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Abstract 

 
 

Categorizing all sorts of data without any label information is one of the most important 

tasks in preprocessing raw data. To achieve that, an unsupervised learning technique, called 

clustering, is utilized. Generally, data are clustered based on their similarities or dissimilarities. 

However, in this big data era, the conventional clustering algorithms turn out to execute slow or 

perform with low clustering accuracy. Presented in this work include three clustering methods to 

accelerate clustering process and improve clustering accuracy. 

 The grid-based clustering is designed to fast process large amount of data. Combining 

with density-based clustering, the clustering method based on grid and density is capable of 

categorizing data with almost linear time complexity.  

 Inspired by natural mountain ridges, clustering method by finding data mountain ridges 

analyzes data layout as different mountain ridges. Each mountain ridge stands for one cluster. 

The fuzzy assignment is adopted to calculate data density, which is the data mountain height. It 

can find out the desired clusters without giving the number of clusters. More importantly, it has 

the capability of clustering data with complex shapes and noise. 

 Partitional clustering categorizes data into many microclusters. Known these 

microclusters, merging them into large clusters can provide us high accurate clustering results. 

Clustering method by analyzing density consistency and the minimum internal and external 

distance ratio takes the challenge to develop a strategy to determine whether to merge/ 
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agglomerate microclusters or not so that clustering results with high clustering accuracy are 

obtained. 

 Besides, in the big data era, the demand for data visualization is increasing. As it is 

known that high dimensional data cannot be viewed by human beings, various dimension 

reduction approaches are explored to map/embed these data to a two-dimensional plane or three-

dimensional space so that people can visualize them. Multi-Dimensional Scaling is a set of 

methods for dimension reduction purpose. Nevertheless, it suffers from mass data overlaps and 

no revelation of data relations. In this work, visualization algorithm combining with clustering is 

presented as well. It shows larger margins between clusters and the connection relations between 

data in the resulted figures.   

 In conclusion, the accomplishments in this work are as follows: 

 (1) Clustering time performance is boosted by applying grid technique; 

 (2) It is capable of clustering data with complex shapes and noise by finding data 

mountain ridges; 

 (3) High clustering accuracy is achieved by analyzing data density and the minimum 

internal and external distance ratio; 

 (4)  A more accurate solution for MDS purpose is obtained by applying LM algorithm; 

 (5) Cluster separation regions are enlarged in the embedding results using density 

concentration;  

 (6) High dimensional data relations are revealed and illustrated in the embedding results. 

Experiments were implemented on clustering and visualizing synthetic and real-world 

datasets to verify the effectiveness of the clustering and visualization methods introduced above. 
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CHAPTER 1 INTRODUCTION 

 
 
1.1 Background 

With increasing demand for better understanding all sorts of raw data in this big data era, 

many unsupervised learning technologies are developed. Compared to supervised learning, 

where we have input data/variables and output data/variables and we use a supervised algorithm 

to learn the mapping function from the inputs to the outputs, unsupervised learning does not need 

any information about the output data/variables but still can process the input data/variables. 

Among those unsupervised learning approaches, two highlights are attracting our attention, 

which are clustering and embedding techniques.  

As we know, one critical way to understand the interested information carried in the data 

is by finding the categories, or clusters of the data. Different clustering algorithms are proposed 

based on different definitions of clusters and different implementations. There are so many 

published clustering approaches, e.g. K-means [1], Hierarchical clustering [2], EM clustering [3], 

fuzzy clustering [4] etc. Although most of the clustering methods are generated years ago, 

clustering becomes even more powerful with the emergence of deep learning techniques. For 

example, in [5], authors utilize K-means clustering [1] as filters in convolutional neural networks 

(CNN) [6]. In [7,8], the proposed deep unsupervised clustering methods have achieved the state-

of-the-art clustering performance. All those facts reach the conclusion that clustering is never too 

outdated to be used. In contrast, it is critical to handle clustering in big data era. Particularly, the 

demand for clustering algorithms with requirements of less computation time and ability to 

classify arbitrary-shape clusters rises.  
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Another important unsupervised learning technique is data embedding, specifically, 

multidimensional scaling/embedding. Multidimensional Scaling (MDS) [9] is one of the methods 

to reduce data dimensionality from high-dimensional space to low-dimensional space. MDS tries 

to map original high-dimensional data to low-dimensional projections with the expectation that 

data mutual distances are unchanged before and after mapping. After the concept of MDS was 

published, many MDS approaches are developed, e.g. Sammon mapping [10], Isomap [11], 

Local Linear Embedding [12] etc. One advantage of MDS methods is that the fundamental 

principle of MDS is simple so that we may come up with various solutions to it, which makes it 

as one of the main dimension reduction and visualization approaches. 

1.2 Clustering Methods 

Many clustering methods have been investigated in the literature for data preprocessing 

on grouping and categorizing. A brief description of conventional clustering methods is given 

below. 

1.2.1 K-means Clustering 

There are many clustering algorithms, but K-means clustering algorithm is the simplest 

and highly used one. In K-means clustering, cluster centers are the average locations of each 

category. So the basic idea of K-means clustering is keeping grouping data and updating the 

cluster centers until they never change. It is one of iterative clustering algorithms.  

Suppose the data {𝑥!, 𝑥!,… , 𝑥!|𝑥! ∈ 𝑅!, 𝑖 ∈ [1,𝑛]}, which have n data points and m 

dimension for each data point. Its desired cluster number is K, which means each data point i 

will be assigned to a cluster center 𝑐! and 𝑐! is one of those K centers. Now, the goal is to 

partition the data into K disjoint groups. The detailed K-means clustering algorithm is as follows. 
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Step 1: Place K center points {𝑢!,𝑢!,… ,𝑢!} randomly among the data. These serve as 

initial cluster center points or centroids of the K clusters. 

Step 2: Assign each data point to one of these K clusters based on its closeness (shortest 

distance from centroid) to the centroids of clusters. The distance used is usually Euclidean 

distance. 

Step 3: When all data are assigned with a cluster, update the centroids of the clusters 

using equation (1). 

𝑢! =
! !!!! ∗!!!

!!!
!{!!!!}!

!!!
       (1) 

Step 4: Repeat Step 2 and 3 until these K cluster centroids stop changing.  

 Because of its simplicity, K-means clustering is easily implemented. However, it suffers 

several drawbacks as follows. 

A. It is hard to quantify the number of cluster centroids K; 

B. Given the number of K, different initialization on these K centroids leads to different 

running time performance; 

C. Although it is easy to understand, its time complexity is not linear but 𝑂(𝑡𝐾𝑛𝑚) , 

where t is the iteration number and n is the number of data points. How to deal with the situation 

when the dimensionality of data m is very large? 

1.2.2 Hierarchical Clustering 

In normal cases, the hierarchical clustering algorithm [2] we used is bottom-up algorithm. 

It treats each data point as a single cluster at the outset and then successively merges pairs of 

clusters until all clusters have been merged into a single cluster that contains all data points. This 

hierarchy of clusters is represented as a tree/dendrogram. The root of the tree is the unique 
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cluster that gathers all the samples, the leaves being the clusters with only one sample. There are 

three steps in hierarchical clustering algorithm. 

Step 1. We begin by treating each data point as a single cluster. We then select a distance 

metric (e.g. Euclidean distance) that measures the distance between two clusters. As an example, 

we will use average linkage, which defines the distance between two clusters to be the average 

distance between data points in the first cluster and data points in the second cluster. 

Step 2. On each iteration, we agglomerate two clusters into one. The two clusters to be 

agglomerated are selected as those with the smallest average linkage. These two clusters have the 

smallest distance between each other and therefore are the most similar and should be 

agglomerated. 

Step 3. Step 2 is repeated until we reach the root of the tree where we only have one 

cluster that contains all data points. In this way we can select how many clusters we want in the 

end, simply by choosing when to stop agglomerating the clusters. 

Hierarchical clustering algorithm does not require specifying the cluster number and we 

can even select which number of clusters looks best since we are building a tree. Additionally, 

the algorithm is not sensitive to the choice of distance metric. A particularly good use of 

hierarchical clustering methods is when the underlying data has a hierarchical structure and you 

want to recover the hierarchy. These advantages of hierarchical clustering come at the cost of 

lower efficiency, as it has a time complexity of 𝑂(𝑛!). 

1.2.3 DBSCAN Clustering 

As recognized as a very high-quality density-based clustering method, DBSCAN [13] is 

capable of determining clusters with arbitrary shapes and noise in data. With the idea that for 
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each point of a cluster the neighborhood of a given radius has to contain at least a minimum 

number of data points, DBSCAN method makes several definitions before further processing. 

1). 𝐸𝑝𝑠-neighborhood of a pattern: For a data point 𝑝, its 𝐸𝑝𝑠-neighborhood is: 

𝑁!"# 𝑝 = {𝑞 ∈ 𝐷|𝐸𝑢𝑐_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝, 𝑞) ≤ 𝐸𝑝𝑠}    (2) 

where D is the whole dataset. There should be at least a minimum number (𝑀𝑖𝑛𝑃𝑡𝑠) of data 

points in an 𝐸𝑝𝑠-region of a given pattern in a cluster. 

2). Directly density-reachable: data point 𝑝 is directly density-reachable from point 𝑞 if 

𝑝 ∈ 𝑁!"#(𝑞)
𝑁!"# 𝑞 ≥ 𝑀𝑖𝑛𝑃𝑡𝑠(𝑐𝑜𝑟𝑒 𝑝𝑎𝑡𝑡𝑒𝑟𝑛 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛)

    (3) 

Notice that directly density-reachable is not symmetric when cluster’s core points and 

cluster’s border points are involved. 

3). Density-reachable: Data point 𝑝 is density-reachable from point 𝑞 if there is a chain of 

points 𝑝!,… ,𝑝!,𝑝! = 𝑞,𝑝! = 𝑝 such that 𝑝!!! is directly density-reachable from 𝑝!. 

4). Density-connected: Point 𝑝 is density-connected to point 𝑞 if there is a data point 𝑜 

such that both 𝑝 and 𝑞 are density-reachable from 𝑜. 

5). Cluster: A cluster C is a non-empty subset of the whole dataset satisfying the 

following two conditions: 

∀𝑝, 𝑞: 𝑖𝑓 𝑝 ∈ 𝐶 𝑎𝑛𝑑 𝑞 𝑖𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒 
𝑓𝑟𝑜𝑚 𝑝, 𝑡ℎ𝑒𝑛 𝑞 ∈ 𝐶.

∀𝑝, 𝑞 ∈ 𝐶:𝑝 𝑖𝑠 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑 𝑡𝑜 𝑞.
    (4) 

6). Noise: For those data points that don’t belong to any cluster, they will be regarded as 

noise. 
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To find a cluster, DBSCAN starts with an arbitrary data point 𝑝 and retrieves all data 

points density-reachable from 𝑝. The two thresholds: 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠 are set as global constants 

before processing. If 𝑝 is a core data point, it yields a cluster. If 𝑝 is a border pattern, then no 

data points are density-reachable from 𝑝 and the next point will be processed. The overall 

average runtime complexity of DBSCAN is 𝑂(𝑛 ∗ log 𝑛 ), with the worst case of 𝑂(𝑛!). 

1.2.4 FSFDP Clustering 

In FSFDP clustering method [14], it assumes that cluster centers are surrounded by 

neighbors with lower local densities and that they are at a relatively large distance from any data 

points with a higher local density. Based on that, there are four steps according to FSFDP 

clustering method. 

Step 1: Calculate the pattern’s local density 𝜌! . The local density 𝜌!  of pattern 𝑖  is 

calculated as 

𝜌! = 𝜒(𝑑!" − 𝑑!)
!"
!!!       (5) 

where 

𝜒 𝑥 = 1, 𝑥 < 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      (6) 

𝑛𝑝 is the total number of patterns in the dataset and 𝑑!  is a cutoff distance. Equation (5) will 

return the number of patterns with distances smaller than 𝑑! to pattern 𝑖. The cutoff distance 𝑑! 

is manually set at the beginning. 

Step 2: Calculate the minimum distance 𝛿! between pattern 𝑖 and any other pattern with a 

higher local density. The calculation of 𝛿! is: 

𝛿! =
min(𝑑!"), 𝜌! > 𝜌!
max(𝑑!"), 𝜌! < 𝜌!  

      (7) 
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where 𝑗 = 1,2,… ,𝑛𝑝 𝑎𝑛𝑑 𝑗 ≠ 𝑖. For the patterns that are local or global maxima in the density 

field, 𝛿! will be much larger than the typical neighbor distances. Thus, cluster center is classified 

as the pattern for which the value of 𝛿! is large. 

Step 3: Generate the decision graph. 

Aiming to choose the patterns with large local density 𝜌! and large minimum distance 𝛿! 

as the cluster centers, the decision graph is generated with x-coordinate 𝜌! and y-coordinate 𝛿!. 

Step 4: Select the cluster centers. 

It becomes visible to select the data with large local density 𝜌! and large minimum 

distance 𝛿! as the cluster centers. After the selection of cluster centers in the decision graph, data 

points will be assigned into different clusters based on the minimum distances 𝛿s.  

FSFDP is capable of clustering datasets with various shapes, e.g. spiral datasets. 

However, it’s proven not feasible to classify datasets with more complicated shapes, e.g. 

chameleon datasets, in [15]. Besides, FSFDP requires the calculation of data mutual distances. 

The computational time complexity of FSFDP will be 𝑂(𝑛!). 

1.2.5 GMM-EM Clustering 

Gaussian Mixture Model (GMM) [16] clustering algorithm is a model-based clustering 

approach, which assumes that the data points are generated from a mixture of Gaussians. For K-

means clustering, it’s not a model-based clustering but partitioning approach. But both of them 

can be solved using Expectation Maximization (EM) [17] technique.  

• EM 

EM is thought as a standard approach to find the maximum likelihood estimation. 

Maximum likelihood estimation [18] is to determine values for the parameters of a model. The 

parameter values are found such that they maximize the likelihood that the process described by 
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the model produced the data that were actually observed. EM is an iterative approach with two 

alternating steps: E step and M step, and eventually find the best parameter values. Suppose there 

is a dataset {𝑥 ! |𝑥 ! 𝜖𝑅!, 𝑖 = 𝑛} with n data points. Different from K-means clustering, we 

assume that their unknown/hidden labeling information 𝑧(!)  of this dataset satisfies certain 

possibility distributions, and 𝑧(!) has K options. And, 

𝑝 𝑧 ! = 𝑗 = ∅! > 0, ∅!!
!!! = 1     (8) 

When 𝑧(!)  is given as known, 𝑥(!)  meets multivariable Gaussian distribution, which is 

𝑥 ! 𝑧 ! = 𝑗 ~𝑁(𝜇! , 𝛿!) . The unknown parameter is 𝜃 = [𝜇, 𝛿]! . Their joint probability 

distribution will be 

𝑝 𝑥 ! , 𝑧 ! = 𝑝(𝑥 ! |𝑧 ! )𝑝(𝑧 ! )     (9) 

Now, the likelihood function will be  

𝐿 𝜃 = 𝐿 𝑥 ! , 𝑥 ! ,… , 𝑥 ! ;𝜃 = 𝑝 𝑥 ! ;𝜃!
!!! ,𝜃 ∈ Θ    (10) 

It means that when the parameter set is equal to 𝜃, the possibility of getting the data sample set 

of {𝑥 ! } is equation (10). When 𝜃 varies, 𝐿 𝜃  varies and our goal is to maximize 𝐿 𝜃  as much 

as possible with respect to 𝜃, which is our desired parameter estimation. 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥 𝐿(𝜃)      (11) 

As we can see, 𝐿(𝜃) is a combination of multiplications. So in order to make it easier to process, 

we can simply take 𝑙𝑜𝑔 operation on 𝐿(𝜃) to turn it into the forms of additions, which is shown 

below. 

log 𝐿 𝜃 = 𝑙𝑜𝑔 𝑝 𝑥 ! ;𝜃!
!!! = 𝑙𝑜𝑔!

! 𝑝 𝑥 ! ;𝜃     (12) 
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For EM algorithm, this parameter 𝜃 contains another unknown variable 𝑧. Our object 

becomes to find the proper 𝜃 and 𝑧 so that 𝐿(𝜃) is the maximal.  

𝐿 𝜃 = 𝑙𝑜𝑔! 𝑝 𝑥 ! ;𝜃 = 𝑙𝑜𝑔! 𝑝 𝑥 ! , 𝑧 ! ;𝜃! !           (13) 

= 𝑙𝑜𝑔! 𝑄! 𝑧 ! ! ! ! ,! ! ;!
!! ! !! !               (14) 

≥ 𝑄! 𝑧 ! ! ! ! ,! ! ;!
!! ! !! !!    (15) 

As we known that its second derivative is negative, equation (14) turns to be a concave function 

[19]. In equation (14), 𝑄! 𝑧 ! ! ! ! ,! ! ;!
!! ! !! !  is the expectation of ! ! ! ,! ! ;!

!! ! ! . According to 

Jensen's inequality [20], we can deduce equation (15). Now, in order to maximize 𝐿 𝜃 , we will 

maximize its low bound of equation (15) and 𝐿 𝜃  will become larger accordingly. When its low 

bound reaches its maximal, and let 𝐿 𝜃  equals to the low bound, then we can have the solutions 

with respect to 𝜃. According to Jensen's inequality, if ! ! ! ,! ! ;!
!! ! !  is a constant variable (e.g. 𝑐), 

then 𝐿 𝜃  will equal to equation (15). For random variable z, its probability density function Q 

meets: 𝑄! 𝑧 !
! = 1. So the sum of 𝑝 𝑥 ! , 𝑧 ! ;𝜃  is equal to the constant, 𝑐. Now, 

𝑄! 𝑧 ! = ! ! ! ,! ! ;!
! ! ! ,! ! ;!!

        

  = ! ! ! ,! ! ;!
! ! ! ;!

