the value of normalized weights; mem info and signal info achieve

larger normalized weights (above 50%) than sche info and others, however, generally other

normalized weights are less than 20%.

65

In Fig. 4.24, x-axis value denotes the parameter’s number and category in Table 2.1 [1]

and y-axis denotes the value of normalized weights; mem info and signal info achieve

larger normalized weights (above 50%) than sche info and others.

4.7.2 Details of Normalized Feature Weights

Table 4.3 shows the details of normalized feature weights for 112 kernel features. Ac-

cording to these weights, we can select features with normalized weights (from 0% to 100%,

high weights are more than 40% and less than 100%) to train the classification models.

Table 4.3: Normalized Weights of 112 Task Parameters with PCA, Correlation, Chi-square
and Info Gain

PCA Correlation Chi-square Info Gain Sum

hash key
1

2

task state

3 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

4 2.32E-03 1.04E-02 4.58E-05 1.03E-01 1.16E-01

5 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

6 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

7 5.07E-02 2.93E-02 6.66E-04 1.52E-01 2.33E-01

8 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

mem info

9 4.84E-02 6.84E-02 6.42E-02 2.43E-01 4.24E-01

10 5.40E-01 1.23E-01 6.52E-02 2.58E-01 9.86E-01

11 5.65E-02 3.22E-03 1.44E-02 3.25E-01 3.99E-01

12 5.65E-02 3.22E-03 1.44E-02 3.25E-01 3.99E-01

13 3.94E-02 1.55E-01 5.10E-02 2.89E-01 5.35E-01

14 3.94E-02 1.55E-01 5.10E-02 2.89E-01 5.35E-01

15 3.55E-02 9.10E-02 2.36E-03 1.37E-01 2.65E-01

16 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

17 8.76E-02 2.39E-01 5.17E-02 1.75E-01 5.53E-01

18 8.76E-02 2.39E-01 5.60E-02 1.75E-01 5.58E-01

19 8.76E-02 2.39E-01 5.17E-02 1.75E-01 5.53E-01

20 8.76E-02 2.39E-01 5.60E-02 1.75E-01 5.58E-01

21 5.65E-02 3.22E-03 1.44E-02 3.25E-01 3.99E-01

Continued on next page

66

Continued from previous page

PCA Correlation Chi-square Info Gain Sum

22 5.65E-02 3.22E-03 1.44E-02 3.25E-01 3.99E-01

23 7.93E-01 6.55E-01 1.00E+00 9.40E-01 3.39E+00

24 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

25 1.81E-01 6.93E-01 3.10E-01 6.70E-01 1.85E+00

26 4.43E-01 4.03E-01 1.43E-01 3.60E-01 1.35E+00

27 8.74E-01 8.34E-01 5.23E-01 7.04E-01 2.93E+00

28 9.70E-01 8.97E-01 8.02E-01 7.75E-01 3.44E+00

29 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

30 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

31 9.50E-01 7.05E-01 4.99E-01 6.09E-01 2.76E+00

32 7.59E-01 1.00E+00 8.70E-01 1.00E+00 3.63E+00

33 9.32E-01 6.24E-01 7.68E-01 7.11E-01 3.04E+00

34 1.32E-03 1.39E-03 1.50E-06 1.33E-01 1.36E-01

35 8.76E-02 2.39E-01 5.60E-02 1.75E-01 5.58E-01

36 1.00E+00 8.46E-01 6.24E-01 7.30E-01 3.20E+00

37 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

38 6.07E-01 7.25E-01 6.23E-01 7.29E-01 2.68E+00

39 8.92E-01 9.86E-01 7.07E-01 8.39E-01 3.42E+00

40 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

41 9.75E-01 8.57E-01 7.30E-01 7.38E-01 3.30E+00

42 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

43 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

44 4.64E-01 2.28E-01 5.10E-02 2.66E-01 1.01E+00

45 6.86E-01 4.00E-01 1.01E-01 2.63E-01 1.45E+00

46 5.65E-02 3.22E-03 1.44E-02 3.25E-01 3.99E-01

47 4.87E-02 4.84E-03 9.58E-04 9.82E-03 6.43E-02

48 5.87E-01 8.24E-02 3.77E-02 5.28E-02 7.60E-01

49 5.87E-01 8.24E-02 3.77E-02 5.28E-02 7.60E-01

50 1.64E-01 3.65E-01 1.58E-01 1.54E-01 8.42E-01

51 3.07E-01 5.21E-01 1.40E-01 0.00E+00 9.68E-01

52 6.00E-01 4.13E-01 9.33E-02 1.67E-01 1.27E+00

53 4.38E-01 1.80E-01 3.97E-02 2.70E-01 9.29E-01

54 5.94E-01 2.85E-02 3.92E-03 2.36E-01 8.63E-01

55 4.38E-01 1.80E-01 3.98E-02 2.70E-01 9.29E-01

56 5.94E-01 2.85E-02 4.05E-03 2.36E-01 8.63E-01

sche info

57 7.62E-02 1.01E-01 6.77E-03 8.62E-03 1.93E-01

Continued on next page

67

Continued from previous page

PCA Correlation Chi-square Info Gain Sum

58 6.50E-01 1.26E-03 8.78E-03 2.48E-01 9.08E-01

59 5.55E-01 2.06E-01 3.31E-02 2.23E-01 1.02E+00

60 1.56E-02 2.63E-02 1.50E-04 4.27E-02 8.48E-02

61 1.17E-01 1.58E-01 1.36E-02 1.33E-02 3.02E-01

62 1.99E-01 2.77E-01 4.01E-02 4.26E-02 5.59E-01

63 6.00E-01 4.13E-01 9.33E-02 1.67E-01 1.27E+00

64 6.00E-01 4.13E-01 9.33E-02 1.67E-01 1.27E+00

65 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

66 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

67 4.76E-03 0.00E+00 3.00E-08 1.35E-05 4.78E-03

68 2.03E-02 5.24E-02 6.80E-02 1.75E-01 3.16E-01

69 2.19E-03 2.72E-02 1.00E-03 1.39E-01 1.70E-01

70 2.21E-01 2.79E-01 4.11E-02 4.30E-02 5.85E-01

71 4.89E-02 3.11E-02 6.29E-04 1.35E-01 2.15E-01

signal info

72 2.69E-02 5.31E-02 1.29E-03 1.47E-01 2.29E-01

73 9.32E-01 6.24E-01 7.76E-01 7.11E-01 3.04E+00

74 7.32E-39 0.00E+00 0.00E+00 0.00E+00 7.32E-39

75 1.75E-03 3.25E-03 6.23E-06 1.64E-02 2.14E-02

76 2.13E-42 0.00E+00 0.00E+00 0.00E+00 2.13E-42

77 4.06E-01 4.18E-01 2.83E-02 3.28E-01 1.18E+00

78 1.26E-01 1.50E-01 8.51E-03 4.84E-01 7.69E-01

79 5.48E-01 5.39E-01 5.56E-02 4.33E-01 1.58E+00

80 5.31E-01 6.29E-01 2.08E-02 4.95E-01 1.68E+00

81 2.24E-45 0.00E+00 0.00E+00 0.00E+00 2.24E-45

82 3.07E-67 0.00E+00 0.00E+00 0.00E+00 3.07E-67

83 6.12E-01 6.82E-01 1.37E-02 6.79E-01 1.99E+00

84 4.85E-01 4.23E-01 1.93E-02 4.69E-01 1.40E+00

85 3.94E-01 4.50E-01 7.55E-03 4.99E-01 1.35E+00

86 2.43E-01 2.74E-01 7.55E-03 5.00E-01 1.02E+00

87 2.70E-01 2.52E-01 1.50E-06 1.84E-01 7.06E-01

88 3.21E-01 2.43E-01 1.93E-02 2.62E-01 8.46E-01

89 5.92E-01 7.17E-01 3.18E-01 5.11E-01 2.14E+00

90 5.74E-45 0.00E+00 0.00E+00 0.00E+00 5.74E-45

91 1.78E-29 0.00E+00 0.00E+00 0.00E+00 1.78E-29

92 1.12E-64 0.00E+00 0.00E+00 0.00E+00 1.12E-64

93 4.28E-55 0.00E+00 0.00E+00 0.00E+00 4.28E-55

Continued on next page

68

Continued from previous page

PCA Correlation Chi-square Info Gain Sum

94 9.78E-05 2.48E-03 3.37E-06 8.34E-02 8.59E-02

95 6.65E-01 8.18E-01 3.52E-01 5.12E-01 2.35E+00

96 5.13E-01 5.69E-01 2.05E-01 5.21E-01 1.81E+00

97 6.34E-70 0.00E+00 0.00E+00 0.00E+00 6.34E-70

98 1.58E-02 1.22E-01 2.74E-02 1.77E-01 3.43E-01

99 1.58E-02 1.22E-01 2.74E-02 1.77E-01 3.43E-01

100 7.07E-01 1.82E-01 7.93E-01 7.10E-01 2.39E+00

101 1.05E-01 5.80E-02 9.04E-03 1.97E-01 3.70E-01

others

102 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

103 5.05E-03 4.38E-03 5.67E-06 8.03E-03 1.75E-02

104 4.18E-02 2.92E-02 4.60E-04 9.01E-02 1.62E-01

105 1.96E-71 0.00E+00 0.00E+00 0.00E+00 1.96E-71

106 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

107 5.58E-73 0.00E+00 0.00E+00 0.00E+00 5.58E-73

108 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

109 1.28E-02 8.56E-02 4.41E-03 5.33E-02 1.56E-01

110 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

111 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

112 2.66E-18 0.00E+00 0.00E+00 0.00E+00 2.66E-18

113 5.44E-17 0.00E+00 0.00E+00 0.00E+00 5.44E-17

114 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00

Concluded

69

Chapter 5

Analysis of Experimental Results

