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Abstract 

 

 

Capital allocation processes are complex and time consuming in large organizations 

because of the diverse choices from projects proposed by various departments within the 

organization.  Invariably these projects reveal various types of uncertainties in the amounts of 

investment needed, timing over which such investments are made, and technical and regulatory 

risks as well as ultimate benefits accruing to the firm. In practice, companies utilize basic financial 

evaluation tools such as the expected Net Present Value (NPV), what-if scenarios, and risk 

simulation along with qualitative judgments to judiciously allocate the limited resources and 

capital available to them. However, these basic tools have shortcomings of ignoring investment 

flexibility embedded in the investment projects. Many attempts have been made to remedy these 

shortcomings, but these attempts have created more methodology confusions. On the other hand, 

these also have perpetuated the practice of using the expected value criterion under the assumption 

that things will work out as expected over the long-run. However, it is important to recognize that 

real investments are not single decisions without future flexibility, but rather a basket of interacting 

options driven by many different uncertainties.  At a single project level, real options thinking has 

been proposed in aiding this important evaluation process. That is, investments into products, 

systems or technologies, have a changing economic value showing downside risk and upside 

potential over the project life. However, this option framework has not been explicitly considered 

in allocating the limited capital among competing risky projects. This research is to address these 

needs and attempt to improve capital budgeting processes by developing a decision criterion which 
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explicitly considers both the changing option values associated with each project and other 

financial analytics.   
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Chapter 1. Background and Problem Statements 

 

 

Capital budgeting decisions are one of the most challenging decisions in business as they have 

to make decisions under uncertain market dynamics. In particular, many industries must address 

regulatory uncertainty, increasing competition, and limited capability to access capital markets. As the 

degree of investment decisions become more complex due to environmental issues, multinational 

exposures, and fluctuating currency risks, managers increasingly resort to more sophisticated analytical 

techniques. One of them is the real options decision framework where a decision maker does not commit 

a decision immediately but delays the decision until the decision maker has a better idea of what is going 

to happen to the investment outcome. Clearly capital budgeting process takes many different stages of 

deliberations, but this study is primarily to focus on the analytical techniques based on real options in 

creating the best project portfolio for funding. Capital-investment performance can have an enormous 

impact on an organization’s value, and it can drive growth and increase overall returns on invested 

capital. The best companies use a clear capital-allocation strategy to build winning portfolios. Also, the 

practice of allocating the limited funds in this fashion is known to bring the most capital preservation to 

the business over the planning horizon. This research reinforces the importance of the real options 

decision framework in capital budgeting. 

 

1.1 Statement of the Problem  
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1.1.1 Decision Process 

Traditionally, typical capital expenditure decisions are based on three fundamental questions 

when evaluating individual projects: (1) Is this project contributing something toward the goal of the 

organization, and does the project generate sufficient cash flows to meet the required minimum returns? 

(2) Do we have the sufficient funds to invest in this project now? (3) Are there competing alternatives 

worth considering? Then, the next consideration is to select the most attractive projects given the capital 

position and budget. This is a typical once-and-for-all type single-period investment decision.  

What we are interested in concerning this research is, however, to consider a decision process 

where a firm makes capital investment decisions on a periodic basis over a long period of time. This is 

a closer representation of a capital budgeting process for on-going firms. In each decision period, a set 

of investment proposals is submitted for funding consideration. Using some decision criteria, the firm 

screens out the projects worthy of funding and then selects the best mix of projects within the funds 

budgeted for that period. For the next decision period, cash flows generated from all the projects funded 

in the prior periods will be available for future funding and may be added on to the funds budgeted for 

that period. Then a new set of investment proposals would be considered for funding out of this newly 

created budget. The process will repeat until the predetermined horizon time. This whole repeating 

process is known as a multi-stage capital budgeting decision problem.  

In each stage, the firm must decide what action to take next in order to optimize overall capital 

performance – either continue or abandon ongoing projects in addition to selecting a new set of projects 

submitted for that period.  Ultimately, managers are interested in creating maximum value to their firms 

by achieving higher lifecycle returns through the capital projects funded over the horizon. Research by 

McKinsey, across a range of industries, has shown that more active resource reallocation such as 

described above correlates with higher shareholder returns [1].  
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1.1.2 Uncertainty about Future Investment Opportunities 

With the multi-stage capital budgeting framework, one of the important considerations is 

the amount of information the decision maker can obtain about the future. This study assumes that 

the decision maker has some expectation as to future investment opportunities without requiring 

specific knowledge about particular investment opportunities. This view describes some middle 

ground concerning the availability of information regarding the outcomes of future investments 

[2]. One of the more critical issues is to react quickly when opportunities come up during the 

course of a year.  Two factors are critical – availability of funds and investment review or capital 

budgeting cycle. First, budget issues may be met by creating a reserve fund by reinvesting some 

or all the cash flows generated from the ongoing projects in addition to the budget allocated to that 

funding period. Or if allowed, the firm could borrow money to fund the critical projects. Second, 

by shortening the investment review cycles (let say from a year to semiannual or even quarter), 

the firm would be in a better position to scale up production in a unit that suddenly takes off, to launch 

a marketing campaign to meet an unexpected wave of customer demand, or even to acquire a facility 

that comes abruptly onto the market [3]. This is known as agile budgeting. This research is to consider 

these types of avenues in crating the project portfolios. 

1.1.3 Uncertainty about Future Cash Flows 

In this research, we will assume that all the investment projects proposed for funding 

consideration will be described by some sort of probabilistic cash flows with estimated means and 

variances in each period. One way to reflect the degree of risk involved in each project is either to vary 

the degree of periodic variance of cash flow or to assume the different type of probability distributions. 

When the future is truly uncertain, a complete stochastic description of the uncertainty may not be 

feasible. However, rarely do managers know absolutely nothing of the future, even in the most 
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uncertain environments.  In that situation, a uniform distribution might be suitable, as we may only 

have information with less detailed structure, such as boundaries on the magnitude of the uncertain 

quantities. This modeling flexibility will allow us to take advantage of the opportunities that higher 

levels of uncertainty provide. 

1.1.4 Investment Flexibility over Time  

One of the primary interests in considering the real options decision framework is to 

incorporate uncertainty resolution by various option strategies. For example, by deferring an 

investment decision, we may get to know more about the project as the market dynamics change 

over time.  That allows us to make a better decision as we get to revise cash flows projected at the 

time the investment is first proposed.  The missing ingredient in many capital budgeting decisions is 

a careful consideration of this value of flexibility. Companies can respond more quickly to changing 

conditions and outperform competitors - the greater the level of uncertainty, the greater the value of 

flexibility. Real option theory maintains that flexibility becomes more important when volatility is more 

intense. To capture this value and gain the best position for responding to future economic changes, all 

companies should integrate flexibility into their capital budgeting decisions. Then clearly, we are 

interested in knowing how uncertainty about the project's future changes over time. In a sequential 

decision-making process where future budgets are influenced by current decisions, this 

information about the proposal’s level of uncertainty becomes extremely valuable to the decision 

maker. Therefore, the idea is, “how can this time-phased information regarding uncertainty about 

the cash flows be captured by real options and utilized in the investment decision-making process?”  

 

1.2 Scope of the Research 
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The paramount problem that confronts the decision maker is determining how the available 

capital should be allocated to the proposed risky projects.  Therefore, the main purpose of this research 

is to develop a methodology for incorporating real option value into the improvement of the capital 

allocation decision problem. Another purpose of this research is to investigate the way of having 

an agile budget in each period through funds generated from cash flows of the projects undertaken 

during prior budget periods. By having this budget flexibility, the firm would be able to undertake 

a new investment, expand or scale up the projects as it deems necessary. Of particular concern is 

the development of a decision criterion to be used in making investment decisions where current 

decisions are influenced by future investment opportunities, and future budgets will be influenced 

by current decisions. These goals are accomplished in three ways. 

• We develop and incorporate a principle concerning the measure of investment flexibility 

based on projected cash flows into a decision criterion, which can be used in making 

investment decisions on a periodic basis. We name this decision criterion as the Kim-Park 

method, or simply the K-P criterion. 

• We develop a simulation model to compare the long-term effectiveness of the K-P 

criterion along with other traditional decision criteria by applying them to the identical 

groups of projects in each decision period. We need to utilize a computer simulation to 

investigate a large class of investment settings, as they were not normally manageable by 

available analytical techniques. 

• We generate and collect the data describing important features of this type of periodic 

decision process through the simulation model. This allows us to provide a better 

understanding of particular characteristics of the model's performance. This will also 

provide ample economic interpretations of the simulation results. 
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1.3 Objectives of this Research 

The goal of this research is to develop a multi-stage capital budgeting decision model to 

allocate limited resources to competing projects under uncertainty in order to maximize the total 

value of the firm. The research framework will be based on optimization models and real options. 

Four objectives are outlined toward this research goal.   

1.3.1 Objective 1: Develop a practical real option valuation method with a loss function 

Despite the fact that the NPV method is known to underestimate the project value by 

ignoring the flexibility, it is still widely used in capital budgeting. Real option is a risk-hedging 

tool by evaluating a project’s embedded uncertainty associated with changes in future investment 

opportunities. Real options analysis has been applied to a broad range of investment decision 

problems with various types of real options strategies from manufacturing industries to service 

sectors. However, many companies are reluctant to adopt real options analysis in their decision 

process. There are two main reasons why the NPV method is still favorable for non-financial 

industries. The first reason is that the NPV method has been used for a long time in their business 

and is difficult to change; the second reason is that the real options approach is too complicated to 

understand mathematically and, there are also some practical difficulties of applying the financial 

option methodology to real projects. One top of conceptual and practical difficulties, estimating 

project volatility is always a challenging issue to most decision makers. 

  Real option valuation methodology is based on financial option valuation, which assumes 

that value of an underlying asset is lognormally distributed because the asset, such as the stock 

price, never becomes negative. However, a real project value estimated by aggregating discounted 

future cash flows can be negative. Then our question is, “why do we use the Black-Scholes (B-S) 

model to price real option value?” Moreover, in highly uncertain circumstances, the investment 
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flexibility tends to change over time. Therefore, it is important to re-evaluate the changing project 

value when circumstances change. We need a more practical real option valuation approach for 

non-financial business, so that we can react to market changes in a timely manner when new 

information arrives.           

 

1.3.2 Objective 2: Determine a relationship between CNPVaR and real options pricing 

An important part of capital budgeting is to calibrate the amount of risk and uncertainty 

embedded in a project. Generally, we begin analyzing project risk by determining the inherent 

uncertainty in a project’s cash flow. Once we obtain the net present value (NPV) distribution by 

aggregating future cash flows over the investment life, we may be able to estimate the range of 

possible losses, which may exceed an investor’s acceptable loss. To determine whether or not this 

loss is within the acceptable range, we may bring the concept of the conditional value at risk 

(CVaR). It is basically the expected loss in the range of possible losses on an investment; the range 

of possible losses are also bound to change over a given time period at a specified degree of 

confidence. If a typical business is willing to accept the investment with the estimated possible 

losses, we may view this amount (CVaR) as the firm’s risk tolerance associated with the project. 

To measure the risk of a project, we propose the modified term the Conditional Net Present Value 

at Risk (CNPVaR), which is basically the CVaR concept on the distribution of project value at the 

decision point.  

It is important to recognize that the uncertainty not only brings possible losses but also 

potential surprise benefits. Traditionally, due to investors’ risk aversion, much literature has been 

focused on avoiding the potential downside risk at the expense of ignoring the upside potential 

gains. Real investments are not a single decision without future flexibility but rather a set of 
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opportunities to change initial decisions even for on-going projects when circumstances change. 

Due to various uncertainties, the economic value of the investment changes over the project life. 

Real options analysis is the tool that considers both consequences of uncertainty: the downside 

risk and the upside potential benefits. Thus, investors may be interested in hedging this expected 

loss (CNPVaR) by either delaying the project or using other features of various real options. Then, 

the question becomes, “what is the right price to pay for hedging this risk?” “is there a way to price 

this option value based on the CNPVaR?” Our objective is to address these before developing a 

formal decision criterion for risky project evaluation. 

 

1.3.3 Objective 3: Develop a capital budgeting model based on the real option approach 

At a single project level, we may consider three critical elements to determine the merit of 

project worthiness. They are profitability, variability and flexibility. If we measure the profitability 

by the expected value of the project’s NPV distribution, the variability by the variance of the NPV 

distribution, and the flexibility by the option value, we may be able to come up with an index that 

integrates these three elements. Then our objective is to utilize this index in allocating the limited 

capital among competing risky projects in the multi-stage capital budgeting process.  This research 

aims to address these needs and attempts to maximize the long-term value of the firm by explicitly 

considering the real option value associated with each project and other financial constraints. 

 

1.3.4 Objective 4: Develop a simulation model to test the effectiveness of the K-P criterion 

Once we have developed a decision criterion to allocate a limited capital, we need to test 

how effective the proposed decision criterion is. There is no way of predicting future investment 

opportunities in any precise fashion. One alternative is to simulate the future investment 
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environment by creating various plausible investment scenarios. The simulation process can be 

divided into three phases:  

• Phase 1: Generate a set of investment proposals in each period by considering a 

different mix of risks from low to high.  

• Phase 2: Apply the three decision criteria to the set of investment proposals submitted 

in each period. For those selected for funding by each criterion, the realizations of cash 

flows will be of source of additional funds available for future budget periods. In 

addition, given these realizations of the proposal’s cash flows, whether or not any 

options can be exercised in each period, and that information will be incorporated in 

the next decision period. 

• Phase 3: Once Phases 1 and 2 are complete, the realizations of cash flows of all the 

projects generated during the study period are preserved. Given these realizations of 

cash flows over the entire study period, we will be able to determine the effectiveness 

of the K-P criterion as a value maximization tool in capital budgeting.   

 

1.4 Plan of Study 

Chapter 2 provides a review of the literature related to the issues raised in the proposed 

research problems. The literature review indicates that there is a critical need to systematically 

incorporate real option framework into capital budgeting process. 

Chapter 3 investigates a measure of option value based on project cash flows, which departs 

from the traditional return-based measure, namely the Black-Scholes formula. This measure uses 

the loss function concept commonly adopted in applied statistical decision theory. By computing 
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the option value based on the project cash flow, it eliminates the need of determining the project 

volatility which is one of the most challenging tasks in real options analysis. 

Chapter 4 examines what the correct price to pay is to retain an option. The option values 

determined through loss functions only serve the maximum price to pay. By borrowing the concept 

of conditional value at risk (CVaR), we first develop the net present value at risk. By knowing this 

value, we will be able to determine an appropriate price to pay for option. Also, we develop a 

decision criterion which integrates three critical elements associated with a risky investment: 

profitability, variability, and flexibility. Here for each project, we determine profitability by the 

expected value of the NPV distribution, variability by the variance of the NPV distribution, and 

flexibility by the real option value which is determined in Chapter 3. We call this new measure the 

K-P index. Then, the K-P criterion is simply the decision criterion to rank the risky investment 

projects by using the K-P index. To test the effectiveness of the K-P criterion as a decision criterion, 

we will examine two traditional criteria, namely the expected NPV criterion and Mean-CVaR 

criterion. 

Chapter 5 describes the various features and assumptions of the simulation model which is 

used to test the effectiveness of three decision criteria – expected NPV criterion, mean-CVaR 

criterion, and the K-P criterion – in selecting (or creating) best investment portfolio in each 

decision period for multi-stage capital budgeting problems. To do this, we develop simulation 

models for each decision criterion and use a MATLAB to obtain the solution to the multi-stage 

decision problems. 

Chapter 6 presents the process of simulating the investment decision process, by describing 

the input data generation methods and creating various plausible investment scenarios (or 

investment settings) where we apply each decision criterion to select the proposals in each period. 
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To determine the effectiveness of each decision criterion, we use the terminal wealth, the cash 

accumulated at the beginning of horizon (or study period), here the terminal wealth will be also a 

random variable as each simulation run generates one terminal wealth. By repeating the iterations, 

we obtain a terminal wealth distribution associated with each decision criterion. Then we are left 

to compare these terminal wealth distributions by the stochastic dominance rules. To examine the 

effects of critical input parameters on the performance of each decision criterion, we conduct a 

series of statistical tests and sensitivity analyses.  Detailed economic interpretations of simulation 

results are also provided.  

Chapter 7 contains summaries, conclusions, and recommendations for further research. A 

complete list of references is also presented in Appendix. 
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Chapter 2. Literature Review 

 

 

The capital budgeting decision, which is the process of evaluating and allocating limited 

resources to competing projects, is one of the most important decisions in business. In order to 

increase the value of the firm, the firm needs to generate cash flows through various investment 

activities. Managing capital investment wisely means better cash flow, faster growth, and 

competitive advantage in market place. Capital investment performance can have an enormous 

impact on an organization’s value, and it can drive growth and increase the overall return on 

invested capital [4][5]. As a result, the numerous efforts toward finding and applying sophisticated 

capital budgeting approaches have been made [6][7][8][9][10].  

 

2.1 Capital Budgeting Decision by Mathematical Programming 

In early mid-50’s, Gunther may be one of early adopters of a simple linear programming 

model to solve a capital budgeting problem [8]. Then it followed by Lorie and Savage who showed 

the difference between maximizing the present worth and ranking projects by rate of return in 

selecting the best projects [11]. Markowitz and Manne [12] formulated a more sophisticated linear 

programming model to allocate limited sources and provided various economic interpretations on 

the outputs. Several researchers adopted a single-stage linear programming model to solve various 

forms of capital budgeting problems [13][14][15], and then many authors extended the linear 

programming model to solve multi-period capital budgeting problems [16][17][18]. However, 
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Weingartner [19][20][21] is one of the first researchers who examined the shortcomings of the 

Lorie and Savage’s pure capital budgeting model – maximization of net present value as an 

objective function with budget constraints, pointing out the conceptual difficulty in determining 

an appropriate discount rate to use in NPV calculation to go with the objective function under 

capital rationing environment. The issue of determining the correct discount rate is governed by 

what kinds of projects are included in the budget. But to determine the projects to be included in 

the budget we need to know the discount rate. This is so called a chicken and egg problem. One 

approach he advocated is the horizon model which is basically a multi-period mixed integer 

programming model that allows reinvestment of cash receipts from the projects selected by lending 

unused budget to outside, and borrowing the needed capital so that all good projects will be funded 

in full. The model’s ultimate objective is to maximize the horizon value at a future time. Another 

contribution of the horizon model formulation to the body of capital budgeting literature is that the 

way of his modeling avoids the need of discount rate. However, his horizon model is still based 

on the assumptions that all required parameters are known with certainty. Therefore, many 

attempts have been made to consider capital allocation problems under risky or uncertain business 

environments, and this research also addresses the issue of capital budgeting decisions under 

uncertainty.  

The purpose of this research is to develop a multi-stage capital budgeting decision model 

under uncertainty by incorporating the investment flexibility through real options framework. To 

develop such an allocation model, our review of literature will be composed of three parts: First, 

overview of previous works on capital budgeting decision problems which consider explicitly risk 

and uncertainty. Second, we examine the various risk measures that can be incorporated into a 
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practical capital budgeting decision models. Third, we review the capital budgeting models which 

incorporate the investment flexibility through the real options approach.  

 

2.2 Overview of the Capital Budgeting Problems under Uncertainty  

With the development of mathematical programming techniques, capital budgeting models 

become more sophisticated to deal with many complex decision variables as well as resource 

constraints. In particular, these models attempt to incorporate numerous stochastic approaches to 

address risk and uncertainty common in business investment environment. There are several well-

known tools for capital budgeting such as the capital asset pricing model (CAPM) [22] and the 

risk-adjusted discount rate [23]. However, these approaches mainly focus on asset valuations under 

risk through finding an appropriate discount rate instead of focusing on the capital allocation 

decision under budget limits.  

