
A Finite Element Study of an Elastic- Plastic Axisymmetric Sinusoidal Surface Asperity in 

Contact Against a Rigid Flat with Strain Hardening 

 

by 

 

Geetanj Bhandari 

 

 

 

 

A thesis submitted to the Graduate Faculty of  

Auburn University  

In partial fulfillment of the  

requirements for the degree of  

Master of Science 

 

Auburn, Alabama 

May 7, 2018 

 

 

 

 

Keywords: Elastic-plastic, Finite Element Model, Hardening exponent 

 

 

Copyright 2018 by Geetanj Bhandari 

 

 

Approved by 

 

Robert L. Jackson, Chair, Professor of Mechanical Engineering 

Jeffery C. Suhling, Department Chair of Mechanical Engineering 

Nima Shamsaei, Associate Professor of Mechanical Engineering



ii 
 

Abstract 

 

       With the advancement in science and the introduction of new technology, computational 

modelling of contact between rough surfaces has attracted a great deal of attention. Researchers 

have developed many rough surface contact models to simulate the elastic-plastic contact of 

spheres. Most of the early models of rough surface contacts assumed a cylindrical or 

spherical/ellipsoidal shape for the asperities on the surface, Sinusoidal models have also been 

introduced but not widely use until recently. However, at initial contact the spherical and 

sinusoidal cases are very similar and can both be described by the classic elastic Hertz contact 

case. However, there does not appear to exist a closed-form analytical model for elastic- plastic 

three dimensional sinusoidal contact. Elastic-plastic sinusoidal contact has recently become more 

important with the development of several multiscale contact models. This work uses a finite 

element model (FEM) to characterize elastic-plastic sinusoidal contact as it is pressed against a 

rigid surface. It is theorized that the sinusoidal asperity gives a better prediction of asperity 

interaction, especially for heavy loaded contacts. The current model is designed in such a way that 

it’s axisymmetric and the interactions with the adjacent asperities are considered by the effect of 

periodicity at the base of the asperity. The material of the three dimensional axisymmetric 

sinusoidal surface is modelled as an elastic-plastic, nonlinear isotropic power law hardening solid. 

This work also characterizes the pressure required to cause complete contact between the surfaces. 

Complete contact is defined as when there is no gap between the two surfaces in contact. In the 

end, the FEM model is used to produce equations which can be employed to approximately relate 
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the area of contact to the contact pressure for elastic-plastic strain hardening sinusoidal contact. It 

was found that with the increase in hardening exponent and tangent modulus more pressure is 

required for complete contact to occur. The results are also curve fitted to provide an expression 

for the contact area over a wide range of cases for use in engineering applications. 
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Chapter 1 

 

INTRODUCTION 

 

   In most of every case of daily life we meet tribology phenomena. Any product where one 

material slides or rubs over another is affected by complex tribological interactions. Tribology is 

the science and engineering of interacting surfaces in relative motion and of related subjects and 

practices. It describes the phenomena of friction, wear, and lubrication. In the past, numerous 

authors studied  rough surface. The classical analysis makes simplifying assumptions about the 

surface topography and deformation behavior. Traditionally, the surfaces were modelled 

analytically using assumptions and simplifications. The behavior of a single pair of interacting 

asperities was often extrapolated to describe the behavior of a pair of interacting rough surfaces 

covered in asperities. 

  Until nowadays, surface roughness effects were ignored in the analysis, due to the difficulty to 

generate a rough surface model and also to simplify the model in order to reduce computational 

time. However, many engineering fields seek to improve the behavior of the system at the surface 

level or interference between surfaces. Thus, with the advancement of numerical capabilities, the 

topography of the surface can be included in finite element simulations. 

    

  The study of contact mechanics has been realized as an important field for many years. All 

engineering surfaces are rough on the nano or micro-scale, therefore it is important to develop
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model for the contact between rough surfaces. The problem of rough surface contact has existed 

for a long time. In order to understand the real mechanisms behind the interaction between the 

asperities or rough surfaces, different types of methods have been developed for modelling rough 

surface contact. The main objective to model the contact between rough surfaces is to find a simple 

closed form solution for the real contact area because most tribological parameters such as wear, 

adhesion, friction, contact resistance etc. are dependent on the real area of contact between the two 

surfaces in contact. The real contact area is a critical variable not only in this case but also in every 

dynamic system where two surfaces are brought together. 

     

  The main goal of this thesis is to study an elastic-plastic axisymmetric sinusoidal surface asperity 

in contact against a rigid flat with strain hardening. The non-linear isotropic hardening with two 

different laws is considered for the analysis by varying the hardening exponent ranging from n = 

0.1-0.5. A Finite Element simulation was used to calculate the values of real contact area and 

contact pressure when two surfaces are in complete contact. The proposed model of the 

axisymmetric sinusoidal asperity in this thesis was generated using the Finite Element commercial 

software ANSYSTM 17.1. Owing to the axisymmetric nature of the model makes it more 

computationally efficient as compared to other rough surface contact models. The results  are curve 

fitted to provide an expression for the contact area over a wide range of cases. The results obtained 

from power law hardening are also compared with results obtained from Bilinear Hardening for 

𝐸𝑇 = 1%𝐸, 2%𝐸, 5%𝐸, 10%𝐸 in order to see the possible change in trend for two different types 

of hardening. For modelling real rough surface involves lots of computational time and 

complexity. However, modelling the single axisymmetric sinusoidal asperity can be a solution for 

both these problems. 
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1.1 Organization of thesis 

• Chapter 2 of this thesis presents a thorough background on different types of contact 

models ranging from spherical shaped contact to sinusoidal shaped contact models. 

• Chapter 3 of this thesis presents the modelling methodology employed in the formulation 

of the Finite element Model (FEM).  This section is divided into three sections. The first 

section of this chapter describes how the solid model is built for the finite element analysis. 

The second section deals with the approach used for mesh convergence test. The third 

section deals with the methodology involved in performing the length convergence test. 

• In Chapter 4 the results obtained for both the types of hardening are discussed.  

• Chapter 5 concludes with the summary of this thesis.
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Chapter 2 

LITERATURE REVIEW 

2.1 Introduction 

 The first objective of this chapter is to give an overview of a few of the many various 

contact mechanics techniques available. Each of these models is unique in its assumptions and 

mathematical techniques despite considerable qualitative agreement in their results. This chapter 

also elucidates various rough surface contact models such as statistical contact models, fractal 

contact models and multiscale contact models which will be discussed later in this chapter. 

     Most recent contact models consider a sinusoidal shape for the asperities because it seems to 

model the geometry of real surfaces better, especially for heavily loaded contacts [1-5]. It is shown 

for two-dimensional sinusoidal surfaces [6] and three-dimensional sinusoidal surfaces [7] that the 

average contact pressure increases past the conventional hardness, H, limit of 3 ∗ 𝑆𝑦 obtained by 

assuming spherical geometries [8]. Additionally, the current model is designed in such a way that 

it’s axisymmetric and the interactions with the adjacent asperities are considered by the effect of 

periodicity at the base of asperity. Hence, it is logical to use a sinusoidal shape asperity instead of 

a spherical shape in modelling the asperities. 

 

2.2  Spherical contact models 

          Most of the previous models on the contact between rough surfaces assume a spherical shape 

[9-16] or ellipsoidal shape [17-19] for the geometry of the asperities on the surfaces. The following
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discussion may at first seem off topic, but in reality spherical contact is very significant for 

modelling sinusoidal asperities. Archard [10] used a stacked model of spherical asperities and 

showed that although the relation between the contact area and load for a single asperity is 

nonlinear, by using a multi-scale model this relation becomes linear.  

      Johnson et al. [20] provided two limiting solutions to three dimensional sinusoidal contacts. 

The first solution was based upon the Hertz elastic spherical contact solution. The Hertz solution 

provides closed-form expressions to the deformations and stresses of two spheres in purely elastic 

contact. The two spheres may different radii and elastic properties. However, the closed-form 

solutions render an equivalent case where a single elastic sphere, having an equivalent elastic 

modulus, denoted by 𝐸′, and an equivalent radius, R, is in contact with the rigid flat. Fig. 2.1 is 

representing the cross section of a sinusoidal type of contact. 

 

              

 

Fig. 2.1: Cross section of sinusoidal type contact 
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    The Hertz solution assumes that the interference, ω, is small enough such that the geometry does 

not change significantly. The interference can be defined as the distance the sphere is displaced 

normally into the rigid flat. The resulting equation for contact radius and load from the Hertz 

solution are: 

    AE = πRω      (2.1) 

𝐹𝐸 =  
4

3
𝐸′√𝑅(𝜔)

3

2                                                             (2.2)         

    where 

   
1

𝐸′
 = (

1−𝜈1
2

𝐸1
) + (

1−𝜈2
2

𝐸2
)                                      (2.3) 

 

          
1

𝑅′ =  
1

𝑅1
+  

1

𝑅2
                         (2.4) 

Where 𝐸𝑖  𝑎𝑛𝑑 𝜈𝑖 are the Young’s modulus and Poisson’s ratio respectively for the two bodies in 

contact and i = 1, 2. 𝑅1 and 𝑅2 are the radii of sphere 1 and 2 respectively. 

 

2.3 Elastic sinusoidal contact 

Some recent models consider a sinusoidal shape for the asperities because it seems to 

model the geometry of real surfaces better, especially for heavily loaded contacts [21-25]. The 

first models on the contact between rough surfaces using sinusoidal shaped asperities were 

mostly on the purely elastic contact. The elastic contact of two-dimensional sinusoidal surfaces 

was first solved by Westergaard [21].  Johnson et al. (JGH) [26] presented two asymptotic 

solutions for the elastic contact of three-dimensional sinusoidal surfaces, but no analytical 

solution is available for the entire load range. Jackson and Streator [27] developed an empirical 

equation based on the JGH data [26] for the whole range of loading from early contact to 
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complete contact. 

The analysis for the case of 3-D waviness in contact with a frictionless flat developed by 

Johnson, Greenwood and Higginson [20] (JGH model) provides a relation between pressure and 

contact area. In their work, �̅� is defined as the average pressure on the surface (considering both 

contacting and non – contacting regions), and 𝑝∗ is defined as the average pressure that when 

applied to the surface causes complete contact. One of the important stages in contact between 

the surfaces is when “complete contact” happens. The definition of complete contact between 

rough surfaces depends on the specific cases and geometry of the surfaces in contact. For 

sinusoidal surfaces, it is defined as the state in which sinusoidal surfaces have completely 

flattened out and there is no gap in between the surfaces. The expression for 𝑝∗ is given by Eq. 

