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Thesis Abstract
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Matthew Lashley

Master of Science, December 15, 2006
(B.E.E., Auburn University, 2004)

115 Typed Pages

Directed by John Hung and David Bevly

In this thesis several new Kalman filter based tracking algorithms for GPS software

receivers are presented. Traditional receivers use Costas loops and Delay Lock Loops

(DLL) to track the carrier and Pseudo-Random Noise (PRN) signals broadcast by the

GPS satellites, respectively. The tasks of tracking the the carrier and PRN signals are

done separately. The Kalman filter based algorithms introduced in this thesis provide

an alternative to the Costas loop and DLL. The task of tracking the PRN sequences is

handled by a single Extended Kalman Filter (EKF). The EKF is used to estimate the

user’s position in the Earth-Centered Earth-Fixed (ECEF) coordinate frame. Using the

EKF’s estimates, the code phases of the PRN sequences being received from the different

satellites are predicted. Estimates of the code phase error between the predicted and

received codes are generated using discriminator functions. The estimates of the code

phase errors are used to update the EKF’s estimates of the user’s navigation states.

To provide proof of concept, data was collected using a Spirent GPS simulator. The

recorded data was used to show that the new Kalman filter based algorithms outperform

traditional tracking methods.
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Chapter 1

Introduction

1.1 Motivation

Navigation is fundamental task of living creatures. Animals must travel long dis-

tances and return to their origin in order to survive. Many species of birds migrate

hundreds of miles annually, driven by instinct and using only their senses. Salmon tra-

verse long distances in the open ocean to return to the stream of their origin to spawn.

Human beings must likewise navigate to survive, yet they cannot rely on their instincts,

but on their ingenuity. People have been applying their rational minds to the task of

navigating for at least six thousand years. Ancient mariners learned to use measure-

ments of the stars and constellations to navigate the seas. In modern times, humans

have replaced the natural stars with an artificial constellation of satellites for naviga-

tion. People can now determine their position anywhere on the Earth using radio ranging

to the constellation of artificial satellites, called NAVSTARs [Parkinson, 1996].

The NAVSTAR Global Positioning System (GPS) was developed in the 1970’s by

the Department of Defense (DoD). The purpose of the GPS system is to provide the

U.S. military accurate measurements of position, velocity, and time (PVT). The DoD

desired position estimates with a root-mean-square (rms) error of ten meters, velocity

estimates with an rms error of .1 m/s, and time estimates with an rms error of 100

ns [Misra and Enge, 2001]. The system was also equipped with a less accurate, civilian

component that non-military user’s can use. Today the military uses the GPS system

extensively to navigate and guide munitions. Civilian usage of the NAVSTAR GPS
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system has become ubiquitous. Many automobiles come equipped with GPS receivers

and hand held receivers have become commonplace among joggers and hikers.

This research was performed under the patronage of the U.S. Army Aviation and

Missile Research, Development, and Engineering Center (AMRDEC) on Redstone Ar-

senal in Huntsville, Alabama. The motivation of this research is the need to make the

GPS system more robust. Since the military relies heavily on GPS to guide munitions,

its integrity is of the utmost importance. In addition to some inherit flaws, the GPS

signal is the target of enemy jamming and spoofing in hostile environments. The point of

this research is to provide the U.S. military with a more reliable form of navigation and

guidance. To that end, advanced algorithms that combine GPS with inertial systems

are investigated. These hybrid systems provide more robust navigation solutions.

1.2 Background and Literature Survey

The GPS signal has three basic shortcomings. The first is the power level of the

received signal. For a civilian user, the power of the received is approximately 10−16

watts [Misra and Enge, 2001]. This corresponds to a carrier power-to-noise density ratio

(C/No) of approximately 45 dB-Hz [Spilker, Jr., 1996b]. The low power level of the GPS

signal makes it very susceptible to jamming. Only about 3.2 picowatts of incident RF

interference is required to disable a civilian GPS receiver [Ward, 1996a]. The second

shortcoming is the need to maintain line of sight between the user’s antenna and the

satellites, since blockage of the satellite signal disables the GPS receiver. During periods

of blockage, it has been shown that the tracking loops inside the receiver are in a state

of random walk [Dierendonck, 1996]. After periods of signal unavailability, the tracking

loops must be reinitialized to re-lock to the satellite signal. The third shortcoming
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of GPS is it’s low measurement rate. A GPS receiver produces estimates of position,

velocity, and time (PVT) at approximately 1 Hz. For high dynamic vehicles, position

updates are required at much higher rates.

Additional sensors are often fused with GPS to produce a more robust navigation

system. The most common sensors used are inertial measurement units (IMUs). Other

sensors include dopplerometers, altimeters, speedometers, and odometers [Bullock et al., 2006].

Inertial sensors provide acceleration measurements and angular rate measurements in the

reference frame that they are mounted. Integrating the IMU measurements produces es-

timates of the user’s change in velocity and change in position. The strength of an

IMU is that they can provide updates at several hundred Hertz and are immune to

jamming. However, IMUs have inherit flaws of their own. They suffer from biases and

drifts that accumulate over time. Additionally, IMUs contain scale factors that must

be estimated in order to determine the true accelerations and angular rates experienced

[Flenniken, IV, 2005].

The strengths and weaknesses of IMUs and GPS complement each other. The mea-

surements provided by an IMU serve to update the user’s PVT between GPS updates.

During times of satellite occlusion, the IMU can be used to dead reckon and can help in

re-initializing the tracking loops when the satellites reappear. On the other hand, the

GPS measurements can be used to correct the drift in the dead reckoned IMU position

estimates. The bias’s and scale factors in the IMU’s can also be estimated at the GPS

updates [Godha, 2004].

The Kalman filter is the default method of integrating GPS and IMU measurements.

Researchers have shown that combining the two system’s through a Kalman filter pro-

vides overall improved performance [Levy, 1997]. However, there is always the question
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of how exactly to fuse the two systems. Currently, the various architectures used to meld

GPS and IMU systems fall into three categories [Kreye et al., 2004]. The three classes

of coupling, in order of complexity, are loose coupling, tight coupling, and ultra-tight

coupling, which is also referred to as deeply integrated (DI).

1.2.1 Loose Coupling

Most integrated navigation systems are loosely coupled. The loosely coupled ar-

chitecture is the simplest coupling scheme and provides significantly better performance

than stand alone GPS or INS systems. Figure 1.1 shows a block diagram of a loosely

coupled system which uses the GPS and INS to separately produce estimates of the plat-

form’s navigation states. The GPS and INS estimates are then combined by a Kalman

filter which produces improved state estimates and estimates the error states of the INS

system [Kreye et al., 2004]. An advantage of the loose coupling method is that the GPS

receiver itself does not need to be modeled extensively. However, the GPS receiver con-

tains internal filters and the noise in the provided GPS measurement is not white. The

colored noise means the Kalman filter is no longer an optimal observer and requires

additional tuning. In addition, a loosely coupled system only receives GPS measure-

ments if there is enough information to complete a full, GPS alone, position solution

[Gautier, 2003].

1.2.2 Tight Coupling

Tightly coupled systems combine the inertial sensors and GPS at a lower level.

Figure 1.2 shows a diagram of a generic tightly coupled system. The navigation filter
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Figure 1.1: Loosely Coupled Architecture [Hamm, 2005]

receives the raw pseudo-range and pseudo-range rate measurements from the GPS re-

ceiver. This allows the filter to still estimate the error states in the INS when there

is not a complete GPS solution available. Many tightly coupled systems also use the

acceleration information provided by the INS to predict the Doppler shift caused by the

user’s dynamics. This improves the performance of the GPS receiver’s tracking loops and

their ability to maintain lock in highly dynamic environments [Kreye et al., 2004]. The

bandwidths of the tracking loops can also be narrowed because of the reduced need to

track user dynamics. The main drawback of the tightly coupled system is it’s complexity

[Gautier, 2003].

1.2.3 Deeply Integrated or Ultra-tight Coupling

Ultra-tight coupling or deep integration is the most complicated and involved form

of INS/GPS fusion. Figure 1.3 shows a general block diagram of a DI/ultra-tight system.

In a DI navigation system, the INS and the GPS receiver are tied together at the most

basic level. The raw IMU measurements are fed directly into the navigation Kalman
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Figure 1.2: Tightly Coupled Architecture [Hamm, 2005]

filter. The filter then predicts the pseudo-range and pseudo-range rates. The filter’s

predictions are then used to control the inputs to the integrate and dump functions

inside the GPS receiver. The signals produced by the integrate and dump functions are

then processed by the filter to estimate the errors in the IMU related states. In a complete

DI system, the task of tracking the GPS signals is accomplished by the navigation filter

itself [Kreye et al., 2004].

The original concept of ultra-tight coupling/DI is based around vector tracking

[Spilker, Jr., 1996a]. In a vector tracking loop, the GPS satellite signals are not processed

individually in their own channels. Instead, they are processed collectively by a single

algorithm. The pseudo-range and pseudo-range rate observed by the user on the GPS

signals are defined by the user’s position and velocity and the satellite geometry. The

satellite geometry can be predicted by using the broadcast satellite ephemeris. The user’s

position and velocity can then be determined from the received signals. Conversely, the

GPS signals received from the satellites can be predicted based on the user’s position
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Figure 1.3: Ultra-Tightly Coupled Architecture [Hamm, 2005]

and velocity. Predicting the GPS signals based on the user’s navigation states and then

updating the user navigation states based on the residuals formed by the correlators is

the basis of DI [Pany et al., 2005, Petovello and Lachapelle, 2006].

1.2.4 Raytheon Method

The Raytheon company obtained a patent for their method of performing ultra-

tight coupling in 1998 [Horslund and Hooker, 1999]. Figure 1.4 shows the block diagram

of their method included in the patent. The Raytheon method uses a NAV function to

estimate the user’s navigation states in the earth centered, earth fixed (ECEF) coordinate

system. The NAV function is driven by the output of a GPS residual Kalman filter and

IMU’s. The states include user position, velocity, IMU alignment states, and initial

attitude. The estimated state vector of the NAV function is used by a line of sight

(LOS) geometry function to predict the pseudo-range and pseudo-range rate for each

individual satellite being tracked. The LOS function then sends the predictions to a
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signal processing chip (SPC) that performs the integrate and dump functions for each

channel (satellite). The outputs of the integrate and dump functions are then used to

form pseudo-range and pseudo-range rate residuals. These residuals are then processed

by a Kalman filter. The Kalman filter estimates corrections to the navigation states from

the GPS residuals. These corrections are in turn used by the NAV function to close the

loop.

Figure 1.4: Raytheon Method [Horslund and Hooker, 1999]

1.2.5 Anthony Abbott Method

Anthony Abbott developed a different ultra-tight method and filed for a patent in

1999 [Abbott and Lillo, 2003]. Figure 1.5 shows a block diagram of his method. The Ab-

bott method operates on similar principles as the Raytheon method, the main difference

is that Abbott uses a federated Kalman filtering scheme [Carlson, 1988]. A large inte-

gration Kalman filter updates the error state vector every second. The previous epochs

error state vector and the IMU samples are used between epochs of the integration filter
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Figure 1.5: Anthony Abbott Method [Abbott and Lillo, 2003]
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by the inertial navigation calculator. The inertial navigation calculator provides esti-

mates of the user’s navigation states. These estimates are used by the pseudo-range and

pseudo-range rate calculator to predict the inputs to the 50 Hz correlator bank. The

output of each bank of correlators is processed by a Kalman prefilter which exists for

each satellite being tracked. The prefilters process the outputs of their respective correla-

tors between updates of the integration filter. At measurement epochs of the integration

filter, each prefilter provides the integration filter with measurements of pseudo-range,

pseudo-range rate, and pseudo-range acceleration. The prefilters also provide an empir-

ically determined 3x3 measurement covariance matrix. The integration filter processes

the measurements of the smaller prefilters and updates the error state vector. The up-

date error state vector is then used until the next measurement epoch of the integration

filter.