In terms of capital allocation decision where there are multiple competing goals to achieve, 

multi-objective mathematical programming techniques have been proposed ranging from 

deterministic models to probabilistic models. First, the goal programming (GP) is one of them and 

has been applied to capital allocation decisions with multiple goals to satisfy such as minimizing 

the cost of production, increasing productivity, and allocating available resources. Hawkins and 

Adams [24] demonstrated the application of the GP to a capital budgeting problem based on the 

linear programming and integer programming. Keown and Martin [15], Keown and Taylor [25], 

De et al. [26] formulated a GP to select a set of investments with budget constraints. Ahern and 

Anadrajah [27] developed a weighted integer GP model for new railway projects requiring the 

different capital investment levels. Tang and Chang [28] explored to formulate a multiple criteria 

decision-making model utilizing the goal programming and fuzzy analytics. Bi-Level linear 
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programming has been also attempted to deal with multiple goals by pre-prioritizing the goals in 

two levels [29][30], but all these models did not consider investment flexibility in any explicit 

manner. 

The fuzzy set theory also introduced in mathematics to deal with incomplete or imprecise 

information. The fuzzy set theory has been proposed as one of the capital budgeting decision 

methods since late eighties [31][32]. The fuzzy discounted cash flow and fuzzy present value 

techniques were studied by several researchers [33][34], along with ranking investment proposals 

based on a possibility distribution which is defined by fuzzy numbers [35]. Then numerous papers 

addressing the fuzzy capital budgeting techniques have been published [36][37][38][39][40][41]. 

However, all these models are more or less some sort of extensions of fuzzy mathematics to capital 

budgeting problems, but they do not much deal with multi-stage capital budgeting problems under 

uncertainty.  

A more quantitative approach to deal with uncertainty, multi-stage stochastic programming 

models were also attempted. Beraldi et al. introduced a customized branch-and-bound method to 

solve their stochastic programming model [42], and Rafiee et al. studied multi-period project 

selection along with scheduling in an uncertain environment [43]. However, these papers proposed 

a scenario tree model to represent the uncertain progression, so it is very difficult to obtain the 

analytical solutions to these models in the presence of a larger number of stochastic decision 

variables.  

One of the alternative techniques for stochastic programming is the robust optimization, 

which uses the ranges of possibilities instead of the probability distributions of the parameters [44]. 

Goldfarb and Iyengar [45] formulated the robust portfolio selection problems based on the mean 

and variance model. Kachani and Langella [46] proposed the robust formulation for a capital 



 

 

16 

budgeting problem based on a range of possible values associated with uncertain cash flows. 

Albadi and Koosha [47] studied on a marketing budgeting allocation model considering several 

parameters such as size of the market segments, marginal contribution, discount rate, etc. The main 

difference between the robust optimization and the stochastic programming is that the robust 

optimization does not require any probability distributions of the parameters.  

Myers [48] is the first author who introduced the concept of real options by recognizing 

the additional value from having investment flexibility, similar to the financial option valuation. 

Ever since, it has been widely advocated as one of the sophisticated real asset valuation techniques 

to quantify uncertain investment opportunities in dollars. One of the main reasons why the real 

options decision framework is getting attention in business communities is to accept the investment 

risk as is (rather than avoiding it), then focus more on how to manage or hedge the downside risk 

while retaining the upside potential by paying some form of option premium. The option premium 

is determined by valuing the managerial flexibility associated with the uncertainty. Even though 

many researchers have extended the concept of real options in making capital budgeting decisions 

under uncertain business environments [49][50][51][52][53][54][55][56][57], but most of these 

publications focus on asset valuations for single-period capital allocation problems, rather than 

multi-stage periodic decisions.  

 

2.3 Risk Measurements  

2.3.1 Utility Theory and Mean – Variance Model 

Risk analysis has been extensively studied as one of the most important considerations in 

any financial investments. In order to consider uncertainty in capital budgeting decision, all risk 

measurements are based on the utility theory. Von Neumann and Morgenstern [58] presented that 
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when there are choices under uncertainty, an individual makes a decision to maximize the expected 

utility. Friedman and Savage [59] discussed the different degrees of risk in the alternatives and 

tested the hypothesis proposed by Von Neumann and Morgenstern utility theory. Utility theory is 

both a prescriptive and a descriptive approach to decision making. The theory tells us how 

individuals and corporations should make decisions, as well as predicting how they do make 

decisions [60]. It is just like the Khun-Tucker conditions in optimization theory – whether or not 

we reach an optimal solution, any mathematical programming algorithm must satisfy the Khun-

Tucker conditions. Likewise, the utility theory will tell us whether or not we reach a rational 

decision. The utility theory has an important role in the mean-variance model for analyzing risky 

assets [61] and many other financial decision makings. 

A portfolio selection model proposed by Markowitz [62] was originally developed for asset 

allocation in financial investments such as securities and bonds. To select an optimal portfolio, it 

should reflect an investor’s risk preference based on the utility theory. The mean – variance model 

seeks a trade-off between the return and the risk, and this model has been extensively implicated 

for capital budgeting decision problems. The development of portfolio theory had led to the capital 

market theory or the capital asset pricing model to allocate shares of their investment amounts to 

risky financial assets [22][63]. In earlier studies which adapted the portfolio selection model into 

capital budgeting decision, the expected present value and variance to the firm were considered to 

make an optimal combination of investment proposals [64][65]. In parallel, many authors extended 

the portfolio model to consider the multi-period investment decisions [66][67]. However, all these 

portfolio-theory-based models are limited to project selection solely based on the trade-off 

between risk and return, without considering any investment flexibility. 
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2.3.2 Downside Risk Measurements 

In more recently, the concept of the mean – risk model in capital budgeting problem has 

been extended along with development of downside risk management. In regard to more prudent 

risk management in capital budgeting problem, decision makers must consider the direction of an 

investment’s movement. For most investors, unexpected gains above the mean value are no cause 

of concern – instead risk is about the odds of losing money. One of the most popular risk measures 

to address these investors’ concern is the Value at Risk (VaR). This was initially developed by JP 

Morgan [68] to measure the potential loss in value of a risky asset or portfolio over a target horizon 

time (a holding period) within a given confidence level. The VaR describes the maximum expected 

loss over a given period of time and with a confidence level which is defined by the certain quantile 

of the return probability distribution of an investment portfolio. When all portfolios have the same 

expected return, minimizing the VaR of the portfolio is conceptually equivalent to the Markowitz’s 

mean – variance model [69]. While the VaR measure has been accepted as a standard measure of 

risk in financial industry, it has been also criticized and proven that the VaR measure does not 

satisfy the requirements to be a coherent risk measure [70][71][72][73]. Consequently, Rockafella 

and Uryasev [74] proposed an alternative risk measure known as the conditional value at risk 

(CVaR): The CVaR simply describes the expected loss beyond the VaR with a given confidence 

level, and it is also known as the tail conditional expectation, the mean excess loss or the expected 

shortfall [75][76].  

The CVaR has been widely accepted as a return based risk measure in the financial industry 

and, to some extent in the non-financial industry as well. However, non-financial companies 

needed to adjust the return based concept of CVaR to a cash flow based measure, referred to Cash 

Flow at Risk (CFaR). The CFaR measures the degree of risk associated with a cash flow shortfall 
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in any operational period [77][78][79][80]. Several McKinsey reports also found many real world 

applications of the CFaR [81][82][83]. While the CFaR focuses on each operational period, the 

Net Present Value at Risk (NPVaR) measures the overall risks associated with undertaking an 

investment project. Ye and Tiong [84] proposed the NPVaR approach by combining the weighted 

average cost of capital and the return – risk model in the investment evaluation of financed 

infrastructure projects. On the other hand, Lu et al. [85] suggested a Project at Risk (RAR) model 

as a decision-support criterion, which is the concept similar to the CFaR and the NPVaR, to 

quantify the possible losses. Furthermore, Pergler and Rasmussen [86] illustrated the NPVaR 

analysis to analyze a company’s current performance risk in the capital-intensive industries. Since 

many businesses or investors are interested in how to manage the downside risk, our research will 

address this hedging strategy as a way to manage the downside risk.  

 

2.4 Capital Budgeting Problems to consider Real Options 

2.4.1 Real Option Approach into Investment Decision Making 

The concept of real options is originally from valuing financial options in the seventies. 

Black and Scholes [87], and Merton [88] presented a mathematical option-pricing formula to 

determine a fair price or theoretical value for the financial options. Then the financial option theory 

provided substantial insight into capital investment decision making: Additional value arising from 

flexibility could be captured for valuing other assets as well. In the early stage of the real option 

analysis, many researchers have tried to value real assets by borrowing the concept of financial 

options. As mentioned earlier, Myers [48] first used the term “real options” to value an investment 

opportunity, then later the more complete form of real option framework was developed by 

McDonald and Seigel [89]. Dixit and Pindyck [50] first came up with an analogy between “defer 
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an opportunity to invest” and the financial call option. Trigeorgis [90][91][51] discussed 

managerial flexibility embedded in investment opportunities and labeled the five types of real 

options – 1) defer, 2) abandonment, 3) contract, 4) expand, and 5) switch.  

Luehrman [92][93] viewed the real option strategy as a complement to the traditional 

discounted cash flow and illustrated how to treat a series of business strategies in the real option 

framework. Lander and Pinches [94] offered reasons why corporate managers and practitioners 

are reluctant to use a real options model in their project valuation or capital budgeting decision, 

and they suggested ways to improve some of their misconceptions. Amram and Kulatilaka [95][96] 

addressed how to frame the real options thinking according to different types of managers to 

facilitate their understanding of decision making process. Copeland and Antikarov [52] provided 

many real case examples to demonstrate how real options analyses enrich asset valuations in 

business for the practitioners. Nembhard et al. [97] developed a real options model in 

manufacturing system to improve operational decision making. Park and Herath [98] explained 

more clear idea on how to apply the real options approach to various engineering economic 

decision problems under uncertainty and provided various modeling applications with numerical 

examples. 

Many creative ways of valuing real assets through real options framework have expanded 

to various industries. One of the early modeling applications is found in research and development 

(R&D) areas to decide whether or not it is worth taking R&D effort now for possible 

commercialization of the product in the future [99][100][101][102][103][104][105][106][107] 

[108]. The reason why the real option framework has a great deal of attentions in the R&D is that 

it has a sequence of investment strategies which can depend on future investment opportunities. 
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This leads to our research question – real options decision framework as a way of valuing future 

investment opportunities and using them in resource allocations under uncertainty. 

More recently, Triantis and Borison [109] reported that certain industries related with oil 

and gas, mining, and life sciences have more interests in incorporating real options in their 

investment decisions. Stout et al. [110] illustrated how to incorporate real options and the 

traditional discount cash flow into the capital budgeting process with a case study of a rental car 

company. Fernandes et al. [111] discussed the real option approach to deal with a high level of 

competitiveness and consequent market uncertainty in energy sector investment. Gazheil and 

Bergh [112] summarized more than 50 articles of the real option applications in the renewable 

energy sector from 2003 to 2016. However, no article addressed or developed a reasonable 

technique to extend the real option framework beyond a single asset valuation. 

One of the serious attempts to use real options in capital budgeting under uncertainty is by 

Meier et al. [113]. The authors developed an integer programming model to create an optimal 

portfolio using real option values. This scenario-based model becomes mathematically intractable 

because the possibilities of feasible portfolios grows extremely vast. 

2.4.2 Real Option Valuation 

As mentioned earlier, the origin of real option valuation is from the financial option pricing: 

the Black-Scholes formula which assumes the underlying asset’s price movement can be described 

by the geometric Brownian motion [50]. However, there are many limitations in valuing real assets 

through the Black-Scholes formula: It requires a high level of mathematical knowledge, and needs 

to accept the many underlying assumptions of the financial option pricing [96][114]. On top of 

these concerns, unlike financial options, estimating a project volatility is another challenging issue 

in real options.  
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Another approach to value real option is by the conventional decision tree analysis [52], 

[115]. Decision tree analysis represents the investment alternatives, and it uses decision nodes to 

reflect managerial flexibility [116]. However, as we add more decision options or investment 

opportunities in the tree, the analysis becomes quickly getting out of hand – just impractical to use. 

More practical approach to value real options may be using the binomial lattice framework, and it 

has been proven that with a large number of nodes, the option value converges to the same value 

obtained by the Black-Scholes formula [117][118][119][120]. The binomial lattice, eventually, 

has the same outcome as the Black-Scholes formula because many underlying parameters defining 

the binomial lattice is based on the geometric Brownian motion.  

Most real options analyses assume a constant volatility, but Herath and Park [121] 

developed a modeling scheme to consider some form of changing volatility over time. Furthermore, 

Herath and Park [122] considered a Bayesian approach to real option valuations and presented the 

relationship between the opportunity loss concept and the expected value of perfect information 

(EVPI) in the real option valuation.  

 

2.5 Summary  

Real Option analysis has received a great deal of attention from both academics and 

industries because its decision framework resembles many real-world decision environments. 

However, due to mathematical sophistication required in understanding the modeling process, 

many companies have difficulties in adopting the valuation method in their investment decisions. 

According to recent surveys for the U.S. in 2007 and Canadian companies in 2010, only 14.3% 

and 16.8% of survey respondents answered that they use real options in making capital budgeting 

decisions, respectively [123][124]. Moreover, these surveys showed that the lack of top managers’ 
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support and mathematical complexity required in understanding the real option is the dominant 

reason why it is slow to adopt the method in capital budgeting decisions.  

Although there have been significant developments of capital investment decision models 

in many different directions and numerous attempts have been made to integrate the real option 

analysis into the traditional capital budgeting decision, the literature review indicates that there is 

a critical need to develop a capital budgeting model with a practical real option valuation in 

dynamic investment environment. This leads to our research goal – real options decision 

framework as a way of valuing future investment opportunities and using them in resource 

allocations under uncertainty.  
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Chapter 3. Determination of Real Options Value based on Loss Function Approach 

 

 

Before developing a new decision criterion, we need to examine the current methods of 

calculating real option values and present the practical issues associated with the current valuation. 

Real option value calculation based on either the binomial lattice approach or the Black and 

Scholes method requires a lognormality of project value distribution and volatility of the percent 

change in project values. This approach poses some conceptual problems as the project value, 

which is the aggregate sum of discounted cash flows, can take a negative value. Since the periodic 

project cash flow contains many elements of random variables such as unit price, demand, variable 

cost, and others, the resulting cash flow distribution could be normally distributed. Furthermore, 

the sum of the discounted periodic cash flows will also be normally distributed. Therefore, we may 

need an alternative real option valuation where the project value is normally distributed, which is 

different from a lognormal distribution assumption used in financial options. In fact, the proposed 

methodology based on the loss function approach in this chapter is not limited to a normal 

distribution type, it can be of any distribution. 

 

3.1 Real Options Thinking 

Traditional measures of investment worth such as net present value (NPV) and internal rate 

of return (IRR) are based on the most likely values of project cash flows with the assumption of 

an immediate project commitment and no changes in investment direction. Under these 
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circumstances, the decision maker, typically, estimates the most likely values based on the best 

information available at the time of investment decision. Clearly, it is much straightforward in 

terms of analysis, but these measures do not consider any potential value associated with 

investment flexibility offered by changing course of actions that could occur over the project life. 

For example, managers and executives are in a position to reassess the viability of project in 

progress after receiving new pieces of market information – to continue or phase out, expand or 

scale back the operation. In other words, we may keep the project when things are moving in the 

right direction but can get out of the project when things are going in other direction. If any project 

under consideration comes with these types of investment flexibility, managers can limit the 

financial risk to the level they can manage. Clearly, the traditional approaches without considering 

these types of investment flexibility systematically undervalue projects having such embedded 

opportunities. How valuable is it to have this investment flexibility? And how much are you 

willing to pay for this flexibility when you consider the investment? The approach proposed in this 

chapter is to address these questions and others.  

 

3.2 The Real Option Valuation based on the Black-Scholes Model  

In this section, we will examine the current option valuation model based on the geometric 

Brownian motion, namely, the Black and Scholes model, and we will discuss the conceptual issues 

using the Black and Scholes model in valuing real options.  

3.2.1 Financial Options and Black-Scholes Formula  

Real options concept which was first proposed by Myers (1977) is largely based on 

financial options [48]; you have the right but not the obligation to take an action on real assets. 

Even though the Black and Scholes formula was originally developed to price financial options 
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[87], it has been also widely utilized in pricing real options as well. The formulation of call options 

proposed by Black and Scholes can be written as 

 𝑐 = 𝑆0𝑁(𝑑1) − 𝐾𝑒−𝑟𝑡𝑁(𝑑2) (3-1) 

where 

 

𝑑1 =
ln (

𝑆0
𝐾⁄ ) ⁡+ (𝑟 + 𝜎2

2⁄ ) 𝑡

𝜎√𝑡
,  𝑑2 = 𝑑1 − 𝜎√𝑡 (3-2) 

𝑁(𝑥) denotes the standard normal cumulative distribution function. 

Now in order to use the Black and Scholes formula to value real options, we need to identify the 

corresponding one to one parameter matching. The underlying asset in real options, which is the 

project itself, is equivalent to the financial assets such as stock in financial option. The required 

investment cost is viewed as the strike or exercise price of stock in financial option. The option 

life in real asset or the time duration offered to make an investment decision is viewed as the 

maturity of financial option. The volatility of project value is viewed as the volatility of return of 

stock. Table 3-1 summarizes five key parameters required in pricing option for both financial 

option and real option.  

Table 3-1 Summary of parameters for options 

Parameters Financial option Real option 

Initial value of underlying asset 𝑆0 𝑃𝑉0 = 𝐸[𝑃𝑉𝑡] ∙ 𝑒
−𝑟𝑡 

Strike price / Investment cost 𝐾 𝐼 

Discount rate 𝑟 𝑟 

Horizon period 𝑡 𝑡 

Volatility of underlying asset 𝜎 𝜎 

 

Using the Black and Scholes formula with the real option parameters defined in Table 3-1, 

the real option value⁡(𝑅𝑂𝑉) – the call-option-type real option such as a defer option or a growth 

option – can be written as 
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 𝑅𝑂𝑉_𝑐𝑎𝑙𝑙 = 𝑃𝑉0𝑁(𝑑1) − 𝐼 ∙ 𝑒−𝑟𝑡𝑁(𝑑2) (3-3) 

where 

 

𝒅𝟏 =
𝐥𝐧 (

𝑷𝑽𝟎
𝑰⁄ ) ⁡+ (𝒓 + 𝝈𝟐

𝟐⁄ ) 𝒕

𝝈√𝒕
,  𝒅𝟐 = 𝒅𝟏 − 𝝈√𝒕 (3-4) 

 

For a put-option-type real option, we can use the similar analogies to find the option value as follows: 

 𝑅𝑂𝑉_𝑝𝑢𝑡 = −𝐼 ∙ 𝑒−𝑟𝑡𝑁(−𝑑2) − 𝑃𝑉0𝑁(−𝑑1) (3-5) 

where d1 and d2 are as defined in Equation (3-3). 

 

3.2.2 Estimating Project Volatility 

Volatility is one of the important variables in valuation of options. In the financial options 

analysis, volatility is commonly estimated by tracking the historical data of stock price movement. 

