
Energy Modeling and Management of Database System

by

Yi Zhou

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
May 5, 2018

Keywords: Energy-efficiency, Modeling, Management, Database system

Copyright 2018 by Yi Zhou

Approved by

Xiao Qin, Professor of Computer Science and Software Engineering
Wei-Shinn (Jeff) Ku, Associate Professor of Computer Science and Software Engineering

Saad Biaz, Professor of Computer Science and Software Engineering
Richard Chapman, Associate Professor of Computer Science and Software Engineering

Abstract

In this dissertation, we propose a toolkit called EDOM facilitating the evaluation and

optimization of energy-efficient multicore-based database systems. Two core components in

EDOM are a benchmarking toolkit and a multicore manager to improve energy efficiency of

database systems running on multicore servers. We start designing EDOM by analyzing the

energy efficiency of two popular database operations (i.e., cross join and outer join) processed

on multicore processors. We investigate cross and outer joins, because these two operations

are common components of database applications. We describe the criteria and challenges

of building an energy efficiency benchmark for databases on multicore servers. We build a

benchmarking toolkit, which is comprised of three parts, namely, a configuration module, a

test driver, and a power monitor. The workload generator facilitates the configurations of the

PostgreSQL database system. We leverage this generator to set up tables and populate data

records into the database. The test driver automatically issues operations to the database sys-

tem in accordance to access patterns created by the workload generator. The power monitor

keeps track of energy efficiency and performance of the multicore database system processing

the operations driven by the test driver. We develop a multicore manager to optimize the num-

ber of cores, thereby making the best tradeoff between performance and energy efficiency in

multicore database servers. At the heart of the multicore manager is a memory usage model that

estimates memory utilization from queries and database characteristics (e.g., table and record

size). An appropriate number of cores is determined using the estimated memory usage to

avert unnecessary memory swapping, which induces high energy consumption overhead. We

make use of the proposed benchmark toolkit to quantitatively evaluate the performance of our

novel multicore manager. Our benchmarking tool of EDOM shows that the multicore and CPU

utilizationons have significant impacts on energy efficiency; the cross and outer join operations

have remarkable difference in energy consumption; and the indexing technique improves en-

ergy efficiency of the database system. More importantly, extensive experimental results show

ii

that our multicore manager in EDOM provides a simple yet powerful solution for improving

energy efficiency of database applications running on multicore servers.

In the second part of the dissertation study, we develop an energy-efficient database sys-

tem called GreenDB running on clusters. GreenDB applies a workload-skewness strategy by

managing hot nodes coupled with a set of cold nodes in a database cluster. GreenDB fetches

popular data tables to hot nodes, aiming to keep cold nodes in the low-power mode in increased

time periods. GreenDB is conducive to reducing the number of power-state transitions, thereby

lowering energy-saving overhead. A prefetching model and an energy saving model are seam-

lessly integrated into GreenDB to facilitate the power management in database clusters. We

quantitatively evaluate GreenDB’s energy efficiency in terms of managing, fetching, and stor-

ing data. We compare GreenDB’s prefetching strategy with the one implemented in Postgresql.

Experimental results indicate that GreenDB conserves the energy consumption of the existing

solution by up to 98.4%. The findings show that the energy efficiency of GreenDB can be

optimized by tuning the system parameters, including table size, hit rates, number of nodes,

number of disks, and inter-arrival delays.

iii

Acknowledgments

This dissertation would not have been completed without invaluable guidance, experience

sharing, constant support and encouragement from my advisor, people in our research group

and family members during my study at Auburn University.

First and foremost, I would like to give my most sincere and deepest gratitude to my ad-

visor, Dr. Xiao Qin, for his great efforts, trust and patience in my work. I will never forget

his extensive knowledge in the field of computer systems and inexhaustible enthusiasm for re-

search, which keeps inspiring and driving me to accomplish my research. When working on the

book chapter ”Energy Efficiency of Multicore Database servers” and ”GreenDB”, his insight-

ful advice and suggestion helped and enlightened me in setting up accurate motivations behind

the research, building a EDOM and GreenDB clusters that can reduce energy consumption in

database systems.

I am also tremendously grateful to be advised by my committee members Dr.Wei-Shinn

(Jeff) Ku, Dr. Saad Biaz and Dr.Richard Chapman who reviewed my proposal and dissertation

documents. They gave me a number of valuable suggestions, by which my dissertation had

been substantially improved. I would like to show my appreciation for Dr. Zhaofei Fan as my

university reader.

Working with our research group is fantastic. I owe my gratitude to Shubbhi Taneja,

Chaowei Zhang, Yuanqi Chen, Xiaopu Peng, Yangyang Liu, Jianzhou Mao, Ajit Chavan, who

helped me with paper writing, experimental result collection and group discussions. In ad-

dition, all the professors and students in the Department of Computer Science and Software

Engineering are greatly appreciated, because an excellent atmosphere for study and research is

created and maintained by everyone.

Finally and most importantly, the endless love from my family is the most powerful

strength that keeps me fighting for my research. My mother Xiancui Liu, my father Ziyou

Zhou always stay with me, cheering for achievement and overcoming all difficulties.

iv

To my parents, I really appreciate all your support and encouragement while I am working

on my Ph.D these three years.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

1 Introduction . 1

1.1 Motivations . 2

1.2 Contributions . 4

1.3 Organization . 4

2 Related Work . 6

2.1 Energy-Efficient Data Centers . 7

2.1.1 Computing Cost . 8

2.2 Factors Affecting Energy-Efficiency . 10

2.3 Energy-Saving Techniques . 10

2.4 Energy Consumption Model . 11

2.5 Energy-Efficient Database Management Systems 11

2.6 Summary . 12

3 Energy Efficiency of Multicore Database servers . 13

3.1 Criteria and Challenges . 14

3.1.1 Energy Efficiency Profiling. 14

3.1.2 Consumption Measurement. 15

3.1.3 Performance Profiling. 15

vi

3.1.4 Optimization for Multicore-based Database Systems. 16

3.2 The Energy Efficiency Benchmark . 16

3.2.1 Simplicity of EDOM toolkit . 17

3.2.2 Configuration Module . 17

3.2.3 Test Driver . 17

3.2.4 CentOS and PostgreSQL . 18

3.2.5 Power Efficiency and Performance Monitor 19

3.3 The Multicore Manager . 19

3.3.1 Memory Usage Estimator . 20

3.3.2 Algorithm Design . 22

3.3.3 Energy-Efficient Multicore Manager 24

3.4 Experimental Results . 26

3.4.1 CPU Utilization and Mulitcores . 26

3.4.2 Outer-Join vs. Cross-Join Operations 33

3.4.3 The Indexing Technique . 36

3.5 Summary . 37

4 GreenDB . 49

4.1 System Design . 50

4.1.1 Basic Ideas . 50

4.1.2 Software Architecture . 50

4.1.3 Query Manager . 52

4.1.4 Prefetching Module . 52

4.1.5 Energy-cost Model . 55

4.1.6 Power Manager . 55

4.2 Energy-Efficient Prefetching . 56

vii

4.2.1 Two Energy Saving Principles . 58

4.2.2 Modeling Energy Savings . 58

4.2.3 Calculating Energy Savings . 64

4.3 Experimental Results . 64

4.3.1 Experimental Setups . 66

4.3.2 Prefetching Data to Hot Nodes . 66

4.3.3 Data Table Size . 69

4.3.4 The Number of Nodes . 72

4.3.5 Hit Rates . 74

4.3.6 Inter-arrival Delays . 76

4.3.7 Number of Disks per Cold Node . 76

4.4 Summary . 79

5 Conclusions and Future Work . 80

5.1 Main Contributions . 81

5.1.1 GreenDB - A New Energy-efficient Database Cluster 81

5.1.2 Leveraging Energy Savings Model to Guide Prefetching 82

5.1.3 An Asynchronized Prefetching Mechanism 82

5.1.4 An Evaluation and Optimization Toolkit 83

5.1.5 A Memory Usage Model for Queries and Database Characteristics . . . 83

5.1.6 A Multicore Manager Enhancing Energy Efficiency 84

5.2 Future Work . 84

5.2.1 Statistical Prediction Strategies for Energy-Efficient Database Systems . 84

5.2.2 Dynamic Tuning of Database Systems 85

5.2.3 Optimizing Data Placement in Database Clusters 85

5.2.4 Improving Energy Efficiency of NoSQL Database Systems 85

viii

5.2.5 Improve the Energy Efficiency within Big-data Platforms 86

5.2.6 In-Memory Data Placement and Computing for Data Mining Techniques 86

5.2.7 High-Performance Data Accesses in Big Data Platforms 86

References . 88

ix

List of Figures

3.1 The framework of the energy efficiency benchmarking toolkit, which consists of a
configuration module, a test driver, and a power-performance monitor. 18

3.2 The impact of the number of cores on memory usage of a multicore-based database
system. 20

3.3 The framework of the memory usage estimator. 22

3.4 The validation of energy consumption governed by our multicore manager. 25

3.5 Power consumption profiling of query: Outer-Join 29

3.6 Power consumption profiling of query: Cross-Join 30

3.7 Performance profiling of Outer-Join under different CPU utilization and multicores 38

3.8 Performance profiling of Outer-Join under different CPU utilization and multicores 39

3.9 Performance profiling of Cross-Join under different CPU utilization and multicores 40

3.10 Power consumption comparision between outer-join and cross-join in multicore
systems. 41

3.11 Energy efficiency impact of outer-join and cross-join operations on multicore sys-
tems under various CPU utilization . 42

3.12 Energy efficiency impact of outer-join and cross-join operations on multicore sys-
tems under various CPU utilization . 43

3.13 Performance comparision of outer-join and cross-join queries in the multicore sys-
tem under various CPU utilization. 44

3.14 Performance comparision of outer-join and cross-join queries in the multicore sys-
tem under various CPU utilization. 45

3.15 Comparison of execution time between outer-join and cross-join under mutlticore
situations . 46

3.16 Impacts of outer-join and cross-join operations on the memory usage of multicore
systems. 47

x

3.17 Impacts of the indexing technique on energy efficiency of the outer-join and cross-
join operations running in multicore systems. 48

4.1 The architecture of the GreenDB system. 51

4.2 Energy consumpiton of Prefetching one data table from a cold node to a hot node. . 68

4.3 Energy consumpiton Saving And Corresponding Saving Ratio. 69

4.4 Energy consumption and Performance profiling between fetching and replicating
techniques . 70

4.5 Total energy consumption of database clusters while data size is varied for three
different values of the hit rate: (a) 25%, (b) 50%, (c) 75%. 72

4.6 Total energy consumption of database clusters while the number of nodes is varied.
Data size is fixed at (a) 200K, 400K, 800K records. 73

4.7 Total energy consumption for different hit rate values where the data size is fixed
at: (a) 200K records, (b) 400K records, (c) 600K records. 75

4.8 Total energy consumption for different delay values where the hit rate is : (a) 55%,
(b) 65%, (c) 75%, and (d) 85%. 77

4.9 Total energy consumption of database clusters while the number of data disks of
cold node is varied. Hit rate is fixed at: (a) 60%, (b) 75%, (c) 90% 78

xi

List of Tables

3.1 Testbed Configurations. 19

3.2 Power Meter Specifications . 19

3.3 Testbed Configurations . 26

4.1 Notation for the Description of the Prefetching Module. 53

4.2 Power Meter Specifications . 56

4.3 Notation for the Description of the Energy-Saving Calculation Module. 57

4.4 Testbed Configurations. 66

xii

Chapter 1

Introduction

High energy efficiency is of importance for reducing operating cost of data centers, where

database applications are running on multicore servers [35]. Traditional energy saving tech-

niques for database systems are inadequate for multicore computing. To address this problem,

we propose in this study a multicore manager called EDOM - a simple yet effective way of

improving energy efficiency of database operations on multicore servers. To investigate energy

efficiency of multicore database systems, we build an energy-efficiency benchmarking toolkit

for modern database systems. We show that the toolkit can be applied to evaluate the energy

efficiency of our proposed EDOM on multicore servers.

Improving energy efficiency of parallel database systems also becomes indispensable for

building data centers supporting transnational database applications. Traditional energy-saving

techniques for clusters are inadequate for parallel database systems running on clusters. To

address this problem, we focus on reducing energy consumption cost of large-scale database

systems, which are comprised of multiple nodes or severs. We show how to develop a parallel

database system called GreenDB - an energy-effective system running on clusters. At the heart

of GreenDB is a prefetching and caching mechanism, which fetches hot data from passive

nodes into active nodes. GreenDB offers energy savings by turning a large number of passive

nodes into the low-power mode, which keeping a small number of active nodes to serve queries.

The power management of GreenDB is governed by two mathematical models, namely, a

prefetching model and an energy consumption model. We show how to build these two models

and how to integrate the models into the prefetching and caching mechanism.

1

1.1 Motivations

The following motivations make energy-efficiency benchmarking tools and energy-efficient

prefetching and caching in GreenDB desirable and achievable.

1. The lack of study on the energy efficiency of database operations (e.g., cross and outer

joins) running on mulitcore servers.

2. The pressing need of benchmarking tools for energy-efficient database systems.

3. The growing importance of improving energy efficiency of database systems through

multicore management.

4. Database clusters are cost-effective platforms for parallel database systems.

5. A pressing demand of reducing energy cost of large database systems.

Computer architecture enters a new era of multicore structures , which become a standard

computing platform for a wide range of application domains including database systems [59].

A key concept of multicore computing lies in multi-threading, which concurrently executes

multiple threads on multiple cores. Although growing attention has been paid to the improve-

ment of database energy efficiency [31], little attention has been paid to the energy efficiency

analysis of database operations on multicore processors widely deployed in modern servers.

Hence, we are motivated to kick off this research by focusing on the analysis of energy effi-

ciency of database operations running on multicore servers.

To optimize energy efficiency of database systems, one has to rely on benchmarks to assess

the effectiveness of energy-saving schemes deployed in the systems. In a handful of prior

studies, benchmarks have been developed for energy efficiency in data centers. For example,

JouleSortis used to evaluate the energy efficiency of clusters. The existing benchmarks were

focused on energy efficiency of cluster computing systems rather than database systems. This

problem inspires us to develop an energy-efficient benchmarking tool for database operations

processed in multicore systems.

2

The hardware advancement of multicore processors brings new challenges to the design of

database systems, because a main performance bottleneck shifts from slow I/O access to main

memory access [12]. This challenge becomes more pronounced for data-intensive applications

like database processing. This challenge motivates us to investigate how to choose an appro-

priate number of cores to improve energy efficiency of multicore database systems by averting

the memory bottleneck problem.

Database clusters have become a cost-effective computing platform to manage a massive

amount of data for database management systems or DBMS [61][49][44]. Clusters achieve

high-performance and low response time for database applications through parallel query pro-

cessing on multiple database servers [34]. Data in clusters are partitioned and replicated among

database nodes to handle queries in parallel.

Database Clusters - cost-efficient platforms - consist of multiple DBMS nodes being in-

dependent of one another. It is not uncommon for database clusters to employ a middleware

layer to coordinate parallel queries evenly distributed among database nodes. Such a middle-

ware layer can easily and efficiently fetch and migrate data managed in the database nodes,

because indexing large tables faciliates data migrations when data are replicated across multi-

ple database nodes [50].

Energy cost is one of the significant components of operational costs in data center envi-

ronments [37]. Evidence shows that a data center containing 1000 racks consumes 10MW total

power per year [43]. A wide variety of techniques were proposed to build high-performance

and energy-efficient clusters in data centers, because it is greatly desirable to facilitate energy-

efficient and environmental friendly clusters [67]. Unfortunately, we observe that little attention

has been paid to energy efficiency improvement of database systems running on clusters. This

observation motivates us to focus on energy-efficient database systems for modern data centers.

A handful energy-saving techniques were designed for single-server database systems. For

example, Chehadeh et al. investigated energy-efficient indexing strategies in an object-oriented

database environment [8]. Poess and Nambiar proposed a way of making tradeoffs between

existing power-saving techniques and their performance impact on database applications. Our

analysis will guide system developers and data center managers in making informed decisions

3

regarding adopting power-preserving techniques. The aforementioned energy-saving schemes

developed for single-server database systems are inadequate for DBMS on clusters. More-

over, energy-efficient prefetching and caching have not been incorporated in the prior database

systems. We address this challenge by proposing an energy-efficient database cluster called

GreenDB, in which prefetching and caching are seamlessly integrated to offer energy savings

in a holistic way.

1.2 Contributions

We make the following six contributions in this study.

1. A toolkit called EDOM facilitating the evaluation and optimization of energy-efficient

multicore-based database systems.

2. An analysis of energy-efficiency impacts of multicore processors on database operations.

3. An energy-aware multicore manager - a core component in EDOM.

4. A energy efficiency architecture called GreenDB prefetch and cache the most frequently

used data table in the hot nodes.

5. A prefetching model - a core component in GreenDB.

6. Energy saving prediction model is deployed in a distributed PostgreSQL Database Sys-

tem to evaluate the energy efficiency.

1.3 Organization

The rest of this dissertation is organized as follows. The next chapter presents prior studies

and related research projects. In Chapter 3, we propose a toolkit called EDOM facilitating

the evaluation and optimization of energy-efficient multicore-based database systems. Criteria

and challenges of building an energy efficiency benchmark is described. A multicore manager

aiming to determine the optimal number of cores is designed and a memory usage model relying

4

on queries and database characteristics is proposed. This multicore manager is validated by our

EDOM benchmark toolkit.

In Chapter 4, an energy-efficient database system called GreenDB running on clusters is

designed and developed by the virtue of applying a workload-skewness strategy to manage

hot nodes coupled with a set of cold nodes in a database cluster. Chapter 4 also introduces

an energy-cost model estimating energy savings offered by keeping candidate data tables into

the hot nodes while shutting down the cold nodes. In this Chapter (see Chapter 4.2), we shed

light on the implementation of an asynchronous prefetching scheme in GreenDB, which takes

a full advantage of asynchronous replications to cut energy cost of fetching hot data from cold

nodes. Moreover, we evaluate the effectiveness of our GreenDB clusters by conducting a sets

of experiments under various situations (see Chapter 4.3).

Finally, Chapter 5 concludes this dissertation research by summarizing key contributions

(see Chapter 5.1). Future research directions can be found in Chapter 5.2.

5

Chapter 2

Related Work

Energy-efficient clusters are becoming increasingly popular in large-scale data centers to reduce

high operational cost caused by huge energy consumption. Recent studies proposed a wide

range of energy-saving techniques in the realm of cluster computing.

Evidence shows that a variety of factors affect the energy-efficiency of DMBS. For ex-

ample, Tsirogiannis et al. analyzed the energy efficiency of processors in a database server,

discovering that energy consumed by CPUs does not vary linearly with CPU utilization under

database workload [57]. Lang et al. analyzed a number of important parameters related to the

design of energy-efficient DBMS [31]. A framework built by Lang et al. optimizes queries by

considering both performance and energy consumption as optimization criteria [31].