(2.5). 

   

 𝑝∗ =  √2 𝜋𝐸′∆𝑓                   (2.5)    

 

 

where 𝐸′ is the equivalent elastic modulus, ∆ is the amplitude of the sinusoidal surface, and f  is 

the frequency or reciprocal of wavelength, 𝜆. Thus when  �̅� ≥  𝑝∗ , the pressure loads the surfaces 

so that there is no gap between them. Alternatively, when  �̅� < 𝑝∗  the contact is not complete, 

and a closed form solution for the three-dimensional waviness contact problem is not 

available. However, Johnson et al. [20] provides two asymptotic solutions to the problem. 

For  �̅� ≪  𝑝∗  the following equation derived from Hertz contact theory applies: 

                                        (�̅�𝐽𝐺𝐻)1 =
𝜋

𝑓2 [
3

8𝜋

�̅�

𝑝∗]

2

3
                                 (2.6) 
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And when   �̅� approaches 𝑝∗  i.e. contact is nearly complete the following equation applies: 

 

                                    (�̅�𝐽𝐺𝐻)2 =  
1

𝑓2
(1 −

3

2𝜋
[1 −

�̅�

𝑝∗
])                              (2.7) 

 

Since the general analytical solution is not available, Jackson and Streator gave an equation, which 

was based on the experimental and numerical data offered by Johnson, to connect the two cases 

above and are given by. 

 

For 
�̅�

 𝑝∗ < 0.8: 

             �̅� = (�̅�𝐽𝐺𝐻)
1

(1 − [
�̅�

𝑝∗]
1.51

) +  (�̅�𝐽𝐺𝐻)2 (
�̅�

𝑝∗)
1.04

                       (2.8) 

 

For 
�̅�

𝑝∗ ≥ 0.8: 

                                           �̅� = (�̅�𝐽𝐺𝐻)2                                                                      (2.9) 

 

2.4 Elasto-plastic sinusoidal contact  

   Three-dimensional elasto-plastic sinusoidal contact has been investigated by Krithivasan 

and Jackson [24] and Jackson et al. [25]. They proved that for the elasto-plastic sinusoidal contact, 

They also found that complete contact occurs much earlier at lower pressures than elastic contact. 

Jackson et al. [25] presented an empirical equation for calculating the average pressure, 𝑝𝑒𝑝
∗ , that 

causes complete contact to occur for elasto-plastic case. The equation is given below: 
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 𝑝𝑒𝑝

∗  

𝑝∗  = (
11

4(∆
∆𝑐

⁄ )+7
)

3
5⁄

                                                                                    (2.10) 

Where ∆𝑐 is the analytically derived critical interference, and is given by: 

                                       ∆𝑐=
√2𝑠𝑦𝑒

2
3𝑣⁄

3𝜋𝐸′𝑓
                                                                                       (2.11) 

Jackson and Krithivasan’s [24] empirical equation for contact area vs contact pressure for elasto-

plastic case is given by: 

           𝐴 = (𝐴𝑝) (1 − [
�̅�

𝑝𝑝
∗ ]

1.51

) + (�̅�𝐽𝐺𝐻)
2

(
�̅�

𝑝𝑝
∗ )

1.04

                                                            (2.12) 

Where 𝐴𝑝 is given by 

                            𝐴𝑝 = 2(𝐴𝑐)
1

1+𝑑 (
3�̅�

4𝐶𝑠𝑦𝑓2)

𝑑

1+𝑑
                                                                           (2.13) 

In Equation 2.13, 𝐴𝑐 is the critical contact area for the sinusoidal contact based on spherical 

contact [28], and is given by: 

                                     𝐴𝑐 =
2

𝜋
(

𝐶𝑆𝑦

8∆𝑓2𝐸′)
2

                                                                       (2.14) 

Where the constant C is related to the Poisson’s ratio by: 

                                 𝐶 = 1.295 exp(0.736𝜐)                                                                  (2.15) 

The value of the constant d in Eq. 2.13 is given by: 

                                         𝑑 = 3.8 (
𝐸′

𝑠𝑦
∆𝑓)

0.11

                                                                          (2.16) 

 

2.5  Statistical rough surface contact model 

               One of the earliest works in the field of contact mechanics has been credited to Heinrich 

Hertz back in 1882. Based upon the findings of interference fringes between the glass lenses, his 
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work displayed elastic displacement in surfaces that were compatible with his proposed elliptical 

pressure distribution. Since these findings, many contact models have been developed to expand 

the Hertzian contact solution from a single asperity or raised portion on a surface into a distribution 

of network of related asperities that can more accurately describe the topography of rough surfaces. 

 

         The statistical model is an important type of model in analyzing rough surface contact 

problems. In 1966, Greenwood and Williamson [29] devised a rough surface contact model here 

referred to as the GW model. The primary assumptions of this model are that all the asperities 

must have same radius of curvature, each asperity must behaves independently of its neighbors, 

and the substrate material is not allowed to deform. Greenwood and Williamson first introduced 

the statistical approaches to characterize the surface topography in contact mechanics. The 

Statistical method has long been considered as an easy and simple approach to model rough surface 

contact. However this model has a few shortcomings such as the dependence of spectral moments 

on the resolution of the surface measuring apparatus and the sample length [30 -31]. 

 

      Greenwood and Williamson [29] showed that rough surfaces can be modelled as a set of 

mutually exclusive asperities with contant radii and a variable height based on a particular height 

distribution function. A Gaussian distribution, Φ(𝑧), is usually assumed for the height distribution. 

The contact parameters of rough surfaces are obtained from the equations below: 

                 𝐴(𝑑) =  𝜂𝐴𝑛 ∫ 𝐴 ̅
∞

𝑑
(𝑧 − 𝑑)Φ(𝑧)𝑑𝑧                                                            (2.17) 

               𝑃(𝑑) =  𝜂𝐴𝑛 ∫ 𝑃 ̅
∞

𝑑
(𝑧 − 𝑑)Φ(𝑧)𝑑𝑧                                                              (2.18)       
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 where  𝐴𝑛 is the nominal or apparent area of contact, which is defined by the overlap of surfaces 

in contact,  𝐴 ̅   is the individual asperity contact area, �̅�  is the corresponding contact load. d is 

defined as the value above which the asperities will be in contact with the rigid flat (i.e. the mean 

surface separation). The compression distance,  𝑧 − 𝑑, is the interference of the rigid flat with the 

asperity peaks. For the perfectly elastic case, 𝐴 ̅ and  𝑃 ̅ are acquired from the Hertz solutions 

given by Eq. 2.1 and Eq. 2.2. 

    

 

2.6  Fractal Rough Surface Contact Model 

           Although the fractal contact model captures the surface topography in a multi-scale nature, 

it is important to note that not all engineering surfaces have profiles which exhibit exact fractal 

behavior. In order to overcome the drawback of spectral moment dependence on surface 

parameters in the statistical models, the fractal model proves beneficial to characterize the surface 

topography. 

        In 1991, Majumdar and Bhushan [32] developed a well-known contact model that is based 

on fractal roughness parameters. Through course of their work, they found that a surface is 

multiscale in nature in that as a surface is viewed with higher magnification, each new “scale” will 

show a topographical roughness. Their work suggested that surfaces are structurally fractal, thus, 

the statistical parameters are scale-dependent. They used a geometric truncation between a fractal 

surface and a flat to calculate contact area and spot size. They also presented that the fractal 

roughness parameters significantly influenced the relation between the contact load and the real 

contact area. The dimensionless total contact load is given by: 
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𝐹∗ =
4√𝜋

3
𝐺∗(𝐷−1)𝑔1(𝐷)𝐴𝑟

∗
𝐷
2 [(

(2 − 𝐷)𝐴𝑟
∗

𝐷
)

(3−2𝐷)/2

− 𝑎𝑐

∗
(3−2𝐷)

2 ]

+ 𝐾𝜙𝑔2(𝐷)𝐴𝑟

∗
𝐷
2 𝑎𝑐

∗
(2−𝐷)

2  

(2.19) 

where  

 
𝑔1(𝐷) =

𝐷

3 − 2𝐷
(

2 − 𝐷

𝐷
)

𝐷/2

;  𝑔2(𝐷) = (
𝐷

2 − 𝐷
)

(2−𝐷)/2

 (2.20) 

 
𝐴𝑟

∗ =
𝐴𝑟

𝐴𝑎
;  𝑎𝑐

∗ =
𝑎𝑐

𝐴𝑎
 

(2.21) 

G and D in the Eq. 2.21 are fractal roughness parameter and fractal dimension of a surface profile, 

respectively. They can be obtained from the W-M function’s power spectrum 

 
𝑆(𝑤) =

𝐺2(𝐷−1)

2𝑙𝑛𝛾

1

𝜔(5−2𝐷)
 (2.22) 

where 𝑆(𝑤) is the power spectrum and 𝜔 represents the frequency. Manjumdar and Bhusan [36] 

have extensively used fractal methods to characterize surface topography and also in scale 

dependent rough surface contact models. Chapter 3 discusses about the steps followed for building 

the solid finite element model.



13 
 

Chapter 3 

FINITE ELEMENT MODEL 

3.1  Introduction 

 This chapter describes in detail the methodology employed in building the solid finite 

element model. The model is divided into two parts. The first part is the rigid flat surface that acts 

as the contact surface and the second being the sinusoidal surface on which the target elements are 

created. This section also discusses the methodology used for mesh convergence test and length 

convergence test. 

3.2 Building the solid model 

           The current analysis will examine the case of axisymmetric elastic-plastic sinusoidal 

surface asperity contact against a rigid flat with strain hardening by conducting the parametric 

study using the finite element method. The present model uses an axisymmetric sinusoidal surface 

and the profile of this surface is described by 

 

ℎ =  ∆ (1 + cos (
2𝜋𝑟

𝜆
)) , 0 ≤  𝑟 ≤

𝜆

2
                                             (3.1) 

 

   Where h is the height of the sinusoidal surface and r is the radius of the sinusoidal surface, 

and 𝜆 is the wavelength of the sinusoidal wave. This work uses the same approach used by Saha 

and Jackson [33] for modelling the elastic-plastic case for axisymmetric sinusoidal contact without 

considering the strain hardening. A 3- dimensional rendering of geometry used in this thesis and 

is described by Fig. 3.1.
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           Fig. 3.1: Three-dimensional view of the surface of an axisymmetric sinusoidal asperity 

      

 

    The commercial ANSYSTM 17.1 package with APDL coding was used to model the elastic-

plastic contact of a sinusoidal surface loaded against a rigid flat with strain hardening. APDL 

stands for “ANSYS Parametric Design Language” is an alternative to the GUI (Graphical User 

Interface) to perform modelling in ANSYS. Since generating a sinusoidal asperity via GUI in 

ANSYS is very tedious, we used APDL instead. Owing to the axisymmetric nature of the 

sinusoidal surface (shown in Fig. 3.1), only the right half section (a 2-D axisymmetric section) of 

the model was rendered in the finite element analysis within the period of r = [0,R]. For meshing 

the entire sinusoidal surface and it’s substrate, a PLANE 183 (8-node plane element with mid 

nodes) was employed. CONTA 172 (3-node contact element with a mid- node), was used on the 

rigid flat surface and TARGE 169 (2-node contact element) , was used over the sinusoidal surface.  
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The contact was also assumed to be frictionless and the contact elements used the Augmented 

Lagrange Method for enforcing contact and limiting penetration between the surfaces. The 

Augmented Lagrange Method  is very similar to the pure penalty method, but it adjusts the contact 

force with a constant that is independent of the penetration stiffness. 