          

 = 𝑝 𝑧 ! |𝑥 ! ;𝜃             (16) 

Overall, EM algorithm has the procedure of: 

Step-E: Use the posteriori probability from the initial or last iteration as the parameter 

estimation of hidden variable. 
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𝑄! 𝑧 ! = 𝑝 𝑧 ! |𝑥 ! ;𝜃  

Step-M: Maximize likelihood function 𝐿 𝜃  to gain an updated parameter: 

𝜃 = argmax! 𝑄! 𝑧 ! ! ! ! ,! ! ;!
!! ! !! !!     (17) 

Keep alternating computation between Step-E and Step-M, then we will get the 

parameter 𝜃, which maximizes the likelihood function. 

• GMM 

Each GMM is consist of K Gaussian distributions and each Gaussian is call one 

component. For one component, it has an “ellipse” shape on 2D plane and its probability density 

function is 

𝑁 𝑥, 𝜇, Σ = !
!!|!|

exp [− !
!
𝑥 − 𝜇 !(𝑥 − 𝜇)Σ!!]    (18) 

where 𝜇 is data expectation and Σ is the variance. But in many cases, data normally don’t 

satisfy single Gaussian distribution and they have complex shapes. Then, there comes GMM 

clustering method. GMM is the linear combination of K components, where K is the number of 

clusters. The probability density function of GMM is 

𝑝 𝑥 = 𝑝 𝑘 𝑝(𝑥|𝑘)
!

!!!

 

= 𝜋!N(x|𝜇! , Σ!)!
!!!               (19) 

The log likelihood function of GMM will be as follows. 
 

log 𝐿 = 𝑙𝑜𝑔!
! 𝜋!N(x|𝜇! , Σ!)!

!!!     (20) 
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In order to maximize the probability density function of GMM, we just need to maximize its 

likelihood function. Now, the problem becomes to be exactly maximum likelihood estimation, 

which can be solved using EM method. The procedure of GMM algorithm is shown below. 

 Step-E: Estimate the probability that data i belongs to the k-th component. 

𝛾 𝑖, 𝑘 = !!!(!!|!!,!!)
!!!(!!|!!,!!)!

!!!
     (21) 

where N(𝑥!|𝜇! , Σ!) is the posterior probability: 

N 𝑥! 𝜇! , Σ! = !
(!!)!/!

!
|!|!/!

exp {− !
!
𝑥 − 𝜇 !(𝑥 − 𝜇)Σ!!}   (22) 

 Step-M: Update parameters. 

𝜇! =
!
!!

𝛾 𝑖, 𝑘 𝑥!!
!!!     (23) 

Σ! =
!
!!

𝛾 𝑖, 𝑘 (𝑥! − 𝜇!) 𝑥! − 𝜇! !!
!!!    (24) 

𝜋! =
!!
!

     (25) 

where 

𝑁! = 𝛾 𝑖, 𝑘!
!!!        (26) 

Keep iteratively computing between Step-E and Step-M until likelihood function 

converges and these components are the K cluster centers accordingly. For each iteration, Step-E 

has the time complexity of 𝑂(𝑛𝑚𝐾), where 𝑚  is the dimensionality of data x. The time 

complexity of Step-M is 𝑂(𝑛𝑚). 

1.2.6 Spectral Clustering 

Spectral clustering method [21] utilizes graph connection to separate/cut different clusters. 

The connections between data points are weighted based on their similarities and the goal is to 
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minimize the connection weights between clusters. In spectral clustering, similarity/weights 

matrix is decomposed to perform dimensionality reduction before clustering. Specifically, it 

takes use of spectrum/eigenvalues of the similarity/weights matrix to reduce dimension to fewer 

dimensions. This symmetric similarity matrix E can be derived to Laplacian matrix L and it’s 

encouraged to adopt Laplacian transformations. The element 𝑒!" in similarity matrix E denotes 

the weight between graph point i and j. For the diagonal, it’s all zeros in E. Then Laplacian 

matrix L will be  

𝐿 = 𝐷 − 𝐸      (27) 

where D is the diagonal matrix and 𝐷!! = 𝐸!"! . 

 Another commonly applied strategy to calculate Laplacian matrix is using normalization 

[21], which  

𝐿!"#$ = 𝐼 − 𝐷!!/!𝐸𝐷!/!      (28) 

where matrix I is the identity matrix with ones on the main diagonal and zeros elsewhere. The 

procedure of spectral clustering algorithm is: 

Step 1：use the data to generate the similarity matrix based on graph analysis; 

Step 2：get the normalized Laplacian matrix; 

Step 3：generate K smallest eigenvalues and the corresponding eigenvectors, where K is 

the desired cluster number; 

Step 4：apply K-means clustering to cluster these K eigenvectors (smaller dimensions) 

and return the final clustering results.  



 13 

Basically, spectral clustering uses matrix operation to reduce dimensionality nonlinearly 

and the adopt K-means clustering approach. In Step 1, the time complexity will be 𝑂(𝑛!) and we 

have to store the matrix as well.  

1.2.7 Fuzzy Clustering 

Fuzzy clustering, or soft clustering, is a form of clustering in which each data point 

belongs to more than one cluster. As comparison, in non-fuzzy clustering methods, each data 

point can only belong to exactly one cluster. In fuzzy clustering methods, we need to define the 

membership function, which is used to assign grades to each data point. These membership 

grades indicate the degree to which data points belong to each cluster. Many clustering methods 

use fuzzy clustering as part of their algorithms, for example fuzzy c-means clustering method 

[22], GMM clustering method etc. 

1.2.8 Clique Clustering 

The algorithm of Clustering In QUEst [23] is developed to solve high-dimensional data 

clustering problems. It is a grid-based clustering method, utilizing the property of dense grid 

units connection in data subspace. It discretizes the data space through a grid and estimates the 

density of grid units by counting the number of data points in a grid cell. A grid unit is dense if 

the fraction of total data points contained in the grid unit exceeds the threshold. A cluster in 

Clique is defined as a maximum set of connected dense grid units. Two input parameters of 

Clique clustering are the size of grid and a global density threshold for clusters. The major 

difference between this algorithm and other density-based and/or grid-based clustering 

approaches is that this method also detects subspaces of the highest dimensionality as high-

density clusters exist in those subspaces. The major steps of Clique clustering are shown as 

follows. 
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Step 1: Partition each subspace that has dimension 1 into the same number of equal 

length intervals. 

Step 2: Find dense regions (clusters) in each subspace and generate their minimal 

descriptions. 

Step 3: Use dense regions to find the promising candidates on 2D plane based on the 

Apriori principle [24]. 

Step 4: Repeat Step 1-3 in level-wise manner in higher dimensional subspaces. 

In Clique clustering algorithm, subspaces and clusters in the subspaces can be identified. 

It runs fast with linear scaling to the size of data. The clustering quality of Clique depends on the 

choice of grid size. Let 𝑘 be the highest dimensionality of any dense unit, then its running time is 

𝑂(𝑐! + 𝑛 ∗ 𝑘) with a constant 𝑐. 

1.3 Data Visualization Methods 

For real life data, they are usually of many attributes, much more than three. As human 

beings, we can not see the data by our eyes in the space over three. So it is necessary to develop 

an algorithm to map high-dimensional data into a 2D/3D space so that we can visualize them and 

get a better understanding of them. Especially in this big data era, it’s critical to build fast and 

efficient models to visualize big data. 

For this task of visualizing high-dimensional data in low-dimensional space, it demands 

to reduce dimensionality. A fast solution to dimensionality reduction is by matrix operations, for 

example, Principle Component Analysis (PCA) [25], Non-negative Matrix Factorization (NMF) 

[26], Linear Discriminant Analysis (LDA) [27] etc. They take use of all kinds of matrix 

operations and find the most important or related several elements in the analyzed matrix so that 

reduce the number of needed elements. However, simply by finding the most important 
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dimensions/attributes of data and neglecting rest dimensions/attributes will definitely lose certain 

information. Nowadays, more and more publications show the efficiency to use optimization 

methods to accomplish this task. For example, Stochastic Neighbor Embedding (SNE) [28] and 

its improved extension t-distribution SNE (t-SNE) [29] present a solution for data visualization 

by preserving the probability distributions of high-dimensional and low-dimensional data.   

Another optimization based visualization technique is Multi-Dimensional Scaling (MDS) 

[9,30]. MDS is a family of different methods in order to visualize high-dimensional data in a 

low-dimensional space, e.g. 2D plane etc. An MDS algorithm aims to place each object in high-

dimensional space such that the between-object distances are preserved as well as possible. 

1.3.1 MDS 

MDS arranges the low-dimensional data points so as to minimize the discrepancy 

between the pairwise distances in the original high-dimensional (HD) space and the pairwise 

distances in the low-dimensional space, e.g. 2D.  The general form of cost function of MDS 

algorithms is show as follows, which is solved using optimization method. 

𝐶𝑜𝑠𝑡 =  (𝑑!" − 𝐷!")!!!!      (29) 

where 𝑑!", 𝐷!" are the pairwise distance between data point i and j in 2D space and HD space, 

respectively. In general, Euclidean distance is used to measure the dissimilarity/distance between 

data. The Euclidean distance between data 𝑥! and 𝑥! is: 

𝑑!" = (𝑥!
(!) − 𝑥!

(!))!!
!!!      (30) 

where m is the number of data dimensions/attributes.  

• Metric MDS  
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 Metric MDS is a superset of MDS that generalizes the optimization procedure to a 

variety of loss functions and distances with weights and so on. Metric MDS minimizes the cost 

function called “Stress” which is a residual sum of squares: 

𝑆𝑡𝑟𝑒𝑠𝑠 = (𝑑!" − 𝐷!")!!!!      (31) 

It is basically the same as equation (29). 

• Non-metric MDS  

In contrast to metric MDS, non-metric MDS finds both a non-parametric monotonic 

relationship between the dissimilarities/distances and the Euclidean distances. The key factor that 

non-metric MDS is different from metric MDS is the preservation of distance relationships. 

Typically, the relationship can be found using isotonic regression: let x denote the vector of 

proximities, f(x) a monotonic transformation of x, which also contains the relationship of 

distances D; then coordinates have to be found, that minimize the so-called stress, 

𝑆𝑡𝑟𝑒𝑠𝑠 = (! ! !!)!

!!
     (32) 

A few variants of this cost function exist. MDS algorithms automatically minimize stress in 

order to obtain the MDS solution. 

 In the following, several commonly used MDS techniques are described. 

1.3.2 Sammon Mapping 

Sammon mapping [10] is MDS approach expecting to maintain all the distances from one 

data point to the others, which turns to be a global optimization problem. Sammon mapping is a 

generalization of the usual metric MDS. Its stress function, which is to be minimized, is shown 

as follows. 
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𝑆𝑡𝑟𝑒𝑠𝑠 =  !
!!"!!!

(!!"!!!")!

!!"!!!      (33) 

In the stress function, it normalizes the squared-errors in pairwise distances by using the 

distance in the high-dimensional space. As a result, Sammon mapping preserves the small 𝐷!", 

giving them a greater degree of importance in the fitting procedure than for larger values of 𝐷!". 

In other words, it puts too much emphasis on getting very small distances exactly right. As a 

consequence, it’s slow to optimize and also gets stuck in different local optima each time. 

1.3.3 Isomap 

Isomap [11] is also a global MDS and metric MDS technique, desiring to keep every 

single data-wise distance the same as in the high-dimensional space and low-dimensional space. 

The difference between other MDS and Isomap is that common MDS performs low-dimensional 

embedding based on the pairwise distance between data points, which is generally measured 

using straight-line Euclidean distance. Isomap is distinguished by its use of the geodesic distance 

induced by a neighborhood graph embedded in the traditional MDS. The geodesic distance 

between two data points is computed as the sum of small neighbor-point distances along the 

shortest path between these two data points. Technically, geodesic distances can be calculated 

using Dijkstra's algorithm [31] or Floyd-Warshall algorithm [32]. Once the geodesic distances 

are obtained, Isomap proceeds embedding using simple matrix operations or traditional MDS 

scheme. Isomap incorporates manifold structure in the resulting embedding. 

1.3.4 Local Linear Embedding 

Different from Sammom mapping and Isomap, Local Linear Embedding (LLE) [12] is a 

neighborhood based MDS approach, which emphasizes to preserve data neighbor/local 

information. 
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In LLE, the idea is to make the local configurations of data points in the low-dimensional 

space resemble the local configurations in the high-dimensional space. In the first, data point i’s 

near neighbor points are found, which is denoted as 𝑁(𝑖). Next, the reconstruction weights 𝑤 are 

calculated by minimizing the stress function in equation (34), in which 𝑥 denotes the data point 

in the high-dimensional space. Note that the sum of 𝑤!" is limited to 1. If data point j is not a 

neighbor of data point i, 𝑤!" is set to be 0. 

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑥! − 𝑤!"𝑥!!"#(!)
!

! ,   𝑤!"!"#(!) = 1   (34) 

In the last step, the same weights 𝑤!" that reconstructs the i-th data point in the high 

dimensional space will be used to reconstruct the same point in the low dimensional space. A 

neighborhood preserving map is created based on this idea. Each data point 𝑥! in the high 

dimensional space is mapped onto a data point 𝑦! in the low dimensional space by minimizing 

the cost function of (35). 

𝑆𝑡𝑟𝑒𝑠𝑠 = 𝑦! − 𝑤!"𝑦!!"#(!)
!

!    (35) 

where 𝑁(𝑖) is the set of data point i’s neighbors. 

1.3.5 LAMP 

In contrast to other MDS, LAMP [33] is one of the MDS techniques based on landmarks. 

It has two main procedures as follows. 

Step 1 - Control data points mapping or landmark data points mapping. 

Step 2 - Affine mapping. 

In the first step of LAMP, certain number of control points are selected. Based on these landmark 

points, the rest data points will be projected to the low-dimensional space. Given data point 𝑥, 
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𝑥 ∈ ℝ! , LAMP method maps 𝑥  to the low-dimensional space by finding the best affine 

transformation 𝑓! 𝑝 = 𝑝𝑀 + 𝑡 that minimizes 

𝛼! 𝑓! 𝑥! − 𝑦! !, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑀!𝑀 = 𝐼!     (36) 

where matrix M and vector t are the unknowns,  𝑥! is the i-th element of the subset of control 

points, I is the identity matrix and 𝛼! are scalar weights defined as: 

𝛼! =
!

!!!! !      (37) 

The minimization problem (36) is a typical example of the Orthogonal Procrustes Problem [34], 

whose solution can be obtained using matrix singular value decomposition (SVD) [35]. 

LAMP can fast map high-dimensional data. However, different landmarks give 

significantly different MDS results. 

1.4 Research Objectives 

The objectives for developing clustering methods are as follows:   

• Guarantee the speed of fast processing data. 

• Ensure the efficiency of dealing with data that have complex shapes.   

• The ability to detect and remove noise from data.  

• Improve clustering accuracy. 

And, the objectives for visualization algorithm design are as follows:   

• Find the solution for MDS problem more accurately than common local solutions. 

• Make the cluster separation regions more clearly. 

• Reveal the data relations in the embedding results. 
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1.5 Organization of the Dissertation 

The focus of this dissertation is the development of an advanced fast clustering approach 

and a novel MDS technique for data and relation visualization based on advanced clustering 

method. Each chapter in this dissertation is organized as below. 

Chapter 1 introduces the background of this research and presents the research objectives 

in this work. It also provides the clustering methods and MDS techniques used for references. 

Chapter 2 describes the clustering algorithm based on grid and density peaks. By 

introducing grid approach and fuzzy/soft cluster assignment, the data densities are well presented 

using the described clustering algorithm. Users can interactive with this clustering algorithm by 

manually choosing the cluster centers in the decision graph so that the clustering results can be 

obtained with the selected data points as the desired cluster centers.   

Chapter 3 explores a fast density and grid based clustering method for data that has 

complex shapes and noise. By following the directions of data density ridges, the main body of 

different clusters can be found automatically and efficiently. Cluster border points and noise are 

explicitly explained and treated accordingly so that no data points are left un-clustered and no 

noise are clustered. Experimental results show that by applying this clustering strategy, it is 

possible to cluster data with arbitrary shapes and noise. 

Chapter 4 presents a clustering method by analyzing density consistency and minimum 

internal and external distance ratio. The new definition of cluster internal and external distance 

ratio is proposed. Partitioned clusters are generated by applying density-based clustering 

approach. Besides, density consistency between partitioned clusters is analyzed. Accuracy of 

clustering data with complex shape can be improved by adopting our method. 
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Chapter 5 investigates data visualization technique with second-order optimization. 

Second-order optimization method is capable of offering better convergence results compared 

with first-order approaches. The multi-dimensional scaling (MDS) results are augmented with 

the second-order optimization trying to reduce the distance errors in MDS. By involving density 

based clustering concept, data moves towards the supposed inner-cluster data and, therefore, 

better separations between clusters are formed, which indicates a better performance of the 

proposed method over other MDS approaches. 

Chapter 6 introduces how to apply data visualization method to reveal data relations. 

According to density based clustering approaches, data are related to each other based on their 

densities and distances. It turns out that by adding this kind of relations to the visualization 

results, users can receive even more useful information/knowledge from the embedded outcomes.  

Chapter 7 presents conclusions and suggestions for future work. 

  



 22 

CHAPTER 2 CLUSTERING ALGORITHM BASED ON GRID AND FINDING 

DENSITY PEAKS 

 
 

Clustering or categorizing an unprocessed data set is essential and critical in many areas. 

Much success has been published, which first needs to calculate the mutual distances between 

data points. It suffers from considerable computational costs, preventing the state-of-the-art 

methods such as the clustering method by fast search and find of density peaks [14] from 

applying into real life (e.g., with thousands of data points). In this chapter, an efficient grid-based 

clustering (GBC) method by finding density peaks is described. It keeps the advantage of the 

friendly interactive interface in the FSFDP, at the meantime, decreases enormously the 

computation complexity. The time complexity of the FSFDP is 𝑂(𝑛(𝑛 − 1)/2)  while our 

method decreases it to 𝑂(𝑛 ∗ 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒), where np is the number of data points and the size of 

grid is always much smaller than 𝑛 so that the time complexity of our approach is almost linearly 

proportional to 𝑛. The presented GBC method by finding density peaks was able to calculate the 

densities and categorize datasets within much less time, which makes the density-peak-based 

algorithm practical. By using the presented algorithm, it was possible to cluster high-dimensional 

data sets as well. The GBC method by finding density peaks was successfully verified in 

clustering several datasets, which are commonly used to test clustering algorithms in published 

articles. It turned out that the presented method is much faster and efficient in clustering datasets 

into different categories than the conventional density-based ones, which makes the proposed 

method more preferable. 
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2.1 Grid Based Clustering  

Although the idea of grid-based clustering was proposed almost twenty years ago as 

described tens years ago, for example, BANG-clustering method [23, 36], etc., it is even more 

useful and powerful today. That’s because the grid was used either to pre-process the patterns in 

the first stage or simply to represent some time-costly approaches, i.e. K-means [1], hierarchical 

clustering [2], etc., in the past. In the traditional approaches, the grid is divided into rectangular 

but not limited to rectangular segments with different sizes, which conceals the overwhelming 

capability of the universal grid with universal size.  