For real assets, unlike a stock, it is not likely to have any historical data available to estimate the 

annualized changes in project value. There have been several attempts to estimate the project 

volatility based on project cash flows [52]. Han and Park [125] proposed a method by using an 

analytical relationship between the project volatility (σ) and the parameters of project value 

distribution at the option life.  In any project analysis, we need to estimate the anticipated cash 

flows associated with undertaking an investment. To determine the project value at the option life, 

we may attempt to estimate what the future cash flow series look like beyond the option life. Since 

these project cash flows are random variables described by probabilistic distributions, we may 

find the project value distribution by aggregating these random cash flow distributions. If we 

know the exact probability distributions, we may obtain the project value distribution by either an 

analytical method or using the Monte Carlo simulation method.   
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A method proposed by Han and Park [125] uses the latter approach to develop a project 

value distribution first, and then utilize the mean and variance of the project value distribution to 

estimate the volatility. The mathematical relationship between the project volatility and the project 

value distribution parameters can be developed based on properties of the lognormal distribution 

in the geometric Brownian motion. In that sense, Han and Park method still assumes implicitly 

that the project value be lognormally distributed. 

To illustrate how the volatility related to the parameters of the project value distribution, 

we may start with a stochastic process known as the geometric Brownian motion, which is the 

special case of the simple Brownian motion with a drift. Suppose, the process of exponential 

Brownian motions,⁡𝑋𝑡, which is suggested by Black, Scholes and Merton [87][126] is a lognormal 

process with drift 𝜇 and volatility 𝜎, and it can be denoted in the stochastic differential equation 

[50][127]:  

 𝑑𝑋𝑡 = ⁡𝜇𝑋𝑡𝑑𝑡 + 𝜎𝑋𝑡𝑑𝐵𝑡 (3-6) 

where 𝜇  and 𝜎  are constants. Since the changes in rate of return from the asset is normally 

distributed, the absolute changes in 𝑋𝑡 are also lognormally distributed. The Equation (3-6) can 

be written with a simple Brownian motion with drift as follow:   

 
𝑑𝐹 = (𝜇 −

1

2
𝜎2) 𝑑𝑡 + 𝜎𝑑𝐵𝑡 (3-7) 

where 𝐹(𝑥) = log𝑋𝑡. It tells us that the change in the logarithm of 𝑋𝑡 is normally distributed with 

the mean rate of return, (𝜇 −
1

2
𝜎2), and the volatility, 𝜎, which is a measure of the riskiness of the 

asset. Therefore, we assume that 𝑋𝑡 is a value of risky project at time t which is given by geometric 

Brownian motion of the form: 

 𝑋𝑡 = 𝑋0 ∙ 𝑒
𝜇𝑡+𝜎𝐵𝑡 , 𝑡 ≥ 0 (3-8) 

This process 𝑋𝑡 has the expected value 𝐸[𝑋(𝑡)], and variance 𝑉𝑎𝑟[𝑋(𝑡)], at time 𝑡.   
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 𝐸[𝑋𝑡] = 𝑋0 ∙ 𝑒
𝜇𝑡 (3-9) 

 𝑉𝑎𝑟[𝑋𝑡] = 𝑋0
2 ∙ 𝑒2𝜇𝑡(𝑒𝜎

2𝑡 − 1) = 𝐸[𝑋𝑡]
2 ∙ (𝑒𝜎

2𝑡 − 1) (3-10) 

Then the volatility (𝜎) is derived from the relationship between the parameters of lognormal and 

normal distribution.   

 

𝜎 =
√
ln (

𝑉𝑎𝑟[𝑋𝑡]
𝐸[𝑋𝑡]2

+ 1)

𝑡
 

(3-11) 

It shows that if we know the expected value of project 𝐸[𝑋𝑡] and variance 𝑉𝑎𝑟[𝑋𝑡]  at some 

future point in time⁡𝑡, we could calculate the project volatility⁡𝜎 using Equation (3-10). In real 

options analysis, the expected value 𝐸[𝑋𝑡] and variance 𝑉𝑎𝑟[𝑋𝑡], can be obtained typically from 

the project value distribution aggregated by the discounted future cash flows of a project at the end 

of option life. But one caveat is that the project value distribution must be a lognormal distribution 

to use Equation (3-10). Consequently, it would be necessary to develop a real option valuation 

method when the project value distribution takes a non-lognormal type.   

 

3.3 Develop a Practical Real Option Evaluation Method with Loss Function 

As seen in the previous section, using the Black-Scholes formula to calculate the real option 

value implicitly assumes the project value to be lognormally distributed. This assumption is 

empirically validated for financial assets such as a stock price movement, which is never below 

zero. For real assets, however, the project (or present) value (PV) distribution could be normally 

distributed or take any shape other than a lognormal distribution. In this section, we will introduce 

the loss function approach to determine the option value that does not require an assumption of a 

lognormal PV distribution. It is shown that the loss function approach is an analytically and 
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theoretically correct approach that can produce identical results consistent with the Black-Scholes 

formula, if we assumed a lognormal present value distribution. 

 

3.3.1 The Concept of Loss Function 

The concept of loss functions found in Bayesian statistics is that they measure how bad our 

current estimate is: The larger the loss, the worse the estimate is according to the loss function. A 

simple, and very common, example of a loss function is the linear loss, a type of loss function that 

increases linearly with the difference. Or a quadratic loss function is also frequently used in 

estimators like linear regression and calculation of unbiased statistics. In real options analysis, we 

adopt the linear loss function concept.  

To illustrate the loss function concept, let’s consider a popular economic reorder quantity 

model found in the supply chain. A stock-out is one of the things to avoid in inventory management 

as it can cause various negative effects resulting in economic loss as well as opportunity cost. In 

practice, however, the future demand is a random variable which is not easy to estimate in any 

precise fashion. Therefore, what we can do is to estimate the possible shortage and come up with 

a strategy to limit a stock-out at an acceptable level. A popular inventory strategy used in practice 

for this purpose is known as the lot-size, reorder point inventory model (Q, R) [128]. In this model, 

the expected number of shortage is simply the number of excess demand 𝑥 over reorder level R. It 

can be expressed as 

 
𝐸[max(𝑥 − 𝑅, 0)] = ∫ (𝑥 − 𝑅)𝑓(𝑥)𝑑𝑥

∞

𝑅

 (3-12) 

where 𝑓(𝑥)  is the demand distribution function. If the demand is normally distributed, the 

expected number of shortage is computed by using the standardized loss function. (Conceptually, 

demand cannot be negative just like a stock price, but if we consider the returns from the customer 
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who purchased the product earlier period, we may view this return as a negative demand. Then a 

normal distribution assumption may hold.) The standardized loss function 𝐿(𝑧) is defined as 

 
𝐿(𝑧) = ∫ (𝑥 − 𝑧)𝜙(𝑥)𝑑𝑥

∞

𝑧

 
(3-13) 

where 𝜙(𝑥) is the standard normal density function. If the demand follows a normal distribution 

with mean 𝜇 and standard deviation⁡𝜎, then the average number of shortage can be expressed as 

 
𝑛(𝑅) = 𝜎𝐿 (

𝑅 − 𝜇

𝜎
) = 𝜎𝐿(𝑧) 

(3-14) 

The standardized variate z is equal to (𝑅 − 𝜇)/𝜎.  

Once the amount of average loss is determined, we can estimate the magnitude of economic 

loss in monetary terms. If the financial loss is proportional to the magnitude of the average loss, 

we can use a linear loss function. If the loss increases quadratically, a quadratic loss function would 

be more suitable to determine the economic loss. In real options analysis, a linear loss function is 

more appropriate as any miss from the target is all equally undesirable. 

3.3.2 Valuing Real Option with the Standardized Loss Function Approach 

In this section, we propose a practical framework to estimate the real option value based 

on the project value distribution. We explicitly assume a non-lognormal distribution for the project 

value (𝑃𝑉) at the option life, and the required investment cost (𝐼) to generate that project value 

distribution at the option life. These two parameters can be viewed as the demand (𝑥) and the 

reorder level (𝑅)respectively in the expected number of shortage model.  

Real Call Option Model 

Let’s revisit the basic financial call option as described in Figure 3.1. A call option is the 

option to buy the underlying stock at a strike price (𝐾) by a maturity date (𝑇). The option buyer 

has the right to buy shares at the strike price, and this will happen when the stock price at the 
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maturity date (𝑆𝑇) is greater than K. In other words, the call option has value in the blue-shaded 

area.   

 

Figure 3-1 Financial call option where it has its option value 

 

From a real options point of view, the option to delay an investment is equivalent to a call 

option. In the abstract, assume that a project requires an initial investment up-front investment of 

I0 and that the present value of expected cash inflows (or we call project value) computed now is 

PV0. Then, the net present value of this project is determined by:  

                                                          NPV0 = PV0 – I0 

Instead of making an investment decision immediately based on this NPV0 value, let’s assume that 

the firm has exclusive rights to this project for the next 𝑇  years, meaning that the firm can 

undertake this project whenever it deems worthwhile within T years. Certainly, the project value 

can change over this period as market dynamics tends to fluctuate. Thus, the project may have a 

negative present value right now, but it could turn into a positive value if things are moving in the 

right direction while the firm waits.  If we define 𝑃𝑉𝑇 as the project value at the end of wait (𝑇), 



 

 

33 

which is the present value of the expected future cash inflows, we summarize the firm’s investment 

decision at the end of wait (𝑇) as follows: 

                                     If  𝑃𝑉𝑇 > 𝐼, invest in the project, 

                                          𝑃𝑉𝑇 < 𝐼, do not invest in the project. 

If the firm does not invest in the project, it will simply lose what it originally invested in 

the project, or any money paid to hold the project till T (more precisely, the option premium paid 

for this project). The relationship can be presented in a payoff diagram of project value assuming 

that the firm holds out until the end of option period. (See Figure 3-2.) 

 
Figure 3-2 Real call option value 

 

Call Option Value Calculation Based on the Loss Function 

The expected number of inventory shortage model is equivalent to a call-option type in real 

option analysis as shown in Figure 3-3. The opportunity cost (or regret) is the blue - shaded area 

when the firm did not take action because they thought the project value at time T is less than the 

investment cost. Therefore, the expected present value over the investment cost could be calculated 

by 

 
𝐸[max(𝑃𝑉 − 𝐼, 0)] = ∫ (𝑃𝑉 − 𝐼)𝑓(𝑃𝑉)𝑑𝑃𝑉

∞

𝐼

 (3-15) 
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Figure 3-3 Real call option value and opportunity cost 

 

When the project value is normally distributed with mean 𝜇 and standard deviation⁡𝜎, then the 

real option value (𝑅𝑂𝑉) with the investment cost 𝐼 can be shown as 

 
𝑅𝑂𝑉(𝐼) = 𝜎[𝑃𝑉] ∙ 𝐿 (

𝐼 − 𝐸[𝑃𝑉]

𝜎[𝑃𝑉]
) = 𝜎[𝑃𝑉] ∙ 𝐿(𝑧) 

(3-16) 

where 

 
𝐿(𝑧)𝑐𝑎𝑙𝑙 = ∫ (𝑥 − 𝑧)𝜙(𝑥)𝑑𝑥

∞

𝑧

= 𝜙(𝑧) − 𝑧(1 − Φ(𝑧)) 
(3-17) 

where Φ(𝑥) is the cumulative standard normal distribution function. This is the same theory of 

call-option type real option analysis; the option value can be obtained by the discounted partial 

expectation of the PV distribution.  

 

3.3.3 Real Put Option Model 

The put option is just the opposite case of a call option – you have the right to sell the 

underlying asset at a predetermined price (𝐾) at option life (𝑇) but you have no obligation to do 

it. This situation is described in Figure 3-4. The option buyer has the right to sell shares at the 
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strike price, and this will happen when the stock price at the maturity date (𝑆𝑇) is less than K. In 

other words, the put option has value in the shaded area in Figure 3-4.    

 

Figure 3-4 Put option value in financial option 

 

Real Put Option 

In terms of real put option application, we may consider abandoning a project when its 

cash flows do not measure up to expectation. The project value (PV) is then the remaining value 

of the project at the time of abandonment consideration. Then we explore the liquidation or 

abandonment value (S) (or the market price offered by other business to acquire the project) for 

the same project at the same point in time. If the project has a life of n years, we can compare the 

value of continuing the project with the liquidation value. In terms of decision, we could consider 

liquidating the project if PV < S, the payoff from owning an abandonment option is 

                                                    Put option value = 0, if PV > S 

                                                                               = S – PV, if PV < S 

Then, the relationship of profit is illustrated in Figure 3-5. 
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Figure 3-5 Real put option value from abandoning a project 

 

Real Put Option Value Calculation based on Loss Function 

The standardized loss function can be modified for a put-option type real option with partial 

expectation on the left-tail as shown in Figure 3-6. 

 

Figure 3-6 Real put option value calculation based on Loss Function 

 

The standardized loss function for a put option is  

 
𝐿(𝑧)𝑝𝑢𝑡 = ∫ (𝑧 − 𝑥)𝜙(𝑥)𝑑𝑥

𝑧

−∞

= ∫ 𝑧𝜙(𝑥)𝑑𝑥
𝑧

−∞

−∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑧

−∞

= 𝑧Φ(𝑧) + 𝜙(𝑧) (3-18) 
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These results indicate that we can value of real options without requiring a lognormal assumption 

for a project value distribution.  

 

3.4 An Illustrating Example 

To demonstrate the computational process of obtaining call and put option values through 

the standardized loss function, we will present a numerical example taken from Copeland and 

Antikarov [52]. 

3.4.1 Investment Environment 

Suppose a manufacturing company already came up with future cash flows associated with 

a project but it has three years to decide whether or not to invest. With various future uncertainties, 

the company considers a deferral option based on the estimated future cash flow. Table 3-2 shows 

estimating future cash flows over the project life from operating activities.  

Table 3-2 Estimating future cash flows over the project life 

  t=3 t+1 t+2 t+3 t+4 t+5 t+6 t+7 

Revenue  $1300 1300 1300 1300 1300 1300 1300 

Sales price/unit  13 13 13 13 13 13 13 

Unit sales  100 100 100 100 100 100 100 

Expenses  -920 -920 -920 -920 -920 -920 -920 

Variable cost/unit  7 7 7 7 7 7 7 

 -Variable costs  -700 -700 -700 -700 -700 -700 -700 

 -Fixed costs  -20 -20 -20 -20 -20 -20 -20 

 -Depreciation  -200 -200 -200 -200 -200 -200 -200 

EBIT  380 380 380 380 380 380 380 

 -Cash Taxes  -114 -114 -114 -114 -114 -114 -114 

 +Depreciation  200 200 200 200 200 200 200 

 -Working capital  -300 0 0 0 0 0 300 

Expected cash flow   166 466 466 466 466 466 766 

Standard 

Deviation   52.49 147.36 147.36 147.36 147.36 147.36 242.23 
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With the expected NPV criterion, a project could be accepted when the expected NPV 

obtained by discounting the future cash flows is greater than 0, and each cash flow (𝑎𝑛) is treated 

as most-likely values of each period. 

 

∑
𝑎𝑛

(1 + 𝑟)𝑛

𝑁

𝑛=𝑡+1

− 𝐼 > 0 

(3-19) 

However, considering uncertainty, the PV could be a random variable which has a mean and 

variance instead of a static value as illustrated in Figure 3-7.   

 

Figure 3-7 PV distribution by aggregating discounted cash flow 

 

Suppose, the company assumes a 32% of standard deviation – of each cash flow and 12% 

of weighted average cost of capital (WACC), then the expected present value and variance of the 

project value will be calculated by  

 

𝐸[𝑃𝑉𝑡] = ∑
𝐸[𝑎𝑛]

(1 +𝑊𝐴𝐶𝐶)𝑛

𝑁

𝑛=𝑡+1

 = $1,994.56 

 

 

𝑉𝑎𝑟[𝑃𝑉𝑡] = ∑
(𝑠𝑡. 𝑑[𝑎𝑛])

2

(1 +𝑊𝐴𝐶𝐶)2𝑛

𝑁

𝑛=𝑡+1

= (312.18)2 

 

 

𝑡 

𝐸[𝑃𝑉𝑡], 𝑉𝑎𝑟[𝑃𝑉𝑡] 
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When the investment cost for the project is $1,600, the project is acceptable in the conventional 

view point because the expected NPV is greater than 0. Nonetheless, there are possible losses as 

the shaded area in Figure 3-8, that should be considered. The real option strategy could hedge these 

potential losses.  

 

Figure 3-8 Net Present Value distribution 

 

In addition, we conducted 1,000 iterations of the Monte Carlo simulation to obtain the 

project values with the random sale price and variable cost. Figure 3-9 displays a normal quantile-

quantile (QQ) plot, which shows the quantiles of the project values versus the theoretical quantiles 

values from a normal distribution. As we can see that the points seem to fall along a straight line 

in the QQ plot, there is a strong evidence that the project value is normally distributed.  



 

 

40 

 

Figure 3-9 QQ plot of project value with 1000 times iteration 

 

3.4.2 Procedure of real option evaluation with the standardized loss function 

To implement the loss function approach, we may use the following computational steps: 

• Step 1: The generation of future cash flow at each period  

• Step 2: The estimation of project value from the discounted cash flows at time 𝑇, option 

life 

• Step 3: The determination of the expected value and variance of the project value 

distribution  

• Step 4: The calculation of real option value at time 𝑇 with the standard loss function (partial 

expectation) 

• Step 5: The calculation of real option value at time 0 by discounting the value obtained in 

Step 4. 

 

3.4.3 Call-option type real option: defer options 

With a defer option for the project, the company can wait and see. If the project value is 

greater than the investment cost, then the company will invest in the project. If the PV distribution 
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could be assumed as a normal distribution, the option value could be calculated with the partial 

expectation which is the same as the expected number of shortage model. It can be written as   

 
𝐸[max(𝑃𝑉𝑡 − 𝐼, 0)⁡] = ∫ (𝑃𝑉𝑡 − 𝐼)𝑓(𝑃𝑉𝑡)𝑑𝑃𝑉𝑡

∞

𝐼

 
(3-20) 

Here, we could substitute the expected value and standard deviation obtained from the estimated 

cash flows into the defer option valuation model. 

 
𝑅𝑂𝑉𝑡(𝐼) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿 (

𝐼 − 𝐸[𝑃𝑉𝑡]

𝜎[𝑃𝑉𝑡]
) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿(𝑧)𝑐𝑎𝑙𝑙 

(3-21) 

 
𝑧 =

𝐼 − 𝐸[𝑃𝑉𝑡]

𝜎[𝑃𝑉𝑡]
=
$1,600 − $1,994.56

$312.18
= −1.2639 

 

 𝑅𝑂𝑉𝑡(𝐼) = 𝜎[𝑃𝑉𝑡] ∙ [𝜙(𝑧) − 𝑧(1 − Φ(𝑧))] = $409.0  

where 𝜙(𝑧) is the standard normal distribution density function and Φ(𝑧) is the standard normal 

cumulative distribution function. This real option value represents the value at time 𝑡, thus we need 

to bring this value at time 0 by discounting at a risk-free interest rate. 

 𝑅𝑂𝑉𝑐𝑎𝑙𝑙(𝐼) = 𝑅𝑂𝑉𝑡(𝐼) ∙ 𝑒
−𝑟𝑡 = $342  

 

Implied Volatility in Black-Scholes 

The call option value calculated by the Black-Scholes formula gives almost the same value 

with the standard loss function. To calculate the real option value with the Black-Scholes formula, 

the important parameters to be defined are the initial value and the volatility of the project. These 

values could be obtained from the project value distribution. Therefore, once the project value 

distribution with the expected value and variance is generated, the implied project volatility could 

be calculated with Equation (3-11). 
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𝜎 =
√
ln (

𝑉𝑎𝑟[𝑃𝑉𝑡]
𝐸[𝑃𝑉𝑡]2

+ 1)

𝑡
=
√
ln (

(312.18)2

(1,994.56)2
+ 1)

3
= 0.09 

 

 

Then the call-option value with the Black-Scholes formula will be 

 𝑅𝑂𝑉𝑐𝑎𝑙𝑙 = 𝑃𝑉0𝑁(𝑑1) − 𝐼 ∙ 𝑒−𝑟𝑡𝑁(𝑑2) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡= 𝐸[𝑃𝑉𝑡] ∙ 𝑒
−𝑟𝑡𝑁(𝑑1) − 𝐼 ∙ 𝑒−𝑟𝑡𝑁(𝑑2) = $337.75 

 

 

It shows that how robust this loss function approach is as an alternative to the Black and Scholes 

method. 