 

3.3  Boundary Conditions  

 The boundary conditions (BC’s) that are considered in the present study are: 

• The rigid flat only translates in the y direction. 

• Displacements  𝑈𝑥 and 𝑈𝑦 in both the x and y directions are fixed on the bottom of the 

substrate. 

• 𝑈𝑥(0, 𝑦) = 0   𝑖. 𝑒. the axisymmetric boundary condition is applied at the axis of symmetry. 

• Boundary conditions that consider interaction with adjacent asperities are applied to the 

displacements in the radial direction along the substrate length, 𝐿2, such that 𝑈𝑥 (
−𝜆

2
, 𝑦) =

𝑈𝑥 (
𝜆

2
, 𝑦) = 0. 

      The displacement method was employed to simulate the contact problem. This method 

applies a finite displacement to the rigid flat surface in the y- direction toward the 

sinusoidal surface, and then solves the contact problem. The flat rigid surface was 

constrained to move only along the y axis. Additionally, displacements at the bottom of the 

substrate in both the x and y directions were set to zero (i.e. 𝑈𝑥 = 0 and 𝑈𝑦 = 0). The 

simulation methodology can be understood better from Fig. 3.2. 
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           Fig. 3.2: Schematic of an axisymmetric sinusoidal asperity loaded against a rigid flat [33]. 
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3.4 Normalization 

   Through the course of the work, it was found that one other normalization scheme actually 

appears better at collapsing the data onto a universal curve.  As is done in previous works on elasto-

plastic contact, the contact area and the pressure obtained from the finite element results can be 

normalized by the following expression: 

 

                                         𝐴∗ = 
𝐴𝐹𝐸𝑀

𝐴𝑐
=  

𝐴𝐹𝐸𝑀

𝜋𝑅2
                                                           (3.2) 

 

  where 𝐴𝐹𝐸𝑀 is the contact area obtained from the finite element model and R is the radius of the 

sinusoidal wave. Since, only the right half of the sinusoidal wave was used in the finite element 

model, so radius of the sinusoidal wave can be defined as 𝑅 =  
𝜆

2
. 

   The pressure required for complete contact was then normalized by the following expression: 

 

                                      𝑃∗ = 
𝐹𝐹𝐸𝑀

𝜋𝑅2𝐸′∆

𝜆

                                                                         (3.3) 

 

     where 𝐹𝐹𝐸𝑀 is the force obtained from the finite element model, 𝐸′ is the equivalent elastic 

modulus, ∆ is the amplitude of the sinusoidal wave, and 𝜆 is the wavelength of the sinusoidal wave. 
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3.5 Mesh Convergence Test  

 

 The number of elements was increased iteratively by a factor of 1.8-2, by gradually 

increasing the nodal density, especially ones that are close to the contact interface until mesh 

convergence was obtained. Separate mesh convergence test were performed for power law 

hardening and bi-linear hardening in order to see the possible change in results for two different 

types of hardening on a same model.   

 

      For power law hardening, it is observed that a total number of 74,200 elements produces results 

that satisfy mesh convergence. It is obvious that any further increase in the number of elements 

does not affect the results. The finite element model associated with this number of elements is 

used throughout the rest of the study while keeping the other parameters involved constant. The 

mesh convergence test was only performed for the minimum and maximum value of the power 

law hardening exponent (i.e. n = 0.1 and n = 0.5) by assuming that it will not change for the 

intermediate values of hardening exponent. 

 

    A Similar approach was used to perform the mesh convergence test for bilinear hardening. For 

bi-linear hardening 107,152 elements produces reasonable results. The mesh convergence test was 

only performed for 𝐸𝑇 = 1%𝐸 𝑎𝑛𝑑 𝐸𝑇 = 10%𝐸 by assuming that it will not change for the other 

in between values of tangent modulus. A Similar approach was then used to perform the mesh 

convergence test whenever the ∆ 𝜆⁄  ratio was changed. Results obtained for mesh convergence for 

different cases are discussed below. Fig. 3.3 shows the mesh for different number of elements for 

sinusoidal asperity in contact with rigid flat for 𝜆 = 1 𝑚𝑚 and ∆ = 0.005 𝑚𝑚. 
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N = 21526 elements       N = 48052 elements 

 

 

N = 74200 elements       N = 131276 elements 

 

Fig. 3.3: Mesh of sinusoidal asperity in contact with rigid flat for 𝜆 = 1 𝑚𝑚, L2 = 1.2 mm and 

∆ = 0.005 𝑚𝑚  for different number of elements. 
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                  N = 21526 elements                                                 N = 48052 elements 

 

                  N = 74200 elements                                                  N = 131276 elements 

 

Fig. 3.4: Zoomed Mesh of sinusoidal asperity in contact with rigid flat for 𝜆 = 1 𝑚𝑚, L2 = 1.2 

mm and ∆ = 0.005 𝑚𝑚. 
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3.6 Mesh Test Plots for Power Law Hardening ( 𝑬 𝑺𝒀
⁄  = 200, ∆ = 𝟎. 𝟎𝟎𝟓 𝒎𝒎 ) 

 

 At complete contact, an average error of 0.05% between the meshes of 74,200 and 131,276 

elements was obtained from the mesh convergence plot for n = 0.1, and an average error of 0% 

between the meshes of 74,200 and 131,276 elements was obtained from the mesh convergence 

plot for n = 0.5.  Fig. 3.5 and Fig. 3.6 shows the mesh convergence test for n = 0.1 and n = 0.5 

respectively. The same number of elements was then used for obtaining the results for intermediate 

values of hardening exponent by assuming that the mesh convergence results will not change. A 

similar approach was then used for the mesh convergence test for  𝐸 𝑆𝑌
⁄  = 20 and 𝐸 𝑆𝑌

⁄  = 2000 by 

keeping the other parameters constant. Finally, 74,200 elements was used for meshing due to the 

low error value. The material properties used to perform the mesh convergence tests are given in 

Table 3.1. 

 

 

Table 3.1: Material Properties for mesh convergence test (Power Law Hardening) 

Elastic Modulus 𝑆𝑌  𝐸
𝑆𝑌

⁄  Substrate Length (𝐿2) ∆ 𝜆 

200E3 𝑁 𝑚𝑚2⁄  1000 𝑁
𝑚𝑚2⁄  200 1.2 𝑚𝑚 0.005 𝑚𝑚 1 𝑚𝑚 
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Fig. 3.5: Mesh convergence test for n = 0.1 and 𝐸 𝑆𝑌
⁄  = 200 

 

Zoomed view at complete contact 
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             Fig. 3.6: Mesh convergence test for n = 0.5 and 𝐸 𝑆𝑌
⁄  = 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Zoomed view at complete contact 
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3.7 Mesh Test Plots for Bilinear Hardening (𝑬
𝑺𝒀

⁄ = 𝟐𝟎𝟎𝟎, ∆ = 𝟎. 𝟎𝟎𝟎𝟓 𝒎𝒎) 

At complete contact, an average error of 1.07% between the meshes of 41,209 and 151,980 

elements was obtained from the mesh convergence plot for 𝐸𝑇 = 1%𝐸, and an average error of 

0.69% between the meshes of 107,152 and 151,980 elements was obtained from the mesh 

convergence plot for 𝐸𝑇 = 10%𝐸. Fig. 3.7 and Fig. 3.8 shows the mesh convergence test for 𝐸𝑇 =

1%𝐸 and 𝐸𝑇 = 10%𝐸 respectively. Finally, 151,980 elements for  𝐸𝑇 = 1%𝐸 , and 107,152 

elements for rest values of tangent modulus was then used for meshing due to low error value. A 

Similar approach was then used for the mesh convergence test for  𝐸
𝑆𝑌

⁄  = 200 by keeping the 

other parameters constant. The material properties used to perform the mesh test are given in Table 

3.2. 

 

Table 3.2: Material Properties for mesh convergence test (Bilinear Hardening) 

Elastic Modulus 𝑆𝑌  𝐸
𝑆𝑌

⁄  Substrate Length (𝐿2) ∆ 𝜆 

200E3 𝑁 𝑚𝑚2⁄  100 𝑁
𝑚𝑚2⁄  2000 1.2 𝑚𝑚 0.0005 𝑚𝑚 1 𝑚𝑚 
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                            Fig. 3.7: Mesh convergence test for  𝐸𝑇 = 1%𝐸 and 𝐸 𝑆𝑌
⁄  = 2000 

 

 

 

 

 

                                                     Zoomed view at complete contact 
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                              Fig. 3.8: Mesh convergence test for  𝐸𝑇 = 10%𝐸 and 𝐸 𝑆𝑌
⁄  = 2000 

 

 

 

 

 

 

 

 

                                                         Zoomed view at complete contact 
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3.8 Length Convergence Test for Power law and Bilinear Hardening 

         In order to make the current model a semi infinite object length convergence test was 

performed so that half space equilibrium is reached and also to find out the length at which there 

will be no effect of load. For length (𝐿2) convergence test, three different values for the substrate 

length was varied (𝐿2 = 0.6 mm, 𝐿2 = 1.2 mm, 𝐿2 = 3 mm). The length convergence test was only 

performed for the minimum and maximum value of hardening exponent (i.e. n = 0.1 and n = 0.5) 

and ( 𝐸𝑇 = 1%𝐸 and 𝐸𝑇 = 10%𝐸) by assuming that it will not change for the intermediate values 

of hardening exponent and tangent modulus. Finally, 𝐿2 = 1.2 𝑚𝑚 was used as a substrate length. 