1.2.6 Draper Method

The Charles Stark Draper Laboratory patented their own DI algorithm in 2001

[Gustafson et al., 2001]. Figure 1.6 shows a block diagram of the Draper method, which

is similar in basic concept to the Raytheon and Abbott methods. The inputs to the

correlation and integration block are derived from the user’s navigation state. The out-

puts of the correlation and integration block are then used to update the navigation

state vector. The major distinction in the Draper method is the filtering algorithm

used to process the GPS and IMU measurements. The navigation filter process used

by Draper “are significant departures from traditional Kalman and extended Kalman

filter algorithms generally used for GPS-based navigation.” In addition to their un-

orthodox filtering algorithm’s, Draper Labs makes use of an extended bank of range
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Figure 1.6: Draper Method [Gustafson et al., 2001]
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correlators [Gustafson et al., 2000]. An analysis of the Draper labs method is given in

[Gustafson and Dowdle, 2003].

1.3 Contributions and Outline

This thesis describes unique Kalman filter based tracking algorithms and provides

details of their implementation in a software GPS receiver. The software receiver uses

samples of the GPS signal to compute its location. The tasks of signal acquisition, signal

tracking, navigation message decoding, and position determination are all performed in

software using the sampled data. The Kalman filter based tracking algorithm’s are used

to replace the tracking loops found in traditional receivers. The algorithms offer improved

tracking performance by using time-varying gains. The Kalman filter based algorithm’s

are verified using data collected from a high fidelity Spirent GPS constellation simulator.

The ability of the algorithms to rapidly reacquire the satellite signals after a blockage is

demonstrated using the GPS simulator. The performance of the algorithms during the

blockage is also demonstrated.

This research is important because the majority of research and analysis of the differ-

ent ultra-tight methods has been performed by the inventors themselves [Hamm, 2005].

Currently, there is a lack of independent validation of the various ultra-tight coupling ar-

chitectures [Rounds, 2004]. The exact mathematical details of how these algorithms are

implemented also remain largely unpublished [Soloviev et al., 2004, Kreye et al., 2004,

Hamm, 2005]. The goal of the research program supported by AMRDEC is the even-

tual construction of a DI GPS navigation system. Vector (Kalman filter based) tracking

methods are an intermediate step in this process and are examined in this thesis.
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Chapter 2 of this thesis describes the signals used by GPS. The signals broadcast

by the satellites are composed of three components. These components are a sinusoidal

carrier, a pseudo-random noise (PRN) sequence, and a binary data message. The signal

structure and properties of the individual components are discussed and how they apply

to position determination. Chapter 3 details the operations of a software receiver and

the tasks of signal acquisition and signal tracking are explained. The concept of tracking

loops is introduced and explained. The least squares and extended Kalman filter meth-

ods of position determination are also described in Chapter 3. Chapter 4 explains two

methods of replacing tracking loops with Kalman filters. The first method combines the

tracking of the carrier and PRN sequence into a single Kalman filter for each channel.

The second method combines the tracking of all the PRN sequences into a single Kalman

filter. This method is commonly referred to as a Vector Delay Lock Loop. Chapter 5

describes the test setup used to validate the effectiveness and advantages of the track-

ing algorithm’s. The experimental results that validate the utility of the algorithms

are presented and explained. Chapter 6 summarizes the contributions of the thesis and

recommends future work in this research area.
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Chapter 2

GPS Signal Structure

2.1 Overview of GPS Signals

This chapter provides details on the GPS signal structure. The GPS system is a

code division, multiple access (CDMA) digital communication link. The satellite signals

consist of a sinusoidal carrier, a digital navigation message, and a unique wide bandwidth

pseudo random noise (PRN) sequence. The navigation message and PRN sequence

(code) are encoded in the phase of the carrier signal by using binary phase shift keying

(BPSK) modulation techniques [Sklar, 2001]. The system’s multiple satellites all operate

at the same frequency while not interfering with each other. Such operation is possible

through the use of the unique PRN sequences. Additionally, the PRN codes are used to

measure the range between each satellite and the user. The data message broadcast by

each satellite provides the sufficient information to calculate the position of the satellite.

Using range measurements to four or more satellites and using the data message to

determine the satellite’s positions, the user can solve for his position on the Earth.

The satellite signals currently consist of civilian and military components. The

civilian component of the signal is available to all users and it can be used for position

determination. The military portion of the satellite signal is only available to secure

users and provides enhanced positioning capabilities. For the work described in this

thesis, only the civilian component of the GPS signal is used.

The user must obtain the data message to determine the satellite positions. The

user must also measure the phase of each of the PRN sequences being received from

14



the satellites. Measuring the PRN phase of each received code amounts to measuring

the relative range to each satellite. It is the job of the receiver to accomplish these

tasks, which is done by exploiting the properties of the carrier and PRN signals. The

autocorrelation properties of the PRN sequences are used to determine the phases of the

received PRN codes.

2.1.1 GPS Carrier Signal

The GPS satellites broadcast at two different center frequencies. The link 1 (L1)

frequency is approximately 1575.42 MHz and the link 2 (L2) frequency is roughly 1227.6

MHz. The exact frequencies of L1 and L2 are shown in Equation (2.1).

L1 = 154 · 10.23 MHz (2.1)

L2 = 120 · 10.23 MHz

The L1 and L2 frequencies are both multiples of a 10.23 MHz master clock. The L1 and

L2 signals are partially offset from their nominal values when transmitted to help correct

for relativistic effects. Additionally, dual frequency users can compensate for ionospheric

effects [Spilker, Jr., 1996b].

The L1 signal, broadcast by the ith satellite, is composed of an in-phase and quadra-

ture component, as shown below in Equation (2.2).

SL1i
=
√

2PcGi(t)Di(t) cos(ω1t + φ) +
√

2Pp,L1
Pi(t)Di(t) sin(ω1t + φ) (2.2)
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Both components consist of a PRN sequence (also called Gold code), the navigation

data message, and their sinusoidal carriers. The in-phase component is modulated by

Coarse/Acquisition (C/A) Gold code Gi(t) and the data message Di(t) of the satellite.

The quadrature component of the L1 signal is modulated by Precision (P) Gold code

Pi(t) and the same data message as the in-phase component. The C/A code, P code, and

data message are all specific to each satellite. The power Pc of the in-phase component

is 3 dB stronger than the power of the quadraphase component, Pp [Spilker, Jr., 1996b].

The L2 signal is modulated by the same data message as the L1 signal, as shown in

Equation (2.3).

SL2i
=
√

2Pp,L2
Pi(t)Di(t) cos(ω2t + φ) (2.3)

The L2 signal is modulated by either P or C/A code. Currently, the L2 channel is

modulated with P-code. Since access to the P-code is proprietary, it was not available

during the writing of this thesis. Consequently, P-code and the L2 signal will not be

discussed further.

2.1.2 Gold Code

The PRN sequences, Gi(t) and Pi(t), used by the satellites are called Gold codes.

The Gold codes have a very high bandwidth and are used to spread the spectrum of

the data message over a much wider bandwidth. In the receiver, the spreading effect

of the PRN sequences is removed by using locally generated replicas of the broadcast

Gold codes. Each satellite transmits its own unique Gold code and the user receives

multiple satellite signals at nearly the same frequency. The user can track the individual

codes received because the Gold codes are nearly orthogonal to each other. This means
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that if the receiver is using one Gold code to track a specific satellite in one channel of

the receiver, the signals received from the other satellites are effectively nulled in that

channel. This aspect of Gold codes makes the CDMA properties of the GPS system

possible [Misra and Enge, 2001].

Gold codes are formed by modulo-2 addition of two maximal length sequences.

Maximal length sequences are formed by shift register generators (SRG) and repeat

themselves every 2N − 1 bits, where N is the number of stages of the SRG. The C/A

Gold codes used by the satellites are all formed by adding the same two maximal length

sequences, labeled as G1 and G2. However, the Gold codes broadcast by each satellite are

different. The different Gold codes are formed by shifting the G1 and G2 sequences with

respect to each other in time before adding them. Each Gold code has a specific time shift

associated with it. All that is needed to produce a specific satellite’s PRN sequence is the

delay time defined for that satellite and the G1 and G2 sequences [Spilker, Jr., 1996b].

The C/A Gold codes are transmitted at a chipping rate of 1.023 Mbps. The in-

dividual symbols of the codes are referred to as chips, as opposed to the bits of the

navigation message. A code g(t) is originally generated as a binary sequence and is used

to modulate the phase of the carrier signal, as shown below in Equation (2.4).

S(t) = cos(ω1t + πg(t)) (2.4)

Since the phase of the signal is being shifted by 180◦, the Gold code can be equivalently

expressed as shown in Equation (2.5).

S(t) = G(t) cos(ω1t) (2.5)
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In Equation (2.5), the original binary sequence g(t) has been mapped to a sequence of

±1’s, G(t). The form shown in Equation (2.5) is the typical way the modulation of the

Gold code is represented. Gold codes have a very narrow time autocorrelation function,
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Figure 2.1: Autocorrelation Function of Gold Codes

as can be seen in Figures 2.1 and 2.2. The autocorrelation function is linear for τ < 1 chip

of misalignment. Beyond τ =1 chip, the autocorrelation function is approximately zero.

The autocorrelation properties of Gold code are used to track the satellite signal and

make pseudorange measurements. The cross-correlation properties of Gold code allow

the satellites to all transmit on the same frequency. The different Gold codes are nearly

orthogonal to each other, as can be seen in Figure 2.3. When a receiver collects RF data,

multiple satellite signals are recorded in the same frequency band. The receiver “picks

out” a specific satellite by multiplying the data by an in-phase replica of the satellite’s

Gold code. This multiplication effectively cancels out all the other satellite signals while

removing the PRN modulation from the signal received from the selected satellite.
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Figure 2.2: Ideal Autocorrelation Function of Gold Codes
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Figure 2.3: Cross-Correlation of Different Gold Codes
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2.1.3 Data Message

The data message transmitted by each satellite contains information about the satel-

lite’s orbit, its health, GPS system time, and almanac data for the other satellites in

the constellation. The data message contains the necessary information for users to

synchronize their clock to system time and determine their position.

The data message is broadcast at 50 bits per second (bps). The message is arranged

into thirty bit words. Ten words constitute a subframe and five subframes make a frame.

Figure 2.4 shows how the navigation message is arranged. In each frame, the first

three subframes contain clock and ephemeris information for the transmitting satellite.

Subframes four and five alternately provide support information, such as almanac data

and ionospheric correction data [US Dept. of Defense, 2000]. The satellite ephemeris

data is information about the satellite’s orbit. Using the ephemeris data, the satellite’s

position is calculated. The almanac data is approximate ephemeris data for the other

satellites in the constellation. It is not as accurate as the ephemeris data in subframes 2

and 3, but is valid for a longer period of time [Tsui, 2000].

2.2 Conclusion

The ability of users to calculate their position, velocity, and time is made possible

by the GPS signals. The satellites all broadcast unique PRN sequences. These PRN

sequences allow the satellites to all broadcast on the same frequency and not interfere

with each other. The PRN sequences are also used to make range measurements to the

satellites. Each satellite also broadcasts a navigation message. This navigation message

enables the user to precisely calculate the position of the emitting satellite. In addition,
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Figure 2.4: Arrangement of the GPS Navigation Message [Hamm, 2005]

21



the navigation message from one satellite can be used to calculate the approximate

positions of the other NAVSTAR satellites. Users of the GPS system must process the

received signals in order to extract the PRN code phases, navigation data, and carrier

frequency. The next chapter will explain the details of how a receiver processes the

received signal.
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Chapter 3

Traditional Software GPS Receiver

3.1 Overview

This chapter provides an explanation of a software receiver. The first task of any

receiver is to determine which satellites are in view. After determining that a given

satellite signal is available, the receiver attempts to track the carrier and PRN compo-

nents of the signal. A traditional receiver uses a Costas loop to track the carrier and a

Delay Lock Loop to track the PRN sequence. Using the output of the tracking loops,

the navigation message for each satellite is decoded. The navigation message provides

the user with enough information to calculate the positions of the satellites. Finally, the

user can calculate his position using the pseudo-range measurements from the tracking

loops.