 

3.4.4 Put-option type real option: abandonment options 

If the project value is less than a resale / salvage value at time t, the company with an 

abandonment option can terminate an on-going project before its project life. As the same 

assumption as a delay option, when the PV distribution follows a normal distribution, the 

abandonment option could be the expected value of the difference between the salvage value and 

the project value at time t. When a resale or salvage value is denoted by 𝐾, it can be written as   

 
𝐸[max(𝐾 − 𝑃𝑉𝑡, 0)⁡] = ∫ (𝐾 − 𝑃𝑉𝑡)𝑓(𝑃𝑉𝑡)𝑑𝑃𝑉𝑡

𝐼

∞

 
(3-22) 

Equation (3-18) shows the partial expectation which can be obtained by the standard loss function 

for put-option value.  

 
𝑅𝑂𝑉𝑡(𝐾) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿 (

𝐾 − 𝐸[𝑃𝑉𝑡]

𝜎[𝑃𝑉𝑡]
) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿(𝑧)𝑝𝑢𝑡 

(3-23) 

 𝑅𝑂𝑉𝑡(𝐾) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿(𝑧)𝑝𝑢𝑡 = 𝜎[𝑃𝑉𝑡] ∙ [𝜙(𝑧) − 𝑧(1 −Φ(𝑧))] (3-24) 

The put-type real option should be exercised when a remaining project value is less than a salvage 

value or resale value. For example, if the expected revenue decreases during the option life, the 
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expected project value at time t should be decreased. In this case, the abandonment option could 

provide a protection against a downside risk.  

Suppose that the expected revenue in the previous example (see Table 3-2) decreases from 

$1,300 to $1,100, the project value distribution would have a new expected value and a variance: 

𝐸[𝑃𝑉𝑡] = $1,355.63, and 𝑉𝑎𝑟[𝑃𝑉𝑡] = (226.25)2. With these new expected project value and the 

standard deviation, we could calculate the abandonment option value with the standard loss 

function as the same procedures as a defer option. Suppose the salvage value, 𝐾, is $1,600, then 

the normalizing value, 𝑧, can be obtained 

 
𝑧 =

𝐾 − 𝐸[𝑃𝑉𝑡]

𝜎[𝑃𝑉𝑡]
=
$1,600 − $1,355.63

$226.25
= 1.08 

 

The abandonment option value of the project can be obtained by the standard loss function 

approach. 

 𝑅𝑂𝑉𝑡(𝐾) = 𝜎[𝑃𝑉𝑡] ∙ 𝐿(𝑧)𝑝𝑢𝑡 = 𝜎[𝑃𝑉𝑡] ∙ [𝜙(𝑧) − 𝑧(1 − Φ(𝑧))] = $260.51  

 𝑅𝑂𝑉𝑝𝑢𝑡(𝐾) = 𝑅𝑂𝑉𝑡(𝐾) ∙ 𝑒
−𝑟𝑡 = $217.60  

Once again, it could be compared with the put option value with the Black-Scholes formula: 

 𝑅𝑂𝑉𝑝𝑢𝑡 = 𝐾𝑒−𝑟𝑇𝑁(−𝑑2) − 𝑃𝑉0𝑁(−𝑑1) = $221.07  

In consequence, this standardized loss function approach could replace the Black-Scholes method 

for not only the call-type option, but also the put-type option valuation. 

 

3.4.5 Sensitivity Analysis  

Recall the example cash flows of the manufacturing company. If the risk-free interest rate 

is 6%, the real option value calculated from the Black-Scholes formula is  

 𝑅𝑂𝑉 = 𝑃𝑉0𝑁(𝑑1) − 𝐼 ∙ 𝑒−𝑟𝑡𝑁(𝑑2) = $337.75  
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The discounted option value from the expected shortage model with the standardized loss function 

shows the similar value as the option price from the Black-Scholes formula. 

 𝑅𝑂𝑉0(𝐼) = 𝑅𝑂𝑉𝑡(𝐼) ∙ 𝑒
−𝑟𝑡 = $342.38  

For practical purpose, these two methods produce almost identical values. The difference 

is coming from the different assumption of project value distribution; thus, we conduct the 

sensitivity analysis by varying the expected project value, investment cost, option life, and 

discount rate. In Figures 3-10 and 3-11, the dotted lines show the option values based on the 

standardized loss function approach; the solid lines show option values from the Black-Scholes 

formula. 

 

 

Figure 3-10 Comparison of call-option values based on B-S formula and loss function 
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Figure 3-11 Comparison of put-option values based on B-S formula and loss function 

 

The results in Figures 3-10 and 3-11 indicate that the loss function approach almost 

duplicates the results from the Black-Scholes method. In our future task is to develop a series of 

option value formulas driven by various non-lognormal distributions, so that one can make a quick 

option value calculation without resorting to the Black-Scholes method.  

 

3.5 Summary   

In summary, in the traditional project evaluation, the first step is to estimate the future cash 

flows by integrating various cash flow components. From there, we calculate the project value 

distribution, which may not be a lognormal distribution. To explain a stock price movement, the 

financial option analysis assumes the distribution of underlying asset to be a lognormal distribution, 

whereas the present value distribution of the cash flows to be a normal type can be a more realistic 
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assumption for real projects. Moreover, we can easily verify that the real option value using the 

standardized loss function approach could produce the identical value with the value obtained from 

the well-known Black-Scholes formula, if we assume the same lognormal PV distribution. 

Therefore, based on a partial expectation of the normal distribution, the new real option evaluation 

method can be a more practical method. In addition, this alternative approach is easy to understand 

the process of option valuation and update the real option value when a company receives new 

pieces of information for the project in concern. 
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Chapter 4. Determine a Relationship between CNPVaR and Real Options Value 

 

 

In Chapter 3, we have developed an alternative procedure to determine the option value 

based on the loss function approach. The option value sets simply the maximum amount to pay for 

retaining investment flexibility. The next step is to determine an appropriate price to pay to obtain 

the option. Then we are ready to develop a decision criterion to consider three critical elements – 

profitability, variability, and flexibility. Once again, profitability will be measured by the expected 

net present value, the variability by the variance of the NPV, and the flexibility by the real option 

value. To integrate these three elements in a decision criterion, we propose the K-P criterion, which 

will be used as a decision criterion to select the best portfolio in each decision period over the 

planning horizon.   

 

4.1 Determine a Relationship between CNPVaR and Real Options Value 

Evaluating an investment project solely based on the expected NPV ignores the possibility 

of losing big money for a risky investment due to uncertainty associated with project cash flows. 

To gauge the extent of loss, financial institutions have adopted a risk measure known as the 

conditional value at risk (CVaR). The CVaR intuitively shows how much risk exists in an 

investment project. If an investor or business is willing to take that risk, then we can view this 

value as a kind of risk tolerance to the investor. With this information available, we may be 

interested in coming up with a strategy to hedge the further risk through any option mechanisms 
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such as real options. Naturally, one of the important questions is to determine an appropriate 

amount of real option premium to pay for a given level of risk tolerance. Therefore, before 

developing any capital budgeting decision model, it is essential to explore the relationship 

between the risk tolerance implied and the realistic real option premium to pay. In this research, 

we will explore this relationship through the conditional value at risk concept. 

4.1.1 Value at Risk and Conditional Value at Risk 

The Value at Risk (VaR) is one of the popular risk measures developed by JP Morgan  [68] 

to assess for market risks of financial assets or portfolios based on statistical return data of the 

financial assets. It is expressed as the quantile of the future losses within a given confidence level 

over a certain time duration. The purpose of VaR is to establish a common reference point for 

market risk measurements, such that it gives to investors a better understanding of the risk exposure. 

In financial institutions such as banks and investment firms, it plays the role of a standard risk 

indicator. Even though the VaR has become a standard measure of risk exposure, it has been 

criticized for its shortcomings [72]. There are two main arguments: First, the VaR failed one of 

the requirements of the coherent risk measure, which is the sub-additivity property. Second, the 

assumptions of VaR cannot be maintained for the valid value under an extreme loss beyond the 

specified confidence level. Due to the shortcomings of the VaR, the Conditional Value at Risk 

(CVaR) was suggested by Rockafellar and S. Uryasev [74]. It measures the expected loss beyond 

a specified confidence level and is known as the Expected Shortfall (ES) or Mean Excess Loss 

(MEL). We will adopt the CVaR concept as a risk measure in our research. 

The VaR measures the maximum expected loss at a given investor’s confidence level (𝑝) 

over the given time horizon (𝑡), thus, the VaR corresponds to the lower-tail level (1 − 𝑝).⁡If a 
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random variable 𝑋  represents the value of an asset and the 𝐹𝑋⁡ is the cumulative distribution 

function of 𝑋, VaR and CVaR are denoted by 

 𝑉𝑎𝑅𝑝(𝑋) = 𝑖𝑛𝑓{𝑥|𝐹𝑋⁡(𝑥) ≥ 1 − 𝑝} = 𝐹𝑋
−1(1 − 𝑝) (4-1) 

 
𝐶𝑉𝑎𝑅𝑝(𝑋) = 𝑖𝑛𝑓 {𝑉𝑎𝑅𝑝(𝑋) + (

1

1 − 𝑝
) ⋅ 𝐸[𝑋 − 𝑉𝑎𝑅𝑝(𝑋)]

−}

= 𝐸[𝑋|𝑋 ≤ 𝑉𝑎𝑅𝑝(𝑋)]⁡ 

(4-2) 

Since the Value at Risk (VaR) was originally developed for financial institutions, similar 

terms as shown in Figure 4-1 have been introduced for non-financial institutions to meet their 

different circumstances. The Cash Flow at Risk (CFaR) measures the degree of risk associated 

with a cash flow shortfall in any operational period [129][78][79].  The Net Present Value at Risk 

(NPVaR), on the other hand, measures the overall risk associated with undertaking an investment 

project  [84][130][85]. 

 

Figure 4-1 Summary of risk measures based on Value at Risk 

Since we are dealing with investments in real assets, our focus would be more on cash flow 

realizations of the investments. We propose the term, Conditional Net Present Value at Risk 

(CNPVaR), which has applied the CVaR concept on a project value distribution. The CNPVaR 

represents the average of losses beyond the critical point with a given tolerance level. Especially, 

the value does not need to be interpreted as only loss; it could be any value lower than the critical 

point or simply a degree of undesirability.  

Risk measures

Financial Assets

Value at Risk

Conditional Value at Risk

Non-Financial Assets

Cash Flow at Risk

Net Present Value at Risk

    Short-term 

    Long-term 
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4.1.2 Conditional Net Present Value at Risk (CNPVaR) 

For any investment project, it is always possible to realize a negative NPV even though the 

expected NPV might be positive. So, we would be interested in knowing how much NPV is at risk 

for the project under consideration. In real options analysis, we typically separate the investment 

cost and project value, which is the sum of the discounted cash flows after investment. As 

mentioned in Chapter 3, the project value distribution may not follow a lognormal distribution. 

Instead, the project value (PV) is often normally distributed with aggregation of a sufficient 

number of random cash flow components.  

To develop a dollar-based measure, the Net Present Value at Risk (NPVaR) and 

Conditional Net Present Value at Risk (CNPVaR) with a confidence level (𝑝) could be modified 

from the forms of the VaR and the CVaR for a normal distribution as follows: 

 𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] + Φ−1(1 − 𝑝)𝜎[𝑁𝑃𝑉] = 𝐸[𝑁𝑃𝑉] + 𝑧𝜎[𝑁𝑃𝑉] (4-3) 

 
𝐶𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] − (

𝜙(𝑧)

Φ(𝑧)
) ∙ 𝜎[𝑁𝑃𝑉] = 𝐸[𝑁𝑃𝑉] − (

𝜙(𝑧)

1 − 𝑝
) ∙ 𝜎[𝑁𝑃𝑉] (4-4) 

where Φ−1(1 − 𝑝) = 𝑧. Now we can easily calculate 𝐶𝑁𝑃𝑉𝑎𝑅 , once we know the mean and 

variance of project value distribution. 

To illustrate the computational process, recall Section 3.4.1, the project value distribution 

with mean and variance were  

 

𝐸[𝑁𝑃𝑉] = ∑
𝐸[𝑎𝑛]

(1 +𝑊𝐴𝐶𝐶)𝑛

𝑁

𝑛=1

 − 𝐼 = $1,994.56 − $1,600 = $394.56 

 

 

𝑉𝑎𝑟[𝑁𝑃𝑉] = ∑
(𝑠𝑡. 𝑑[𝑎𝑛])

2

(1 +𝑊𝐴𝐶𝐶)2𝑛

𝑁

𝑛=1

= (312.18)2 
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where WACC is 12%. With the mean and variance from the NPV distribution, the NPVaR and 

CNPVaR with a 95% confidence level over the project life can be calculated by 

 𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] + 𝑧𝜎[𝑁𝑃𝑉] = −$118.93  

 
𝐶𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] − (

𝜙(𝑧)

1 − 𝑝
) ∙ 𝜎[𝑁𝑃𝑉] = −$249.38 

 

 

 

Figure 4-2 NPVaR and CNPVaR with a 95% confidence level 

 

Figure 4-2 shows that the maximum losses are $119 with a 95% confidence level and the average 

extreme losses beyond $119 is around $249 at the same confidence level.  

 

4.1.3 Real option pricing with CVaR approach 

Once we have determined the option value associated with an investment project, our 

question is what the right price to pay for the option is. Conceptually, we know that the maximum 

amount to pay should not exceed the option value. If the payment is greater than the real option 

value itself, the option no longer has any benefit.  

The first step toward the option pricing for an investor (business) who reveals a certain 

degree of risk tolerance, we may revisit the CNPVaR, which captures the downside risk exposure 
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in the investment project. For example, in the previous section, we obtained the NPVaR and 

CNPVaR at 95% confidence level from the NPV distribution. Those values could be interpreted: 

• The most an investor expect to lose in present dollars over the project life is 

$118.93 with 95% confidence. 

• The average loss amount exceeding $118.93 is $249.38 with 95% confidence.  

If the investor is willing to accept the project with the possible losses up to $249.38, it could be 

the maximum payment for acquiring real option. Recall the example in Chapter 3 where the real 

option value of the proposed approach is 

 𝑅𝑂𝑉0(𝐼) = 𝑅𝑂𝑉𝑡(𝐼) ∙ 𝑒
−𝑟𝑡 = $342.38 

In this example, the maximum option price could be CNPVaR; Option price < $249 < $342. Figure 

4-3 illustrates the relationship between the CNPVaR and the option premium (price). 

 

 

Figure 4-3 Real option pricing with CNPVaR with a 95% confidence level 

 

Now in the previous example, if the investor requires a much tighter confidence level, say 99%, 

instead of 95%, what would be the proper option price?  



 

 

53 

 
Figure 4-4 NPVaR and CNPVaR with 99% confidence level 

 

As shown in Figure 4-4, the revised NPVaR and CNPVaR are now -$331.68 and -$437.47 

respectively. With an increased confidence level, the maximum loss and the average loss beyond 

NPVaR are much greater than the case of 95% level. Figure 4-5 illustrates the revised option 

pricing for this investor with 99% confidence level is now $342.38. In other words, the investor 

could pay up to the maximum amount to have an assurance to limit the loss at the option premium 

of $342.38. 

 

Figure 4-5 Real option pricing with CVaR with a 99% confidence level 

 

Therefore, the maximum amount of real option premium will be the minimum value between 

option value and CNPVaR, it can be written by 
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 𝑅𝑒𝑎𝑙⁡𝑂𝑝𝑡𝑖𝑜𝑛⁡𝑃𝑟𝑖𝑐𝑒⁡(𝑅𝑂𝑃) ≤ min⁡(𝑅𝑂𝑉, 𝐶𝑁𝑃𝑉𝑎𝑅) (4-5) 

 

In summary, the Value at Risk (VaR) is one of the well-known risk measures used by 

financial institutions to capture the potential loss in value of their traded portfolios from market 

movements over a specified period. Once the potential loss amount is determined, then this can be 

compared to their available capital and cash reserves to see if the losses can be covered without 

putting the firms at risk. When the concept is applied to non-financial firms, the Net Present Value 

at Risk (NPVaR) represents the worst outcome at a given confidence level on the NPV distribution. 

We propose to adopt the loss information obtained from the CNPVaR as a basis to determine what 

the appropriate price to pay is to acquire an option associated with the investment project under 

consideration for funding.   

 

4.2 Development of the K-P Criterion 

In the previous section, we developed a framework for calculating the investment 

flexibility (or option premium) based on the CVaR. In this section, we formally propose the 

decision criterion, called the Kim-Park method (or namely K-P criterion), and describe its 

application to a sequential decision process. To facilitate the understanding of the potential 

advantage of utilizing the K-P criterion when decisions are made on a periodic basis, we present 

the logical derivation of the K-P criterion in several steps. In Section 4.2.1, we describe the specific 

capital budgeting decision environment in which the K-P criterion is to be applied. In Section 4.2.2, 

we develop a single measure as an operational decision rule to seek a practical trade-off among 

the three major investment factors described earlier. 
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4.2.1 Capital Budgeting Decision Environment 

Revisit the investment situation that is described in Chapter 1. The firm has to make capital 

investment decisions on a periodic basis. The frequency of investment decisions can vary 

depending on the type of business sector, but it could be done quarterly, semiannually, or annually. 

The firm’s objective is to maximize the value creation through successful investments at the end 

of some predefined time frame. At each time of deliberation, all units of the organization submit 

the capital investment proposals to the capital expenditure committee detailing the anticipated cash 

flows from the proposals and any other relevant information worth considering. All cash flow 

estimates are based on the best information available at the time of submission, knowing that these 

estimates are subject to change due to considerable uncertainty. To factor the degree of uncertainty 

embedded in the projects, all future cash flows are described by either ranges of low and high or 

various types of probability distributions. Furthermore, the firm has no precise knowledge of the 

investment proposals that will be submitted for consideration in future periods. More specifically, 

we will assume the following investment situations: 

• The firm will call for capital expenditure requests from all divisions within the 

organization on regular basis. Then among the proposals submitted for funding, the firm 

will consider which proposals should be funded within the budget. The firm will only 

know the proposals submitted for that decision period, but no specific knowledge 

regarding the future investment opportunities in advance. The firm has to make decision 

based on the most likely estimates of cash flows or probabilistic description of cash flows 

contained in the proposals at that time.  

• The firm does not have information about the types of investment proposals (investment 

opportunities) that would be submitted in future budget period in advance.   
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• The firm knows exactly how much budget be allocated at the starting period (t = 0) and has 

a reliable future budget in each future decision period. Normally the future budget for 

capital expenditure would be a function of expected sales or operating profit to be 

generated.  

• The actual future budget can fluctuate depending upon the acceptance or rejection of 

projects available in the previous decision periods. Any realization of cash flows from the 

project funded in previous periods would be reinvested in the business – meaning that the 

future budget will comprise of two sources: regularly budgeted amount plus the cash flows 

from the previous investments. Certainly, this assumption can be relaxed if any firm has a 

different investment policy regarding the cash infusion from the investment activities.  

