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Abstract

State-of-the-Art Machine Learning methods achieve powerful results on practical prob-

lems in all data-driven industries. As these methods are improved, the hardware and training

time necessary to implement them have grown expensive. It is desired to find Machine Learn-

ing methods that achieve near-optimal results in practical time using affordable hardware. This

thesis addresses two separate artificial neural network issues resulting in practical regression,

classification, and image compression algorithms. First, this thesis proposes a second-order

Weight Compression Algorithm, implemented in Levenberg-Marquardt with Weight Compres-

sion (LM-WC), which combats the flat spot problem by compressing neuron weights to push

neuron activation out of the saturated region and close to the linear region. The presented

algorithm requires no additional learned parameters and contains an adaptable compression

parameter, which is adjusted to avoid training failure and increase the probability of neural

network convergence. Second, this thesis implements spectral pooling with the discrete cosine

transform for image classification and compression. By using these pooling methods, greater

information can be retained compared to spatial pooling while using the same network param-

eter reduction. These improved convolutional neural networks are found to converge faster and

achieve high performance on standard benchmarks.
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Chapter 1

Introduction

It is often desired to use practical Machine Learning (ML) algorithms as tools to solve data-

driven engineering problems, but the State-of-the-Art (SOTA) tools may not be practical due

to memory and time constraints. The widely used artificial neural networks (ANNs) provide

opportunity for advances in practical network designs.

1.1 Artificial Neural Networks

ANNs are utilized by researchers in a variety of fields as a supervised learning technique to

predict outcomes (by regression or classification) based on knowledge from previous events

(training data). Important uses include computer vision, speech recognition, and natural lan-

guage processing [1]. Neural networks are loosely inspired by the biologic principles that

neurons of the brain adhere to and are popular because of their minimal design requirements,

problem-solving accuracy, and ability to adapt to new problems (generalization ability).

Common algorithms used to train standard feedforward neural networks are the gradient-

descent algorithm, Error Backpropagation (EBP) [2], and second-order algorithms such as

Newtons method and Levenberg-Marquardt (LM) [3]. second-order algorithms are advanta-

geous to the gradient descent algorithm in that they converge at a higher rate and can handle

more complex problems while retaining compact network sizes, but they often are ignored

when training high-dimensional models due to heavy computations.
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1.2 Problem Formulation

This thesis focuses on two related problems dealing with ANNs and presents practical solutions

to each problem that can be used for everyday engineering problems without requiring expen-

sive hardware or excessive time. The two problems are presented in the next two subsections.

1.2.1 Failing Second-Order Methods

LM is the most widely used second-order algorithm for SOTA purposes such as breast can-

cer diagnosis [4], cyber-physical systems [5], water supply system management [6], and facial

recognition [7]. Because of its important industrial uses, any improvement made to the algo-

rithm has transformation implications to a variety of applications.

When using algorithms such as LM to train neural networks, a typical trade-off faced by

the designer is that of network size versus ease of training. It is desired to train networks using a

minimum number of neurons (compact architecture) given that they reduce the required number

of parameters to be learned. Furthermore, they are less likely to be over-trained, therefore

retaining generalization ability for new scenarios [8]. The emergence of the Bridged Multi-

Layer Perceptron (BMLP) network architecture and efficient means of its computation [9] has

reduced the required number of neurons needed for many scenarios. Although these compact

networks are desired, they are often more difficult to train; there are likely few existing solutions

and, assuming initial random weights, it can take many attempts to perform successful training.

Training difficult problems such as those implementing compact architectures often fails

because of what is known as the flat spot problem [10, 11]. This is where gradient-descent

algorithms (such as LM) converge on non-optimal solutions due to diminishing gradients that

disable the learning process. In neural networks, neuron outputs reach points of the activa-

tion function such that the derivative of that function is at or near zero, disabling the learning

process.

This thesis presents Levenberg-Marquardt with Weight Compression (LM-WC) , an algo-

rithm to combat the flat-spot problem in the widely-used LM algorithm. The reason we focus
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on the second-order LM algorithm is that first order-algorithms are able to learn transforma-

tions with additional parameters as in the popular batch-normalization and layer-normalization

methods [12, 13]. However, a solution that increases the number of trained parameters is not

desired in the LM algorithm that must compute a large Jacobian matrix. Rather, we have de-

veloped a solution that requires no further parameters to be trained in LM-WC.

1.2.2 Lossy Pooling Method

In the surging big data era, convolutional neural networks (CNNs) are used with tremendous

success as a deep learning technique to process grid–like data such as images [1]. Recently,

several innovations have been used to improve efficiency of the convolution process using do-

main transforms such as the Fast Fourier Transform (FFT) [14]. A more efficient FFT–based

convolution process is implemented in [15] by using the overlap–and–add method. Rippel et

al. proposed frequency–domain pooling operations (spectral pooling) in [16] by utilizing the

FFT. The work in [17] further extends this concept by mapping the operations and parameters

of the entire convolution into the frequency domain.

This works proposed network reduces training time while retaining prediction accuracy of

current state–of–the–art CNN techniques by thoroughly examining and comparing various im-

plementations of two spectral-based techniques, 2–dimensional convolution operations using

the FFT and spectral pooling using both the FFT and Discrete Cosine Transformation (DCT).

The purpose of these experiments is to find the most effective methods that create a practi-

cal network that can be used for common applications such as computer vision, health care,

weather forecasting, and natural language, image, and video processing. In addition to present-

ing DCT pooling layers, this work implements spectral up–sampling for deep convolutional

autoencoders.

1.3 Contribution

This thesis presents practical solutions to the flat-spot problem of second-order algorithms and

inefficient CNN pooling strategies. Specifically, this thesis makes the following contributions:

3



1. LM-WC is presented and used to solve high-failing benchmark problems, with compar-

isons to other second-order methods.

2. DCT pooling is presented and CNNs are compared using spatial pooling, spectral pool-

ing, DCT pooling, and other relevant methods for several benchmark datasets on both

image classification and compression.
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Chapter 2

Background

2.1 Levenberg-Marquardt Optimization and the Flat Spot Problem

Consider a neural network as seen by an individual neuron in Figure 2.1. At pattern p, the

neuron sees inputs xp and produces the output zp by calculating the dot product between xp

and the neurons weight vector w. The resulting product, netp, is acted upon by the neurons

activation function f. The function F models the remaining neural network, which produces the

final output op.