The work presented in this thesis was done entirely in software. All the tasks of

the receiver, including signal acquisition, satellite tracking, navigation message demod-

ulation, and user position determination, were done using code in MATLAB R© and C.

The raw data was provided by a NordNav receiver, consisting of hardware and software

components [Normack et al., 2002]. The NordNav hardware is a USB powered RF front-

end, Fig. 3.1. The RF front-end performs the electronic operations to downconvert the

L1 signal and digitize it. The digitized signal is then saved for post processing. Using

NordNav software, the data can be converted into a signed character representation,

which can then be imported into MATLAB R©. The data can also be processed using the

NordNav software receiver graphical user interface (GUI), shown in Figure 3.2.
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Figure 3.1: NordNav Receiver Front-end [Normack et al., 2002]

Figure 3.2: NordNav GUI [Normack et al., 2002]
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3.2 Receiver Front-end

Before the L1 signal is sampled, the signal is passed through several stages of amplifi-

cation, down conversion, and filtering. Figure 3.3 shows a block diagram of the NordNav

GPS receiver [Normack et al., 2002]. The L1 signal is first received by an antenna and

is then passed through a preamplifier. The preamplifier usually consists of filtering,

burnout protection, and a low noise amplifier (LNA) [Dierendonck, 1996] . Next, the

signal is mixed down to an intermediate frequency (IF). The GPS L1 signal is broadcast

at a frequency of 1.57542 GHz. The NordNav receiver mixes the L1 signal down to an IF

frequency of 4.1304 MHz. The output of the reference oscillator is used by the frequency

synthesizer to generate the necessary local oscillators (LOs) for the downconverter. Fi-

nally, the downconverted L1 signal is sampled by the analog to digital converter (ADC).

The NordNav front end samples at a frequency of 16.3676 MHz and is capable of taking

one, two, and four bit samples. The digitized IF data is then processed by the software

receiver.

Figure 3.3: General GPS Receiver Block Diagram
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3.3 Acquisition

Before the receiver can began to track satellites, it must determine which satellites

are in view. In addition, the receiver must determine the Doppler shifted caused by

the relative motion of the satellite vehicles and the code phase of the satellite’s PRN

sequence. The process of determining these variables is called acquisition. The Doppler

shift estimate must be accurate to within a few tens of Hertz for the tracking loops to

pull-in and lock to the carrier. The phase of the PRN sequence must be accurate to

within one half chip because of the Gold code’s autocorrelation function [Tsui, 2000].

The number of satellites that must be searched for can be reduced greatly by using a

priori information, such as almanac data or a rough estimate of the receiver’s location.

Many different algorithms exist to search over the possible Doppler shifts and code

phases. However, the algorithms all function in basically the same manner. First, data

is collected and a specific satellite is selected to be searched for. Between 1 and 20

milliseconds of data is usually used because the C/A code has a period of 1 millisecond

and the likelihood of a data bit transition occurring increases after 20 milliseconds. A

range of possible Doppler shifts is then defined. The algorithm searches over the range

of Doppler shifts by starting at the lowest frequency and then incrementing through the

range in frequency steps. For a stationary observer, the range of the Doppler shift is from

-5 KHz to +5 KHz [Tsui, 2000]. A common step size for the acquisition algorithm is

around 500 Hz. Each frequency estimate is used to shift the received signal to baseband.

Assuming the frequency estimate is sufficiently close to the actual Doppler frequency,

the received signal will be shifted to baseband and only the satellite’s Gold code will

remain. A replica version of the satellite’s Gold code is then convolved with the received
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PRN sequence. When the received and locally generated codes align to within half a

chip, a peak will appear in the convolution function output. If the peak exceeds some

threshold value, the acquisition program will generally consider the current frequency

estimate and index of the convolution function to be the correct Doppler shift and code

phase, respectively. The cross-correlation properties of the Gold codes prevents the PRN

sequence from one satellite being mistaken for another.

The acquisition algorithm used in this research utilizes the circular convolution prop-

erty of the Discrete Fourier Transform (DFT). The Doppler estimate is first used to shift

the received data to baseband. The locally generated Gold code is then convolved with

the received Gold code using the DFT. This approach allows the significant body of work

devoted to making the DFT more numerically efficient to be utilized. Specifically, the

Fast Fourier Transform algorithm can be applied. As the lengths of data sequences in-

crease, it becomes increasingly faster to use the FFT instead of time domain convolution

[Porat, 1997].

The cross correlation of two discrete sequences is defined in Equation (3.1).

c(n) =
N−1
∑

m=0

x(m)y(n + m) (3.1)

The definition of the DFT is given in Equation (3.2).

X(k) =
N−1
∑

n=0

x(n)e−j2πkn/N (3.2)
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The cross correlation c(n) of the two sequences x(m) and y(m) can be performed in the

frequency domain using the DFT, as shown in Equation (3.3).

C(k) = X∗(k)Y (k) (3.3)

This frequency domain approach to cross correlation can be used to simultaneously search

over all possible PRN code phases [Bertelsen et al., 2004]. For the NordNav receiver,

there are approximately sixteen samples per chip of the Gold code. The DFT based

method therefore returns a code phase estimate that is precise to a sixteenth of a chip.

Figure 3.4 shows the results of the search algorithm graphically. The results of the

search algorithm are plotted for the Doppler shift estimates used and the possible code

phases. The coordinates of the peak in the center of the graph represent the correct

Doppler shift and code phase of the received signal.

Figure 3.4: Acquisition
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3.4 Tracking Loops

Tracking loops play a central role in the operation of a GPS receiver. Tracking

loops allow the ephemeris information (sent by the satellites) to be decoded and used

to determine their position. They are also used to make the pseudorange measurements

that allow the user’s position to be calculated. Tracking loops operate by generating

replicas of the Gold code and carrier signal broadcast by each satellite. The tracking

loops attempt to produce a replica of identical phase and frequency as what is received.

The modulation of the carrier and Gold code is removed by using these locally generated

replicas, leaving the data message behind. Pseudorange measurements are made by using

the locally generated Gold code.

3.4.1 The Phase-Locked Loop

The concept of the phase-locked loop (PLL) underlies tracking loop operation. Fig-

ure 3.5 shows a basic PLL block diagram. All PLL’s consist of three fundamental com-

ponents. First, the synchronized oscillator is used to generate a replica of the received

signal. The synchronized oscillator is generally a voltage controlled oscillator (VCO) in

an analog PLL, meaning that its frequency is controlled by an input voltage. For digital

designs, the synchronized oscillator is a numerically controlled oscillator (NCO), because

its output is determined by a digital number. Second, a phase detector produces a signal

that is proportional to the phase error between the output of the synchronized oscillator

and the received signal. A simple realization of a phase detector is a multiplier. All phase

detectors have an inherent nonlinearity in their output. Finally, a loop filter operates

on the output of the phase detector to produce a control signal for the synchronized
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oscillator. Most of the tracking characteristics of the PLL are controlled by the design

of the loop filter. The PLL is a simple feedback loop which attempts to track a reference

input by driving an error signal to zero. In the case of the PLL, the error signal is the

phase difference between the local replica and the received signal.

Figure 3.5: Basic Phase Locked Loop

When the output of a PLL’s oscillator and the incoming signal are matched in phase

and frequency, the PLL is considered to be locked. The way a phase-locked loop locks

onto a reference signal can be explained by considering the analog PLL in figure 3.6. A

sinusoidal reference signal u(t) having frequency ωr is applied as the input to the PLL,

as shown in Equation 3.4.

u(t) = sin(ωrt) (3.4)

The output y(t) of the reference oscillator is a cosine function of a different frequency

ωvco, shown in Equation 3.5.

y(t) = 2 cos(ωvcot) (3.5)
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The phase detector in this case is a multiplier (mixer). The mixer output e(t) can be

expressed as Equation (3.6) by using trigonometric identities.

e(t) = 2 sin(ωrt) cos(ωvcot) = sin[(ωr + ωvco)t] + sin[(ωr − ωvco)t] (3.6)

Figure 3.6: Analog Phase Locked Loop

The higher frequency term in Equation (3.6) is eliminated by the loop filter, leaving

behind a sinusoid whose frequency is dependent upon the frequency error between the

received and generated signals, shown in Equation (3.7).

e(t)filtered = sin[(ωr − ωvco)t] (3.7)

Assuming that ωr is greater than ωvco, the filtered error signal is initially positive. The

oscillator is therefore driven to increase its frequency, bringing it closer to the frequency

of u(t). If the frequency of the VCO is driven to the frequency of the input before the

phase of the filtered error signal exceeds 180 degrees, the initial frequency error is within

the lock-in range of the PLL. If the initial frequency error is within the lock-in range the
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frequency error will decrease rapidly toward zero. Figure 3.7 shows the time response of

a PLL VCO when an input is applied that is within it’s lock-in range [Egan, 1998].
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Figure 3.7: Phase Locked Loop Acquiring A Signal Inside The Lock-In Range

If the frequency error is outside of the lock-in range, the phase of the error signal

will exceed 180 degrees. In this case the error signal will become negative and drive

the oscillator away from the frequency of the input. The sign of the error signal will

eventually change, however, and drive the VCO output in the correct direction. This

process of the oscillator being driven intermittently in the right and wrong directions has

the net effect of synchronizing the oscillator with the reference, because the frequency

of the error signal changes as the oscillator approaches the correct frequency. When

the error signal is driving the oscillator in the correct direction, its frequency decreases.

When the error signal begins pushing the oscillator in the wrong direction, it’s frequency

increases. The net effect of this aharmonic phenomena is that the oscillator is driven
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in the right direction longer than it is driven in the wrong direction. Initial frequency

errors that produce this type of behavior before the PLL locks are said to be within the

pull-in range of the PLL [Best, 1999]. Figure 3.8 shows the time response of a PLL VCO

when an input is applied that is within it’s pull-in range.
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Figure 3.8: Phase Locked Loop Acquiring A Signal Inside The Pull-In Range

The phase-locked loop is inherently a nonlinear device. Analysis of the PLL can

be simplified however, by linearizing it about an operating point. Classical control

techniques can then be used to analyze the system. Assuming the PLL is initially locked,

the loop is linearized so the response to changes in the phase of the input can then be

analyzed. The small angle approximation given in Equation (3.8) is used to linearize the

phase detector.

sin(θ) ≈ θ (3.8)

33



The block diagram in Figure 3.9 is produced by expressing the PLL in terms of the

phases of the signals. The new variables Θ1 and Θ2 represent the phase of the input

and the VCO signals in the Laplace domain, respectively. The VCO is modeled as a

integrator because inputs to the VCO cause a change in frequency. The error between

Θ1 and Θ2 is assumed to sufficiently small so that the phase detector operates linearly.

The gain Kd represents the gain of the phase detector (discriminator). The synchronized

oscillator is modeled as an integrator with a gain of Ko [Best, 1999].

Figure 3.9: Linearized Phase Locked Loop

Using the linearized model in Figure 3.9, the phase-transfer function H(s) is ex-

pressed in Equation (3.9).

H(s) =
Θ2(s)

Θ1(s)
H(s) =

KoKdF (s)

s + KoKdF (s)
(3.9)

The transfer function between the input and the error signal Θe(s) is given by Equation

(3.10).

He(s) =
Θe(s)

Θ1(s)

He(s) =
s

s + KoKdF (s)
(3.10)
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The loop filter F (s) largely determines the response of the PLL. Specifically, the number

of poles in the filter at s = 0 determines if the loop can track a phase step, a frequency

step, or a frequency ramp. The loop filter can be expressed as Equation (3.11), where

P (s) and Q(s) are both polynomials in s and the number of poles at the origin in F (s)

is represented as N [Best, 1999].