Here, we define the term of the standard grid as the grid with segments in it with the 

length of 1. The standard grid in a two-dimensional (2D) space is the grid with squares of length 

1 in it. The standard grid in a three-dimensional space is the grid with the cube of length 1 in it. 

The segments and intersection points in the standard grid are called cells and nodes, respectively. 

The number of cells in one dimension is called the size of the grid in that dimension. In this 

chapter, the standard grid with different sizes will be tested. 

2.2 Density Peaks Based Clustering 

This chapter presents another attempt to cluster patterns with the basic idea of density 

peaks in FSFDP [14]. It is much faster to categorize patterns even with nonspherical shapes than 

FSFDP without losing the ability to cluster high-dimensional patterns, which makes it practical 

and efficient to be used in real life. 

2.2.1 Fuzzy Clustering 

In all sorts of fuzzy clustering methods (e.g. [4, 22]), each data can belong to more than 

one category. Based on predefined fuzzy functions, each data will have different possibilities to 
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be treated as different clusters at the same time. In most cases, different definitions of fuzzy 

functions generate different fuzzy clustering results. 

2.2.2 Density Based Clustering 

The density based clustering approach that is discussed in this part is originally from 

FSFDP [14]. Compared to other density based clustering methods, e.g. [13], FSFDP method 

needs much less parameter settings and, at the same, provides users an interactive graph that 

enables users to select cluster centers from it. The detailed algorithm procedure is well described 

in Section 1.2.4.  

2.3 Clustering Algorithm Based on Grid and Density Peaks 

A grid-based clustering method by finding the density peaks will be discussed in this part. 

It is efficient and much faster as the FSFDP is concerned. The FSFDP can not be applied to the 

presented method directly, but it can be extended to it. There are three steps to conduct the 

presented algorithm: (I) normalizing and expanding the original data set into the grid; (II) 

computing the node’s local density; (III) generating the decision graph. 

2.3.1 Normalization and Expansion 

At first, original data set is normalized in each dimension and then scaled into 

[1,𝑁_𝑔𝑟𝑖𝑑] range grid, where 𝑁_𝑔𝑟𝑖𝑑 is the size of grid in each dimension. This simplifies the 

calculations of nodes local densities. 

2.3.2 Calculation of Node’s Local Density 

Instead of computing pattern’s local density, the node’s local density will be used. In this 

proposed method, nodes are only located in the grid with integer coordinates. Two options can 

be adopted to determine the node’s local density: 1) the hard decision using round approximation 
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and 2) the soft decision using fuzzy type approximation. For a better view of the node’s local 

density, spline technique [37] will be applied between nodes. 

A. Hard Decision using Round Approximation 

The round function is: 

𝑟𝑜𝑢𝑛𝑑 𝑥 =
𝑓𝑙𝑜𝑜𝑟(𝑥), 𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥) < 0.5

𝑓𝑙𝑜𝑜𝑟 𝑥 + 1, 𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥) ≥ 0.5    (38) 

where 𝑓𝑙𝑜𝑜𝑟 𝑥 = max 𝑚 ,𝑚 ∈ ℤ 𝑎𝑛𝑑 𝑚 ≤ 𝑥, and ℤ is the set of integers (negative, positive 

and zero). If the fractional portion (𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥)) of 𝑥 is 0.5 or greater, the argument is rounded 

to the next higher integer. If the fractional portion (𝑥 − 𝑓𝑙𝑜𝑜𝑟(𝑥)) of 𝑥 is less than 0.5, the 

argument is rounded to the next lower integer. When using round approximation to compute the 

node’s local density, each individual pattern contributes only to its nearest node’s density by 1. 

The nearest node of one individual pattern is found by applying round function in each 

dimension. After conducting round approximation into all patterns, the local densities for all 

nodes are available.  

 

Figure 2.1 An example of node’s local density calculation on a 2D plane. 

P(2.6,2.8)

A(2,2) B(3,2)

C(3,3)D(2,3)

x
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For example, in Figure 2.1, when the round approximation is applied to calculate node’s 

local density, only the density of node C will increase by one because the pattern P is nearest to 

node C other than node A, B and D. So the local density of A, B, C and D will increase by 

∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 0 , ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 0 , ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1  and ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 0 , respectively. Notice 

∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1. 

B. Soft Decision using Fuzzy Type Approximation 

Suppose each pattern has 𝑛𝑑𝑖𝑚  dimensions. For each dimension 𝑑 , the fuzzy type 

membership function (Figure 2.2) follows: 

𝑓! 𝑁! = 1− 𝑎𝑏𝑠(𝑃! − 𝑁!), 𝑎𝑏𝑠(∆!) ≤ 1 (𝑐𝑒𝑙𝑙 𝑙𝑒𝑛𝑔𝑡ℎ)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    (39) 

where 𝑃! is the coordinate of pattern in the 𝑑-th dimension, 𝑁! is the coordinate of grid node in 

the 𝑑 -th dimension and ∆!= 𝑎𝑏𝑠(𝑃! − 𝑁!) . A pattern 𝑃  contributes different weights of 

densities to these grid nodes within distance of 1 in each dimension.  

 

Figure 2.2 Fuzzy type membership function of soft decision. 
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When applying soft decision using fuzzy type function to calculate the node’s local 

density, each pattern contributes to all the nearby nodes by different weights (equation (39), not 

only to the nearest.  

For a node, 𝑛𝑜𝑑𝑒_𝑘, with coordinates (𝑁!,𝑁!,… ,𝑁!"#$), its node’s local density is 

calculated as: 

𝜌!"#$_! = 𝑓!(𝑁!)!"#$
!!!       (40)     

The nodes’ local densities are found by applying equation (40) to all the patterns.  

Take the case in Figure 2.1 for instance, when the fuzzy type function is applied to 

calculate node’s local density, the densities of all the four around nodes, A, B, C, D, will increase 

but by different values. The density of A, B, C and D will arise with  

∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1− 𝑎𝑏𝑠 2.6− 2 ∗ [1− 𝑎𝑏𝑠 2.8− 2 ] = 0.08, 
∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1− 𝑎𝑏𝑠 2.6− 3 ∗ [1− 𝑎𝑏𝑠 2.8− 2 ] = 0.12, 
∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1− 𝑎𝑏𝑠 2.6− 3 ∗ [1− 𝑎𝑏𝑠 2.8− 3 ] = 0.48, 
∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1− 𝑎𝑏𝑠 2.6− 2 ∗ [1− 𝑎𝑏𝑠 2.8− 3 ] = 0.32, 

respectively. Notice that the sum of density increments equals to 1, which is ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! +

∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! + ∆ 𝑑𝑒𝑛𝑠𝑖𝑡𝑦! = 1. 

 C. Spline Technique 

For a better view of node’s local density, spline technique [37] can be used. Specifically, 

the cubic spline interpolation technique is used between nodes in this chapter. 

D. Discussion of Hard Decision, Soft Decision and Grid Size 

Both hard decision and soft decision can be applied to compute node’s local density. 

However, one of them will be preferable as the density error is concerned. To do the comparison, 

the square of 𝑝𝑒𝑎𝑘𝑠 function, or 𝑝𝑒𝑎𝑘𝑠!, is set as the target density function (equation (41) and 

the surface of the target density function is called the target density surface (Figure 2.3). 
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𝑧 =   [3 ∗ (1− 𝑥). ^2.∗ 𝑒𝑥𝑝(−(𝑥. ^2)  −  (𝑦 + 1). ^2) . . . 
                                 − 10 ∗ (𝑥/5 −  𝑥. ^3 −  𝑦. ^5).∗ 𝑒𝑥𝑝(−𝑥. ^2− 𝑦. ^2) . . . 

   − 1/3 ∗ 𝑒𝑥𝑝(−(𝑥 + 1). ^2 −  𝑦. ^2)]. ^2     (41) 

 

Figure 2.3 Target density surface: 𝑝𝑒𝑎𝑘𝑠!. It has five different density distributions, shown as 

five peaks in this figure. 

The density error is the difference between the target density surface and the output 

density surface. Figure 2.4 shows error comparisons using hard and soft decisions for several 

cases with different numbers of patterns. Please notice that soft approach always produces 

smaller errors but hard decision method is about 30% less computationally intensive. 
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Figure 2.4 Density error comparisons using hard decision (solid lines) and soft decision (dotted 

lines). Notice that the soft decision strategy (dotted lines) achieves smaller density mean squared 

error (MSE) than the hard decision strategy (solid lines with the same color). 

Spline technique can be used in the output density surface to get a more smooth surface 

with more nodes. As the Figure 2.4 shows, if the grid size is too small, i.e. 3, there will be huge 

errors in density surface. When the grid size becomes larger, the density error will go down. 

When the grid size is larger than 13 in this instance, the density error will change slowly. That 

means that too small grid size may fail to do this job, and too large grid size is not effective in 

computing nodes’ densities. Four different numbers of patterns are applied, and all lead to the 

same result that there will be smaller density errors using soft decision than hard decision.   

2.3.3 Generate the Decision Graph 

A. Calculating the Minimum Distance 𝛿! between Node i and Any Other Node with Higher 

Node’s Density 
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The minimum distances 𝛿! can be computed equation (7) described in Section 1.2.4.  

Here, a constant variable of 2 is added to the node with the maximum local density, 

making the node prominent in the decision graph. 

B. Sparse Matrix Operations 

However, even though this presented grid-based method has largely decreased the 

number of calculations by generating small size of the grid in each dimension, it is somehow not 

so perfect in computation complexity, especially when the dimensions of patterns are extremely 

huge. At the same time, it is noted that most parts of the nodes in the grid we generated have no 

densities because of the blank margin, which is used to separate different clusters, between each 

cluster. That means, actually, there is no need to deal with these zero-density nodes that will 

surely cost time. Thus, instead of computing all the nodes of the grid, sparse matrix that keeps 

the non-zero nodes will be used and processed in this proposed method. In this way, relatively 

dense grids can be used for multidimensional cases. 

 C. Generate the Decision Graph 

Aiming to choose the patterns with large local density 𝜌! and large minimum distance 𝛿! 

as the cluster centers, the decision graph is generated with x-coordinate 𝜌! and y-coordinate 𝛿!. 

For each pattern 𝑖, now its local density 𝜌! and the minimum distance 𝛿! are known. In FSFDP 

[14], it shows another way to select the cluster centers is by plotting the figure with x-coordinate 

𝑖 and y-coordinate 𝛾! = 𝜌! ∗ 𝛿! and then choosing the patterns with larger 𝛾! as cluster centers. 

After selected the cluster centers in the decision graph, patterns will be assigned into different 

clusters based on the δs. 

After selected the nodes, or cluster centers, in the decision graph, nodes will be assigned 

into different clusters based on the minimum distances 𝛿s. Node will be categorized as the same 
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cluster with its nearest node with a larger density. After all non-zero-density nodes are clustered, 

the patterns will be classified as the same cluster with its nearest node, which is already clustered. 

2.3.4 A Simple Example Illustration 

As the clustering of the 2spiral dataset [38] is a big challenge for conventional centroid-

based clustering methods, e.g. K-means [1] in Figure 2.5, the 2spiral benchmark generated using 

Matlab built-in twospiral function is used to illustrate how the presented clustering method 

works (Figure 2.6-Figure 2.10). 

 

Figure 2.5 Clustering result of 2spiral data using K-means method. Notice that K-means method 

is not efficient for clustering datasets with complex shapes and may cause huge misclassification. 
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Figure 2.6 Node’s local density (z-axis) using soft decision shown in a [1,11] range grid. 

 

Figure 2.7 Node’s local density smoothed with a spline routine on Figure 2.6. 
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Figure 2.8 Decision graph for the 2spiral case. 

 

Figure 2.9 The clustering result of grid nodes associated with patterns for the 2spiral case. Gray 

node stands for noise around it. 
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Figure 2.10 Classified 2spiral patterns using the presented clustering method. Gray dots are the 

noise. Identified results can be obtained as well using the FSFDP. Notice that the FSFDP 

requires about 72 seconds to process this 2spiral dataset while the presented algorithm obtains 

the same result with about 0.01 seconds. Same clustering result will be achieved using hard 

decision. 

As the Figure 2.10 shows, the presented clustering method succeeds to categorize the 

2spiral data into two clusters, and if a cutoff density threshold is set to detect noise in the 

original dataset, the proposed clustering method is capable of detecting noise (gray dots in Figure 

2.10). However, the commonly used K-means method misclassifies these patterns (Figure 2.5). 

The node’s local density is clearly visualized in Figure 2.6, with the use of spline technique, even 

a better view of the node’s local density (Figure 2.7) is produced after estimating three more 

density values between neighbor nodes. In the density-based clustering methods, the center is 

defined as the data point with the largest local density, so the center should have a larger density 

(𝜌) and a relatively large distance (𝛿). When the decision graph is generated, one can select the 
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node(s), or the center(s), in the upper-right part of the decision graph (Figure 2.8). After the 

selection of node(s)/center(s), the node(s)/center(s) will be color noted with the position(s) in the 

decision graph Figure 2.8, e.g. node(10,4) means the node with x-coordinate 10 and y-coordinate 

4 in the standard grid. Then, the nodes with non-zero density will be classified (Figure 2.9) based 

on the node(s)/center(s) you selected in the decision graph. At last, all patterns will be clustered 

(Figure 2.10) into the same category with the nearest node, which is already clustered. 

Experiments on several datasets are shown in the following section. 

2.4 Experimental Results 

Several datasets have been used to test the proposed Clustering algorithm based on Grid 

and Finding Density Peaks (CGFDP). These data sets have a different number of clusters with 

different shapes and a different number of patterns. All the experiments are implemented based 

on the same software and hardware: Matlab R2013a in OS X operating system with Intel Core i5 

(I5-4258U) @2.4GHz 8.00GB memory. 

2.4.1 fig2_panelC Dataset 

This data set is provided in the FSFDP. It has 1,000 patterns generated from a probability 

distribution with nonspherical and strongly overlapping peaks. 

2.4.2 fig2_panelB Dataset 

This is a dataset generated from the same distribution with the fig2_panelC dataset, but 

with a larger pattern number of 4,000. It will cost about 0.13 seconds to get a final clustering 

result when the presented method is applied. As a contrast, it runs about 15 hours when using the 

FSFDP method. 
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Figure 2.11 Clustering result of fig2_panelC data using the proposed algorithm with hard 

decision. 

 

Figure 2.12 Clustering result of fig2_panelC data using the proposed algorithm with soft 

decision. 
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2.4.3 FLAME Dataset 

FLAME data [39] comes from the problem for clustering DNA microarray data.  

 

Figure 2.13 Classified FLAME patterns using K-means method. Notice that the K-means method 

is not capable of clustering patterns with unregular shapes with less misclassification. 

 

Figure 2.14 Clustering result of FLAME data using the proposed algorithm with hard decision. 
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Figure 2.15 Clustering result of FLAME data using the proposed algorithm with soft 

decision. 

2.4.4 S3 Dataset 

The S3 data [40] for clustering purpose has 5,000 patterns with 15 clusters. 

 

Figure 2.16 Clustering result of S3 data using the proposed algorithm with hard decision. 
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Figure 2.17 Clustering result of S3 data using the proposed algorithm with soft decision. 

2.4.5 Aggregation Dataset 

Aggregation [41] is a dataset with no noise in it, also tested in FSFDP method. The 

clustering results are not shown here, as most of the clusters are ellipse shape and don’t have too 

many numbers of patterns, so it’s not hard to cluster it. 

2.4.6 Results Analysis 

Totally six datasets (including the 2spiral benchmark) are applied to test the presented 

CGFDP algorithm. Throughout the experiments, the proposed CGFDP method using hard 

decision or soft decision can give us satisfying clustering results, while the K-means clustering 

method fails to cluster the FLAME dataset (Figure 2.13). The difference in the clustering results 

between hard decision and soft decision happens only in the sparse nodes/patterns and the 

boundary between clusters, where it may cause classification errors. If we treat the sparse 
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nodes/patterns and the boundary between clusters as noise by defining a threshold for node 

densities as noise, the proposed method is possible to categorize data sets with noise. 

Generally, a larger size of grid is more capable but will cost more time, on the other hand, 

a standard grid with a too small size, e.g. 3, may fail to do this job. Usually, a standard grid with 

the size of less than 20 in each dimension is capable of clustering a given dataset. 

Our method does not require to compute the mutual distances between patterns or know 

the multidimensional density function. It requires computation time even 10,000 shorter for cases 

with different numbers of patterns (Table 2-1). Therefore, it outperforms the FSFDP and even 

other conventional approaches regarding efficiency and effectiveness. Even we increase the grid 

size within a reasonable region, the processing time is not changing dramatically. The 

computation time in processing these six experimental datasets with different grid sizes is shown 

in Figure 2.18 with the increase of grid size. 

 

Figure 2.18 Computation time (in seconds) comparisons for six experimental datasets with 

different grid size. 
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The presented CGFDP method gives basically the same results as obtained in the FSFDP 

so the results of clustering for PanelB and Aggregation benchmarks used in [14] are not shown 

here but the comparison of computation time is included in Table 2-1. It lists the time 

comparisons between the averaging processing time of the presented CGFDP method with 

different grid sizes and the FSFDP, which shows that the presented method is much faster than 

the FSFDP. 