Increasing attention has been paid to making good tradeoffs between energy efficiency

and performance in the field of DBMS. Although energy saving and high performance are

two conflicting design goals, prior findings indicate that a few energy-efficient configurations

and schemes may deliver good performance and achieve high energy efficiency [57]. Schall

and Härder developed a distributed DBMS - WattDB - to make dynamical configurations to

satisfy performance demands while conserving energy consumption on clusters [52]. Xu et

al. implemented PET - an energy-aware query optimization framework that is an extension

of the PostgreSQL kernel [62]. PET makes use of its power cost estimation module and plan

evaluation model to allow database system to make good tradeoffs between energy efficiency

and performance. Our EDOM is distinctly different from the aforementioned approach in that

EDOM aims to conserve energy cost of DBMS running on multicore servers while achieving

high query performance.

6

Recently, some research begun to pay attention to model the energy consumption of the

database systems. Rivoire described different approaches to modeling power consumption in

components, systems, and data centers, aiming at improving the components’ and systems’ de-

sign or to energy efficiently use existing hardware. A few models were focused on profiling disk

energy behavior based on CPU demands [64]. Different from the existing energy consumption

models, our models(i.e., data fetching model and power saving model) built in GreenDB pay

attention to modeling energy saving based on data transfer between hot node and cold nodes.

2.1 Energy-Efficient Data Centers

Tens of thousands of data centers around the world are consuming huge amount of energy.

Increasing business companies, IT companies, and institutes are planning to build their own

data centers. A study by DatacenterDynamics demonstrates that worldwide investment in data

centers in 2012 had increased by 22.1% up to 105 billion dollars compared with 2011, and this

investment is going to grow by another 14.5% to 120 billion dollars for 2013 [27].

Research shows the rapid increment of energy consumption of data centers [21] [26] [55].

A report announces that 1,500 TWh of electricity, which is nearly 10% of world electricity

generation, is used by the world’s Information-Communication-Technologies (ICT) ecosystem

annually [39]. Furthermore, global data centers are estimated to consume (as of 2010) from

250 to 350 TWh every year. A reason behind the striking energy consumption in data centers

is the rapid growth of computing and storage capacity in recent years. For instance, Facebook

has invested more than 1 billion in IT facilities that power its social network, which now serve

more than 845 million users in a month around the world [38].

Cloud computing has become a popular topic in recent years. A study shows that coal

and nuclear, which generate severe air pollution, are used to satisfy these large amount of elec-

trical energy demand [14]. Apple, HP, IBM, Facebook, and Mircosoft are using dirty energy

to power their growing cloud data centers. Confronting with the rapid increment of energy

consumption and severe air pollution, growing attention has been paid to build energy-efficient

data centers [2] [16] [22] [32]. At the same time, small or medium sized organizations began to

7

move their computing applications to an Internet-based ”cloud” platform in order to improve

energy efficiency [60].

Computing cost and cooling cost are major components of total energy consumption for

data centers. Computing cost refers to the electronic energy cost that makes the IT facilities

working. And cooling cost is the cost of cooling systems that lower down the temperature in

data centers. Studies have been conducted on reducing either the computing cost or cooling

cost in order to build energy-efficient data centers.

2.1.1 Computing Cost

A lot of research have been done in reducing computing cost of data centers [4] [53] [63].

For instance, CMPs are widely used in data centers, and the frequency/voltage of CPU cores

could be adjusted in order to save power consumption. Mishra et al. proposed a two-tier

feedback-based control scheme, in which the first-tier is comprised of a global power manager

to allocate power targets to individual islands according to workloads and the second-tier con-

sists of local controllers that adjust island power through changing the voltage and frequency

as a response of workload requirements [40]. A power-efficient scheme for erasure-coded stor-

age clusters–ECS2–was proposed, which aims to offer high energy efficiency with marginal

reliability degradation [25].

Popular strategies to reduce computing cost include redistributing workload and powering

off idle disks or data nodes. For example, an energy-efficient strategy was proposed which

specifies a subset of disks as cache disks and dispatches workloads to these cache disks while

making the other disks spin down [13]. Another strategy introduced a Popular Data Concentra-

tion (PDC) technique that migrates frequently accessed data to a subset of disks [45]. Then the

other disks which are not accessed frequently could be transitioned to low-power mode, and

the total computing cost of these data nodes could be reduced.

Many researchers concentrate on resource management and task scheduling in data cen-

ters to decrease computing energy consumption [3] [5] [7] [33] [56]. For instance, Beloglazov

and Buyya proposed an energy-efficient resource management system for virtualized Cloud

data centers [7]. In this system, VMs are consolidated according to the utilization of resources,

8

and virtual network topologies are built between VMs and thermal status of computing nodes

to save energy. This management system reduces the operational costs of data centers and

provides the required Quality of Service (QoS). Beloglazov et al. also demonstrated an archi-

tectural framework (including resource provisioning and allocation algorithms) and principles

for energy-efficient Cloud computing [5]. Experimental results show that their Cloud comput-

ing model has immense potential in energy saving and energy efficiency improvement under

dynamic workload scenarios. In addition, Aksanli et al. demonstrated an adaptive job sched-

uler that utilizes the prediction of solar and wind energy production [3]. This job scheduler

improves the energy efficiency by three times. Lee and Zomaya pointed out that under-utilized

resources account for a large amount of energy use and resource allocation strategies could be

applied to achieve high energy efficiency [33]. They proposed two task consolidation heuris-

tics methods that aim to maximize resource utilization and take into account of both active and

idle energy consumption. Experimental results illustrated the energy saving capability of their

heuristics.

With the growing of data center density and size, designers should take into account of

both energy costs and carbon footprint. Altering the usage patterns of data centers is believed

to be a practical method to affect demand response. Chiu et al. pointed out that shifting com-

putational workloads across geographic regions to match electricity supply may help balance

the electric grid [10]. They proposed a symbiotic relationship between data centers and grid

operators and a low cost workload migration mechanism. Ren and He proposed an online

algorithm, called COCA (optimizing for COst minimization and CArbon neutrality), for min-

imizing operational cost in data centers while satisfying carbon neutrality without long-term

future information [48]. COCA enables distributed server-level resource management: each

server autonomously adjusts its processing speed and optimally decides the amount of work-

loads to process. Analysis of trace-based simulation studies show that COCA reduces cost by

more than 25% (compared to state of the art) while resulting in a smaller carbon footprint.

Furthermore, network facilities are also investigated in order to reduce the energy con-

sumption of data centers. The architecture of a Data Center Network (DCN) affects its scal-

ability, however, its power consumption is a main contributor to its energy cost. Hammadi

9

and Mhamdi classified existing DCNs as switch-centric and server-centric networks, and con-

duct literature review of existing technologies in energy saving and renewable energy ap-

proaches [23].

2.2 Factors Affecting Energy-Efficiency

Prior studies revealed that energy-efficient database systems are affected by various factors. For

example, Graefe’s novel technique makes a server-class database management system energy

efficient [6]; Graefe’s findings advocate that I/O scheduling and placement offer opportuni-

ties for energy savings. Wang et al. recently investigated energy-saving data management

techniques, indicating that data management software plays a vital role in boosting energy ef-

ficiency [19]. Theo et al. built a cluster framework, where individual nodes are dynamically

attached and detached to a cluster on demand of dynamic workload [51].

Attention has been paid towards balancing energy efficiency and performance in the realm

of database systems. Although energy savings and high performance are two conflicting design

goals, our previous research [66] suggests that in a single database server, energy-efficient

configurations may deliver good performance and high energy efficiency thanks to a significant

reduction in idle time.

2.3 Energy-Saving Techniques

Improving energy efficiency becomes increasingly important for data centers. Techniques or

strategies reducing energy cost make a major contribution to advance energy-efficient data

centers.

Xu et al. implemented an energy-aware query optimization framework or PET as an ex-

tension of the PostgreSQL kernel [62]. PET makes use of its power cost estimation module

and plan evaluation model to make good tradeoffs between energy efficiency and performance

in database systems. Our GreenDB is distinctly different from the aforementioned approaches

in that GreenDB conserves energy cost of distributed DBMS running on multiple servers while

achieving high query performance through the data management architecture.

10

Very recently, researchers embarked on inspiring studies to model the energy consump-

tion of database systems. Rivoire proposed approaches to modeling power consumption in

components, systems, and data centers, aiming to improve energy-efficient system design [54].

A handful models were focused on profiling disk energy behaviors that depend on CPU de-

mands [64]. Different from the existing energy consumption models, ours (i.e., the prefetching

and power-saving models) built in GreenDB pay attention to modeling energy savings con-

tributed by transferring popular tables from cold to hot nodes.

2.4 Energy Consumption Model

Recently, energy consumption models have been developed for computing systems [9]. A few

models were focused on projecting energy consumption of disk systems using CPU demands.

The energy consumption models for storage systems are inadequate for DBMS. Other intrigu-

ing high-level energy models were proposed for DBMS [24]. For instance, Poess and Nambiar

constructed a power consumption model using the TPC-C benchmarks; the models were vali-

dated with measurements taken from three TPC-C configurations that are comprised of client

systems, a database server, and a storage subsystem [46]. Different from the existing energy

consumption models, our models built in EDOM pay attention to modeling energy consump-

tion of DBMS operations.

2.5 Energy-Efficient Database Management Systems

Prior studies revealed that energy-efficient database systems are affected by various factors. For

example, Graefe’s novel technique makes a server-class database management system energy

efficient [6]; Graefe’s findings advocate that I/O scheduling and placement offer opportuni-

ties for energy savings. Wang et al. recently investigated energy-saving data management

techniques, indicating that data management software plays a vital role in boosting energy ef-

ficiency [19]. Theo et al. built a cluster framework, where individual nodes are dynamically

attached and detached to a cluster on demand of dynamic workload [51].

11

2.6 Summary

One objective of this dissertation is to propose energy-aware management strategies to save

energy cost of data centers. To reduce energy consumption, efforts were placed on improving

energy efficiency in data centers. In the first section of this chapter (see also Chapter 2.1),

we introduced popular methods in building energy-efficient database systems. In the second

section, we discussed energy-aware data management of database clusters. We observed that

CPUs are an energy consumption dominant component contributing most portion of the overall

energy consumption of database systems. In addition, evidence shows that memory plays a

critical role in energy efficiency of the database systems.

Related studies confirm that database clusters have been wildly adopted in a wide range

of applications. We presented in Chapter 2.5 the related work on modeling energy savings

of caching data tables in active nodes. Then, we illustrated prior studies on asynchronous

energy-efficient prefetching schemes. Finally our briefly introduced energy-aware management

strategies.

12

Chapter 3

Energy Efficiency of Multicore Database servers

In this chapter, we propose a toolkit called EDOM facilitating the evaluation and optimiza-

tion of energy-efficient multicore-based database systems. Two core components in EDOM

are a benchmarking toolkit and a multicore manager to improve energy efficiency of database

systems running on multicore servers.

We start this study by analyzing the energy efficiency of two popular database operations

(i.e., cross join and outer join) processed on multicore processors. We investigate cross and

outer joins, because these two operations are common components of database applications.

We describe the criteria and challenges of building an energy efficiency benchmark for

databases on multicore servers.

We build a benchmarking toolkit, which is comprised of three parts, namely, a config-

uration module, a test driver, and a power monitor. The workload generator facilitates the

configurations of the PostgreSQL database system. We leverage this generator to set up tables

and populate data records into the database. The test driver automatically issues operations to

the database system in accordance to access patterns created by the workload generator. The

power monitor keeps track of energy efficiency and performance of the multicore database

system processing the operations driven by the test driver.

We develop a multicore manager to optimize the number of cores, thereby making the best

tradeoff between performance and energy efficiency in multicore database servers. At the heart

of the multicore manager is a memory usage model that estimates memory utilization from

queries and database characteristics (e.g., table and record size). An appropriate number of

13

cores is determined using the estimated memory usage to avert unnecessary memory swapping,

which induces high energy consumption overhead.

We make use of the proposed benchmark toolkit to quantitatively evaluate the performance

of our novel multicore manager. Our benchmarking tool of EDOM shows that the multicore

and CPU utilizationons have significant impacts on energy efficiency; the cross and outer join

operations have remarkable difference in energy consumption; and the indexing technique im-

proves energy efficiency of the database system. More importantly, extensive experimental

results show that our multicore manager in EDOM provides a simple yet powerful solution for

improving energy efficiency of database applications running on multicore servers.

The rest of the chapter is organized as follows. In Section 3.1, the criteria and challenges

in the development of our energy efficiency benchmark are discussed. The design of energy-

efficiency benchmark as well as implementation issues are stated in Section 3.2. Section 3.4

provides an investigation in operations regarding energy and performance efficiency, followed

by a detailed analysis. Finally, Section 3.5 concludes this part of the dissertation study.

3.1 Criteria and Challenges

Noticing that there is the lack of simple yet efficient benchmarks for energy-aware database

systems, we start this study by focusing on the criteria and challenges of the development of

energy efficiency benchmarks in the realm of database. The criteria presented in this section

set the preliminary principles by which our energy efficiency benchmark is established.

Existing energy management studies (e.g., [31]) paid attention to the energy-efficiency

evaluation and comparison of energy-efficient database management systems. In contrast, the

first part of our study is focused on energy-efficiency benchmarking tools that address issues

related to energy profiling, energy efficiency, and continuously changing performance.

3.1.1 Energy Efficiency Profiling.

Ideally, an energy-efficiency benchmark should offer us an intuitively profiling approach by

which we can directly test, measure, and analyze a database system’s energy efficiency [42].

14

Our tool aims to show that multicore processors, CPU utilization, memory usage, and hard

disks affect energy consumption when the database system executes queries.

Energy-efficiency profiling benchmarks provide two remarkable benefits. First of all, one

can take full advantage of energy-efficiency profiling to establish an energy-efficiency model

which mathematically demonstrates the correlations among multicore processors, CPU uti-

lization, memory usage, and indexing [36]. Secondly, energy-efficiency profiling provides us

with the ability to facilitate an effective estimation of new techniques deployed to improve the

energy-efficiency of database systems.

In short, energy-efficiency benchmarks make it possible to investigate energy cost caused

by hardware (e.g., multicore processors, CPU utilization, and memory usage) and software

components (e.g., indexing, query types, optimization strategies).

3.1.2 Consumption Measurement.

The goal of our benchmarking tool is to measure real-world database systems deployed in

modern data centers. There are three salient features of our tool.

• First, to fulfill testing needs, one can configure workload conditions by varying table

size and choosing indexing schemes.

• Second, the test-driver tailored for a database system is able to choose the query type,

amount of execution time, and CPU utilization rate.

• Third, our tool offers a simple yet efficient way of testing energy-efficient database

systems. It is straightforward to apply the tool to automatically and concurrently measure and

record both the power consumption and performance.

3.1.3 Performance Profiling.

Measuring database system performance such as execution time, response time, and through-

put should be taken into account in energy-efficiency benchmarks. On one hand, reducing the

energy cost in modern data centers is important and indispensable [29]; on the other hand,

improving system performance is a crucial aspect of metrics to evaluate overall database effi-

ciency [11]. In a vast majority of cases, system administrators have to make tradeoffs between

15

energy efficiency and performance. For certain applications, it is not worthwhile to conserve

energy at the cost of a significant performance degradation [15]. An energy-efficiency bench-

mark should be able to measure energy efficiency in conjunction with performance of database

systems. An ideal energy-efficiency benchmarking tool offers constructive guideline for sys-

tem administrators to improve the energy efficiency while maintaining database performance

in large data centers.

3.1.4 Optimization for Multicore-based Database Systems.

It is challenging to optimize database systems running on multicore processors [65]. This

challenge becomes even more daunting when it comes to making energy cost and performance

tradeoffs for database systems running on multicore servers. We pay attention to multicore

management to optimize energy efficiency of cross join and outer join operations running in

multicore systems. We design a multicore manager to optimize the number of cores in order to

make good tradeoffs between performance and energy efficiency in multicore database servers.

The challenge of developing the multicore manager lies in a memory usage model [30],

which is responsible for estimating memory utilization using queries and database character-

istics like table and record size. The multicore manager decides how many cores should be

allocated to process database operations without giving rise to the memory swapping problem

that causes high energy consumption [17]. The multicore manager and the benchmarking tool

should be seamlessly integrated into the EDOM system for energy-efficient database systems.

As such, we can apply the benchmark toolkit to quantitatively evaluate the performance of the

multicore manager.

3.2 The Energy Efficiency Benchmark

In this section, we present the design issues of the energy efficiency benchmark toolkit for

database systems. Our benchmark tool plotted in Fig. 3.1 consists of three components, namely,

the configuration module, the test driver, and the power-performance monitor.

16

3.2.1 Simplicity of EDOM toolkit

The module-oriented design approach gives rise to the simplicity of our EDOM toolkit. To

make our EDOM toolkit easy and portable to use, we group the functions into three modules,

which consist of related source code. Furthermore, to reduce the overhead of the energy con-

sumption and computing source, the test driver and power-performance monitor (see Fig. 3.1)

are implemented by a highly light-weighted scripting language (i.e., Python). In addition, the

configuration module is comprised of three submodules, namely, query type generator, CPU

utilization configuration, and multi-core utilization configuration. The configuration module is

launched only once to set up the test driver before EDOM is kicking off to evaluate and op-

timize the of energy-efficiency of database systems. After the configuration is completed, the

module requests no system resource.

3.2.2 Configuration Module

The responsibility of the workload generator is three-fold. First, it configures the table size of

tested database according to an experiment design. Second, the module can enable or disable

indexing features during the course of energy efficiency testing. Last, the module provides a

straightforward way of managing data of tested tables in a database system. The configuration

module automatically creates and setups a large amount of test data imported to the database

system prior to a test. The configuration module also adjusts field types and sizes with accor-

dance to specific test requirements.

3.2.3 Test Driver

The test driver generates a set of queries issued to the tested database system. This module

contains three parts: the query type generator, the CPU utilization controller, and the multicore

controller.

The query type generator manipulates the types of performed queries in the PostgreSQL

database. The CPU utilization controller configures the CPU utilization of a server processing

all the issued queries. For example, this controller can set the CPU utilization to four different

17

Figure 3.1: The framework of the energy efficiency benchmarking toolkit, which consists of a
configuration module, a test driver, and a power-performance monitor.

levels (i.e., 25%, 50%, 75%, and 100%). The multicore controller is in charge of setting the

number of cores running queries. For instance, in our experiments, the number of cores can be

flexibly configured to a number anywhere between one and four.