F (s) =
P (s)

Q(s)sN
(3.11)

The order of a PLL is a common parameter used to describe its tracking abilities. The

order of a PLL is equal to the number of poles at s = 0 in its loop filter plus one and

is the same as the system type. It should be noted that the terminology used in PLL

analysis is slightly different than that used in describing classical control system type.

The ability of the PLL to track different inputs with zero steady state error is

dependent on the order of the loop filter. For example, consider a unit step in phase,

shown in Equation (3.12).

Θ1(s) =
1

s
(3.12)

This type of input occurs when the distance between the receiver and transmitter changes

abruptly. The final value theorem of the Laplace transform can be used to determine

the steady-state error, displayed in Equation (3.13).

Θe(s) = He(s)Θ1(s)

θe(∞) = lim
s→∞

sΘe(s) (3.13)

θe(∞) = lim
s→∞

s2sNQ(s)

s(s · sNQ(s) + KoKdP (s))
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The steady state error approaches 0 for any number of poles at the origin in F (s),

including N = 0. Therefore, a PLL of any order can track a step change in phase with

no steady state error.

The response of different order PLL’s to various inputs can be determined by ap-

plying the final value theorem of the Laplace transform. The ability of different order

loops to track various inputs with zero steady state error is summarized in Table 3.1.

As stated above, a phase step can be tracked by all order loop filters. A frequency step

can only be tracked by second and higher order loops. A frequency ramp can only be

tracked by third and higher order PLL’s.

Table 3.1: Steady State Error Of Different Order Loops To Different Inputs

Loop Order Phase Step Frequency Step Frequency Ramp

1 0 Finite ∞
2 0 0 Finite

3 0 0 0

The response of the PLL to the inputs displayed in Table 3.1 is very important. The

inputs considered represent the effects that changes in position, velocity, and acceleration

have on the received signal. These changes in position, velocity, and acceleration are

caused by the user dynamics and the motion of the GPS satellites. A change in position

appears as a change in the phase of the received signals. A change in velocity causes the

relative Doppler shift between the transmitter and receiver to change. The change in

frequency of the received signal translates into a phase ramp. If the receiver accelerates

relative to the transmitter, a ramp in frequency is observed on the received signal. A

ramp in frequency translates into a parabolic function of phase.
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Note, as shown in Table 3.1, only third and higher order loops can track out a

frequency ramp. However, third and higher order loops are not unconditionally stable

[Best, 1999]. In practice, most PLL’s are first and second order loops, because they are

unconditionally stable.

It is apparent that one of the major drawbacks of tracking loops is their limited

ability to track the dynamics of the relative motion between the receiver and satellites.

This can cause the tracking loops to become unlocked during high dynamic maneuvers. In

order to improve the response of the tracking loops to platform dynamics, the bandwidth

of the loop filter must be increased. However, this also increases the amount of noise

passed by the filter.

A second shortcoming of classical tracking loops is that they employ fixed band-

widths and gains, which operate on the received data regardless of high or low SNR

values. The signal to noise ratio (SNR) can change significantly when tracking satellites.

Under these conditions, the loop operates off noise rather than ignoring the measure-

ments. For example, when a satellite is blocked, the tracking loops are in a state of

random walk [Dierendonck, 1996]. Depending upon the duration of the signal loss and

SNR, the loop may need to be re-initialized to reacquire the signal. If the satellite outage

is for a prolonged time, the acquisition process may have to be repeated.

Two tracking loops exist in traditional GPS receivers. One tracking loop is required

to maintain phase-lock with the carrier and another is needed to maintain phase-lock

with the Gold code. The loop that recovers the carrier is typically a Costas loop. The

Gold code is tracked by a separate tracking loop called a Delay Locked Loop (DLL).

Each loop is fed only the portion of the signal that it tracks. The output of the DLL

is used to remove the Gold code modulation on the received signal and the Costas loop
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then operates on the carrier modulated by the data bits only. In a similar manner, the

synchronized replica of the carrier produced by the Costas loop is used to remove the

carrier modulation from the signal that the DLL operates on.

3.4.2 Costas Loop

As mentioned before, the GPS carrier is modulated by the data message using binary

phase shift keying (BPSK) modulation. This means that during every bit transition, the

phase of the carrier changes by 180◦. If a basic PLL were used to track the signal, it

would see a 180◦ phase error every time a data bit transition occurred. Maintaining

phase lock with such a signal would therefore be impossible using a regular PLL. The

carrier tracking loop used in a GPS receiver must be insensitive to the 180◦ phase shifts.

A Costas loop is the most common method used to track the BPSK waveforms in GPS.

Figure 3.10 shows the basic architecture of an analog Costas loop. The received

carrier plus data modulation D(t) is feed into the loop. The input is then multiplied by

the loop’s in-phase estimate of the carrier in the upper, in-phase (I) arm of the Costas

loop. The input is multiplied by an orthogonal (90◦ out of phase) version of the carrier

in the lower, quadrature (Q) arm. The multiplication of the sinusoids in the I and Q

branches produces the sum and difference terms, shown previously in Equation 3.6. The

loop filters, LPF1 and LPF2, eliminate the high frequency terms. If the loop is phase-

locked, the difference between θ1 and θ2 is zero, leaving the data message D(t) in the

in-phase channel to be decoded. The filters are generally matched to prevent prolonged

settling times. The signals are then processed by the discriminator [Feigin, 2002].

The discriminator function uses the I and Q signals to generate an error signal

that is immune to the 180◦ phase shifts caused by the navigation message. A simple
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Figure 3.10: Costas Loop

discriminator function is a multiplier. Multiplying the I and Q signals together squares

the data message, as shown in Figure (3.14).

D(t) cos(θerr)D(t) sin(θerr) =
D(t)2

2
[sin(0) + sin(2θerr)] (3.14)

D(t)2

2
[sin(0) + sin(2θerr)] =

sin(2θerr)

2

Because the data message is a series of ±1′s, squaring the signal leaves a series of 1’s

and therefore removes its effects from the carrier. The maximum likelihood estimator

for the phase error is a four-quadrant arctangent discriminator for high and low SNR’s

[Ward, 1996b], presented in Equation (3.15).

θerr = arctan

(

sin(θerr)

cos(θerr)

)

(3.15)

The third low pass filter, LPF3, reduces noise in the system and eliminates harmonics

created by the previous multiplications [Feigin, 2002].
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In a software GPS receiver, the signals used in the Costas loop are not continuous,

but sampled. The digital Costas loop is modified to accommodate discrete time signals,

as shown in Figure 3.11. The low pass filters in the arms of the analog Costas loop

are replaced by ‘integrate and dump’ functions. The products in the I and Q channels

are summed over an integration interval and then the accumulated values are operated

on. The integration periods must be coordinated to avoid integrating over a data bit

transition. The integrate and dump functions filter out the harmonics caused by the

multiplications and also provide an integration gain. A discriminator that is immune to

the data message produces an error signal proportional to the phase error between the

incoming signal and the in-phase replica. The low pass filter following the discriminator

functions like the loop filter in a standard PLL and it defines most of the response

characteristics of the Costas loop. The NCO is fed the output of the low pass filter to

close the feedback loop.

Figure 3.11: Digital Costas Loop
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3.4.3 Delay Lock Loop

The Gold code that modulates the carrier is removed by multiplying the received

signal by an in-phase replica of itself. Since the Gold code is a series of ±1’s, multiplying

it by itself results in a sequence of 1’s. The caveat is that an in-phase version of the

received Gold code must be maintained. A delay lock loop (DLL) is a control loop

that maintains phase-lock between the received and replica codes, using the same basic

principles as a PLL. An error signal proportional to the phase difference between the

two signals is used to adjust the frequency of the replica after being low pass filtered.

The main difference between a PLL and a DLL lies in the generation of the error

signal. Whereas the PLL uses a single replica signal, a DLL operates by generating three

local replicas of the received code. These signals are referred to as the early, prompt,

and late Gold codes. The prompt code is the DLL’s in-phase estimate of the received

Gold code. The early replica is advanced τ seconds from the prompt code. The late

code is delayed τ seconds from the prompt code. The most commonly used value of

τ corresponds to half the time duration of one chip of the Gold code in seconds. The

received Gold code is multiplied by the local replicas and the three resulting signals are

summed over an integration period. The three accumulated values are then processed

by a discriminator function to produce an error signal [Spilker, Jr., 1996a].

The three accumulated values can be modeled mathematically as shown below in

Equation (3.16) [Sayre, 2003].

Early = A
N
∑

n=1

Gi(n) · Gi,r(n + ǫ + τ)

Prompt = A
N
∑

n=1

Gi(n) · Gi,r(n + ǫ) (3.16)
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Figure 3.12: Delay Lock Loop

Late = A
N
∑

n=1

Gi(n) · Gi,r(n + ǫ − τ)

The sampled Gold code received from the ith satellite, Gi(n), is mixed with the local

replicas of itself. The prompt replica code, Gi,r, is offset from the phase of the received

code by ǫ. The summations are effectively performing a cross-correlation between the

two signals. Since the two signals are the same code, the output of each integrate and

dump block can be expressed in terms of the autocorrelation function of the Gold code,

given in Equation (3.17).

Early = K · R(ǫ + τ)

Prompt = K · R(ǫ) (3.17)

Late = K · R(ǫ − τ)
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The gain K is included to account for the amplitude of the received signal, sign of the

data message bit, and the integration gain of the summation.

Figure 3.13 shows the values produced in each branch of the DLL superimposed

over the autocorrelation triangle of the Gold code. When the misalignment ǫ is zero, the

values produced in the Early and Late channels will match. The actual autocorrelation

function observed in a receiver tends to be rounded at the center of the autocorrelation

triangle because of the bandpass filtering in the RF front-end.

Figure 3.13: Autocorrelation Function of Gold Code

The discriminator uses the accumulated values in the early, prompt, and late chan-

nels to produce an error signal. Multiple discriminator algorithm’s exist to process the

accumulated values. The functions can be divided into two categories. One category

produces an error signal independent of the amplitude of the received signal, while the
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error signal produced by the second category is dependent on the received signals ampli-

tude [Ward, 1996b]. The error signal produced by the discriminator is passed through

the loop filter. The output of the loop filter is then used to adjust the frequency of the

code NCO to close the feedback loop.

3.4.4 Combined Costas and Delay Lock Loops

The previous discussions of Costas loops and Delay Locked Loops assumed that the

Costas loop only operated on the carrier portion of the received signal and that the DLL

only operated on the received Gold code. In reality, the received signal cannot be split

perfectly into its code and carrier components. Instead, the local replicas maintained

by the Costas loop and DLL are used to remove the carrier and Gold code modulation,

respectively. The received signal is multiplied by the prompt code replica produced by

the DLL in an attempt to remove the Gold code modulation. If the two codes are aligned,

multiplying the two is equivalent to squaring the Gold code. Since the code is a series

of ±1’s, squaring the code thus removes the code. The product of this multiplication

is then used by the Costas loop to track the carrier. Similarly, the received signal is

multiplied by the in-phase and quadrature replicas of the Costas loop in order to remove

the carrier modulation. The DLL then uses the resulting signals to track the Gold code.

The Costas and Delay Locked Loop operate on the output of a bank of correla-

tors. The architecture of the correlators, Costas, and Delay Locked loop is shown in

Figure 3.14. The outputs labeled as IP (in-phase prompt) and QP (quadrature prompt)

are the products of multiplying the received signal by the prompt Gold code. These two

signals are then used by the Costas loop, as discussed above. The other four signals are

used by the DLL to control the replica Gold code. The expected value of the outputs
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are shown in Equation (3.18), where ǫ is the phase error between the Gold codes, θerr is

the phase error between the carriers, and ferr is the frequency error between the carriers

[Sayre, 2003].