This chapter introduces the experimental results of our design, including experimental

configuration, experimental setup for data collection, experimental setup for data processing,

experimental setup for classification, and results for local classifiers, parallel classifiers and

enhanced neural network.

5.1 Experimental Configuration

5.1.1 Experimental Setup for Data Collection

To collect sufficient datasets, we deployed our data collection agents on 2 computers,

each is installed with Linux Ubuntu 14.04 system is required to compile our custom Android

system kernel modules. The module, constructed for Android 4.4 running on a Nexus 5

system [5], is compatible with different Android platforms. The Nexus Android system also

offers authentic security and computational services for customers and developers. We set

up two LG Nexus 5 smartphones to gather datasets and build our data storage pools to

retrieve datasets automatically.

Data Storage With high availability and effective scalability, Apache Cassandra database [3]

is installed to save massive data in parallel instead of a traditional relational schema. In our

experiment, we configure Apache Cassandra version 2.1.11 for instance collection and data

storage. Owing to the complexity of the data structure, the Cassandra of column indexes is

a NoSQL alternative to compress redundant data records. We create a malware data table

and a benign data table to synchronously store data records from the Android phones.

Data Collector In order to repeatedly collect Android data, we separate the operation into

two steps: HTTP Insertion and UDP Listening. HTTP insertion creates a connection to

70

execute basic SQL statements and operate data transactions between Cassandra database

and Android product. UDP Listening transits the data processing to background execution

and tracks log files of IP addresses and port connections. The two steps simplify repetitively

manual collectors by switching HTTP data operation and UDP operation listening when

triggering the analysis signal. Here we set check constraints [20] to inspect the completeness

and correctness of collected data samples in the Cassandra database.

5.1.2 Experimental Setup for Data Processing

Data PreProcessing We evaluate the four popular dimension reduction algorithms using

by the open-source tool, RapidMiner [7], which is installed in an OS X Yosemite system of

3.5 GHz Intel Core i7, 16 GB DDR3, 1 TB hard disk, and 2GB Graphics. Considering the

comparison of performance with our WBD technique, we also design a data preprocessing

program in MATLAB R2015a for calculating variances after DCT transformation. The

intermediate data results are saved temporally in the hard disk as the input data of the

precise classification.

Data Instances The training dataset is comprised of 0.6M lines malware data records

and 0.6M lines benign data records after removing the redundant records, where each line

includes relevant features. Totally, we collect training data of 190 malware Android apps

and 190 benign Android apps, taking 15K samples for each Android application. In contrast,

the testing dataset contains 85 malware apps and 85 benign apps, each of them including

0.3M lines data records, respectively.

5.1.3 Experimental Setup for Classification

Firstly, we configure the machine learning environment for data training and testing in

2 machines, one has 3.5 GHz Intel Core i7, 16 GB DDR3, 1 TB hard disk, and 2GB Graphics

and another with 2.6 GHz Intel Core i7, 8 GB DDR3, 758 GB hard disk and 4GB NVIDIA

GeForce Graphics. Weka, RapidMiner and Clementine are different machine learning tools

71

Table 5.1: Hadoop Configurations

Parameter Name Value
yarn.nodemanager.resource.memory-mb 22GB
yarn.nodemanager.vmem-pmem-ratio 6
yarn.scheduler.minimum-allocation-mb 1GB
yarn.app.mapreduce.am.resource.mb 2GB
yarn.scheduler.maximum-allocation-mb 2GB
mapreduce.map.memory.mb 2GB
mapreduce.reduce.memory.mb 2GB
mapreduce.map.java.opts 2GB
mapreduce.reduce.java.opts 2GB

Table 5.2: Spark Configurations

Parameter Name Value
spark.master spark://gpu-0-1:7077
spark.eventLog.enabled true
spark.driver.memory 20 GB
spark.executor.uri hdfs:///spark-1.6.0-hadoop2.6.tgz
MESOS NATIVE JAVA LIBRARY /local//lib/libmesos.so

in industrial data analysis. We set up the three tools in our local machine for identifying

the malware instances from benign samples.

Our parallel experiments are executed on Apache Hadoop v2.6.0 and Apache Spark

v1.6.0. The configurations of Hadoop are listed in Table 5.1, and the configurations of Spark

are shown in Table 5.2. In addition, the Apache Mesos v0.27.1 [4] is used for managing

Spark running and dispatching resources.

Furthermore, we evaluate the performance of EBP network on our IBM super computer

Cirrascale. The super computer supports parallel computing with 48 CPU cores and 260

GB memory, which attributes to the in-memory calculation of the exascale data. Further-

more, in order to improve the performance, Nvidia Tesla K80 graphic cards are configured in

our super computer. To simplify the evaluation process, we implement these algorithms with

MATLAB R2016a and collect the Android application samples with Python programming

language remotely.

72

5.2 Results of Local Classifiers

5.2.1 Distribution and Analysis of Kernel Features

Table 5.3 shows the distribution and analysis of the normalized weights of the 112 task

kernel features with PCA, Correlation, Chi-square and Info Gain methods. PCA method can

achieve 28 parameters (16 mem info parameters, 8 signal info parameters and 4 sche info

parameters) with high weights between 50% and 100%, 19 parameters (8 mem info pa-

rameters, 8 signal info parameters and 3 sche info parameters) with weights between 10%

and 50%, 36 parameters (16 mem info parameters, 5 signal info parameters, 6 sche info

parameters, 6 others and 2 task state) with low weights between 0% and 10%, the rest 29

parameters with 0 % weights.

The correlation method analyzes the 112 features with a similar result, 20 parameters

(13 mem info parameters and 7 signal info parameters) with high weights between 50%

and 100%, 32 parameters (15 mem info parameters, 10 signal info parameters, 7 sche info

parameters) with weights between 10% and 50%, 26 parameters (12 mem info parameters,

4 signal info parameters, 5 sche info parameters, 3 others and 2 task state) with low weights

between 0% and 10%, the rest 34 parameters with 0 % weights.

The Chi-square calculates the weights for 112 kernel features and achieves a distribution

with minor difference, 11 parameters (9 mem info parameters and 2 signal info parameters

) with high weights between 50% and 100%, 10 parameters (7 mem info parameters and 3

signal info parameters) with weights between 10% and 50%, 58 parameters (24 mem info

parameters, 16 signal info parameters, 13 sche info parameters, 3 others and 2 task state)

with low weights between 0% and 10%, the rest 33 parameters with 0 % weights.