3.2.4 CentOS and PostgreSQL

We run the PostgreSQL database system on CentOS. PostgreSQL, an object-relational database

management system with high extensibility, securely stores and retrieves data for other software

applications [58]. ProstgreSQL is capable of processing workloads of small-scale applications

as well as large Web-based applications.

In addition, we maintain a dedicated computing environment to test PostgreSQL, because

the focus of our experiments is to measure energy consumption of database operations. Query

requests are issued by the light-weight test driver, the energy consumption of which is ignored

in our experiments. Table 4.4 shows the database server specification.

18

Table 3.1 Testbed Configurations.
OptiPlex 3020 MT/SFF Technical Specifications

CPU Intel 4th Core i5-4570 Quad Core@3.20GHz
Memory 4GB Non-ECC 1600MHz DDR3 SDRAM
Hard Drives Seagate KC47-500GB SATA (7.200 RPM)
Operating CentOS 6.5 (Final)
System Linux kernel 2.6.32− 431.el6.x8664
Database System PostgreSQL 9.3.5

3.2.5 Power Efficiency and Performance Monitor

The power-performance monitoring module is responsible for measuring and collecting metrics

like power consumption, processing time, CPU utilization, and memory usage [41]. We apply

an electricity meter to measure power consumption of a power outlet socket, to which our server

is connected.

To improve the measurement accuracy, we connect the display into another power socket,

ensuring that the measured energy is only consumed by the PostgreSQL database server. The

power meter employed in this study is TS-836A Plug Energy Watt Voltage Amps Meter (see

Table 4.2 for details).

In addition to energy consumption, the other measured metrics such as processing time and

memory usage are automatically collected by a light-weight process implemented in a Python

script.

Table 3.2 Power Meter Specifications
TS-836A Power Meter Specifications

Measurement of consumption 0.00 ∼ 9999.99 KWh
Voltage display range 0V ∼ 9999V
Current range 0.000A ∼ 15.000A
Frequency display 0Hz ∼ 9999Hz
Wattage display (Watts) 0 ∼ 1800W

3.3 The Multicore Manager

In this section, we propose a multicore manager - a core component of EDOM. The goal of the

multicore manager is to make a good tradeoff between energy efficiency and performance in

19

database systems. This goal is achieved by alleviating the memory swapping problem through

the decisions on the most appropriate number of cores.

We design a memory usage estimator to provide a guideline for determining the number

of cores (see Section 3.3.1). We show the algorithm of the multicore manager in Section 3.3.2.

The energy efficiency of a database system governed by the multicore manager is evaluated in

Section 3.3.3.

Number of cores
1 1.5 2 2.5 3 3.5 4

M
em

or
y

us
ag

e
(P

er
ce

nt
ag

e)

10

20

30

40

50

60

70

80

90

100

600,000 Records
800,000 Records
1,000,000 Records
1,200,000 Records
1,400,000 Records

Figure 3.2: The impact of the number of cores on memory usage of a multicore-based database
system.

3.3.1 Memory Usage Estimator

The optimal number of cores utilized in a multicore-based database system largely depends on

workload conditions (e.g., query types, data size, and processing time). The workload condi-

tions exhibit various memory-usage characteristics, which in turn affect the optimal number

20

of cores employed in the system. This observation motivates us to develop a memory usage

estimator to provide a general guideline for determining the number of cores.

In modern database systems, memory resources become a vital component affecting per-

formance and energy efficiency [18]. This argument is especially true when it comes to big

data applications. When a database system has insufficient free memory, then some memory

resources must be freed by writing data back to disks [20].

Our empirical study reveals that the memory usage imposes a significant impact on the

energy efficiency of database systems. For example, Figs. 3.2, 3.5(a) indicate that heavily

utilized main memory adversely slows downs the performance of multiple cores; as a result,

an increasing number of queries cannot be processed in a timely manner, thereby pushing the

power consumption at an unacceptably high level.

The multicore manager aims to decide an optimal number of cores that meets the resource

needs of heavy workload, where main memory becomes scarce resources. Recognizing that

the optimization of number of cores relies on memory utilization, we develop a memory usage

estimating module to predict memory utilization under any workload modeled in forms of

query types and the other database characteristics. And we designed an effective algorithm to

calculate the most appropriate number of cores for running operations under a limited memory

hardware situation.

To address the problem of heavy workload coupled with scarce memory resources, the

memory usage estimator estimates the memory usage according to the following four operation

factors.

• database query type,

• the number of tables,

• the number of records, and

• the record size.

Fig. 3.3 depicts the architecture of the multicore manager, which consists of five key com-

ponents. Given the number of tables, the number of records in the table, and record size, the

21

Figure 3.3: The framework of the memory usage estimator.

memory usage estimator applies a mathematical model to project memory usage, which is used

in the multicore calculator to determine the number of the mulitcores.

The multicore manager algorithm detailed in Section 3.3.2 incorporates a multicore cal-

culator (see Fig. 3.3) to govern the process of choosing an approximate number of cores. The

query profiling in the multicore manager is designed to acquire the database workload char-

acteristics such as the numbers of tables and records. The multicore controller obtaining the

estimated number of cores is in charge of setting up the number of cores that execute database

queries in the system.

3.3.2 Algorithm Design

In this section, we propose the algorithm of the multicore manager to optimize the number

of cores for given workload conditions. The primary function of the multicore manager is to

make a good tradeoff between energy efficiency and performance in database systems running

on multicore servers.

22

Recall that the memory usage estimator (see Section 3.3.1) predicts memory utilization

from queries and database characteristics. An appropriate number of cores is determined by

Algorithm 2, which takes an estimated memory usage as the input to alleviate the memory

swapping problem.

Algorithm 1 Multicore Manager Algorithm: optimal()
Require:

number of tables t
number of records r
record size s

Ensure:
number of cores Copt

1: Cmin ← 1;
2: Cmax ←MAX NUM CORES;
3: core search(Cmin, Cmax, t, r, s);
4: return Copt;

The multicore manager algorithm (see Algorithm 1) outlined above initializes the minimal

and maximal number of cores to Cmin and Cmax, respectively (see Lines 1-2 in Algorithm 1).

Next, the multicore manager algorithm invokes the binary search algorithm (see Algorithm 2)

to recursively calculate the number of cores under a workload condition expressed in the form

of the number of tables t, the number of records r, and the number of record size s (see Line 3

in Algorithm 1).

Algorithm 2 Recursive Core Search: core search()
Require:

Cmin - Minimal number of cores
Cmax - Maximal number of cores
number of tables t
number of records r
record size s

Ensure:
number of cores Copt

1: Copt = bCmin+Cmax
2 c

2: if (memoryestimated(t, r, s, Copt) < memory) then
return core search(Copt, Cmax, t, r, s);

3: else if memoryestimated(t, r, s, Copt) > memory then
return core search(Cmin, Copt, t, r, s);

4: else
return Copt;

5: end if

The binary core search algorithm is recursive in nature. In each recursion, the algorithm

takes the following two main steps to obtain the appropriate number of cores.

23

• Step 1. The optimal number of core Copt is set to the midpoint between the minimal (i.e.,

Cmin) and maximal (i.e., Cmax) numbers of cores (see Line 1).

• Step 2. Using workload condition (i.e., t, r, s) and the tentative optimal number of cores

Copt, the memory usage estimator predicts the memory load (i.e.,memoryestimated(t, r, s, Copt))

(see Line 2 in Algorithm 2).

• Step 3. If the projected memory load is smaller than the available memory capacity,

then the optimal number of cores is increased by recursively calling the core search()

algorithm, where the searching range is between Copt and Cmax (see Line 2 in Algo-

rithm 2). Otherwise, when the estimated memory load exceeds the available memory

size, core search() is recursively invoked to update the optimal core number by search-

ing a range between Cmin and Copt (see Line 3 in Algorithm 2).

We demonstrate in the next subsection (i.e., Section 3.3.3) that an appropriate number

of cores determined using the multicore manager algorithm helps in alleviating the serious

memory swapping problem - a main driver for high energy cost in multicore database systems.

3.3.3 Energy-Efficient Multicore Manager

In order to validate the effectiveness of our multicore manager, we design a group of experi-

ments. We also quantitatively measure the energy efficiency of the multicore manager.

In this set of experiments, we increase the table size from 6 × 105 records to 1.4 × 106

records with an increment of 2×105 records. We evaluate the power consumption of a database

system, where the number of cores is dynamically controlled by our multicore manager (see

Algorithm 1). We compare our algorithm with two baseline solutions, where the number of

cores is fixed to one core and four cores.

Fig. 3.4 shows the energy consumption of the multicore-based database system governed

by our multicore manager; Fig. 3.4 also illustrates the energy consumption in the one-core and

four-core cases.

The results indicate that as the table size is increased from 6×105 to 1.2×106 records, the

optimal number of cores in terms of energy efficiency is four; in such a relatively light load, the

24

one-core manager exhibits the worst energy efficiency. The evidence shows that our multicore

manager chooses the optimal number of cores to reduce energy consumption under low and

medium-low workload conditions.

When the table size is very large (e.g., 1.4× 106 records), the energy consumption of the

four-core case dramatically increases due to the memory-swapping problem (see also Fig. 3.4).

Not surprisingly, our multicore manager judiciously downgrades the number of cores to three,

which significantly conserves energy consumption compared with the four-core case. More-

over, the results demonstrate that our multicore manager is also more energy efficient than the

one-core counterpart. We observe from this group of experiments that the multicore manager

is capable of determining an optimal number of cores under relatively heavy workload (e.g.,

table size larger than 1.4× 106 records).

We conclude that the multicore manager in our EDOM is conducive to deciding the num-

ber of cores needed to optimize the energy efficiency of multicore-based database systems

where main memory becomes a scarce resource.

Table Size (record)
600,000 800,000 1,000,000 1,200,000 1,400,000

P
ow

er
 C

on
su

m
pt

io
n

(k
W

h)

0

5

10

15

20

25

One core
Four core
Estimated number of cores

Figure 3.4: The validation of energy consumption governed by our multicore manager.

25

The testbed used in our experiments is equipped with a Celeron(R) 2.2 GHz CPU, 1.0

GBytes RAM, and a 160 GBytes SATA disk. Temperature sensors and watchdog are applied to

monitor the disk, inlet and outlet temperatures. The configuration parameters are summarized

in Table 3.3. The ambient temperature is set to 23.2 °C .

Table 3.3 Testbed Configurations
Hardware Software
1 × Intel(R) Celeron(R) 450@2.2GHz Ubuntu 10.04
1 × 1.0 GBytes of RAM Linux kernel 2.6.32
1 ×WD 500 GBytes Sata disk
(WD5000AAKS-75M0A0 [1])

3.4 Experimental Results

We have conducted extensive experiments to demonstrate the usage and effectiveness of EDOM.

We apply the developed EDOM to evaluate the energy efficiency and performance of a multicore-

based database server system.

In this part of the study, we first investigate the impacts of CPU utilization and multicore

on the database system. Then, we compare the energy efficiency of different database oper-

ations. Finally, we demonstrate how the indexing technique affects power consumption and

performance of the database system.

3.4.1 CPU Utilization and Mulitcores

We conduct extensive experiments to capture the power consumption characteristics of CPU

utilization and multicores.

In the first group of experiments, we focus on the impacts of CPU utilization and multi-

cores on the energy efficiency and performance of the tested database system. To make fair

comparison, we keep the number of queries executed by the system a constant under various

hardware configurations. By doing so, we demonstrate how multicores under a wide range of

configurations affect the database system.

26

Energy Efficiency of the Outer-Join Operation

In this experiment, we issue a fixed number of outer-join queries while changing the database

table sizes and number of cores in the system. Fig. 3.5(a) reveals that regardless of the number

of cores, energy consumption of the database system goes up when the table size increases.

This trend is reasonable, because the query processing time is enlarged when the data volume

increases with the increasing table size. The large processing time gives rise to the high energy

consumption.

Now we compare the three curves plotted in Fig. 3.5(a). When the table size is smaller

than 1.4 × 106 records, increasing the number of cores in the database system significantly

reduces the energy consumption caused by processing the outer-join queries. When we add

extra cores into the database system, the query processing time is noticeably shortened, which

in turn conserves energy.

Interestingly, the trend is inapplicable for cases where the table size becomes very large.

For example, the energy consumption of the four-core system is much larger than the two-core

counterpart when the table size is 1.6×106 records. The four-core system is unable to conserve

energy under the large-table-size condition, because the main memory requirement imposed by

the four cores exceed the available memory (i.e., 4GB) in the tested system. We conclude that

increasing the number of cores is an effective way to save energy of a database system, provided

that the system’s main memory resource can meet the multicore system’s needs.

Fig. 3.5 (b)indicates that given a fixed amount of outer-join queries, executed under dif-

ferent CPU utilization within one core, the most energy efficient condition is the 100% CPU

utilization. And as the table size increases, the more CPU utilization it takes the slower the

energy consumption grows. The energy consumption of 100% CPU utilization at the point of

table size 2million is even 37% of the energy consumption of 25% CPU utilization. The reason

is the less CPU utilization used, the more idle status consumption is taken into account of the

whole energy consumption.

We are in a position to evaluate the impacts of CPU utilization on the energy consumption

of the database system processing outer-join queries. We test a total of four cases, in each of

27

which the CPU utilization is fixed.Because the focus of this experiment is CPU utilization, we

set the number of cores to one, avoiding any side effect incurred by the multicores.

The experimental results demonstrate that the most energy-efficient case is the one when

the CPU utilization is set to 100%. For instance, when the table size is configured to 2.0× 106

records, the 100%-CPU-utilization case reduces the energy consumption of the 25%-CPU-

utilization case by more than 63%. Such a significant energy saving is expected, and the reason

is two-fold. First, the 25%-CPU-utilization case exhibits a large number of small idling time

periods. Second, the database system is unable to keep the CPU in the low-power mode to

conserve energy during these short idling time intervals.

We also observe that regardless of the CPU utilization value, a large table size leads to

high energy consumption. This observation is consistent with that drawn from Fig. 3.5(a).

Energy Efficiency of the Cross-Join Operation

In this set of experiments, we evaluate the energy efficiency of the database system using cross-

join queries. Similar to the previous experiments discussed in Section 3.4.1, in this group of

experiments a fixed number of cross-join queries are executed while varying the table size and

number of multicores.

We observe that various types of database operations have different impacts on energy

efficiency. Nevertheless, the power consumption trend shown in Fig. 3.6(a) is similar to that

of Fig. 3.5(a); thus, regardless of the number of cores, energy consumption of the database

system goes up when the table size increases. This is because increasing table size enlarges

data volume and its processing time, which in turn consume more energy.

The comparison of the two curves in Fig. 3.6(a) reveals that in the case where the table size

is set to 1800, an extra core dramatically reduces the energy consumption. This observation is

consistent with the one drawn from Fig. 3.5(a).

The energy consumption of the three-core and four-core cases are not plotted in Fig. 3.6(a),

because the system’s main memory is so heavily utilized that multiple cores are unable to

process any query. For example, the three-core system exhibits excessive long response times

even when the table size is as small as 1000. We conclude that the memory resource becomes

28

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
6

0

5

10

15

Table Size (record)

P
ow

er
 C

on
su

m
pt

io
n

(\
kW

h)

Power Consumption (Outer−Join)

One Core
Two Cores
Four Cores

(a) Power Consumption with Multicores

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

5

10

15

20

25

30

35

40

Table Size (record)

P
ow

er
 C

on
su

m
pt

io
n

(k
W

h)

Power Consumption (Outer−Join)

100% cpu utilization
75% cpu utilization
50% cpu utilization
25% cpu utilization

(b) Power Consumption under different CPU utilization

Figure 3.5: Power consumption profiling of query: Outer-Join

a performance bottleneck of the multicore-based database system. Moreover, compared with

29

1000 1100 1200 1300 1400 1500 1600 1700 1800
4

6

8

10

12

14

16

18

20

Table Size (record)

P
ow

er
 C

on
su

m
pt

io
n

(\
kW

h)

Power Consumption (Cross−Join)

One Core
Two Cores

(a) Power Consumption with Multicores

1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

30

40

50

60

70

80

90

100

Table size (record)

P
ow

er
 C

on
su

m
pt

io
n

(\
kW

h)

Power Consumption (Cross−Join)

100% cpu utilization
75% cpu utilization
50% cpu utilization
25% cpu utilization

(b) Power Consumption under different CPU utilization

Figure 3.6: Power consumption profiling of query: Cross-Join

the outer-join operations, the energy behavior of cross-join queries are more sensitive to main

memory capacity of the system.

30

Fig. 3.6(b) shares similar energy consumption patterns as those of Fig. 3.5(b) (Section 3.4.1).

Thus, the system’s energy efficiency can be significantly improved by pushing CPU utilization

up to 100%.

Fig. 3.6(b) confirms a trend illustrated in Fig. 3.6(a) that increasing table size leads to a

high energy-consumption level. Compared with the 100%-CPU-utilization case, the energy

consumption of the 25%-CPU-utilization case is more sensitive to the table size. In other

words, when we enlarge the table size in the 25%-CPU-utilization case, the system’s energy

consumption increases faster than the 100%-CPU-utilization case.

If the table size is smaller than 1600, increasing the CPU utilization from 75% up to

100% has a marginal energy-efficiency improvement. On the other hand, when it comes to a

large table size (e.g., 1600-2400), a CPU-utilization increase of 25% up from 75% makes a

noticeable reduction in power consumption.

An insightful conclusion drawn from this group of experiments is that we can improve

the energy efficiency of database systems by making a full usage of multicore processors in

servers.

Performance of the Outer-Join Operation

Now we study performance of the outer-join operations. Fig. 3.8(a) shows the performance as a

function of the number of table size in the one-core, two-core, and four-core cases. The results

reveal that the outer-join operations exhibit better performance in the four-core configuration

than in the other two cases. The four cores reduce the execution time of performing the outer-

join queries, thereby improving system energy efficiency (see also Fig. 3.5(a)). We observe

that in the four-core case, the execution time sharply climbs up when the table size exceeds 1.4

million. Such a performance degradation is attributed to the problem that the main memory

capacity is unable to meet the needs of the large table size.

Fig. 3.8(b) illustrates the impact of CPU utilization on the performance of the system

running outer-join operations. In this group of experiments, we vary the table size from 0.02

to 2.0 million; we also tested four cases where the CPU utilization is kept at 100%, 75%,

50%, and 25%, respectively. Fig. 3.8(b) shows that increasing CPU utilization shortens the

31

time spent in performing the outer-join operations. This performance trend becomes more

pronounced when the table size is large. The 100%-CPU-utilization case outperforms the other

three cases, because CPU idle times in the other three scenarios slow down the query process

performance.

