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ABSTRACT 

 

 New technologies are being introduced for power cylinder components at a faster rate due 

to the drive for better fuel economy and CO2 foot print reduction. This includes new and advanced 

coatings, materials, and surface textures. In turn, robust methods are needed to evaluate and 

optimize technologies to ensure optimal performance. Therefore, the study of tribological 

lubrication flow has become more pressing among power cylinder components. This thesis 

analyzes the modification of the Reynolds equation for computational efficiency by analyzing 

rough surfaces in the hydrodynamic flow regime through the use of flow factors. This analysis is 

aimed towards modeling the surface interactions and pressure variations across power cylinder 

components of an internal combustion engine, namely the piston ring and cylinder wall. These 

interacting surfaces were measured directly through the use of a profilometer. Through the use of 

these measured surface properties, surface specific flow factors are derived by numerical flow 

simulation. The statistical flow factors are obtained and implemented in the Reynolds equation to 

model the pressure and shear variations across the asperities of interacting surfaces. These flow 

factors can then be used to consider the effect of roughness in lubrication problems without 

deterministically modeling roughness. The derived flow factors make predictions that are 

significantly different than those in existing literature. This derivation methodology can be used 

in the determination of flow factors for any pair of interacting surfaces. The governing flow factors 

for a pair of surfaces are expressed as empirical relations in terms of the film ratio (h/σ). The flow 
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factors are then applied to an initial analysis of a multi-physical model of power cylinder 

components in a two-dimensional axisymmetric case to consider roughness throughout the 

combustion cycle in order to evaluate tribological interactions.  
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Problem Statement 

While a macroscopic study of the engine dynamics is necessary for the success of any fluid 

bearing component, so are the microscopic interactions. Surface topography plays a large role in 

not only component longevity, but also more importantly in efficiency and performance. It is 

therefore useful to study these surface interactions, namely when a lubricant is involved. It is 

computationally and numerically difficult to model the flow past individual asperities along all 

components. For this very reason the governing lubricant flow equation, the Reynolds equation, is 

modified by the use of pressure and shear flow factors. 

Flow factors are a method used to statistically model a rough surface as a smooth surface, 

previously introduced by Patir and Cheng [1] in their “Average Flow Model”, by deriving 

properties from the rough surfaces. The layout of asperities in Patir and Cheng’s [1] model was 

numerically generated, and these asperity layouts were assumed to be either purely transverse, 

isotropic, or purely longitudinal. The flow past and around these points could then be statistically 

modeled. These models are then able to be used in conjunction with the Reynolds equation for a 

more accurate solution which takes into account surface features. 
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While far more accurate than modeling the hydrodynamic properties of flow across smooth 

surfaces, these generic flow model equations are less accurate than deriving surface specific flow 

factor models for predicting the fluid interactions in the hydrodynamic regime. Thus more precise 

flow modeling equations are necessary for more accurate flow predictions and computational 

efficiency. One specific case of great interest that has not received much attention is power cylinder 

components. 

Three primary flow factors are paired with the Reynolds equation, namely to account for 

surface impedance on the flow of a lubricant. The first of which, 𝜑𝜑𝑥𝑥 measures the flow resistance 

across asperities due to a pressure induced gradient along the flow direction. Similarly, 𝜑𝜑𝑧𝑧 

measures the flow resistance along the transverse direction. And lastly, 𝜑𝜑𝑠𝑠 measures the lubricant 

transport due to shearing effects. These flow parameters are a function of the film thickness, 

standard deviation of the surfaces, and the Peklenik number (𝛾𝛾) as defined by the auto-correlation 

function derived from the specific surface topography [2]. The Peklenik number relates the various 

directions of flow together through functional form. 

 

1.2 Objective 

The goal of this work is to develop and create a numerical methodology and toolkit that 

models the cylinder wall, piston, and piston ring interface by considering lubrication and contact 

mechanics. This model could be used to make parametric predictions of the interfaces performance 

(e.g. friction) and also possible failure. The coated rough surface contact mechanics and lubrication 

occurs on a scale much smaller than the size of the piston ring and therefore the key aspect of the 
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model is an algorithm that solves simultaneously the multiple mechanisms at different scales. This 

will be accomplished using a modular numerical model with interchangeable components that 

represent different accepted methodologies. 