The neural network weight update rule for LM is given in (2.1):

∆w = (H + µI)−1g (2.1)

where:

g is the gradient vector

Figure 2.1: Neural network as seen by a neuron
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H is the approximated Hessian matrix

I is the identity matrix

µ is a learning parameter.

Both g and H are given with respect to the cumulative (for all patterns and outputs) error

vector and are calculated using the Jacobian matrix J as shown in (2.2–2.3):

g = JTe (2.2)

H ≈ JTJ (2.3)

The Jacobian is calculated by (2.4):

J =



∂e11
∂w1

∂e11
∂w2

. . . ∂e21
∂wN

∂e21
∂w1

∂e21
∂w2

. . . ∂e11
∂wN

...
...

...

∂eM1
∂w1

∂eM1
∂w2

. . . ∂e1P
∂wN

...
...

...

∂e2P
∂w1

∂e2P
∂w2

. . . ∂e11
∂wN

∂e11
∂w1

∂e11
∂w2

. . . ∂e11
∂wN

...
...

...

∂eMP
∂w1

∂eMP
∂w2

. . . ∂eMP
∂wN



(2.4)

where:

M is the total number of outputs

N is the total number of neurons

P is the total number of patterns

The error vector is given as (2.5):

6



e =



e11

e21

...

eM1

...

e1P

e2P

...

eMP



(2.5)

The elements of the Jacobian are calculated by (2.6):

∂emp

∂wi
= −[(dp − oop)F’(zp)f ’(netp)netp] (2.6)

where:

dp is the desired output given pattern p

The derivative of the neuron activation function f ′ is used in calculating the elements of

the Jacobian matrix. If f ′ approaches zero for any input netp, the weight change will also

approach zero, essentially labeling the neuron as stuck and unable to update its weight towards

an optimal solution. This process is demonstrated in Figure 2.2 (assume bipolar neuron with

tangent hyperbolic activation function). This is expected to happen if the neuron approaches

its desired solution; however, if the neuron is in a high-error scenario and needing to update its

weights, the neuron will remain stuck in the saturated region. The ideal neuron activation for

this high error scenario is towards the linear gradient region, as presented in Figure 2.3.

A common scenario in which the flat spot problem can occur is when low error patterns

that were favored by the initial weight initialization are able to give a stronger pull to the

gradient-influenced weight update and prevent other patterns from contributing to the weight

7



Figure 2.2: Neuron activation for saturation scenario

Figure 2.3: Neuron activation for non-saturation scenario
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update process, due to a diminished gradient. However, if the neuron were to compress its

weights back into the active region, all patterns would have an equal chance to influence the

networks gradient.

Normally when an algorithm fails to converge, the user will restart the training process

with new weight initialization [18, 19]. This thesis verifies that it is more effective to compress

the weights than to reinitialize weights; even problems stuck in a non-optimal solution have

made progress towards an optimal solution. Rather than restarting failed training attempts, the

algorithm proposed in this thesis will push neuron activation towards the active region, allowing

the network to retain important information already learned while incorporating information

previously unreachable because of the flat spot problem.

2.2 Neural Network Architecture

2.2.1 Connections Across Layers

In [8], it is shown that compact neural network architectures outperform larger networks in

that they take less memory to train and retain the ability to generalize to new patterns. It is

also shown that the architecture which can perform best to these standards (i.e., successfully

train to a desired training error with the smallest computation time and greatest generalization

ability) is the Fully–Connected Cascading (FCC) architecture, a special case of the BMLP

architecture. Unlike the standard Multilayer Perceptron (MLP) architecture, BMLP networks

allow connections across layers. For the FCC architecture, each neuron is its own layer and is

connected to each of the previous layers.

Consider the widely used benchmark test for neural networks, the parity-N problem.

Parity-N is considered one of the most difficult problems to be solved by a neural network.

According to [20], the parity-N problem can be solved with significantly fewer neurons using

an FCC architecture compared to an MLP architecture. For example, Figure 2.4 shows the so-

lution to parity-7 using an FCC architecture, which requires only 3 neurons. In comparison, the

widely popular MLP architecture requires 8 neurons to solve the same problem, as shown in

Figure 2.5. MLP networks have retained popularity for their relative ease of training; however,

9



Figure 2.4: FCC architecture

Figure 2.5: MLP architecture

as explained in Section III, our algorithm implements a second-order method which is able to

handle training the superior FCC architecture.

In Figure 2.6–2.8, a case study is shown analyzing the parity 7 dataset. In this study,

the LM algorithm is used to train both MLP and FCC networks of various sizes towards a

desired Root Mean Squared Error (RMSE) of 0.1 with a maximum 100 epochs for 100 trials.

Only successful trials contribute data for training epochs and training time. It is seen that as

network size increases, the success rate (percentage of trials passing the desired error criterion)

for each network increases, at the expense of increasing training time. The deeper 2-layer MLP

10



architectures is more difficult to train compared to the shallow single-layer MLP architecture,

even though each network contains the same number of neurons. FCC networks of similar

parameter size remain more accurate and computationally efficient than the MLP networks.

The FCC network is able to achieve desirable results at a higher percentage of trials and a

lower number of training epochs, while maintaining comparable training time.

The case study results may lead a researcher to believe that four or five hidden neurons

are needed to implement a network capable of producing an RMSE of 0.1 for this problem,

but, as stated previously, it is possible that a network with two hidden neurons can achieve this

same goal. For 2% of the test cases, the network of two hidden neurons was able to achieve

successful trials. This is significant in that it shows a very difficult problem that, if solved, can

gain the researcher computation time, memory, and generalization ability.

This describes a key difficulty in training low success-rate networks: a neural network

designer may not know a possible solution exists. For example, imagine a situation where

a training process took days to complete and the success rate was 0.1%. The designer would

likely move towards implementing a larger network before finding positive results in the smaller

network. Because of this issue, it is ideal to find a learning process that can find solutions to

difficult problems such as the three neuron FCC parity-7 problem, bringing a low, impractical

success rate into a higher, searchable range.