We investigate the memory usage under various table sizes and number of cores. Fig. 3.8(a)

indicates that regardless of the number of cores, increasing the table size slightly drives the

memory usage up. Compared with the memory usage in the one-core and two-core systems,

memory usage of the four-core system is more sensitive to the page size. For example, when

we increase the table size from 0.4 to 1.2 millions, the memory usage of the four-core system

increases from 63% to 92%, whereas the memory usage of the single core system only slightly

goes up to 26% from 15%. The four-core system’s query processing performance is signifi-

cantly deteriorated when the memory usage is very high, which represents a high demand on

memory resources.

Fig. 3.8(b) reveals the impact of CPU utilization on system memory usage. The exper-

imental results suggest that the CPU utilization has no noticeable impact on memory usage.

We conclude that a database system’s memory usage largely depends on the table size and the

number of cores in the system.

Performance of the Cross-Join Operation

In this group of experiments, we evaluate the performance of cross-join operations running on

multi-core systems. Fig. 4.4(a) shows a similar performance trend as that plotted in Fig. 3.8(a).

We only show the results of the single-core and two-core cases, because the query processing

time of the four-core system is extremely long due to the high memory usage. The execu-

tion time of the cross-join operations is significantly reduced by adding an extra core into the

database system. In addition, the execution time of the two-core system is less sensitive to the

table size than that of the single-core system, thanks to high performance offered by the two

cores.

32

Fig. 4.4(b) shows the impact of CPU utilization on the cross-join performance. A high

CPU utilization helps in boosting the processing performance of cross-join queries. This per-

formance trend is consistent with that observed from Fig. 3.8(b).

Fig. 4.4(c) reveals the memory usage of cross-join operations under various table size and

the number of cores. Fig. 4.4(c) shows that the memory usage increases almost linearly with

the increasing table size. We observe that compared with the memory usage of the outer-join

operations, the memory usage of cross-join operations is more sensitive to the table size (see

also Fig. 3.8(c) and Fig. 4.4(c)). More detailed comparison between outer-join and cross-join

operations can be found in Section 3.4.2.

3.4.2 Outer-Join vs. Cross-Join Operations

Now we compare the energy behaviors between outer-join and cross-join operations in multi-

core database systems.

Impact of multicores on outer-join and cross-join queries

We pay particular attention to the impact of multicores on the outer-join and cross-join queries

under the changing table size. The results plotted in Figs. 3.10(a) and (b) indicate that the query

types have significant impacts on energy efficiency. For example, the energy consumption

of outer-join is only 0.047% and 0.078% of that of cross-join when table size is set to 2400

and 1800, respectively (see Fig. 3.10(a)) and Fig. 3.10(b)). Thus, the energy consumption

of cross-join queries is 1000-10000 times higher than that of outer-join queries. This energy

consumption trend is attributed to two reasons. First, cross-join queries give rise to a huge

amount of data loaded from disks into main memory. Second, the database system allocates a

significant portion of CPU resources to process cross-join queries.

We observe from Fig. 3.10(a) that in the single-core case, outer-join queries are less sen-

sitive to table size than cross-join queries. Compared with outer-join operations, cross-join’s

energy consumption can be substantially reduced by applying optimization algorithms (e.g.,

33

relational optimizer) to maintain small query sizes in multicore-based database systems. Un-

like cross-join queries, outer-join queries may enjoy marginal benefit from the optimization

algorithms.

Interestingly, Fig. 3.10(b) shows that in the two-core case, cross-join queries become less

sensitive to table size than outer-join queries. Nevertheless, the wide energy-consumption gap

between outer-join and cross-join is alleviated by increasing the number of cores from one to

two. There is no doubt that employing multiple cores and reducing query size are two efficient

ways of narrowing the gap between the outer-join and cross join operations.

Impact of CPU utilization on outer-join and cross-join queries

Now we compare the difference between the outer-join and cross join queries from the per-

spectives of CPU utilization impact on energy consumption. Again, we increase the table size

from 1, 000 to 2, 400 records with an increment of 200. Fig. 3.11 and Fig. 3.12 reveals that

regardless of CPU utilization, the cross-join query is a whole lot more energy expensive than

the outer-join one. This trend is consistent with the results plotted in Fig. 3.10.

An intriguing observation drawn from Fig. 3.11 is that the cross-join operation’s energy-

consumption increasing ratio is more sensitive to CPU utilization and table size than that of

the outer-join one. For example, let us consider a scenario where the table size is gradually

increased from 1, 000 to 2, 400. In the 25%-CPU-utilization case, the energy consumption

of outer-join query increased by approximately 50%; in the 100%-CPU-utilization case, the

outer-join’s energy consumption is increased by more than 122%. In the 25%-CPU-utilization

and 100%-CPU-utilization cases, the cross-join operation’s energy consumption is increased

by 308% and 337%, respectively.

The implication of the results shown in Fig. 3.11 is that under heavy CPU utilization,

reducing table size becomes a feasible approach to noticeably conserving energy consumption

of the cross-join operation.

34

Energy efficiency vs. performance impacts

In this group of experiments, we compare the performance in terms of response time between

outer-join and cross-join queries under various CPU workload. The performance trend ob-

served in this set of experiments may shed some light on the energy-consumption comparisons

between the two query types (see Sections 3.4.2 and 3.4.2).

Like the configuration of the previous experiment, the table size is increased from 1, 000

to 2, 400 records with an increment of 200; the CPU utilization is set to 25%, 50%, 75%, and

100%, respectively. Fig. 3.13 and Fig. 3.14 shows that the cross-join query’s response time is

almost 222 times longer than that of the outer-join one when the table size and CPU utilization

are set to 1, 600 records and 75%, respectively.

Not surprisingly, the performance trends revealed in Fig. 3.13 are similar to the energy-

efficiency trends observed in Fig. 3.13. We conclude that the energy consumption of the two

query types are strongly correlated to their response time. The experimental results suggest

that any algorithm aiming to shorten the response times of the queries is likely to improve the

energy efficiency of the queries running in multicore systems.

The results from this group of experiments also confirm that under high CPU workload

(see, for example, Fig. 3.14(b)), reducing table size can significantly shorten the response times

of the queries. This conclusion is especially true for the outer-join operation.

Fig. 3.15 shows the performance comparisons between the outer-join and cross-join queries

under the single-core and double-core cases. Very interestingly, we observe that the speedup

efficiency of cross-join is higher than that of outer-join. For example, when the table size is

set to 1000, the speedups of cross-join and outer-join are 1.92 and 1.51. Overall, the speedup

efficiency of both outer-join and cross-join is improved with the increasing table size.

Fig. 3.16 illustrates the comparisons between outer-join and cross-join operations from

the perspective of memory usage. The results show that compared with outer-join’s memory

usage, cross-join’s memory usage is more sensitive to table size. Such a trend becomes more

pronounced when we increase the number of cores from one (see Fig. 3.16(a)) to two (see

Fig. 3.16(b)). For instance, Fig. 3.16(b) reveals that the memory usage of cross-join goes

35

up from 42% to almost 100% when the table size is increased from 1000 to 1800, whereas the

outer-join operation’s memory usage stays fairly flat regardless of the table size and the number

of cores.

3.4.3 The Indexing Technique

Now we investigate the indexing technique’s impacts on the energy behaviors of the outer-join

queries. We only demonstrate the power consumption of outer-join, because cross-join’s power

consumption has a similar trend. In this group of experiments, we vary the table size from

1.0× 106 to 2.0× 106.

Fig. 3.17 intuitively shows that indexing substantially affects the outer-join operation’s

power consumption, performance, and memory usage. The energy trend plotted in Fig. 3.17(a)

is similar to the performance trend illustrated in Fig. 3.17(b), implying that the performance

and energy efficiency of outer-join have a tight correlation. The experimental results suggest

that when it comes to indexing, there is no need to make tradeoff between energy efficiency

and performance.

Figs. 3.17(a) and 3.17(b) indicate that indexing not only boosts outer-join performance,

but also makes outer-join more energy efficient. The energy efficiency and performance im-

provements offered by indexing become more significant when the table size is growing up.

For example, when the table size is small, the indexing scheme has a limited impact on power

consumption; indexing only manages to reduce the power consumption by 4.8%. If we change

the table size to 1.4× 106, indexing is able to offer an energy saving of 23.9%.

We observe from Fig. 3.17(c) that the indexing technique significantly reduces the memory

usage of the outer-join query. For example, when we set the table size to 1.0×106, the memory

usage rate of the indexing case is 69.3%; without indexing, the memory usage rate goes up to

75.7%. The memory usage results show evidence that indexing improves outer-join’s perfor-

mance by alleviating memory load in the multicore system. The indexing technique proactively

reduces the amount of data loaded from the disks to the main memory, which in turn noticeably

cuts the query response time. We conclude that with indexing in place, the outer-join queries

36

are processed in an energy efficient way thanks to the shortened query response times made

possible by indices.

After evaluating the energy overhead incurred by creating indices, we reach a conclusion

that the energy overhead caused by indexing is trivial and; therefore, we ignored the energy

overhead results from the figures.

3.5 Summary

We started this chapter by investigating the workload conditions and proposing metrics as well

as the guidelines of energy-efficiency benchmarks. Then, we proposed EDOM - a tool system-

atically evaluating and optimizing the energy-efficiency of multicore-based database systems.

We incorporated the TPC-W benchmark database in EDOM to resemble real-world database

systems. The EDOM tool employs the PostgreSQL database to evaluate the energy efficiency

of two database queries, namely, outer-join and cross-join operations. EDOM offers a sim-

ple yet efficient way of measuring energy efficiency of database queries running on multicore

processors; EDOM shows the correlation between CPU utilization and energy efficiency.

At the heart of EDOM is a multicore manager making a good tradeoff between energy

efficiency and performance in database systems. EDOM leverages a memory usage model

to estimate memory utilization using query types and database characteristics. EDOM alle-

viates the memory swapping problem by determining the most appropriate number of cores.

We showed that EDOM substantially improves energy efficiency of multicore-based database

systems by addressing the memory swapping issue.

Our experimental results and analysis indicate that our tool is a simple yet efficient plat-

form to measure, improve, and optimize the queries, hardware configurations, and resource

allocations multicore-based databases systems housed in data centers. One salient feature of

EDOM lies in its high flexibility and adaptability, which allow EDOM to be customized and

populated according to any research and application domain.

37

0.4 0.6 0.8 1 1.2 1.4 1.6

x 10
6

0

2000

4000

6000

8000

10000

12000

14000

Table Size (record)

P
er

fo
rm

an
ce

 (
m

in
ut

e)
Performance (Outer−Join)

One Core
Two Cores
Four Cores

(a) Time Consumption with Multicores

0 0.5 1 1.5 2

x 10
6

0

1

2

3

4

5

6

7
x 10

4

Table Size (record)

P
er

fo
rm

an
ce

 (
m

in
ut

e)

Performance (Outer−Join)

100% cpu utilization
75% cpu utilization
50% cpu utilization
25% cpu utilization

(b) Time Consumption under different CPU utilization

Figure 3.7: Performance profiling of Outer-Join under different CPU utilization and multicores

38

4 5 6 7 8 9 10 11 12

x 10
5

10

20

30

40

50

60

70

80

90

100

Table Size (record)

M
em

or
y

U
sa

ge
 R

at
e

(%
)

Memory Usage Rate (Outer−Join)

One Core
Two Cores
Four Cores

(a) Memory Usage under different CPU utilization

400 600 800 1000 1200 1400 1600 1800 2000
0

5

10

15

20

25

30

35

40

Table Size (thousand record)

M
em

or
y

U
sa

ge
 R

at
e

(%
)

Memory Usage Rate (Outer−Join)

%100 CPU utilization
%75 CPU utilization
%50 CPU utilization
%25 CPU utilization

(b) Memory Usage under different CPU utilization

Figure 3.8: Performance profiling of Outer-Join under different CPU utilization and multicores

39

1000 1100 1200 1300 1400 1500 1600 1700 1800
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

Table Size (record)

P
er

fo
rm

an
ce

 (
m

in
ut

e)

Performance (Cross−Join)

One Core
Two Cores

(a) Time Consumption with Multicores

1000 1200 1400 1600 1800 2000 2200 2400
0

2

4

6

8

10

12

14

16
x 10

4

Table Size (record)

T
im

e
C

on
su

m
pt

io
n

(m
in

ut
e)

Performance (Cross−Join)

100% cpu utilization
75% cpu utilization
50% cpu utilization
25% cpu utilization

(b) Time Consumption under different CPU utilization

1000 1100 1200 1300 1400 1500 1600 1700 1800
10

20

30

40

50

60

70

80

90

100

Table Size (record)

M
em

or
y

U
sa

ge
 R

at
e

(%
)

Memory Usage Rate (Cross−Join)

One Core
Two Cores

(c) Memory Usage under different CPU utilization

Figure 3.9: Performance profiling of Cross-Join under different CPU utilization and multicores

40

1000 1200 1400 1600 1800 2000 2200 2400
0

0.01

0.02
O

ut
er

−
Jo

in
 P

ow
er

 C
on

su
m

pt
io

n(
\K

W
h)

Table Size (\record)

Power Consumption (One Core)

1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

C
ro

ss
−

Jo
in

 P
ow

er
 C

on
su

m
pt

io
n(

\K
W

h)

Outer−Join
Cross−Join

(a) Power consumption of outer-join and cross-join in the single-core case

1000 1100 1200 1300 1400 1500 1600 1700 1800
4

6

8
x 10

−3

O
ut

er
−

Jo
in

 P
ow

er
 C

on
su

m
pt

io
n(

\K
W

h)

Table Size (\record)

Power Consumption (Two Cores)

1000 1100 1200 1300 1400 1500 1600 1700 1800
0

10

20
C

ro
ss

−
Jo

in
 P

ow
er

 C
on

su
m

pt
io

n(
\K

W
h)

Outer−Join
Cross−Join

(b) Power consumption of outer-join and cross-join in the two-core case

Figure 3.10: Power consumption comparision between outer-join and cross-join in multicore
systems.

41

1000 1200 1400 1600 1800 2000 2200 2400
0

0.05

0.1
O

ut
er

−
Jo

in
 P

ow
er

 C
om

su
m

pt
io

n(
kW

h)

Table Size (record)

Energy Consumption (25% CPU Utilization)

1000 1200 1400 1600 1800 2000 2200 2400
0

50

100

C
ro

ss
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Outer−Join
Cross−Join

(a) Power consumption of the multicore system

1000 1200 1400 1600 1800 2000 2200 2400
0.01

0.02

0.03

0.04

O
ut

er
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Table Size (record)

Energy Consumption (50% CPU Utilization)

1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

60

C
ro

ss
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Outer−Join
Cross−Join

(b) Power consumption under different CPU utilization

Figure 3.11: Energy efficiency impact of outer-join and cross-join operations on multicore
systems under various CPU utilization

42

1000 1200 1400 1600 1800 2000 2200 2400
0.01

0.02

0.03
O

ut
er

−
Jo

in
 P

ow
er

 C
om

su
m

pt
io

n(
kW

h)

Table Size (record)

Energy Consumption (75% CPU Utilization)

1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

C
ro

ss
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Outer−Join
Cross−Join

(a) Power consumption of the multicore system

1000 1200 1400 1600 1800 2000 2200 2400
0

0.01

0.02

O
ut

er
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Table Size (record)

Energy Consumption (100% CPU Utilization)

1000 1200 1400 1600 1800 2000 2200 2400
0

20

40

C
ro

ss
−

Jo
in

 P
ow

er
 C

om
su

m
pt

io
n(

kW
h)

Outer−Join
Cross−Join

(b) Power consumption under different CPU utilization

Figure 3.12: Energy efficiency impact of outer-join and cross-join operations on multicore
systems under various CPU utilization

43

1000 1200 1400 1600 1800 2000 2200 2400
50

100

150

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Table Size (record)

Performance (CPU Utilization 25%)

1000 1200 1400 1600 1800 2000 2200 2400
0

1

2
x 10

5

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Outer−Join
Cross−Join

(a) Response time of outer-join and cross-join queries in the multicore system when CPU
utilization is 25%

1000 1200 1400 1600 1800 2000 2200 2400
20

40

60

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Table Size (record)

Performance (CPU Utilization 50%)

1000 1200 1400 1600 1800 2000 2200 2400
0

5

10
x 10

4

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Outer−Join
Cross−Join

(b) Response time of outer-join and cross-join queries in the multicore system when CPU
utilization is 50%

Figure 3.13: Performance comparision of outer-join and cross-join queries in the multicore
system under various CPU utilization.

44

1000 1200 1400 1600 1800 2000 2200 2400
15

20

25

30

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Table Size (record)

Performance (CPU Utilization 75%)

1000 1200 1400 1600 1800 2000 2200 2400
0

2

4

6
x 10

4

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Outer−Join
Cross−Join

(a) Response time of outer-join and cross-join queries in the multicore system when CPU
utilization is 75%

1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Table Size (record)

Performance (CPU Utilization 100%)

1000 1200 1400 1600 1800 2000 2200 2400
0

2

4
x 10

4

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(m
in

ut
e)

Outer−Join
Cross−Join

(b) Response time of outer-join and cross-join queries in the multicore system when CPU
utilization is 100%

Figure 3.14: Performance comparision of outer-join and cross-join queries in the multicore
system under various CPU utilization.

45

1000 1200 1400 1600 1800 2000 2200 2400
0

10

20

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(\
M

in
ut

e)

Table Size (\record)

Performance (One Core)

1000 1200 1400 1600 1800 2000 2200 2400
0

2

4
x 10

4

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(\
M

in
ut

e)

Outer−Join
Cross−Join

(a) Execution time comparison with one core

1000 1100 1200 1300 1400 1500 1600 1700 1800
4.5

5

5.5

6

6.5

7

O
ut

er
−

Jo
in

 P
er

fo
rm

an
ce

(\
M

in
ut

e)

Table Size (\record)

Performance (Two Cores)

1000 1100 1200 1300 1400 1500 1600 1700 1800
2000

4000

6000

8000

10000

12000

C
ro

ss
−

Jo
in

 P
er

fo
rm

an
ce

(\
M

in
ut

e)

Outer−Join
Cross−Join

(b) Execution time comparison with two cores

Table Size (\record)
1000 1100 1200 1300 1400 1500 1600 1700 1800

S
pe

ed
up

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

1.9

1.95

2
Speedup

Outer-Join
Cross-Join

(c) Speedup comparison between outer-join and cross-join

Figure 3.15: Comparison of execution time between outer-join and cross-join under mutlticore
situations

46

1000 1100 1200 1300 1400 1500 1600 1700 1800
0

10

20

30

40

50

60

70

80

90

100

Table size (record)

M
em

or
y

U
sa

ge
 (

%
)

Memory Usage Rate (One Cores)

Outer Join
Cross Join

(a) Memory usage with Multicore

1000 1100 1200 1300 1400 1500 1600 1700 1800
0

10

20

30

40

50

60

70

80

90

100

Table size (record)

M
em

or
y

U
sa

ge
 (

%
)

Memory Usage Rate (Two Cores)

Outer Join
Cross Join

(b) Memory usage under different CPU utilization

Figure 3.16: Impacts of outer-join and cross-join operations on the memory usage of multicore
systems.