The Reynolds equation will be solved to consider the effects of hydrodynamic lubrication 

on the problem. In regions in or near contact where asperities between surfaces come in close 

proximity, the asperities can influence the lubrication flow. Surface specific flow factors will be 

derived to include the effect of roughness on lubricant flow in the Reynolds equation. 

The elastic superposition and/or the finite element method will be used to model the 

mechanical deformations of the piston ring surfaces. Other numerical schemes will also be 

incorporated to model solid sliding friction, boundary lubrication, asperity contact, and full film 

lubrication. The model will initially be constructed as a quasi-steady state model, and will not 

consider transient and time dependent effects, but could be added later. The lubrication model 

considers the pressures and tractions generated by the oil lubricant separating the surfaces. The 

solid contact model must consider the solid contact and friction between the components, which 

are defined by the roughness of the surface specific topography. Both of these models make use 

of the measured geometry of a cylinder surface, piston ring, and their interactions. 

The contact mechanics, lubrication, and thermo-mechanical models are coupled through 

their boundary conditions and material properties which must be solved and satisfied 

simultaneously. This will be done by use of an iterative process. The coupled problem is non-linear 

and therefore relaxation techniques will be used to enhance convergence. Once the governing 

program is operating, it will make many predictions that will be useful for the optimization and 
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design of the components. For instance, it will predict the portion of the load carried by the 

lubricant pressure and by the solid contact between the surfaces. 

 

1.3 Current Approach and Contributions 

 Previously the study of surface roughness effects on lubrication flow has been limited to 

stochastic concepts as first introduced by Tzeng and Saibel [3]. A new method of flow simulation 

was derived by Patir and Cheng [1] which was based on numerically solving the Reynolds equation 

over a modeled bearing with randomly generated surface roughness characteristics, then deriving 

an average Reynolds equation from several flow quantities. This method is restricted to the 

assumption that the rough surface heights are a perfect Gaussian distribution [4]. Peklenik [2] 

sought to introduce random process analysis and signal processing theory in order to characterize 

rough surfaces. A more accurate flow model comes from combining these two methods such that 

signal processing theory is used in conjunction with existing flow models which lead to new 

surface-specific flow model techniques, derived in terms of real measured surfaces. 

It is well known that surfaces possess some roughness consisting of deviations from their 

nominal flatness, especially among power cylinder components [5]. Many researchers have taken 

a wide array of approaches to solve the problem of lubrication and contact between rough surfaces. 

It can be difficult and unreasonable to solve the rough surface contact problem from the actual 

geometry (often referred to as a deterministic methodology) because the profiles of surfaces are 

very detailed [6]. Therefore, simple closed-form methods accessible to researchers and the 

practicing engineers are often employed. The current work will provide several different options 



 
 

 
5 

 
 

 

to consider elastic-plastic rough surface contact: multiscale methods developed at Auburn [7], 

statistical methods [8-10], and a deterministic model [11]. This is similar to prior work by Jackson 

on modeling thrust washer bearings for automotive planetary sets [12, 13] and other tribological 

interfaces [14, 15]. The previous works are some of the first numerical models to generate the 

Stribeck curve (i.e. predict friction when either the surfaces are separated by a full film of 

lubrication in contact). 

 Surface roughness also plays a large role in thermo-elastohydrodynamic stability. Jang and 

Khonsari [16-19] found that surface roughness and lubricant film thickness effect the thermal 

surface deformations and can lead to hot pots. This thermoelastic instability can be improved by 

reducing sliding speed, decreasing modulus of elasticity of the surfaces, increasing the thermal 

conductivity, or increasing the film thickness [20]. Surface roughness is seen to have a large effect 

on the stability of surface interactions through a multitude of cases. It is therefore desired to study 

the nature of fluid behavior effected by surface roughness, which can lead to predictive flow 

models. 

The following thesis seeks to analyze the derivation of surface specific flow factors for an 

accurate hydrodynamic lubrication model, specifically for the case of automotive power cylinder 

components. 
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CHAPTER 2 

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Power – Cylinder Components 

 An internal combustion engine is a machine designed to extract work from the combustion 

of air and fuel inside a combustion chamber. Many design considerations are taken into account 

in the procedures for building one of these highly sophisticated mechanisms. With many different 

forms and applications, these engines can be used from propelling large scale marina equipment 

to smaller scale house work items to everyday automobiles. This section goes into detail about 

the mechanics and design considerations involved with the setup, build quality, and general run 

quality of the components used in the power generation cycle of the four-stroke internal 

combustion engine. 