• The firm will make every effort to maintain a relatively constant capital structure such that 

the weighted average cost of capital (discount rate) will remain steady during the study 

period.  

• The firm’s ultimate objective is to create the largest value to the shareholders and the 

planning horizon is a purely function of management policy. For example, the firm could 

set a short-term goal with a planning horizon of 3 years or a relatively long-term goal with 

a planning horizon of 5 years. Most public utility firms might have much longer planning 

horizons as their capital expenditure programs to be more capital extensive requiring a 

longer time to recover the capital.  

For these investment situations, the firm is faced with selecting a set of projects at each decision 

period which would result in the maximization of return on invested capital at the horizon time.  
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4.2.2 Description of Three Key Investment Factors to Be Considered 

A typical capital budgeting decision still could be made solely on the basis of expected 

cash flows. However, in a context of sequential capital budgeting problems, our goal is to consider 

the investment flexibility embedded in each project to prepare for the unforeseen investment risk 

or opportunity that could arise in the future.  

As pointed out earlier, when comparing sets of uncertain cash flow sequences over a multi-

period investment horizon, each decision ought to consider three factors. They are: 

• The expected terminal profitability (profitability) 

• The magnitude of expected loss (variability) 

• The flexibility in future investment activity (flexibility). 

The new proposed decision criterion (K-P criterion) seeks some way to reflect these three 

elements in a single measure. The approach taken in this study is as follows: the terminal 

profitability is measured by the expected net present value of the project; the variability in the net 

present value is expressed in terms of standard deviation from the expected net present value and 

its loss magnitude determined by CVaR; and the investment flexibility preference is measured by 

the size of option value. Thus, conceptually, the overlapped space in Figure 4-6 represents the 

project desirability based on these three factors. In fact, the overlapped area created by the 

profitability and flexibility represents the flexible NPV in real options, and the overlapped area 

created by the profitability and variability represents the mean-CVaR measure. The overlapped 

area between the flexibility and variability is considered to determine an appropriate real option 

premium.  
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Figure 4-6 Three elements for the K-P criterion and their relationships 

 

To develop an operational and practical decision rule which indicates whether or not a 

project should be included in the budget, we need a single dollar measure which brings these major 

parameters together. Therefore, subsequent sections examine what type of integration of these 

three factors should result in a single dollar measure. 

4.2.3 Devising a Single Value - Net Flexible Net Present Value (NFNPV) 

In real options, the flexible NPV (FNPV) is defined as the NPV of investment project with 

options, which captures strategic concerns.  

 FNPV⁡ = ⁡NPV⁡(without⁡option)⁡+ ⁡Value⁡of⁡options (4-6) 

Conceptually, we see that increases in an investment’s expected value increase its 

desirability, while increases in the option value also tend to increase an investment’s desirability 

as well. Clearly, the higher FNPV is, the better investment is. In ranking investment projects, we 

will also prefer an investment with a larger value of FNPV to the one with a lower FNPV. In order 

to create such an option value, it requires an option premium to pay, which should be the smaller 

than the option value itself. Otherwise, it does not make any economic sense to retain the option. 
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The issue here is how much option premium should be paid to retain the investment flexibility 

when an average expected loss is established by the investor at a certain level of confidence. In 

Section 4.1, we have developed what the appropriate amount a firm should pay as an option 

premium based on the value of CVaR. Therefore, if we determine the option premium based on 

the CVaR, in fact, we are incorporating three elements of investment factors by the following 

relationship:  

 NFNPV⁡ = ⁡NPV⁡ + ⁡Value⁡of⁡options⁡– ⁡Option⁡premium (4-7) 

where NFNPV refers to the net FNPV. In this research, we propose the NFNPV as a measure of 

economic desirability of an investment. In other words, an uncertain prospect is considered to be 

characterized by a single index on which accept-reject decisions can be made.  

 

4.3 Mathematical Programming Model base on the K-P Criterion 

4.3.1 Background of Mathematical Programming Model 

In capital budgeting problems, the linear programming (LP) technique is widely utilized 

within a mathematical framework of optimization with a linear objective function and subject to a 

set of linear constraints, especially restricted by limited capital [131][11][12][16][18][132][133]. 

The objective function represents the total discounted cash flows of the multi-investment projects 

selected in multi-period. We develop an integer program (IP) capital allocation model 

[134][135][14][15][113][136], in which decisions of project selection are explicitly made by 

binary variables. In other word, a decision variable of “0” for a certain project means a firm does 

not accept the investment project, a decision variable of “1” means that the project will be accepted 

or funded in capital allocation problem. In other words, no partial funding is allowed. Therefore, 

we use the integer linear programming (ILP) to maximize the NFNPV.  
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4.3.2 The Kim-Park model 

We call the process of measuring the worthiness of project and allocating resources based 

on the NFNPV to be the Kim-Park method or the K-P criterion. The problem of selecting the 

combination of investments that maximizes the NFNPV for a particular set X of investment 

proposals is equivalent to solving the following ILP problem at each decision period: 

            The conceptual objective function is comprised of maximizing FNPV (NPV + option value) 

and minimizing Option price, therefore, the mathematical capital allocation model for a group of 

projects in a single period will be shown as:   

 

𝑊0 = 𝑚𝑎𝑥∑(𝑁𝑃𝑉0𝑗𝑥0𝑗 + 𝑅𝑂𝑉0𝑗𝑦0𝑗 − 𝜆𝑅𝑂𝑃0𝑗𝑦0𝑗)

𝐽

𝑗=1

 (4-8) 

 

𝑠. 𝑡.⁡⁡⁡⁡∑(𝐼0𝑗𝑥0𝑗 + 𝑅𝑂𝑃0𝑗𝑦0𝑗) ≤

𝐽

𝑗=1

𝐵0 

 

(4-9) 

𝑥𝑡𝑗: project selection variable for project 𝑗 at time 𝑡 / decision variable 

𝑦𝑡𝑗: option selection variable for project 𝑗 at time 𝑡 / decision variable 

𝑅𝑂𝑉𝑗: real option value for project 𝑗 

𝑅𝑂𝑃𝑗: real option price for project 𝑗 

𝜆: coefficient of real option price 

𝐼t𝑗: the initial investment cost for project 𝑗 at time 𝑡 

𝐵𝑡: budget allowed at time 𝑡 

 

Recall that valuation of the real option with the loss function approach described in Chapter 3 is 

shown as,   
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 𝑅𝑂𝑉𝑗 = 𝜎[𝑃𝑉𝑗] ∙ [𝜙(𝑧𝑗) − 𝑧𝑗 (1 − Φ(𝑧𝑗))] 
(3-24) 

where, 

 
𝑧𝑗 =

𝐼𝑗 − 𝐸[𝑃𝑉𝑗]

𝜎[𝑃𝑉𝑗]
 

 

and the option premium based on the relationship with the CNPVaR was shown ealier as,  

 𝑅𝑂𝑃𝑗 ≤ min⁡(𝑅𝑂𝑉𝑗, 𝐶𝑁𝑃𝑉𝑎𝑅𝑗) (4-5) 

Furthermore, since we assume a periodic investment decision environment, multiple 

proposals will be proposed over horizon time. Thus, the proposed model after the first budget 

period will be shown as 

 

𝑚𝑎𝑥∑
𝑊𝑡

(1 + 𝑟)𝑡

𝑇

𝑡=1

, 𝑡 ≥ 1⁡ (4-10) 

From the second period, delayed projects from the previous period should be considered to 

compete with new proposed projects. Moreover, when they are considered, the NPV and 

investment cost of the delayed projects should be updated with new information.  

 

𝑊𝑡 = 𝑚𝑎𝑥∑(𝑁𝑃𝑉𝑡𝑗𝑥𝑡𝑗 + 𝑅𝑂𝑉𝑡𝑗𝑦𝑡𝑗 − 𝑅𝑂𝑃𝑡𝑗𝑦𝑡𝑗)

𝐽

𝑗=1

+∑𝑈𝑁𝑃𝑉𝑡𝑑𝑥𝑡𝑑

𝐷

𝑑=1

 (4-11) 

 

𝑠. 𝑡.⁡⁡𝑇𝑜𝑡𝑎𝑙⁡𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡⁡(⁡𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠 + 𝑜𝑝𝑡𝑖𝑜𝑛𝑠 + 𝑑𝑒𝑙𝑎𝑦𝑒𝑑⁡𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠(𝑖𝑓⁡𝑎𝑝𝑝𝑙𝑖𝑐𝑎𝑏𝑙𝑒))

≤ (𝑎𝑠𝑠𝑖𝑛𝑔𝑒𝑑⁡𝑏𝑢𝑑𝑔𝑒𝑡) ⁡+ (𝑏𝑢𝑑𝑔𝑒𝑡⁡𝑙𝑒𝑓𝑡⁡𝑜𝑣𝑒𝑟⁡𝑓𝑟𝑜𝑚⁡𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠⁡𝑝𝑒𝑟𝑖𝑜𝑑)

+ (𝑐𝑎𝑠ℎ⁡𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑⁡𝑓𝑟𝑜𝑚⁡𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑⁡𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑠) 
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∑(𝐼𝑡𝑗𝑥𝑡𝑗 + 𝑅𝑂𝑃𝑡𝑗𝑦𝑡𝑗)

𝐽

𝑗=1

+∑𝑈𝐼𝑡𝑑𝑥𝑡𝑑

𝐷

𝑑=1

≤ 𝐵𝑡 + (𝐵𝑡−1 −∑𝐼(𝑡−1)𝑗𝑥(𝑡−1)𝑗

𝐽

𝑗=1

)𝑒(1+𝑟) +∑∑𝑎𝑡𝑗𝑥𝑡𝑗

𝐽

𝑗=1

𝐺

𝑔=1

 

(4-12) 

𝑥𝑡𝑗 + 𝑦𝑡𝑗 ≤ 1, 𝑓𝑜𝑟⁡𝑑𝑒𝑙𝑎𝑦⁡𝑜𝑝𝑡𝑖𝑜𝑛 

𝑥𝑡𝑗 − 𝑦𝑡𝑗 ≥ 0, 𝑓𝑜𝑟⁡𝑎𝑏𝑎𝑛𝑑𝑜𝑛𝑚𝑒𝑛𝑡⁡𝑜𝑝𝑡𝑖𝑜𝑛 

𝑥𝑡𝑗 , 𝑦𝑡𝑗 = {0,1}, ∀𝑡, ∀𝑗 

𝐽: the number of projects 

𝐷: the number of delayed projects from the previous period 

𝐺: the number of considered groups; new projects are being proposed at each period    

𝑇: the horizon time   

𝑎𝑡𝑗: the expected cash-flow for project 𝑗 at time 𝑡 

𝐼t𝑗: the initial investment cost for project 𝑗 at time 𝑡 

𝑟: the WACC (Weighted Average Cost of Capital) 

𝑈𝑁𝑃𝑉𝑡𝑑: updated NPV value for delayed project 𝑑 from previous period  

𝑈𝐼𝑡𝑑: updated investment cost value for project 𝑑 from previous period 

 

Since the real option mitigates the risk, the risk of worst case is smaller than CNPVaR or 

option premium, because the firm would just lose the option premium.  

 

4.3.3 Consideration of Early Termination.  

The abandonment option considers the value from the possibility of early termination when 

the resale value is greater than the remaining project value, which is ignored by the traditional 
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NPV analysis. Therefore, the early termination time will be decided by comparing the remaining 

project value with the resale project value, and we may accomplish this by adding the following 

constraint. 

 

∑
𝑎𝑛

(1 + 𝑟)𝑛

𝑁

𝑛=𝑚

−
𝐼𝑗(1 + 𝑞𝑗)

−𝑚

(1 + 𝑟)𝑚
≤ 0,𝑚 ≤ 𝑁 (4-13) 

 

𝑛: the current study periods 

𝑁: the total life of project 𝑗 

𝑚: early termination time of project 𝑗 

𝑎𝑛: cash flow of project 𝑗 at time 𝑛 

𝑞: discount rate for resale value of project 𝑗 

 

Then the NPV formulation associated with the abandonment option should be modified: 

 
𝑁𝑃𝑉𝑗 = −𝐼𝑗 +∑

𝑎𝑛
(1 + 𝑟)𝑛

𝑚

𝑛=0

+
𝐼𝑗(1 + 𝑞)−𝑚

(1 + 𝑟)𝑚
,  𝑚 ≤ 𝑁 (4-14) 

   

4.3.4 Consideration of Interrelated Proposals.  

The K-P criterion can easily handle dependent relationships among proposals such as 

mutually exclusiveness and contingency. We may add the following restrictions for each set of 

mutually exclusive proposals: 

 ∑𝑋𝑖
𝑖∈𝐽

≤ 1 (4-15) 

where the summation is over a set 𝐽 of mutually exclusive projects in each decision period. This 

restriction ensures that at most only one proposal of the set 𝐽 will be accepted if we do not allow 



 

 

64 

any partial project funding. To handle contingency relationships, we may add another constraint 

in the following form: 

 𝑋𝑗 ≤ 𝑋𝑚 (4-16) 

where acceptance of proposal 𝑗 assumed to be conditional upon acceptance of proposal 𝑚 [19]. 

 

4.3.5 Consideration of Covariance among Proposals.   

Even though the K-P criterion assumes independence among proposals for modeling 

simplicity, but we can consider any interdependences within project cash flows and among the 

projects as well. This implies that covariance between the cash flows and among the proposals in 

the combination must be recognized to determine the overall risk. This will change the dynamics 

of calculating the option value as well.  

 

4.4 Summary 

In summary, in this chapter we have developed an option pricing method based on the 

CVaR concept, which will be used as a basis to measure investment flexibility. Then we have 

devised the K-P index which integrates three critical elements as a single measure in evaluating a 

risky investment project. The three elements are profitability, variability, and flexibility. By this 

K-P measure, we prefer a large profitability, a smaller variability, and a larger flexibility. However, 

the variability and flexibility are positively correlated – in other words, a smaller variability 

translates into a smaller flexibility, and vice versa. However, when we are comparing different 

investment projects, the K-P measure clearly ranks a larger K-P value higher than the smaller one, 

so the overall project portfolio selection based on this measure would lead to better value creation 



 

 

65 

for the firm. To demonstrate how effective the K-P criterion is, we develop a simulation model in 

Chapter 5. 
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Chapter 5. Description of the Simulation Models 

 

 

In Chapter 4, we presented the three key elements to define the K-P criterion: the 

maximization of the expected present worth (profitability), the minimization of the expected loss 

(variability), and the maximization of the flexibility in future investment activity (flexibility). Even 

though our effort to integrate these three elements into a single measure is worth exploring, it is 

important to demonstrate the effectiveness of the criterion in much more an elaborate simulated 

capital budgeting environment. For this purpose, this chapter describes the computer simulation 

models to create the investment opportunities in each decision period, select the projects by 

applying the K-P criterion and track the wealth accumulation from the invested projects. Due to 

the stochastic nature of the investment environment as described in Chapter 1, project cash flows 

will be generated as a function of many random elements – unit price, demand quantity, variable 

cost, and others – all having some type of predefined probability distributions. These randomness 

in cash flows will create a wide range of possibilities in terms of project selections. Since 

investment decisions are made on a periodic basis over a long period of time, an investment 

decision made at the current period will affect the decisions on future periods. As a result, it is 

almost implausible to obtain a practical solution to this type of multi-stage capital allocation 

decision problems by any analytical means. So, we have to resort on computer simulation.  

The chapter is organized as follows: First, assumptions for the simulation model will be 

defined. Second, the background of simulation process will be presented in two parts: 1) 
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descriptions of the basic mathematical formulations, 2) the procedure of creating investment 

opportunities. Third, the description of simulation process will be presented using the flow charts. 

 

5.1 Assumptions of the Simulation Model  

In order to build an efficient simulation model based on the mathematical model presented 

in Chapter 4, we define the following assumptions: 

• The firm’s goal is to create the largest wealth through various investment activities.  

• The action of the capital investment decision is recognized by a sequence of discrete events, 

which occurs periodically and affects future decisions. For each period, a new set of 

projects are being proposed for funding consideration. However, the firm has no ability to 

predict the forthcoming investment opportunities in advance. 

• When new projects are proposed, the firm gets to know the initial investment cost, the 

project life, and the means and variances of periodic cash flows. If allowed, a project with 

a delay option must be exercised within one period. However, a project with an 

abandonment option, once selected, can be exercised at any time over the life of the project.  

• Neither partial funding of a project nor any partial payment of option premium is allowed.   

• Since the project cash flows are a function of many random variables –unit price, demand 

quantity, variable cost, and others – the resulting project value distribution, that is obtained 

by aggregating the discounted random cash flows, is normally distributed based on the 

central limit theorem.   

• In obtaining the project value distribution, a weighted average cost of capital (WACC) is 

adopted under the assumption of a normal business risk reflected in the discount rate. 
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• The confidence level that represents a risk tolerance, also known as a risk preference or a 

risk appetite, is the parameter predetermined by a company’s guideline or policy. The 

guideline or policy matters could be a collective decision of board members or risk 

management committee in the company.  

• The term “project value (PV)” refers to the net present value of the project less its 

investment costs.   

• To reflect the increasing uncertainty about the cash flows occurring further out in the 

future, the variance of periodic cash flow is gradually increasing proportionally over time 

based on the Brownian motion.  

• In generating the periodic cash flow realizations, two situations are considered:    

o Mutually independent cash flows: cash flows are randomly generated based on a 

normal distribution with given mean and variance of each cash flow.  

o Perfectly positively correlated cash flows: cash flow at period n is perfectly 

positively correlated with cash flow at period n-1. This is simply for modeling 

convenience as it is rather difficult to estimate cross correlation coefficients among 

project cash flows for projects being proposed at each decision period.   

o By examining the two extreme cases – mutually independent and perfectly 

correlated cash flows, we can know of the partially correlated situation as its results 

should be bounded between mutually independent cash flows and perfect correlated 

cash flows.  

• Capital budgets consist of two parts – budgets allocated in each decision period, and cash 

infusion from the projects undertaken prior periods. Any unused funds will be temporarily 
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invested in assets to earn a risk-free interest and returned to the next budget period to be 

added on that period of budget.   

 

5.2 Background of the Simulation Model 

5.2.1 The Basics of Mathematical Formulations 

In order to explain the details of simulation model, we need to briefly summarize the 

mathematical formulations of three key elements that define the K-P criterion: the maximization 

of the expected net present worth (profitability), the maximization of the flexibility in future 

investment activity (flexibility), and the minimization of the expected loss (variability). 

 

The Maximization of the Expected Net Present Worth 

In section 4.1.2, the net present value (NPV) of each project is calculated by aggregating 

the discounted cash flows in each period. When a cash flow in each period is a random variable, 

the expected net present value is denoted by 

 

𝐸[𝑁𝑃𝑉𝑗] = ∑
𝐸[𝑎𝑛]𝑥𝑗
(1 + 𝑟)𝑛

𝑁

𝑛=1

 − 𝐼𝑗  

𝑗: the number of projects  

𝑥: the decision variable for project 𝑗 

𝑁: the project life for project 𝑗   

𝑟: the discount rate 

𝐼𝑗: the initial investment cost for project 𝑗  
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The Maximization of the Flexibility in Future Investment Activity 

In section 3.3.2, the real option valuation based on the standardized loss function is 

introduced. Real Option Value (ROV) with investment cost (𝐼) is presented by 

 
𝑅𝑂𝑉(𝐼) = 𝜎[𝑃𝑉] ∙ 𝐿 (

𝐼 − 𝐸[𝑃𝑉]

𝜎[𝑃𝑉]
) = 𝜎[𝑃𝑉] ∙ 𝐿(𝑧) (3-16) 

where, 𝑧 = (𝐼 − 𝐸[𝑃𝑉]) 𝜎[𝑃𝑉]⁄ = −𝐸[𝑁𝑃𝑉]/𝜎[𝑃𝑉] 

𝐼 : the initial investment cost  

𝐿(𝑧) : the standardized loss function  

𝐸[𝑃𝑉]: the expected project value, 𝐸[𝑃𝑉] = 𝐸[𝑁𝑃𝑉] − 𝐼 

𝜎[𝑃𝑉]: the standard deviation of the project value, 𝜎[𝑃𝑉] = 𝜎[𝑁𝑃𝑉] 

 

Two different loss functions are presented to calculate the option value for delay option 

and abandonment option respectively. The standardized loss function 𝐿(𝑧)𝑐𝑎𝑙𝑙⁡for the delay option 

is the partial expectation of the PV distribution when the realization is greater than a threshold⁡𝑥. 