47

Table Size (record) ×106
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

P
ow

er
 C

on
su

m
pt

io
n

(k
W

h)

0.01

0.015

0.02

0.025

0.03

0.035

0.04

without indexing
with indexing

(a) Power consumption comparison with indexing

Table Size (record) ×106
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

E
xe

cu
tio

n
T

im
e

(m
in

ut
e)

15

20

25

30

35

40

45

50

without indexing
with indexing

(b) Execution time comparison with indexing

Table Size (record) ×106
1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

M
em

or
y

U
sa

ge
 (

%
)

0.2

0.25

0.3

0.35

0.4

0.45

0.5

without indexing
with indexing

(c) Memory usage comparison with indexing

Figure 3.17: Impacts of the indexing technique on energy efficiency of the outer-join and cross-
join operations running in multicore systems.

48

Chapter 4

GreenDB

In this chapter, we propose an energy-efficient database system called GreenDB running on

clusters. GreenDB applies a workload-skewness strategy by managing hot nodes coupled with

a set of cold nodes in a database cluster.

GreenDB fetches popular data tables to hot nodes, aiming to keep cold nodes in the low-

power mode in increased time periods. GreenDB is conducive to reducing the number of

power-state transitions, thereby lowering energy-saving overhead. A prefetching model and

an energy saving model are seamlessly integrated into GreenDB to facilitate the power man-

agement in database clusters. We quantitatively evaluate GreenDB’s energy efficiency in terms

of managing, fetching, and storing data. We compare GreenDB’s prefetching strategy with the

one implemented in Postgresql.

The findings show that the energy efficiency of GreenDB can be optimized by tuning

system parameters, including table size, hit rates, number of nodes, number of disks, and inter-

arrival delays.

The rest of the paper is organized as follows. The design and implementation of energy-

efficiency GreenDB are discussed in Section 4.1. An energy-saving prediction model in GreenDB

is presented in Section 4.2. Section 4.3 validates the energy efficiency of GreenDB by a set of

experiments. Finally, Section 4.4 shows conclusions including the contributions of this research

along with our future research directions.

49

4.1 System Design

4.1.1 Basic Ideas

A database cluster governed by GreenDB is divided into a group of cold nodes and a group of

hot nodes. The overarching goal is to keep the cold nodes in the low-power state (e.g. shutting

down) for a long time period, while making the hot nodes respond queries accessing popular

data tables. There are three motivations behind partitioning nodes into the hot and cold groups.

• First, our preliminary findings suggest that improving the utilization of an active database

node leads to high energy efficiency.

• Second, placing an entire node into the low-power state is more energy efficient than

turning off disks in the node.

• Third, reducing the number of power-state transitions can lower the power management

overhead.

4.1.2 Software Architecture

We design the software architecture of GreenDB (see Fig. 4.1, which manages a master node

and a group of hot and cold database nodes (or nodes for short). To achieve high performance

of database clusters, GreenDB proactively maintains a group of hot nodes that are always in

the active mode. Our preliminary findings suggest that high node utilization improves energy

efficiency; CPUs are a dominate contributor to the energy consumption of database applica-

tions. Therefore, we skew load into a few active hot nodes to substantially boost the hot-node

utilization and the overall energy efficiency.

The master node keeps track of metadata including the location of required data tables for

queries, memory and disk usages of hot nodes. The master node is responsible for monitoring

data access patterns, from which popular tables are discovered. The access patterns enable the

prefetching module (see Section 4.1.4) to make the most energy-efficient prefetching decisions.

GreenDB consists of four software modules, namely, the query manager (see Section 4.1.3),

the data prefecthing module (see Section 4.1.4), the energy-cost model (see Section 4.1.5), table

replication module, and power manager (see Section 4.1.6).

50

Figure 4.1: The architecture of the GreenDB system.

Queries issued by database applications are managed by the query manager. The data

prefecthing module is focused on fetching popular data tables from cold nodes into hot nodes.

The energy-cost model offers an energy-saving guideline for the prefetching module. The table

replication module creates duplicated tables on hot nodes according to prefetching decisions.

The power manager in each database nodes is responsible to decide the power state of each

node.

To improve energy efficiency, the prefetching module makes use of an energy cost model

to estimate energy overhead and impact of prefectching decisions. After a decision is made by

the prefetching module, the data replication module duplicates popular tables from cold into

hot nodes in a batch manner.

The functionality of the table replication module is straightforward - creating replicas of

popular tables from the cold into hot nodes according to prefetching decisions made by the

prefetching module. The duplicated tables enable hot nodes to serve as caching nodes of the

cold ones in database clusters.

51

4.1.3 Query Manager

The query manager handles queries issued by database clients. Sophisticated queries may be

partitioned by the query manager to form multiple sub-queries. The query manager relies on

the metadata manager to determine the location of data to be accessed by queries. If database

tables are residing in a hot node, the queries can be immediately answered. Otherwise, the

corresponding cold node should be waked up to fetch and duplicate the tables to a hot node.

The responsibility of the query manager is three-fold. First, it decomposes complicated

queries issued by database clients into small pieces referred to as subquery. Second, the query

manager coordinates with the metadata manager to locate data from database nodes for each

subquery.

To keep cold nodes stay in the low-power mode in a long time period, GreenDB aims to

mathematically and accurately discover popular data to be duplicated from cold nodes to hot

nodes. We design a model, which estimates the cost of fetching requested data from multiple

cold nodes into hot nodes. When free space of the hot nodes is sufficient, popular data are

replicated to the hot nodes in a greedy manner. In such an initial scenario where space is

abundant, there is no need for GreenDB to remove any data from the hot nodes. When the hot

node space becomes insufficient, GreenDB kicks in a data replacement strategy so that data

with low access rate are replaced by new popular data on the hot nodes. For example, when

a selection query is decomposed into small sub-queries involved with a few data tables, the

GreenDB makes an effort to fetch the accessed data tables into the hot nodes if the tables are

residing in the cold nodes. If subsequent queries are accessing these data tables, the queries

can be served by the hot nodes rather than the cold nodes that have been transitioned into the

standby mode.

4.1.4 Prefetching Module

The prefetching module periodically coordinates with the meatdata manager and the access

pattern manager to make prefectching decisions for database clusters.

52

Table 4.1 Notation for the Description of the Prefetching Module.
Notation Desription
L Current lookahead. q ∈ L is a reference in the lookahead
table(q) Talbe accessed in reference q ∈ L
cold node(q) Cold node in which table(q) is residing

Q
Subset of the lookahead Q; for any q in Q,

table(q) is active, i.e., ∀ q ∈ Q: table(q) is active
H A set of tables present in the hot node
Esaving(τ) Energy saving contributed by prefetching table τ

Q+ For any q in Q+, we have node(q) ∈ Q,
Esaving(τ) > 0,q/∈ H , and∃ q ∈ Q : table(q) = τ

H+ The set of tables with the highest energy savings
in Q+ ∪ H

The prefetching module has two salient features. First, the module keeps track of the

access patterns of records in tables to pinpoint popular data. Second, the module creates repli-

cated copies of popular tables to be placed on the most appropriate hot nodes. The decisions of

making replicated tables largely depends on potential energy savings, which are predicted by

the energy-cost model (see Section 4.1.5).

This module analyzes the four important factors to make decisions on fetching data tables

from cold nodes. The factors include the locations of candidate tables, the popularity of data

accessed by queries, estimated energy savings, and query predictions. Note that energy savings

of fetching tables are estimated by the energy-cost model (see Section 4.1.5). Query predictions

are made possible by examining historical query access patterns. Query-prediction algorithms

can be readily plugged into GreenDB (see Fig. 4.1) to governs the process of prefetching tables.

GreenDB takes a greedy approach. Thus, when a query accesses a table, the prefetching module

aggressively fetches all tables relevant to the accessed table from the cold nodes.

The existing prefetching scheme in PostgreSQL relies on the synchronous replication

module to maintain duplicated data between cold and hot nodes. Such a synchronous-based

prefetching strategy (or SyncPrefetch for short) in PostgreSQL is expensive when it comes to

maintaining replicated data on hot nodes. Before committing an update transaction, SyncPrefetch

must obtain exclusive locks on all the copies. The transaction may have to send lock requests

to cold nodes, waiting for the locks to be granted. During such a potentially long time period,

53

SyncPrefetch continues holding all the other locks. If the cold nodes or communication links

fail, the transaction cannot commit until all the nodes storing modified data are recovered the

failure. Even if the locks are obtained readily without encountering any failure, committing a

transaction has to deliver a few additional messages as specified by the commit protocol.

Unlike SyncPrefetch, the prefetching scheme in GreenDB takes the full advantage of asyn-

chronous replications to cut energy cost of fetching hot data from cold nodes. A similar scheme

has been applied in database systems [47]. Updated data are initially kept in hot nodes to avoid

excessive power-state transitions in cold nodes. When new popular data are about to be trans-

ferred from the cold nodes to the hot ones, the update data will be synchronized back to the

cold nodes. GreenDB’s synchronize replicated data between hot and cold nodes in a lazy man-

ner, thereby improving system energy efficiency. GreenDB offers energy savings, because the

prefetching module in GreenDB not only allows the cold nodes to stay in the low-power mode

for an increased time period, but also substantially reduces the number of power-state transi-

tions in the cold nodes.

Now we propose our prefetching algorithm. The primary function is to prefetch the most

energy-saving tables into the hot node.

Algorithm 3 GreenDB Prefetching: Prefetching()
Require:

a query q
GreenDB with m cold nodes

1: if table(q) is present in hot node then
2: update L;
3: query q is serviced by hot node with table(q);
4: else
5: if cold node(q) is in standby state then power up cold node(q) ;
6: end if
7: Fetch table(q) to serve query q;
8: end if
9: Estimate the energy savings of queries Q ∈ L;

10: Update the energy savings of tables in the hot node;
11: Fetch tables in Q+ ∩ H+

12: if disks of the hot node is full then Evicting the blocks inH−H+ with the lowest energy savings as necessary;
13: end if

The prefetching algorithm (see Algorithm 3) outlined above initializes the query and the

number of cold nodes to q and m, respectively . Next, if the table(q) is resident in the hot node,

it server the query by hot node, otherwise it will power up the cold node in which the table(q) is

54

located and fetch the table(q) into the hot node from the cold node(see Lines 1-7). Finally, we

estimate the energy-efficiency of the tables in the lookahead table, fetch most energy-efficiency

tables of whole GreenDB into the hot node if they are not kept in the hot node (see Lines 9-11).

Unpopular tables are evicted from the hot nodes to release space for newly fetched ones (see

Line 12).

The above prefetching algorithm will not be triggered, if prefetching tables has detrimental

impacts on the energy efficiency of database clusters.

4.1.5 Energy-cost Model

To facilitate the replacement strategy in GreenDB, we delve into an energy-cost model project-

ing energy savings offered by keeping candidate data tables into the hot nodes while shutting

down the cold nodes. The energy-cost model provides guideline for GreenDB to (1) evict un-

popular data tables from the hot nodes and (2) fetch popular tables from the cold nodes to

improve energy efficiency.

The energy-cost model integrates profiling results and the prefetching algorithm to offer

us an interface to estimate energy savings provided by data tables in hot nodes. Profiling results

take into account of three factors - energy consumed on fetching data from cold nodes, energy

spent by hot nodes to store prefetched data tables, and energy overhead caused by power-

state transitions. Our energy-cost model leverages the profiling data of energy consumption to

estimate energy savings of offered by prefetched table.

To build the energy-cost model through an energy profiling study, we independently con-

nect hot nodes, cold nodes, and network interconnection to three power sockets; the displays

are plunged into a separate power socket, ensuring that measured energy readings is contributed

by individual devices being gauged. The power meter employed in this study is TS-836A Plug

Energy Watt Voltage Amps Meter (see TABLE II for details).

4.1.6 Power Manager

The power manager in GreenDB dynamically and automatically changes the power mode of

cold nodes to converse energy. For instance, if a cold node has been sitting idle for a given

55

threshold, the power manager immediately transition the node into the low-power mode. Such

a threshold can be automatically adjusted in GreenDB depending on workload conditions. For

another example, prior to prefetching tables from a cold node to a hot node, the power manager

wakes up the cold node.

A power-consumption monitor is built-in each of cold nodes to keep track of access ac-

tivities in the cold nodes. The monitor initiates power-transition requests to the corresponding

power manager of a cold node. Upon the arrivals of power-down requests, the manager im-

mediately powers down the cold nodes. Since each cold node has its individual access history,

the power manager dynamically adjusts spin-down intervals according to the access activities,

thereby improving the energy efficiency of each cold node.

Table 4.2 Power Meter Specifications
TS-836A Power Meter Specifications

Measurement of consumption 0.00 ∼ 9999.99 KWh
Voltage display range 0V ∼ 9999V
Current range 0.000A ∼ 15.000A
Frequency display 0Hz ∼ 9999Hz
Wattage display (Watts) 0 ∼ 1800W

4.2 Energy-Efficient Prefetching

We develop in GreenDB an energy-saving prediction model, which governs the energy-saving

calculation in Steps 9 and 10 in algorithm Prefetching. The prediction model along with

the calculation module is indispensable for GreenDB’s prefetching module, because the model

speculates the amount of energy conserved by fetching candidate tables from cold nodes into

hot nodes. The model also calculates potential cost of caching a hot-node-resident table rather

than evicting the table from its hot node. Table 4.3 summarizes the notation used throughout

this section.

To analyze circumstances under which prefetching database tables can yield energy sav-

ings, we focus on a single referenced table stored in a node. Let Qj ⊆ L be a set of queries

accessing tables in the jth node. Thus, Qj - a subset of lookahead L - can be defined as

56

Table 4.3 Notation for the Description of the Energy-Saving Calculation Module.
Notation Desription
Qj A set of references accessing tables in the jth cold node

Qk,j ⊆ L
A set of references accessing the kth table τk,j

in the jth cold node
τk,j The kth table in the jth cold node

TBE
Break-even time. Minimum idle time required

to compensate the cost of entering the standby state

Tij
Active time period serving the ith request issued

to the jth cold node

tij
Time spent serving the ith request issued

to the jth cold node

αij
Time spent in the idle period prior to the ith request

accessing a table in node j

Iij
An idle period prior to the ith request accessing

a table in the jth cold node

nj
The total number of requests (in the lookahead) issued to

the jth cold node
Ωj A set of cold node access activities for references in Qj

time(τkj) Active time period to serve a request accessing table τkj
table(τj) A table accessed during the active period Tj
TD Time to transition from active/idle to standby
TU Time to transition from standy to active mode

ED
Energy overhead of transitioning from active/idle

to standby

EU
Energy overhead of transitioning from standby

to active mode
PA, PI , PS Node power in the active, idle, and standby mode

Qj = {q |(q ∈ L) ∩ (node(q) = j) ∩ (table(q) /∈ H)},

where node(q) = j means query q is accessing the jth node; table(q) /∈ H indicates that the

table accessed by query q has not been fetched into hot node denoted as H .

Given a set Qkj ⊆ Qj of queries accessing the kth table τkj in the jth cold node, we derive

the energy saving ESaving(τij) achieved by fetching table τkj from the cold node into a hot

node. Qkj is comprised of all the queries referencing a common table τkj that is not present in

the hot node; therefore, Qkj can be formally expressed as

Qk,j = {q |(q ∈ Qj) ∩ (table(q) = τk,j) ∩ (τk,j /∈ H)},

where table(q) = τk,j means query q is accessing table τk,j; τk,j /∈ H suggests that table τk,j

57

is not residing in the hot node. Intuitively, energy savings Esaving(τkj) can be computed by

considering the energy consumption incurred by each query in Qkj .

4.2.1 Two Energy Saving Principles

We introduce two energy saving principles inspiring the development of GreenDB.

Energy-Saving Principle 1. GreenDB aims not only to enlarge idle periods but also to

increase the number of idle periods in database nodes. Idle periods should be larger than break-

even time TBE to offset the cost of entering the low-power state. Principle 1 can be realized

by combining two adjacent idle periods to form a single idle period being larger than TBE .

GreenDB prefetches a table accessed by adjacent queries separated by idle periods, thereby

forming a large idle time allowing the node to enter the low-power state to conserve energy.

Energy-Saving Principle 2. GreenDB strives to reduce the number of power-state transi-

tions. The energy efficiency of database nodes can be improved by minimizing the energy cost

of powering up/down nodes. GreenDB reduces the number of node power transitions while

enlarging node idle times. We implement the second principle in GreenDB by combining two

adjacent standby periods to eliminate unnecessary power-state transitions between the two ad-

jacent standby periods.

4.2.2 Modeling Energy Savings

Given query list Qj and table τkj , we investigate four cases where a query in Qj contributes to

positive energy savings by the virtue of prefetching table τkj . The four cases exploit the above

two energy saving principles to conserve energy in nodes.

Let Ωj = {α1j, t1j, α2j, t2j, . . . αij, tij, . . . αnj,j, tnj,j} be a list of idle and active time

intervals for queries in Qj , where for tij is the active time spent in serving the ith query issued

to cold node j, αij is an idle period prior to the ith query accessing a table in the jth node, and

nj is the total number of queries issued to node j. We denote τij as a table accessed during

active period tij .

After table τkj is fetched to the hot node, cold node j’s set

Ωj = {α1j, t1j, α2j, t2j, ...αij, tij, ...αnj,j, tnj,j}

58

of access activities for queries in Qj must be updated by deleting any interval tij ∈ Ωj in

which τkj is accessed.

The energy-saving model makes use of the following definitions:

• PA, PI , and PS represent the node power consumption in the active, idle, and standby

(i.e., low-power) modes. Let TD and TU be time spend in transitioning to the standby and

active modes; let ED and EU be energy overhead to transition to standby and active.

• Enon-PM denotes energy consumption of anwering queries without deploying GreenDB.

• In case prefetching τij , ECold denotes energy consumption of the jth node in periods tij ,

αij , and α(i+1)j .

• EHot represents energy consumption of a hot node accessing prefetched τij .

• time(τk,j) is the amount of active time spent answering a query accessing table τij .

Energy savings, ESaving(τij), contributed by prefetching τij can be written as:

ESaving(τij) = Enon-PM − (ECold + EHot) , (4.1)

where energy saving ESaving(τij) is the difference between energy consumption Enon-PM and

energy cost EHot coupled with ECold.

Let us build the energy saving model with respect to the following five cases. The first

three cases demonstrate scenarios of energy saving principle 1, under which long idle periods

are created (i.e., longer than TBE) by prefetching τij to combine the ith and (i + 1)th idle

periods. We pay attention to the ith active period Tij and two periods αij and α(i+1)j (i.e., the

ones adjacent to Tij). Cases 1 − 3 share two common conditions: (a) both αij and α(i+1)j are

larger than zero and (b) the summation of tij , αij , and α(i+1)j is larger than break-even time

TBE .