IE =
A√
2
R(ǫ + τ)

sin(πferrT )

πferrT
cos (πferrT + θerr)

IP =
A√
2
R(ǫ)

sin(πferrT )

πferrT
cos (πferrT + θerr)

IL =
A√
2
R(ǫ − τ)

sin(πferrT )

πferrT
cos (πferrT + θerr)

QE =
A√
2
R(ǫ + τ)

sin(πferrT )

πferrT
sin (πferrT + θerr)

QP =
A√
2
R(ǫ)

sin(πferrT )

πferrT
sin (πferrT + θerr)

QL =
A√
2
R(ǫ − τ)

sin(πferrT )

πferrT
sin (πferrT + θerr) (3.18)

The accumulated signals are used to produce error signals for the Costas and Delay

Locked Loop. The error signals in each loop are generated by using nonlinear discrim-

inator functions. The discriminator functions operate on the accumulated values to

produce linear estimates of the carrier phase error θerr and code delay error ǫ. The in-

phase prompt (IP) and quadrature prompt (QP) values are used to produce an estimate

of the carrier phase error θerr by using a two quadrant arctangent discriminator, shown

below in Equation (3.19).

θ = arctan

(

cos (θ)

sin (θ)

)

θerr ≈ arctan

( A√
2
R(ǫ) sin(πferrT )

πferrT cos (πferrT + θerr)

A√
2
R(ǫ) sin(πferrT )

πferrT sin (πferrT + θerr)

)

(3.19)

θerr ≈ arctan

(

cos (πferrT + θerr)

sin (πferrT + θerr)

)
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Figure 3.14: Complete Loop Architecture
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The two quadrant arctangent discriminator is used for two primary reasons. The first

reason is that it is immune to the 180◦ phase shifts caused by the data message. The

second reason is that it performs well at varying signal to noise ratios. However, as

a trade off for its performance, the arctangent discriminator has a high computational

burden [Ward, 1996b].

The in-phase early (IE), in-phase late (IL), quadrature early (QE) and quadrature

late (QL) signals are used by the code discriminator to produce an estimate of the code

misalignment error ǫ, presented below in Equation (3.20).

ǫ =

∑

√

IE2 + QE2 −∑
√

IL2 + QL2

∑

√

IE2 + QE2 +
∑

√

IL2 + QL2
(3.20)

The code discriminator is a normalized early-minus-late envelope detector. This type of

discriminator performs well at varying C/No levels and its output is independent of the

signal’s amplitude [Ward, 1996b].

The outputs of the Costas and Code NCO’s are used as feedback to the correlators

to close the loop. If the initial code phase and carrier frequency are within the pull-in

range of the two combined loops, the code and carrier NCO’s will quickly become phase-

locked with the received signal. Many factors can impede the lock-in process, such as low

C/No levels, incorrect initialization, and improper choice of loop filters. Once the loops

are locked, receiver dynamics, declining C/No levels, and jamming sources can cause the

loops to unlock. When the tracking loops unlock, they are in a state of random walk

and often times the acquisition process must be repeated to reacquire the signal.
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3.5 Position Determination

The data message sent from each satellite is recovered by the tracking loops and

is used to calculate the position of the satellites. In addition, the Delay Lock Loop’s

produce pseudorange measurements to each satellite. Once the positions of at least

four satellite’s are known and pseudorange measurements are produced, the receiver can

determine its position. Each individual pseudorange measurement can be expressed as

shown below in Equation (3.21).

ρi = ‖ si − u ‖ +ctu

ρi =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 + ctu (3.21)

The above model ignores the errors caused by the ionosphere, troposphere, and satellite

clock offset. The pseudorange ρi to the ith satellite is a function of the user’s coordinates

(xu, yu, zu) and clock bias tu.

Obtaining the user’s position and clock bias requires solving the second order, non-

linear equations shown in Equation (3.22).

ρ1 =
√

(x1 − xu)2 + (y1 − yu)2 + (z1 − zu)2 + ctu

ρ2 =
√

(x2 − xu)2 + (y2 − yu)2 + (z2 − zu)2 + ctu

... =
...

ρi =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 + ctu (3.22)
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These equations can be solved by using analytical solutions [Kleusberg, 1999], iterative

numerical techniques, or the extended Kalman filter [Kaplan et al., 1996].

3.5.1 Least Squares Solution

A popular way to solve for the user’s position and clock bias is to use an iterative least

squares approach. The least squares method involves first choosing a nominal estimation

of the user’s position and clock bias. The pseudorange formulas are then linearized about

the nominal values. Solving the resulting linear system of equations produces corrections

in the user’s position and clock bias. These corrections are added to the initial estimates.

The corrected estimates are then used to linearize the pseudorange equations in the same

manner as the initial estimates. Corrections are again solved for to produce a further

refined estimate of the user’s position and clock bias. This iterative process continues

until the estimated values approach constant values. Usually, the magnitude of the

correction terms is computed and if they are below a threshold the process is terminated

[Tsui, 2000].

The pseudorange measured to the ith satellite is expressed as shown in Equation

(3.23).

ρi =
√

(xi − xu)2 + (yi − yu)2 + (zi − zu)2 + ctu

ρi = f(xu, yu, zu, tu) (3.23)

f(xu, yu, zu, tu) = f(x̂u + δxu, ŷu + δyu, ẑu + δzu, t̂u + δtu)

The pseudorange to a particular satellite is a nonlinear function of the user’s position

and clock bias. This function, of the user’s position and clock bias, can be reformulated
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as a function of a nominal trajectory (x̂u, ŷu, ẑu, t̂u) plus error terms (δxu, δyu, δzu, δtu)

about the nominal trajectory [Kaplan et al., 1996].

The pseudoranges can then be approximated by a first order Taylor series about

the nominal trajectory. Truncating the Taylor series at the first order produces a linear

system of equations, shown below in Equation (3.24).

ρi ≈ ρ̂i −
xi − x̂u

r̂i
δxu − yi − ŷu

r̂i
δyu − zi − ẑu

r̂i
δzu + cδtu (3.24)

where

ρ̂i =
√

(x̂i − xu)2 + (ŷi − yu)2 + (ẑi − zu)2 + ct̂u

r̂i = ρ̂i − ct̂u

The linearized pseudorange equations for the different satellites can be rearranged into

a concise matrix formulation, presented below in Equation (3.25).

ρi − ρ̂i ≈ xi − x̂u

r̂i
δxu +

yi − ŷu

r̂i
δyu +

zi − ẑu

r̂i
δzu − cδtu

δρi ≈ ax,iδxu + ay,iδyu + az,ir̂iδzu − cδtu

















δρ1

...

δρi

















≈

















ax,1 ay,1 az,1 1

...
...

...
...

ax,i ay,i az,i 1









































δxu

δyu

δzu

δtu

























(3.25)

∆ρ = H∆x
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Using the matrix interpretation of the linearized pseudorange measurements, the

vector of correction terms ∆x can be solved. In the case of four pseudorange measure-

ments, this is accomplished by inverting the H matrix. When more than four pseudor-

ange measurements are used, the system of equations is solved using the Moore-Penrose

pseudoinverse, as shown below in Equation (3.26) [Kaplan et al., 1996].

∆x = H−1∆ρ, when n = 4

∆x = (HTH)−1HT ∆ρ, when n > 4 (3.26)

The vector of corrections is then added to the initial nominal trajectory to produce

a second, refined estimate of the user’s position and clock bias. These new estimates can

then be used to produce more accurate estimates of position by repeating the process.

The least squares approach is commonly used and can also produce an estimate of the

accuracy of the position solution [Axelrad and Brown, 1996].

3.5.2 EKF Solution

The extended Kalman filter (EKF) is an alternate method to solve for the user’s

position and clock bias. The recursive nature of the EKF naturally lends itself to this

task. The EKF formulation incorporates knowledge of the previous measurements into

the current estimate of the user states. In contrast,the least squares solution is a point

solution. The EKF method also allows the user’s clock and platform dynamics to be

modeled.

The EKF architecture generally used to calculate user position and clock bias differs

from that used in other applications. The difference is that the EKF used in GPS tracks
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the residuals of the states, not the states themselves. The states of the filter are errors

in the user’s coordinates and clock bias and estimates of the user’s states are maintained

outside of the filter. At each iteration of the filter, the estimated states are used to

linearize the pseudorange equations. The state vector of the EKF is set to zero initially.

The EKF then estimates the errors in the states using the pseudorange measurements

and the estimated errors are then added to the states outside the filter. The state vector

of EKF is then reset to zeros [Bullock et al., 2006].

The states of the EKF and the state transition matrix are shown below in Equation

(3.27) for a stationary user.

































δxk+1

δyk+1

δzk+1

δtk+1

δṫk+1

































=

































1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 ∆T

0 0 0 0 1

































































δxk

δyk

δzk

δtk

δṫn

































(3.27)

The states correspond to errors in the user’s position, clock bias, and clock drift. Outside

of the filter, estimates of the user’s position, clock bias, and clock drift are maintained.

The state error vector is estimated at each measurement epoch. The estimated error

state vector is then added to the estimates of the user’s states outside the filter and the

error state vector is then reset to zero’s at the beginning of the next epoch.
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At each measurement epoch, the estimates of the user states (x̂−
k , ŷ−k , ẑ−k , t̂−k , ˆ̇t

−

k ) are

used to linearize the observation matrix, shown in Equation (3.28).

H =

























ax,1 ay,1 az,1 1 0

ax,2 ay,2 az,2 1 0

...

ax,i ay,i az,i 1 0

























(3.28)

In Equation (3.28), ax,i, ay,i, and az,i are the components of a unit vector pointing from

the user’s estimated position to the ith satellite.

The measurements used by the filter are the range residuals, as shown below in

Equation (3.29).

zk =

























ax,1 ay,1 az,1 1 0

ax,2 ay,2 az,2 1 0

...

ax,i ay,i az,i 1 0

















































ρ̂1 − ρ1

ρ̂2 − ρ2

...

ρ̂i − ρi

























(3.29)

The range residuals are the difference between the predicted pseudoranges, based on

the estimates of the user position (x̂−
k , ŷ−k , ẑ−k ) and clock bias t̂−k , and the observed

pseudoranges, as shown below in Equation (3.30).

ρ̂i =
√

(x̂i − x̂−
k )2 + (ŷi − ŷ−k )2 + (ẑi − ẑ−k )2 + ct̂−k (3.30)
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Since the error state vector is set to all zero’s at the beginning of each epoch, the

measurement update is the single multiplication, given in Equation (3.31).

































δx+
k

δy+
k

δz+
k

δt+k

δṫ+k

































= Kk · zk (3.31)

The estimated error state vector is then added to the estimates of the user’s states outside

the filter, shown in Equation (3.32).
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k + δx+
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ẑ−k + δz+
k

t̂−k + δt+k

ˆ̇t
−

k + δṫ+k

































(3.32)

The updated user state vector is then projected ahead for the next measurement epoch

and the error state vector is reset to all zero’s.

The measurement noise covariance matrix is a diagonal matrix with zeros above and

below the principle diagonal [Bullock et al., 2006]. The entries on the diagonal depend

on the variance of the individual pseudoranges measurements, as shown in Equation
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(3.33) below.

R =

























σ2
ρ1

0 · · · 0

0 σ2
ρ2

...

...
. . . 0

0 · · · 0 σ2
ρi

























(3.33)

The process noise covariance is similarly a diagonal matrix with zeros off the principle

diagonal. The terms in the process noise covariance matrix are used to account for

unmodeled velocity variance, unmodeled clock variance, as well as to prevent the filter

from ‘falling asleep‘ [Bullock et al., 2006]. Although these parameters are often hand

tuned to yield satisfactory tracking, a reasonable starting value for the terms related to

the position states is approximately one hundredth of the variance of the pseudorange

measurements [Negast, 2006]. The nominal variance of the pseudorange measurements

is approximately 100 meters. For the clock terms, the values for a commercial-grade

C/A code receiver integrated with tactical-grade sensors were used in this thesis as a

starting point, as shown below in Figure (3.34) [Bullock et al., 2006].