 

2.1.1 Piston and Crank Mechanisms 

 The piston is arguably the most important part of an internal combustion engine itself and 

can be seen in Figure 2.1. The piston is designed to be strong, lightweight, and able to withstand 

great amounts of stress. The purpose of the piston is to transfer force from the combusting gas in 

the cylinder chamber to the crankshaft which generates usable torque. As the piston moves in an 
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upward motion, a counterweight on the crankshaft is able to force the piston upward upon initiation 

of the engine cycle. An adverse pressure gradient from the crankcase housing to the combustion 

chamber also slightly helps drag the piston to Top Dead Center (TDC) upon completion of the 

exhaust stroke. As the pressure in the chamber reaches its peak when the combustion process takes 

place, this generates a force spread across the piston head area forcing the motion in a linear 

downward direction. This action’s efficiency of linear downward motion is heavily reliant on the 

lubrication and the tribological interaction of the piston and the cylinder wall, which is the focus 

of this work. 

 

 

Figure 2.1: Piston components [21] 

 



 
 

 
8 

 
 

 

 The connecting rod is mounted to the crankshaft by means of a radial bearing. This rotary 

element is designed to support large axial loads that are transmitted between the two elements. 

This hydrodynamic bearing is able to eliminate large amounts of friction that would normally be 

a problem. The lubricant acts as a full film which is able to divert this heat created from friction 

away from the crankshaft. This rotating combination of the piston and the connecting rod has to 

be strong and uniform in order to generate the torque required for work output. If the connection 

is otherwise beyond perfection, severe mechanical efficiency losses can occur. 

 

2.1.2 Block, Head, and Pan Construction 

The engine block is the backbone in generating usable torque. Without a strong housing 

the combustion reaction is unable to take place. The stress yield points for steel must be able to 

withstand the cyclic stress generated by the piston. The engine pan is bolted to the engine block 

by several steel bolts. This pan keeps the crankshaft, crank arm, and other parts within a working 

medium protected from any external anomalies such as debris in the lubricants or undesired 

particles in the combustible air. 

With such high temperatures being reached inside the cylinder, countermeasures are taken 

in order to cool the engine block. Two methods may be used, one is passive cooling and the other 

is active cooling [22]. Extended surface fins are one example of passive cooling. Extruded fins 

seek to increase the heat transfer rate between the cylinder and the ambient air by increasing the 

amount of free convection able to act on the surface area of the engine block. The heat generated 

from the combustion process is carried by way of conduction to the surface of the fins where the 
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free convection air is then able to lower the convective heat transfer coefficient. This system is 

typically found on smaller internal combustion engines. Automobile engines use active cooling. 

Active cooling involves the use of a mechanical system to force a coolant through the engine block. 

A water pump, powered by a belt from the crankshaft, supplies the pressure to drive the coolant 

around the system and through a liquid to air heat exchanger, also known as a radiator. 

The proper operating temperature range also greatly affects the ignition timing. If the 

ambient air temperature is beyond normal operating conditions the cylinder will heat up 

unnecessarily and pre-ignition can occur. Likewise if the ambient air temperature is far too cold 

the sparkplug can produce undesired carbon deposits around the central electrode. Even worse, the 

spark could still fire and the carbon deposits can create a delay which results in the spark and piston 

mistimed; this is engine knock. 

 

2.1.3 Cylinder Geometry 

 Cylinder geometry is designed to take into account many factors. Of which the most 

important are squish, tumble, and swirl. These three factors all deal with increasing the burn rate 

of combustion in an effort to increase volumetric efficiency [22]. The top of the combustion 

chamber is rounded, as seen in Figure 2.2 in order to give the incoming air angular velocity, this 

helps in generating swirl, which gives a faster burn rate and therefore a higher volumetric 

efficiency. 
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2.1.3.1 Squish and Swirl 

As the piston moves towards TDC at the end of the compression stroke, the gas mixture at 

the outer edge of the cylinder walls is forced radially inward. This radially inward motion of the 

gas mixture is called squish. This fluid process adds to the mass motion within the cylinder, in 

order to help spread the flame front faster, as will be seen in greater detail in this section swirl is 

generated by the onset of air from the port inlet into the combustion chamber. Air is forced 

throughout the chamber by the downward motion of the piston. As the inlet valve is offset from 

the center axis of the chamber, and due to the helical nature of the walls, this forces the air into the 

combustion chamber with an angular momentum. This downward angular “controlled” turbulence 

motion is what swirl refers to. Other engines may have more design configurations than just a 

Figure 2.2: Cylinder geometry to induce angular velocity 
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piston chamber assembly, such as a hemi-spherical valve arrangement, as seen in Figure 2.3 or 

even air passages that induce swirl before the air enters the chamber. All of which seek to increase 

the volumetric efficiency of the engine. However too much swirl is bad and reduces volumetric 

efficiency as well. 