The Info Gain method evaluates these 112 features and obtains the following results,

18 parameters (11 mem info parameters and 7 signal info parameters) with high weights

between 50% and 100%, 49 parameters (26 mem info parameters, 12 signal info parameters,

7 sche info, 2 others, and 2 task state) with weights between 10% and 50%, 15 parameters

73

Table 5.3: Distribution of 112 Task Parameters Normalized Weights with PCA, Correla-
tion, Chi-square and Info Gain Methods: mem info, the most correlated feature set for
classification, achieves the maximum number of large weights between 50% and 100% in 4
different techniques, next is signal info, sche info, others and task state also contribute
to precise classification. The details are located in Table 5.4.

of Param. # of Param. # of Param. # of Param. Total
50% - 100% 10% - 50% 0 % - 10% 0 %

PCA mem info 16 8 16 8 48
signal info 8 8 5 9 30
sche info 4 3 6 2 15
others 0 0 7 6 13
task state 0 0 2 4 6
Total 28 19 36 29 112

Correlation mem info 13 15 12 8 48
signal info 7 10 4 9 30
sche info 0 7 5 3 15
others 0 0 3 10 13
task state 0 0 2 4 6
Total 20 32 26 34 112

Chi-square mem info 9 7 24 8 48
signal info 2 3 16 9 30
sche info 0 0 13 2 15
others 0 0 3 10 13
task state 0 0 2 4 6
Total 11 10 58 33 112

Info Gain mem info 11 26 2 9 48
signal info 7 12 2 9 30
sche info 0 7 6 2 15
others 0 2 5 6 13
task state 0 2 0 4 6
Total 18 49 15 30 112

(2 mem info parameters, 2 signal info parameters, 6 sche info parameters, 5 others) with

low weights between 0% and 10%, the rest 30 parameters with 0 % weights.

74

5.2.2 Comparison of newly infected and previously infected parameters

9,10,15,20,23,
26,27,29,31,33
,34,36,38,39,4
1,42,44,45,48,
52,53,54

60,63,64,66

82,83 104

11,12,13,14,16,17,18,1
9,21,22,24,25,28,30,32
,35,37,
40,43,46,
47,49,50,
51,55,56

57,58,59,61,62,65,67,68,

69,70,71

3 unused parameter

72,73,74,
75,76,77,78,
79,80,81,84,85,86,87,8
8,89,90,91,92,93,94,95
,96,97,98,99

100, 101,
102,103,105,

106,107,108,109,110,1
11,112,113,114,

3,4,5,6,7,8

48 mem_info
Para. we used

22 mem_info Para.
previously used

28 signal_info
Para. we used

2 signal_info Para.
previously used

15 sche_info
Para. we used

4 sche_info Para.
previously used

21 task_state &
others Para. we
used

1 task_state & others
Para. previously used

Task
Structure

Unused in
Current Android

Figure 5.1: Comparison of Currently Infected Parameters and Previously Infected Parame-
ters

Fig. 5.1 shows the analysis of newly infected parameters in Table 2.1 [1] and previously

infected parameters in [75] of the Task Structure. All number denotes the parameter in

Table 2.1 [1]. In the real experiment, we collected 112 parameters divided into 5 categories

and added 26 new mem info parameters, 26 new signal info parameters, 11 new sche info

and 20 new others parameters, where 3 parameters have not used in the current Android and

malware applications start to modify the newly-infected parameters. Note that we collected

112 task parameters, 80 out of them are newly collected, denoted as newly-infected, 32

out of them are previously used in [75], denoted as previously-infected.

Fig. 5.2 exhibits the weights’ distribution of previously infected parameters. The x-

axis value denotes the parameter’s number and category in Table 5 [1] and y-axis denotes

the value of normalized weights with PCA, Correlation, Chi-square and Info Gain meth-

ods. The previously-infected parameters are distributed in mem info area, 6 out of 22

75

0%

20%

40%

60%

80%

100%

120%

9 10 15 20 23 26 27 31 33 34 36 38 39 41 44 45 48 52 53 54 60 63 64 82 83 102

mem_info sche_info signal_info other

Distribution of Previously Infected Parameters PCA
Correlation
Chi-­square
Info Gain

Figure 5.2: Non-Zero Normalized Weights of Previously-Infected Task Parameters (There
are 32 previously-infected task parameters shown in Fig. 5.1 in detail.)

mem info in Fig. 5.1 achieve large weights (above 50%). However, the old datasets lack

enough signal info, sche info, others features.

0%

20%

40%

60%

80%

100%

120%

11 12 13 14 17 18 19 21 22 25 28 32 35 46 47 49 50 51 55 56 57 58 59 61 62 67 68 69 70 71 72 73 75 77 78 79 80 84 85 86 87 88 89 94 95 96 98 99 10
0

10
1

10
3

10
4

10
9

mem_info sche_info signal_info others

Distribution of Newly-­Infected Task Parameters
PCA
Correlation
Chi-­square
Info Gain

Figure 5.3: Non-Zero Normalized Weights of Newly-Infected Task Parameters (There are 80
newly-infected/currently infected task parameters shown in Fig. 5.1 in detail.)

Fig. 5.3 shows the weights’ distribution of newly infected parameters. The x-axis value

denotes the parameter’s number and category in Table 5 [1] and y-axis denotes the value

76

of normalized weights with PCA, Correlation, Chi-square and Info Gain methods. 20 new

mem info parameters, 10 new sche info, 20 new signal info parameters and 3 new oth-

ers achieve different weights impacting on selection of correlated features. The weights of

rest parameters equals to 0. Among newly-infected parameters, signal info retains more

parameters with large weights than others, and mem info also attains several parameters

with large weights.

77

5.2.3 Cross-Validation Results

Comparison between WBD and VBD

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TN
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

VBD WBD

Figure 5.4: True Negative Rate by Decision Tree With the Increasing Number of Selected
Features: VBD is proposed in [75] and WBD denotes our methods, on average WBD achieves
6% improvement of TN.

50%

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 Gmean

TP
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

VBD WBD

Figure 5.5: True Positive Rate by Decision Tree With the Increasing Number of Selected
Features: VBD is proposed in [75] and WBD denotes our methods, on average WBD achieves
12% improvement of TP.

Fig. 5.4 shows the True Negative (TN) rate with Decision Tree technique for VBD

and WBD. Since the VBD authors only provide Decision Tree Classifier in their paper, we

compare our Decision Tree results with VBD. The X-axis denotes the number of selected

78

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 Gmean

Ac
c.
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

VBD WBD

Figure 5.6: Accuracy Rate by Decision Tree With the Increasing Number of Selected Fea-
tures: VBD is proposed in [75] and WBD denotes our methods, on average WBD achieves
10% improvement of accuracy.

features among 112 attributes and the Y-axis is the TN rate. We can see WBD and VBD

averagely achieve 98%, 92% TN rate, respectively. With the increasing of selected features’

number, TN rate increases gradually both in WBD and VBD, but VBD’s TN rate is lower

than WBD’s.

As the TP rate is the measurement of positive proportion, we evaluate TP rate separately

in Fig. 5.5. On average WBD conserves 94% of TP rate compared to VBD (82%). TP rates

from 10 to 70 selected features reveal the ascending trends as the same as the TN rate

for WBD and VBD. When we train the data samples by taking 10 features, VBD leads

to a lowest TP rate (68%). Then its TP rate has a dramatic increase (80%) by training

20 features and float slightly in the following tests. In contrast, WBD causes small-scale

variation (88%-98%) as the changes of the features’ number.

Fig. 5.6 further shows the accuracy rate between WBD and VBD. WBD preserves 97%

of accuracy rate on average and VBD achieves 87% of accuracy rate. That is because

cumulative variance of VBD destroys the regular pattern of interior data. In general, di-

mensional reduction incurs slow degradation of the accuracy rate in Fig. 5.6. Nevertheless,

data manipulation inside each dimension leads to 3% -4% reduction of the accuracy rate in

cross-validation tests.