Q ≈

































(
σρ

10 )2 0 0 0 0

0 (
σρ

10 )2 0 0 0

0 0 (
σρ

10 )2 0 0

0 0 0 10−3 0

0 0 0 0 10−4

































(3.34)
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3.6 Conclusion

The general operations that a software GPS receiver performs were outlined in this

chapter. Upon start up, a receiver first ascertains which satellites are in view. The

receiver then determines the Doppler shift and PRN code phase associated with each

satellite. Using this data, the receiver initializes the tracking loops. A Costas loop

is used to track the carrier and a DLL is used to track the PRN code. The tracking

loops provide the user with the navigation data message, used to calculate the satellite

positions, and pseudorange measurements. It was then shown how a user can solve for

his position using an iterative least squares algorithm or EKF.

The vulnerable parts of the receiver are the tracking loops, especially the carrier

tracking loops. Tracking loops cannot operate during periods of signal loss and often loose

lock during high dynamic maneuvers. Additionally, they are susceptible to intentional

and unintentional jamming. The next chapters will explore vector tracking methods

aimed at making the GPS receiver more robust.
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Chapter 4

Development of Kalman Filter Based Tracking Algorithms

4.1 Introduction

In this chapter, Kalman filter based tracking algorithms are introduced. The opera-

tion of the algorithms is explained and their potential advantages are eludicated. Later,

in Chapter 5, the operation of the Kalman filter based algorithms is compared to the

operation of traditional methods.

4.2 Tracking Loops as Kalman Filters

The tracking loops described in Chapter 3.4 operate well in environments with low

user dynamics and high C/No levels. However, tracking loops have inherent flaws. They

use fixed bandwidth filters that do not adapt to varying C/No levels and user dynamics.

The measurements made by the discriminator are all weighted equally. Measurements

made during periods of high C/No are weighted equally with those made during times

of low C/No. Tracking loops also have a limited ability track changes in the user’s

dynamics. The order of the loop filter dictates the dynamics the loop can track with no

steady state error. When designing the loop filter, the designer is faced with a trade off.

On the one hand, increasing the bandwidth of the filter allows the loop to better track

the user dynamics. However, wider bandwidths make the loop more susceptible to noise

and jamming [Jwo, 2001].

The Kalman filter has the capacity to overcome the drawbacks of the traditional

tracking loop. The Kalman filter is, in essence, a filter with time varying gains. The
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gains vary with changing measurement noise statistics and process noise statistics. The

measurement noise statistics change with C/No levels and jamming. The process noise

statistics change with user dynamics. Provided with the process and measurement noise

covariance matrices, the Kalman filter can optimally separate signal from noise. The

tasks of tracking the carrier and code can be combined in one Kalman filter, which

replaces the two tracking loops in each channel with a single Kalman filter per satellite

[Grewal and Andrews, 1993].

The states of the Kalman filter and the state transition matrix are shown below in

Equation (4.1).
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(4.1)

The first state of the filter θc,k+1 corresponds to the phase of the IF carrier. The derivative

of the phase of the carrier is the IF frequency, which is the second state, fc,k+1. The

frequency of the carrier is modeled as varying linearly with time. The derivative of the

carrier’s frequency is modeled as a slowly varying bias in the third state, ḟc,k+1. The

value of the third state can be determined by using the satellite ephemeris or by curve

fitting. The fourth state is the phase of the local Gold code, θG,k+1. The frequency

that the receiver increments through the local Gold code is the fifth state, fG,k+1. The

frequency of the code is a combination of a nominal frequency CG,k+1 plus a term caused
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by the Doppler shift on the carrier. The term caused by the Doppler shift is modeled as

the carrier frequency multiplied by a constant, K1. This is the equivalent of using the

Doppler frequency from a Costas loop to aid the code tracking loop.

The Kalman filter used to track the carrier and code is similar to the filter used to

track the user’s position. The measurements provided to the filter are not measurements

of the states directly, but rather the errors between certain states and those of the received

signal. The measurements are therefore residuals. The filter has access to three residuals,

which are measurements of the error in the phase and frequency of the carrier, and the

error in the phase of the local Gold code. At each measurement epoch, the residuals

and Kalman gain are used to compute corrections to the states. The states after the

measurement update are then the propagated states plus the vector of corrections.

The signals used to generate the measurements for the filter are summarized in

Equation (4.2) [Sayre, 2003].

IEk =

√

2ST

No
R(ǫ + τ)Dk

sin(πferrT )

πferrT
cos (πferrT + θerr) + ηIE,k

IP =

√

2ST

No
R(ǫ)Dk

sin(πferrT )

πferrT
cos (πferrT + θerr) + ηIP,k

IL =

√

2ST

No
R(ǫ − τ)Dk

sin(πferrT )

πferrT
cos (πferrT + θerr) + ηIL,k (4.2)

QE =

√

2ST

No
R(ǫ + τ)Dk

sin(πferrT )

πferrT
sin (πferrT + θerr) + ηQE,k

QP =

√

2ST

No
R(ǫ)Dk

sin(πferrT )

πferrT
sin (πferrT + θerr) + ηQP,k

QL =

√

2ST

No
R(ǫ − τ)Dk

sin(πferrT )

πferrT
sin (πferrT + θerr) + ηQL,k

η = N(0, 1)
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In Equation (4.2), η represents the noise samples in the output of each integrate and

dump block. The noise samples are assumed to be Gaussian, white, and independent

of the noise samples in the other integrate and dump functions [Cahn et al., 1977]. The

error in the alignment of the prompt gold code replica and the received code is represented

by ǫ. The frequency error and phase error between the received and replicated carriers

are denoted by ferr and θerr, respectively.

Measurements of the three errors in the local signals are generated by using nonlinear

discriminator functions. A normalized early-minus-late discriminator is used to produce

an estimate of the error in alignment between the received and replica Gold codes, as

shown in Equation (4.3).

ǫ ≈
∑

√

IE2 + QE2 −∑
√

IL2 + QL2

∑

√

IE2 + QE2 +
∑

√

IL2 + QL2
(4.3)

A two quadrant arctangent discriminator is used to measure the phase error θerr, as

shown below in Equation (4.4).

θerr ≈ arctan

(

QP

IP

)

(4.4)

A frequency discriminator generates a measurement of the frequency error ferr by us-

ing data collected over two adjacent integrate and dump intervals, as shown below in

Equation (4.5).

dot = IPt1 · IPt2 + QPt1 · QPt2

cross = IPt1 · QPt2 − IPt2 · QPt1
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ferr ≈ arctan( cross
dot )

360(t2 − t1)
(4.5)

These intervals cannot straddle a data bit transition. The first interval is denoted by t1

and the second interval is denoted by t2. The in-phase and quadrature signals are used

to form dot and cross products. These products are then used to estimate the frequency

error [Ward, 1996b].

All of the discriminators contain inherit nonlinearities. The output of the normalized

early-minus-late discriminator saturates at a misalignment ǫ corresponding to half a chip

of the Gold code. Figure 4.1 shows output of the code discriminator versus actual code

misalignment.
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Figure 4.1: Output of Code Discriminator

The two quadrant arctangent discriminator only produces unambiguous estimates

of the phase error (θerr) for values of the error between ±90◦. Figure 4.2 displays the

output of the phase discriminator for different phase errors. The frequency discriminator
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Figure 4.2: Output of Arctangent Phase Discriminator
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Figure 4.3: Output of Frequency Discriminator
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produces the same type of wrap-around error as the phase discriminator. The magnitude

of the frequency error at which the wrap-around occurs is dependent on the integration

period of t1 and t2. A ten millisecond integration period yields the discriminator output

shown in Figure 4.3. Decreasing the integration time increases the unambiguous range of

the frequency discriminator, but it also increases the amount of noise in the measurement

[Ward, 1996b].

The measurement noise covariance matrix contains the statistics of the measurement

noise, shown below in Equation (4.6).

















E[θ2
err] E[θerr · ferr] E[θerr · ǫ]

E[θerr · ferr] E[f2
err] E[ǫ · ferr]

E[θerr · ǫ] E[ǫ · ferr] E[ǫ2]

















(4.6)

The off-diagonal terms of the measurement noise covariance matrix are assumed to be

zero. The diagonal terms of the matrix are computed empirically and can be implemented

as a look-up table for varying C/No levels. The process noise covariance is used to

accommodate unmodeled errors and is hand-tuned to yield satisfactory tracking.

4.3 Vector Delay Lock Loop

The previous method of tracking replaces the Costas and delay lock loops with a

single Kalman filter with the different channels still operating independently of each

other. In the Vector Delay Lock Loop (VDLL) approach, the tracking of the different

PRN sequences is done collectively. The code phases of the received PRN sequences

can be predicted using the satellite ephemeris data, the user’s position, and the user’s
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clock bias. The VDLL operates by using an Extended Kalman filter to estimate the

user’s position, clock bias, and clock drift, which allows the code phases of the PRN

sequences can then be predicted. The NCO’s that produce the replica Gold code’s

for each satellite are initialized using the predicted PRN code phases. At the end of

each integrate and dump period, the output of the correlators is used to generate an

estimate of the phase error between the received and replica codes. The states of the

Extended Kalman filter are then updated using the residuals produced by using the

correlator outputs. Figures 4.4 and 4.5 show a flow chart of the VDLL and it’s general

architecture, respectively.

Figure 4.4: Vector Delay Lock Loop Flow Chart

The vector delay lock loop has several advantages over traditional delay lock loops.

The first is the ability of the VDLL to weight measurements. Measurements made

during periods of high C/No levels contain less noise and can be weighted more heavily.

Conversely, measurements made during times of low C/No levels, or satellite blockage,

can be ignored. Another advantage of the VDLL is that the tracking of weak signals

can be facilitated by using information from stronger signals. This is because the PRN

tracking is based on the user’s position, not a single filter operating on a weak signal.
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Figure 4.5: General Vector Delay Lock Loop Architecture

The user’s position can be determined by using information from the stronger signals

present. The weak signals can then be accurately predicted based on the states of the

EKF [Spilker, Jr., 1996a].

The VDLL designed in this thesis is distinct from that described in [Spilker, Jr., 1996a].

The VDLL developed in this research is based on discriminator functions and operates

by predicting the arrival time of the navigation data bits. This is equivalent to predicting

the code phases of the received Gold codes. Figure 4.6 shows the navigation messages

being received from four different satellites. The satellites are arranged from top to

bottom in order of their distance from the user. With the exception of the individual

satellite clock bias’, the navigation messages are transmitted simultaneously by the dif-

ferent satellites. The effects of the satellite clock errors can be virtually removed by using

the satellite clock correction polynomial and its coefficients, broadcast by the satellites.

It will be assumed that the satellite clock errors have been corrected. Initially, only the
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relative distances of the satellites can be observed. The user can only determine which

satellite is closest, and how much further away the other satellites are. The difference

in the arrival time of the bits from the first and second closest satellites is labeled as

∆t1,2. The relative arrival times between the other satellites are similarly numbered.

Since sampled data is used, the estimated arrival times of the different navigation bits

are indexes that point to the estimated first sample of the received bits.

Figure 4.6: Arrival Time of Satellite Data Bits

An iterative least squares technique is initially used to determine the user’s position

and clock bias. These results are used to initialize the EKF. Equation (4.7) shows how
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the arrival times are converted into pseudorange measurements.
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(4.7)

Using this method, the clock bias that is calculated is the distance from the user to the

closest satellite divided by the speed of light. Using the clock bias, the sample index that

corresponds to when the satellites broadcast their signals can be determined. Figure 4.7

shows this operation graphically.

Figure 4.7: Determination of Transmission Index

The user can propagate the index corresponding to the transmission time of the

satellites forward to the next bit transmission. This is accomplished by adding the num-

ber of samples corresponding to 20 milliseconds to the original transmission index. The

user can then predict the arrival indexes of the data bits for the different satellites. The

prediction is based on the satellite’s position, determined from the broadcast ephemeris,

and the user’s estimated position. The user’s estimated position is provided by propa-

gating the states of the Extended Kalman filter forward 20 milliseconds. The predicted
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arrival indexes are used as the starting points for the integrate and dump functions. Note

that the PRN code phases are set to zero at the start of the integrate and dump intervals.