 

 

Figure 2.3: Hemi-spherical nature of combustion chamber to induce swirl [23] 
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2.1.4 Ignition 

The spark plug is the mechanism that initiates the reaction inside the combustion chamber. 

As the electrons on both sides of the spark plug bridge, seen in Figure 2.4, build up due to a periodic 

magnetic field, the potential difference grows. Once this voltage potential exceeds the dielectric 

strength of the air and gas between the bridge, this gas becomes ionized. The ionization of this gas 

becomes the initiation of the chemical combustion reaction due to a dramatic difference in heat. 

This intense heat fueled reaction then generates the flame front in the cylinder (Section 2.1.6). 

 

 

Figure 2.4: Spark plug electrode bridge [24] 
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2.1.5 Balancing 

Having a completely balanced internal combustion engine is virtually impossible even with 

an even numbered of cylinders. This only makes the design for the rotating machinery that much 

more vital for the longevity of its use. In accordance with Newton’s Second law of motion, an 

object that has mass and velocity also carries momentum. Expressed mathematically in terms of 

its linear momentum, in an inertial reference frame, and the control volume being the combustion 

chamber, Reynolds Transport Theorem may be used to describe the piston’s force. 

As the piston speed is directly proportional to the crankshaft speed, so are the transmitted 

forces. When the piston head is reaching TDC its velocity must reach zero in order for it to change 

directions. Its momentum is slowed and eventually stopped by the crankshaft. This process is the 

same when the piston reaches Bottom Dead Center (BDC). Its momentum must completely change 

direction before alternating directions linearly. 

This sudden transfer of momentum from the piston to the crankshaft causes ever so slight 

deformations acting on the crankshaft similar to a cantilevered beam. As the crankshaft deflects it 

creates a frequency from which many deflections (one while the piston is at TDC and one while 

the piston is at BDC) occur in a specified length of time. In this vibrating system, the point where 

the forces cause the oscillations in the crankshaft to grow phenomenally is called the resonant 

frequency. Resonant Frequency is a crucial part when it comes to engine design, and if not 

designed for properly can lead to catastrophic failures in the materials used. 
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2.1.6 The Flame Front 

 The flame front in an internal combustion engine bridges the burnt gas from unburnt gas 

by a high velocity pressure differential reaction [25]. The kernel initiates from the bridge in the 

spark plug. Generating higher swirl ratios and squish will create a hotter and faster flame front 

dependent on the engine speed. The angle of the crankshaft at ignition is directly related to the 

angle at the start of combustion through 

 𝜃𝜃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝐶𝐶𝑜𝑜𝐶𝐶𝐶𝐶𝐶𝐶𝑠𝑠𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶 −  𝜃𝜃𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶 𝑃𝑃𝑜𝑜𝐶𝐶𝐶𝐶𝑆𝑆 =  𝜃𝜃𝐼𝐼𝐼𝐼𝐶𝐶𝐶𝐶𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶 𝐷𝐷𝐷𝐷𝐷𝐷𝑆𝑆𝐷𝐷 (1) 

 This equation states that the crank angle at the moment the flame is visible minus the crank 

angle when the sparks fires gives the crank angle of the ignition delay. 

 A crucial part in flame front design is the location of the spark plug. If the spark plug is at 

the outer edge of the cylinder, the flame front travels only in one direction thus generating a larger 

than normal burn rate velocity and impacts the cylinder wall with ferocious momentum [25]. After 

many cycles this constant bashing against the wall can cause the spark and piston to be out of 

synchronization, thus leading to engine knock. 