2.2.2 Convolutional Neural Networks

A CNN is a supervised learning technique that applies kernel operators (convolution) as a

feature extraction method to data that is then fed into a deep, fully connected MLP neural

network. Two high payoff areas to improve convolutional neural networks are computational

efficiency and prediction accuracy.

Methods and operations on data in CNNs are implemented as individual layers. Each

layer takes as input the output from the previous layer and feeds its processed output into the

next layer. The initial layer is the input data and the final layer is class predictions. To train a

convolutional neural network, a forward pass is conducted on the entire network starting with

the initial layer and ending with the final layer. Loss is calculated and a gradient is passed

11



Figure 2.6: Sucess of LM on parity-7 for varying network sizes

Figure 2.7: Average epochs of LM on parity-7 for varying network sizes

Figure 2.8: Training time of LM on parity-7 for varying network sizes
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backwards to each layer in reverse order. During this process, each layer updates its parameters

and propagates the gradient backwards to the next layer.

Convolutional layers, used to extract features from data, are the key distinguishing layer

that separates CNNs from other artificial neural networks. In a convolutional layer, several

kernels are convolved with the input data, with the results being fed into the next layer. The

kernel parameters are updated as the gradient is propagated in the backward pass. Several other

layers are regularly included in CNNs to improve performance. Rectified Linear Units (ReLUs)

are used to avoid the diminishing gradient phenomenon during the backpropagation pass of the

training process [21]. Dropout is a method used to prevent networks from overfitting data [22].

Pooling layers, such as the most commonly used max pooling layer, are used to down–sample

data as a means for parameter reduction and over–training avoidance [23]. Pooling layers are

especially important for CNNs because the convolution layer passes a large amount of data

forward.

2.2.3 Deep Convolutional Autoencoder

Introduced by [24], a convolutional autoencoder (CAE) is a combination of two neural net-

works, an encoder and decoder, purposed to extract image features and compress the features

into a small space. Specifically, the encoder is a CNN that learns a mapping from an image to

a reduced vector and the decoder is a CNN that learns a mapping from the reduced vector back

to the original image. Compared to a classic ANN autencoder architecture [25], deep CAEs

use convolutional neural networks (CNNs) to abstract image features to be encoded and then

deconvolution operations to decode the reduced vector.

The implementation of a deep CAE is rather intuitive. The encoder is a classic CNN

composed of convolutional layers for feature extraction, pooling layers to down-sample data as

a means of parameter reduction and generalization improvement [23], Rectified Linear Units

(ReLUs) to prevent the vanishing gradient problem, and feedforward multilayer perceptron

(MLP) layers. Techniques such as dropout are used to prevent networks from over-fitting data.
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The decoder is generally made of the same building blocks as the encoder but without

pooling techniques. Pooling (especially max pooling) is an irreversible operation, with dis-

carded data being irretrievable. Rather, a nearest-neighbor method is used in the state-of-the-

art deep CAE [26]. Another option used by SOTA methods is bilinear interpolation [27]. The

purpose of both of these methods is to ”reverse” the max pooling operation and interpolate into

a larger-dimensional space without creating undesirable artifacts associated with using convo-

lutional or fully-connected layers.

2.3 Spectral Representation

The spectral domain offers two advantages for training CNNs. The first advantage is that the

convolution operation can be sped considerably by performing the convolution in the spectral

domain as element–wise multiplication. This is given as the convolution theorem (2.7):

F{f ∗ g} = F{f} ·F{g} (2.7)

The second advantage is that the spectral domain can be used for parameter reduction

while preserving great amounts of energy. The reason for this is that energy is often concen-

trated in only a portion of the entire spectra of the transformed data. Not all of the transformed

coefficients are needed to represent the original data for practical purposes.

2.3.1 Spectral Convolution

The cause for convolution in the spectral domain being faster than convolution in the spatial

domain is that the transform to the spectral domain can take advantage of the radix–2 based

Cooley–Tukey FFT algorithm [28]. By using the FFT, the time complexity for the respective

convolution techniques assuming an l1 x l2 image and an m1 x m2 filter are given in (2.8–2.10):

Tspatial = O (l1l2m1m2) (2.8)

Tspectral = O (n1n2log (n1n2)) (2.9)
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where:

ni = li +m1 + 1 (2.10)

Note that the time complexity for spectral convolution is not always better than that of

spatial convolution. For very small filter sizes (such as a few pixels), the time complexity for

spatial convolution can be advantageous. The primary reason for this is that the FFT algorithm

requires both the image and filter to be zero-padded to the dimensions given in (4). Further-

more, it may be faster to use spatial convolution for small image sizes given the overhead

computations that must be accounted for in spectral convolution. With these drawbacks being

considered, spectral convolution is still powerful because it will outperform spatial convolution

for large, practical–sized problems.

In the case of dealing with large images accompanied by small filters, the overlap–add

(OA) convolution method can be used to prevent padding the filter to size n1 x n2. This is not

practical for the case of Fourier–spectral pooling, but it is practical for using spectral convo-

lution without Fourier–spectral pooling. This method will also be used in the later presented

DCT–based spectral pooling.

In order to compare 2D convolution methods, Figures 2.9 and 2.10 show computation time

for images of increasing sizes using spatial convolution, spectral convolution implemented with

an FFT, and the OA method using MATLAB commands. The kernel dimensions for each image

are 5% and 10% of the image dimensions, respectively, to demonstrate typical convolution

times seen in CNNs, where the filter size is typically considerably smaller than the image

size. Pay careful attention to the log scale on the time axis; the spatial convolution grows

exponentially faster than the other two methods. OA is more efficient than using the FFT (keep

in mind the log scale); however, this advantage is diminished as the filter size increases.