The material properties used to perform the length test for power law hardening are given in Table 

3.3. Fig. 3.9 and Fig. 3.10 are representing the plots for length test for power law hardening. 

 

 

Table 3.3: Material Properties for Length convergence test (Power law Hardening) 

Elastic Modulus 𝑆𝑌  𝐸
𝑆𝑌

⁄  Number of Elements ∆ 𝜆 

200E3 𝑁 𝑚𝑚2⁄  1000  𝑁
𝑚𝑚2⁄  200 74200 0.005 𝑚𝑚 1 𝑚𝑚 
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            Fig. 3.9: Length convergence test for 𝑛 = 0.1 and 𝐸 𝑆𝑌
⁄  = 200 
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Fig. 3.10: Length convergence test for 𝑛 = 0.5 and 𝐸 𝑆𝑌
⁄  = 200 
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   After analyzing the plot for n = 0.1 (Fig.3.9) at complete contact, an error of 0.19% was 

calculated between the results for 𝐿2 = 0.6 mm and 𝐿2 = 3 mm and an error of 0.32% was calculated 

between the results for 𝐿2 = 1.2 mm and 𝐿2 = 3 mm. Similarly, after analyzing the plot for n = 0.5 

(Fig. 3.10), at complete contact an error of 0.13% was calculated between the results for 𝐿2 = 0.6 

mm and 𝐿2 = 3 mm and an error of 0.1% was calculated between the results for 𝐿2 = 1.2 mm and 

𝐿2 = 3 mm. Hence, 𝐿2 = 1.2 mm was then considered as final substrate length due to low error 

value. Finally, for N = 74200 and 𝐿2 = 1.2 mm a number of different cases by varying the hardening 

exponent (n) were then analyzed for   𝐸 𝑆𝑌
⁄  = 20,  𝐸 𝑆𝑌

⁄  = 200 and 𝐸 𝑆𝑌
⁄  = 2000. A Similar approach 

was then used for a length convergence test for  𝐸
𝑆𝑌

⁄  = 20 and 𝐸
𝑆𝑌

⁄  = 2000. The material 

properties used to perform the Length test for bilinear hardening are given in Table 3.4. Fig. 3.11 

and Fig. 3.12 are representing the plots of length test for bilinear hardening.  

 

Table 3.4: Material Properties for Length convergence test (Bilinear Hardening) 

Elastic Modulus 𝑆𝑌  𝐸
𝑆𝑌

⁄  Number of Elements ∆ 𝜆 

200E3 𝑁 𝑚𝑚2⁄  100 𝑁
𝑚𝑚2⁄  2000 107152 0.0005 𝑚𝑚 1 𝑚𝑚 
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                            Fig. 3.11: Length convergence test for 𝐸𝑇 = 1%𝐸 and 𝐸 𝑆𝑌
⁄  = 2000 
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                      Fig. 3.12: Length convergence test for 𝐸𝑇 = 10%𝐸 and 𝐸 𝑆𝑌
⁄  = 2000 

 

    After analyzing the plot for  𝐸𝑇 = 1%𝐸 (Fig. 3.11), at complete contact an error of 0.97% was 

calculated between the results for 𝐿2 = 1.2 mm and 𝐿2 = 3 mm. Similarly, after analyzing the plot 

for  𝐸𝑇 = 10%𝐸 (Fig. 3.12), at complete contact an error of 0.02% was calculated between the 

results for 𝐿2 = 1.2 mm and 𝐿2 = 3 mm. Hence, 𝐿2 = 1.2 mm was then considered as the final 

substrate length due to low error value. Finally, for N = 107,152 and 𝐿2 = 1.2 mm a number of 

different cases by varying tangent modulus was then analyzed for   𝐸
𝑆𝑌

⁄  = 2000. A Similar 

methodology was then used to perform the length convergence test for power law hardening using 

the same parameters discussed in Table 3.3.  Table 3.5 and Table 3.6 shows the summary of the 
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final parameters used for mesh and length convergence tests for power law and bilinear hardening 

respectively. 

Table 3.5: Summary of number of elements for power law hardening 

 𝐸
𝑆𝑌

⁄  n ∆

𝜆
 

N L 

20 0.1-0.5 0.005 74,200 1.2 mm 

200 0.1-0.5 0.005 74,200 1.2 mm 

2000 0.1-0.5 0.005 74,200 1.2 mm 

2000 0.1-0.5 0.0005 74,200 1.2 mm 

 

 

                              Table 3.6: Summary of number of elements for bilinear hardening 

 𝐸
𝑆𝑌

⁄  ∆

𝜆
 

𝐸𝑇
𝐸⁄  

1% 2% 5% 10% 

200 0.005 107,152 107,152 107,152 107,152 

2000 0.005 107,152 107,152 107,152 107,152 

2000 0.0005 151,980 107,152 107,152 107,152 
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  In this chapter, details of numerical simulations are discussed. First, the methodology of building 

the solid model in commercial software 𝐴𝑁𝑆𝑌𝑆𝑇𝑀 by using the finite element method is discussed. 

The second part of the chapter was focused on the approach followed for performing the mesh and 

length convergence test for both the power law and Bi-Linear hardening. Results Obtained from 

these simulation is discussed in Chapter 4.
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Chapter 4 

Finite Element Results and Comparison 

4.1 Introduction 

  The material of the sinusoidal surface was assumed to be elastic-plastic isotropic power 

law hardening with a hardening exponent ranging from n = 0.1 ≤ n ≤ 0.5. The results obtained 

from power law hardening are also compared with the results obtained from bi-linear isotropic 

hardening for 𝐸𝑇 = 1%𝐸, 2%𝐸, 5%𝐸, 10%𝐸. This chapter also discusses the hardening effect 

from the plots obtained from FEM results for both of the types of hardening. 

Results and Discussions 

 

4.2 Power Law Hardening 

 For the modelling of an elastic-plastic axisymmetric sinusoidal surface, different values of 

material properties were considered. In the current model, two different values of amplitude (∆ = 

0.005 mm and ∆ = 0.0005 mm) was assumed and the wavelength (𝜆 = 1 mm) was used throughout 

the calculation. Then, the analysis was done for a fixed value of Young’s modulus (E = 200 GPa) 

and for three different values of  𝐸
𝑆𝑌

⁄ = 20, 200, 2000. Different values of the hardening 

exponent ranging from n = 0.1 – 0.5 were considered. Finally, for each 𝐸
𝑆𝑌

⁄   ratio, all the results 

were plotted on a single plot for different values of the hardening exponent ranging, from n = 0.1, 

0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5. In order to check the hardening effect below the typical 

range of the hardening exponent (n), few more cases for each  𝐸 𝑆𝑌
⁄  ratio and for two different 
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values of the hardening exponent n = 0 .01 and 0.001 was then analyzed. The results obtained 

from each case are discussed below in detail.  The equation for power law hardening is given by: 

                                              𝜎𝑌
𝜎𝑂

⁄ =  (
𝜎𝑌

𝜎𝑂
⁄  +  3𝐺ɛ𝑝�̂�

𝜎𝑜
⁄ )

𝑁

                                          (4.1)          

Where  ɛ𝑝𝑙 is plastic strain, N is strain hardening exponent and G is shear modulus. The plots 

below are showing the stress vs strain relationship for the material properties used in the analysis. 

 

  

 

 

 

 

 

                                                         Fig 4.1: Stress vs strain for  𝐸 𝑆𝑌
⁄ = 200       

                

 

 

 

 

 

 

                                                        Fig 4.2: Stress vs strain for  𝐸 𝑆𝑌
⁄ = 2000       

 

n = 0.1 

n = 0.5 

n = 0.1 

n = 0.5 
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In the Fig. 4.3, The effect of hardening exponent on the contact pressure area relation has analyzed. 

After analyzing the plot, an average error of 0.0001% was calculated for the hardening exponent 

ranging from n = 0.1- 0.5 because all the plots in this range coincided with each other. Since 𝛥 < 

𝛥𝑐  it has no hardening effect for 𝐸
𝑆𝑌

⁄ = 20 due to elastic nature. On the other hand, an average 

error of 0.0001% was calculated between the plots for n = 0.01 and 0.001. From the Fig. 4.3, we 

can conclude that there is no significant hardening effect. Fig. 4.3 is showing dimensionless contact 

pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ = 20. 

      From the analysis of the effect of hardening for  𝐸 𝑆𝑌
⁄ = 200  (Fig. 4.4) it has been found that 

with the increase in the hardening exponent value from n = 0.1 to 0.5 more pressure is required for 

complete contact to occur. Additionally, an average difference of 0.34% was calculated between 

the plots for n = 0.01 and 0.001. From the Fig. 4.4, we can conclude that below n = 0.01 there is 

no significant hardening effect. Fig. 4.4 is showing the dimensionless contact pressure area relation 

with the hardening effect for 𝐸 𝑆𝑌
⁄ = 200. From Fig. 4.5, it has been found that the higher the 

value of hardening exponent the more pressure is required for complete contact to occur. An 

average difference of 0.15% was calculated between the plots for hardening exponents of n = 0.001 

and n = 0.01, which means that below n = 0.01, there is no significant hardening effect for  𝐸 𝑆𝑌
⁄ =

2000. In addition to this, a significant amount of hardening effect can be seen for the hardening 

exponents ranging from n = 0.1-0.5 for  𝐸
𝑆𝑌

⁄ = 2000. The results obtained from power law 

hardening were also compared with bilinear Hardening for the same parameters. 
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Fig. 4.3: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ = 20, ∆= 

0.005 mm 
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Fig. 4.4: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ = 200, 

∆= 0.005 mm 
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Fig. 4.5: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ =

2000, ∆= 0.005 mm 
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Fig. 4.6: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ =

2000, ∆= 0.0005 mm 
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   Constant value of ∆ = 0.005 mm, 𝜆 = 1 mm, 𝐿2 = 1.2 mm, E= 200 𝐺𝑃𝑎  were used for this 

portion of the analysis. The average pressure, 𝑃𝐸𝑃−𝐻
∗ , that causes complete contact is extracted 

(section 3.4) from the finite element model data for each modeled case. This value corresponds to 

the average pressure when the area ratio, 
𝐴𝐹𝐸𝑀

𝜋𝑅2⁄  = 1. At this stage complete contact occurs 

between the rigid flat and sinusoidal surface. The average pressure required for complete contact 

are given in Table 4.1, 4.2, 4.3, 4.4 respectively for each  𝐸 𝑆𝑌
⁄ . von Mises stress distribution for 

one of the case is shown in Fig. 4.11. 