Table 2-1 Comparisons of processing time on six benchmarks 

Benchmarks FSFDP CGFDP 
(hard decision) 

CGFDP 
(soft decision) 

2spiral 
(n=537;ndim=2) 71.1021 sec 0.0046 sec 0.0109 sec 

PanelC  
(n=1,000;ndim=2) 1.1373e+03 sec 0.0211 sec 0.0447 sec 

FLAME  
(n=240;ndim=2) 1.5482 sec 0.0070 sec 0.0264 sec 

S3 
(n=5,000;ndim=2) 8.0236e+04 sec 0.1748 sec 0.1586 sec 

PanelB 
(n=4,000;ndim=2) 5.2782e+04 sec 0.0729 sec 0.1425 sec 
Aggregation 
(n=788;ndim=2) 414.4445 sec 0.0193 sec 0.0425 sec 

 

2.5 Conclusion 

This chapter presented a grid-based clustering method by finding density peaks, which is 

fast and practical to classify data (even with noise) into different categories. It can easily scale up 

to cluster datasets with different sizes of dimensions. With the advantage of the friendly 

interactive interface in the density-based method by finding density peaks, at the mean time, it 

decreases enormously computation complexity to 𝑂(𝑛 ∗ 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒). The proposed algorithm 

follows three steps: (I) normalizing and expanding the original data set into a standard grid; (II) 

calculating the node local density; (III) generating the decision graph. After the selection of 

centers in the decision graph, the individual pattern will be assigned to the same cluster with its 

nearest node that is already categorized. During the second step, either hard decision or soft 

decision can be applied. In terms of efficiency and effectiveness, experiments on real-world 
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datasets show that the proposed method significantly outperforms the FSFDP (see Table 2-1) in 

the process of calculating the local densities and assigning data points into different categories 

due to the use of the standard grid and sparse matrix technique respectively. 
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CHAPTER 3 A FAST DENSITY AND GRID BASED CLUSTERING METHOD FOR 

DATA WITH ARBITRARY SHAPES AND NOISE 

 
 

As mentioned in CHAPTER 2, the grid based clustering can accomplish the tasks very 

fast. In this chapter, a density and grid based (DGB) clustering method for data with arbitrary 

shapes and noise is described. As most of the conventional clustering approaches work only with 

round-shape clusters, it needs to explore other methods for proceeding classification for clusters 

with arbitrary shapes. Clustering approach by fast search and find of density peaks (FSFDP) and 

density based spatial clustering of applications with noise (DBSCAN), and so many others are 

reported to be capable of completing this task but limited by its computation time of mutual 

distances between points or patterns. Without the calculation of mutual distances, this work 

presents an alternative method to fulfill clustering of data with any shape and noise even faster 

and more efficient. It was successfully verified in clustering industrial data (e.g. DNA microarray 

data) and several benchmark datasets with different kinds of noise. It turned out that the 

proposed DGB clustering method is more efficient and faster in clustering datasets with any 

shape than the conventional methods.   

3.1 Introduction 

An essential routine to pre-proceeding a given industrial data is to seek its clustering 

structure. Many applications in the industrial area using various clustering methods can be found 

in the literature, e.g. [42][43] etc. Clustering approaches come along with different definitions of 

clusters. The expectation-maximization (EM) algorithm [3] categorizes patterns into the cluster 

with maximum likelihood. The assumption of EM clustering algorithm is that the cluster is a 

combination of patterns that have most likely the same distribution. The EM algorithm fulfills 
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this task by optimizing the distribution functions of clusters. Applications using EM are reported 

in [44][45]. The widely used K-means method [1] finds the clusters by iteratively computing the 

distances from patterns to the gravity centers of clusters until converge. It assumes that the 

patterns, which belong to the same cluster, are located around the cluster’s gravity center. 

Various applications based on K-means method can be seen in [46][47]. Another alternative 

approach is called hierarchical clustering [2] method, which keeps the property that patterns with 

small distance are more related than with large distance.  

The idea of grid-based clustering was proposed almost twenty years ago, along with 

many publications. The GRIDCLUS method [48] applies grid technique to implement the 

hierarchical clustering approach. The patterns are grouped into blocks and clustered with respect 

to the blocks by a topological neighbor search algorithm. It is reported the GRIDCLUS method 

is much faster than the traditional hierarchical clustering approach. 

Wei Wang et al. proposed a STatistical INformation Grid-based clustering method 

(STING) [49] to cluster spatial databases. The spatial area is divided into rectangle cells at 

different levels of resolution, which forms a hierarchical structure. Let the root of the hierarchy 

be at the 1st level, its children at level 2, etc. The number of layers could be obtained by changing 

the number of cells that form a higher-level cell. A cell in level 𝑖 corresponds to the union of the 

areas of its children in level 𝑖 + 1. In STING, each cell has 4 children and each child corresponds 

to one quadrant of the parent cell. Statistical information of each cell is calculated and stored 

beforehand and is used to answer spatial data mining queries. For each query, it starts at the root 

and proceeds to the next lower level using the STING index. Then, it requires computing the 

likelihood that this cell is relevant to the query at some confidence level using the parameters of 

this cell. Only children of likely relevant cells are recursively explored. Repeat this process until 
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the bottom level is reached. The STING algorithm stops with all the requirements of queries are 

met. Only two-dimensional spatial space is considered in this algorithm. 

The idea of grid in clustering algorithms is even more useful and powerful today. In the 

GRIDCLUS method, the grid is divided into rectangular but not limited to rectangular segments 

with different sizes, which conceals the overwhelming capability of the universal grid with 

universal size. Although an uniform size of rectangular in each layer is involved in the STING 

algorithm, the strategy of answering queries may lead inaccuracy because its probabilistic nature 

may indicate a loss of accuracy in query processing. However, one outstanding feature when 

using the grid-based approaches is the less consuming time. For example, the time complexity of 

STING is 𝑂(𝑛). In order to improve the processing accuracy, density-based approaches and grid-

based approaches can be combined to achieve that. 

In density-based clustering methods, the cluster is categorized with a higher density of 

patterns in it than out of it. In density based spatial clustering method of applications with noise 

(DBSCAN) [13], it illustrates that DBSCAN can be applied to detect clusters with arbitrary 

shapes. One application using DBSCAN can be found in [50]. However, the computation time of 

calculating and sorting the mutual distances is numerous.  

Another density-based clustering algorithm is called clustering method by fast search and 

find of density peaks (FSFDP) [14] published recently in Science. It uses the pattern with the 

largest local density as the cluster center, not the conventional gravity center so that it can be 

applied to categorize the data sets with irregular shapes but not all of them. However, it burdens 

the computation complexity when generating the distance matrix, which requires the calculation 

of mutual distances between patterns.  
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In this chapter, we present an attempt to cluster datasets with arbitrary shapes and noise. 

Instead of calculating Euclidean distances between mutual patterns, only distances between a 

much smaller number of grid nodes are needed. Moreover, a new algorithm of computing 

densities was proposed, where a pattern and its surrounding nodes are involved. It turns out to be 

faster and feasible to categorize patterns with arbitrary shapes and irregular noises. 

3.2 Density and Grid Based Clustering for Data with Arbitrary Shapes 

3.2.1 Mountain Ridge  

It comes from the natural phenomenon that geographers identify and cluster different 

mountains by drawing and analyzing their ridges. As long as the mountain ridges are detected, it 

becomes easy to cluster and categorize mountains. An example of natural mountain ridge of Big 

Savage Mountain (MD and PA, USA) [51] is shown in Figure 3.1, the Big Savage Mountain. 

From the view of mountain ridges, we can clearly see how each mountain goes, no matter big or 

small. In a similar way, can we view data as several mountain ridges? One way to find out the 

data ridges is by counting data densities as their mountain heights. Data point with the largest 

local density is the mountain peak and data point with the smallest local density is the mountain 

bottom. Other data points are among peaks and bottoms. An example of showing what the 

mountain ridges of a dataset looks like can be found in Figure 3.2 and Figure 3.3. 
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Figure 3.1 The Big Savage Mountain (MD and PA, USA) ridges. 

 

Figure 3.2 A data instance for mountain ridge explanation. 
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Figure 3.3 Densities of data in Figure 3.2. These data densities form shapes of mountain ridges. 

3.2.2 Finding Data Mountain Ridge 

As the outlook of nodes’ local densities is like mountains with different heights, so the 

task of clustering is redefined as finding the mountain ridges. To fulfill it, mountain ridges are 

detected one by one starting with the peaks, which are the nodes with higher local densities. For 

the first mountain ridge, it starts with the grid node with the largest local density among all nodes. 

Then it labels the neighbor nodes, which have distances of 1, into this mountain if the neighbor 

nodes are not the edges. The mountain edges are the nodes with densities smaller than 𝐸𝑑𝑔% of 

this mountain peak density. From the merged node(s), keep merging its/their neighbor node(s) 

into this mountain until all edges of this mountain are reached. Then it continues to find the next 

mountain ridge, starting with the grid node that has the largest node’s local density among the 

unlabeled nodes, and keep labeling nodes until all mountain ridges are detected. There are two 

strategies to terminate mountain ridges searching. One of them is by checking if the starting node 
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has a larger local density than the node containing noise or not. Another way to terminate it is to 

see whether the number of nodes labeled into one mountain ridge is larger than some constant or 

not. The number of mountain ridges corresponds to the number of clusters, which is revealed 

automatically through this procedure. 

Basically, mountain ridges give a view of the outlooks of clusters if noise exists in the 

data. In other cases with no noise in the data, e.g. 3spiral dataset in Figure 3.7, each mountain 

ridge contains all the nodes that belong to one cluster. After the non-noise nodes are labeled as 

different mountain ridges, the patterns will be classified as the same mountain, or cluster, as its 

nearest node that is already labeled. The classification of border patterns and the detection of 

noise, if any, are described in the following section. 

3.2.3 Mountain Border and Noise Detection 

If there is no noise in the data, after the completion of labeling nodes into different 

mountain ridges, individual patterns will be classified into their nearest already-labeled nodes. 

For the case of data with noise, the rest unclassified sparse patterns could be either borders or 

noises. 

By setting the 𝐸𝑑𝑔% factor, the mountain edges, or the border nodes, can be easily 

detected when finding the mountain ridge. For a node containing noise, its local density is small, 

even smaller than the 𝐸𝑑𝑔% factor. By setting a 𝑁𝑜𝑖𝑠𝑒_𝑐𝑢𝑡_𝑡ℎ𝑟𝑒 parameter, it’s easy to filter 

the nodes containing noise. Usually, the value for 𝑁𝑜𝑖𝑠𝑒_𝑐𝑢𝑡_𝑡ℎ𝑟𝑒 is around 3 for white noise 

because there are commonly less than 4 noise points in one cell in the grid for 2-dimensional 

data case. Generally, the density based clustering method has the capability of detecting noise 

points with densities that are much smaller than the data points, no matter white or non-white 

noise. In the presented DGB method, points/patterns with sparse densities will be classified as 
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noise. However, some non-white noise points with densities close to patterns in clusters may be 

challenged for conventional clustering methods, e.g. DBSCAN and FSFDP, to detect them but 

not for the presented DGB clustering method. For example in the clustering result using 

DBSCAN of Figure 3.10, the strip-shaped/sin-shaped noise is misclassified as patterns instead of 

excluding it as noise between the clusters colored in red and blue. 

Generally, the mountain ridges give a view of the outlooks of clusters. Therefore, it may 

need an extra procedure because there may exist some amount of patterns left unlabeled around 

border nodes. To be specific, there are basically two cases that border patterns will be classified 

into their nearby already-labeled nodes. Otherwise, they will be neglected as noise. Let’s take the 

grid cell shown in Figure 2.1 for instance. For possible border patterns, at least one of the four 

neighbor nodes in the cell should have been labeled during the process of finding mountain 

ridges. In the case of only one of four surrounding nodes in the cell has been labeled, an 

individual pattern will be categorized into the cluster of the labeled border node with two 

satisfactions of (1) this pattern’s nearest node is the labeled border node; (2) the contributed 

density to this border node from all the patterns inside this cell is larger than 𝑁𝑜𝑖𝑠𝑒_𝑐𝑢𝑡_𝑡ℎ𝑟𝑒. 

The contributed density to one node from its nearby cell is calculated during the step of 

computing node’s local density. When two or three of the four surrounding nodes in the cell have 

been labeled, an individual pattern will be classified into the cluster of the labeled node, as long 

as the contributed density to these two or three nodes from all the patterns inside this cell is 

larger than 𝑁𝑜𝑖𝑠𝑒_𝑐𝑢𝑡_𝑡ℎ𝑟𝑒. Because enough-size grid is applied to make sure there will be grid 

cells as margins between clusters, these two or three labeled nodes will always belong to a same 

cluster. In conclusion, the sparse individual patterns will be processed as either border patterns or 

noise.  
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3.3 Density and Grid Based Clustering for Data with Noise 

The procedure of the presented DGB clustering method are shown as follows. 

1: Normalize and scale the data into [1,𝑁_𝑔𝑟𝑖𝑑] grid; (see Section 2.3.1) 

2: Calculate node’s local density using soft decision; (see Section 2.3.2) 

3: Find mountain ridges; (see Section 3.2.2) 

4: If there is no noise in the data, label the individual patterns and the possible border 

patterns into different mountain ridges; otherwise, besides the labeling process, the detection of 

noise is also applied; (see Section 3.2.3) 

5: End.  

As the clustering of the 3spiral dataset [52] is a big challenge for conventional centroid-

based clustering methods, i.e. K-means (Figure 3.4), the 3spiral dataset is used to illustrate how 

the presented clustering method works (Figure 3.5, Figure 3.6, Figure 3.7). 

 

Figure 3.4 Clustering result of 3spiral dataset using K-means method. Notice that K-means 

method is not efficient for clustering datasets with complex shapes and may cause huge 

misclassification. 
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Figure 3.5 Nodes’ local densities (z-axis) shown at grid nodes in a [1, 23] range grid. 

 

Figure 3.6 The mountain ridges found automatically for the 3spiral case. Different clusters have 

different heights. 
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Figure 3.7 Classified 3spiral patterns using the presented method. Identified results can be 

obtained as well using the FSFDP and DBSCAN. Notice that the FSFDP and original DBSCAN 

require about 1.7869 seconds to process this 3spiral dataset while the presented method obtains 

the same result with about 0.2 seconds. 

3.4 Experimental Results 

One real life medical industrial dataset, called FLAME [39], from gene expression 

profiles obtained with DNA microarrays is applied to the clustering process. Two additional 

chameleon datasets [53] with various shapes and noise are used to test the method as well. These 

datasets have different numbers of patterns and clusters. All the experiments are implemented 

based on the same software and hardware: Matlab R2013a in OS X operating system with Intel 

Core i5 (I5-4258U) @2.4GHz 8.00GB memory. 

3.4.1 DNA Microarray Dataset - FLAME  

Global DNA testing market is anticipated to reach USD 10.04 billion by 2022, according 

to a new study by Grand View Research (US) Inc. Primary revenue generating activity in the 
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market revolves DNA profiling obtained with DNA microarrays. Before further processing, it’s 

necessary to conduct clustering analysis on DNA microarray data. Figure 3.8 shows the 

clustering result of DNA microarray dataset, FLAME. 

 

Figure 3.8 The clustering result of DNA microarray dataset FLAME using the presented 

clustering DGB clustering method. There are two clusters, and the outliers (gray dots in the 

upper left corner) are detected. 

3.4.2 Case t4.8k Dataset and Case t8.8k Dataset 

Datasets of t4.8k and t8.8k are two chameleon datasets, which have complex shapes and 

different noise. As the experimental figures shown, the presented DGB clustering method is 

capable of classifying datasets with complicated shapes, and even with non-white noises, e.g. 

sin-function-shaped noise in Figure 3.11. It gives basically the same results as obtained using 

DBSCAN with slightly difference, which is not significantly visible. There are some sparse 

patterns misclassified as clusters instead of noises between two neighbor clusters in the resulted 



 55 

figures using DBSCAN (Figure 3.10), which is caused by the definition of directly density-

reachable (equation (3)). While in the resulted figures using the proposed method (Figure 3.11), 

it shows a very clearly separated margin between neighbor clusters with a careful treat of borders 

and noise. 

Moreover, for datasets with complicated shapes, FSFDP (e.g. Figure 3.9 and Figure 3.12) 

gives infeasible results as the presented DGB method. One critical issue using DBSCAN is the 

loss of effectiveness when the data has clusters with densities of different levels. It’s resulted 

from the compromise of setting parameter 𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠. In the dataset of t8.8k, if the region 

with smaller density (the second region with vertical shape from right in Figure 3.13) is 

successfully classified, there will be misclassification in other regions and vice versa, a referred 

paper [54] also shows the same results. 

 

Figure 3.9 The clustering result of chmeleon t4.8k using FSFDP. 



 56 

 

Figure 3.10 The clustering result of chameleon t4.8k using DBSCAN. 

 

Figure 3.11 The clustering result of chameleon t4.8k using the presented DGB clustering method. 

Gray dots are the noise. Note that the white noise and even the sin-shaped noise are detected. 
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Figure 3.12 The clustering result of chameleon t8.8k using FSFDP 

 

Figure 3.13 The clustering result of chameleon t8.8k using DBSCAN 
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Figure 3.14 The clustering result of chameleon t8.8k using the presented DGB clustering method. 

It shows that the presented method is capable of classifying the dataset with different densities of 

clusters in it. Gray dots are the noise. Note that the white noise is detected. 

3.4.3 Processing Time Analysis 

For a given number of patterns, the time complex of the original DBSCAN is the same to 

FSFDP, which is 𝑂(𝑛!), so the consuming time for these experimental datasets using the 

original DBSCAN is not listed in Table 3-1 but, in stead, an accelerated DBSCAN based on R*-

tree search is applied. Table 3-1 lists the time comparisons among FSFDP, accelerated DBSCAN 

and the presented DGB clustering method, which shows that the presented method is much more 

efficient and effective than FSFDP and DBSCAN, and even than accelerated DBSCAN in some 

cases. 