2.3.2 Spectral Pooling

Spectral pooling was developed by Rippel et al. [16] to take advantage of the powerful frequency-

domain properties. Spectral pooling applies a low-pass filter to the spectral representation of
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Figure 2.9: Training time vs image size (in pixels) for various convolution techniques with filter
dimensions as 5% of image dimensions
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Figure 2.10: Training time vs image size (in pixels) for various convolution techniques with
filter dimensions as 10% of image dimensions
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an image-kernel product. Simply put, spectral pooling is truncating data in the frequency do-

main, as described in Algorithm 1. Assume an image with c color channels and and a desired

dimsinon size of p1 x p2

Algorithm 1 Spectral Pooling
Input: X ∈ c×m1 ×m2 image
Output: Y ∈ c× p1 × p2

compute FFT of X
truncate X to size c× p1 × p2

return IFFT of X

Spectral pooling is desirable because it can be combined with the convolution theorem to

achieve faster results. Specifically, one can combine convolution and pooling by performing

the truncation step immediately after the element–wise multiplication in the frequency domain.

This is described in the full spectral pooling convolutional layer in Algorithm 2, where k1 is

the total number of images in a batch and k2 is the number of filters. The CNN can be further

optimized by considering the kernels to be in the frequency domain initially. That is, there

would be no need to transform the kernels at each pass and the kernels would be updated with

the transformed propagated gradient. This thesis does not include this implementation, but it

is a theoretically valid method with considerable potential advantages for convolutional layers

with larger filter sizes.

Spectral pooling can retain much more information about the image compared to the com-

monly used pooling operators such as max pooling and average pooling, which reduce di-

mensionality by applying the max and average operator, respectively, over small sub matrices

contained in each image. Spectral pooling also allows much more variability in pooling amount

given that the truncation amount does not have to be a factor of the image size. Another pooling

method that utilizes a different type of transformation will be presented in the next section.

A few implementation details must be observed to guarantee correct implementation of

this method. One must be careful that the FFT shifts the zero-frequency components to the

center so that the cropped spectra can be symmetric about the origin. Otherwise, the results

will not represent the original data. In order to calculate the gradient in the backwards pass,
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Algorithm 2 Spectral Pooling Convolution Layer
Input: X ∈ k1 × c×m1 ×m2 image matrix, F ∈ k2 × c× l1 × l2 filter matrix
Output: Y ∈ (k1 · k2)× c× p1 × p2

n1 = l1 + m1 - 1
n2 = l2 + m2 - 1
zero-pad filters and images to ki × c× n1 × n2

for all images i do
compute and store FFT of i

end for
for all filters f do

compute FFT of f
for all images i do

multiply FFT(i) with FFT(f )
truncate result to size c× p1 × p2

store truncated results
end for

end for

the passed gradient from the layer ahead should be zero padded to the original image size (pre–

truncation) and then applied the same operator that would be applied in a standard convolutional

layer.

2.3.3 Spectral Upsampling

In addition to implementing spectral convolution in the CAE encoder, this thesis presents spec-

tral up-sampling to be used in the decoder. This is the most important contribution given

that deconvolutional layers typically struggle to invert the pooling operation as images are up-

sampled. Simply put, spectral up-sampling transforms inputs into the frequency domain and

then uses these components to create an image of greater, pre-defined dimensions. This is given

in Algorithm 3:

Algorithm 3 Spectral Up-sampling
Input: X ∈ c x p1 x p2 image
Output: Y ∈ c x m1 x m2

compute FFT of X
return IFFT of spectral X with size c x m1 x m2

Intuitively, it can be seen that the back-propagated gradient will be calculated by applying

forward spectral pooling on the gradient backwards through the layer. That is, the gradient will
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be transformed into the spectral domain and truncated to the number of coefficients required to

down-sample into the resulting layer.
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Chapter 3

Weight Compression Algorithm

We present a solution to the problem of neuron saturation with the proposed Weight Compres-

sion Algorithm, implemented in Levenberg-Marquardt with Weight Compression (LM-WC).

LM-WC compress neuron weights by adjusting the output at each neuron to an active region

of the activation function. The updated weight vector, wc, can be realized as a linear operator

to w in (3.1):

wc = diag(c)w (3.1)

c is given as (3.2):

c =



c1

...

c1

c2

...

c2

cN

...

cN



(3.2)

Each element of c is calculated by (3.3):

cn =
Ω · wn ·M · P∑M
o=1

∑P
p=1 netop

(3.3)

where:
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Ω is an adaptable compression parameter

This operator is applied when the network has reached a point of saturation and the learn-

ing process is no longer updating network weights. This is determined by calculating the RMSE

by (3.4):

RMSE =

√∑P
p=1 (dp − 0p)

2

P
(3.4)

and comparing the change in RMSE to the previous epoch, or (3.5):

∆RMSE =
RMSEk −RMSEk-1

RMSEk-1
(3.5)

to a threshold, β. This compression forces neurons out of the saturated activation region and

closer to, but not in, the linear activation region.

In the case where weight compression pushes the networks activation functions too much

or too little, the network can either find itself stuck in the same or worse position in the next

compression instance. To avoid this scenario, Ω is adjusted during the training process by an

adapting constant ρ normally given as (3.6):

ρ ∼= 1.1 (3.6)

Generally, the improved training algorithm addition can be organized in Algorithm 4.

Our methodology is similar to methods that involve normalization of either the inputs or input

weights for deep networks trained by first and second-order backpropagation [29, 30]. Our

method differs in that it is not an iterative transformation of the inputs or weight parameters;

rather, it is a transformation of each neuron’s weights to be only applied when convergence

has been reached; this is significant in that it can specifically target local optima (solutions

reached by pre-converging network of diminished gradient) and adapt its transformation based

on success relative to the previous transformation.
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Algorithm 4 Weight Compression
if ∆RMSE < β then

if errorprev < error then
w← wprev
error← errorprev

Ω = Ω
ρ

else
wprev ← w
errorprev ← error
Ω = Ω · ρ

end if
update w by (10)

end if

3.1 Choice of WC parameters

The saturation threshold β is chosen in a similar manner to an exit threshold used to finish

training for neural networks no longer exhibiting significant weight updates. A successful

strategy is to start at a threshold likely to be too large, such as β = 0.1, and then iterate through

smaller β values, decreasing β by a power of 10 each time. Generally, this strategy can be

organized in Algorithm 5.