79

Naive Bayes Results

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TN
 R
at
e
of
 N
B

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.7: True Negative Rate by Naive Bayes Kernel With the Increasing Number of
Selected Features: Correlation method leads to the highest TN than PCA, Chi-square, and
Info Gain on average.

60%

70%

80%

90%

100%

10 20 30 40 50 60 70 Gmean

TP
 R
at
e
of
 N
B

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.8: True Positive Rate by Naive Bayes Kernel With the Increasing Number of
Selected Features: PCA achieves the best TP compared to others on average.

Fig. 5.7 shows TN rates of Naive Bayes Kernel Classifier along with the variation of

the number of selected features. Naive Bayes Kernel Classifier achieves gradual increase of

TN rate while selecting more features with PCA, Chi-square, and Info Gain. However, the

classifier using Corrlelation leads to 97% of TN rate on average which is the highest among

the four techniques of dimension reduction. Unlike Chi-square resulting in lower TN rate,

80

80%

85%

90%

95%

10 20 30 40 50 60 70 Gmean

Ac
c.
 R
at
e
of
 N
B

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.9: Accuracy Rate by Naive Bayes Kernel With the Increasing Number of Selected
Features: 4 methods achieves the similar accuracy results on average, PCA achieves slightly
higher accuracy.

Correlation and Info Gain save as much as 96% of TN rate. Furthermore, PCA also achieves

94% of TN rate compared to Chi-square.

Fig. 5.8 shows TP rates of Naive Bayes Kernel using dimension reduction techniques of

PCA, Correlaltion, Chi-square, and Info Gain. PCA, Chi-square and Info Gain achieve 93%,

91%, and 91% of TP rates on average, but Correlation causes the lowest TP rate (87%)

due to discrepancy in feature selection. Interestingly, TP rates of PCA, Chi-square and

Info Gain decrease slightly along with the increase of the number of selected features, which

means the memory attributes benefit malware application identification since the majority

of preferential features is from mem info descriptor of Table 2.1.

The enhancement of classification precision is ascribed to the feature selection in high-

dimension dataset. Fig. 5.9 shows the accuracy rates of PCA, Correlation, Chi-square and

Info Gain. PCA preserves 94.2% of accuracy rate compared to Correlation (93.4%) irreg-

ularly varying with the number of features. In contrast, Chi-square and Info Gain achieve

93.3%, 93.9% accuracy rate, respectively.

81

Decision Tree Results

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TN
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.10: True Negative Rate by Decision Tree With the Increasing Number of Selected
Features: Correlation and Chi-square methods lead to the highest TN than PCA and Info
Gain.

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TP
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.11: True Positive Rate by Decision Tree With the Increasing Number of Selected
Features: Chi-square method achieves the best TP compared to others on average.

Fig. 5.10 shows results of TN rate of Decision Tree with PCA, Correlation, Chi-square

and Info Gain. As we can see from Fig. 5.10, Correlation and Chi-square lead to 97% of

TN rate in contrast with PCA (95.6%) and Info Gain (96.6%). However, Chi-square demon-

strates the slow growth of TN rates with the increase of feature number, while Correlation

maintains the relatively stable status. Similarly, PCA and Info Gain also cause the TN rate’s

82

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

Ac
c.
 R
at
e
of
 D
T

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.12: Accuracy Rate by Decision Tree With the Increasing Number of Selected Fea-
tures: 4 methods achieve the similar accuracy results on average, Chi-square can achieve a
bit higher accuracy.

increment from 93% (10 features) to 98% (70 features). Overall Decision Tree is a better

classifier than Naive Bayes and achieves higher average TN rate.

From Fig. 5.11, we can see PCA and Chi-square achieve as much as 99% of TP rate

on average. Meanwhile, Correlation and Info Gain also on average achieve 97%, 98% of TP

rates, respectively. For Decision Tree, the features selected by the four techniques conduce

to distinguish benign behaviors from the union of malware and non-malware samples. TP

rates of PCA and Chi-square increase lightly between 98% and 99%. However, TP rates of

Correlation and Info Gain demonstrates unexpected increment or decline.

Fig. 5.12 illustrates the overall accuracy rate of Decision Tree with PCA, Correlation,

Chi-square and Info Gain. To be specific, PCA, Correlation, Chi-square and Info Gain

achieve 97.4%, 97.3%, 98.4% and 97.8% of accuracy rate, respectively. For Decision Tree

classifier, Chi-square leads to the most accurate classification results than PCA, Correlation

and Info Gain.

83

Neural Network Results

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TN
 R
at
e
of
 N
N

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.13: True Negative Rate by Neural Net With the Increasing Number of Selected
Features: Info Gain method leads to the highest TN than PCA, Correlation, and Chi-square.

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

TP
 R
at
e
of
 N
N

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.14: True Positive Rate by Neural Net With the Increasing Number of Selected
Features: Correlation method achieves the best TP compared to others on average.

Fig. 5.13 shows the results of TN rate of Neural Network with PCA , Correlation, Chi-

square and Info Gain. We can see PCA, Correlation, Chi-square and Info Gain cause very

high TN rate (above 98%) on average, compared to Naive Bayes and Decision Tree. Due

to nonlinear mapping of training models in Neural Network, in contrast with Decision Tree

and Naive Bayes, PCA, Chi-square and Info Gain incur more accurate results, regardless the

number of features.

84

80%

85%

90%

95%

100%

10 20 30 40 50 60 70 Gmean

Ac
c.
 R
at
e
of
 N
N

Number of Selected Parameters (Features)

PCA Correlation Chi-­square Info Gain

Figure 5.15: Accuracy Rate by Neural Net With the Increasing Number of Selected Features:
4 methods achieves the similar accuracy results on average, Correlation can achieve slightly
higher accuracy.

Fig. 5.14 illustrates the TP rate of Neural Network with PCA, Correlation, Chi-square

and Info Gain. As we can see, for PCA, Chi-square and Info Gain, Neural Network classifier

achieves 95% of TP rate on average. Correlation has the best TP rate while selecting 20

features and leads to the highest overall TP rate compared to PCA, Chi-square and Info

Gain. Although Neural Network classifier preserves better FN rate than Decision Tree, TP

rate is 2-3% lower than Decision Tree in consideration of interaction of hidden layers.

Fig. 5.15 shows the accuracy of Neural Network with PCA, Correlation, Chi-square and

Info Gain. As we can see, PCA, Correlation, Chi-square and Info Gain leads to 96.6%,

97.0%, 96.7% and 96.9% on average of the overall accuracy rate, respectively. Specifically,

for Neural Network, when selecting as much as 60 features the accuracy rate approximately

approaches the best prediction of malware and non-malware apps. However, 30 or 40 features

are sufficient to calculate the weights of each neurons for precisely classifying two categories

of data samples.