About the determination of grid size, one can not expect a universal grid size for every 

dataset. Neither too small nor too large grid size is selectable. Generally, the grid size is 

preferable but not limited if the node’s local density figure (e.g. Figure 3.5) can illustrate the 
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outlines of mountain ridges. The computation time 𝑂(𝑛 ∗ 𝑛𝑧𝑛𝑜𝑑𝑒) (𝑛𝑧𝑛𝑜𝑑𝑒 is the number of 

non-zero grid nodes) in processing these four experimental datasets using the proposed DGB 

method is shown in Figure 3.15 with the increase of grid size. In most cases, the processing time 

of different grid sizes will not change dramatically. For the dataset of t8.8k, the consuming time 

goes up because of the increase of non-zero-density nodes along with the increase of grid size. 

Table 3-1 Processing time comparisons of four datasets. 

Dataset FSFDP DBSCAN* Presented DGB Method 
FLAME 
(np=240) 0.2107 sec 0.0159 sec 0.0109 sec 

(11 *11 grid) 
3spiral 
(np=312) 0.3527 sec 0.1654 sec 0. 2057sec 

(22 *22 grid) 
t4.8k 

(np=8,000) 354.4838 sec 2.5660 sec 0.8941 sec 
(40 *40 grid) 

t8.8k 
(np=8,000) 360.2049 sec 2.7024 sec 18.9509 sec 

(70 *70 grid) 
(DBSCAN*: accelerated DBSCAN based on R*-tree search.) 

 

Figure 3.15 Computation time (in seconds) comparisons of four experimental datasets with 

different grid sizes. 
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3.5 Conclusions 

Introduced in this chapter is a method called density and grid based (DGB) clustering 

method for clusters with arbitrary shapes, which is fast and feasible to classify data into different 

categories. Instead of giving a specific desired number of clusters, the presented DGB method 

finds clusters automatically. By setting a density threshold as noise, the proposed method is also 

capable of detecting white and non-white noise (the gray dots in Figure 3.7, Figure 3.11, and 

Figure 3.14). Without the calculation of Euclidean mutual distances between patterns, it 

successfully decreases enormously computation complexity to equation 𝑂(𝑛 ∗ 𝑛𝑧𝑛𝑜𝑑𝑒). A soft 

decision strategy using fuzzy approximation is proposed to compute node’s density instead of 

simply counting the number of patterns in the cell or computing all other patterns’ density 

contributions. Besides, a novel strategy of finding mountain ridges as the outlook of a cluster is 

explained. Moreover, specific classification of border patterns and noises is discussed as well. 

It turns out that the presented DGB clustering method is capable of clustering datasets 

with arbitrary shapes, while the conventional K-means method (Figure 3.4) and FSFDP (Figure 

3.9 and Figure 3.12) are not capable enough to do this job. Besides, there will be some 

misclassifications when the two parameters (𝐸𝑝𝑠 and 𝑀𝑖𝑛𝑃𝑡𝑠) are contradictory to each other 

due to, e.g. the non-uniform density distribution (Figure 3.13) using DBSCAN. The experimental 

results (Table 3-1) of real-world datasets show that the proposed DGB clustering method 

significantly outperforms DBSCAN in the processing time due to the unnecessary computations 

of the Euclidean distances between mutual patterns, and the use of the standard grid and sparse 

matrix technique.   
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CHAPTER 4   CLUSTERING BY ANALYZING DENSITY CONSISTENCY AND 

MINIMUM INTERNAL AND EXTERNAL DISTANCE RATIO 

 
 

Clustering is one of the most important tasks in preprocessing data, which is not easy to 

accomplish in just one single run especially for data with complex shapes and various 

dimensions. In this chapter, we will focus on a new clustering algorithm for clustering data with 

complex shapes based on density and the minimum internal and external distance ratio (DDR). 

With the concept of density and newly introduced cross-distance-ratio, the presented DDR 

classification algorithm developed a new two-stage strategy for accomplishing classification 

tasks. Besides, a more reliable analysis on the separation inside a large cluster and between 

clusters is described as well. The presented algorithm was successfully verified by classifying 

several datasets with various shapes and dimensions, i.e. human face photos. It turned out that 

the proposed DDR clustering algorithm is effective in clustering datasets into different categories 

with fewer misclassifications.  

4.1 Introduction 

In the previous chapters, we have mentioned various clustering approaches with pros and 

cons. For instance, K-means clustering method [1] is easily implemented; GMM-EM clustering 

algorithm [16] finds solutions iteratively; DBSCAN [13] and FSFDP [14] are two widely used 

density-based clustering techniques.  

4.1.1 Partitional Clustering 

Partitional clustering [55] decomposes a data set into a set of some sort of disjoint 

clusters. Given a data set of 𝑛 points, a partitioning method constructs 𝑀 (𝑀 ≤ 𝑛) partitions of 

the data, with each partition representing a cluster.  Specifically, it classifies the data into 𝑀 
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groups satisfying the following requirements: (1) each group contains at least one point, and (2) 

each point belongs to exactly one group. Notice that for fuzzy partitioning, which is not 

concerned in this chapter, a point can belong to more than one group. 

Many partitional clustering algorithms follow the same strategies as the classification 

methods do mentioned in the section of Introduction. For example, in K-means and K-medoids 

partitional clustering methods, it tries to minimize an objective function that computes the sum 

of distances from data to the centers. 

4.1.2 Density Based Clustering for Data with Various Shapes and Dimensions 

Density-based classification approaches are favorable in clustering datasets with complex 

shapes and various dimensions, i.e. [13][14]. These approaches proceed classification in a 

transformed density domain while some other methods, e.g. K-means etc., operate in geometry 

domain. In density-based classification methods, datasets are classified to one category if they 

have similar local densities within a region. For each data, its local density can be computed 

using kernel functions, for instance, the radial basis function kernel, which is given as 

𝜌 𝑖 = 𝑒−
(𝐷𝑖𝑗+𝐶)

2

2𝜎2𝑛
𝑗=1       (42) 

where 𝜌 𝑖  is the local density or density, for simple, of data point 𝑖, 𝑛 is the number of data 

points, 𝐷!" is the distance between data point 𝑖 and 𝑗, 𝐶 and 𝜎 are constants. 

4.2 Clustering by Analyzing Density Consistency and Minimum Internal and External 

Distance Ratio 

This chapter presents a new algorithm, called DDR clustering algorithm, to do 

classification based on density and a newly defined concept of ratio between the minimum 

internal and external distance so that can be used to determine to merge partitioned clusters or 
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not. A novel strategy for computing density and partitional clustering were developed. Based on 

that, this new classification algorithm is capable of categorizing data points with complex shapes 

with fewer misclassifications. It can also achieve inspiring results of classifying high-

dimensional data, which makes it practical and effective to be used in real life. The main 

contributions of this chapter are summarized as follows: 

1) We introduced minimum internal and external distance ratio to the presented algorithm. 

2) A density-based partitioning clustering is described. 

3) In order to determine merge partitioned clusters or not, we utilized the curves of 

minimum internal and external distance ratios, as well as data density. 

4.2.1 Minimum Internal and External Distance Ratio 

In density-based classification approaches, datasets are categorized based on their local 

densities. Specifically, in the resulted clusters, data will have similar densities in a small region 

in a same cluster. And, between different clusters, the densities of datasets will be discrepant. 

What if in the raw classification results, the densities of data in adjacent clusters are similar to 

each other? Should they be merged to a large cluster or not? Let’s denote the minimum internal 

and external distance ratio or cross-distance-ratio, for short, as the ratio between the minimum 

internal and external distance at first. 

𝑅! =
!"# (!!"#)
!"# (!!"#)

      (43) 

where 𝑅! is the cross-distance-ratio, 𝐷!"# is the internal distance among the same cluster, and 

𝐷!"# is the external distance to another different cluster. 

 One may notice that for each data point in current cluster, there will be a calculated 𝑅! 

between current cluster and another cluster. Therefore, the number of {𝑅!} in one cluster is equal 
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to the number of data points in the cluster. Moreover, for a given data point 𝑃, the min (𝐷!"#) 

from 𝑃 to other data in the same cluster is unchanged when computing the 𝑅!s. However, the 

min (𝐷!"#) will depend on which cluster we consider. For example, in Figure 4.1, the closest 

data from Cluster II to data 𝑃 is 𝑄 while it will be 𝑅 from Cluster III. Besides, the min (𝐷!"#) is 

not convertible. For instance, the closest data from Cluster II to data 𝑃, which is from Cluster I, 

is 𝑄, while the closest data from Cluster I to 𝑄 is not 𝑃 but 𝑆. 

 

Figure 4.1 An instance of min (𝐷!"!), min (𝐷!"#) in cross-distance-ratio. 

4.2.2 Density Based Partitional Clustering (DPC)  

In the first of two stages of our proposed method, a new density-based clustering is 

introduced. Datasets are categorized based on their densities and relationships in density-based 

classification methods. When two data points are close to each other, which may be measured in 

i.e. Euclidean distance, Manhattan distance, cosine similarity etc., they contribute more density 

to each other than those that are far away from each other.  

The following density-based classification approach is served as partitional clustering. 

With the assumption that nearby data points belong to a same cluster if their local densities are 
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similar, this chapter presents a new strategy in four steps to do partitional clustering on datasets 

with various shapes and dimensions.  

Step 1: Calculating mutual distances between data points. Distances are saved in distance 

matrix for fast processing in the following steps. 

Step 2: Calculating data point’s local density 𝜌! as follows. 

𝜌! =
!!!/!(!,!)
!!!(!,!)!

𝑁
𝑗=1       (44) 

where, 𝑁 is the number of data, 𝐷(𝑖, 𝑗) is the distance between data point 𝑖 and 𝑗. Different from 

the density computation using radial basis function kernel in (42), the contribution to data point’s 

local density from its near data will be more significant using (44), which can provide us more 

accurate density calculations with an illustration in e.g. Figure 4.13. Other neural networks based 

density estimation techniques [56] can be explored as well. 

 Step 3: Finding out the neighbor information of data point 𝑖  in density field. The 

minimum distance 𝛿! to data point 𝑖 from a data point (i.e. data point 𝑗) with a higher local 

density will be found. We’ll say that data point 𝑖 is pointed to data point 𝑗 or that data point 𝑗 is 

connected with data point 𝑖 in density field. Note that data with lower local densities are always 

pointed to data with larger local densities. For the point with the largest local density, its 𝛿 will 

also be set as the max. This step can be accomplished very fast utilizing the distance and local 

density information generated in Step 1 and Step 2. 

 Step 4: Clustering data, which will generate partitioned clusters. Starting with 

unclassified data point with the largest local density, which is defined as density center, if data 

point(s) pointed to it is within its 𝑛! (4) closest neighbors, then data point(s) will be pushed into 

the same queue which initially contains the density center and mark the density center classified. 
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Conduct this processing until all the data points in the queue have no other data points pointed to 

within their 𝑛! closest neighbors and mark them classified. All the data in the queue form a new 

partitioned cluster. 

All the partitioned clusters will be obtained after all data are processed and classified 

according to Step 4. 

𝑛! = 𝑟𝑜𝑢𝑛𝑑 𝑁 ∗ 𝑝𝑒𝑟𝑐      (45) 

where 𝑝𝑒𝑟𝑐 is the percentage of closest neighbors, which is set to be as small as 5% or so in 

general case so that no misclassification will occur and only merging partitioned clusters is 

needed if any. The pseudocode for DPC algorithm is shown in Figure 4.2. 

 

Figure 4.2 First stage of the proposed DDR classification method: DPC algorithm. 
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After DPC process, data will be categorized initially, which brings satisfying results (e.g. 

Figure 4.4) and even perfect results (e.g. Figure 4.3) in some cases which need no more further 

processing. 

 

Figure 4.3 Clustering result using the proposed DPC method for 3spiral dataset [52]. The crosses 

(x) are the starting data points for finding each partitioned cluster, which are the density centers 

in each cluster. 

 

Figure 4.4 Clustering result using the proposed DPC method for Aggregation dataset [41]. The 

crosses (x) are the starting data points for finding each partitioned cluster, which are the density 

centers in each cluster. It shows that two large clusters are classified into two smaller clusters for 

each case and no misclassification happens. It will be further processed in the second stage of 

merging partitioned clusters to get final results. 
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4.2.3 Merging Partitioned Clusters Based on the Ratios of Minimum Internal and External 

Distance 

In this second stage of the presented DDR classification method, merging the partitioned 

clusters generated in the first stage is executed if needed. The necessary of this stage depends on 

the ratios of minimum internal and external distance (Section 4.2.1). 

Why cross-distance-ratio 𝑅! is used as a criterion of merging near partitioned clusters? 

One may notice that the cross-distance-ratio gives some sort of neighbor information between 

partitioned clusters. Suppose all cluster information are given. Then, inside a cluster, data have 

similar mutual distances within a small radius. While between clusters, data will have much 

larger mutual distances than intra-cluster mutual distances. In other words, if two or even more 

partitioned clusters belong to a same larger cluster, then there will be 𝑅! values between them 

close to 1 (>0.7, for instance), which are generated from the adjacent data between these 

partitioned clusters. On the other hand, if two or even more partitioned clusters DON’T belong to 

a same larger cluster, then all the 𝑅! values between them should be much smaller than 1 (<0.6, 

for instance). Generally, the larger the 𝑅!s are, the closer two partitioned clusters will be. 

Therefore, by examining the 𝑅! values between two partitioned clusters, we can make a decision 

on merging them into a larger cluster or not. Two instances on the cross-distance-ratios between 

the partitioned clusters in Figure 4.4 are shown in Figure 4.5 and Figure 4.6. 
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Figure 4.5 The cross-distance-ratios (𝑅!) between the 1st partitioned cluster and other partitioned 

clusters shown in Figure 4.4. 𝑅!=0.7 is set as a reference line. It shows that all the 𝑅!s are small, 

which means that the 1st partitioned cluster is separated away from other partitioned clusters and 

itself should be a cluster without merging other partitioned clusters. 

 

Figure 4.6 The cross-distance-ratios (𝑅!) between the 2nd partitioned cluster and other 

partitioned clusters shown in Figure 4.4. 𝑅!=0.7 is set as a reference line. It shows that all the 

𝑅!s between the 2nd and 3rd cluster are significantly large with the largest 𝑅!s around 1, which 

means that the 2nd partitioned cluster should be merged with the 3rd cluster. And, other 𝑅!s are 

small, which means that the 2nd partitioned cluster is separated away from other clusters. 
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4.2.4 Identification of Separation Inside a Large Cluster and Between Clusters  

For the case of a large cluster divided as several smaller partitioned clusters, i.e. cluster 2 

and 3 in Figure 4.4, the cross-distance-ratios 𝑅!s between them will be significantly different 

and large, shown in Figure 4.6. However, in some cases it may result with some amount of large 

𝑅!s but not significant for all of them (Figure 4.7), which are not supposed to merge those 

partitioned clusters. Therefore, for those large 𝑅!s although not significant for all of them, it’s 

necessary to identify whether they’re representing a separation inside a large cluster or, in most 

cases, between clusters. 

 

Figure 4.7 The cross-distance-ratios (𝑅!) between the 4th partitioned cluster and other 

partitioned clusters shown in Figure 4.4. 𝑅!=0.7 is set as a reference line. It shows that there is 

one large 𝑅! value between the 4th and 5th cluster, while the rest of 𝑅!s remain small. This large 

𝑅! is a reflection of border conncetion between the 4th and 5th cluster, which should not belong 

to one large cluster because of the large difference between internal density and external density. 
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Suppose there are short connections/distances between two partitioned clusters at border 

data points. So at the border data points, the 𝑅! values will be large, which are caused by the 

short distances between these two partitioned clusters. However, if these two partitioned clusters 

should not be merged into a larger cluster, the local densities at the border data points from one 

partitioned cluster are significantly different with the local density inside the other partitioned 

cluster. Therefore, it can be used to identify whether the large 𝑅!s are reflecting a separation 

inside a large cluster or between clusters based on their densities. As we have known the density 

centers of each partitioned cluster, data local densities as well as the data mutual distances at the 

first stage of DPC (Section 4.2.2), it’s easy to compute the average local density of data, which 

have distances to border point no larger than the distance from border data point to the density 

center of the same cluster. This average local density is called the external density of border 

point when it’s treated as the external partitioned cluster in calculating the cross-distance-ratios 

𝑅!s. Notice that the internal density of data are exactly the local density computed in the first 

stage of DPC. 

So, for those data points that generate large 𝑅!s, by examining the difference between 

one data point’s internal density and the other data point’s external density, we can determine 

whether these two data points are adjacent data inside a larger cluster or the border data of two 

different clusters. Specifically, the internal density of one data point is similar to the external 

density of the other data point, i.e. 1± 20% of the involved density, when they are adjacent data 

points between two partitioned clusters, which are actually should be merged into a larger cluster. 

For the border data points, the internal density of one data point is significantly different to the 

external density of the other data point, i.e. 1± 50% of the involved density. 
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For the partitioned cluster that has only one data point, there is no internal distance. In 

that case, the internal distance is set to be its minimum external distance such that its max 𝑅! is 

equal to 1. Then, as usual, calculate the cross-distance-ratio 𝑅!s and compare its internal density 

with its near data points’ external density to determine the merging operation or isolating itself as 

an outlier. Note that the compared near data points are the data that produce large 𝑅! values (i.e. 

𝑅! > 0.7). 

 

Figure 4.8 The final result of Aggregation dataset using the presented DDR clustering method. 

All clusters are correctly presented. 

4.2.5 Time Complexity Analysis  

For the best case of accomplishing the task in the 1st stage of our method, the time 

complexity is 𝛰(𝑁!) due to the computation of mutual distances. Now, let’s discuss the worst 

case where each data point is isolated as a partitioned cluster after 1st stage of our method. In 

this case, we need to check the density consistency between every two partitioned clusters in the 

2nd stage, which has time complexity of 𝛰(𝑁(𝑁 − 1)) . So the total time complexity is 

𝛰 𝑁! + 𝛰(𝑁! − 𝑁). Generally, the complexity of the proposed clustering algorithm is 

𝛰 𝑁! ~𝛰 𝑁! + 𝛰(𝑁! − 𝑁)    (46) 
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4.3 Experimental Results 

Three datasets with various dimensions and numbers of clusters have been used to test 

the presented algorithm in this section. All the experiments are implemented based on the same 

software and hardware: Matlab R2013a in OS X operating system with Intel Core i5 (I5-4258U) 

@2.4GHz 8.00GB memory. 