The standardized loss function 𝐿(𝑧)𝑝𝑢𝑡 for the abandonment option value is the partial expectation 

of the PV distribution when the realization is less than a threshold. 

 
𝐿(𝑧)𝑐𝑎𝑙𝑙 = ∫ (𝑥 − 𝑧)𝜙(𝑥)𝑑𝑥

∞

𝑧

= 𝜙(𝑧) − 𝑧(1 − Φ(𝑧)) 
(3-17) 

 
𝐿(𝑧)𝑝𝑢𝑡 = ∫ (𝑧 − 𝑥)𝜙(𝑥)𝑑𝑥

𝑧

−∞

= ∫ 𝑧𝜙(𝑥)𝑑𝑥
𝑧

−∞

−∫ 𝑥𝜙(𝑥)𝑑𝑥
𝑧

−∞

= 𝑧Φ(𝑧) + 𝜙(𝑧) 
(3-18) 
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The Minimization of the Expected Loss 

In section 4.1.2, the Net Present Value at Risk (NPVaR) and the Conditional Net Present 

Value at Risk (CNPVaR) were introduced along with Value at Risk (VaR) and the Conditional 

Value at Risk (CVaR) as a risk measure. They are presented as follow: 

 𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] + Φ−1(1 − 𝑝)𝜎[𝑁𝑃𝑉] = 𝐸[𝑁𝑃𝑉] + 𝑧𝜎[𝑁𝑃𝑉] (4-3) 

 

 
𝐶𝑁𝑃𝑉𝑎𝑅𝑝(𝑋) = 𝐸[𝑁𝑃𝑉] − (

𝜙(𝑧)

Φ(𝑧)
) ∙ 𝜎[𝑁𝑃𝑉] = 𝐸[𝑁𝑃𝑉] − (

𝜙(𝑧)

1 − 𝑝
) ∙ 𝜎[𝑁𝑃𝑉] (4-4) 

where 

𝑝: the confidence level 

Φ−1(𝑥): the inverse cumulative distribution function of a normal distribution. 

𝑧: the correspondence of the inverse cumulative distribution function of a normal 

distribution. 

𝜙(𝑥) : the probability density function of a normal distribution. 

Therefore, once we obtain the expected value and standard deviation of NPV distribution, we can 

determine the NPVaR and the CNPVaR.  

We also have shown what the reasonable real option price to pay is by comparing the 

conditional net present value at risk (CNPVaR) and real option value (ROV) in Section 4.1. The 

CNPVaR captures the average of extreme losses in the investment project based on a firm’s risk 

tolerance level, and the ROV represents the maximum real option payment. Therefore, if the 

CNPVaR is greater than the ROV, the maximum real option price will be the same as the ROV, 

but if the CNPVaR is smaller than the ROV, the maximum real option price will be the CNPVaR 

not the ROV because CNPVaR is the maximum loss the firm could take.   

 𝑅𝑒𝑎𝑙⁡𝑂𝑝𝑡𝑖𝑜𝑛⁡𝑃𝑟𝑖𝑐𝑒⁡(𝑅𝑂𝑃) ≤ min⁡(𝑅𝑂𝑉, 𝐶𝑁𝑃𝑉𝑎𝑅) (4-5) 
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5.2.2 Description of Key Logics of the Simulation model 

Generation of the Basic Cash Flows  

In this research, we assume that a group of ten projects is being proposed in each period. 

Certainly, we could increase the number of proposals to consider in each period, but our main 

focus is to understand the dynamics of the K-P criterion in the multi-stage capital allocation 

process. In Section 3.4, we presented the example of a simple project cash flow statement as it 

included many elements such as sales price, unit sale, variable cost, fixed cost, depreciation, and 

tax. To seek a variety of cash flow compositions, our basic simulation model generates project 

cash flows during the first period as shown in Table 5-1. Some of the characteristics for the project 

group are: 

Table 5-1 Example of Cash flows and additional information 

n P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 

0 $ 0 0 0 0 0 0 0 0 0 0 

1 600 800 800 1000 700 800 600 1200 1000 700 

2 620 600 600 500 600 600 750 400 600 700 

3 610 500 800 800 700 700 600 500 300 700 

4 600 800 600 500 500 800 750 500 800 700 

5 630 400 700 800 700 700 600 800 600 700 

IRR(%) 16% 18 23 25 18 24 19 23 21 22 

E[PV] $2203 2284 2541 2633 2317 2596 2378 2518 2434 2523 

𝜎[PV] 800 938 721 445 379 948 388 1008 730 409 

 

• The internal rate of return (IRR) of each project ranges between 15% and 25%. 

• All projects have the same initial investment of $2,000 and project life of 5 periods. The 

time unit can be of any duration, such as a month, a quarter, a semi-annual or an annual.  

• According to the Brownian motion [137][127], the variance is basically increasing 

proportional to time. We assume that the variance of each cash flow is increasing at the 

rate of 10% over the previous period. 
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• The risk-free rate is 6%, and the weighted average cost of capital (WACC) is 12%. 

• Three periods of cash flows are used in this simulation and their descriptions are shown 

in Appendix 1.  

 

Mapping projects  

In order to allocate the limited capital more effectively, the K-P criterion classifies the 

proposed projects into two groups: projects that should be considered for immediate funding and 

projects that could be delayed or abandoned in the future periods. For example, for a project with 

a high expected net present value but having a low option value, it could be more advantageous to 

fund the project without any further delay. On the other hand, for a project with a small expected 

net present value but having a high option value, it would be a better strategy to defer our decision 

until we have more information about the project. The question is how we classify the projects 

into two groups. One way to accomplish this task is to introduce an E[NPV]-Option Value chart 

as shown in Figure 5-1 where all projects are positioned according to their expected NPV and 

option values. To facilitate this grouping, we need to establish a dividing line that separates the 

projects into two areas. For example, a 45 degree diagonal line in Figure 5-1 means a slope of 1 or 

E[NPV] = Option Value. With this slope, any projects located above the line put into the “invest 

project without option” group and all other projects are placed in the group for future funding or 

abandonment consideration.   
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Figure 5-1 Classifying the projects into two groups in the simulation model 

 

In terms of grouping projects, we could consider the Luehrman’s method [92][93] which  

divides the option space based on the two metrics, the value-to-cost on the horizontal axis and the 

volatility1 on the vertical axis. Each project is grouped into one of six different areas (or investment 

strategies) in the chart. However, it is rather difficult to determine the variance of the project return, 

which is one of the parameters to calculate the option value using the Black-Scholes formula. On 

the other hand, our research adopts the standardized loss function approach to determine the option 

value, which does not require estimating the variance of project value return. It only requires the 

mean and variance of project value distribution. Therefore, our approach to divide the projects 

according to the slope parameter based on E[NPV] and option value serves our mapping task better 

in practical sense. 

An example of mapping projects given in Table 5-1 is shown in Figure 5-2. In Figure 5-

2(a) uses the expected NPV and standard deviation of the NPV distribution, where Figure 5-2(b) 

replaces the standard deviation with the option value. Even though our intention is to adopt the 

format of Figure 5-2(b) in our research, we simply present Figure 5-2(a) for comparison purpose. 

                                                 
1 He called it “Cumulative Volatility” as a measure of uncertainty by standard deviation times 

square of the number of periods, or 𝜎√𝑡. He used the variance of project return instead of project 

value.   
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For example, project 004 (P004) has a high expected net present value with a low standard 

deviation, but it also has relatively a higher real option value. It basically means that P004 is a 

good project, worth investing now in the traditional capital budgeting framework but also could 

be even better deferring to add more value to the firm as it commands a high option value. This 

type of information is not revealed in the traditional mean-variance chart. 

 

 

Figure 5-2 Mapping projects with two different coordinates 

 

 

Deciding the threshold s* to determine investment strategies  

In Figure 5-1, we have shown the conceptual idea on how to divide the projects into two 

groups through establishing a slope determined by the decision maker (or the firm). To use the K-

P criterion, we need to assign the value of the slope parameter. We formally define such a slope 

parameter as  

 
𝑠𝑙𝑜𝑝𝑒 = 𝑠 =

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑⁡𝑁𝑒𝑡⁡𝑃𝑟𝑒𝑠𝑒𝑛𝑡⁡𝑉𝑎𝑙𝑢𝑒

𝑅𝑒𝑎𝑙⁡𝑂𝑝𝑡𝑖𝑜𝑛 𝑉𝑎𝑙𝑢𝑒⁡
=
𝐸[𝑁𝑃𝑉]

𝑅𝑂𝑉
 

 

(5-1) 
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For each project, we compute the slope according to Equation (5-1). Depending on the value of 

the slope, we may interpret the project as follows: 

• Project with a higher slope value: It has relatively a smaller option value, so the embedded 

option strategy may be ignored or make investment decisions based on the expected NPV. 

• Project with a smaller slope value: It has relatively a higher option value, so it is worth 

exploring the option strategy.  

To create the largest possible terminal value to the firm through investment activities, we 

need to consider both strategies: some projects should be undertaken without real options and some 

projects should be considered with real options. The question then arises: how to decide a proper 

strategy for each investment project - whether considering real options or not? To answer this 

question, we may establish a threshold slope, 𝑠∗, to separate the projects into two groups. We call 

Group 1 for the projects without considering option strategies, and Group 2 for projects with option 

strategies. 

• With establishing a larger s* implies that more projects with option strategies would be 

considered. 

• With choosing a smaller s* means that more projects without option strategies would be 

considered.  

 

As an example, consider Figure 5-3 where we set a threshold slope 𝑠∗to one. Then, P003, 

P004, P005, P007, P009, and P010 belong to Group 1, and P001, P002, P006, and P008 are placed 

into Group 2. This grouping will serve a very important role in our simulation model. Any funding 

commitments to projects with real options (either delay or abandonment) will be from Group 2.  
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Figure 5-3 An example of grouping projects based on a threshold slope, s*=1 

 

A threshold slope could be also determined by the budget availability at each decision point 

as well as the risk tolerance determined by the firm. In this research, we will conduct a sensitivity 

analysis to see how sensitive the choice of s* on the value creation of the firm is.   

 

Updating the cash flows for the delayed projects 

In our multi-stage decision process, a set of investment projects is being proposed in each 

period, each project will be grouped into either Group 1 or 2. If the budget allows, we will select 

some projects from Group 2 by paying option premiums. Now the question is what the 

consequences of these delayed projects in the following budget period are. First, we will have 

some updated information about these delayed projects, so we need to update the cash flows of 

these delayed projects based on the best information available at that time. Then these delayed 

projects will be considered along with the new set of projects proposed in that period. In terms of 

simulation logic, the updating process would be as follows:  
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• Update the cash flows using Monte Carlo simulation starting with the means and variances 

of the initial cash flows of delayed projects. For example, if project 006 (P006) in Table 5-

1 is delayed for one period, the updated cash flow in each period is generated by Monte 

Carlo samplings from the respective normal distribution with the periodic mean (which is 

the same as initial estimate) and periodic standard deviation. Table 5-2 presents the updated 

cash flows along with the data which is used in Monte Carlo sampling.  

• Even though the means remain the same at their original estimates, the updated cash flows 

will take different cash flow sequences as the variance figures are changing at the rate of 

10% over the previous period. Consequently, we will also have changing values of E[PV], 

and the IRR, due to random samplings.  

 

Table 5-2 An example of updated cash flows for project 006 

n Initial cash flows ($) Standard deviation ($) Updated cash flows ($) 

0 0 0.00 0 

1 800 593.30 1166.3 

2 600 466.69 898.49 

3 700 571.05 1082.98 

4 800 684.48 124.22 

5 700 628.15 1006.93 

IRR(%) 24% - 37% 

E[PV] 2,596 - 3,052 

𝜎[PV] 948.94 - 983.46 

 

Computing the resale value and the remaining value to determine an early termination 

For all on-going projects, the firm needs to decide whether or not to continue or abandon 

the project. The abandonment option gives the firm an operating flexibility to terminate projects 

prematurely if the expected returns from terminating projects are greater than the estimated 

remaining (salvage or market) values at the decision point. The remaining value can be obtained 
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by aggregating the discounted cash flows that are expected f we kept the project until its service 

life, and the expected value from terminating projects are the offers received to buy out these 

projects.  

When 𝑎𝑛̃ represents the updated cash flow at period 𝑡, the remaining value can be obtained 

by     

 

𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔⁡𝑣𝑎𝑙𝑢𝑒⁡(𝑅𝑀) = ∑
𝐸[𝑎𝑛̃]

(1 + 𝑟)𝑛

𝑁

𝑛=𝑡+1

 (5-2) 

𝑎𝑛̃: The updated cash flow at time 𝑛 

𝑁: The project life   

𝑡: The time of decision to be made   

𝑟: WACC (Weighted Average Cost of Capital) 

 

Additionally, in order to estimate a resale value (market value) in this simulation, we 

assume that a resale value in each period decreases by a constant rate from the initial investment 

cost. Therefore, when 𝑞 represents a constant decreasing rate for the resale value, it can be obtained 

by  

    
𝑅𝑒𝑠𝑎𝑙𝑒⁡𝑣𝑎𝑙𝑢𝑒⁡(𝑅𝑆) =

𝐼

(1 + 𝑞)𝑛
 (5-3) 

𝐼: The initial investment cost of project    

𝑞: The decreasing rate of project  

 

Therefore, if the estimated current resale value (or market offer) is better than the remaining value, 

a project which has an abandonment option will be terminated (or exercised) before its project life.  
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5.3 Description of Simulation Process 

Now we have defined the general assumptions and simulation logics to go with the K-P 

criterion, we describe two specific simulation models in detail. First model is designed to 

accommodate the delay options and the second model for abandonment options. We could develop 

a more general simulation model to consider two different types of options simultaneously, but we 

want to isolate each option in the model to see how effective the K-P criterion is in each type of 

investment environment. By knowing the performance of the K-P criterion in each case, we can 

easily draw a general conclusion for the mixed case. 

5.3.1 The Simulation Process associated with Delay Options 

When a delay option is available to a project, there is a critical question to be asked before 

making the final investment decision: Is it worth delaying? By delaying we have an opportunity to 

acquire a new piece of information about the project, so that we could avoid or limit the downside 

risk of the project. On the other hand, by delaying the project, we could incur some sort of 

opportunity cost if the project in fact was a good one and could capture more market share without 

delaying. It is always the trade-off between limiting the downside risk and the cost of delaying. 

Conceptually, it is worth delaying if the gain from hedging the potential downside risk is higher 

than the cost of delay. Since we do not know the future investment opportunities, the simulation 

model will provide some clue whether or not considering real options would be effective strategies.  

 

Procedure  

The process of the simulation model for projects with delay options is as follows:  

Step 1: Estimate the cash flows of the projects.  
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Step 2: Calculate the decision parameters: net present value, conditional value at risk, real 

option value, and option price. 

Step 3: Determine a threshold slope, s*.  

Step 4: Group the projects into Group 1 and Group 2 by applying s*. 

Step 5: Select projects to invest now from Group 1 based on the maximization of the 

expected NPV.   

Step 6: Select projects to delay from Group 2 based on the maximization of the K-P 

criterion 

Step 7: Reset the decision period (or advance the clock) from period t to period t+1.  

Step 8: Estimate cash flows for newly proposed projects at period t+1.  

Step 9: Identify the delayed projects from period t. 

Step 10: Update the cash flows of the delayed projects from period t. 

Step 11: Combine the newly proposed projects from period t+1 with the delayed projects 

from period t. 

Step 12: If t < T and go to Step 2. Repeat until it reaches t = T. 

The simulation process for delay option is illustrated in Figure 5-4.  
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Figure 5-4 Simulation flow chart for projects associated with delay options 
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5.3.2 The Simulation Process associated with Abandonment Options 

Under uncertainty, the project value at some future time can be less than the value 

originally estimated. An abandonment option allows us to terminate an investment project 

prematurely. In this simulation model, the resale value (market value) of the project will be 

compared with the remaining value from the project if continued.  

Procedure  

The process of the simulation model for projects with abandonment options is as follows:   

Step 1: Generate the cash flows of the projects.  

Step 2: Calculate the decision parameters: net present value, conditional value at risk, 

option value and option price. 

Step 3: Determine a threshold slope, s* for abandonment options.  

Step 4: Group the projects into Group 1 or Group 2 by applying the s*. 

Step 5: Select projects to invest now from Group 1 based on the maximization of expected 

NPV.   

Step 6: Select projects to invest with abandonment options from Group 2 based on the 

maximization of the K-P criterion. 

Step 7 Reset the decision period (or advance the clock) from period t to period t+1.  

Step 8: Estimate cash flows for newly proposed projects at period t+1.  

Step 9: Identify the projects with abandonment options. 

Step 10: Estimate the resale value and the remaining value of each project with 

abandonment option. 

Step 11: Compare between the remaining project value and resale value (market value) for 

projects in Group 2 that have an abandonment option. 
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Step 12: If the resale value > the remaining value, then the specific project is terminated. 

Step 13: If t < T and go to Step 2. Repeat until it reaches t = T 

The simulation process for abandonment option is illustrated in Figure 5-5.  

 

Figure 5-5 Simulation flow chart for projects associated with abandonment options 

5.4 Summary 

In summary, in this chapter we have described the general assumptions and simulation 

logics to use in testing the effectiveness of the K-P criterion. In doing so, we have presented the 
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cash flow generation process and a process of grouping projects into two groups for funding 

consideration. Then we have developed two specific simulations models – one designed to 

consider the delay options strategies, and the other for abandonment option strategies.   
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Chapter 6. Simulation Results and Comparison of the K-P Criterion with Other Criteria 

 

 

Having described the simulation models in the previous chapter, now we are ready to run 

the simulation models to see how effective the K-P criterion is when compared with other 

traditional models. The traditional models that will be compared with are the expected net present 

value criterion and the mean-risk model. In particular, we will present the details of simulation 

results and provide an in-depth analysis of the performance of the K-P criterion under varying 

investment environments.  

This chapter is organized as follows: Section 6.1 describes the conceptual performance 

among the productivity, flexibility, and variability in the capital budgeting decision problem. 

Section 6.2 examines the characteristics of the different decision criteria in terms of the project 

selections. Section 6.3 presents the simulation results of each decision criterion as a capital 

budgeting tool for long-term wealth creation. Section 6.4 presents various sensitivity analyses for 

the key input parameters. All computational results are obtained by Matlab 9.2_R2017a. 

 

6.1 Preference of Performance  

Recall that there are three key investment factors to be considered in the capital 

budgeting in Chapter 4. 

• We prefer a larger profitability, if all other things being equal. 

• We prefer a larger flexibility, if all other things being equal. 
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• We prefer a smaller variability, if all other things being equal. 

In Figure 6-1, we illustrate the conceptual preference among the three elements in a 3-D 

format. If the profitability and the flexibility are the same, then we may prefer a smaller variability. 