Algorithm 5 β Selection
β = 0.1
train neural network
while success improves do

β =
β

10
train neural network

end while

The compression parameter Ω is chosen as a value near but not in the linear activation

region of the networks activation function. For the first bipolar networks used later in this

thesis, a value of Ω = 1 is used. After a neurons weights are compressed to the Ω value, its

net should be in the most effective region of the neuron output, avoiding both the diminishing

gradient in the saturation region and high gain in the linear region. This is demonstrated in

Figure 3.1.
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Figure 3.1: Weight compression of bipolar neuron with Ω = 1

3.2 LM Implementation

When implementing weight compression in the LM algorithm, µ must be set to its initial train-

ing value when compression occurs, given that it is likely seeing a maximum value when the

saturation criterion is met. The network error must be recalculated after weight compression to

allow the LM algorithm to correctly implement its next training epoch, which includes an error

comparison to the previous epoch.
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Chapter 4

Discrete Cosine Transform Spectral Pooling

As an alternative to the spectral pooling algorithm, a DCT Spectral Pooling Layer (DCTSPL)

is presented to compare to the Fourier–based spectral pooling layer. The DCT gives a spectral

representation of data using only cosine functions instead of complex sinusoids. As a result,

only real-valued spectral coefficients must be stored; furthermore, more energy is concentrated

in even fewer spectra compared to the Fourier representation. It is because of this that the DCT

is commonly used for lossy data compression [31].

DCT has been successfully used in computational intelligence as both a function ap-

proximation method [32] and a network compression method [33]. The network compression

method has many similarities to this work’s approach; however, this work does not implement

the method in a layer-based approach to interact with standard CNNs and is not compared to

similar pooling methods. Rather than subsampling data to improve network generalization, the

work gives a practical CNN implementation to compress large network parameters.

In order to visualize the motivation behind both Fourier (as done in [16]) and cosine-based

spectral pooling, the previously discussed pooling methods are compared by applying max

pooling, mean pooling, Discrete Fourier Transform (DFT) pooling (implemented with an FFT),

and DCT pooling to a 2048 x 2048 sized image of a bird on the gulf coast. Figure 4.1 shows the

reconstructed images from the subsampling pooling methods while Figure 4.2 show the spectral

representations of the bird image using DFT and DCT, respectively. Notice that the compliment

image (reverse white and black) is given so that the spectral density can be easily observed.

Figure 4.1 shows that, for varying degrees of pixel subsampling, the spectral pooling techniques

greatly outperform the spatial pooling techniques in terms of information preservation. This
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can be explained by closely examining Figure 4.2. Observe that most spectral power is focused

in the center of the DFT spectrum and in the upper left corner for the DCT spectrum. The

significance of this is that the image can be greatly preserved even by truncating many of the

spectral components, which is the motivation behind spectral pooling.

Our DCT is implemented by using FFTs, which is slower than performing a single FFT

but much faster than the vanilla DCT implementation. A significant drawback for the purpose

of this work is that convolution cannot be performed using the DCT unless the filter is both

real and symmetric. Therefore, the DCT convolutional layer must separate the convolution and

pooling processes. The extra computation cost is not too severe given that the OA method can

be used for convolution.

The DCT based convolutional layers is given as Algorithm 6. When truncating the spec-

tral representation for DCT, the first pi desired indexes are kept (this is different than DFT, as

shown in Figure 4.2). Compared to the Fourier–based convolutional layer, the DCT convolu-

tional layer is roughly double the number of operations. However, it is still of the same time

complexity, and its information preservation makes up for what it loses in training time.

Algorithm 6 DCT Spectral Pooling Convolution Layer
Input: X ∈ k1 × c×m1 ×m2 image matrix, F ∈ k2 × c× l1 × l2 filter matrix
Output: Y ∈ (k1 · k2)× c× p1 × p2

n1 = l1 + m1 - 1
n2 = l2 + m2 - 1
zero-pad filters and images to ki × c× n1 × n2

for all filters f do
for all images i do

convolve i with f using OA method
compute DCT
truncate result to size c× p1 × p2

store truncated results
end for

end for
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Figure 4.1: Image subsampling for image of bird using max pooling (first row), mean pooling
(second row), DFT (third row) DCT (fourth row)
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(a) DFT

(b) DCT

Figure 4.2: Spectral representation of bird image using (a) Discrete Fourier Transform and (b)
Discrete Cosine Transfrom
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Chapter 5

Experiment Results

5.1 Weight Compression for LM Regression

In this section, four experiments are analyzed to demonstrate the effectiveness of weight com-

pression implemented in LM-WC. The experiments compare the effectiveness of LM-WC

against the original State-of-the-Art LM algorithm and LM algorithm with random restarts.

5.1.1 Experiment Setups

Experiments will be compared on the following criterion: success rate for a determined success

threshold of RMSE, average number of epochs per successful experiment trial, and average

training time of successful experiment trials. Specifically, algorithms with a higher success

rate and lower average epochs are considered the most successful, but only if the cost of addi-

tional training time is insignificant. In these experiments, the LM and LM-WC algorithms are

implemented with MATLAB using only standard MATLAB statements.

Each experiment is performed with both the standard MLP network and an FCC network

to demonstrate the algorithm’s ability to enhance performance on a variety of architectures.

The network sizes are found by finding the smallest network size (for both MLP and FCC) that

succeeds at a given error threshold. Because of these, results from each network size can be

thought of as separate experiments.

For the first experiment, it was experimentally determined that the optimal value of the

compression parameter Ω and the adapting constant ρ should be Ω = 1 and ρ = 1.1. For the

remaining experiments, we use Ω = 0.1 because the data set is of high dimensionality and
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contains more training patterns relative to the first three datasets. Experiments were conducted

with varying values of the saturation threshold β, consistent with the method described in

Algorithm 5; results with the optimal β value are presented. µ is initialized to be 10-3 and is

updated with a classic Levenberg update method with maximum and minimum values of 10-15

and 1015, respectfully.

In order to demonstrate that LM-WC is more powerful than randomly resetting the weights,

we compare LM-WC to LM Random Restart (LM-RR) , which follows the same algorithm as

Algorithm 4, but instead randomly initializes new weights when non-optimal convergence oc-

curs. As discussed earlier, the usage of random restarts is a common technique to improve

neural network convergence by escaping local optima; our algorithm performs better than ran-

dom restarts in every case because it retains useful information gained in the failed training

attempt.