4.3.1 FLAME 

The DNA microarray data of FLAME [39] is tested for our method. With the accurate 

density calculations of each data point, the presented DDR classification algorithm is capable of 

identifying the correct boundary between the two main clusters with different shapes, shown in 

Figure 4.9. 

 

Figure 4.9 Classification result of FLAME dataset using the presented DDR classification 

method. The two large clusters are correctly presented as well as the upper-left outliers. 

4.3.2 2Spiral 

Classifying the complex-shape 2Spiral is a challenging job for a classification method. It 

is much harder than classifying 3Spiral (Figure 4.3) data because the distances between clusters 
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at the outside region are even smaller than the mutual distances among the same cluster. 

Therefore, the distance-based classification approaches may fail to accomplish this job. Different 

parameter settings will generate different 2Spiral datasets, e.g. [57]. The specific 2Spiral data 

used in this chapter is generated according to the expressions below in Figure 4.10 with 97 data 

points for each spiral. 

             c = 1.3; //the larger, the harder to classify 2spiral 
            for i=1: 96 
                                                     angle = i*c*3.1415926/16; 
                   radius = 6.5*(104-i)/104; 
                   xA = radius*sin(angle); 
                   yA = radius*cos(angle); 
                   xB = -radius*sin(angle); 
                   yB = -radius*cos(angle); 
           end 

Figure 4.10 The psuedo code of generating 2Spiral data that is used in this section. 

 

Figure 4.11 The classification result of 2Spiral dataset using DBSCAN. The required best 

parameter setting are: 𝐸𝑝𝑠 = 1.24, 𝑀𝑖𝑛𝑃𝑡𝑠 = 2. As it shows, DBSCAN left many outside data 

points unclassified or treated as noise, which are marked with grey color dots. 
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Figure 4.12 The classification result of 2Spiral dataset using FSFDP. It classified the outside data 

points but with wrong labels. 

 
Figure 4.13 Classified 2Spiral data using the proposed first-stage DPC method. It shows that no 

misclassification occurs as each data point is classified as a partitioned cluster, marked as X. 

Color information of each cluster indicates its density scale, which is found smoothly changing 

between should-be neighbors. In the following stage of merging partitioned cluster if needed, 

2Spiral will be clustered eventually using the proposed second-stage method. 



 76 

 
Figure 4.14 The final classification result of 2Spiral dataset using the presented DDR clustering 

method. Notice that the centroid-based methods, e.g. K-means classification method, are not 

capable of classifying this dataset. 

4.3.3 Olivetti Face 

Face datasets classification is explored in many literatures [58] [59]. Olivetti Face data 

[60] is a set of 112*92-pixels (or 10,304 dimensions) scaled images of different persons with 

different face angels, facial expressions (open/closed eyes, smiling/no-smiling) and even with or 

without glasses wearing. It has complex shapes as well although one can not draw them in 

10,304 dimensional space. Unlike the time costly convolutional neural networks [6] utilizing the 

image content features, our proposed classification method is capable of providing us inspiring 

results (Figure 4.16) with a much shorter processing time based on data distances. In Figure 4.16, 

10*10 Olivetti Face images are classified as a 10-10-10-10-10-10-10-10-10-9-1 cluster. Before 

that, those 100 Olivetti Face data was clustered as 5-5-8-1-1-10-5-2-2-1-5-5-6-3-1-10-5-5-10-7-
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1-1-1 using the presented first-stage DPC method with no misclassification occurs and only 

merging some clusters is needed on them, shown in Figure 4.15. 

 

Figure 4.15 The presented first-stage DPC clustering result of 100 Olivetti Face data. Face 

images in the first column are the density centers, which present moderate face features in each 

category. The red face images are partitioned clusters that need to be processed in the second 

stage. It shows a 71% classification correction using the presented first-stage DPC method. Note 

that the classification correction for these 100 images using FSFDP is 41% in [14]. 
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Figure 4.16 Classification result of 100 Olivetti Face data using the presented DDR method with 

a total processing time of 0.5635 seconds. It shows an impressive classification result and 99% 

faces are correctly classified. Only one face image marked with red color in the last row is 

classified as an outiler. 

4.3.4 Evaluation Metric 

The standard unsupervised evaluation metric and protocols for evaluations and 

comparisons to other algorithms are used. Intuitively, this metric considers a cluster assignment 

from an unsupervised algorithm and a ground truth assignment and then finds the best matching 

between them. The best mapping can be efficiently computed using the Hungarian algorithm 

[61]. For all the approaches, the number of clusters is set to be the number of ground-truth 

categories. Clustering performance is evaluated with unsupervised clustering accuracy (ACC): 
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𝐴𝐶𝐶 = max!
𝟏{𝑙𝑖=𝑚(𝑐𝑖)}𝑛

𝑖=1
𝑛      (47) 

where 𝑙! is the ground-truth label, 𝑐! is the cluster assignment produced by the algorithm, and 𝑚 

ranges over all possible one-to-one mappings between clusters and labels. 

4.3.5 Evaluation Results 

 Comparisons on classification results on mentioned datasets using involved classification 

algorithms are shown in Table 4-1. Instead of presenting the final results as one, results of the 

two stages in the proposed DDR classification algorithm are illustrated respectively in Table 4-1. 

From Table 4-1, we can see that spectral, FSFDP and DBSCAN clustering methods works well 

with datasets with non-complex shapes. However, when the shape of datasets get complex, they 

are not efficient to give us satisfying results. 

Table 4-1 Comparisons of clustering accuracy (ACC) and processing time on seven datasets. 

Method 3Spiral* Aggregation FLAME* Jain [62] Lsun [63] 2Spiral Olivetti Face 
(N=100) 

K-means    31.73% 
(0.5035 sec) 

86.93% 
(0.5064 sec) 

83.75% 
(0.4955 sec) 

78.02% 
(0.5000 sec) 

76% 
(0.5075 sec) 

50% 
(0.4833 sec) 

84% 
(1.2887 sec) 

GMM-EM 33.33% 
(0.0932 sec) 

92.51% 
(0.1889 sec) 

72.92% 
(0.1248 sec) 

57.64% 
(0.0904 sec) 

100% 
(0.1046 sec) 

50.52% 
(0.0733 sec) 

47% 
(0.6141 sec) 

Hierarchical 35.58% 
(0.6316 sec) 

99.62% 
(5.9409 sec) 

83.33% 
(0.3618 sec) 

94.64% 
(0.9126 sec) 

72% 
(1.0002 sec) 

53.61% 
(0.2538 sec) 

32% 
(64.1721 sec) 

Spectral 100% 
(0.0378 sec) 

91.24% 
(0.0834 sec) 

98.75% 
(0.0351 sec) 

100% 
(0.0461 sec) 

100% 
(0.0469 sec) 

50% 
(0.0499 sec) 

54% 
(0.7236 sec) 

FSFDP 100% 
(0.0423 sec) 

100% 
(0.1971 sec) 

99% 
(0.0343 sec) 

100% 
(0.0342 sec) 

100% 
(0.0703 sec) 

88% 
(0.0313 sec) 

61% 
(0.0225 sec) 

DBSCAN 100% 
(0.0133 sec) 

99.75% 
(0.0510 sec) 

97.08% 
(0.0068 sec) 

92.76% 
(0.0178 sec) 

100% 
(0.0152 sec) 

73% 
(0.0105 sec) 

78 % 
(0.1594 sec) 

DDR 
1st-S 100% 

(0.0384 sec) 
78.6% 

(0.1571 sec) 
100% 

(0.0295 sec) 
37.80% 

(0.0367 sec) 
64.50% 

(0.0514 sec) 
2% 

(0.0386 sec) 
71% 

(0.0420 sec) 

2nd-S 100% 100% 
(0.2577 sec) 100% 100% 

(0.5446 sec) 
100% 

(0.5503 sec) 
100% 

(0.4359 sec) 
99% 

(0.5215 sec) 

 

As a comparison, one has to select the centers in the decision graph when applying FSFDP. 

It can not present the results automatically without manual selection on centers, otherwise there 

will be even larger classification errors. Secondly, it’s very difficult to find the required two 

parameters precisely, MinPts and Eps, when using DBSCAN because one may have no idea at 

all on how large the MinPts should be within what distance (Eps) in the beginning. You have to 
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do a lot of trial-and-errors on MinPts and Eps before finalizing them. Even though it costs the 

least time per run in Table 1 in most cases, adding the manual operation time to find the best 

parameters, the time is much longer using DBSCAN than our method. Besides, it pays more 

attentions on data’s connections instead of data’s densities in DBSCAN, which may cause larger 

classification errors (e.g. Figure 4.11). Although the total processing time of the presented DDR 

classification algorithm is not prominent, the first stage of it is competitive to others. All in all, it 

is not an easy job to seek a higher classification correction as well as guarantee a shorter 

processing time. With the employment of new concept of cross-distance-ratios, the presented 

DDR classification method is capable of providing us impressive classification results as shown 

in Table 4-1. 

4.4 Conclusion 

This chapter presented a classification algorithm, called DDR classification method, for 

classifying data with complex shapes and various dimensions based on Density and the 

minimum internal and external Distance Ratio (DDR). As it is not an easy job to classify data in 

just a one single run, a novel two-stage classification strategy is developed in the proposed DDR 

method at the cost of slower speed. Using the new proposed first-stage density-based partitional 

clustering (DPC) method, it can provide reasonable/satisfying partitional clustering results (e.g. 

Figure 4.4) and even perfect results as desired (e.g. Figure 4.3). In the second stage of the 

presented DDR classification algorithm, it will determine whether to merge some partitioned 

clusters or not based on the cross-distance-ratio curves. Besides, an effective way to identify the 

separation inside a larger cluster and between clusters is described as well by analyzing the 

external density and internal density. 
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Based on two facts that the densities are smoothly changing inside one cluster and the 

distances as well as the densities are significantly different between clusters, the proposed DDR 

classification algorithm is capable of generating satisfying results. For instance, the densities (44) 

are calculated constantly changing among a same cluster while the densities are significantly 

different between these two clusters in Figure 4.13. A new concept of minimum internal and 

external distance ratio, called cross-distance-ratio, is described and used to determine merging 

two partitioned clusters or not (e.g. Figure 4.6). For those with not significant large cross-

distance-ratio curve (e.g. Figure 4.8), the merging took place depending on the difference 

between their internal and external densities. A good example applying that strategy is shown in 

Section 4.3.2, which works quite well. Besides, the proposed DDR classification method is 

capable of classifying high-dimensional data. For the first 100 Olivetti Face photos, it provides 

us a 99% correction on classifying them using DDR classification algorithm (Figure 4.16). 

Therefor, the presented DDR classification algorithm can be considered as a replacement of 

traditional complex shape classification algorithms.  
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CHAPTER 5 DATA VISUALIZATION 

 
 

As previous discussed, clustering is one of the most important unsupervised learning 

techniques. Various clustering strategies come out for different clustering problems. Beyond that, 

in this chapter, we will demonstrate that clustering approaches can be also applied into data 

visualization. To be specific, we proposed an unsupervised multi-dimensional scaling (MDS) 

method to visualize high-dimensional data in a low-dimensional space, i.e. 2 or 3 dimensional 

(2D/3D) space. Different from traditional MDS approaches where the only purpose is to embed 

high-dimensional data into a low-dimensional space, this study aims at embedding data into a 

low-dimensional space as well as clustering them into small clusters, thus enlarging the margins 

between categories and providing better visualization. Considering the density relationships 

inherent in data, this chapter proposes a new density-concentrated multi-dimensional scaling 

(DCMDS) algorithm to perform data visualization. One benefit of the proposed DCMDS 

algorithm is the ability to embed data more accurately than traditional MDS techniques by using 

second-order gradient optimization instead of first-order gradient only. A key advantage of the 

presented DCMDS algorithm is the capability to concentrate categorical data, which enlarges the 

margins between data. In the resulted embedding, data are compact in clusters. The results 

demonstrate that the proposed DCMDS algorithm outperforms conventional MDS methods 

regarding to Kruskal stress factors. It can be easily extended into embedding in any desired low-

dimensional space.  

5.1 Introduction 

In recent years, all kinds of data have expanded with the emergence of the Big Data era, 

and accordingly, the demand of understanding these data increases. As visualization techniques 
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can provide intuitive and vivid knowledge of data, many visualization approaches [64][65] are 

developed to understand emerging data in a faster and more informative manner.  

A normally used method to achieve an accurate visualization of high-dimensional data is 

learning a low-dimensional embedding of the high-dimensional data. Low dimensional 

representation of data should reveal corresponding relationships in higher dimensions. 

Specifically, data in close proximity represent similarity and data separated by long distances 

represent dissimilarity. 

Conventional visualization methods derive from dealing with the problem of 

dimensionality reduction. Different methods are proposed in dimensionality reduction techniques, 

such as Principal Components Analysis (PCA) [25], Nonnegative Matrix Factorization (NMF) 

[26] etc. Matrix transformations are taken to obtain the principal components in a smaller matrix 

fulfilling dimensionality reduction. In general, matrix operations are easy to be realized and can 

provide results quickly. However, these dimensionality reduction approaches are not capable of 

preserving the dimensionality information except the principal components. One can expect a 

general dimensionality reduction result but at the expense of meticulous embedding.  

As a means of visualizing data while preserving dimensionality information in the form 

of distances, Multidimensional Scaling (MDS) techniques [30] are developed. A set of MDS 

techniques can be found in literatures, such as Isomap [11], locally linear embedding (LLE) [12], 

Sammon mapping [10], LAMP [33] etc. In general, an MDS algorithm is proposed to place data 

iteratively in low dimensional space such that the distances between data are preserved as well as 

possible. The majority of those techniques make different attempts to simulate the short pairwise 

distances between data, which are considered to be dependable in high-dimensional space. For 

example, LLE considers preserving only the local, small distances at the expense of not 
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including remaining distances. Furthermore, there is much uncertainty as to what defines the 

“local” range. Even though the famous Sammon mapping method optimizes all the mutual 

distances (i.e. not just local small, local distances), it suffers many overlaps between categories 

and is not guaranteed to converge. LAMP is one of the MDS techniques based on landmarks. 

Different landmarks give different MDS results. In summary, those traditional MDS methods 

still have the following shortcomings: 

1) The optimization on distance preservation only uses the first-order gradient method, 

which is easily trapped in local minima.  

2) Narrow margins among clusters create overlapping in the mapped results.  

3) Most existing methods only consider distances between data in embedding, whereas 

additional factors could provide desirable information.  

In this chapter, we revisit MDS techniques and ask: Can we use an unsupervised learning 

approach to conduct MDS purpose for visualization and clustering jointly? In order to improve 

the stated shortcomings of traditional MDS methods, optimization based MDS with unsupervised 

clustering may provide both a promising and effective solution. Optimization methods using 

second-order gradient descent have the ability to produce more accurate results than first-order 

methods due to their stronger ability to escape from local minima. However, second-order 

gradients often bring heavy computation load. In unsupervised learning, clustering is one of the 

advanced techniques that can provide data category information. Regarding to what the users 

want to get from the MDS results, cluster automatic formation is thought to be one of the highest 

demanded expectations. Other expectations include larger margins between clusters, individual 

data relationships, etc. Therefore, in order to utilize the second-order gradient approach to fulfill 

MDS purpose with cluster automatic formation as well as possible, this chapter proposes a new 
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Density-Concentration Multi-Dimensional Scaling (DCMDS) algorithm. The key idea behind the 

proposed DCMDS algorithm is to use density based clustering and incorporate it with 

Levenberg–Marquardt (LM) optimization based MDS. This algorithm presents an alternative 

MDS approach using LM optimization and density concentration, yielding improved MDS 

performance. The main contributions of this chapter are summarized as follows: 

1) We propose a new unsupervised algorithm for general MDS purpose based on the LM 

optimization method. As the LM method can automatically switch between first-order gradient 

and second-order gradient optimization methods, the MDS technique using LM optimization 

shows great improvement in mapping data because of its ability to escape from local minima.  

2) To obtain a better visualization on data category information, density based clustering 

is integrated in the MDS process. In the mapping results, data move based on their mutual 

distances as well as their density relationships. Because of this, better cluster gathering and larger 

cluster margins are achieved during mapping without knowing any category knowledge.  

3) Our proposed algorithm is evaluated and compared with other MDS approaches, 

including Sammon mapping, Isomap, LLE and LAMP. When evaluated on experiments 

involving mapping several real life data on a 2D plane, the DCMDS algorithm outperforms 

traditional MDS approaches.  Moreover, it has the ability to provide mapping results in any 

desired dimensional space. 

The rest of this chapter is organized as follows. Section 5.2 briefly reviews the related 

concepts, followed by our detailed DCMDS algorithm for data visualization. Section 5.3 

demonstrates the experimental results on several high-dimensional datasets to evaluate the 

effectiveness of the proposed algorithm. Finally, Section 5.4 draws the conclusions.  
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5.2 Density-Concentrated MDS Algorithm 

MDS is a technique used for embedding high-dimensional data into a low-dimensional 

space where the distances in the low dimension well represent the distances in the original, high-

dimensional space. As data with short distances are similar to each other, MDS can also be 

applied to analyze the similarity, dissimilarity, or relationships between data. The general cost 

function of MDS on a 2D plane is defined in (48), where n is the data number. The general goal 

of MDS approaches is to minimize the cost function. 

𝐸𝑟𝑟 = ( (𝑥! − 𝑥!)! + (𝑦! − 𝑦!)! − 𝑑!")!!
!!!!!

!!!
!!!     (48) 

In general, there exists two types of MDS algorithms: metric and non metric.  

1) In metric MDS approaches, the actual values of the dissimilarities are used. The 

distances between datapoints are then set to be as close as possible to the similarity or 

dissimilarity data. Sammon mapping and LAMP techniques are two of the standard metric MDS 

approaches. 