Case 1: Both the ith and (i + 1)th idle periods are equal to or smaller than break-even

time TBE . Thus, we have 0 < αij ≤ TBE , 0 < α(i+1)j ≤ TBE , and αij + tij + α(i+1)j > TBE .

This condition implies that the jth cold node is in the idle mode during αij and α(i+1)j . Energy

59

consumption experienced by the node in active period tij is PA ·tij . Hence, energy consumption

Enon-PM in case 1 can be expressed as:

Enon-PM = PI · (αij + α(i+1)j) + PA × tij. (4.2)

When table τij is prefetched, a large (i.e., larger than TBE) idle period can be formed

by combining periods tij , αij , and α(i+1)j . Therefore, ECold can be computed as the energy

consumption of the jth cold node in the standby mode during tij , αij , and α(i+1)j . Taking

into account energy overhead of power-state transitions, we can calculate energy consumption

ECold of cold node using the equation below:

ECold = PS × (αij + tij + α(i+1)j − TD − TU) + ED + EU , (4.3)

where ED and EU are energy cost to power down and up the cold node; TD and TU are time

spent in power transitions.

We assume that the hot and cold nodes are homogeneous; therefore, energy consumption

EHot of the hot node accessing prefetched table τij is

EHot = PA × tij. (4.4)

ESaving(τij) in case 1 can be determined by substituting (4.2)-(4.4) into (4.1). Hence, we

have:

ESaving(τij) = PI × (αij + α(i+1)j)

−PS × (αij + tij + α(i+1) − TU − TD)− ED − EU .
(4.5)

Case 2: The ith idle period is equal to or smaller than break-even time TBE; the (i+ 1)th

idle period is larger than TBE . Formally, we have 0 < αij ≤ TBE ,α(i+1)j > TBE , and αij +

tij + α(i+1)j > TBE .

The jth cold node in this case is transitioned into standby during α(i+1)j , since α(i+1)j is

larger than TBE . The energy consumption of the cold node in α(i+1)j is expressed as (see the

60

third term on the right hand side of (4.6) below). Thus, the energy consumption Enon-PM of

cold node during tij , αij , and α(i+1)j is

Enon-PM = PI × αij + PA × tij + (PS × (α(i+1)j − TD − TU) + ED + EU) (4.6)

We derive ESaving(τij) in case 2 by substituting (4.6), (4.3), and (4.4) for for Enon-PM ,

ETrans, and EGreenDB. Thus, we have

Esaving(τij) = PI × αij − PS × (αij + τij) (4.7)

Case 3: The ith idle period is larger than TBE; the (i+1)th idle period is equal to or smaller

than TBE . Case 3’s conditions can be formally expressed as: αij > TBE ,0 < α(i+1)j ≤ TBE ,

and αij + tij + α(i+1)j > TBE .

The energy saving ESaving(τij) in case 3 is very similar to that in case 2 except that the

jth cold node is transitioned into standby during αij rather than α(i+1)j . Consequently, energy

saving ESaving(τij) can be written as

Esaving(τij) = PI × α(i+1)j − PS × (α(i+1)j + Tij) (4.8)

Case 4: This case shows a scenario where energy saving principle 2 is applied to reduce

power-state transitions by prefetching τij to combine two adjacent standby periods αij and

α(i+1)j .

In this case, both αij and α(i+1)j are larger than TBE , meaning that the jth cold node can

be transitioned into standby during these two time intervals to conserve energy. Formally, we

have αij > TBE ,α(i+1)j > TBE , and αij + tij + α(i+1)j > TBE . Thus, energy consumption

Enon-PM of the jth cold node without deploying a hot node is

Enon-PM = PA × tij + (PS · (αij − TD − TU) + ED + EU)

+
(
PS × (α(i+1)j − TD − TU) + ED + EU

)
,

(4.9)

61

where the second and third term on the right hand side of (4.9) are the energy consumed by

the cold node in standby periods αij and α(i+1)j , respectively. With a hot node in place, energy

consumption ECold and EHot in this case are the same as in case 1 (see also (4.3) and (4.4)).

Therefore, the energy saving ESaving(τij), is derived from Enon-PM (see (4.9)), ECold, and EHot

as

ESaving(τij) = ED + EU − PS × (TD + TU + tij). (4.10)

Case 5: This case summarizes scenarios where prefetching a table may impose negative

impacts on energy efficiency. If the summation of tij , αij , and α(i+1)j is smaller than or equal

to TBE (i.e., αij +tij +α(i+1)j ≤ TBE), then prefetching table τkj may reduce energy efficiency.

Because αij + tij + α(i+1)j ≤ TBE , cold node j stays in the idle mode for the periods of

tij , αij , and α(i+1)j . If table τkj is prefetched to the hot node, energy consumption ECold of cold

node j in the three periods is

ECold = PI × (αij + tij + α(i+1)j). (4.11)

The values of Enon-PM and EHot are the same as those of case 1 (see also (4.2)). Applying

Enon-PM , ETrans and EGreenDB to (4.1), we estimate the negative energy-saving impact as:

Esaving(τij) = −PI × tij (4.12)

Given the above cases, set Ωkj of cold nodes activities for queries accessing table τkj in

cold node j can be partitioned into the following four disjoint subsets,

Ωk,j = Ωk,j,1 ∪ Ωk,j,2 ∪ Ωk,j,3 ∪ Ωk,j,4 ∪ Ωk,j,5 (4.13)

where Ωk,j,1, Ωk,j,2, Ωk,j,3, Ωk,j,4 and Ωk,j,5 contain active time periods that respectively satisfy

the conditions of the five energy-saving cases. The five subsets are expressed as:

62

1. for case 1:

Ωk,j,1 = Tij|(τij) = τk,j ∩ 0 < αij ≤ TBE ∩ 0 < α(i+1)j

≤ TBE ∩ αij + tij + α(i+1)j > TBE

2. for case 2:

Ωk,j,2 = Tij|(τij) = τk,j ∩ 0 < αij ≤ TBE ∩ α(i+1)j

> TBE ∩ αij + tij + α(i+1)j > TBE

3. for case 3:

Ωk,j,3 = Tij|(τij) = τk,j ∩ αij > TBE ∩ 0 < α(i+1)j

≤ TBE ∩ αij + tij + α(i+1)j > TBE

4. for case 4:

Ωk,j,4 = Tij|(τij) = τk,j ∩ αij > TBE ∩ α(i+1)j

> TBE ∩ αij + tij + α(i+1)j > TBE

5. for case 5:

Ωk,j,4 = Tij|(τij) = τk,j ∩ αij > TBE ∩ α(i+1)j

> TBE ∩ αij + tij + α(i+1)j > TBE

Now we derive energy saving ESaving(τkj) offered by fetching table τkj from cold node j

to the hot node. Thus, we obtain ESaving(τkj) from (4.5), (4.7), (4.8), (4.10), (4.11) and (4.12),

where the last item on the right hand side is the energy overhead of fetching τkj from cold node

j to the hot node.

63

ESaving(τ k,j) =
∑

Tij∈Ωk,j

(ESaving(τij))

=
∑

Tij∈Ωk,j,1

(PI · (αij + α(i+1)j)

−PS · (Ωij + tij + α(i+1) − TU − TD)− ED − EU)

+
∑

Tij∈Ωk,j,2

(PI · αij − PS · (αij + tij))

+
∑

Tij∈Ωk,j,3

(
PI · α(i+1)j − PS · (α(i+1)j + tij)

)
+

∑
Tij∈Ωk,j,4

(ED + EU − PS · (TD + TU + tij).)

−PI ·
∑

Tij∈Ωk,j,5

tij − PA · time(τk,j)

(4.14)

4.2.3 Calculating Energy Savings

We show how to plugin the model (see Section 4.2.2) into an algorithm to calculate energy

conserved by GreenDB. Given the kth table τkj residing in cold node j, Algorithm 4 computes

energy savings of prefetching table τkj from the cold nodes to the hot node.

All of the energy-saving cases presented in Section 4.2.2 are explicitly handled from Steps

1 through 14 (See Algorithm in 4: Case 1 in Line 7, Case 2 in Line 9, Case 3 in Line 12, Case

4 in Line 15), whereas Step 18 addresses the issue of a negative impact on energy savings.

The time complexity of computing energy savings is O(m× nj), where m is the number

of cold node and nj is the number of queries in the look-ahead corresponding to the j cold

node.

4.3 Experimental Results

To quantitatively evaluate GreenDB, we first compare our prefetching strategy with the one

implemented in Postgresql using the build-in stream replication scheme (see Section 4.3.2).

We measure energy consumed by replicating one data table from a cold node to a hot node.

The purpose of this set of experiments is to investigate an energy-efficient way of managing,

replicating, and storing data in GreenDB. Creating data replications on hot nodes has a strong

64

Algorithm 4 Calculating Energy Savings
Require:

table τk,j
cold node j
a set Ωj of queries accessing cold nodej

Ensure:
ESaving(τk,j)

1: update ESaving(τk,j)← 0;
2: for j = 1 to m do
3: for i = 1 to nj do
4: if alphaij + ti,j + i(i+1)j > TBE then
5: if 0 < ii,j ≤ TBE then
6: if 0 < ii,j ≤ TBE then
7: if 0 < i(i+1)j ≤ TBE then

8:
Esaving(τij) = PI × (αij + α(i+1)j)
−PS · (αij + tij + α(i+1) − TU − TD)− ED − EU

9: else
10: Esaving(τij) = PI · αij − PS · (αij + τij)
11: end if
12: else
13: Esaving(τij) = PI · α(i+1)j − PS · (α(i+1)j + Tij)
14: end if
15: else
16: Esaving(τij) = ED + EU − PS × (TD + TU + tij)
17: end if
18: else
19: Esaving(τij) = −PI × tij
20: end if
21: end for
22: end for
23: return Esaving(τij)− PA × time(τkj)

65

impact on energy consumption and; therefore, we shed light on the impacts of vital factors on

the two evaluated prefetching strategies in GreenDB. The factors considered in our experiments

include data size (see Section 4.3.3), the number of nodes (see Section 4.3.4), hit rate (see

Section 4.3.5), inter-arrival times (see Section 4.3.6), and the number of disks in a cold node

(see Section 4.3.7).

4.3.1 Experimental Setups

All the storage nodes managed by GreenDB are running the PostgreSQL database system

within CentOS. PostgresSQL, a highly extensible object-relational database management sys-

tem, securely stores and retrieves a variety of data. Prostgres is capable of processing workloads

of small-scale applications as well as large Web-based applications. We maintain a dedicated

computing environment to test our prefetching strategy implemented in GreenDB - a database

system running on a cluster. The focus of our empirical study is to explore and validate the

energy efficiency of GreenDB on clusters. PostgresSQL facilitates a convenient way of manag-

ing and transferring replicated data on hot nodes in GreenDB. We compare our energy-efficient

prefetching scheme with the existing one offered in PostgresSQL. Table 4.4 shows the specifi-

cations of the cluster running the tested database system.

Table 4.4 Testbed Configurations.
OptiPlex 3020 MT/SFF Technical Specifications

CPU Intel 4th Core i5-4570 Quad Core@3.20GHz
Memory 4GB Non-ECC 1600MHz DDR3 SDRAM
Hard Drives Seagate KC47-500GB SATA (7.200 RPM)
Operating CentOS 6.5(Final)
System Linux kernel 2.6.32− 431.el6.x8664
Database System PostgreSQL 9.3.5

4.3.2 Prefetching Data to Hot Nodes

The prefetching mechanism plays an important role in reducing energy consumption of database

systems running on clusters. In this part of the study, we pay attention to the energy efficiency

of the prefetching scheme that creates and transfers replicated data from cold nodes to hot ones

66

in GreenDB. In particular, we evaluate the impact of the data table size on energy savings

offered by our prefetching strategy.

Recall that SyncPrefetch in PostgreSQL is expensive in terms of energy consumption (see

Section 4.1.4). In this group of experiments, we show that the prefetching scheme in GreenDB

employs asynchronous replications to minimize energy cost of fetching hot data from cold

nodes.

For simplicity, we keep one hot node in GreenDB. Nevertheless, our findings indicate that

the energy-efficiency trend of multiple-hot-node cases is similar to that of the single-hot-node

case. The experimental results for multiple-hot-node scenarios can be found in Section 4.3.4.

GreenDB vs. SyncPrefetch

We compare the prefetching strategy in GreenDB with the existing Postgresql strategy referred

to as SyncPrefetch, thereby quantifying energy cost of fetching a data table from a cold node

to a hot node. The energy consumption of prefetching a data table is comprised of three parts:

(1) energy cost of fetching the table from cold nodes, (2) energy consumed by transferring the

table through the network interconnection, and (3) energy consumption of storing the table into

the hot node.

Fig. 4.2 shows the energy consumption of prefetching a data table in GreenDB and SyncPrefetch.

The results depicted in Fig. 4.2 indicate that GreenDB is superior to SyncPrefetch in terms of

energy efficiency. More specifically, GreenDB improves the energy efficiency of SyncPrefetch

by a factor up to 60.9 with an average of 52.5. We also observe from Fig. 4.2 that the energy

consumption of both prefetching strategies goes up as the fetched table size increases.

GreenDB substantially reduces energy consumption of prefetching data by replacing the

synchronous replication module in SyncPrefetch with the asynchronous one (see the details

in Section 4.1.4). SyncPrefetch offers slim opportunities for hardware resources (e.g., CPUs,

hard drives) in cold nodes to transition into the low-power state, thereby leading to high energy

consumption. In contrast, the prefetching strategy in our GreenDB fetches hot data in a batch

manner, which keeps the hardware resources in the energy-saving mode for a long time period

after the hot-data prefetching process is completed.

67

2 3 4 5 6 7 8 9 10

x 10
5

0

2

4

6
x 10

−4

P
ow

er
 C

on
su

m
pt

io
n

of
 P

re
fe

tc
hi

ng
 C

ac
hi

ng
(\

K
W

h)

Table Size(\record)

Energy consumpiton of one data table replication

2 3 4 5 6 7 8 9 10

x 10
5

0

0.01

0.02

0.03

P
ow

er
 C

on
su

m
pt

io
n

of
 S

tr
ea

m
 R

ep
lic

at
io

n(
\K

W
h)

Prefetching Caching
Stream Replication

Figure 4.2: Energy consumpiton of Prefetching one data table from a cold node to a hot node.

Fig. 4.3 shows the energy-saving ratio of GreenDB over SyncPrefetch. The results plotted

in Fig. 4.3 indicate that GreenDB conserves the energy consumption of SyncPrefetch by up

to 98.4%. The energy-saving ratio is extremely high when the data table size is either small

(e.g., 2 ∗ 105records) or large (e.g., 1 ∗ 106records). We conclude that GreenDB is more energy

efficient than Postgresql’s build-in SyncPrefetch.

Energy Consumption and Execution Time

Apart from energy efficiency, we investigate the performance of our GreenDB and SyncPrefetch.

We measure the execution times of GreenDB and SyncPrefetch process a list of queries. For

fair comparison, we ensure the identical list of queries are issued to the two schemes handling

the same data tables.

Fig 4.4(c) reveals that our GreenDB is faster than SyncPrefetch during the data transfer

from cold to hot nodes. For example, it takes less than 30 seconds to create a replicated table

of 2 × 105 records on the hot node, whereas SyncPrefetch spends more than 300 seconds to

accomplish the duplication process. When the table size increases to 10× 105, SyncPrefetch’s

68

2 3 4 5 6 7 8 9 10

x 10
5

0

0.005

0.01

0.015

0.02

0.025

E
ne

rg
y

C
on

su
m

pt
io

n
S

av
in

g(
\K

W
h)

Table Size(\record)

Energy consumpiton Saving And Corresponding Saving Ratio

2 3 4 5 6 7 8 9 10

x 10
5

0.98

0.981

0.982

0.983

0.984

0.985

R
at

io
 o

f E
ne

rg
y

S
av

in
g

to
 S

tr
ea

m
 R

ep
lic

at
io

n
E

ne
rg

y
C

on
su

m
pt

io
n(

\1
)

Energy Consumption Saving
Saving Ratio

Figure 4.3: Energy consumpiton Saving And Corresponding Saving Ratio.

processing time is enlarged to 20 minutes, which is approximately 67 times longer than that of

our GreenDB.

Energy consumption is a product of power and processing time, meaning that shortening

the processing time is a practical way of boosting energy efficiency. Thus, reducing time spent

in moving data tables from cold to hot nodes can minimize the energy consumption overhead of

fetching hot data from cold nodes. Although Postgresql’s SyncPrefetch maintain consistency

between hot and cold nodes in a real-time manner, such consistency comes at the cost of high

performance and energy overhead.

4.3.3 Data Table Size

The second set of experiments is focused on evaluating the impacts of data table size (data size

for short) on the energy savings offered by GreenDB after replicated tables are created on hot

nodes. We set the number of cold nodes to four; we set the hit rate of the hot nodes to 25%

(see Fig. 4.5(a)), 50% (see Fig. 4.5(b)), and 75% (see Fig. 4.5(c)), respectively. We compare

our GreenDB with the two existing schemes - PRE-BUD [37] and DPM [28]. For comparison

69

2 3 4 5 6 7 8 9 10

x 10
5

0

0.5

1

1.5

2

2.5
x 10

−4

table size(\record)

P
ow

er
 C

on
su

m
pt

io
n(

\K
W

h)

Power Consumption of fetch one data table from Master to Slave

Master node consumption
Slave node consumpiton
Switch consumption

(a) Power Consumption of fetch one data table from Cold
node to Hot node

2 3 4 5 6 7 8 9 10

x 10
5

1

2

3

4

5

6

7

8

9

10

11
x 10

−5

table size(\record)

P
ow

er
 C

on
su

m
pt

io
n(

\K
W

h)

Power Consumption of replicate one data table from Master to Slave

Master node consumption
Slave node consumpiton
Switch consumption

(b) Power Consumption of replicate one data table from
Cold node to Hot node

2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

P
er

fo
rm

an
ce

 o
f f

et
ch

in
g

ta
bl

e(
\m

in
ut

e)

Table Size(\record)

Performance of one data table replication

2 3 4 5 6 7 8 9 10

x 10
5

5

10

15

20

P
er

fo
rm

an
ce

 o
f S

tr
ea

m
 R

ep
lic

at
io

n(
\m

in
ut

e)

Fetching Caching
Stream Replication

(c) Comparison of performance for replicating one data
table from Cold node to Hot node

Figure 4.4: Energy consumption and Performance profiling between fetching and replicating
techniques

70

purpose, we also evaluate the database system where no energy-saving scheme is deployed; we

refer to this case as Non-Energy Saving or Non-E for short.