Experimental Results of NB, DT, NN

From Table 5.4, we can see Naive Bayes classifier preserves the lower precision compared

to Decision Tree and Neural Network. Although Decision Tree leads to a much better

85

Table 5.4: TP Rate, TN Rate and Accuracy Rate According to Select Different Numbers of
Features by PCA, Correlation, Chi-square and Info Gain with 3 Different Machine Learning
Algorithms (Decision Tree, Naive Bayes and Neural Network)

Classifiers #. of Selected Param.
10 20 30 40 50 60 70 Gmean

Decision Tree

PCA
TP Rate 99.14% 99.7% 99.71% 99.71% 98.82% 98.72% 98.83% 99.23%
TN Rate 93.07% 94.64% 94.77% 95.14% 96.76% 96.76% 98.82% 95.69%
Acc. Rate 96.30% 97.31% 97.375% 97.06% 97.765% 97.77% 98.82% 97.48%

Correlation
TP Rate 91.25% 98.18% 98.09% 96.49% 98.82% 98.83% 98.83% 97.18%
TN Rate 98.11% 94.03% 97.34% 97.49% 96.31% 98.83% 98.83% 97.26%
Acc. Rate 94.88% 96.20% 97.72% 96.99% 97.60% 98.83% 98.83% 97.28%

Chi-square
TP Rate 99.71% 99.60% 99.70% 99.71% 99.71% 98.83% 98.83% 99.44%
TN Rate 93.45% 94.85% 96.91% 98.94% 98.79% 98.82% 98.82% 97.20%
Acc. Rate 96.79% 97.35% 98.36% 99.33% 99.26% 98.82% 98.82% 98.38%

Info Gain
TP Rate 99.47% 93.63% 98.83% 98.83% 98.83% 98.83% 98.83% 98.16%
TN Rate 93.04% 93.63% 96.07% 97.64% 98.82% 98.82% 98.82% 96.66%
Acc. Rate 96.26% 96.37% 97.50% 98.25% 98.83% 98.82% 98.82% 97.83%

Naive Bayes

PCA
TP Rate 96.43% 96.43% 95.31% 91.39% 91.38% 91.41% 89.40% 93.07%
TN Rate 91.63% 91.54% 93.02% 96.32% 96.34% 96.74% 96.55% 94.56%
Acc. Rate 94.15% 93.58% 94.20% 94.34% 94.35% 94.67% 93.89% 94.16%

Correlation
TP Rate 73.39% 92.53% 91.58% 89.78% 90.77% 88.78% 86.21% 87.35%
TN Rate 98.61% 96.59% 96.86% 97.79% 96.49% 96.24% 97.06% 97.09%
Acc. Rate 88.39% 94.92% 94.83% 95.00% 94.26% 93.43% 93.34% 93.43%

Chi-square
TP Rate 97.04% 93.41% 91.38% 91.47% 91.27% 90.04% 86.69% 91.57%
TN Rate 87.36% 95.06% 94.25% 94.31% 94.31% 96.15% 97.16% 94.04%
Acc. Rate 92.62% 94.08% 92.75% 92.82% 93.16% 93.76% 93.58% 93.25%

Info Gain
TP Rate 96.63% 91.18% 90.77% 91.60% 91.47% 89.78% 89.42% 91.52%
TN Rate 91.66% 95.09% 96.37% 95.84% 96.34% 96.27% 96.56% 95.43%
Acc. Rate 94.27% 93.33% 94.17% 94.04% 94.38% 93.77% 93.90% 93.98%

Neural Network

PCA
TP Rate 95.19% 97.04% 94.65% 96.49% 95.01% 95.31% 94.68% 95.48%
TN Rate 99.09% 97.24% 99.00% 98.00% 99.25% 98.02% 98.20% 98.40%
Acc. Rate 96.71% 97.12% 96.34% 97.10% 96.66% 96.39% 96.06% 96.62%

Correlation
TP Rate 95.98% 97.76% 95.87% 96.54% 96.60% 95.49% 95.35% 96.22%
TN Rate 97.03% 99.22% 97.62% 98.46% 97.26% 98.01% 99.76% 98.19%
Acc. Rate 96.41% 98.35% 96.57% 97.31% 96.87% 96.49% 97.06% 97.01%

Chi-square
TP Rate 95.69% 95.89% 96.50% 95.94% 95.28% 95.31% 93.60% 95.45%
TN Rate 97.42% 99.52% 98.15% 99.57% 98.10% 98.02% 99.65% 98.63%
Acc. Rate 96.38% 97.32% 97.17% 97.37% 96.40% 96.39% 95.89% 96.70%

Info Gain
TP Rate 96.96% 96.56% 96.89% 95.73% 94.42% 94.61% 94.25% 95.63%
TN Rate 97.19% 99.45% 99.43% 99.49% 99.64% 99.50% 98.05% 98.96%
Acc. Rate 97.06% 97.71% 97.91% 97.21% 96.42% 96.50% 95.73% 96.93%

86

accuracy rate than Naive Bayes and Neural Network, Neural Network can achieve 2-3%

higher TN rate than Decision Tree due to its accurate computational model. That means

Neural Network classifier is more sensitive to recognizing the malicious apps as malware.

Furthermore the methods of dimensional reduction cause minor changes (2%-3%) of accuracy

rates when we select at least half of all features, note that in our experiment the total number

of features is 112 and the half of them is around 60 features.

87

1 2 4 8 16
0

1

2

3

4

5

Number of Computing Nodes

Ex
ec
ut
io
n
Ti
m
e
of
 D
T
(m
in
)

1G Data
2G Data
4G Data
8G Data

Figure 5.16: Execution Time (min) of DT Classifier

5.3 Results of Parallel Classifiers

5.3.1 Execution Time

Fig. 5.16, 5.17, 5.18 and 5.19 show execution times of DT, LR, SVM and NB classifiers

with different computing nodes. The execution time of the four classifiers with a small

dataset (1GB Dataset) does not change much while increasing the number of computing

nodes (workers), since only a computing node with 12 cores and 22GB memory can process

1GB data computation. Obviously, 1 additional computing node increases gradually the

overhead time with the increase of the size of datasets from 1GB to 8GB. However, for

larger size of dataset (e.g., 4GB and 8GB), more computing nodes can quickly reduce the

processing time.

From our experimental results and spark configuration, we can see 1 computing node

(worker) can complete the computation of 1GB dataset. Therefore, 2GB dataset can be

processed by 2 computing nodes, denoted as: 2GB⇒ 2 workers, similarly, 4GB⇒ 4 workers,

88

1 2 4 8 16
0

20

40

60

80

100

120

Number of Computing Nodes

Ex
ec
ut
io
n
Ti
m
e
of
 L
R
 (m

in
)

1G Data
2G Data
4G Data
8G Data

Figure 5.17: Execution Time (min) of LR Classifier

1 2 4 8 16
0

20

40

60

80

100

120

Number of Computing Nodes

Ex
ec
ut
io
n
Ti
m
e
of
 S
VM
 (m

in
) 1G Data

2G Data
4G Data
8G Data

Figure 5.18: Execution Time (min) of SVM Classifier

89

1 2 4 8 16
0

10

20

30

40

50

60

70

Number of Computing Nodes

Ex
ec
ut
io
n
Ti
m
e
of
 N
B
 (s
)

1G Data
2G Data
4G Data
8G Data

Figure 5.19: Execution Time (s) of NB classifier

and 8GB ⇒ 8 workers. Taking 8GB dataset as an example, the DT classifier decreases

the execution time by 0.5X from 1 worker to 16 workers, LR, SVM and NB classifiers do

likewise. However, the increase of number of workers also introduces extra overhead, such as

scheduling policies, memory management, etc., causing slight increment of execution time

when reaching for stable status.

The four classifiers show different performance results in terms of execution time. The

SVM and LR classifiers in Fig. 5.17 and 5.18 are of the same order of magnitude for execution

time due to iterations of linear computation. The DT classifier in Fig. 5.16 preserves a higher

performance with less execution time. In contrast, the NB classifier in Fig. 5.19 performs

the prediction with the least execution time.

90

75%

80%

85%

90%

95%

100%

105%

1 2 3 4 5 6 7 8 9 10 20 30 40 50 100

P
re
ci
si
o
n
 o
f
 D
ec
is
io
n
 T
re
e

Depth of Decision Tree
Figure 5.20: Classification Precision by DT Classifier

5.3.2 Classification Precision

Fig. 5.20 shows the classification precision by a DT classifier with the increase of the

depth of the decision tree. As shown in Fig. 5.20, the precision can reach approximately

100% when increasing the depth of the decision tree to 20. Considering effectiveness of

decision tree classification, the small depth number, e.g., 5, also can achieve a good accuracy

rate with less computation overhead.

Fig. 5.21 shows the classification precision by a LR classifier with the increase of the

number of iterations. We can see precision approaches to 95% after 3 iterations. Although

the number of iterations rises to 100, the classification precision changes slightly between 0%

and 1%.

Fig. 5.22 shows the classification precision by a SVM classifier with the increase of the

number of iterations. We can see this result is similar to the LR and the precision approaches

91

1 2 3 4 5 6 7 8 9 10 20 30 40 50 100
80%

85%

90%

95%

100%

Number of Iteration's Execution

P
re
ci
si
o
n
 o
f
L
R

Figure 5.21: Classification Precision by LR Classifier

to 95% after 3 iterations. While the number of iterations rises to 100, the classification

precision changes lightly.