This is because the data bit transitions are synchronous with the start of the C/A code.

The satellite signals are then integrated during the period of the data bits. At the end

of each integration period, the accumulated signals are used to generate estimates of the

error between the predicted arrival indexes and the actual arrival indexes.

The errors between the predicted and actual arrival indexes are used as range resid-

uals to update the Extended Kalman filter. Equation (4.8) shows the states and discrete

state transition matrix used in a generic navigation EKF.
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(4.8)

The filter tracks in errors, as described in Chapter 3. The only difference between

this filter and the one explained in Chapter 3 is the inclusion of velocity states. The

filter is nonlinear because of the relationship between the states of the filter and the

measurements. The observation matrix is linearized about the estimated state vector,
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as shown in Equation (4.9).

H =

























ax,1 ay,1 az,1 0 0 0 1 0

ax,2 ay,2 az,2 0 0 0 1 0

...

ax,i ay,i az,i 0 0 0 1 0

























(4.9)

The Kalman gain is computed using the linearized measurement matrix. The process and

measurement noise covariance matrices are determined in the same manner as described

in Chapter 3.

The different carrier signals are still tracked independently in each channel. The

Kalman filter architecture described in Section 1 of this chapter is used in each channel

for carrier tracking. The states of the filter that correspond to the code are omitted.

4.4 Conclusion

This chapter has provided algorithms which can be used to replace tracking loops

with Kalman filters. The vector tracking methods explained in this chapter are distinct

from those described in published literature. The algorithms described in Section 1 re-

place the individual code and carrier tracking loops with a single Kalman filter. The

Kalman filter has the ability to weight the measurements provided by the discriminators

according to their variances. The Vector Delay Lock Loop presented in Section 4.3 goes

further and performs the tasks of tracking the PRN code phases and estimating the

user’s position together. The VDLL has the potential to perform during intermittent
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periods of satellite blockage and to improve the tracking of weak signals. This is ac-

complished by predicting the code phases of the PRN sequences based on the estimated

user’s position and clock bias. The estimated user’s position and clock bias are provided

by an Extended Kalman filter. Residuals are produced using the accumulated signals

from integrate and dump functions, which are used as measurements for updating the

EKF. The VDLL outlined in this chapter is different from the methods presented in the

referenced literature. The VDLL used in this thesis is based on normalized discrimi-

nator functions, which eliminate the need to estimate the received signals’ amplitude,

and operates by predicting the arrival times of the navigation message data bits. The

next chapter will present experimental results from a GPS constellation simulator that

demonstrate the ability of the VDLL to operate during periods of satellite outage.
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Chapter 5

Validation and Performance of Kalman Filter Based Algorithms

In this chapter, the VDLL algorithms are shown to function by using data collected

from a Spirent GPS constellation simulator. The VDLL is shown to operate at nominal

C/No levels. The ability of the VDLL to operate during periods of satellite blockage

is also investigated. For comparison, the results of using traditional tracking loops are

presented. The results presented in this chapter offer proof of concept for the VDLL and

its ability to operate during satellite blockages.

In Chapter 4, tracking algorithms based on the Kalman filter were introduced. The

Vector Delay Lock Loop is the most sophisticated of the algorithms in Chapter 4. In

a VDLL, the tracking of the PRN code phases in the different channels is done by a

single Extended Kalman filter. The EKF maintains estimates of the user’s position

and velocity in the Earth-Centered Earth-Fixed coordinate frame. The estimates of the

EKF are used to predict the received PRN code phases and the residuals produced by

the integrate and dump functions are used as measurements by the EKF. The residuals

serve to correct errors in the states of the EKF.

5.1 Simulation Setup

The Spirent GPS simulator generates the received GPS signals based on user profiles.

The profile used in this chapter is a stationary user located in Huntsville, AL. The

simulator produces the RF signals that a user would receive based on the profile and
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was used as the input to the NordNav RF front-end. The NordNav front-end samples

the simulator signals and stores the samples for post processing.

An IMU input was added for the simulation. It was assumed that the IMU provides

acceleration data in the ECEF coordinate frame at 50 Hz, synchronous with updates of

the EKF. The IMU measurements are modeled as inputs to the velocity states of the

EKF. The simulated IMU provides measurements of the same quality as a Crossbow

IMU400CD [Crossbow Technology, 2006].

For the test setup, the satellite signals are received at a C/No ratio of 40 dB/Hz.

Signals for satellites 16, 5, 3, and 12 were generated. All the satellite signals are present

for the first 20 seconds of the simulation at 40 dB/Hz. At approximately 25 seconds

into the simulation, the signals for satellites 16, 5, and 12 are turned off. This simulates

a blockage of the signals from the respective satellites. The signals remain blocked for

approximately 15 seconds. After wards, the signals are returned to their previous C/No

levels.

The process noise covariance matrix used for the carrier tracking Kalman filters is

shown below in Equation (5.1).

Q =

















0.0100 0 0

0 0.2000 0

0 0 0.003

















(5.1)

The carrier tracking Kalman filter uses units of radians, radians per second, and radians

per second squared for the phase, frequency, and frequency derivative states, respectively.

The noise covariance matrix for the carrier tracking filter is shown below in Equation
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(5.2).

R =









0.0042 0

0 35.1508









(5.2)

The measurements used by the filter are in units of radians and radians per second.

The process noise covariance matrix used for the Extended Kalman filter is shown

below in Equation (5.3).

Q =

























































1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0.0139 0 0 0 0

0 0 0 0 0.0139 0 0 0

0 0 0 0 0 0.0139 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

























































(5.3)

The measurement noise covariance matrix for the EKF is shown below in Equation (5.4).

R =

























75.6142 0 0 0

0 75.6142 0 0

0 0 75.6142 0

0 0 0 75.6142

























(5.4)

The measurements used by the EKF are in units of meters
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5.2 Code and Carrier Tracking Results

Figure 5.1 shows the output of the in-phase prompt correlator for satellite 16 using

the VDLL algorithm. When the carrier and PRN code are being tracked, the in-phase

prompt value is the sign of the navigation data bit multiplied by an integration gain

and the amplitude of the received signal. The carrier and code are being tracked for the

first 26 seconds. At approximately 27 seconds into the simulation, the satellite signal

is turned off. At this point, the value of the in-phase prompt correlator drops below

a predefined threshold value of 8000. Once the in-phase prompt value decreases below

the threshold, the diagonal elements of the measurement noise covariance matrix for the

carrier tracking Kalman filter are inflated. The carrier tracking Kalman filter then begins

to ignore the measurements produced by the discriminator functions. Similarly, the

measurement noise covariance matrix for the navigation EKF is adjusted. The diagonal

element representing the variance of the PRN code phase measurement is inflated. A

value of 1036 is used to inflate the noise covariance matrices and make the Kalman filters

effectively ignore measurements. At approximately 39.3 seconds, the satellite signal is

turned back on. In figure 5.1, the in-phase prompt signal is seen as increasing above the

threshold at this time. The estimates of the carrier frequency and code phase are accurate

enough that the signal exceeds the threshold. The estimates maintained by the Kalman

filters allows the signal to be reacquired nearly instantaneously. Only after the signal

exceeds the threshold are the noise covariance matrices reset to their pre-blockage values.

After the signal exceeds the threshold the Kalman filter begins to weight measurements

again.
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Figure 5.1: In-Phase Prompt Output for SV 16 by VDLL Algorithm
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Figure 5.2: In-Phase Prompt Output for SV 16 by VDLL Algorithm
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Figure 5.3 shows the Doppler frequency estimates produced by the Kalman filter

based algorithm and a traditional tracking loop. The traditional loop uses an identical

integration time of 20 milliseconds and has a noise bandwidth of 10 Hz. The value

of the third state of the carrier tracking Kalman filter, corresponding to the rate of

change in the carrier frequency, is estimated by the filter from the data prior to the

outage. During the satellite outage, the traditional loop is in a state of random walk.

The pull-in range of the traditional loop is approximately 5 Hz. The frequency error of

the traditional loop exceeds its pull-in range before the satellite reappears. The Kalman

filter based carrier tracking algorithm ignores measurements during the satellite blockage

and propagates forward its estimates of the carrier frequency. The rate of change in

the Doppler frequency during the outage is determined by the carrier tracking filter’s

estimation of the rate of change using the data prior to the outage. When the satellite

signal returns, the Kalman filter’s estimate of the Doppler frequency is within a few

Hertz.

Figure 5.4 shows the output of the code phase discriminator for the VDLL algo-

rithm and a traditional DLL. The DLL uses an integration time of 20 milliseconds and

a noise bandwidth of 1 Hertz. The variance of the discriminator is seen to increase dra-

matically during the satellite outage. When the signal returns, the estimate of the PRN

code phase maintained by the VDLL is close to the actual PRN code phase. The code

discriminator only produces accurate estimates of the phase error when the codes are

aligned to within approximately half a chip, or about 146 meters. Outside that range,

the accumulated signals used by the discriminators are dominated by noise. The tradi-

tional DLL’s estimate of the PRN code phase is not within the linear region of the code

discriminator. The traditional methods therefore fail to reacquire the satellite signal.
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Figure 5.3: Carrier Tracking for SV 16
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Figure 5.4: PRN Code Phase Error Measurements for SV 16 by the Traditional Delay
Lock Loop (top) and the Vector Delay Lock Loop (bottom)
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Figure 5.5 shows the output of the in-phase prompt correlator for the traditional Costas

loop. The VDLL’s code phase estimate is accurate enough that the code discriminator

produces accurate estimates as soon as the signal returns. The variance of the output of

the code discriminator returns to its pre-blockage value for the VDLL.
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Figure 5.5: In-Phase Prompt Output for SV 16 by Costas Loop

Figure 5.6 shows the output of the in-phase prompt correlator for satellite 5. At

approximately 27 seconds into the simulation, the signal from satellite five is lost. The

value produced by the in-phase prompt correlator drops below the tracking threshold

and the noise covariance matrices are augmented as discussed previously. The signal

for satellite 5 returns at about 36.8 seconds. Figure 5.7 shows the signal returning and

exceeding the tracking threshold. Again, the estimates of the carrier frequency and code

phase were maintained to a sufficient accuracy so as to allow the near instantaneous

reacquisition of the signals.
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Figure 5.6: In-Phase Prompt Output for SV 5 by VDLL Algorithm
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Figure 5.7: In-Phase Prompt Output for SV 5 by VDLL Algorithm
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Figure 5.8 shows the Doppler estimates maintained by the traditional Costas loop

and the Kalman filter based algorithms. The Kalman filter based method begins ignoring

measurements when the in-phase prompt value drops below the threshold. The Costas

loop is in a state of random walk during the outage and never recovers. The estimate

provided by the Kalman filter method is close enough to the correct value so that when

the signal reappears, it exceeds the tracking threshold. Once the threshold is exceeded,

the noise covariance matrices are reset to their prior values. The Kalman filter then

begins to weight the phase and frequency measurements and track the carrier again.
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Figure 5.8: Carrier Tracking for SV 5

Figure 5.9 shows the output of the code phase discriminators for the traditional DLL

and the VDLL. The code phase estimate of the DLL again diverges during the outage.

When the signal returns, the code phase estimate of the DLL is not within half a chip

of the true code phase. However, when the signal returns for the case of the VDLL, the
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Figure 5.9: PRN Code Phase Error Measurements for SV 5 by the Traditional Delay
Lock Loop (top) and the Vector Delay Lock Loop (bottom)
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Figure 5.10: In-Phase Prompt Output for SV 5 by Costas Loop
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code phase estimate is within the linear region of the discriminator. Figure 5.10 shows

the in-phase prompt output for the traditional Costas loop. The traditional loops fail to

reacquire the signal after the outage again.