 Some engine designs have the spark plug directly above the center of the piston in order to 

ensure an isotropic flame front throughout the combustion chamber. As the flame comes to a 

termination along the cylinder walls not all the fuel-air mixture is combusted. The end gas is still 

slightly compressed however and can sneak into crevices, as will be seen in Section 2.1.7.2.The 

burned gas as a function of crank angle can be modeled using the Wiebe function [25] given as 

 𝑥𝑥𝐶𝐶(𝜃𝜃) =  𝑥𝑥𝑆𝑆 + (1 − 𝑥𝑥𝑆𝑆) �1 − 𝑒𝑒𝑥𝑥𝑒𝑒 �−𝑎𝑎 �
𝜃𝜃 − 𝜃𝜃𝑠𝑠
𝜃𝜃𝑑𝑑

�
𝐶𝐶

�� (2) 



 
 

 
15 

 
 

 

where 𝑥𝑥𝑆𝑆 represents the unburnt residuals, 𝜃𝜃𝑠𝑠 represents the crank angle at the start of combustion, 

and 𝜃𝜃𝑑𝑑 represents the crank angle duration. The combination of these parameters gives the amount 

of charge left in the chamber undisturbed by the flame front. 

 

2.1.7 Gas Dynamics 

 As seen in analyzing squish and swirl as well as the flame front, gas dynamics plays an 

extensive role in contributing to an engines efficiency and run quality. 

 

2.1.7.1 Air and Fuel Flow 

 Clean air is a necessity for a quality combustion reaction. Air enters by way of the filter 

and travels through the carburetor where it mixes with the gas to travel past the choke. The choke 

limits the allowable mass flow rate that gets through to the combustion chamber. The fuel is mixed 

with the air at the choke valve and is governed by the venturi effect [25], resembling a converging 

diverging nozzle. In order for the gas to flow through the venturi there has to be a pressure 

differential as stated in the mass flow equation: 

 �̇�𝑚𝑜𝑜𝐶𝐶𝐷𝐷𝐷𝐷 =  𝐶𝐶𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗  𝐴𝐴𝑗𝑗𝐷𝐷𝑆𝑆 �2 𝜌𝜌𝑜𝑜𝐶𝐶𝐷𝐷𝐷𝐷 (𝑒𝑒0 −  𝑒𝑒𝑆𝑆ℎ𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆)�
1
2 (3) 

where 𝐶𝐶𝑑𝑑𝑗𝑗𝑗𝑗𝑗𝑗  is the discharge coefficient of the jet and accounts for the viscosity of fluids, 𝑒𝑒0 is the 

stagnation pressure, and 𝑒𝑒𝑆𝑆ℎ𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆 is the pressure at the throat. 

With the choke valve wide open the mass flow rate of air through the intake dramatically 

increases while with a completely closed choke virtually no air is able to get through. Upon start-

up, the choke valve is in the full open position in order to allow the initiation of combustion with 
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more air and fuel as this requires significantly more work being done on the piston. That being 

said, upon ignition and start-up the throttle is lowered in order to close the choke valve slightly as 

the engine does not need to be run at wide open throttle in most automobile cases. This comes 

from the help of the counter weight on the crankshaft that help keeps the piston in constant motion 

along with the combustion inside the cylinder chamber forcing the piston down. 

 Keeping the throttle in a moderate position between fully open and closed also increases 

the volumetric efficiency of the engine. If not enough air is able to flow into the cylinder there is 

wasted space and energy inside the combustion chamber. Likewise, if there is too much air the 

unburned residuals will be higher at the completion of combustion thus leaving more wasted fuel 

and air inside the cylinder at the start of the next stroke. 

 

2.1.7.2 Exhaust Flow 

 For a new cycle to begin in the combustion chamber, the unburnt gas must be forced out 

of the cylinder. As the cylinder travels from BDC to TDC the exhaust port is opened thus expelling 

the used gas into a series of tubes. These tubes channel the exhaust to the muffler which thus expels 

the used chemicals to the environment. If the flow is non-choked the mass flow rate past the outlet 

valve becomes 

 �̇�𝑚  =   
(𝐶𝐶𝑑𝑑𝐴𝐴)𝑒𝑒𝑜𝑜
�𝑅𝑅𝐶𝐶𝐼𝐼𝑇𝑇𝑜𝑜

  �
𝑒𝑒𝑆𝑆
𝑒𝑒𝑜𝑜
�
1
𝑘𝑘

  � 
2𝑘𝑘
𝑘𝑘 − 1

 � 1 − �
𝑒𝑒𝑆𝑆
𝑒𝑒𝑜𝑜
�
𝑘𝑘−1
𝑘𝑘

 �  �

1
2

 (4) 