Fig. 5.23 shows the classification precision by a NB classifier with selecting different

number of samples. The precision does not vary along with the number of samples from 1 to

100. Obviously, NB classifier achieves a lower precision (82.5%) compared to DT classifier

(above 95%), LR and SVM classifiers (95%-96%).

Fig. 5.24 shows the precision comparisons among the four classifiers. The DT, NB,

LR and SVM classifiers preserve 99%, 83%, 96% and 96% precision, respectively. The DT

classifier can achieve a better precision with less computation overhead compared to the

other three classifiers.

92

80%

84%

88%

92%

96%

100%

1 2 3 4 5 6 7 8 9 10 20 30 40 50 100

P
re
ci
si
o
n
 o
f
S
V
M

Number of Iteration's Execution
Figure 5.22: Classification Precision by SVM Classifier

80%

81%

82%

83%

1 5 10 50 100P
re
ci
si
o
n
 o
f
 N
ai
ve
 B
ay
es

Number of Sampling

Figure 5.23: Classification Precision by NB Classifier

93

50%

60%

70%

80%

90%

100%

110%

1 2 4 8 16 Gmean

P
re
ci
si
o
n
C
o
m
p
ar
is
o
n

Number of Computing Nodes

DT NB LR SVM

Figure 5.24: Precision Comparison of DT, NB, LR, and SVM Classifiers

94

0

4

8

12

16
C
om

pa
ris
on
 o
f M
em
or
y

U
sa
ge
 (%

)

Time Intervals (Unit: 100s)

RBF EBP

Figure 5.25: Memory Usage of RBF and EBP

0

500

1000

1500

2000

2500

3000

C
om

pa
ris
on
 o
f C
PU
 U
sa
ge

(%
)

Time Intervals (Unit: 100s)

RBF EBP

Figure 5.26: CPU Usage of RBF and EBP

5.4 Evaluation of RBF

5.4.1 Resource Allocation Results

Fig. 5.25 shows the comparison of memory usage of RBF and EBP networks. We can see

that the EBP network uses 2200 s to finish the training job and the RBF network finishes its

95

job with less time (1400 s). In details, RBF and EBP networks request the similar memory

resources to load the whole dataset to the memory from the disk in 700 s due to the same

data sizes. The RBF network continues to calculate the cluster centers of the dataset with

larger memory resources than the EBP network between 700 s and 1100 s. When the RBF

network finishes the computation of the data centroids, its memory usage decreases by 6%

approximately and its training procedure is performed from 1100 s to 1500 s. In contrast,

the EBP network requires less memory than the RBF network during the process of cluster

centers’ calculation from 700 s to 1100 s. Then its need of memory exceeds the RBF network

before accomplishing the training procedure.

Fig. 5.26 shows the comparison of their CPU usages. The EBP network spends less

execution time (1300 s) to train the classification model than the EBP network (2100 s).

At 700 s, RBF network and EBP network load the whole dataset to the memory for the

numerical computation. When finishing the loading job, the RBF network and the EBP

network begin to train the model from 700 s to 2200 s. We can see that the RBF network

calculates the neuron information with lower CPU usage (1960%) than the EBP network

(2160%).Because we implement and execute the two methods on multiple CPU cores, the

percentage of their CPU usage can reach more than 100%. When the RBF network accom-

plishes the computation at 1300 s, its CPU usage decreases to 100% dramatically, which is

similar with the EBP network at 2100 s.

5.4.2 Comparison of Accuracy Rate

Fig. 5.27 shows the accuracy rates of the RBF network and the EBP network. We

can see that the RBF network can lead to a higher accuracy rate (93.64%) than the EBP

network (83.57%) on average. In the experiment, 1275 malware and 1275 benign applications

are used to train the precise model. In contrast to the EBP network which iteratively

reduces the error for all data samples, the RBF network can preserve 96% of the accuracy

rate since its clustering centers aggregate the similar application samples into same regions.

96

70%

80%

90%

100%

C
om

pa
ris
on
 o
f A
cc
. R
at
e

Number of Hidden Neurons

RBF EBP

Figure 5.27: Accuracy Rate of RBF and EBP with Hidden Neurons

The RBF network chooses the clustering centers as its hidden neurons, however, the EBP

network retrieves the hidden neurons through the iterative computation of the entire dataset.

Additionally, the training results of the EBP network alters from 80% to 85% along with

the changes of the number of hidden neurons. However, the RBF network can avoid the

situation due to its clustering computation and gradient descent method.

97

Chapter 6

Summary and Future Work

In our study, we analyzed the performance issues for selecting relevant features that are

effective for detecting malicious apps on the Android platform. Accordingly, we designed a

multiple dimensional kernel feature-based malware detection infrastructure and implemented

a multiple dimensional kernel feature’s collection agent to dynamically collect, transfer, and

store our 112-dimension data. We have examined 275 malware apps each of which has

15,000 instances and 275 benign apps with the same number of instances. The effective

dimensional reduction algorithms, PCA, Correlation, Chi-square and Info Gain, are also

employed to dig out the more important features to malware detection. By using more

signal- and memory-related features of Android kernel, classifiers of Naive Bayes, Decision

Tree and Neural Network efficiently achieve 94%-98% of accuracy rate and less than 10%

of false positive rate. In contrast to Naive Bayes , Decision Tree and Neural Network can

predict more precisely the malicious apps while avoid the issue of overfitting. These results

demonstrate that characterization of kernel features is directly relevant to predicting the

malware presence accurately.

Furthermore, we proposed an automatic data collector mechanism and a Spark-based

malware detection framework. This data collector mechanism implements the collection,

storage, and transfer of our large-scale dataset. The Spark-based malware detection archi-

tecture accurately deals with the original data sample from the data collector and efficiently

predict malicious behaviors in memory. To the end, this paper demonstrates the sensi-

tiveness of NB, DT, SVM and LR classifiers on Apache Spark platform, in which the DT

classifier can preserve a higher precision rate and eliminate the execution cost. Moreover,

our Spark-based malware detection technique improves its performance when the data size

98

dramatically increases. The time consumption is also optimized by using less frequent I/O

communications.

In addition, we enhanced a RBF network based malware detection technique with a

heuristic approach of clustering. To measure the similarity in Android datasets, the K-

means algorithm calculates the centroids of all data samples in each cluster for initializing

the hidden neurons of the RBF network, which assigns each data point from a large-scale

dataset into different regions. According to the initialized hidden centers, the RBF network

can quickly and precisely compute the positions for unknown data samples through the

correct Gaussian functions. Finally, this dissertation demonstrates the forensics analysis of

the main kernel parameters, the resource usage of the RBF network and EBP network and

their performances. The RBF network can preserve a higher accuracy rate with less execution

cost and time. Moreover, compared to the EBP network, the RBF network improves its

performance for the exascale computation of the large-scale dataset.

For our future work, we plan to strengthen our online framework on a parallel computing

platform to reduce time delay and memory cost. When the dimension of kernel features

is lower than 100, the local computation can be finished in a few minutes. If increasing

the dimension of kernel features, there is a need of parallel computation for in-memory

classification in powerful clusters. The future work is also divided into three parts: First, data

transferring from local storage to remote database demands an effective interface. Second,

it is required to load massive data to in-memory parallel computing models. Third, we will

investigate the linear and nonlinear algorithms to ensure the precision of malware detection.

99

Bibliography

[1] 112 android kernel parameters and normalized weights.

https://dochub.com/xinningwang/JZ2PZ4/mlandroid.

[2] Android malicious threats. http://usa.kaspersky.com/internet-security-center.

[3] Apache cassandra. http://cassandra.apache.org.

[4] Apache mesos. http://archive.apache.org/dist/mesos/0.27.1.

[5] Hammerhead kernel. https://android.googlesource.com/device/ lge/hammerhead-

kernel.