 

 

 

 

 

 

 

 

 

                          

 

 

 

 

Fig. 4.7: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 20, ∆= 0.005 mm 
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Fig. 4.8: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 200, ∆= 0.005 mm 

 

 

 

 

 

 

 

 

 

 

 

                          Fig. 4.9: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 2000, ∆= 0.005 mm 
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                     Fig. 4.10: Normalized contact pressure area for  𝐸 𝑆𝑌

⁄ = 2000, ∆= 0.0005 mm 
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Table 4.1: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 20, ∆ = 0.005 mm 

n 𝑃𝐸𝑃−𝐻
∗  

0.001 2.606 GPa 

0.01 2.606 GPa 

0.1 2.609 GPa 

0.15 2.609 GPa 

0.2 2.609 GPa 

0.25 2.609 GPa 

0.3 2.609 GPa 

0.35 2.609 GPa 

0.4 2.609 GPa 

0.45 2.609 GPa 

0.5 2.609 GPa 
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Table 4.2: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 200, ∆ = 0.005 mm 

n 𝑃𝐸𝑃−𝐻
∗  

0.001 1.945 GPa 

0.01 1.951 GPa 

0.1 1.983 GPa 

0.15 2.006 GPa 

0.2 2.033 GPa 

0.25 2.056 GPa 

0.3 2.084 GPa 

0.35 2.108 GPa 

0.4 2.138 GPa 

0.45 2.164 GPa 

0.5 2.197 GPa 
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Table 4.3: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 2000, ∆ = 0.005 mm 

n 𝑃𝐸𝑃−𝐻
∗  

0.001 0.420 GPa 

0.01 0.427 GPa 

0.1 0.471 GPa 

0.15 0.521 GPa 

0.2 0.577 GPa 

0.25 0.645 GPa 

0.3 0.721 GPa 

0.35 0.809 GPa 

0.4 0.907 GPa 

0.45 1.013 GPa 

0.5 1.121 GPa 
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Table 4.4: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 2000, ∆ = 0.0005 mm 

n 𝑃𝐸𝑃−𝐻
∗  

0.1 0.198 GPa 

0.15 0.203 GPa 

0.2 0.204 GPa 

0.25 0.205 GPa 

0.3 0.211 GPa 

0.35 0.212 GPa 

0.4 0.215 GPa 

0.45 0.216 GPa 

0.5 0.223 GPa 
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            A: n = 0.1                                      B: n = 0.15                                       C: n = 0.2 

          D: n = 0.25                                      E: n = 0.3                                        F: n = 0.35 

 

 

 

 

 

 

 

 

 

 

 

 

 

             G: n = 0.4                                    H: n = 0.45 

 

Fig. 4.11: von Mises stress (N/mm2) of n = 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45 for  𝐸 𝑆𝑌
⁄ =

200, ∆ = 0.005 mm respectively. 
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               Table 4.5: Maximum von Mises stress values for  𝐸 𝑆𝑌
⁄ = 200, ∆ = 0.005 mm 

 

Hardening exponent (n) von Mises Stress (GPa) 

0.1 1.214 

0.15 1.301 

0.2 1.421 

0.25 1.553 

0.3 1.696 

0.35 1.852 

0.4 2.022 

0.45 2.205 

0.5 2.643 

 

Table 4.6: Maximum von Mises stress values for  𝐸 𝑆𝑌
⁄ = 2000, ∆ = 0.005 mm 

 

Hardening exponent (n) von Mises Stress (GPa) 

0.1 0.156 

0.15 0.198 

0.2 0.236 

0.25 0.295 

0.3 0.346 

0.35 0.418 

0.4 0.502 

0.45 0.603 

0.5 0.732 

 

 

Table 4.7: Maximum von Mises stress values for  𝐸 𝑆𝑌
⁄ = 2000, ∆ = 0.0005 mm 

 

Hardening exponent (n) von Mises Stress (GPa) 

0.1 0.139 

0.15 0.165 

0.2 0.195 

0.25 0.230 

0.3 0.272 

0.35 0.321 

0.4 0.379 

0.45 0.448 

0.5 0.529 
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4.3 Bi-Linear Isotropic Hardening 

 

  In order to compare the results obtained from power law hardening with the bi-linear 

isotropic hardening a number of simulations were carried out. In this section, the material is being 

modeled as an elastic-plastic material with bilinear isotropic hardening. Two different values of 

 𝐸
𝑆𝑌

⁄  = (200, 2000) were considered for a constant value of amplitude (∆ = 0.005 mm)  and 

wavelength (𝜆 = 1 mm) was used throughout the calculation. Then, the analysis was done for a 

fixed value of Young’s modulus (E = 200 GPa) and for four different values of tangential modulus 

(𝐸𝑇 = 1%𝐸, 2%𝐸, 5%𝐸, 10%𝐸). Finally, for each 𝐸
𝑆𝑌

⁄   ratio all the results were plotted on a 

single graph for different values of tangential modulus. The results obtained from FEM are 

discussed in next section. The stress strain relationship for bilinear hardening are as follow: 

        

 

 

 

 

 

 

 

 

 

 

Fig. 4.12: Stress-strain curve for Bilinear Isotropic Hardening 
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                                            Fig 4.13: Stress vs strain for  𝐸 𝑆𝑌
⁄ = 200   

                       

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            Fig 4.14: Stress vs strain for  𝐸 𝑆𝑌
⁄ = 2000   

                       

 

In Fig 4.13 and Fig 4.14, The stress strain relationship for bilinear hardening is analyzed for four 

different values of tangent modulus and two different  𝐸 𝑆𝑌
⁄  . The region below yield strength is 

the elastic region whereas the region after the yield strength is the plastic region which is described 

by the slope of tangent modulus. The dimensionless contact pressure area relation for bilinear 

hardening are discussed below. 

 

 

 

ET = 1%E 

ET = 10%E 

ET = 10%E 

ET = 1%E 
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Fig. 4.15: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ =

200, ∆= 0.005 mm 
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 Fig. 4.16: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ =

2000, ∆= 0.005 mm 

 

 

 

 

 

 

 

 

 

 

 



55 
 

 

Fig. 4.17: Dimensionless contact pressure area relation with the hardening effect for 𝐸
𝑆𝑌

⁄ =

2000, ∆ = 0.0005 mm 
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  In Fig. 4.15, The effect of tangential modulus, 𝐸𝑇, on the contact pressure area relation is 

analyzed. After analyzing the plot, it can be concluded that no significant hardening effect is 

observed between 𝐸𝑇 = 1%𝐸 𝑎𝑛𝑑 2%𝐸  for   𝐸 𝑆𝑌
⁄ = 200, ∆= 0.005 because an average error of 

0.3% was calculated for these two cases. In Fig. 4.16, A significant amount of the hardening effect 

was observed which means more pressure is required with the increase in tangential modulus to 

achieve the complete contact between the sinusoidal surface and the rigid flat. In Fig. 4.17, no 

significant amount of hardening was observed as all the plots are very close to each other.  Kogut 

and Etsion [34] showed that for Et <2%E hardening does not have significant effect. However, in 

the current work it was found that hardening has significant effect for Et <2%E. Table 4.8, 4.9, 

4.10 are showing the average pressure values required for complete contact for the bi -Linear 

isotropic hardening model.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                      Fig. 4.18: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 200, ∆= 0.005 mm 
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Fig. 4.19: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 2000, ∆= 0.005 mm 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.20: Normalized contact pressure area for  𝐸 𝑆𝑌
⁄ = 2000, ∆= 0.0005 mm 

 



58 
 

 

         Table 4.8: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 200, ∆ = 0.005 mm 

𝐸𝑇 𝑃𝐸𝑃−𝐻
∗  

1% 1.948 GPa 

2% 1.959 GPa 

5% 1.981 GPa 

10% 2.007 GPa 

 

 

         Table 4.9: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 2000, ∆ = 0.005 mm 

𝐸𝑇 𝑃𝐸𝑃−𝐻
∗  

1% 0.422 GPa 

2% 0.466 GPa 

5% 0.591 GPa 

10% 0.790 GPa 

 

 

Table 4.10: Average pressure required for complete contact for 𝐸
𝑆𝑌

⁄ = 2000, ∆ = 0.0005 mm 

𝐸𝑇 𝑃𝐸𝑃−𝐻
∗  

1% 0.195 GPa 

2% 0.196 GPa 

5% 0.200 GPa 

10% 0.202 GPa 
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However, the current work finds that it is possible to account for power law and bilinear hardening 

via an effective yield strength, 𝑆𝐸. Following the definition of power law and bilinear hardening, 

the approximate prediction of the effective yield strength is found by fitting to the finite element 

data for the complete contact pressure cases. The expression for   𝑆𝐸 for both the hardening is given 

by: 

For power law hardening: 

                                                 𝑆𝐸 =  𝑆𝑌 + 𝐸 ∙ 𝑥(𝑎∙𝑥+𝑏) ∙ 𝑦(𝑐∙𝑥+𝑑)                                       (4.2) 

Where 𝑆𝑌 is the yield strength, 𝐸 is the elastic modulus, x is ∆ 𝜆⁄ , y is the hardening exponent, n, 

and a, b, c, d, are the constants which is given below: 

Table 4.11: Constants of  𝑆𝐸 for power law hardening 

∆
𝜆⁄  E/𝑆𝑌 a b c d 

0.005 200 -26.98 1.149 -595.1 4.071 

0.005 2000 -1.486 0.9778 283.9 0.6983 

0.0005 2000 -1.486 0.9778 283.9 0.6983 

 

 

For bilinear hardening: 

The same equation 4.2 was used for calculating the effective yield strength. Where x is  ∆ 𝜆⁄  , and  

y is given by  
𝐸𝑇

𝐸⁄ . The constant values are given in Table 4.12. 
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Table 4.12: Constants of  𝑆𝐸 for Bilinear hardening 

∆
𝜆⁄  E/𝑆𝑌 a b c d 

0.005 200 -0.09 1 -9.51E+03 47.99 

0.005 2000 -101 1.203 276.2 0.2346 

0.0005 2000 -101 1.203 276.2 0.2346 

 

                                                                   Fig. 4.21:  𝑆𝐸 vs n 
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                                                              Fig. 4.22:  𝑆𝐸 vs 
𝐸𝑇

𝐸⁄ . 