Fig. 4.5 reveals that the data size imposes noticeable impact on the energy efficiency of

GreenDB and PRE-BUD strategy when the hit rate is lower than 75%. Unlike GreenDB and

PRE-BUD, the energy consumption of DPM and Non-E are insensitive to data size. The data

table size has very little impact on energy efficiency on DPM and Non-E, because power man-

agement in DPM and Non-E has nothing to do with creating replicated data tables from cold to

hot nodes.

We observe from Fig. 4.5 that increasing the data size make the energy consumption go

up. This trend is contributed by the fact that if incoming queries are unable to be served by a

hot node, corresponding cold nodes will have to be waked up to moving data to the hot node.

A large data size implies a long time spent moving the data table from the cold to hot node. It

is worth noting that such a trend is diminishing when the hit rate is large (e.g., 75%), because

the large hit rate cuts the chances of waking up cold nodes to move hot data.

Fig. 4.5 shows that regardless of the data size, a large hot-node hit rate (e.g., 75%) pro-

vides cold nodes with ample opportunity to stay in the low-power mode for a long period of

time. This results suggest that a well-design prefetching algorithm play a key role in improving

energy efficiency of database systems running on clusters, because the prefetching algorithm is

responsible for improving the hit rate. Such a prefetching mechanism will be addressed in our

future study.

The results depicted in Fig. 4.5 indicates that our GreenDB outperforms PRE-BUD and

DPM. And energy consumption of GreenDB increases slowly when hit rate reaches the level of

75%. GreenDB is superior to PRE-BUD, because PRE-BUD achieves high energy efficiency

by aggressively turning off idle disks whereas GreenDB powered off the entire cold nodes

rather than individual disks. In doing so, GreenDB not only conserves energy consumed by

idle disks, but also saves energy caused by CPUs, memory, and other component in idle storage

nodes. The experimental results confirm that small data table sizes coupled with high hit rates

helps in improving energy efficiency of GreenDB.

71

200000 400000 600000 800000 1000000

Data Size(/records)

2.4

2.6

2.8

3

3.2

3.4

3.6

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(a) Total energy consumption of DBMS when the hit rate
is 25%.

200000 400000 600000 800000 1000000

Data Size(/records)

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(b) Total energy consumption of DBMS when the hit rate
is 50%.

200000 400000 600000 800000 1000000

Data Size(/records)

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(c) Total energy consumption of DBMS when the hit rate
is 75%.

Figure 4.5: Total energy consumption of database clusters while data size is varied for three
different values of the hit rate: (a) 25%, (b) 50%, (c) 75%.

4.3.4 The Number of Nodes

Now we evaluate the impact of the number of nodes on GreenDB. The number of hot node

is fixed at one; the number of cold nodes is set to 4, 8, and 12, respectively. The hit rate is

72

configured at the level of 85%. Fig. 4.6 shows the energy consumption of GreenDB, PRE-

BUD, DPM, and Non-E under three data table sizes (i.e., 200K, 400K, and 800K records).

4 8 12

Number of nodes

0

2

4

6

8

10

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(a) Total energy consumption of database clusters while
data size is fixed at 200K records

4 8 12

Number of nodes

0

2

4

6

8

10

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(b) Total energy consumption of database clusters while
data size is fixed at 400K records

4 8 12

Number of nodes

0

2

4

6

8

10

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(c) Total energy consumption of database clusters while
data size is fixed at 800K records

Figure 4.6: Total energy consumption of database clusters while the number of nodes is varied.
Data size is fixed at (a) 200K, 400K, 800K records.

Not surprisingly, we discover from Fig. 4.6 that when the number of cold nodes goes up,

energy savings offered by GreenDB becomes more pronounced. For example, let us consider

a case where the data table size is 800K records (see Fig 4.6(c)). The GreenDB reduces the

73

energy consumption of Non-E by 51.4% and 65.3% when the number of the number of cold

nodes is 4 and 12, respectively. This energy-efficiency trend is expected, because an increasing

number of cold nodes are kept in the low-power mode to reduce energy consumption of the

database system. After the hot node fetches popular tables from the cold nodes, lightly loaded

cold data nodes are more likely to be switched into the power-saving mode to conserve energy

by increase idle periods that are longer than the break even time.

Increasing the number of cold nodes to optimize energy efficiency of GreenDB comes

is likely to have two side effects. First, GreenDB fetches a small amount of popular tables

from each cold node to the hot node, which increasingly becomes a performance bottleneck.

Second, when we expend the number of cold nodes, the storage capacity of the hot node may

becomes insufficient for all the hot tables flooding from the cold nodes. When the performance

issue occurs, we should increase the number of hot nodes in GreenDB to match the cold nodes’

needs.

Comparing Figs. 4.6(a) and (c), we observe that GreenDB deliver higher energy efficiency

when data table size is larger (e.g., 800K records). This trend is consistent with the one depicted

in Fig. 4.5 (see Section 4.3.3).

4.3.5 Hit Rates

In this set of experiments, we choose to investigate the hit rate impact on the energy efficiency

of the evaluated database system. Hit rate measures the probability that a query can be serviced

by hot nodes rather than cold nodes. We configure the data table size at 200K, 400K and 600K

records. The number of cold nodes is set to four. Fig. 4.7 shows the total energy consumption

as a function of hit rate values.

We observe from Fig. 4.7 that a high hit rate improves GreenDB’s energy efficiency. For

instance, when the hit rate is set to 80% and 20%, GreenDB reduces energy consumption of

Non-E by 41.0% and 15.1%, respectively (see Fig. 4.7(c)). This trend is expected, because

increasing hit rate enlarges the time period in which cold nodes are kept in the low-power state.

A low hit rate leads to a strong likelihood that cold nodes are frequently waked up to serve

requests. These experimental results are consistent with those plotted in Fig. 4.5.

74

We argue that it is unrealistic to achieve a hit rate of 100% in dynamic workload condi-

tions. Nevertheless, a 100% hit rate may be accomplished if query access patterns are given a

priori. It is feasible to apply comprehensive prefetching algorithms to achieve hit rates as high

as 80%.

20 40 60 80 100

Hit Rate(%)

0

0.5

1

1.5

2

2.5

3

3.5
Jo

ul
es

105

GreenDB PRE-BUD DPM Non-E

(a) Total energy consumption when the data size is fixed
at 200K records

20 40 60 80 100

Hit Rate(%)

0

0.5

1

1.5

2

2.5

3

3.5

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(b) Total energy consumption when the data size is fixed
at 400K records

20 40 60 80 100

Hit Rate(%)

0

0.5

1

1.5

2

2.5

3

3.5

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(c) Total energy consumption when the data size is fixed
at 600K records

Figure 4.7: Total energy consumption for different hit rate values where the data size is fixed
at: (a) 200K records, (b) 400K records, (c) 600K records.

75

4.3.6 Inter-arrival Delays

Now we study the impact that query inter-arrival rates on the energy savings of GreenDB.

Fig. 4.8 shows the total energy consumption of the database system as a function of the inter-

arrival delay. Again, we set the number of cold nodes as four; the data size is fixed at 1, 000, 000

records. The hit rate is set to 55%, 65%, 75%, and 85%, respectively.

Fig. 4.8 demonstrated that when the query inter-arrival delay is less than 10 seconds,

GreenDB and PRE-BUD are unable to yield any energy savings. Such a low energy efficiency

is attributed by the lack of large idle windows that keep cold nodes in the energy-saving state.

Unfortunately, in these scenarios, GreenDB and PRE-BUD end up consuming more energy

than the traditional DPM due to the prefetching overhead.

Both GreenDB and PRE-BUD start delivering energy savings when the inter-arrival delay

increase. For example, Fig. 4.8(d) confirms that when the inter-arrival delay is as large as 30

seconds, GreenDB and PRE-BUD conserve energy by 57.4%, 33.6%, respectively; DPM saves

energy by a meager percentage of 17.7%. Intuitively, DPM relies on large idle times between

consecutive queries to achieve energy savings; GreenDB, on the other hand, proactively creates

large idle windows for cold nodes by redirecting queries to the hot node in the database system.

The aforementioned experimental results suggest that heavily loaded conditions (i.e., low

inter-arrival delays) prevent GreenDB and PRE-BUD from conserving energy. In contrast,

GreenDB and PRE-BUD exhibit good energy efficiency under light and medium workload.

In the worst case where the load becomes extremely high, GreenDB will have to increase the

number of hot node to suppress high query response time.

4.3.7 Number of Disks per Cold Node

Now we evaluate the capacity impact of cold nodes. In particular, we investigate whether or

not increasing the number of disks in each cold node can optimize the energy efficiency of

database systems running on clusters. Fig. 4.8 shows the energy consumption of the database

system, where the number of disks in each node is set to one, two, and four. In this group of

76

0 10 20 30

Interarrival Delays (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(a) Total energy consumption when the hit rate
is : 55%.

0 10 20 30

Interarrival Delays (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(b) Total energy consumption when the hit rate
is : 65%.

0 10 20 30

Interarrival Delays (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(c) Total energy consumption when the hit rate
is : 75%.

0 10 20 30

Interarrival Delays (S)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Jo
ul

es

105

GreenDB
PRE-BUD
DPM
Non-E

(d) Total energy consumption when the hit rate
is : 85%.

Figure 4.8: Total energy consumption for different delay values where the hit rate is : (a) 55%,
(b) 65%, (c) 75%, and (d) 85%.

experiments, the data size is fixed at 200K records; the hit rate is varied at 60%, 75%, and 90%,

respectively.

Not surprisingly, we discover from Fig. 4.9 that increasing the number of disks in each

node marginally improves the energy efficiency of GreenDB. For example, let us consider a

case where hit rate is 75% (Fig. 4.9(b)). GreenDB reduces energy consumption of Non-E

by 54.0% and 56.4% when the number of disks per node is one and four, respectively. If

hit rate is 90%, then GreenDB’s energy saving is 58.8% and 61.7% for 1-disk and 4-disk

cases. The results indicate that adding two extra disks merely increases the energy savings

by approximately 2.4% and 2.9% when hit rate is set to 75% and 90%, respectively.

The number of disks per node has little impact on GreenDB’s energy efficiency, because

each disk’s power is fairly small compared with that of the entire node. This experiment

suggests that with respect to energy saving, a node-level power manager (e.g., GreenDB) is

far more efficient than a disk-level one (e.g., PRE-BUD). The results show the evidence that

GreenDB is superior to PRE-BUD in terms of energy efficiency.

77

1 2 4

Number of Disks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(a) Total energy consumption of database clusters when
hit rate is fixed at: 60%

1 2 4

Number of Disks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(b) Total energy consumption of database clusters when
hit rate is fixed at: 75%

1 2 4

Number of Disks

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Jo
ul

es

105

GreenDB PRE-BUD DPM Non-E

(c) Total energy consumption of database clusters when
hit rate is fixed at: 90%

Figure 4.9: Total energy consumption of database clusters while the number of data disks of
cold node is varied. Hit rate is fixed at: (a) 60%, (b) 75%, (c) 90%

From the perspective of performance, increasing number of of disks in cold node tends

to introduce performance bottleneck in hot nodes. One way of solving this problem is to add

disks into hot nodes when we expand cold nodes.

78

4.4 Summary

In this chapter, we proposed GreenDB - a simple yet efficient database cluster system. GreenDB

is conducive to fetching the most frequently used data tables into hot nodes. We built a prefetch-

ing model in conjunction with an energy saving model, which offers guidelines to GreenDB to

conserve energy. GreenDB exhibits two salients features. First, GreenDB aggressively keeps

cold nodes in the low-power mode in long time periods. Second, GreenDB lowers energy-

saving overhead by reducing the number of power-state transitions.

We conducted extensive experiments to quantitatively evaluate the energy efficiency and

performance of GreenDB in terms of fetching and managing data tables in database clusters.

We compared GreenDB’s prefetching strategy with an existing one implemented in Postgresql.

Experimental results show that GreenDB conserves the energy consumption of the existing

scheme by up to 98.4%. The findings suggest that one may optimize the energy efficiency of

GreenDB by configuring table size, hit rates, number of nodes, number of disks, and inter-

arrival delays.

79

Chapter 5

Conclusions and Future Work

In this dissertation, we proposed a simple yet effective toolkit called EDOM facilitating the

evaluation and optimization of energy-efficient multicore-based. We investigated the criteria

as well as challenges of developing energy efficiency benchmarks for database operations. A

benchmarking toolkit was implemented to evaluate energy efficiency of database systems. We

evaluated energy-efficiency impacts of multicore processors on database operations. In partic-

ular, we applied the benchmarking tool to empirically study energy consumption of cross and

outer joins running on multi-core processors. To optimize the number of cores, we developed

a multicore manager called EDOM to make a good tradeoff between energy efficiency and

performance in database systems. The key component of EDOM is a memory usage model es-

timating memory utilization from queries and database characteristics. An appropriate number

of cores is determined using the estimated memory usage to alleviate the memory swapping

problem - a main driver behind high energy cost in multicore database systems.

In addition, traditional energy-saving techniques for clusters are inadequate for parallel

database systems running on clusters. To address this problem, we proposed GreenDB fo-

cusing on reducing energy consumption cost of large-scale database systems, which are com-

prised of multiple nodes or severs. We showed how to develop a parallel database system

called GreenDB - an energy efficient system running on clusters. At the heart of GreenDB is

a prefetching and caching mechanism, which fetches hot data from passive nodes into active

nodes. We demonstrated that GreenDB offers energy savings by turning a large number of pas-

sive nodes into the low-power mode, which keeping a small number of active nodes to serve

queries.

80

The chapter is organized as follows: Section 5.1 highlights the main contributions of the

dissertation. In section 5.2, we concentrate on some future directions, which are extensions of

our past and current research on green computing for high-performance database systems.

5.1 Main Contributions

Energy efficiency techniques is a large research area including energy efficiency profiling, hard-

ware resources management, data placement, workload skewness strategy, and data prefetching

strategies. Although tons of research studies have been completed to improve the performance

of parallel systems, little attention has been paid to energy-efficient big-data systems. Energy

cost turns into a huge fraction of a big data center’s maintenance cost. The energy conserving

techniques involves multiple factors such as task-scheduling, hardware tuning, system archi-

tecture design. To improve the energy efficiency of the big data platforms by systematically

considering these factors, my dissertation research investigates techniques to conserve energy

consumption while maintaining high performance in database systems.

5.1.1 GreenDB - A New Energy-efficient Database Cluster

GreenDB applies a workload skewness strategy by managing hot nodes coupled with a set of

cold nodes in a database cluster. A database cluster governed by GreenDB is divided into a

group of cold nodes and a group of hot nodes. The overarching goal is to keep the cold nodes

in the low power state (e.g. shutting down) in increased time periods by prefetching popular

data tables to hot nodes, while making the hot nodes respond queries accessing popular data

tables. There are three motivations behind partitioning nodes into the hot and cold groups.

First, our preliminary findings suggest that improving the utilization of an active database node

leads to high energy efficiency. Second, placing an entire node into the low-power state is

more energy efficient than turning off disks in the node. Third, reducing the number of power-

state transitions can lower the power management overhead. My experimental results indicate

that GreenDB significantly conserves the energy consumption than the existing solution. The

81

findings show that the energy efficiency of GreenDB can be optimized by tuning system pa-

rameters, including table size, hit rates, number of nodes, number of disks, and inter-arrival

delays.

5.1.2 Leveraging Energy Savings Model to Guide Prefetching

To facilitate the replacement strategy in GreenDB, we delve into an energy-cost model pro-

jecting energy savings offered by keeping candidate data tables into an array of hot nodes

while shutting down under-utilized cold nodes. The energy-cost model provides a guideline for

GreenDB to (1) evict unpopular data tables from the hot nodes and (2) fetch popular tables from

the cold nodes to improve energy efficiency. The energy-cost model integrates profiling results

and the prefetching algorithm to offer us an interface to estimate energy savings provided by

data tables in hot nodes. Profiling results take into account of three factors energy consumed

on fetching data from cold nodes, energy spent by hot nodes to store prefetched data tables,

and energy overhead caused by power-state transitions. Our energy cost model leverages the

profiling data of energy consumption to estimate energy savings of offered by prefetched table.

5.1.3 An Asynchronized Prefetching Mechanism

The existing prefetching scheme in PostgreSQL relies on the synchronous replication module

to maintain duplicated data between cold and hot nodes. Such a synchronous based prefetching

strategy (or SyncPrefetch for short) in PostgreSQL is expensive when it comes to maintaining

replicated data on hot nodes. Before committing an update transaction, SyncPrefetch must

obtain exclusive locks on all the copies. The transaction may have to send lock requests to

cold nodes, waiting for the locks to be granted. During such a potentially long time period,

SyncPrefetch continues holding all the other locks. If the cold nodes or communication links

fail, the transaction cannot commit until all the nodes storing modified data are recovered the

failure. Unlike SyncPrefetch, the prefetching scheme in GreenDB takes the full advantage of

asynchronous replications to cut energy cost of fetching hot data from cold nodes. Updated

data are initially kept in hot nodes to avoid excessive power-state transitions in cold nodes.

When new popular data are about to be transferred from the cold nodes to the hot ones, the

82

update data will be synchronized back to the cold nodes. GreenDB’s synchronize replicated

data between hot and cold nodes in a lazy manner, thereby improving system energy efficiency.

5.1.4 An Evaluation and Optimization Toolkit

I designed a toolkit called EDOM facilitating the evaluation and optimization of energy-efficient

multicore-based database systems. I built a benchmarking toolkit, which is comprised of three

parts, namely, a configuration module, a test driver, and a power monitor. The workload genera-

tor facilitates the configurations of the PostgreSQL database system. We leverage this generator

to set up tables and populate data records into the database. The test driver automatically issues

operations to the database system in accordance to access patterns created by the workload

generator. The power monitor keeps track of energy efficiency and performance of the multi-

core database system processing the operations driven by the test driver. I evaluated energy-

efficiency impacts of multicore processors on database operations. In particular, I applied the

benchmarking tool to empirically study energy consumption of cross and outer joins running

on multi-core processors. My benchmarking experiments show that the multicore and CPU

utilizations have significant impacts on energy efficiency.

5.1.5 A Memory Usage Model for Queries and Database Characteristics

In addition to my research of EDOM, I developed a multicore manager to optimize the number

of cores, thereby making the best tradeoff between performance and energy efficiency in mul-

ticore database servers. The multicore manager aims to decide an optimal number of cores that

meets the resource needs of heavy workload, where main memory becomes scarce resources.

An appropriate number of cores is determined by using the estimated memory usage to avert

unnecessary memory swapping, which induces high energy consumption overhead. This goal

is achieved by alleviating the memory swapping problem through the decisions on the most

appropriate number of cores.