5.1.2 Further Considerations

When analyzing results, we must consider potential effects of overfitting. Because these ex-

periments test the capabilities of successfully training to a target error, validation and testing

data are not included. We are not wanting to show effects of over-training datasets; rather,

we want to demonstrate that, for this given architecture and second-order algorithm, we can

successfully train to a low target error. Because these experiments consist of training difficult,

low-succeeding networks, the method of using validation and testing data would potentially

present results in which what we deem as successful (low training error) is seen as less to what

we deem as unsuccessful (high training error) due to the effects of overfitting. Experiments in

the next section will investigate training vs. testing RMSE.

It is important to realize that each network is trained to a specific target error and finishes

training after reaching the desired value (success) or the maximum iterations (failure). Only

successful trials contribute to the reported training epoch and training time values. Because

they do not consider the failing cases, these two criterion may be lower for the classic LM

algorithm compared to LM-WC.
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5.1.3 Results on benchmark datasets

For the following experiments, desired error is set to be 0.1. For the first experiment, the

training algorithms are allowed to run for a maximum of 100 epochs for 100 trials each. 1000

iterations are allowed on the remaining experiments because of higher data dimensionality and

larger size. The data is normalized to have zero mean and be contained in the range [-1 1]. In

each trial, weights are randomly initialized in the range [-1 1], excluding zero.

The first experiment is conducted on the previously discussed parity-7 problem. There

is a total of 128 training patterns for this dataset. The first architecture compared is a MLP

architecture containing two hidden layers of two neurons each and a linear output neuron. The

second architecture compared is an FCC architecture composed of two hidden layer neurons

and a linear output neuron. Results, in Table 5.1, demonstrate the effectiveness of the LM-WC

algorithm over LM and LM-RR.

The second experiment is conducted on a benchmark dataset known as the two-spiral

problem, shown in Figure 5.1. The Spirals dataset contains output classes of either -1 or 1,

designated as xs and os. The first architecture compared is a MLP architecture containing

two hidden layers of eight neurons each and a linear output neuron. The second architecture

compared is an FCC architecture composed of nine hidden layer neurons and a linear output

neuron. The results of the experiment are shown in Table 5.2; Figure 5.2 shows the resulting

output. Normally, an output of this accuracy would require 100 trials on average to achieve; the

Weight Compression Algorithm allows us to achieve these results with only 5 trials on average,

a significant improvement. Similar to the parity problem, the performance of LM-WC is best.

The third and fourth experiments are conducted on regression datasets from the UCI Ma-

chine Learning Repository [34]. The first dataset, Housing, contains data from the Boston

Housing Market and predicts median value of owner-occupied homes based on various hous-

ing attributes [35]. The dataset contains 506 patterns of thirteen attributes. The first architecture

compared is a MLP architecture containing two hidden layers of three neurons each and a linear

output neuron. The second architecture compared is an FCC architecture composed of three
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Figure 5.1: Spirals dataset

Figure 5.2: Spirals results with LM-WC
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hidden layer neurons and a linear output neuron. The results in Table 5.3 demonstrate strong

performance of LM-WC.

The fourth dataset, Concrete, approximates concrete compressive strength from eight

quantitative input variables [36]. There is a total of 1030 instances for this dataset. The first

architecture compared is a MLP architecture containing two hidden layers of six neurons each

and a linear output neuron. The second architecture compared is an FCC architecture composed

of seven hidden layer neurons and a linear output neuron. Results in Table 5.4 once again favor

the LM-WC algorithm.

To summarize the results, the LM-WC algorithm is able to reach a desired training error at

a much higher success rate compared to classic LM and LM with random restarts. The results

show a greater time to achieve these error rates for our LM-WC algorithm, but this time does

not consider the frequently occurring failing cases in the LM and LM-RR results.

5.1.4 Additional Experiments

In order to evaluate LM-WC in a classical approach, additional experiments using the iris

flower and abalone datasets (also retrieved from the UCI Machine Learning Repository) are

presented to compare LM-WC against LM (random restarts are left out because they were

shown to be no better than LM in the previous experiments). The iris dataset [37] is used

frequently as a benchmark dataset and contains 3 classes of 50 instances each (4 attributes).

The abalone dataset [38] contains 4177 instances of 8 attributes predicting the age of abalone.

Both experiments use the same parameters as the previous experiments, but the data is split

into training and testing data (70/30 split) and evaluated for RMSE after 100 training iterations.

The results of these experiments for various architectures (found using the same methodology

as the first four experiments) are given in Tables 5.5 and 5.6. Using this evaluation method,

LM-WC is able to achieve lower training and testing RMSE with similar training times.

5.2 DCT Pooling for CNN Classification

In order to compare the presented implementations of spectral convolution and pooling, exper-

iments were conducted on both the original (experiment 1) and a modified version (experiment
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Table 5.1: Training Results for Parity-7 Dataset

Algorithm β SR (%) Training
Epochs

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 2.00 82.00 0.2355 4 2 MLP
LM-RR 1E-5 4.00 71.50 0.2355 4 2 MLP
LM-WC 1E-5 14.00 81.50 0.2426 4 2 MLP

LM ˜ 2.00 18.00 0.0468 2 ˜ FCC
LM-RR 1E-3 7.00 51.57 0.1332 2 ˜ FCC
LM-WC 1E-3 26.00 55.19 0.1448 2 ˜ FCC

Table 5.2: Training Results for Spirals Dataset

Algorithm β SR (%) Training
Epochs

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 12.00 447.67 5.5140 16 2 MLP
LM-RR 1E-5 12.00 384.58 3.9582 16 2 MLP
LM-WC 1E-5 24.00 447.58 4.0723 16 2 MLP

LM ˜ 1.00 293.00 2.0171 9 ˜ FCC
LM-RR 1E-4 1.00 103.00 2.7262 9 ˜ FCC
LM-WC 1E-4 19.00 627.81 4.5166 9 ˜ FCC

Table 5.3: Training Results for Housing Dataset

Algorithm β SR (%) Training
Epochs

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 10.00 81.30 1.3106 6 2 MLP
LM-RR 1E-5 12.00 234.67 3.2774 6 2 MLP
LM-WC 1E-5 52.00 434.5577 6.5499 6 2 MLP