For example, we would prefer Y over X, in other words, Y dominates X. In general, a larger 

flexibility is associated with a larger variability, so we need a further trade-off between the 

variability and the flexibility. Thus, the K-P index developed in earlier chapter is to seek a trade-

off among these three factors.  

 

Figure 6-1 A 3D preference coordinate system 

 

6.2 Short-Term Performance of the K-P Criterion  

Many investment performance measures have been studied in finance and business. Well- 

known performance measures are alpha, beta, standard deviation, and the Sharpe ratio. All of these 

measures are designed to provide investors with the risk-return characteristics of an investment. In 

particular, the Sharpe ratio is the average return earned in excess of the risk-free rate per unit of 

volatility or total risk [139]. The Sharpe ratio has become the most widely used method for 

calculating risk-adjusted return. Even though the Sharpe ratio is designed for a risk-return measure 

of financial assets, we could borrow the similar concept to see what kind of risk-return 

characteristics each project portfolio created by the three different decision criteria has. The use of 
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Sharpe ratio will only be limited to gauge the periodic performance of the decision criteria on a 

short-term basis. We are simply interested in knowing whether or not the K-P criterion alters the 

return-risk characteristics in any drastic manner in each decision period, when compared with the 

traditional criteria.   

 

6.2.1 The Sharpe ratio on Project Portfolio 

The Sharpe ratio measures the portfolio performance based on both the rate of return 

represented a profitability and the portfolio risk as measured by the standard deviation of the 

portfolio return. It can be denoted as:  

 
𝑆ℎ𝑎𝑟𝑝𝑒⁡𝑟𝑎𝑡𝑖𝑜 = ⁡

(𝐴𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑃𝑟𝑜𝑡𝑓𝑜𝑙𝑖𝑜⁡𝑅𝑒𝑡𝑢𝑟𝑛 − 𝑅𝑖𝑠𝑘⁡𝑓𝑟𝑒𝑒⁡𝑟𝑎𝑡𝑒)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑⁡𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛⁡𝑜𝑓⁡𝑝𝑜𝑟𝑡𝑓𝑜𝑙𝑖𝑜⁡𝑟𝑒𝑡𝑢𝑟𝑛
 

(6-1) 

A higher Sharpe ratio indicates a better adjusted return per given level of risk. Therefore, to 

increase the Sharpe ratio of an investment portfolio, we need to select projects which have a higher 

return or lower risk. However, it is difficult to apply for the real project because the standard 

deviation of portfolio return is rather complicate to determine. The reason is that the standard 

deviation of return in financial investment can be obtained by analyzing historical data, but in real 

projects there is no historical data to go by. Therefore, we could adopt the implied volatility for a 

real project, which is obtained by Equation (3-10) as a standard deviation of portfolio return.  

 

𝜎 =
√
ln (

𝑉𝑎𝑟[𝑋𝑡]
𝐸[𝑋𝑡]2

+ 1)

𝑡
 (3-10) 

For each selected project in the portfolio, we compute the volatility of expected return 

using Equation (3-10). To compute the overall standard deviation of portfolio return, we need to 

aggregate the individual standard deviation by the proportion of the project in the portfolio. One 
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thing that makes this process complicate is that each project in the portfolio may have a different 

life, and scale of investment could be different. Nevertheless, our objective is to approximate or 

gauge the degree of magnitude of return-risk of the portfolio created by each criterion in a 

controlled business environment. 

 

6.2.2 Comparisons of the Project Selections  

As described in Chapter 5, in each decision period, we have a set of ten investment 

proposals submitted for funding consideration, and so we have a total of 30 investment proposals 

over three budget periods. Now just focusing on the first budget period, by applying the three 

decision criteria to the same set of investment proposals, the project selections by each decision 

criterion are shown in Table 6.1.  

 

Table 6-1 Project selections for the first budget period 

Criterion P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 

max NPV 0 0 1 1 0 0 0 1 0 1 

max NPV-

CVaR 
0 0 1 1 0 0 1 0 0 1 

max K-P 0 0 1 1 0 0 0 0 0 1 

Delay option 0 0 0 0 0 1 0 1 0 0 

 

Figure 6-2 illustrates the selection of projects on the coordinate grid with standard deviation 

for the horizontal-axis and the expected net present value for the vertical-axis. The points refer to 

the position of each project reflecting the profitability and variability. Points in yellow color 

represent the projects selected for funding by each decision criterion. Points in green in Figure 6-

2(c) denote the projects selected with delay option. 
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(a) max NPV                        (b) max NPV-CVaR                      (c) max K-P 

Figure 6-2 Project selections by the three decision criteria during the first budget period 

 

Case 1: Maximize the expected net present value 

In Figure 6-2(a), the projects selected by the maximization of NPV are shown in yellow 

color. As we can see, selected projects – P003, P004, P008, and P010 – have higher NPVs among 

the ten proposals. It is not surprising as the expected NPV criterion just ignores any variability 

associated with the project. 

Case 2: Maximize the net present value -Conditional Value at Risk 

Figure 6-2(b) presents all project selections done by the typical mean-risk rule. Clearly 

projects P003, P004, P007, and P010 are non-dominant projects – higher means but smaller 

variances.  

Case 3: Maximize the K-P criterion 

Figure 6-2(c) depicts the situation where the K-P criterion would select the best projects 

during the first budget period. Projects P003, P004 and P010 are recommended for funding 

immediately but P006 and P008 are also included in the portfolio for future consideration – that is, 

they are delayed for one budget period. In the second budget period, these two delayed projects 

would be added on to the new set of projects proposed, resulting in a total of 12 projects competing. 
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The reason why these two projects are included for consideration in the second budget period is 

because of the potential upside profit. To delay these two projects, the firm had to pay option 

premium out of the budget during the first period. If any of delayed projects were not considered 

in the second period, the firm would simply lose the option premium associated with that project. 

This process continues on the next decision period.  

6.2.3 The Sharpe ratio for the Three Portfolios 

After selection of projects (or creating a funding portfolio) in each budget period, we may 

be interested in knowing how the firm’s risk position has changed. To determine the Sharpe ratio 

for portfolios of real investment, we may need to come up with the parameters that define the 

Sharpe ratio. For this purpose, we do the following: 

• The average portfolio return is obtained by the arithmetic mean of the IRR. Conceptually, 

once we identify all the expected cash flows in the portfolio against the total investment 

required to create that portfolio, we can determine the expected return on that portfolio.   

• The risk-free rate is assumed at 6% in the simulation model throughout. This is higher than 

the current risk-free rate in the market place, but it can be changed to reflect the actual 

investment environment.  

•  The individual standard deviation of each project is calculated based on the logic described 

in earlier Section 6.2.1, but a volatility of project portfolio is obtained by aggregating these 

individual standard deviations.  

 

𝑉𝑎𝑟 (∑𝑎𝑖𝑋𝑖

𝑁

𝑖=1

) = ∑𝑎𝑖
2𝑉𝑎𝑟(𝑋𝑖)

𝑁

𝑖=1

+∑𝑎𝑖𝑎𝑗𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)

𝑖≠𝑗

 

 

(6-2) 

If we assume that all projects in the portfolio are mutually independent, the covariance 

term drops out resulting in:  
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𝑉𝑎𝑟 (∑𝑎𝑖𝑋𝑖

𝑁

𝑖=1

) = ∑𝑎𝑖
2𝑉𝑎𝑟(𝑋𝑖)

𝑁

𝑖=1

 

(6-3) 

 

𝑁: The number of selected projects  

𝑎𝑖: The weight of project 𝑖, which is 1/N because the investment cost is assumed the same 

𝑉𝑎𝑟(𝑋𝑖): The variance of project 𝑖, which is obtained by Equation (3-10) 

 

Table 6-2 provides the modified Sharpe ratio of each portfolio from the three criteria along 

with the average return and the volatility. (Additional data of IRR, 𝐸[𝑁𝑃𝑉], and 𝜎[𝑁𝑃𝑉] for each 

project can be found in Appendix 1.) As we can see, the maximization of NPV has the highest 

average return, but it has the highest volatility as well since it does not consider any risk in project 

selection. On the contrary, the maximization of NPV – CVaR has the lowest average of IRR and 

also lowest volatility because it considers only the down-side of risk, whereas the K-P lies in 

between the two.  

Table 6-2 The Sharpe ratio and basis data of three criteria 

 Max NPV Max NPV-CVaR Max K-P 

Average return 23.35% 22.26% 23.24% 

Volatility 0.2548 0.1989 0.2096 

Sharpe ratio 0.6811 0.8178 0.8223 

 

Table 6-2 further indicates that the K-P criterion has the highest modified Sharpe ratio, even though 

the difference between the K-P and NPV – CVaR is relatively small. Since the greater Sharpe ratio 

is desirable, the use of K-P criterion results in the best excess return per risk as it can hedge the 

potential risk through the option mechanism.  

Another interesting observation is that both criteria (K-P and NPV-CVaR) have different 

mixes of projects in its portfolio, indicating that the use of the K-P criterion as a capital budgeting 
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tool may improve the profitability without increasing the risk profile. Of course, it is premature to 

make this claim with this limited observation. Our intention is simply to point out that if such a 

short-term performance comparison is desired we could adopt the Sharpe ratio. Since our objective 

is not to measure the short-term performance of the K-P criterion, we do not intend to further 

extend the Sharpe ratio analysis.  

 

6.3 Long-Term Performance of the K-P Criterion   

Our research objective is to determine if the K-P criterion can be of an effective long-term 

capital budgeting tool in the face of uncertainty. Our first task is to see which decision criterion 

can bring the maximum wealth creation at the end of study period, by simulating the plausible 

investment scenarios described in Chapter 5. In specific, we adopted the simulation logic described 

in Chapter 5 as follows: 

• Using the random number generation function in Matlab, we tracked cash flows generated 

for each investment proposal and recalculated the quantitative financial metrics, such as 

the expected net present value, real option value, and conditional value at risk. These values 

provide the basis to determine the K-P index and other measures. 

• Each criterion may select a different set of investment projects based on its investment 

measure. Then the simulation model determines the total terminal wealth of each criterion 

in terms of cash accumulation in each iteration. In each iteration, a new set of random 

numbers is used, so we will have a new set of terminal wealth figures for the three criteria. 

This process repeats for 1,000 times. 
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• Since we have two basic real option strategies, we have two types of simulation model. 

One model is designed to consider only the delay options and the other model for the 

abandonment options.  

• We present the simulation results according to the option strategy and give economic 

interpretations of the simulation outcomes for each decision criterion. 

 

6.3.1 The Simulation results associated with delay options 

We first consider the delay option strategy. In other words, all projects submitted for 

funding come with some sort of delay options. Either the expected NPV or NPV – CVaR does not 

take advantage of any investment flexibility in creating a project portfolio. Only the K-P criterion 

explicitly factors this investment flexibility into the funding decision. Figure 6-3 illustrates the 

final terminal values obtained by the three criteria through 1,000 simulation runs. Each simulation 

run creates one terminal value for each criterion based on the same set of investment proposals. In 

Figure 6-3, the terminal values in blue are produced by the expected NPV, the terminal values in 

red by the NPV-CVaR criterion, and the terminal values in yellow by the K-P criterion. Clearly, 

we see that the K-P criterion produces higher terminal values in a large percentage of the 

simulation runs, but we need a further statistical verification.   
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Figure 6-3 The total terminal wealth created by the three decision criteria with delay options 
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One way to visualize the performance of the K-P criterion is to compare the terminal values 

produced by the K-P criterion with those by the other two criteria. In Figure 6-4 (a), we first sort 

the 1,000 final values produced by the expected NPV criterion in ascending order. Then for each 

final value associated with the expected NPV criterion, we identify the final values attained by the 

K-P and NPV – CVaR for the same set of investment setting.  In Figure 6-4(a), we clearly see that 

a large percentage of the final values produced by the K-P criterion lie above those by the NPV 

and NPV – CVaR, indicating a possible dominance. On the other hand, Figure 6-4(b) is basically 

the same as Figure 6-4(a) but the final values are ordered by the K-P criterion. Both figures show 

how the option plays an important role in creating value to the firm. 

 

Figure 6-4 comparison of the total terminal wealth sorted by NPV and K-P criteria 
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Range of Final Value Distributions 

Now instead of plotting the final values in terms of iteration sequence, we may compute 

the mean value of the final value distribution along with the range of the final values. Figure 6-5 

depicts these statistics in box plots with the median represented by a red line and the mean value 

in a blue diamond. In this case, it happens that the mean and median values are very close each 

other. 

 

   Figure 6-5 The box plot and average of the total terminal value from 1000 iteration 

We see in Figure 6-5 that  

• The median and average value of the K-P criterion are greater than other criteria, 

• The worst final value produced by the K-P criterion is still higher than those of other 

criteria, and  

• The NPV-CVaR has the narrowest range of final value distribution among the three 

criteria, indicating that the higher return is compromised at the expense of limiting the 

risk at the appropriate level.  
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Another statistic of interests is to see how many times the K-P criterion produced the higher 

terminal values than those two criteria out of 1,000 simulation runs. Table 6-3 shows that the K-P 

criterion produced the best terminal values 601 times out of 1,000, about 60% of the cases. As 

expected, the expected NPV criterion outperforms over the NPV – CVaR, implying that the 

expected NPV criterion works fine as a decision tool in a long-term capital budgeting environment 

in this example.  

Table 6-3 The number of the best cases out of 1000 iteration when delay option involved 

 Iteration Max NPV Max NPV-CVaR Max K-P 

# of best case 1000 257 142 601 

 

Stochastic Dominance 

Now we formally explore a more theoretical examination of the performance of the three 

criteria through the concept of the stochastic dominance. The histograms based on 1000 iterations 

for the terminal value are shown in Figure 6-6, and the differences among the three histograms are 

shown by overlapping the distributions on the same chart. The means and variances of the terminal 

value distributions from the expected NPV, the NPV – CVaR, and the K-P are as follows: 

Table 6-4 The summary of distribution information associated with delay option 

 Final Value Distribution 

Delay Option NPV NPV-CVaR K-P 

Mean $4,691 4,295 5,167 

Standard Deviation 926 727 998 
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Figure 6-6  Terminal value histograms where the delay options are allowed 

Then Figure 6-7 illustrates the normal-fitted probability distribution of the terminal values based 

on simulation results of 1000 iterations.  

 

Figure 6-7 Normal-fitted probability distributions with delay options 
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Mean-Variance Rules: 

We begin with the mean-variance rules to detect any obvious dominance among the three 

criteria. The dominance rules for the mean-variance criterion are: 

• If project A has mean value the same as or higher than that of project B, and has a lower 

variance than B, we prefer project A. 

• If project A has variance the same as or lower than that of project B and has higher mean 

than B, we prefer project A. 

When we apply these mean-variance rules to the three final value distributions, we do not see a 

clear-cut dominance of a decision criterion over others.  

• K-P versus NPV: 

o Mean value $5,167 > $4,691 and variance $998 > $926, no dominance 

• K-P versus NPV – CVaR: 

o Mean value $5,167 > $4,295 and variance $998 > $727, no dominance 

• NPV versus NPV – CVaR: 

o Mean value $4,691 > $4,295 and variance $926 > $727, no dominance. 

The ultimate choice between the K-P and the NPV or between the K-P and the NPV – CVaR 

depends usually on the trade-off between the mean and variance for the decision maker. However, 

if the mean-variance rule fails, we can further examine the possibility of any stochastic dominance 

(probabilistic dominance) among the criteria [60].  

Definition: First-Degree Stochastic Dominance. Given two random variables X and Y with 

cumulative probability distribution functions F(x) and G(y), we say that X D Y (X dominates Y) or 

F D G [F(x) dominates G(y)], if the following conditions hold: 
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𝐹(𝑥) ≤ 𝐺(𝑦)⁡⁡⁡⁡⁡𝑓𝑜𝑟⁡𝑒𝑣𝑒𝑟𝑦⁡𝑥⁡ 

𝑎𝑛𝑑⁡𝐹(𝑥) < 𝐺(𝑦)⁡⁡⁡𝑓𝑜𝑟⁡𝑠𝑜𝑚𝑒⁡𝑥⁡ 

𝐸[𝑋] > 𝐸[𝑌] 

The theorem states that the cumulative distribution function (CDF) of X must lie below that of 

Y for at least one value and must lie nowhere above it, and the mean value of X must be greater 

than the mean of Y. The theorem is equally valid for continuous and discrete probability 

distributions. The only requirement for this first-degree stochastic dominance to hold is that the 

decision maker (or business) has a non-decreasing utility function of wealth, or simply the more 

profit the project generates the more valuable the project to the firm is.  

Figure 6-8 clearly shows that the K-P criterion dominates both the NPV and NPV-CVaR 

probabilistically. In other words, the K-P criterion is the most effective in terms of wealth 

creation when it is applied to multi-stage capital budgeting decision problems. The higher 

variance of the terminal value distribution of the K-P criterion is worth taking considering the 

potential upside value.    

 

Figure 6-8 Cumulative terminal value distributions for the three decision criteria 

 



102 

 

6.3.2 The results associated with abandonment options 

Now we consider the abandonment option strategy. In other words, projects submitted for 

funding come with some sort of abandonment options. As before, neither the expected NPV nor 

the NPV-CVaR takes advantage of any investment flexibility associated with project abandonment 

in creating a funding project portfolio. Only the K-P criterion explicitly factors this investment 

flexibility into the funding decision.   

Figure 6-9 illustrates the terminal values produced by the three criteria through 1,000 

simulation runs. Each simulation run creates one terminal value for each criterion based on the 

same set of investment proposals. In Figure 6-9, the terminal values in blue are produced by the 

expected NPV, the terminal values in red by the NPV-CVaR criterion, and the terminal values in 

yellow by the K-P criterion.  Clearly, as with the case of delay option, we see that the K-P criterion 

produces higher terminal values in large percentages of the simulation runs, which begs for further 

statistical verification.    
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Figure 6-9 The terminal wealth produced by the three criteria with abandonment options 
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Figure 6-10 shows the results of the simulation model sorted by the terminal value obtained from 

the NPV and the K-P, and it presents clearly that the K-P criterion outperforms over other criteria.   

 

 

Figure 6-10 Comparison of the total terminal values sorted by NPV and K-P criteria 

  

If we use a box plot to compare the performance of each decision criterion, we obtain 

Figure 6-11, which is very similar to Figure 6-5 for the delay option case. Once again, with 
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creation compared with other criteria.  
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Figure 6-11 The box plot and average of the total terminal value from 1000 iteration 

 

Once again, as we can see in Table 6-5, the maximization of the K-P criterion provides the 

best performance: 596 times out of 1000 iterations. Almost 60% of the times, which is the outcome 

similar to the delay option case in Table 6-3. 

Table 6-5 The number of the best case when abandonment option involved 

 Iteration Max NPV Max NPV-CVaR Max K-P 

# of best case 1000 235 169 596 

 

Stochastic Dominance 

Figure 6-12 shows each histogram for the terminal value and we can place the three 

histograms on the same chart to see how much areas are overlapped. The means and variances of 
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Table 6-6 The summary of the terminal value distributions with abandonment option 

 Terminal Value Distribution 

Abandonment option NPV NPV-CVaR K-P 

Mean $5,313 4,959 6,034 

Standard Deviation 921 759 1,145 

 

 

 
Figure 6-12 Terminal value histograms with abandonment options 

 

Then Figure 6-13 illustrates the normal-fitted probability distributions of the terminal values based 

on 1000 iterations.  
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Figure 6-13 Normal-fitted probability distributions with abandonment options 

 

With the cumulative terminal distributions plotted in Figure 6-14, we clearly see that the 

cumulative final value distribution from the K-P criterion lies underneath of the other two criteria, 

indicating that the K-P criterion dominates both the NPV and NPV-CVaR probabilistically. In 

other words, just like the case of the delay option, the K-P criterion is the most effective in terms 

of wealth creation when it is applied to multi-stage capital budgeting decision problems. The 

higher variance of the terminal value distribution of the K-P criterion is not something to avoid.   