83

5.1.6 A Multicore Manager Enhancing Energy Efficiency

At the heart of the multicore manager is a memory usage model that estimates memory uti-

lization from queries and database characteristics (e.g., query types, data size, and processing

time). My empirical study reveals that the memory usage imposes a significant impact on the

energy efficiency of database systems, heavily utilized main memory adversely slows downs

the performance of multiple cores; as a result, an increasing number of queries cannot be pro-

cessed in a timely manner, thereby pushing the power consumption at an unacceptably high

level. To address the problem of heavy workload coupled with scarce memory resources, the

memory usage estimator estimates the memory usage according to the four operation factors,

namely, database query type, the number of tables, the number of records and the record size.

Given such information the memory usage estimator applies a mathematical model to project

memory usage, which is used in the multicore calculator to determine the number of the mulit-

cores.

5.2 Future Work

As future research directions, I plan to extend this dissertation research by focusing on statisti-

cal prediction strategies (see Section 5.2.1), performance tuning in database systems (see Sec-

tion 5.2.2), data placement (see Section 5.2.3), NoSQL database systems (see Section 5.2.4),

energy-efficient big-data processing systems (see Section 5.2.5), in-memory data mining (see

Section 5.2.6), and high-performance computing (see Section 5.2.7).

5.2.1 Statistical Prediction Strategies for Energy-Efficient Database Systems

Since multiple factors (i.e., CPU, memory, data size, and operation type) will influence the

energy efficiency of database systems, I plan to investigate a novel and sophisticated strategy

that can take use the of statistical or machine learning algorithms to provide accurate hardware

management to improve the energy efficiency of database systems.

84

5.2.2 Dynamic Tuning of Database Systems

In the GreenDB project, I adopted hot nodes to cache the most popular data tables so that we

can switch cold nodes to the low-power state. Although it improves the energy efficiency of

the database clusters, its requires the prior access patterns and log traces to adjust the database

clusters. I intend to develop a new real-time analysis mechanism to tune the database clusters.

One way is to leverage big-data techniques and machine learning algorithms to analyze and

predict resource requirements to meet the needs of queries or application-level request.

5.2.3 Optimizing Data Placement in Database Clusters

Big-data applications tend to have a huge amount of transferred data. Since the transferred

data may be moved from node to node, data movement has a significant impact on the over-

all energy-efficiency whole system due to its long period active status without any chance to

switch it into low power state. To optimize the data placement which will effectively reduce

the unnecessary data movement, I will propose a predictive model to store the massive amount

of data in the most appropriate nodes and move data without compromising the performance

of applications running on local nodes in data clusters. The new model largely depends on data

analysis techniques, data distribution, the amount of data, data access patterns, and network

traffic.

5.2.4 Improving Energy Efficiency of NoSQL Database Systems

With the development of the Internet and cloud computing, there is a pressing need to store and

process big data on clusters. This issue is addressed by NoSQL databases, which increasingly

become popular. Traditional SQL databases have a performance bottleneck due to follow-

ing four overhead components, namely, logging, locking, latching, and buffer management.

Although NoSQL systems are likely to be deliver good data read and write performance, a ma-

jority of NoSQL systems are equipped with hard drives, where a buffer pool is maintained. I

plan to improve the energy efficiency in NoSQL systems by investigating techniques to reduce

85

unnecessary I/Os, which in turn will offer an increasing number of chances to switch disks into

the low-power state.

5.2.5 Improve the Energy Efficiency within Big-data Platforms

Increasing demands of big data applications have led researchers and practitioners to turn to in-

memory computing to speed up processing. For instance, the Apache Spark framework stores

intermediate results in memory to deliver good performance on iterative machine learning and

interactive data analysis tasks. Recent studies indicate that Spark workloads have a high num-

ber of disk accesses per second. The goal of my future investigation is to examine disk accesses

patterns of Spark workloads, followed by designing a middle-aware layer optimizing the num-

ber of disk accesses. In doing so, my proposed mechanism will cut back energy spending on

unnecessary disk accesses.

5.2.6 In-Memory Data Placement and Computing for Data Mining Techniques

As data mining techniques have been widely used and developed in this decade, one main chal-

lenge in data mining is large-scale parallel processing of a massive amount data on clusters

(e.g., Hadoop clusters and Spark clusters). Data volumes in and data warehouses are dramat-

ically increasing; unfortunately, computing platforms can’t keep the pace with the increased

data size. Most of existing data mining algorithms are computational intensive, requiring data

to be resident in main memory to speedup process. My goal in this research direction is to

investigate data placement strategies to prefetching data from hard drives of a database cluster

to facilitate novel in-memory database computing, which is expected to improve the overall

performance of data mining algorithms by optimizing I/O subsystems. My in-memory data

placement techniques intend to reduce data movement while offering quick data accesses.

5.2.7 High-Performance Data Accesses in Big Data Platforms

I will propose high-performance data accesses in the realm of ”NoSQL” databases running on

big-data computing platforms. I was motivated to address this issue, because the data access

86

time directly impacts the number performance of answering queries. Therefore, I intend to de-

ploy new techniques to facilitate fast data accesses, which will improve the query performance

in big data platforms.

87

References

[1] Wd5000aaks specification. http://www.wdc.com/wdproducts/library/

SpecSheet/ENG/2879-701277.pdf.

[2] Accenture and WSP. Cloud computing and sustainability: The environmental benefits of

moving to the cloud. Technical report, Accenture, 2010.

[3] B. Aksanli, J. Venkatesh, L. Zhang, and T. Rosing. Utilizing green energy prediction to

schedule mixed batch and service jobs in data centers. SIGOPS Oper. Syst. Rev., 45(3):53–

57, Jan. 2012.

[4] M. Al Assaf, X. Jiang, M. Abid, and X. Qin. Eco-storage: A hybrid storage system with

energy-efficient informed prefetching. Journal of Signal Processing Systems, 72(3):165–

180, 2013.

[5] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing. Future Generation Computer

Systems, 28(5):755 – 768, 2012. ¡ce:title¿Special Section: Energy efficiency in large-scale

distributed systems¡/ce:title¿.

[6] A. Beloglazov, J. Abawajy, and R. Buyya. Energy-aware resource allocation heuristics for

efficient management of data centers for cloud computing. Future generation computer

systems, 28(5):755–768, 2012.

[7] A. Beloglazov and R. Buyya. Energy efficient resource management in virtualized cloud

data centers. In Proceedings of the 2010 10th IEEE/ACM International Conference on

88

Cluster, Cloud and Grid Computing, CCGRID ’10, pages 826–831, Washington, DC,

USA, 2010. IEEE Computer Society.

[8] Y. Chehadeh, A. R. Hurson, and L. L. Miller. Energy-efficient indexing on a broad-

cast channel in a mobile database access system. In Information Technology: Coding

and Computing, 2000. Proceedings. International Conference on, pages 368–374. IEEE,

2000.

[9] F. Chen, J.-G. Schneider, Y. Yang, J. Grundy, and Q. He. An energy consumption model

and analysis tool for cloud computing environments. In Proceedings of the First Interna-

tional Workshop on Green and Sustainable Software, pages 45–50. IEEE Press, 2012.

[10] D. Chiu, C. Stewart, and B. McManus. Electric grid balancing through lowcost workload

migration. SIGMETRICS Perform. Eval. Rev., 40(3):48–52, Jan. 2012.

[11] G. Clayton, K. Pike, R. Nash, D. Hutton, and C. Rogers. Improving the efficiency of

testing database functionality through statistical involvement. Trials, 16(Suppl 2):P30,

2015.

[12] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable

commutativity rule: Designing scalable software for multicore processors. ACM Trans-

actions on Computer Systems (TOCS), 32(4):10, 2015.

[13] D. Colarelli and D. Grunwald. Massive arrays of idle disks for storage archives. In

Proceedings of the 2002 ACM/IEEE conference on Supercomputing, Supercomputing ’02,

pages 1–11, Los Alamitos, CA, USA, 2002. IEEE Computer Society Press.

[14] G. Cook. How clean is your cloud? Technical report, Greenpeace International, April

2012.

[15] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat,

A. Gubarev, C. Heiser, P. Hochschild, et al. Spanner: Googles globally distributed

database. ACM Transactions on Computer Systems (TOCS), 31(3):8, 2013.

89

[16] W. Deng, F. Liu, H. Jin, C. Wu, and X. Liu. Multigreen: Cost-minimizing multi-source

datacenter power supply with online control. In Proceedings of the Fourth International

Conference on Future Energy Systems, e-Energy ’13, pages 149–160, New York, NY,

USA, 2013. ACM.

[17] T. Endo and G. Jin. Software technologies coping with memory hierarchy of gpgpu clus-

ters for stencil computations. In Cluster Computing (CLUSTER), 2014 IEEE Interna-

tional Conference on, pages 132–139. IEEE, 2014.

[18] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner. Sap hana database:

data management for modern business applications. ACM Sigmod Record, 40(4):45–51,

2012.

[19] G. Graefe. New algorithms for join and grouping operations. Computer Science-Research

and Development, 27(1):3–27, 2012.

[20] G. Graefe, H. Volos, H. Kimura, H. Kuno, J. Tucek, M. Lillibridge, and A. Veitch. In-

memory performance for big data. Proceedings of the VLDB Endowment, 8(1):37–48,

2014.

[21] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: Research

problems in data center networks. SIGCOMM Comput. Commun. Rev., 39(1):68–73, Dec.

2008.

[22] S. K. S. Gupta, A. Banerjee, Z. Abbasi, G. Varsamopoulos, M. Jonas, J. Ferguson, R. R.

Gilbert, and T. Mukherjee. Gdcsim: A simulator for green data center design and analysis.

ACM Trans. Model. Comput. Simul., 24(1):3:1–3:27, Jan. 2014.

[23] A. Hammadi and L. Mhamdi. Review: A survey on architectures and energy efficiency in

data center networks. Comput. Commun., 40:1–21, Mar. 2014.

[24] S. Harizopoulos, M. Shah, J. Meza, and P. Ranganathan. Energy efficiency: The new holy

grail of data management systems research. arXiv preprint arXiv:0909.1784, 2009.

90

[25] J. Huang, F. Zhang, X. Qin, and C. Xie. Exploiting redundancies and deferred writes to

conserve energy in erasure-coded storage clusters. Trans. Storage, 9(2):4:1–4:29, July

2013.

[26] I. E. Insights. Annual it spending by western european utilities to reach 12.7 billion by

2017, Aug 2013.

[27] P. Jones. Industry census 2012: Emerging data center mar-

kets. https://www.datacenterdynamics.com/blogs/

industry-census-2012-emerging-data-center-markets, October

2012.

[28] J. Kim, M. Ruggiero, and D. Atienza. Free cooling-aware dynamic power management

for green datacenters. In High Performance Computing and Simulation (HPCS), 2012

International Conference on, pages 140–146. IEEE, 2012.

[29] D. Kliazovich, P. Bouvry, and S. U. Khan. Greencloud: a packet-level simulator of

energy-aware cloud computing data centers. The Journal of Supercomputing, 62(3):1263–

1283, 2012.

[30] Y. Kwon, S. Lee, H. Yi, D. Kwon, S. Yang, B.-g. Chun, L. Huang, P. Maniatis, M. Naik,

and Y. Paek. Mantis: Efficient predictions of execution time, energy usage, memory usage

and network usage on smart mobile devices. Mobile Computing, IEEE Transactions on,

14(10):2059–2072, 2015.

[31] W. Lang, S. Harizopoulos, J. M. Patel, M. A. Shah, and D. Tsirogiannis. Towards energy-

efficient database cluster design. Proceedings of the VLDB Endowment, 5(11):1684–

1695, 2012.

[32] Y. Lee and A. Zomaya. Energy efficient utilization of resources in cloud computing

systems. The Journal of Supercomputing, 60(2):268–280, 2012.

[33] Y. C. Lee and A. Y. Zomaya. Energy efficient utilization of resources in cloud computing

systems. J. Supercomput., 60(2):268–280, May 2012.

91

[34] A. A. Lima, C. Furtado, P. Valduriez, and M. Mattoso. Parallel olap query processing in

database clusters with data replication. Distributed and Parallel Databases, 25(1-2):97–

123, 2009.

[35] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska. Dynamic right-sizing for power-

proportional data centers. IEEE/ACM Transactions on Networking (TON), 21(5):1378–

1391, 2013.

[36] H. Ltaief, P. Luszczek, and J. Dongarra. Profiling high performance dense linear algebra

algorithms on multicore architectures for power and energy efficiency. Computer Science-

Research and Development, 27(4):277–287, 2012.

[37] A. Manzanares, X. Qin, X. Ruan, and S. Yin. Pre-bud: Prefetching for energy-efficient

parallel i/o systems with buffer disks. ACM Transactions on Storage (TOS), 7(1):3, 2011.

[38] R. Miller. Facebook′s $1 billion data center network. http:

//www.datacenterknowledge.com/archives/2012/02/02/

facebooks-1-billion-data-center-network/, February 2012.

[39] M. P. Mills. The cloud begins with coal: Big data, big networks, big infrastructure, and

big power. http://www.tech-pundit.com/wp-content/uploads/2013/

07/Cloud_Begins_With_Coal.pdf?c761ac&c761ac, August 2013.

[40] A. K. Mishra, S. Srikantaiah, M. Kandemir, and C. R. Das. Coordinated power manage-

ment of voltage islands in cmps. SIGMETRICS Perform. Eval. Rev., 38(1):359–360, June

2010.

[41] J. A. Mullins, A. T. Cooney, B. T. Butler, G. V. Hallissey, D. A. Barrett, J. Carmody,

P. O’keeffe, P. J. Healy, L. O’mahony, P. Sheehan, et al. Data center energy manager for

monitoring power usage in a data storage environment having a power monitor and a mon-

itor module for correlating associative information associated with power consumption,

June 17 2014. US Patent 8,756,441.

92

[42] A.-C. Orgerie, M. D. d. Assuncao, and L. Lefevre. A survey on techniques for improv-

ing the energy efficiency of large-scale distributed systems. ACM Computing Surveys

(CSUR), 46(4):47, 2014.

[43] C. Patel and P. Ranganathan. Enterprise power and cooling. ASPLOS tutorial, 2006.

[44] M. Patiño-Martı́nez, R. Jiménez-Peris, B. Kemme, and G. Alonso. Scalable replication in

database clusters. In Distributed Computing, pages 315–329. Springer, 2000.

[45] E. Pinheiro and R. Bianchini. Energy conservation techniques for disk array-based

servers. In Proceedings of the 18th annual international conference on Supercomputing,

ICS ’04, pages 68–78, New York, NY, USA, 2004. ACM.

[46] M. Poess and R. O. Nambiar. Energy cost, the key challenge of today’s data centers:

a power consumption analysis of tpc-c results. Proceedings of the VLDB Endowment,

1(2):1229–1240, 2008.

[47] R. Ramakrishnan. Database management systems . pdf. 2000.

[48] S. Ren and Y. He. Coca: Online distributed resource management for cost minimization

and carbon neutrality in data centers. In Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis, SC ’13, pages 39:1–

39:12, New York, NY, USA, 2013. ACM.

[49] W. Rodiger, T. Muhlbauer, P. Unterbrunner, A. Reiser, A. Kemper, and T. Neumann.

Locality-sensitive operators for parallel main-memory database clusters. In Data Engi-

neering (ICDE), 2014 IEEE 30th International Conference on, pages 592–603. IEEE,

2014.

[50] H. Saxena and K. Salem. Edgex: Edge replication for web applications. In Cloud Com-

puting (CLOUD), 2015 IEEE 8th International Conference on, pages 1041–1044. IEEE,

2015.

[51] D. Schall and T. Härder. Towards an energy-proportional storage system using a cluster

of wimpy nodes. In BTW, pages 311–325. Citeseer, 2013.

93

[52] D. Schall and T. Härder. Approximating an energy-proportional dbms by a dynamic clus-

ter of nodes. In Database Systems for Advanced Applications, pages 297–311. Springer,

2014.

[53] M. Sharifi, H. Salimi, and M. Najafzadeh. Power-efficient distributed scheduling of virtual

machines using workload-aware consolidation techniques. J. Supercomput., 61(1):46–66,

July 2012.

[54] J. Shuja, K. Bilal, S. A. Madani, M. Othman, R. Ranjan, P. Balaji, and S. U. Khan. Survey

of techniques and architectures for designing energy-efficient data centers. IEEE Systems

Journal, 10(2):507–519, 2016.

[55] P. Thibodeau. Data centers use 2% of u.s. energy, below forecast, August 2011.

[56] W. Tian, Q. Xiong, and J. Cao. An online parallel scheduling method with application to

energy-efficiency in cloud computing. J. Supercomput., 66(3):1773–1790, Dec. 2013.

[57] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the energy efficiency of a

database server. In Proceedings of the 2010 ACM SIGMOD International Conference on

Management of data, pages 231–242. ACM, 2010.

[58] F. Urbano and H. Dettki. Storing tracking data in an advanced database platform (post-

gresql). In Spatial Database for GPS Wildlife Tracking Data, pages 9–24. Springer, 2014.

[59] S. D. Viglas. A comparative study of implementation techniques for query processing in

multicore systems. Knowledge and Data Engineering, IEEE Transactions on, 26(1):3–15,

2014.

[60] J. Whitney and J. Kennedy. Is cloud computing always greener? Technical report, Natural

Resources Defense Council, October 2012.

[61] M. G. Xavier, I. C. De Oliveira, R. D. Dos Passos, and C. A. De Rose. Towards better

manageability of database clusters on cloud computing platforms. In Proceedings of the

29th Annual ACM Symposium on Applied Computing, pages 366–367. ACM, 2014.

94

[62] Z. Xu, Y.-C. Tu, and X. Wang. Pet: reducing database energy cost via query optimization.

Proceedings of the VLDB Endowment, 5(12):1954–1957, 2012.

[63] M. Zapater, J. L. Ayala, and J. M. Moya. Leveraging heterogeneity for energy minimiza-

tion in data centers. In Proceedings of the 2012 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID ’12, pages 752–757,

Washington, DC, USA, 2012. IEEE Computer Society.

[64] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, R. Y. Wang, et al. Modeling

hard-disk power consumption. In FAST, volume 3, pages 217–230, 2003.

[65] W. Zheng, S. Tu, E. Kohler, and B. Liskov. Fast databases with fast durability and recovery

through multicore parallelism. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14), pages 465–477, 2014.

[66] Y. Zhou, S. Taneja, X. Qin, W.-S. Ku, and J. Zhang. Edom: Improving energy efficiency

of database operations on multicore servers. Future Generation Computer Systems, 2017.

[67] Z. Zong, A. Manzanares, X. Ruan, and X. Qin. Ead and pebd: two energy-aware duplica-

tion scheduling algorithms for parallel tasks on homogeneous clusters. Computers, IEEE

Transactions on, 60(3):360–374, 2011.

1

95