2) In non-metric MDS approaches, the algorithms will try to preserve the order of the 

distances, and hence seek for a monotonic relationship between the distances in the embedded 

space and the similarities/dissimilarities. In non-metric MDS techniques, such as Isomap, LLE, 

etc., most of the choices for criterion become undefined when two datapoints are at the same 

location (“co-located”) because of the same distances between data. When “co-located” happens, 

it will suspend non-metric MDS processing without an MDS solution. 

5.2.1 Density Based Clustering 

Given the assumption that cluster centers are surrounded by neighbors with lower local 

densities and are at a relatively large distance from any data with a higher local density, density 
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based clustering methods [13][14] are capable of fulfilling unsupervised clustering task with 

satisfying results. There are three steps according to density based clustering approaches [14].  

Step 1: Calculate the data local density 𝜌!. Regarding to density computation, a Gaussian 

kernel based density contribution is given as (49).  

𝜌! = exp (−(!!"
!!
))!!!!      (49) 

Here, 𝜌! is the local density of data 𝑖. 𝑑!" is the distance between data 𝑖 and 𝑗. 𝑑! is the 

cutoff distance. 

Step 2: Calculate the minimum distance δ_i between data i and any other data with a 

higher local density. The calculation of δ_i is given in (7). 

𝛿! =
min(𝑑!"), 𝜌! > 𝜌!
max(𝑑!"), 𝜌! < 𝜌!  

      (7) 

Here, 𝑗 = 1,2,… ,𝑛𝑝 𝑎𝑛𝑑 𝑗 ≠ 𝑖. 

Step 3: Generate the decision graph. Aim to choose the data with large local density 𝜌! as 

well as large minimum distance 𝛿! as the cluster centers. The decision graph is generated with x-

coordinate is 𝜌! and y-coordinate is 𝛿!. 

After the selection of cluster centers in the decision graph, data will be assigned into 

different clusters based on the minimum distances δs.  

5.2.2 Density-Concentrated MDS Algorithm for Data Visualization  

The proposed algorithm focuses on projecting high-dimensional data into a low (2D/3D) 

space. The overall algorithm of the proposed DCMDS is illustrated in Algorithm 5-1. The 

benefits of the proposed DCMDS algorithm include applying first-order and second-order 

gradient descent methods to optimize data locations and using density relationships between data 



 88 

to concentrate clusters and enlarge margins between them. It simultaneously learns MDS 

embedding and clustering. 

A. MDS process in the proposed DCMDS algorithm 

The cost function of MDS methods in (48) leads to an alternating non-linear least-squares 

optimization process, where we alternate between re-computing different data, and each step and 

iteration is guaranteed to lower the value of the cost function. In most cases, the optimization 

process is fulfilled using first-order instead of second-order gradient approaches, allowing the 

process to be trapped in local minima. The Levenberg-Marquardt (LM) method, which is 

developed to solve non-linear least squares problems iteratively, finds the best solutions by 

switching between first-order and second-order gradient approach via a damping parameter. 

Unlike the second-order gradient methods, which are of heavy computation, the LM method 

approximates the second-order gradient with the first-order gradient. In this chapter, the LM 

method is adopted as the MDS technique to determine data positions. In the proposed DCMDS 

algorithm, MDS embedding process has two phases: (1) data position initialization using matrix 

eigen-decomposition and (2) data postion optimization using LM method. 

1) Getting initial data positions for LM method via matrix eigen-decomposition. 

Instead of randomly generating initial positions, the matrix eigen-decomposition 

technique is used to provide us initial positions very fast on a 2D plane or 3D space. It can 

accelerate the non-linear least squares optimization process.  

Suppose DMat is the distance matrix that contains all the between-data distances and 

DMat(i, j) returns the distance between data i and j. Then, the initial data positions on a 2D plane 

are give as (56) via matrix eigen-decomposition. 

𝑆𝐷 = 𝐷𝑀𝑎𝑡.∗ 𝐷𝑀𝑎𝑡      (50) 
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𝑡𝑖 = 𝑠𝑢𝑚 𝑆𝐷 𝑖, :       (51) 

𝑡𝑗 = 𝑠𝑢𝑚 𝑆𝐷 : , 𝑗       (52) 

𝑡𝑎 = 𝑠𝑢𝑚(𝑠𝑢𝑚(𝑆𝐷)      (53) 

𝑀 𝑖, 𝑗 = !
!
𝑡𝑖 + 𝑡𝑗 − 𝑡𝑎 − 𝑆𝐷 𝑖, 𝑗     (54) 

𝑉,𝐷 = 𝑒𝑖𝑔𝑠 𝑀       (55) 

More detailed 𝑒𝑖𝑔𝑠 operation can be found in [66][67]. Diagonal matrix D contains the 

eigenvalues on the main diagonal. The columns of matrix V are the corresponding eigenvectors. 

Note that the first eigenvalue 𝐷(1,1) is zero, which should be neglected. 

𝑃(!) = 𝐷 2: 3,2: 3 ∗ 𝑉(: ,2: 3)′     (56) 

Next, with the initial positions, embedded data is optimized iteratively using LM method. 

2) LM method 

LM method [68] is applied for minimizing the least-square cost function (48) in the 

DCMDS algorithm. In order to return better gradient-based optimization results, the second-

order derivatives of the total error function are considered. However, the calculation of Hessian 

matrix 𝐻, which contains the second-order derivatives of cost function, is often complicated. In 

order to simplify the computing process [69], the Jacobian matrix 𝐽 is introduced to approximate 

Hessian matrix 𝐻. 𝐽 is the matrix of all first-order derivatives of the cost function with respect to 

data’s coordinates. For the cost function, the m’th row of Jacobian matrix is 𝐽!∶ = [!"##
!!!

 !"##
!!!

]. 

𝐻 ≈ 𝐽!𝐽      (57) 
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In order to make sure that the approximated Hessian matrix J!J  is invertible, LM 

algorithm introduces another approximation to Hessian matrix: 

𝐻 ≈ 𝐽!𝐽 + 𝜇𝐼     (58) 

where µ is combination coefficient with positive value; I is the identity matrix with the size of 

2*2 for 2D MDS.  From equation (58), one may notice that the elements on the main diagonal of 

the approximated Hessian matrix will be larger than zero. Therefore, with this approximation, it 

can be sure that matrix H is always invertible. 

Now, the update rule of Levenberg-Marquardt algorithm can be presented as follows. 

∆= (𝐽!𝐽 + 𝜇𝐼 )!! ∗ 𝐽 ∗ 𝐸𝑟𝑟     (59) 

𝑥 = 𝑥 + ∆ 1       (60) 

𝑦 = 𝑦 + ∆(2)      (61) 

As the combination of the steepest descent and second-order gradient algorithms, the LM 

algorithm switches between the two algorithms during the least-squares minimization process. 

When the combination coefficient µ is very small (nearly zero), (59) approaches the second-

order algorithm; when the combination coefficient µ is very large, (59) approaches the steepest 

descent method. 

B. Density-Concentration process in the proposed DCMDS algorithm 

Density based clustering methods assume that cluster centers are surrounded by 

neighbors with lower local densities. In other words, data with smaller local densities should 

move close to data with larger local densities when embedding. The general new idea behind this 

is the density concentration process, where each data will be mapped closer to its nearest 

neighbor data in the density field.  
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 Step 1: Calculate the data local density 𝜌! using (49). 

Step 2: Generate nearest neighbor map (NNM) in the meantime of calculating the 

minimum distance δ (7). Nearest neighbor information will be stored in NNM, where data 

connects to its nearest neighbor of larger local density, with their distance equal to δ. For 

instance, if the minimum distance δ for data point m is found to be 𝛿! from data point 𝑚 to data 

point 𝑛, then data point 𝑛 is the nearest neighbor of data point 𝑚 in the density field. Notice that 

data’s nearest neighbor always has a larger local density, with their distance as δ. The datum 

with the largest local density connects to itself in the NNM.  

Moving rate: 𝜆 = 1− !(!)
!"# (!)

∗ !(!)
!"# (!)

           (62) 

If λ is larger, the data will move more to its nearest neighbor in the density field but 

might not in the distance field. The embedded data 𝑃(!)  in the 𝑡-th iteration after density 

concentration process will be as follows. 

𝑃(!) = 𝑃(!!!) + 𝜆 ∗ (𝑃!! − 𝑃(!!!))     (63) 

C. DCMDS algorithm 

Although it is illustrated in this chapter that the LM method is capable of providing a 

better visualization than traditional MDS techniques, LM alone is not enough to generate 

impressive MDS results. Fortunately, by combining LM with the benefit of density concentration, 

the proposed DCMDS algorithm can generate inspiring MDS results. Detailed DCMDS 

algorithm is presented in Algorithm 5-1. 

Algorithm: Simple version of the proposed DCMDS 
Purpose: MDS 
Input: Unlabeled raw data 
Output: Embedded data P in desired dimension (i.e. 2D) 
Algorithm: 
    compute 𝑑;   % between-data distances 
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    compute 𝜌;   % each datum’s local density using (49); 
    generate NNM;  

         initial solution 𝑃(!) from matrix eigen-decomposition;  % (56) 
    𝛼 = 0.5; 𝛽 = 0.5;  % 𝛼 + 𝛽 = 1 
    for 𝑡 = 1 to 𝑇 do   % 𝑇 is the number of iterations 
       compute 𝑃(!) using LM algorithm based on the previous solution 𝑃(!!!); 
       compute moving rate 𝜆;   %  (62) 
      set 𝑃(!) = 𝛼 ∗ 𝑃(!) + 𝛽 ∗ (𝑃(!!!) + 𝜆 ∗ (𝑃!! − 𝑃(!!!)));  (64) 
             % 𝑃!! is data’s nearest neighbor found in NNM. 
    end  

Algorithm 5-1 Simple version of the proposed DCMDS 

5.3 Experimental Results 

In this section, the proposed DCMDS algorithm is evaluated using experiments on 

several real-world data. All the experiments are implemented based on the same software and 

hardware: Matlab R2013a in OS X operating system with Intel Core i5 (I5-4258U) @2.4GHz 

8.00GB memory. 

5.3.1 Human Activity Recognition (HAR) Using Smartphone Dataset 

 Nowadays, more and more carry-on devices are invented to measure human activities, e.g. 

work out statistics etc. Visualization techniques can provide us a good knowledge of our activity 

record, such as HAR [70] data. HAR consists of 7,352 data with 561 dimensions/attributes, built 

from the recordings of thirty volunteers performing activities of daily living while carrying a 

waist-mounted smartphone with embedded inertial sensors that are in charge of collecting the 

raw data information. These points belong to one of the following six categories: C1-walking, 

C2-walking upstairs, C3-walking downstairs, C4-sitting, C5-standing, and C6-laying.  

Figure 5.1-Figure 5.5 show the experiment results for Sammon mapping, Isomap, LLE, 

LAMP and the proposed DCMDS, respectively, on the HAR dataset. In Figure 5.1, Sammon 

mapping shows two distinct clusters with overlapping classes in each cluster.  In Figure 5.2, 

Isomap shows two distinct, dense clusters with overlapping classes of even less distinction 
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compared to Figure 5.1.  LLE in Figure 5.3 shows nearly no distinction among classes outside of 

being in the left or right loosely collected clusters.  Similar to Sammon mapping, LAMP in 

Figure 5.4 shows two distinct clusters with little distinction between classes within each cluster. 

In contrast, DCMDS in Figure 5.5 shows distinct clusters with better defined class 

separation within each cluster.  Whereas some of the competing methods show sharp class 

distinction for no more than a few classes, DCMDS shows distinct separation in almost every 

part of the map, save the two overlapping classes designated in pink and yellow.  The optimal 

performance of DCMDS for this dataset is verified in a later performance evaluation. 

 

Figure 5.1 Sammon mapping on HAR. (time=88.77 sec) 
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Figure 5.2 Isomap on HAR. (time=34.13 sec) 

 

Figure 5.3 LLE on HAR. (time=1.39 sec) 
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Figure 5.4 LAMP on HAR. (time= 9.73 sec) 

 

Figure 5.5 DCMDS on HAR. (time= 27.21 sec). 
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5.3.2 MNIST Handwritten Digits Dataset 

MINST handwritten digits [71] recognitions have been considered as one of the most 

complex and difficult problems to be solved. It consists of 60,000 photos with the size of 28*28 

(or 784 dimensions).  

Figure 5.6-Figure 5.10 contain experiment results on first 6,000 photos of the MNIST 

dataset using Sammon mapping, Isomap, LLE, LAMP and the proposed DCMDS, respectively.  

In Figure 5.6, Sammon mapping shows all data is contained in a large circle with many 

overlapping classes due to being trapped in local minima, demonstrating poor visualization; this 

technique is only able to distinguish a single class. Figure 5.7 shows that Isomap is able to 

distinguish the same class as Sammon mapping in a more compact, distinctive manner, yet 

struggles to show good visualization on the remaining overlapping classes. LLE visualization in 

Figure 5.8 demonstrates better visualization than the former methods with a tight, distinct class 

clusters on the edges, but still has little distinction in the center.  LAMP visualization also has 

small distinction in the edges, with most of the data barely distinguishable in the center. Unlike 

the other methods, the proposed DCMDS in Figure 5.10 shows distinct classes with significantly 

less overlap with visual separation between clusters.  Similar to the HAR dataset, the proposed 

DCMDS’s superiority is later verified in a performance evaluation. 
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Figure 5.6 Sammon mapping on MNIST. (time=11,362.07 sec) 

 

Figure 5.7 Isomap on MNIST. (time=163.25 sec) 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10

15



 98 

 

Figure 5.8 LLE on MNIST. (time=29.65 sec) 

 

Figure 5.9 LAMP on MNIST. (time=67.92 sec) 
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Figure 5.10 DCMDS on MNIST. (time= 1,283.85 sec) 

5.3.3 Olivetti Face Dataset 

Olivetti face data [72] is a set of 112*92 (or 10,304 dimensions) images of different 

persons with different face angels, expressions and even with or without glasses wearing. In 

Figure 5.12, Sammon mapping shows relatively strong visualization results, with some 

overlapping classes seen throughout the map.  Isomap, LLE, and LAMP in Figure 5.13-Figure 

5.15 all fail to provide distinct class separation.  In contrast, the DCMDS results in Figure 5.16 

provide significant class distinction, far outperforming all other methods.  Only a single datum is 

incorrectly mapped. The Olivetti face dataset clearly shows great performance of the DCMDS 

algorithm compared to the competing methods. 
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Figure 5.11 Original Olivetti face images. (100 samples) 

 

Figure 5.12 Sammon mapping on Olivetti Faces. (time=1.04 sec) 
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Figure 5.13 Isomap on Olivetti Faces. (time=0.13 sec) 

 

Figure 5.14 LLE on Olivetti Faces. (time=0.09 sec) 

 

Figure 5.15 LAMP on Olivetti Faces. (time=0.12 sec) 
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Figure 5.16 DCMDS on Olivetti Faces. (time=1.09 sec) 

 

Figure 5.17 DCMDS with Olivetti face photos. 

5.3.4 Performance Evaluation 

The concept of using a loss function to evaluate performance of MDS came with J.B. 

Kruskal [9] and gave us the concept of minimizing a loss function called stress. The disparity in 

stress is a measure of how well the Euclidean distance in low-dimensional space matches the 

dissimilarity, which is usually the Euclidean distance in high-dimensional space. 
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It’s proven in the original paper that the order of the original dissimilarities is preserved 

by the disparities. A loss function L, which is really stress, is defined as follows 

𝐿 = 𝑠𝑡𝑟𝑒𝑠𝑠 = (!!"!!!")!!!!
!!"!!!!

     (65) 

where 𝑑!" is the Euclidean distance in low-dimensional space between point r and s. 𝑑!" is the 

disparity corresponding to 𝑑!".  The order that indicates {𝑟 < 𝑠} is determined by the Euclidean 

distance relationships in high-dimensional space. When the MDS map perfectly reproduces the 

input data, 𝑑!" − 𝑑!" is zero for all r and s, so stress is zero. Thus, generally speaking, the 

smaller the stress, the better the representation. A detailed Kruskal stress factors using different 

MDS approaches for different datasets are listed in Table 5-1. 

Table 5-1 Comparisions of Kruskal stress on experimental data 

  HAR 
(𝑁!=2,000) 

MNIST 
(𝑁!=6,000) 

Olivetti Face 
(𝑁!=100) 

Sammon 
mapping s = 0.1481 s = 0.4320 s = 0.2678 

Isomap s = 0.2254 s = 0.3930 s = 0.3123 
LLE s = 0.6750 s = 0.7896 s = 0.6187 
LAMP s = 0.1566 s = 0.4051 s = 0.3134 
DCMDS s = 0.1422 s = 0.3408 s = 0.2563 

(𝑁!: test data points number) 

The results clearly demonstrate a consistent superior performance of the DCMDS 

approach.  Although other methods may have positive results (but still worse than DCMDS) on 

some of the datasets, our method succeeds each time. As the iterative methods are not advanced 

in processing time, e.g. Sammon mapping and the DCMDS methods, our method is not favorable 

in fast mapping techniques. However, the Kruskal stress factor results, in combination with the 

ability to produce visual class distinctions, favor the DCMDS approach as a highly successful 

data visualization method. 
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5.4 Conclusion 

The major innovation of the new algorithm is the incorporation of density concentration 

into our improved MDS with LM optimization. The DCMDS algorithm can reveal both the 

distance relationships as well as the density relationships between data categories, and therefore 

successfully provide us a better visualization on data. Experimental figures also give us vivid 

visualization results. Compared with other state-of-the-art MDS methods, our proposed DCMDS 

achieve the best performance. More importantly, DCMDS provides an integrated density based 

MDS approach to perform small cluster formations and embedding simultaneously without any 

prior knowledge, which can be easily applied to project data into any desired space. Besides, the 

proposed DCMDS algorithm can be very useful and heuristic for combining unsupervised 

clustering methods with traditional MDS techniques in further study. 

In summary, the proposed DCMDS algorithm has several important merits as follows: 

1) General-MDS-purpose. DCMDS algorithm applies LM method to find the embedded 

locations for data based on their mutual distances and therefore is a general-purpose MDS 

approach. Thus, it is suitable to conduct dimensionality reduction, visualization， and other 

purposes that general MDS approaches are used for. Besides, it is capable of escaping “co-

located” problems that appear in traditional MDS techniques. 