[6] Linux.trojan.ddos description. https://blog.avast.com/2015/01/06/linux-ddos-trojan-

hiding-itself-with-an-embedded-rootkit/.

[7] Rapidminer. https://rapidminer.com.

[8] Scala. http://www.scala-lang.org.

[9] Trojan.arcbomb description. https://securelist.com/threats/trojan-arcbomb/.

[10] Trojan.ransom.gen description. http://www.enigmasoftware.com/trojan-ransom-gen-

removal/.

[11] Trojan.rootkit description. http://www.enigmasoftware.com/trojan-rootkit-gen-

variants-block-security-applications/.

[12] Trojan.spy description. https://www.f-secure.com/v-descs/pswsteal.shtml.

100

[13] Y. Aafer, W. Du, and H. Yin. Droidapiminer: Mining api-level features for robust

malware detection in android. In International Conference on Security and Privacy in

Communication Systems, pages 86–103. Springer, 2013.

[14] B. Amos, H. Turner, and J. White. Applying machine learning classifiers to dynamic

android malware detection at scale. In Wireless communications and mobile computing

conference (iwcmc), 2013 9th international, pages 1666–1671. IEEE, 2013.

[15] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin, A. Ghodsi, et al. Spark sql: Relational data processing in spark. In

Proceedings of the 2015 ACM SIGMOD International Conference on Management of

Data, pages 1383–1394. ACM, 2015.

[16] L. Armijo. Minimization of functions having lipschitz continuous first partial derivatives.

Pacific Journal of mathematics, 16(1):1–3, 1966.

[17] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau,

and P. McDaniel. Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-

aware taint analysis for android apps. Acm Sigplan Notices, 49(6):259–269, 2014.

[18] D. Barrera, H. G. Kayacik, P. C. van Oorschot, and A. Somayaji. A methodology for

empirical analysis of permission-based security models and its application to android.

In Proceedings of the 17th ACM conference on Computer and communications security,

pages 73–84. ACM, 2010.

[19] L. Batyuk, M. Herpich, S. A. Camtepe, K. Raddatz, A.-D. Schmidt, and S. Albayrak.

Using static analysis for automatic assessment and mitigation of unwanted and ma-

licious activities within android applications. In Malicious and Unwanted Software

(MALWARE), 2011 6th International Conference on, pages 66–72. IEEE, 2011.

101

[20] M. Y. Becker and P. Sewell. Cassandra: Flexible trust management, applied to electronic

health records. In Computer Security Foundations Workshop, 2004. Proceedings. 17th

IEEE, pages 139–154. IEEE, 2004.

[21] C. M. Bishop. Neural networks for pattern recognition. Oxford university press, 1995.

[22] C. M. Bishop. Pattern recognition and machine learning. springer, 2006.

[23] T. Bläsing, L. Batyuk, A.-D. Schmidt, S. A. Camtepe, and S. Albayrak. An android

application sandbox system for suspicious software detection. In Malicious and unwanted

software (MALWARE), 2010 5th international conference on, pages 55–62. IEEE, 2010.

[24] D. Borthakur. Hdfs architecture guide. HADOOP APACHE PROJECT http://hadoop.

apache. org/common/docs/current/hdfs design. pdf, 2008.

[25] A. P. Bradley. The use of the area under the roc curve in the evaluation of machine

learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[26] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, and A.-R. Sadeghi. Xmandroid: A

new android evolution to mitigate privilege escalation attacks. Technische Universität

Darmstadt, Technical Report TR-2011-04, 2011.

[27] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani. Crowdroid: behavior-based malware

detection system for android. In Proceedings of the 1st ACM workshop on Security and

privacy in smartphones and mobile devices, pages 15–26. ACM, 2011.

[28] P. P. Chan, L. C. Hui, and S.-M. Yiu. Droidchecker: analyzing android applications for

capability leak. In Proceedings of the fifth ACM conference on Security and Privacy in

Wireless and Mobile Networks, pages 125–136. ACM, 2012.

[29] S. Chen, C. F. Cowan, and P. M. Grant. Orthogonal least squares learning algorithm for

radial basis function networks. IEEE Transactions on neural networks, 2(2):302–309,

1991.

102

[30] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner. Analyzing inter-application com-

munication in android. In Proceedings of the 9th international conference on Mobile

systems, applications, and services, pages 239–252. ACM, 2011.

[31] M. Christodorescu, S. Jha, and C. Kruegel. Mining specifications of malicious behavior.

In Proceedings of the 1st India software engineering conference, pages 5–14. ACM, 2008.

[32] G. E. Dahl, J. W. Stokes, L. Deng, and D. Yu. Large-scale malware classification using

random projections and neural networks. In 2013 IEEE International Conference on

Acoustics, Speech and Signal Processing, pages 3422–3426. IEEE, 2013.

[33] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[34] J. Demme, M. Maycock, J. Schmitz, A. Tang, A. Waksman, S. Sethumadhavan, and

S. Stolfo. On the feasibility of online malware detection with performance counters.

ACM SIGARCH Computer Architecture News, 41(3):559–570, 2013.

[35] G. Dini, F. Martinelli, A. Saracino, and D. Sgandurra. Madam: a multi-level anomaly

detector for android malware. In International Conference on Mathematical Methods,

Models, and Architectures for Computer Network Security, pages 240–253. Springer,

2012.

[36] S. Dreiseitl and L. Ohno-Machado. Logistic regression and artificial neural network clas-

sification models: a methodology review. Journal of biomedical informatics, 35(5):352–

359, 2002.

[37] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley & Sons,

2012.

103

[38] P. Faruki, A. Bharmal, V. Laxmi, V. Ganmoor, M. S. Gaur, M. Conti, and M. Rajarajan.

Android security: a survey of issues, malware penetration, and defenses. Communica-

tions Surveys & Tutorials, IEEE, 17(2):998–1022, 2015.

[39] T. Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861–874,

2006.

[40] I. K. Fodor. A survey of dimension reduction techniques, 2002.

[41] D. François. High-dimensional data analysis. From Optimal Metric to Feature Selection,

VDM Verlag, Saarbrucken, Germany, pages 54–55, 2008.

[42] M. Garnaeva, J. Wiel, D. Makrushin, and Y. N. Anton Ivanov. Kaspersky security

bulletin 2015. Spam Evolution, 2015.

[43] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: automatically detect-

ing potential privacy leaks in android applications on a large scale. In International

Conference on Trust and Trustworthy Computing, pages 291–307. Springer, 2012.

[44] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang. Riskranker: scalable and accurate

zero-day android malware detection. In Proceedings of the 10th international conference

on Mobile systems, applications, and services, pages 281–294. ACM, 2012.

[45] M. T. Hagan, H. B. Demuth, M. H. Beale, and O. De Jesús. Neural network design,

volume 20. PWS publishing company Boston, 1996.

[46] H.-S. Ham and M.-J. Choi. Analysis of android malware detection performance using

machine learning classifiers. In ICT Convergence (ICTC), 2013 International Confer-

ence on, pages 490–495. IEEE, 2013.

[47] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,

S. Shenker, and I. Stoica. Mesos: A platform for fine-grained resource sharing in the

data center. In NSDI, 2011.

104

[48] H. Hotelling. Analysis of a complex of statistical variables into principal components.

Journal of educational psychology, 24(6):417, 1933.

[49] T. Isohara, K. Takemori, and A. Kubota. Kernel-based behavior analysis for android

malware detection. In Computational Intelligence and Security (CIS), 2011 Seventh

International Conference on, pages 1011–1015. IEEE, 2011.

[50] H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy anomalies and mobile

malware variants. In Proceedings of the 6th international conference on Mobile systems,

applications, and services, pages 239–252. ACM, 2008.

[51] J. Kim, Y. Yoon, K. Yi, J. Shin, and S. Center. Scandal: Static analyzer for detecting

privacy leaks in android applications. MoST, 12, 2012.

[52] R. Kohavi and J. R. Quinlan. Data mining tasks and methods: Classification: decision-

tree discovery. In Handbook of data mining and knowledge discovery, pages 267–276.