 
Figure 6-14 Cumulative final value distributions for the three decision criteria 
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In the previous section, we have shown that the K-P criterion can be of a very effective 

decision rule in selecting projects by considering the investment flexibility. Since we have 

assumed certain sets of investment conditions or decision parameters in the simulation model, it is 

desirable to relax certain assumptions to see how those would affect the simulation outcomes. For 

this purpose, we will consider the following issues:  

• We assumed that cash flows between the periods within the project and among the projects 

were mutually independent. How does the correlations among cash flows within the project 

affect the outcomes? 

• We assumed random cash flow patterns for individual projects. Does any particular pattern 

of cash flow series affect the simulation outcomes? 

• We assumed a 95% confidence level when we calculate the conditional value at risk. How 

does the level of risk tolerance affect the simulation outcomes? 

• For projects associated with real options, we needed to set the threshold slope parameter to 

group the projects into two categories: projects without consideration of real options and 

with real options for future consideration. We will see how sensitive it is to select the slope 

parameter in terms of simulation outcomes. 

6.4.1 Correlation of Cash flows 

In the original simulation models, we assumed a statistical independence among cash flows 

within the project. If we assume some sort of correlations among the cash flows, we need to modify 

the simulation model to reflect these dependencies in generating random cash flows. For example, 

if the firm can predict the direction of future cash flows based on the realization of the prior 

period’s cash flows, the firm would be in much better position on what to do for the delayed 

projects or abandonment decision for the on-going projects. To illustrate, let’s assume that the cash 
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flows at 𝑛  is just depending on what happens to the cash flows at 𝑛 − 1 . This one-period 

dependence assumption is more realistic in practice. Recall that the cash flows for the investment 

projects submitted at the first budget period shown in Table 6-7. 

Table 6-7 Example of cash flows at the first budget period 

n P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 

0 $ 0 0 0 0 0 0 0 0 0 0 

1 600 800 800 1000 700 800 600 1200 1000 700 

2 620 600 600 500 600 600 750 400 600 700 

3 610 500 800 800 700 700 600 500 300 700 

4 600 800 600 500 500 800 750 500 800 700 

5 630 400 700 800 700 700 600 800 600 700 

𝜎[PV] 50% 60 30 10 10 50 10 50 30 10 

 

In our earlier simulation, each cash flow is randomly generated by a normal random deviate 

with the predetermined mean and variance. For example, a cash flow of project 001 (P001) at the 

first period is randomly generated by a normal distribution with N($600, 3002), where the standard 

deviation is determined by 50% of the mean, then N($620, 3102) at the second period, and so forth, 

regardless what happened to the prior period. Suppose that there is a perfectly positively 

correlation between successive cash flows. If a realization of cash flow at the first period is greater 

than the initially estimated value, the cash flow to be generated at the second period will be 

adjusted higher by the percentage in difference, that is, by Equation (6-4).  

 
𝑑𝑖𝑓𝑓 =

𝑥𝑛−1 − 𝐸[𝑥𝑛−1]

𝐸[𝑥𝑛−1]
 

(6-4) 

𝑥𝑛−1: The realized cash flow at time 𝑛 − 1 

𝐸[𝑥𝑛−1]: The expected cash flow at time 𝑛 − 1⁡which is predetermined 

Then a successive cash flow will be generated from a normal distribution with the modified mean 

value and variance. The modified mean value is 
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 𝐸[𝑥𝑛] ∙ (1 + 𝑑𝑖𝑓𝑓) (6-5) 

 

Table 6-8 summarizes the results with both independent and dependent cash flow 

assumptions. The results show that with these kind of perfectly positively correlations, the K-P 

performance is even more pronounced. The results are not surprising.  If we can have this much 

of information about the future, the K-P criterion will make timely decisions on whether or not to 

exercise the options in each period, which will lead to a better project selection in the coming 

periods. However, cash flows having this kind of perfectly positively correlation or mutual 

independence is not realistic. A more plausible case may take the middle ground that cash flows 

are somehow partially correlated. In that case, we can postulate that the performance of the K-P 

criterion would be somewhere between the two outcomes. That means the K-P criterion still 

outperforms over other criteria. 

Table 6-8 Summary of the simulation results with perfect correlation of cash flows 

Option Strategy Cash flows Iteration Max NPV Max NPV-CVaR Max K-P 

Delay Options 
Independent  1000 257 142 601 

Dependent  1000 14 44 942 

Abandonment 

Options 

Independent  1000 235 169 596 

Dependent  1000 86 47 867 

 

6.4.2 Generation of different cash flows patterns 

In the simulation model, we assumed that all cash flows are random in nature – no 

recognizable patterns in the cash flows. Suppose that we can conjecture some sort of cash flow 

patterns, in other words, all projects are taking some sort of recognizable patterns even though the 

actual realization would deviate somehow from these known patterns: 1) Random, 2) Uniform 
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Series, 3) Gradient Series (Increasing), and 4) Gradient Series (Decreasing). With the random 

pattern being the base, Table 6-9 summarizes the simulation results.  

Table 6-9 Summary of the results based on the different cash flow patterns 

Cash Flows Option Strategy Iteration Max NPV Max NPV-CVaR Max K-P 

Random 
Delay Options 1000 257 142 601 

Abandonment Options  1000 235 169 596 

Uniform 

Series 

Delay Options 1000 101 516 383 

Abandonment Options  1000 354 265 281 

Increasing 

(10%) 

Delay Options 1000 137 158 705 

Abandonment Options  1000 421 340 239 

Decreasing 

(10%) 

Delay Options 1000 424 381 195 

Abandonment Options  1000 97 55 848 

 

Once again, the results are not surprising.  Under the assumption of uniform series, the K-

P criterion does not perform as good as the other criteria. This is expected as the K-P criterion does 

not have much room to take advantage of investment flexibility with almost known futures. On 

the other hand, with the increasing cash flow pattern, the K-P criterion with the delay option 

strategy is providing the best performance but the maximization of NPV provides the better 

performance than the K-P criterion with abandonment option, it is intuitively expected because the 

abandonment option is not much valuable when project value increases over time. In contrary, 

with the decreasing cash flow pattern, the K-P model with abandonment option strategy brings the 

best outcome and the delay option strategy is not providing a good result. In that case, there is no 

benefit of delaying when decreasing cash flows are expected. In that regards, the K-P criterion 

performs exactly the way we have expected.  
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6.4.3 Risk Tolerance Level 

There are two types of risk preference parameters in this simulation model: First, 

confidence level in conditional value at risk. Second, the coefficient of risk in the mean-risk model. 

With the option premium determined based on the CVaR, it is our interest to see if the risk 

tolerance has any effect on the simulation outcome. In our simulation model, we assumed that the 

firm sets the confidence level at 95% in determining the CVaR.  Recall in our optimization model 

for the NPV – CVaR, we used a risk-return tradeoff parameter (λ) and our interest is to examine 

the sensitivity of this parameter as well.  

First, as we vary the degree of confidence level from 95% (base) to either 90% or 99%, the 

simulation results are summarized in Table 6-10. As we can observe, the confidence parameter 

does not affect the simulation results in any significant way. As we are more risk averse (say 99%), 

the performance of the K-P criterion is in fact performed a little better. 

Table 6-10 Summary of the results based on the confidence level 

Confidence level  Iteration Max NPV Max NPV-CVaR Max K-P 

90% 1000 231 151 618 

95% 1000 257 142 601 

99% 1000 209 168 623 

 

Second, the initial coefficient (𝜆) of risk aversion was 30% in both the mean-risk model 

and the K-P criterion: maximization of 𝑁𝑃𝑉 − 𝜆𝐶𝑉𝑎𝑅  and maximization of 𝐹𝑁𝑃𝑉 − 𝜆𝑅𝑂𝑃 . 

Table 6-11 presents the results of the sensitivity analysis of coefficient (𝜆)  by varying the 

parameter from 0.1 to 0.5. A smaller coefficient provides the results which are favor to the 

maximization of K-P criterion, but a greater coefficient affects less favor to the K-P criterion. It 

means that the max K-P criterion still outperforms over other criteria, but requiring higher option 

premiums reduces the overall profitability of investments.   
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Table 6-11 Summary of the results based on the coefficient of risk variable 

Coefficient (𝜆) Iteration Max NPV Max NPV-CVaR Max K-P 

0.1 1000 99 30 871 

0.3 1000 257 142 601 

0.5 1000 325 135 540 

 

6.4.4 The threshold slopes 

Recall that the threshold slope in Figure 5-3. The threshold determines real option 

strategies according to projects’ coordinate positions. Based on the example cash flows in 

Appendix 1, the slope ranges from 0.59 to 1.34. Therefore, we conduct a sensitivity analysis of the 

threshold slope from 0.5 to 1.5, so that the results cover both extreme cases. A greater slope means 

that we are giving a more weight to considering the option strategies, and a less weight means 

favoring the expected net present value method.   

• K-P Criterion with Delay Options: In Table 6-12, we observe the following: 1) When 

the threshold is too small, the result of the K-P criterion is the same as the NPV method 

because the investment decision does not consider the real option strategies. 2) When the 

threshold is too large, the K-P criterion delays all the projects, incurring too much 

opportunity costs due to not funding the good projects on time.   

 

Table 6-12 The results based on the threshold slope when the delay option involved 

Threshold slope Iteration Max NPV Max NPV-CVaR Max K-P 

0.5 1000 706 294 706 

1 1000 257 142 601 

1.5 1000 684 316 0 
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• The K-P Criterion with Abandonment Options: In Table 6-13, for the projects 

associated with abandonment options, a greater slope causes better results for the K-P 

criterion as more projects to be considered for funding. Therefore, the K-P criterion 

provides better results 835 times out of 1000.     

 

Table 6-13 The results based on the threshold slope when the abandonment option involved 

Threshold slope Iteration Max NPV Max NPV-CVaR Max K-P 

0.5 1000 638 366 638 

1 1000 235 169 596 

1.5 1000 131 34 835 

 

6.5 Summary 

Based on the simulation model developed in Chapter 5, we have presented the simulation 

results and given various economic interpretations of the simulation results. We have shown that 

• The K-P criterion can serve as a very effective capital allocation tool for short-term as well 

as long-term investment environment. In particular, the K-P criterion is more suitable for 

the multi-stage capital budgeting tool to create the most wealth creation to the firm. 

• It has shown that the K-P criterion dominates the conventional capital budgeting tools 

probabilistically – namely, the expected NPV and NPV – CVaR for the sets of investment 

situations simulated.  

• The sensitivity analyses on various input parameters reinforce the findings on how 

effective the K-P criterion would be as a capital budgeting decision criterion under 

uncertainty. 
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Chapter 7. Conclusions 

 

 

The primary purpose of this research is to examine how critical it is to consider option value 

in multi-stage capital budgeting decision problems under uncertainty. Of particular interest is how 

to integrate the three key elements (profitability, variability, and flexibility) in a single measure so 

that we can select the projects based on this measure. A complete summary is given in Section 7.1, 

followed by conclusions in Section 7.2, and future research recommendations in Section 7.3. 

 

7.1 Summary of this research   

This study begins with the reviews on the decision criteria considering risk and uncertainty 

in the capital budgeting literature. Our particular interest is to know of any specific efforts to 

incorporate real option strategies into multi-stage capital budgeting decisions under uncertainty. 

As is evidenced by the review of the literature, limited attention is given to the development of a 

methodology to consider the option values explicitly in capital allocation process. Therefore, this 

research has accomplished the following tasks to answer the ultimate question – should we 

consider option values associated with projects in capital allocation decisions?    

Development a practical real option valuation method with the loss function 

Despite of many improvements in the real option analysis, there are many practical 

difficulties of formulating real option strategies based on the financial option framework. The 

reason is that the financial option assumes the project value distribution in any time to be a log-
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normal. According to the central limit theorem, a normal distribution assumption can be more 

reasonable for project value as the project cash flows are determined by a linear sum of many 

random variables. Therefore, we proposed an alternative method for valuing real options with the 

standardized loss function. Moreover, the valuation of real option with the loss function approach 

is more intuitively understandable and serves practical needs better in business community, so that 

managers can easily apply the computational framework in routine project evaluation and react in 

a timely manner in highly uncertain investment environment. 

 

Development a real option pricing model based on the CVaR concept 

We have developed a real option pricing method based on the CVaR concept. The CVaR 

measures the average of extreme losses beyond the maximum estimated loss at a specified 

confidence level of an investor or a firm. If a typical investor is willing to accept an investment, 

we may view this amount (CVaR) as an investor’s risk tolerance associated with the project. In 

order to determine an appropriate amount of real option premium to pay for a given level of risk 

tolerance, we investigated the relationship between the CVaR and the real option premium. Since 

the CVaR represents the maximum amount of losses a firm could accept to take, the maximum 

price to keep the real option should be less than the CVaR. Obviously, the real option premium 

should not be greater than the real option value, and the CVaR would give a reference point on 

how much could be paid for the real option in terms of firm’s risk tolerance. 

 

Development a capital budgeting decision model with the real option approach 

We identified three critical elements in evaluating a risky investment project: profitability, 

variability, and flexibility. In order to integrate these three elements in a single measure, we 
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developed the K-P criterion to allocate the limited capital in the multi-stage capital budgeting 

process. The K-P criterion reflects these three elements as follows: 1) the terminal profitability is 

obtained by the expected net present value of the project, 2) the variability is measured its loss 

magnitude determined by CVaR, and 3) the investment flexibility is obtained by real option value 

with the loss function approach. Moreover, an elaborate mathematical programming model was 

developed to select investment projects based on the K-P criterion.  

 

Development of the Simulation Models  

We have developed a simulation model to test the long-term effectiveness of the K-P 

criterion along with other traditional decision criteria. In order to examine a large class of 

investment settings with various future uncertainties, we needed to employ the computer 

simulation approach because they were not normally manageable by available analytical 

techniques. We have described the general assumptions and simulation logics to use in testing the 

effectiveness of the K-P criterion. In doing so, we have presented the cash flow generation process 

and a process of grouping projects into two groups for funding consideration. Then we have 

developed two specific simulations models – one designed to consider the delay options strategies, 

and the other for abandonment strategies. 

 

7.2 Conclusion  

The main purpose of the simulation experiments is to answer the following specific 

question: Should we consider option values in capital budgeting decisions under uncertainty? 

According to the simulation results presented in Chapter 6, the K-P criterion outperformed over 
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other traditional measures for the investment settings we have tested. The effectiveness of the K-

P criterion is examined in three specific areas:  

As a short-term measure 

The K-P criterion has shown to be a very effective decision rule in selecting projects under 

uncertainty. The three criteria including the K-P criterion selected different mixes of projects in 

each decision point, and they were illustrated on the coordinate grid with the expected net present 

value and the standard deviation corresponding to profitability and variability. The modified 

Sharpe ratio measured each portfolio performance, and it indicated that the K-P criterion provided 

the better Sharpe ratio. 

As a long-term measure 

The K-P criterion produced the higher terminal values among the three criteria in the same 

set of investment proposals by creating additional values from the investment flexibility. Besides 

the higher terminal values in most of the simulation runs, we showed that the K-P criterion 

dominates both the NPV and NPV – CVaR probabilistically based on the first-degree stochastic 

dominance. 

Specific Findings 

We conducted the sensitivity analyses on various input parameters to investigate how 

effective the K-P criterion would be in the different conditions. 1) The K-P criterion performance 

is even more pronounced when there are positive correlations among cash flows. It can be 

interpreted that if there is more information available, the real option strategies worked by 

capturing the investment flexibility. 2) In the increasing cash flow series pattern, the K-P criterion 

with delay option strategy provided the best performance but the abandonment option strategy did 

not offer a more favorable result. The results were the other way around in the decreasing cash 
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flow patterns. These results are not surprising as we expect a better cash flow in the future, the 

abandonment option will improve the terminal values, and with an expectation of decreasing cash 

flow series, the delay option does not provide any advantage. 3) In terms of the risk tolerance level, 

we examined two types of risk preference parameters. First, there was not significant difference in 

the results from the 90% to 99% confidence level. Second, there was a less favorable trend for the 

K-P criterion when the coefficient (𝜆) of risk aversion increases. 4) The threshold slope separates 

proposals into two groups: One group will only include projects without considering real options, 

and the other group with real options strategies. The results showed that both the NPV and K-P 

criteria have the same outcome when the threshold slope gets smaller than all proposals because 

of no consideration of option strategies. That means the expected NPV method can be a special 

case of the K-P criterion.  

 

7.3 Recommendations for Future Research  

The proposed decision model can be extended to consider other types of real option 

strategies such as compound options or switching options in the project portfolios. For more capital 

intensive investment projects, a sequential or staged investment decision would be more common 

with ever-changing market dynamics. A compound options would be more appropriate to manage 

such dynamic situations in hedging investment risks. It would be even more interesting to see how 

the K-P criterion would fair with the traditional measures. Another area of research to make our 

simulation model more comprehensive is to incorporate the Bayesian framework to update the 

option values as we receive new pieces of information. Clearly the future research direction 

remains the same – how important it is to consider option values in capital budgeting decisions 

under uncertainty.  
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Appendix 1: Example of three groups of proposals 

 

 

1. Proposals at time 0 

n P001 P002 P003 P004 P005 P006 P007 P008 P009 P010 

0 $ 0 0 0 0 0 0 0 0 0 0 

1 600 800 800 1000 700 800 600 1200 1000 700 

2 620 600 600 500 600 600 750 400 600 700 

3 610 500 800 800 700 700 600 500 300 700 

4 600 800 600 500 500 800 750 500 800 700 

5 630 400 700 800 700 700 600 800 600 700 

IRR(%) 16% 18 23 25 18 24 19 23 21 22 

E[PV] $2203 2284 2541 2633 2317 2596 2378 2518 2434 2523 

𝜎[PV] 800.27 938.52 721.78 445.01 379.32 948.94 388.62 1008.4 730.66 409.96 

 

2. Proposals at time 1 

n P101 P102 P103 P104 P105 P106 P107 P108 P109 P110 

0 $ 0 0 0 0 0 0 0 0 0 0 

1 500 700 700 700 700 700 1000 700 600 650 

2 700 650 500 750 600 500 600 800 700 700 

3 800 700 400 700 700 700 600 550 500 700 

4 700 650 600 750 750 500 400 700 800 600 

5 800 600 900 700 700 800 900 600 600 700 

IRR(%) 21% 20 16 23 21 18 24 21 18 20 

E[PV] $2473 2395 2200 2595 2475 2294 2563 2440 2299 2415 

𝜎[PV] 247.27 718.49 1100 259.50 1361 458.71 897.10 1219 1149 241.51 

 

3. Proposals at time 2 

n P201 P202 P203 P204 P205 P206 P207 P208 P209 P210 

0 $ 0 0 0 0 0 0 0 0 0 0 

1 750 650 1000 800 700 600 750 700 1000 700 

2 600 650 400 700 600 620 600 600 500 600 

3 700 600 500 600 800 610 500 700 800 700 

4 600 750 500 700 800 600 800 600 500 600 

5 700 600 800 600 700 630 400 700 800 700 

IRR(%) 20% 19 19 22 23 16 17 19 25 19 

E[PV] 2425 2343 2339 2485 2578 2203 2239 2380 2633 2380 

𝜎[PV] 484.94 585.67 1403.6 993.88 128.92 220.30 671.77 952.03 789.77 119.00 

 