                                              

 

                                                                 

                                                        

4.4  Surface Separation Results for Power law and Bilinear Isotropic Hardening 

 

    Using the same material properties as in section 4.2 and 4.3, the average surface 

separation results for different  𝐸 𝑆𝑌
⁄  was observed. Fig 4.23, 4.24, 4.25, 4.26 is representing the 

plots for the FEM elasto-plastic results for average surface separation for different  𝐸 𝑆𝑌
⁄ . 
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           Fig 4.23: The FEM elastic-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 20 

 

 

 

 

 

 

 

 



63 
 

  

        Fig. 4.24: The FEM elastic-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 200 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



64 
 

 

         Fig 4.25: The FEM elastic-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 2000 
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Fig 4.26: The FEM elastic-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 2000, ∆ =

0.0005𝑚𝑚 

 

      

 

From the plots above, no significant effect of hardening is observed as they are coinciding with 

each other. There is a little deviation in Fig 4.24 and Fig 4.25 but at the end it also converges. The 

results were normalized for better understanding of the plots. The plots of surface separation for 
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Bilinear Isotropic hardening are shown in next section. The expression used to normalize the 

average gap is as follow: 

                 𝑔𝑜̅̅ ̅ = (
𝜋∙∆∙𝜆2

4
 +  

∆∙𝜆2

𝜋

𝜋∙
𝜆2

4

)                                                                (4.3) 

            Fig 4.27: The FEM elasto-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 200 
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   Fig 4.28: The FEM elasto-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 2000 
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Fig 4.29: The FEM elasto-plastic results for average surface separation for  𝐸 𝑆𝑌
⁄ = 2000, ∆ =

0.0005𝑚𝑚 
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Chapter 5 

 

Conclusions 

 

     Rough surfaces are very common in the real world. From a microscopic point of view, 

interactions between rough surfaces are happening between peaks or asperities. In order to 

understand the real mechanisms behind the interaction between the asperities or rough surfaces, 

different types of methods have been developed for modelling rough surface contact. 

 

      In this work, the contact problem comprised of a strain hardening elastic plastic axisymmetric 

sinusoidal surface asperity and a rigid flat was analyzed and modelled using the finite element 

method. A numerical model was generated using the commercial finite element software ANSYS 

17.1. The surface is modelled as an elastic plastic, nonlinear isotropic power law hardening solid. 

Since the nature of asperity is axisymmetric (Fig. 3.2), only the right half of the asperity (two 

dimensional) was taken into consideration.  

 

  This work also characterizes the pressure required to cause complete contact between the 

surfaces. Complete contact is defined as when there is no gap between the two surfaces in contact. 

In the end, the FEM model is used to produce equations which can be employed to approximately 

relate the area of contact to the contact pressure for elastic-plastic sinusoidal contact. The results 

obtained from power law hardening are also compared with the results obtained from bilinear 

hardening for 𝐸𝑇 = 1% 𝐸, 2% 𝐸, 5% 𝐸, 10% 𝐸 in order to observe the possible change in trend 

for two different types of hardening. From the plots, it can be concluded that with the increase in 
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hardening more pressure is required for complete contact to occur. Since, 𝛥 < 𝛥𝑐 no hardening 

effect was observed for 𝐸 𝑆𝑌
⁄ = 20  due to an elastic nature. A significant amount of hardening 

effect was observed for higher 𝐸 𝑆𝑌
⁄  and higher 𝛥 value.  

    A parametric study was also performed to calculate the surface separation for both the types of 

hardening and the results were then curve fitted. By normalizing the contact area and average 

pressure, the current model provides analytical expressions of contact area as a function of the 

average pressure for the elastic-plastic regime. The errors in the numerical fits are fairly low (less 

than 5%) and suggest that the fits are reasonable.
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Appendix A 

 

ANSYS Simulation Code (Power Law Hardening) 

 

/PREP7   

 

!-----------------------------------DEFINING CONSTANTS----------------------------------------   

 

*SET, N, 100                       ! NUMBER OF NODES IN X AND Y DIRECTIONS   

*SET, HALF_LAMBDA, 0.5 

*SET,AMPLITUDE, 0.005 

*SET, PI, 3.1415926  

*SET, N_HARDENING, 0.45       ! HARDENING EXPONENT IN THE POWER LAW 

ISOTROPIC HARDENING 

*SET, DELTA_X, (HALF_LAMBDA)/(N) ! INTERVALS BETWEEN THE NEIGHBORING 

KEY POINTS [MM] 

*SET,HEIGHT,-1.2 

 

!-----------------------------------ELEMENT-----------------------------------------------  

  

ET,1,PLANE183    

KEYOPT,1,1,0 

KEYOPT,1,3,1 

KEYOPT,1,6,0 

 

!-----------------------------------------Create contact pair----------------------------------------    

MP,MU,1,0    

R,3  

REAL,3  

  

ET,2,169 

ET,3,172 

R,3,,,1.0,0.01, 

KEYOPT,3,2,0 

KEYOPT,3,3,1 

KEYOPT,3,5,1 

KEYOPT,3,10,2    

KEYOPT,3,12,0  

 

!--------------------------------------MATERIAL PROPERTIES---------------------------------------  
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MP, EX, 1, 200E3       ! ELASTIC MODULUS [N/(mm^2)] 

MP, PRXY, 1, 0.33     ! POISSON'S RATIO 

TB, NLISO, 1,,, POWER      ! NONLINEAR POWER LAW ISOTROPIC HARDENING 

TBDATA,,100,0.45       ! Yield strength and hardening exponent  

!----------------------------------------GEOMETRY-----------------------------------------------------   

 

*DIM, XX, ARRAY, N+1          ! COORDINATE OF THE KEYPOINTS IN X DIRECTION   

*DIM, YY, ARRAY, N+1          ! HEIGHT OF THE KYPOINTS ON THE SINUSOIDAL CURVE  

  

*DO, I, 1, N+1                  !NODAL COORDINATE IN THE X DIRECTION [mm]    

*SET, XX(I), DELTA_X*(I - 1) 

*ENDDO   

 

*DO, I, 1, N+1                  !NODAL COORDINATE ALONG THE SINUSOIDAL SURFACE 

[mm]  

*SET, YY(I), AMPLITUDE+AMPLITUDE*cos(2*PI*XX(I))   

*ENDDO   

 

*DO, I, 1, N+1           ! CREATING THE KEY POINTS ALONG X DIRECTION 

K, I, XX(I), YY(I), 0    

*ENDDO   

 

*DO,I,1,10    

L,I,I+1  

*ENDDO 

   

CM, Sinusoidala, LINE            ! CREATE A LINE COMPONENT CONSISTS OF ALL THE 

SUB-LINES IN THE SINUSOIDAL PROFILE  

  

K,N+2,0,YY(1)-XX(11),0 

LARC,11,102,1,XX(11) 

   

L,1,N+2  

 

LSEL, S, LOC, Y, (YY(1)-XX(11))- 1e-10 ,YY(1)+1e-10  

AL,ALL   

 

LSEL,U,LINE,,ALL 

 

*DO,I,N-9,N    

L,I,I+1  

*ENDDO 

   

CM, Sinusoidalb, LINE            ! CREATE A LINE COMPONENT CONSISTS OF ALL THE 

SUB-LINES IN THE SINUSOIDAL PROFILE  
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K,N+3,XX(N+1),-XX(11),0 

LARC,91,103,101,XX(11) 

   

L,N+3,N+1  

 

AL,ALL   

 

LSEL,U,LINE,,ALL 

 

*DO, I, 11, N-10              ! CONNECTING THE NEIGHBORING KEY POINTS (I AND I + 1) 

ALONG X AXIS TO FORM THE 

L, I, I + 1  

*ENDDO 

   

CM, Sinusoidalc, LINE            ! CREATE A LINE COMPONENT CONSISTS OF ALL THE 

SUB-LINES IN THE SINUSOIDAL PROFILE   

 

K,N+4,0,HEIGHT*0.15,0    

K,N+5,XX(N+1),HEIGHT*0.15,0  

 

L,N+2,N+4    

L,N+4,N+5    

L,N+5,N+3   

  

LSEL,A,LINE,,11 

LSEL,A,LINE,,23 

AL,ALL   

ALLSEL 

AGLUE,1,3 

AGLUE,2,3  

k , N+6 , HALF_LAMBDA , HEIGHT*0.6  , 0  

k , N+7 , 0 , HEIGHT*0.6  , 0  

L, N+4, N+7  

L, N+7, N+6  

L, N+6, N+5  

LSEL, S, LOC, Y, HEIGHT*0.6-1e-10, HEIGHT*0.15+ 1e-10    

AL,ALL   

ALLSEL  

K , N+8 , HALF_LAMBDA , HEIGHT  , 0  

k , N+9 , 0 , HEIGHT  , 0   

L,N+7, N+9   

L,N+9, N+8   

L,N+8, N+6  

LSEL, S, LOC, Y, HEIGHT-1e-10, HEIGHT*0.6+ 1e-10 

AL,ALL   

ALLSEL  
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AGLUE,3,4    

AGLUE,4,5 

ALLSEL  

K,N+10, XX(1),YY(1),0 

K,N+11, XX(N+1),YY(1),0 

L,N+10,N+11 

ALLSEL 

 

!-----------------------------------Meshing---------------------------------------------------------------  

 

*DO, I ,1, 10 

LESIZE, I,,,10,1 

*ENDDO 

LESIZE, 11,,,100,1 

LESIZE, 12,,,100,1 

type,1   

mat,1    

secn,1             !use general axisymmetric section 

amesh,1            !generate the master plane    

eplot              !visualise the 2D model   

ALLSEL 

*DO, I ,13, 22 

LESIZE, I,,,10,1 

*ENDDO 

LESIZE, 24,,,100,1 

LESIZE, 23,,,100,1 

type,1   

mat,1    

secn,1             !use general axisymmetric section 

amesh,2            !generate the master plane    

eplot              !visualise the 2D model   

ALLSEL 

*DO, I ,25, 104 

LESIZE, I,,,10,1 

*ENDDO 

ESIZE,0.004         

type,1   

mat,1    

secn,1             !use general axisymmetric section 

amesh,3            !generate the master plane    

eplot              !visualise the 2D model   

ALLSEL 

ESIZE,0.006         

type,1   

mat,1    

secn,1             !use general axisymmetric section 
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amesh,4            !generate the master plane    

eplot              !visualise the 2D model   

ALLSEL 

ESIZE,0.007 

type,1   

mat,1    

secn,1             !use general axisymmetric section 

amesh,5            !generate the master plane    

eplot              !visualise the 2D model   

ALLSEL 

TYPE,2   

LMESH,114          !generate the master plane  

eplot              !visualise the 2D model   

ALLSEL 

 

!--------------------------- GENERATE CONTACT SURFACE-------------------------------------------

--! 