LM ˜ 1.00 57.00 0.9465 3 ˜ FCC
LM-RR 1E-3 2.00 181.50 2.5092 3 ˜ FCC
LM-WC 1E-3 16.00 522.69 7.2620 3 ˜ FCC

Table 5.4: Training Results for Concrete Dataset

Algorithm β SR (%) Training
Epochs

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 49.00 142.14 7.6002 12 2 MLP
LM-RR 1E-6 50.00 134.50 9.4457 12 2 MLP
LM-WC 1E-6 59.00 222.1356 12.1849 12 2 MLP

LM ˜ 5.00 114.80 5.0420 7 ˜ FCC
LM-RR 1E-4 4.00 259.00 11.5835 7 ˜ FCC
LM-WC 1E-4 34.00 522.32 24.3557 7 ˜ FCC
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Table 5.5: Training Results for Iris Dataset

Algorithm β
Training
RMSE

Testing
RMSE

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 0.0845 0.1435 0.3880 4 2 MLP
LM-WC 1E-4 0.0819 0.1348 0.3942 4 2 MLP

LM ˜ 0.1248 0.1479 0.3440 3 ˜ FCC
LM-WC 1E-4 0.1057 0.1183 0.3327 3 ˜ FCC

Table 5.6: Training Results for Abalone Dataset

Algorithm β
Training
RMSE

Testing
RMSE

Training
Time (s)

Hidden
Neurons

Hidden
Layers

Network
Type

LM ˜ 0.1526 0.1541 5.5032 4 2 MLP
LM-WC 1E-5 0.1513 0.1517 5.3944 4 2 MLP

LM ˜ 0.1547 0.1546 6.2234 3 ˜ FCC
LM-WC 1E-4 0.1505 0.1481 6.2234 3 ˜ FCC

2) of the MNIST benchmark classification dataset [39]. The original MNIST dataset is com-

posed of 70,000 hand–drawn grey–scale digits of 28 x 28 pixels in 10 classes ranging from

0 to 9 (60,000 are used for training and 10,000 are used for testing). The second experiment

stack 16 identical digits in the same image to create images of 112 x 112 pixels. The pur-

pose of this is to effectively demonstrate the power of spectral–based techniques because, as

previously mentioned, the advantage grows exponentially with image size (with an upfront

additional computation cost that outweighs the benefit for small image size).

The CNN was implemented with standard MATLAB statements in order to facilitate a

rapid development and visualization process. A vanilla CNN library was developed from

scratch to enable a fair comparison of new layers (i.e., to not compare a vanilla custom layer

to a highly optimized layer from a language such as Tensorflow). The spectral convolution

and pooling layers were developed based on the given algorithms, using optimized MATLAB

functions when available. A fully–working network trainer software was built on top of the

library and used for these experiments.

It is important to observe that this preliminary work is implemented with basic MATLAB

statements and not all processes are optimized; therefore, the important measurement for this

work is classification rate. Many operations in the spectral layers include computationally
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Table 5.7: Training Results for Various Pooling Methods

Pooling Stride Size Truncation
(%)

Reduction
(%)

Training
Time (s)

Classifaction
Accuracy (%)

Max 2 2 ˜ 75 182.3 79.0
Mean 2 2 ˜ 75 199.5 78.0
FFT ˜ ˜ 75 75 290.6 78.6
DCT ˜ ˜ 75 75 10002.2 83.8
Max 4 4 ˜ 93.75 4236.5 70.4
Mean 4 4 ˜ 93.75 4251.1 72.7
FFT ˜ ˜ 93.75 93.75 2438.5 73.4
DCT ˜ ˜ 93.75 93.75 4056.5 82.5

expensive loops that will be avoided in a future tensor-based implementation. The purpose of

these experiments is to show the powerful classification abilities of these layers, given that the

theoretical speedup factors have already been presented.

All experiments were implemented with the networks in Figure 5.3 with experiment vari-

ations being confined to the convolution and pooling layers. The network was trained with the

stochastic gradient decent algorithm (batch size = 256) with a momentum rate of 0.9. A proba-

bility of 0.05% was used in the dropout layers. The convolutional layer contained 32 kernels of

size 3 x 3. For each experiment trial, the network is trained on 50 epochs of training data and

then evaluated on testing data; final results are averaged from ten trials total. It is important to

note that hyper-parameters for these experiments were tuned with simple grid searches for each

strategy, but this tuning is not presented in these results because it is irrelevant to the purpose of

this thesis. Rather, these experiments are to compare spectral techniques on a network holding

all other settings the same.

The first experiment uses pooling techniques that result in data reduction of 75% (i.e., the

number of elements being produced by the pooling layer is 75% of the number of elements

being fed into the layer) and the second experiment uses pooling techniques that result in data

reduction of 93.75%. Note that the networks are identical if the reduction is 0%. Both exper-

iments were evaluated on classification accuracy and training time. The layer parameters and

results are given in Table 5.7 while the learning curves are given in Figures 5.4 - 5.7.
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Figure 5.4: Training curves with max pooling for experiment 1 (top) and experiment 2 (bottom)
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Figure 5.5: Training curves with mean pooling for experiment 1 (top) and experiment 2 (bot-
tom)
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Figure 5.6: Training curves with FFT spectral pooling for experiment 1 (top) and experiment 2
(bottom)
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Figure 5.7: Training curves with DCT spectral pooling for experiment 1 (top) and experiment
2 (bottom)
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When comparing results, the FFT spectral pooling is the fastest method as the problem

size scales up (experiment 2) while the DCT is the most accurate method. The DCT is able

to converge faster and to a higher classification rate than the other methods, especially in the

second experiment. For this size data, the training times of the spatial and spectral networks

are comparable; however, as discussed earlier in Figures 2.9 and 2.10, the training time of the

spatial networks will grow exponentially compared to that of the spectral networks. Further-

more, it was earlier shown that the DCT network will take longer than the FFT network but

will grow at a linear rate in comparison. This means that the high relative training time is not

a major concern; rather, the high classification rate for large layer reduction is a significant

achievement.