2) Microclusters forming. Density based clustering methodology (an unsupervised 

technique) is used to concentrate clusters so that the margins between clusters are enlarged. As 

clusters are formed and separations between clusters expand, a better visualization of 

microclusters is expected. 

3) Absence of parameter setting/integrated. Simple and efficient, the DCMDS algorithm 

integrates cluster concentration based on local densities with MDS approach based on LM 
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optimization by linear combination set (64). It is easy to be interpreted and fulfilled. Most 

importantly, it is parameter-setting free and unsupervised.  
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CHAPTER 6 VISUALIZING RELATIONS BETWEEN DATA 

 
 

In the last chapter, we introduced our DCMDS algorithm to visualize high-dimensional 

data in a low-dimensional space. It is capable to generate satisfying mappings with better 

separation between microclusters and better concentration in clusters. Beyond that, if we can 

reveal the relations between data during visualization process, it can be even cheerful. As this 

world connected more and more tight by all sorts of data, it’s far more than valuable to analyze 

the relations between data. In this chapter, we will extend our DCMDS algorithm to a degree that 

it has the capability to show the relations between data. Experiments on real world data are 

conducted to verify our attempts.  

The rest of this chapter is organized as follows. Section 6.2 introduces the nearest 

neighbor map, which contains data relation information. Section 6.3 presents our proposed 

DCMDS-RV algorithm for data relations visualization. Section 6.4 demonstrates the 

experimental results on several high-dimensional datasets to evaluate the effectiveness of the 

proposed algorithm. Finally, Section  draws the conclusions. 

6.1 Introduction 

Except for data dimension reduction, our goal is to visualize complex high-dimensional 

data as networks, or graphs in low-dimensional space. As mentioned in Section 5.1, traditional 

MDS methods still have one more shortcoming: 

1) Connected relations are not shown in the embedded results. 

In this chapter, we revisited our DCMDS algorithm and asked the question: Can we 

reveal relations between data in the resulted embedding? The answer is definitely yes because 

there are many relations we can use, e.g. neighbors, nearest neighbors etc. Therefore, in order to 
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utilize our DCMDS algorithm to fulfill relation visualization purpose, we propose a Density-

Concentrated Multi-Dimensional Scaling algorithm for relations visualization, called DCMDS-

RV. The key idea behind the proposed DCMDS-RV algorithm is to use density based clustering 

in DCMDS to generate the nearest neighbor map and show the map in DCMDS results. Other 

than the merits of DCMDS, the main contribution of DCMDS-RV is summarized as follows: 

In order to reveal the relations between data, nearest neighbor map (NNM) is generated 

along DCMDS algorithm and no extra step is needed. The relations between data are shown in 

the embedded results as connected lines, providing a more vivid and intuitive view of data.   

6.2 Relations between Data 

Before showing relations between data in the DCMDS results, we should think about 

what kind of relations/connections we want to be visualized. Based on the common notation that 

if two data points are connected in a graph, they are thought to be related and, more specifically, 

similar. As neighboring information contained the data similarities, it is preferable to reveal the 

nearest neighbor relations in the embedding results.   

6.2.1 Density Based Clustering  

In our DCMDS-RV algorithm, the utilized density based clustering follows the same 

strategy shown in Section 5.2.1.   

6.2.2 Relations Based on Data Density in Density Based Clustering 

Density based clustering methods assume that cluster centers are surrounded by 

neighbors with lower local densities. In other words, data with smaller local densities should 

move close to data with larger local densities when embedding. The general new idea behind this 

is the density concentration process, where each data will be mapped closer to its nearest 

neighbor data in the density field. Two steps are needed in generating nearest neighbor map: 
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Step 1: Calculate the data local density 𝜌! using (49). 

Step 2: Generate nearest neighbor map (NNM) in the meantime of calculating the 

minimum distance δ (7). Nearest neighbor information will be stored in NNM, where data 

connects to its nearest neighbor of larger local density, with their distance equal to δ. For 

instance, if the minimum distance δ for data point m is found to be 𝛿! from data point m to data 

point n, then data point n is the nearest neighbor of data point m in the density field. Notice that 

data’s nearest neighbor in NNM always has a larger local density, with their distance as δ. The 

datum with the largest local density connects to itself in the NNM. This also generates the 

relations between data in the density field, which are shown connected in the resulted embedding. 

A simple example of NNM for a two-dimensional dataset is shown in Figure 6.1. 

 

Figure 6.1 An illustration example of NNM for two-dimensional dataset-FLAME [39]. The 

colors of data stand for different density values. In NNM, data’s nearest neighbor always has a 

larger local density, with their distance as δ. 
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6.3 Visualizing Relations between Data 

There will be one more step compared with DCMDS in our DCMDS-RV method. The 

detailed algorithm is illustrated as follows. 

Algorithm: DCMDS-RV 
Purpose: MDS for Relations Visualization 
Input: Unlabeled raw data 
Output: Embedded data P in desired dimension (i.e. 2D) with relations revealed 
Algorithm: 
    compute 𝑑;   % between-data distances 
    compute 𝜌;   % each datum’s local density using (49); 
    generate NNM;  

         initial solution 𝑃(!) from matrix eigen-decomposition;  % (56) 
    𝛼 = 0.5; 𝛽 = 0.5;  % 𝛼 + 𝛽 = 1 
    for 𝑡 = 1 to 𝑇 do   % 𝑇 is the number of iterations 
       compute 𝑃(!) using LM algorithm based on the previous solution 𝑃(!!!); 
       compute moving rate 𝜆;   % (62) 
      set 𝑃(!) = 𝛼 ∗ 𝑃(!) + 𝛽 ∗ (𝑃(!!!) + 𝜆 ∗ (𝑃!! − 𝑃(!!!)));  (66) 
             % 𝑃!! is data’s nearest neighbor found in NNM. 
    end 
    connect each datum to its nearest neighbor in NNM. 

Algorithm 6-1 DCMDS-RV algorithm. 

6.4 Experimental Results 

Several real-life datasets are illustrated in this section to demonstrate the effectiveness of 

proposed DCMDS-RV algorithm. All the experiments are implemented based on the same 

software and hardware: Matlab R2013a in OS X operating system with Intel Core i5 (I5-4258U) 

@2.4GHz 8.00GB memory. 

6.4.1 Human Activity Recognition (HAR) Using Smartphone Dataset 

Data generated and recorded by smart devices are growing explosively and becoming 

more and more important to analyze our behaviors. HAR [70] consists of 7,352 data with 561 

dimensions/attributes, built from the recordings of thirty volunteers performing activities of daily 

living while carrying a waist-mounted smartphone with embedded inertial sensors that are in 

charge of collecting the raw data information. These points belong to one of the following six 
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categories: C1-walking, C2-walking upstairs, C3-walking downstairs, C4-sitting, C5-standing, 

and C6-laying.  

Figure 5.1 to Figure 5.4 show the experiment results for Sammon mapping, Isomap, LLE, 

and LAMP, respectively, on the HAR dataset. In these figures, little distinction or no distinctions 

are shown in clusters. 

In contrast, DCMDS-RV in Figure 6.2 shows distinct clusters with better defined class 

separation within each cluster. What’s more, the relations between data are clearly shown as well, 

helping to better understand data topology.  Whereas some of the competing methods show sharp 

class distinction for no more than a few classes, DCMDS-RV shows distinct separation in almost 

every part of the map, save the two overlapping classes designated in pink and yellow.  The 

optimal performance of DCMDS-RV for this dataset is verified in a later performance evaluation. 

 

Figure 6.2 DCMDS-RV on HAR. (time= 27.21 sec). 
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6.4.2 MNIST Handwritten Digits Dataset 

MINST handwritten digits [71] recognitions have been considered as one of the most 

complex and difficult problems to be solved. It consists of 60,000 photos with the size of 28*28 

pixels (784 dimensions). Sample MNIST digits are shown in Figure 6.3. 

Figure 5.6-Figure 5.10 contain experiment results on first 6,000 photos of the MNIST 

dataset using Sammon mapping, Isomap, LLE, and LAMP, respectively.  In these figures, it’s 

hard to distinguish one cluster from other clusters. Unlike the other methods, the proposed 

DCMDS-RV in Figure 6.5 shows distinct classes with significantly less overlap with visual 

separation between clusters. Besides, the NNM is revealed in Figure 6.4 so that the relations 

between data can be favorably visualized (Figure 6.5). Figure 5.10 shows the resulted figure 

without showing the relations. Similar to the HAR dataset, the proposed DCMDS-RV’s 

superiority is later verified in a performance evaluation. 

 

Figure 6.3 Sample MNIST data (first 100 digits). 
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Figure 6.4 NNM for MNIST using DCMDS-RV. 

 

Figure 6.5 DCMDS-RV on MNIST. (time= 1,283.85 sec) 
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6.4.3 Olivetti Face Dataset 

Olivetti face data [72] is a set of 112*92 (or 10,304 dimensions) images of different 

persons with different face angels, expressions and even with or without glasses wearing, as 

Figure 6.6 shows. In Figure 5.12, Sammon mapping shows relatively strong visualization results, 

with some overlapping classes seen throughout the map.  Isomap, LLE, and LAMP in Figure 

5.13-Figure 5.15 all fail to provide distinct class separation.  In contrast, the DCMDS-RV results 

in Figure 6.7 provide significant class distinction with each datum collected to another, far 

outperforming all other methods.  Face data are favorably viewed in a graph, which looks like 

tree branches. Only a single datum is incorrectly related.  The Olivetti face dataset clearly shows 

great performance of the DCMDS-RV algorithm compared to the competing methods. Face 

images (Figure 6.6) are eventually categorized into classes using the presented approach, shown 

in Figure 6.8.  

 

Figure 6.6 Original Olivetti face images. (100 samples) 
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Figure 6.7 DCMDS-RV on Olivetti Faces. (time=1.09 sec) 

 

Figure 6.8 Corresponding face images of Figure 6.7. 
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6.4.4 Wikipedia 2014 Words Dataset (Text Relation Visualization) 

Analysis on text such as text relation extraction reveals useful information. Here, 

wikipedia corpuses are visualized using the proposed approach. Wikipedia corpuses [73] contain 

the full text of Wikipedia, and they contain 1.9 billion words in more than 4.4 million articles. It 

allows you to search Wikipedia in a much more powerful way than is possible with the standard 

interface. You can search by word, phrase, part of speech, and synonyms. It relates to 

microbiology, economics, basketball, Buddhism, or thousands of other topics. Wikipedia 2014 

words dataset is the Wikipedia corpuses of year 2014, with a vocabulary of the top 200,000 most 

frequent words. In the result of Figure 6.9, the proposed approach provides an impressive 

visualization on text. The graph topology is successfully shown between text. Four zoomed-in 

regions in the resulted graph are clearly illustrated in Figure 6.10, where related words are 

connected as topology. 

 

Figure 6.9 DCMDS-RV on Wikipedia 2014 Words (956 samples).  
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Figure 6.10 Zoomed-in visualization results in the corresponding marked region in Figure 6.9. 

6.4.5 Performance Evaluation 

The Kruskal stress factor (Section 5.3.4) is used to evaluate the mentioned MDS 

techniques. A detailed Kruskal stress factors using different MDS approaches for different 

datasets are shown in Figure 6.11. 
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Figure 6.11 Kruskal stress factors for the four experiments using Sammon mapping, Isomap, 

LLE, LAMP, and DCMDS-RV. Experiments 1: HAR; 2: MNIST; 3: Olivetti Face; 4: Wikipedia 

2014 Words. 

6.5 Conclusion 

This chapter presents a new MDS algorithm called DCMDS-RV for data relation 

visualization in a low-dimensional space. It takes advantage of DCMDS algorithm and can 

reveal both the distance relationships as well as the density relationships between data, and 

therefore successfully provide us a better visualization on all sorts of high-dimensional data as 

graph topology. NNMs are generated along the algorithm, which can provide data nearest 

neighbor information in density field, showing how data are connected to the others. Unlike the 

traditional MDS approaches with only one purpose of embedding data, the proposed DCMDS-

RV algorithm is capable of showing how the data are related/connected to the others. With the 

connections between related data shown, more information can be revealed in the embedded 

results. Experimental figures also give us vivid visualization results with relations shown. 
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Compared with other state-of-the-art MDS methods, our proposed DCMDS-RV achieves better 

performance.  
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CHAPTER 7 CONCLUSION AND FUTURE WORK 

 
 

In this work, three clustering methods including the clustering method based on grid and 

density peaks, fast density and grid based clustering method and the clustering method by 

analyzing density and minimum internal and external distance ratios have been addressed to 

solve the data clustering tasks with complex shapes and noise. Moreover, visualization technique 

with clustering purpose as the auxiliary methodology has been introduced to fulfill Multi-

Dimensional Scaling tasks and data relations visualization. These works are summarized in this 

chapter, and furthermore, the suggestions for future work are also provided. 

7.1 Summary of Research 

Throughout this work, all the objectives shown in Section 1.4 have been well 

accomplished. To be specific, the fulfillments are as follows: 

• Accelerated data clustering.  

Clustering method by finding density peaks has the potential capability to deal with data 

with complex shapes and various dimensions. However, it is computationally expensive.  A grid-

based clustering method by finding density peaks is proposed, which is fast and has the 

computation complexity of 𝑂(𝑛 ∗ 𝑔𝑟𝑖𝑑_𝑠𝑖𝑧𝑒). It introduces the fuzzy assignment to compute 

grid node’s density. Experimental results show that it is practical to classify data (even with 

noise) into different categories. In terms of efficiency and effectiveness, experiments on real-

world datasets show that the proposed method significantly outperforms the original clustering 

method by finding density peaks in the process of calculating the local densities and assigning 

data points into different categories due to the use of the standard grid and sparse matrix 

technique respectively. 
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• Capable of clustering data that have complex shapes and noise. 

Grid based clustering algorithms are favored for their processing speed. A density and 

grid based clustering method is developed, which takes advantage of grid based clustering. It is 

designed for the task of clustering data with arbitrary shapes and noise, which most of the other 

clustering approaches are not capable of. A novel strategy of finding mountain ridges as the 

outlook of a cluster is explained. Moreover, specific classification of border patterns and noises 

is discussed as well. Therefore, instead of giving a specific desired number of clusters, the 

presented density and grid based clustering algorithm finds clusters automatically. By setting a 

density threshold as noise, the proposed method is also capable of detecting white and non-white 

noise. Without the calculation of Euclidean mutual distances between patterns, it successfully 

decreases enormously computation complexity to the equation 𝑂(𝑛 ∗ 𝑛𝑧𝑛𝑜𝑑𝑒). Besides, a soft 

decision strategy using fuzzy approximation is proposed to compute node’s density instead of 

simply counting the number of data in the cell or computing all other data density contributions. 

It turns out that the presented density and grid based clustering method is capable of clustering 

datasets with arbitrary shapes, outperforming the conventional K-means, FSFDP and DBSCAN 

methods. 

• Improved clustering accuracy. 

As it is not an easy job to classify data in just one single run, a two-stage clustering 

strategy is developed based on density and the minimum internal and external distance ratio. In 

the first-stage, density-based partitional clustering can provide reasonable/satisfying partitional 

clustering results and even perfect results as desired. A new concept of minimum internal and 

external distance ratio, called cross-distance-ratio, is used to determine to merge two partitioned 

clusters or not. So in the second stage, it will determine whether to merge some partitioned 
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clusters or not based on the cross-distance-ratio curves. Besides, an effective way to identify the 

separation inside a larger cluster and between clusters is described as well by analyzing the 

external density and internal density. Based on two facts that the densities are smoothly changing 

inside one cluster and the distances, as well as the densities, are significantly different between 

clusters, the proposed clustering algorithm is capable of generating satisfying results. Therefore, 

the presented clustering algorithm based on density and the minimum internal and external 

distance ratio can be considered as a replacement of traditional complex shape clustering 

algorithms. 

• Found a more accurate solution for MDS purpose. 

• Enlarged the cluster separation regions in the embedding results. 

High dimensional data cannot be viewed on a two-dimensional plane. In order to see 

these data, dimension reduction is needed. Multi-Dimensional Scaling (MDS) techniques are 

explored to visualize high dimensional data in a low dimensional space. In this work, density 

concentration is incorporated into the improved MDS with LM optimization. Different from 

other traditional MDS approaches, the presented algorithm involves an unsupervised approach 

along the process of MDS, without extra computations. It reveals both the distance relationships 

as well as the density relationships between data categories, and therefore successfully provide 

us a better visualization of data. Compared with other state-of-the-art MDS methods, our 

proposed algorithm achieves the best performance. More importantly, it provides an integrated 

density based MDS approach to performing small cluster formations and embedding 

simultaneously without any prior knowledge, which can be easily applied to project data into any 

desired space. Besides, the proposed algorithm can be very useful and heuristic for combining 

many other unsupervised clustering methods with traditional MDS techniques in further study. 
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• Reveal data relations as a graph in the embedding results. 

Moreover, nearest neighbor maps are generated along the presented MDS algorithm, 

which can provide data nearest neighbor information in density field, showing how data are 

connected to the others. Unlike the conventional MDS approaches with only one purpose of 

embedding data, the proposed MDS algorithm is capable of showing how the data are 

related/connected to the others. With the connections between related data shown, more 

information can be revealed in the embedded results. 

7.2 Suggestion for Future Work 

More discussion on the determination of grid size is needed in the presented grid-based 

clustering approaches. In this work, settings on grid size based on empirical analysis are 

demonstrated other than numerically analyzed grid size.  

Partitional clustering approaches often provide us high clustering accuracy but they also 

suffer from heavy computation cost. Therefore, accelerated implementation of calculating the 

minimum internal and external distance ratios is highly expected.  

Develop fast high-dimensional data clustering strategy for image recognition and many 

other problems. It’s critical to investigate the relevance of high dimensions for clustering purpose. 

 Explore other strategies to fuse clustering methodology into visualization techniques. 

There are different options for fusing clustering into visualization other than linear combination 

or separate optimization. 

 It is worth embedding clustering/visualization algorithms into artificial neural networks 

for many purposes, e.g. classification, dimension reduction, prediction etc.  
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