Oxford University Press, Inc., 2002.

[53] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang. Effec-

tive and efficient malware detection at the end host. In USENIX security symposium,

pages 351–366, 2009.

[54] A. Kusiak. Feature transformation methods in data mining. Electronics Packaging

Manufacturing, IEEE Transactions on, 24(3):214–221, 2001.

[55] A. Lanzi, D. Balzarotti, C. Kruegel, M. Christodorescu, and E. Kirda. Accessminer:

using system-centric models for malware protection. In Proceedings of the 17th ACM

conference on Computer and communications security, pages 399–412. ACM, 2010.

[56] E. L. Lehmann and J. P. Romano. Testing statistical hypotheses. Springer Science &

Business Media, 2006.

105

[57] O. Linda, T. Vollmer, and M. Manic. Neural network based intrusion detection system

for critical infrastructures. In 2009 international joint conference on neural networks,

pages 1827–1834. IEEE, 2009.

[58] L. Liu, G. Yan, X. Zhang, and S. Chen. Virusmeter: Preventing your cellphone from

spies. In Recent Advances in Intrusion Detection, pages 244–264. Springer, 2009.

[59] R. Love, S. H. W. Are, A. C. Linus, L. V. C. U. Kernels, and B. W. Begin. Linux Kernel

Development Second Edition. Novell Press: Sams Publishing, 2005.

[60] X. Meng, J. Bradley, B. Yuvaz, E. Sparks, S. Venkataraman, D. Liu, J. Freeman, D. Tsai,

M. Amde, S. Owen, et al. Mllib: Machine learning in apache spark. JMLR, 17(34):1–7,

2016.

[61] J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units.

Neural computation, 1(2):281–294, 1989.

[62] N. Peiravian and X. Zhu. Machine learning for android malware detection using per-

mission and api calls. In Tools with Artificial Intelligence (ICTAI), 2013 IEEE 25th

International Conference on, pages 300–305. IEEE, 2013.

[63] J. R. Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[64] V. Rastogi, Y. Chen, and X. Jiang. Droidchameleon: evaluating android anti-malware

against transformation attacks. In Proceedings of the 8th ACM SIGSAC symposium on

Information, computer and communications security, pages 329–334. ACM, 2013.

[65] J. Rhee, R. Riley, D. Xu, and X. Jiang. Kernel malware analysis with un-tampered and

temporal views of dynamic kernel memory. In Recent Advances in Intrusion Detection,

pages 178–197. Springer, 2010.

[66] I. Rish. An empirical study of the naive bayes classifier. In IJCAI 2001 workshop on

empirical methods in artificial intelligence, volume 3, pages 41–46. IBM New York, 2001.

106

[67] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-

propagating errors. Cognitive modeling, 5(3):1, 1988.

[68] J. Sahs and L. Khan. A machine learning approach to android malware detection. In

Intelligence and security informatics conference (eisic), 2012 european, pages 141–147.

IEEE, 2012.

[69] A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K. A. Yuksel, S. A.

Camtepe, and S. Albayrak. Static analysis of executables for collaborative malware de-

tection on android. In Communications, 2009. ICC’09. IEEE International Conference

on, pages 1–5. IEEE, 2009.

[70] A.-D. Schmidt, J. H. Clausen, A. Camtepe, and S. Albayrak. Detecting symbian os

malware through static function call analysis. In Malicious and Unwanted Software

(MALWARE), 2009 4th International Conference on, pages 15–22. IEEE, 2009.

[71] A.-D. Schmidt, H.-G. Schmidt, J. Clausen, K. A. Yuksel, O. Kiraz, A. Camtepe, and

S. Albayrak. Enhancing security of linux-based android devices. In in Proceedings of

15th International Linux Kongress. Lehmann, 2008.

[72] F. Schwenker, H. A. Kestler, and G. Palm. Three learning phases for radial-basis-

function networks. Neural networks, 14(4):439–458, 2001.

[73] A. Shabtai, Y. Fledel, and Y. Elovici. Automated static code analysis for classifying

android applications using machine learning. In Computational Intelligence and Security

(CIS), 2010 International Conference on, pages 329–333. IEEE, 2010.

[74] A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss. andromaly: a behavioral

malware detection framework for android devices. Journal of Intelligent Information

Systems, 38(1):161–190, 2012.

107

[75] F. Shahzad, M. Akbar, S. Khan, and M. Farooq. Tstructdroid: Realtime malware de-

tection using in-execution dynamic analysis of kernel process control blocks on android.

National University of Computer & Emerging Sciences, Islamabad, Pakistan, Tech. Rep,

2013.

[76] F. Shahzad, M. Shahzad, and M. Farooq. In-execution dynamic malware analysis and

detection by mining information in process control blocks of linux os. Information

Sciences, 231:45–63, 2013.

[77] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system.

In 2010 IEEE 26th symposium on mass storage systems and technologies (MSST), pages

1–10. IEEE, 2010.

[78] E. Skoudis and L. Zeltser. Malware: Fighting malicious code. Prentice Hall Professional,

2004.

[79] S. Smalley and R. Craig. Security enhanced (se) android: Bringing flexible mac to

android. In NDSS, volume 310, pages 20–38, 2013.

[80] N. Smyth. Android Studio 2 Development Essentials. eBookFrenzy, 2016.

[81] D. Stopel, Z. Boger, R. Moskovitch, Y. Shahar, and Y. Elovici. Improving worm de-

tection with artificial neural networks through feature selection and temporal analysis

techniques. Int J Comput Sci Eng, 15:202–208, 2006.

[82] D. J. Tan, T.-W. Chua, V. L. Thing, et al. Securing android: A survey, taxonomy, and

challenges. ACM Computing Surveys (CSUR), 47(4):58, 2015.

[83] J. Tao and T. Tan. Affective computing: A review. In Affective computing and intelligent

interaction, pages 981–995. Springer, 2005.

[84] G. Tuvell, C. Jiang, and S. Bhardwaj. Off-line mms malware scanning system and

method, Feb. 11 2008. US Patent App. 12/029,451.

108

[85] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves,

J. Lowe, H. Shah, S. Seth, et al. Apache hadoop yarn: Yet another resource negotiator.

In Proceedings of the 4th annual Symposium on Cloud Computing, page 5. ACM, 2013.

[86] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. Profiledroid: multi-layer profiling

of android applications. In Proceedings of the 18th annual international conference on

Mobile computing and networking, pages 137–148. ACM, 2012.

[87] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu. Droidmat: Android malware

detection through manifest and api calls tracing. In Information Security (Asia JCIS),

2012 Seventh Asia Joint Conference on, pages 62–69. IEEE, 2012.

[88] L. Xie, X. Zhang, J.-P. Seifert, and S. Zhu. pbmds: a behavior-based malware detection

system for cellphone devices. In Proceedings of the third ACM conference on Wireless

network security, pages 37–48. ACM, 2010.

[89] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A resilient distributed

graph system on spark. In First International Workshop on Graph Data Management

Experiences and Systems, page 2. ACM, 2013.

[90] S. Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. A new android malware detection

approach using bayesian classification. In Advanced Information Networking and Appli-

cations (AINA), 2013 IEEE 27th International Conference on, pages 121–128. IEEE,

2013.

[91] L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based

filter solution. In ICML, volume 3, pages 856–863, 2003.

[92] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. Technical report, Technical Report UCB/EECS-2011-82,

EECS Department, University of California, Berkeley, 2011.

109

[93] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster

computing with working sets. HotCloud, 10:10–10, 2010.

[94] M. Zaharia, T. Das, H. Li, S. Shenker, and I. Stoica. Discretized streams: an efficient

and fault-tolerant model for stream processing on large clusters. In Presented as part

of the, 2012.

[95] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. Smartdroid: an

automatic system for revealing ui-based trigger conditions in android applications. In

Proceedings of the second ACM workshop on Security and privacy in smartphones and

mobile devices, pages 93–104. ACM, 2012.

[96] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you, get off of my market: detecting

malicious apps in official and alternative android markets. In NDSS, volume 25, pages

50–52, 2012.

110