5.3 Spectral Up-Sampling for CAE Compression

Finally, spectral pooling and up-sampling are implemented in a CAE to demonstrate the ca-

pability of using these spectral methods for lossy compression networks. A basic network

shown in Figure 5.8 is created and tested for two pooling methods, max and spectral pooling

(SP), as well as three up-sampling methods, nearest-neighbor (NN), bilinear (BL), and spectral

up-sampling (SU), giving six different architectures in total.

For this experiment, the images are embedded into a vectors of size 10 and 30 (compared

to 784 features in the input and output images). Each network is trained using the SOTA Adam

optimization method (batch size = 64) [40] rather than stochastic gradient descent due to the

difficulty in training an autoencoder (compared to a classic CNN). Similar to the previous ex-

periment, loss and training times were averaged over ten separate trials and given in Table 5.8.

These experiments use pixel-by-pixel mean squared error and thus cannot estimate the prob-

ability distribution of the training data, resulting in blurry pictures ion many cases. However,

these proof of concept experiments show the powers of spectral pooling for both encoders and

decoders, demonstrating the need for these methods to be implemented in SOTA Variational

Autoencoders [41] and Generative Adversarial Networks [42] to generate images of similar

quality compared to the training dataset.
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Figure 5.8: CAE network structure
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Table 5.8: Training Results for Various CAE Networks

Pooling Upsampling Dim Middle Training
Time (s) Validation Error Testing Error

Max NN 10 3114.58 0.2253 0.2293
Max BL 10 3195.52 0.1683 0.1730
Max SU 10 7947.34 0.1805 0.1822
SP NN 10 5840.06 0.1481 0.1504
SP BL 10 5506.64 0.1334 0.1360
SP SU 10 9457.59 0.1734 0.1771

Max NN 30 2684.74 0.1382 0.1413
Max BL 30 2859.32 0.0907 0.0913
Max SU 30 7222.52 0.1118 0.1133
SP NN 30 5821.34 0.1021 0.1034
SP BL 30 6972.01 0.0923 0.0937
SP SU 30 11248.88 0.0993 0.1003

When comparing results, it is clear that spectral pooling technique reduces training loss.

However, spectral upsampling is not necessarily as successful as the nearest-neighbor and bi-

linear transform methods. When examining the generated images in Figures 5.9–5.21, it is

clear that the mean squared error may not necessarily correlate to what the viewer deems as the

greatest recovery method. All of the digits look readable, save the spectral upsampling. The

results suggest that spectral upsampling in the decoder is not as effective as the other interpo-

lation methods, at least when training on mean squared error; however, spectral pooling in the

encoding outperforms max pooling.
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Figure 5.9: Original MNIST digits
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Figure 5.10: MNIST digits using Max–NN and middle dimension 10

Figure 5.11: MNIST digits using Max–BL and middle dimension 10
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Figure 5.12: MNIST digits using Max–SU and middle dimension 10

Figure 5.13: MNIST digits using SP–NN and middle dimension 10
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Figure 5.14: MNIST digits using SP–BL and middle dimension 10

Figure 5.15: MNIST digits using SP–SU and middle dimension 10
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Figure 5.16: MNIST digits using Max–NN and middle dimension 50

Figure 5.17: MNIST digits using Max–BL and middle dimension 50
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Figure 5.18: MNIST digits using Max–SU and middle dimension 50

Figure 5.19: MNIST digits using SP–NN and middle dimension 50
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Figure 5.20: MNIST digits using SP–BL and middle dimension 50

Figure 5.21: MNIST digits using SP–SU and middle dimension 50
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Chapter 6

Final Remarks

This work presented practical solutions to two ANN problems focused on designing network

architectures capable of being implemented for practical usage without expensive hardware

and excessive training time. We first proposed a new Weight Compression (WC) Algorithm,

implemented in LM-WC, to avoid the flat-spot problem. The advantage of the WC algorithm is

the ability to find solutions for difficult problems characterized by low rates of success that may

not be feasible to explore with normally used second-order algorithms, allowing the practical

usage of compact neural network architectures capable of high memory efficiency and great

generalization abilities.

Performance of the proposed algorithm was compared with similar algorithms for several

benchmark problems using both FCC and MLP neural network architectures. LM-WC im-

proved difficult problems characterized by low training success, especially for deeper network

architectures such as the FCC network. This thesis presented instances where the LM-WC al-

gorithm improved problems that would take 100 trials on average to succeed, finding solutions

in as little as 5 trials.

The LM-WC algorithm has transformative implications for training deep neural networks

using fewer neurons, thus reducing the number of parameters to be learned and retaining greater

generalization abilities. Our results demonstrated the ability to find compact solutions to high-

failure problems in what should be considered a practical number of attempts for even a com-

putationally expensive deep learning problem.

In addition to the LM-WC algorithm, this thesis presented a discrete cosine transform

spectral pooling layer (DCTSPL) to be used for subsampling large layer data while retaining
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maximum information. Convolution times for practical image and filter size combinations

were investigated to conclude that spectral convolution outperforms spatial convolution, even

for very small filter sizes. The advantage of spectral pooling over max and mean pooling for

information retention was visually demonstrated. Experimental results demonstrated that the

DCTSPL achieved higher classification rates on a practical dataset compared to networks using

the same amount of data reduction. Whereas other pooling methods take a significant loss in

classification accuracy for data reduction through the pooling layer, the DCT is able to retain

greater accuracy.

Finally, this thesis implemented spectral pooling and upsampling techniques in a deep con-

volutional autoencoder. Compared to nearest-neighbor and bilinear interpolation techniques,

the spectral upsampling (combined with spectral pooling to replace max pooling) had the low-

est error rates and the highest quality images produced on a lossy (high sub/upsampling) net-

work compressing handwritten digits, thus demonstrating the potential for these methods to be

used for more than just classification purposes.

The natural next step for these spectral pooling networks is to continue testing the tech-

niques on even more datasets using a wider variety of network parameters. It could be that

our algorithms do not always outperform competing strategies, and therefore it should be de-

termined when it is most practical to use. As these methods are optimized for Tensorflow [43]

and other libraries, it is expected that they will be desired for problems where a sharp reduction

in training time and memory costs is desired for only a small loss in accuracy.
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