 

CMSEL, S, Sinusoidala, LINE   

CMSEL, A, Sinusoidalb, LINE 

CMSEL, A, Sinusoidalc, LINE 

TYPE,3   

NSLL, S, 1                      ! SELECT ALL NODES ASSOCIATED WITH THE SINUSOIDAL 

PROFILE    

ESLN, S, 0                      ! SELECT ELEMENTS ASSOCIATED WITH THE SELECTED NODES 

ESURF    

ALLSEL  

TYPE, 2 

TSHAP, PILO 

*GET,NODE_NO,NODE,0,NUM,MAX 

N, NODE_NO+1 ,XX(1), YY(1), 0 

E, NODE_NO+1 

NSEL, S , , , NODE_NO+1! SELECT THE NEWLY CREATED NODE  

CM, PILOT, NODE 

ALLSEL 

 

!----------------------------BOUNDARY CONDITIONS---------------------------------------------------! 

 

LSEL, S, LOC, X, 0-1e-10, 0+ 1e-10   

DL, ALL, , UX, 0 

ALLSEL  

LSEL, S, LOC, X, HALF_LAMBDA-1e-10, HALF_LAMBDA+ 1e-10   

DL, ALL, , UX, 0 

ALLSEL 

LSEL, S, LOC, Y, HEIGHT-1e-10, HEIGHT+ 1e-10 

DL, ALL, , UX, 0 



80 
 

ALLSEL   

LSEL, S, LOC, Y, HEIGHT-1e-10, HEIGHT+ 1e-10 

DL, ALL, , UY, 0 

ALLSEL  

 

!-----------------------------SOLUTION_--------------------------------------------------------------! 

 

D, PILOT, UY,-0.02  ! MOVE PILOT NODE (RIGID FLAT) ALONG 0I + 0J +PENE K     

D, PILOT, UX, 0 

D, PILOT, ROTZ, 0 ! NO ROTATION 

/SOL 

ANTYPE, 0                   ! STATIC ANSLYSI 

NLGEOM, ON                 ! LARGE (NONLINEAR) DEFLECTION 

TIME,1 

AUTOTS, ON                      ! USER DEFINED TIME STEP                   

NSUBST, 800,10000,800           ! NUMBER OF SUBSTEPS IN ONE LOADING STAGE 

OUTRES,ALL, ALL                 ! WRITE ALL SOLUTIONS FOR ALL SUBSTEPS 

NEQIT,200,100                   ! MAXIMUM 20 ITERATIONS ON EACH SUBSTEP 

KBC, 0                          ! USING RAMPED LOAD 

BCSOPTION,,INCORE,,, 

SOLVE 

SAVE 

 

 

!-------------------------------------POST PROCESSING---------------------------------------------------! 

 

/POST1   

ALLSEL 

 LSEL, S, LOC, Y, HEIGHT-1e-10, HEIGHT+ 1e-10 

NSLL,S,1 

*GET, NUM_NODE, NODE, 0, COUNT  

 ! INITIALIZE AN ARRAY WHICH IS USED TO STORE THE NUMBER OF EACH 

CONTA172 ELEMENT 

*DIM, NODE_INDEX , ARRAY, NUM_NODE   

*VGET, NODE_INDEX, NODE, , NLIST 

ALLSEL   

*SET, NUM_CONT_ELEM, 0  

 ESEL, S, TYPE, , 3              ! SELECT ELEMENT ATTACHED TO CONTA172    

NSLE, S, ALL                    ! SELECT ALL THE NODES CONTAINED IN CONTA172 

ELEMENT 

! OBTAIN NUMBER OF CONTA172 ELEMENTS 

*GET, NUM_CONT_ELEM, ELEM, 0, COUNT  

! INITIALIZE AN ARRAY WHICH IS USED TO STORE THE NUMBER OF EACH 

CONTA172 ELEMENT 

*DIM,  CONT_ELEM_NUM , ARRAY, NUM_CONT_ELEM  

*DIM,  CONT_ELEM_LOC , ARRAY, NUM_CONT_ELEM  
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*VGET, CONT_ELEM_NUM, ELEM, , ELIST  

ALLSEL 

 *DO,I,1,NUM_CONT_ELEM    

*GET,CONT_ELEM_LOC(I),ELEM,CONT_ELEM_NUM(I),CENT,X   

*ENDDO  

 *DIM,  CONT_ELEM_NUM_SORTED , ARRAY, NUM_CONT_ELEM   

*DIM,  CONT_ELEM_LOC_SORTED , ARRAY, NUM_CONT_ELEM  

  

*DO,I,1,NUM_CONT_ELEM    

*SET,CONT_ELEM_NUM_SORTED(I),CONT_ELEM_NUM(I)    

*ENDDO   

*DO,I,1,NUM_CONT_ELEM    

*SET,CONT_ELEM_LOC_SORTED(I),CONT_ELEM_LOC(I)    

*ENDDO   

*DO,p,1,NUM_CONT_ELEM-1  

*DO,I,p, NUM_CONT_ELEM-1 

*IF, CONT_ELEM_LOC_SORTED(p) , GT , CONT_ELEM_LOC_SORTED(I+1), THEN  

*SET,TEMP_SINE,CONT_ELEM_LOC_SORTED(I+1) 

*SET,CONT_ELEM_LOC_SORTED(I+1),CONT_ELEM_LOC_SORTED(p)   

*SET,CONT_ELEM_LOC_SORTED(p),TEMP_SINE   

*SET,TEMP_SINE,CONT_ELEM_NUM_SORTED(I+1) 

*SET,CONT_ELEM_NUM_SORTED(I+1),CONT_ELEM_NUM_SORTED(p)   

*SET,CONT_ELEM_NUM_SORTED(p),TEMP_SINE   

*ENDIF 

 *ENDDO   

*ENDDO  

*DO,p,2,NUM_CONT_ELEM-1  

*DO,I,p, NUM_CONT_ELEM-1 

*IF, CONT_ELEM_LOC_SORTED(p) , GT , CONT_ELEM_LOC_SORTED(I+1), THEN  

*SET,TEMP_SINE,CONT_ELEM_LOC_SORTED(I+1) 

*SET,CONT_ELEM_LOC_SORTED(I+1),CONT_ELEM_LOC_SORTED(p)   

*SET,CONT_ELEM_LOC_SORTED(p),TEMP_SINE   

*SET,TEMP_SINE,CONT_ELEM_NUM_SORTED(I+1) 

*SET,CONT_ELEM_NUM_SORTED(I+1),CONT_ELEM_NUM_SORTED(p)   

*SET,CONT_ELEM_NUM_SORTED(p),TEMP_SINE   

*ENDIF  

*ENDDO   

*ENDDO  

*GET,NOSUB,ACTIVE,0,SOLU,NCMSS 

*DIM,CONT_ELEM_STAT,ARRAY,NUM_CONT_ELEM+1    

*DIM,CONTACT_AREA,ARRAY,NOSUB    

*DIM,REACTION_FORCE,ARRAY,NOSUB 

*DO,I,1,NOSUB    

*GET,N_O_COLUMN,ETAB,0,NCOL,MAX  

*IF,N_O_COLUMN,GT,0,THEN 

ETABLE,ERASE 
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*ENDIF 

 SUBSET, 1,I                     ! VISIT EACH SUB-LOADING STEP OF THE 1ST LOADING STEP    

ESEL, S, TYPE, , 3              ! SELECT ELEMENT ATTACHED TO CONTA172    

NSLE, S, ALL                    ! SELECT ALL THE NODES CONTAINED IN CONTA172 

ELEMENT 

ETABLE,CONSTAT1,NMISC,2  

ETABLE,CONSTAT2,NMISC,1  

ETABLE,CONSTAT3,NMISC,19 

*SET,FORCE,0 

*GET,CONT_ELEM_STAT(1),ETAB,1,ELEM,CONT_ELEM_NUM_SORTED(1) 

*DO,J,2,NUM_CONT_ELEM+1  

*GET,CONT_ELEM_STAT(J),ETAB,2,ELEM,CONT_ELEM_NUM_SORTED(J-1) 

*ENDDO   

*SET,COUNT,NUM_CONT_ELEM 

*DO, J,1,NUM_CONT_ELEM+1 

 

*IF,COUNT,LT,3,THEN  

*SET,COUNT,1 

*ENDIF   

*GET,NODE_NO,ELEM,CONT_ELEM_NUM_SORTED(COUNT),NODE,1 

*GET,X_COR,NODE,NODE_NO,LOC,X   

 *IF,CONT_ELEM_STAT(COUNT+1),EQ,2,EXIT  

 *SET,COUNT,COUNT-1   

*ENDDO   

*IF,X_COR,LT,XX(N+1),THEN   

*IF,CONT_ELEM_STAT(COUNT+1),EQ,2,THEN   

*GET,a,ETAB,3,ELEM,CONT_ELEM_NUM_SORTED(COUNT+1) 

*IF,a,NE,2,THEN  

*GET,NODE_NO,ELEM,CONT_ELEM_NUM_SORTED(COUNT+1),NODE,2 

*GET,X_COR,NODE,NODE_NO,LOC,X    

*GET,X_DEF,NODE,NODE_NO,U,X  

*SET,CONTACT_AREA(I),PI*(X_COR+X_DEF)**2 

*ELSE    

*GET,NODE_NO1,ELEM,CONT_ELEM_NUM_SORTED(COUNT+1),NODE,2  

*GET,X_COR1,NODE,NODE_NO1,LOC,X  

*GET,X_DEF1,NODE,NODE_NO1,U,X    

*GET,NODE_NO2,ELEM,CONT_ELEM_NUM_SORTED(COUNT+1),NODE,1  

*GET,X_COR2,NODE,NODE_NO2,LOC,X  

*GET,X_DEF2,NODE,NODE_NO2,U,X    

*SET,RAD,(X_COR1+X_DEF1+X_COR2+X_DEF2)/2 

*SET,CONTACT_AREA(I),PI*(RAD**2) 

*ENDIF 

   

*ENDIF  

*ELSE  

*GET,X_DEF,NODE,NODE_NO,U,X  
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*SET,CONTACT_AREA(I),PI*(X_COR+X_DEF)**2 

*ENDIF  

ALLSEL  

*DO,P,1,NUM_NODE 

*GET,FORCE_1,NODE,NODE_INDEX(P),RF,FY    

*SET,FORCE,FORCE+FORCE_1 

*SET,FORCE_1,FORCE   

*ENDDO   

*SET,REACTION_FORCE(I),FORCE_1   

*ENDDO   

/INPUT, WRITE, txt 
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Appendix B 

 

ANSYS Simulation code for surface separation 

 