Figure 5.11 shows the output of the in-phase prompt correlator for satellite 3. Satel-

lite 3 remained in view during the entire simulation. The Kalman filter algorithms suc-

cessfully tracked the signal for the duration of simulation. Figure 5.12 shows the Doppler

estimates produced by the traditional and Kalman filter based methods. Both methods

maintain lock with the received satellite signal. Figure 5.13 displays the code track-

ing performance of the two different approaches. Again, both work successfully for the

simulation.
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Figure 5.11: In-Phase Prompt Output for SV 3 by VDLL Algorithm

Figures 5.14 and 5.15 show the in-phase prompt correlator output for satellite 12.

The signal is blocked at approximately 26 seconds into the simulation. As before, when
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Figure 5.12: Carrier Tracking for SV 3
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Figure 5.13: PRN Code Phase Error Measurements for SV 3 by the Traditional Delay
Lock Loop (top) and the Vector Delay Lock Loop (bottom)
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Figure 5.14: In-Phase Prompt Output for SV 12 by VDLL Algorithm

the satellite reappears, the signal exceeds the tracking threshold. The estimates of the

PRN code phase and Doppler frequency are close enough to their correct values to make

this possible. As in the case of satellite 16 and 5, the VDLL is able to reacquire the

signal nearly instantaneously.

Figure 5.16 shows the Doppler estimates maintained by the traditional loop and the

Kalman filter based algorithms. The Kalman filter based method begins ignoring mea-

surements when the satellite signal disappears. The estimates provided by the Kalman

filter method are again close enough to the correct value to allow fast reacquisition.

Figure 5.18 shows the traditional loops failing to re-acquire the signals again.
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Figure 5.15: In-Phase Prompt Output for SV 12 by VDLL Algorithm
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Figure 5.16: Carrier Tracking for SV 12
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Figure 5.17: PRN Code Phase Error Measurements for SV 12 by the Traditional Delay
Lock Loop (top) and the Vector Delay Lock Loop (bottom)
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Figure 5.18: In-Phase Prompt Output for SV 12 by Costas Loop
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5.3 Positioning Results

As mentioned previously, the profile used in the simulation was a stationary user

located at 34.6426◦ North latitude, 86.6378◦ West longitude, and an altitude of 30 meters.

An iterative least squares solution is used to solve for the user’s position and initialize

the EKF. The iterative least squares solution yields a position estimate of 34.6427◦

North latitude, 86.6380◦ West longitude, and an altitude of -56.0102 meters. The EKF

is initialized using this noisy estimate of the user’s position.

Figures 5.19, 5.20, and 5.21 show the errors in the Extended Kalman filter’s esti-

mates of the user’s x, y, and z-coordinates in the ECEF reference frame, respectively.

The EKF’s estimates of the user’s coordinates rapidly begin converging toward the cor-

rect values. At approximately 26 seconds into the simulation, three of the four satellite

signals are blocked. The diagonal elements of the measurement noise covariance matrix

of the EKF corresponding to the three satellites are inflated. The EKF begins ignoring

measurements during the period of satellite blockage consequently. This explains the flat

line in the EKF’s estimates of the user’s ECEF coordinates during the satellite outage.

When the satellites return, the elements of the measurement covariance matrix are reset

to the appropriate values. The EKF then resumes estimating the user’s position based

on the PRN code phase residuals.
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Figure 5.19: Error in X-ECEF Coordinate Estimate
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Figure 5.20: Error in Y-ECEF Coordinate Estimate
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Figure 5.21: Error in Z-ECEF Coordinate Estimate

Figures 5.22, 5.23, and 5.24 display the user’s position in longitude, latitude and

altitude format. The user’s position in this format remains by and large static during the

satellite outage as well. The user’s altitude can be seen approaching the correct value

after being mis-initialized. When the satellite’s reappear, the user’s position is again

being estimated based on the code discriminator outputs.
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Figure 5.22: User Longitude Based on EKF Estimates
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Figure 5.23: User Latitude Based on EKF Estimates
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Figure 5.24: User Altitude Based on EKF Estimates

5.4 Clock Results

Figures 5.25 and 5.26 show the EKF’s estimates of the user’s clock bias and clock

drift, respectively. The estimates of the user’s clock bias and drift do not fall asleep

during the satellite outage. This is due to the linearization of the observation matrix

discussed in Chapter 3. The Kalman filter attempts to estimate the clock drift and clock

bias based on the single code phase residual. The presence of the IMU decreases the

process noise for the position and velocity states greatly. The Kalman filter therefore

does not place the code phase residual in the position states. By comparison, the process

noise for the clock drift and bias is much greater. The Kalman filter therefore continues

to place the code phase residual in the clock bias and drift states.
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Figure 5.25: EKF Estimate of Clock Bias
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Figure 5.26: EKF Estimate of Clock Drift
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Chapter 6

Conclusion

6.1 Concluding Remarks

In this thesis, the traditional tracking loops used in GPS receivers were replaced with

Kalman filters. The traditional loops and their shortcomings were described in Chapter 3.

In Chapter 4, the author presented several new Kalman filter based tracking algorithms.

The vector delay lock loop was introduced and its potential advantages were explained.

The VDLL developed by the author is based on non-linear discriminator functions and

does not need to estimate the amplitudes of the received signals. In Chapter 5, data was

collected using a GPS constellation simulator in order to validate the operation of the new

vector delay lock loop algorithm. Chapter 5 details the operation of the VDLL during

normal signal conditions and during a temporary satellite blockage. The performance

of the VDLL in these circumstances was also compared to the operation of traditional

tracking loops. The results offer proof of concept for the author’s VDLL algorithm and

demonstrate it’s ability to rapidly reacquire signals after a temporary satellite blockage.

The traditional methods failed to reacquire the blocked signals when they reappeared.

The VDLL algorithm developed in this thesis was shown to be able to reacquire lost

signals nearly instantaneously. In addition, the VDLL, when combined with an IMU,

was able to operate during periods of satellite blockage. The new VDLL method has

the ability to estimate the user’s position when a full complement of satellite’s is not

available. The VDLL method also has the potential to operate at significantly lower

carrier to noise power levels than traditional methods.
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6.2 Future Work

There is a great potential for future work based on the vector delay lock loop al-

gorithms developed in this thesis. The first is to extend the vector tracking concept to

integrated vector frequency tracking. In a vector frequency locked loop, the tracking of

the satellite carrier signals is performed, along with the PRN codes, by an Extended

Kalman filter. The second area of future work is to further integrate the tracking of

the GPS signals with inertial measurement units. This would allow the EKF to better

operate in scenarios were the user is moving. The third area that needs to be further

explored is the determination of the process and measurement noise covariance matrices.

Analytical determination of the process noise covariance matrix would include extensive

clock modeling and modeling of other error sources. Predicting the measurement noise

covariance matrix would involve estimating the current C/No levels and placing the ap-

propriate noise statistics in the noise covariance matrix. The fourth area of future work

is filter integrity. It is desirable to have an algorithm that gracefully degrades as C/No

levels decrease or jamming levels increase.
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Appendix - Kalman Filter

The Kalman Filter is an optimal state estimator for linear dynamic systems with

disturbances modeled by Gaussian random processes. The filter’s performance is opti-

mal with respect to a quadratic cost function. In general, the Kalman filter estimates

the states of a system in which Gaussian noise both drives the system and corrupts

measurements made of the system’s states. The Kalman filter is an optimal observer

in the sense that it produces unbiased and minimum variance estimates of the states

of the system. The term unbiased means that the expected value of the error between

the filter’s estimate and the true state of the system is zero. The Kalman filter’s es-

timates of the states of the system are minimum variance because the expected value

of the squared error between the real and estimated states is minimized. The Kalman

filter algorithm exists for both discrete and continuous time models (the continuous

time version is generally referred to as the Kalman-Bucy filter). Only the discrete time

Kalman filter was employed, a discussion of the continuous case will therefore be ne-

glected [Grewal and Andrews, 1993] [Gelb, 1974].

Consider the system described by (6.1). The states of the system at time k are

produced by a linear combination of the states at time k − 1 plus noise wk−1 . The noise

wk is assumed to be Gaussian with zero mean and covariance Qk.

xk = Akxk−1 + wk−1 (6.1)

wk ∼ N (0 ,Qk )
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Noisy measurements are made of the system at each time step k, (6.2). The mea-

surements are a linear combination of the current sates of the system plus noise vk. The

noise vk is Gaussian with covariance matrix Rk.

zk = Hkxk + vk (6.2)

vk ∼ N (0 ,Rk )

The process noise wk and the measurement noise vk are assumed to be uncorrelated

for all past and future values, (6.3). The Kalman filter produces estimates x̂k at each

measurement epoch of the state vector xk that minimize the expected value of a weighted

mean-squared cost function, (6.4). The weighting matrix M can be any symmetric

nonnegative definite matrix.

E[wmvT
n ] = 0 for all m 6= n (6.3)

J = E[xk − x̂k]
T M [xk − x̂k] (6.4)

The Kalman filter is generally arranged into a distinctive predictor-correction algo-

rithm. The filter is initialized with estimates of the mean and covariance of the state

vector, x̂0 and P0 respectively. The Kalman filter then propagates the states of the

system and the error covariance matrix ahead to the next sampling time. Using the

propagated error covariance matrix, the so called Kalman gain matrix Kk is computed.

The propagated states are the Kalman filter’s prediction of the state vector at the next

epoch. After the measurement takes place, the differences between the measured states

and the predicted states are calculated. These errors are referred to as the residuals of
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the filter. The vector of residuals is multiplied by the Kalman gain matrix and added to

the filter’s predicted state matrix. This affine operation produces a corrected estimate

of the state vector at the sampling epoch. The error covariance matrix is then updated

to reflected the covariance of the corrected state vector estimate. The updated error co-

variance matrix and estimated state vector are then used as the initial conditions were.

This cycle of prediction and correction is shown graphically in figure 6.1 .

Figure 6.1: Kalman Filter Algorithm [Welch and Bishop, 2006]

The Kalman filter is an optimal estimator for linear systems only. However, the vast

majority of actual systems are nonlinear. The Extended Kalman Filter (EKF) is an ad

hoc application of the Kalman filter for nonlinear systems. The EKF is not an optimal

estimator in the least squares sense, but approximates the operation of an optimal filter.

The EKF functions by linearizing the system around the present mean and covariance.

Consider the nonlinear system described by (6.5). The state vector at the next time step

101



is a nonlinear function of the previous states and sample index k − 1, plus process noise

wk−1. The measurements of the system are a nonlinear function of the current states of

the system and sample index k, plus measurement noise vk.

xk = f(xk−1, k − 1) + wk−1 (6.5)

zk = h(xk, k) + vk

The EKF operates by linearizing the system around the current best estimates of

the state vector. The nonlinear function f(xk−1, k − 1) is approximated by the matrix

Ak between measurement epochs, (6.6). The nonlinear measurement function h(xk, k)

is approximated by the matrix Hk, (6.7). The matrices Ak and Hk must be reevaluated

at each epoch. Using the two linear approximations Ak and Hk, the Kalman filter

algorithm can be used for the nonlinear system. Figure 6.2 shows the Extended Kalman

filter update equations graphically.

Ak ≈ ∂f(xk−1, k − 1)

∂xk

∣

∣

∣

∣

∣

x=x̂−

k−1

(6.6)

Hk ≈ ∂h(xk, k)

∂x

∣

∣

∣

∣

∣

x=x̂−

k−1

(6.7)
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Figure 6.2: Extended Kalman Filter Algorithm [Welch and Bishop, 2006]

The EKF’s method of linearization requires the nonlinear functions f(xk−1, k − 1)

and h(xk, k) both be twice continuously differentiable. If the errors between the esti-

mated state vector and the true state vector remain small, the linearization assump-

tion is accurate. Higher order approximations have been derived but they typically

involve significantly greater complexity while not markedly outperforming the EKF

[Jazwinski, 1970] [Grewal and Andrews, 1993] [Gelb, 1974].
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