/POST1  

 ALLSEL  

 *SET, NUM_CONT_ELEM, 0   

ESEL, S, TYPE, , 3              ! SELECT ELEMENT ATTACHED TO CONTA172    

NSLE, S, ALL                    ! SELECT ALL THE NODES CONTAINED IN CONTA172 

ELEMENT 

 

! OBTAIN NUMBER OF CONTA172 ELEMENTS 

*GET, NUM_CONT_ELEM, ELEM, 0, COUNT     !Determining total number of contact 

element 

! INITIALIZE AN ARRAY WHICH IS USED TO STORE THE NUMBER OF EACH 

CONTA172 ELEMENT 

*DIM,  CONT_ELEM_NUM , ARRAY, NUM_CONT_ELEM  

*DIM,  CONT_ELEM_LOC , ARRAY, NUM_CONT_ELEM  

*VGET, CONT_ELEM_NUM, ELEM, , ELIST   ! Determining the number of each contact 

element(Serial doesn't match geometry serial no of contact element) 

ALLSEL   

*DO,I,1,NUM_CONT_ELEM    

*GET,CONT_ELEM_LOC(I),ELEM,CONT_ELEM_NUM(I),CENT,X  ! Determining the mid 

location of each contact element 

*ENDDO  

!**************************** Sorting the contact elent baSED ON the mid location of 

contact element so that serial match geomtry serial************* 

 *DIM,  CONT_ELEM_NUM_SORTED , ARRAY, NUM_CONT_ELEM   

*DIM,  CONT_ELEM_LOC_SORTED , ARRAY, NUM_CONT_ELEM  

*DO,I,1,NUM_CONT_ELEM    

*SET,CONT_ELEM_NUM_SORTED(I),CONT_ELEM_NUM(I)    

*ENDDO  

 *DO,I,1,NUM_CONT_ELEM    

*SET,CONT_ELEM_LOC_SORTED(I),CONT_ELEM_LOC(I)    

*ENDDO  

 *DO,p,1,NUM_CONT_ELEM-1  

*DO,I,p, NUM_CONT_ELEM-1 

*IF, CONT_ELEM_LOC_SORTED(p) , GT , CONT_ELEM_LOC_SORTED(I+1), THEN  

*SET,TEMP_SINE,CONT_ELEM_LOC_SORTED(I+1) 

*SET,CONT_ELEM_LOC_SORTED(I+1),CONT_ELEM_LOC_SORTED(p)   

*SET,CONT_ELEM_LOC_SORTED(p),TEMP_SINE  
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*SET,TEMP_SINE,CONT_ELEM_NUM_SORTED(I+1) 

*SET,CONT_ELEM_NUM_SORTED(I+1),CONT_ELEM_NUM_SORTED(p)   

*SET,CONT_ELEM_NUM_SORTED(p),TEMP_SINE  

 *ENDIF  

 *ENDDO   

*ENDDO 

  *DO,p,2,NUM_CONT_ELEM-1  

*DO,I,p, NUM_CONT_ELEM-1 

*IF, CONT_ELEM_LOC_SORTED(p) , GT , CONT_ELEM_LOC_SORTED(I+1), THEN  

*SET,TEMP_SINE,CONT_ELEM_LOC_SORTED(I+1) 

*SET,CONT_ELEM_LOC_SORTED(I+1),CONT_ELEM_LOC_SORTED(p)   

*SET,CONT_ELEM_LOC_SORTED(p),TEMP_SINE   

*SET,TEMP_SINE,CONT_ELEM_NUM_SORTED(I+1) 

*SET,CONT_ELEM_NUM_SORTED(I+1),CONT_ELEM_NUM_SORTED(p)   

*SET,CONT_ELEM_NUM_SORTED(p),TEMP_SINE 

 *ENDIF 

  *ENDDO   

*ENDDO 

!***************************************End of 

sorting*****************************************************   

*GET,NOSUB,ACTIVE,0,SOLU,NCMSS   ! Get total no. of substep 

!**********************************Defining array and other 

constants*************************************** 

*DIM,R1,ARRAY,NUM_CONT_ELEM           ! Location+deformation of the left node of the 

contact element 

*DIM,R2,ARRAY,NUM_CONT_ELEM           ! Location+deformation of the right node of 

the contact element 

*DIM,Y1,ARRAY,NOSUB            ! Location+deformation of pilot node 

*DIM,Y2,ARRAY,NUM_CONT_ELEM+1           ! Location+deformation of the each node of 

the contact element 

*DIM,RADIUS,ARRAY,NUM_CONT_ELEM+1         ! x LOCATION +deformation OF each 

node on sinusoidal surface 

*DIM,DISTANCE,ARRAy,NUM_CONT_ELEM+1       ! GAP between rigid flat and sinusoidal 

asperity 

*DIM,CONT_ELEM_STAT,ARRAY,NUM_CONT_ELEM+1 ! Contact element status of each 

node at the contact 

*DIM,AVG_GAP,ARRAY,NOSUB           ! Average gap during each substep 

ALLSEL 

LSEL,S,LINE,,114 

NSLL,S,1 

!*******************GET pilot node location for each 

substep*********************************************** 

*DO,I,1,578                           

SUBSET, 1,I                      ! VISIT EACH SUB-LOADING STEP OF THE 1ST LOADING 

STEP 
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*GET,Y_COR,NODE,221847,LOC,Y     ! pilot node location ******CHANGE************* 

*SET,Y_DEF,UY(221847)    ! Pilot node deformation****CHANGE************* 

*SET,Y1(I),Y_COR+Y_DEF 

*ENDDO 

ALLSEL 

!*******************Determining the location of each node on the sinusoidal 

asperity************************ 

*DO,I,1,578       

SUBSET, 1,I  

   ESEL, S, TYPE, , 3                   ! SELECT ELEMENT ATTACHED TO 

CONTA172    

NSLE, S, ALL  

ETABLE,CONSTAT1,NMISC,2       ! status of the nodes of each contact 

element 

ETABLE,CONSTAT2,NMISC,1  

*GET,NODE_NO,ELEM,CONT_ELEM_NUM_SORTED(1),NODE,2   ! Determining the y co-

ordinate of the nodes on the sinusoidal surface before division 

*GET,Y_COR1,NODE,NODE_NO,LOC,Y  

*GET,Y_DEF1,NODE,NODE_NO,U,Y   

*SET,Y2(1),Y_COR1+Y_DEF1 

*DO,J,1,NUM_CONT_ELEM 

*GET,NODE_NO,ELEM,CONT_ELEM_NUM_SORTED(J),NODE,1  

*GET,Y_COR1,NODE,NODE_NO,LOC,Y  

*GET,Y_DEF1,NODE,NODE_NO,U,Y   

*SET,Y2(J+1),Y_COR1+Y_DEF1 

*ENDDO 

*DO,J,1,NUM_CONT_ELEM    ! Determining the x co-ordinate of 

the nodes on the sinusoidal surface before division 

*GET,NODE_NO1,ELEM,CONT_ELEM_NUM_SORTED(J),NODE,2  

*GET,X_COR1,NODE,NODE_NO1,LOC,X  

*GET,X_DEF1,NODE,NODE_NO1,U,X  

*SET,R1(J),X_COR1+X_DEF1  

*GET,NODE_NO2,ELEM,CONT_ELEM_NUM_SORTED(J),NODE,1  

*GET,X_COR2,NODE,NODE_NO2,LOC,X  

*GET,X_DEF2,NODE,NODE_NO2,U,X  

*SET,R2(J), X_COR2+X_DEF2   

*ENDDO 

*SET,RADIUS(1),R1(1) 

*DO,J,1,NUM_CONT_ELEM 

*SET,RADIUS(J+1),R2(J) 

*ENDDO 

*DO,J,1,NUM_CONT_ELEM+1 

*SET,a,Y1(I)-Y2(J) 

*SET,DISTANCE(J),a                  ! Determining gap between rigid flat and 

sinusoidal surface after division 

*ENDDO 
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!/INPUT,Test,txt 

*GET,CONT_ELEM_STAT(1),ETAB,1,ELEM,CONT_ELEM_NUM_SORTED(1) 

*DO,J,2,NUM_CONT_ELEM+1 

*GET,CONT_ELEM_STAT(J),ETAB,2,ELEM,CONT_ELEM_NUM_SORTED(J-1) 

*ENDDO 

*DO,J,NUM_CONT_ELEM+1,1,-1 

*IF,CONT_ELEM_STAT(J),EQ,2,EXIT    

*ENDDO 

*SET,LAST_NODE_IN_CONTACT,J 

*SET,RAD1,RADIUS(LAST_NODE_IN_CONTACT) 

*Do,J,1,LAST_NODE_IN_CONTACT   ! Making the gap zero from the first 

to the last node in contact 

*SET,DISTANCE(J),0 

*ENDDO 

*DO,J,LAST_NODE_IN_CONTACT,NUM_CONT_ELEM+1 ! where there is gap, if there 

is any penetration make that node gap zero 

*IF,DISTANCE(J),LT,0,THEN 

*SET,DISTANCE(J),0 

*ENDIF 

*ENDDO 

!/INPUT,Test,txt 

! ******************End of the part that has done to avoid numerical 

error********************************************** 

!*******************CAlculation of volume of gap and area of 

gap******************************************************* 

*SET,RAD2,RADIUS(NUM_CONT_ELEM+1) 

*SET,VOLUME,0 

*IF,LAST_NODE_IN_CONTACT,EQ,NUM_CONT_ELEM+1,THEN 

*SET,VOLUME,0 

*SET,RAD1,0 

 

*ELSE 

*DO,P,LAST_NODE_IN_CONTACT+1,NUM_CONT_ELEM+1 

*SET,VOLUME,VOLUME+(2*PI*RADIUS(P)*DISTANCE(P)+2*PI*RADIUS(P-

1)*DISTANCE(P-1))*(RADIUS(P)-RADIUS(P-1))/2  ! Trapezoidal rule has been 

applied to calculate gap volume 

*ENDDO 

*ENDIF 

*SET,AVG_GAP(I),VOLUME/(PI*((RAD2)**2-(RAD1)**2))     

    ! Calculating average gap 

*ENDDO 

/INPUT,WRITE1,txt 
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Appendix C 

 

Post Processing files for Appendix A and Appendix B 

 

Post Processing File for Appendix A 

*MWRITE, CONTACT_AREA, CONTACT_AREA, txt, , IJK, NOSUB 

(E30.20) 

*MWRITE, REACTION_FORCE, REACTION_FORCE, txt, , IJK, NOSUB 

(E30.20) 
 

Post Processing File for Appendix B 

*MWRITE, AVG_GAP, AVG_GAP, txt, , IJK, NOSUB 

(E30.20) 

 