where 𝑇𝑇𝑜𝑜 is the reference stagnation temperature, 𝑒𝑒𝑜𝑜 is the reference cylinder stagnation pressure 

as a function of crank angle, 𝑘𝑘 is 𝐶𝐶𝑝𝑝
𝐶𝐶𝑣𝑣

 inside the cylinder, 𝑒𝑒𝑆𝑆 is the pressure at the throat, 𝐶𝐶𝑑𝑑 is the 
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discharge coefficient and is roughly 0.7 for exhaust valves, and 𝐴𝐴 represents the minimum curtain 

area [25]. The foundation of this equation is based on a pressure differential sufficient enough 

between the exhaust pressure and the pressure at the throat to drive the mass flow rate. Without 

this pressure difference, there would be no exhaust flow. 

 Approximately 9% of the fuel that enters the combustion chamber is not burned in the 

primary combustion process. About 7% of that will eventually burn and the remaining 2% is 

emitted. This 7% consists of 5% due to the fuel trapped in crevices such as spark plug pockets, 

head gaskets, and the piston ring, while the 2% is absorbed into the liquids and solid deposits [22].  

 

2.1.8 Piston Ring – Pack 

 As previously mentioned the piston is one of the most important parts of generating usable 

work. This cyclic nature of the piston would normally melt the piston rings and crankshaft bearings 

without the aid of a lubricant or lubrication. This interaction of the piston, piston ring, and cylinder 

wall is crucial in not only generating usable work but also efficient work [26], a schematic of the 

interactions can be seen in Figure 2.5. As the piston traverses linearly downward in the bore from 

TDC to BDC, the piston ring is forced at an angle due to its inertial resistance. A similar situation 

happens in moving from BDC to TDC. A detailed study of the interactions of the piston ring, 

cylinder wall, and lubricant supporting the two is presented in this work for the development of a 

numerical flow model to predict the failure of these components, which can lead to the design of 

superior component materials and even geometry. 
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2.2 The Reynolds Equation 

 The Reynolds equation is a second order linear partial differential equation governing the 

generation of hydrodynamic pressure in thin viscous film bearings [27]. It is commonly the 

equation of use in modeling the viscous flow of lubricant between the cylinder wall and piston 

ring. The Reynolds equation can be used to predict how surface roughness effects bearings in 

elasto-hydrodynamic contact. It can account for how the flow transport and impedance is altered 

due to local flow regions near peaks and in valleys of the surface roughness features. This 

additional flow transport is only seen in the sliding contacts of two rough surface bearings [26]. 

The Reynolds equation is derived from the Navier-Stokes equations, which are derived from 

Newton’s second law paired with the conservation of momentum. There are many forms of the 

Reynolds equation, and each form is based on the variations of physical mechanisms involved in 

the system. The general form of the Reynolds equation, which will be derived in greater detail 

later on, for a thin, viscous, incompressible, Newtonian, laminar fluid is 

𝑼𝑼� = 𝟎𝟎 𝑼𝑼�  

𝑼𝑼�  

Figure 2.5: Piston ring and cylinder wall tribological interaction 
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2.2.1 Application to Power – Cylinder Components 

 Among power cylinder components, the Reynolds equation has been seen more commonly 

used in a one dimensional form and a two dimensional axisymmetric form. For example Ting and 

Mayer [26] use the one dimensional axisymmetric form to analyze the effect of piston ring 

lubrication on cylinder bore wear analysis. Similarly Chong, et. al. [28] use the one dimensional 

form of the Reynolds equation in analyzing cavitation induced starvation for the tribological 

conjunctions in piston ring-packs. Furuhama [29] expands this to a two dimensional piston ring 

analysis in analyzing the continual dynamics of piston ring lubrication. He derives a model for 

average film thickness between the cylinder wall and piston ring as a function of crank angle. 

Akalin and Newaz [30] use the Reynolds equation to perform a two dimensional unsteady analysis 

on piston ring-cylinder bore friction modeling in the mixed lubrication regime. The three 

dimensional form of the Reynolds equation has not been used among power cylinder components 

as it pertains to specific applications [31, 32]. 

 

2.2.2 Alternate Applications 

 The Reynolds equation can also be used to calculate the hydrodynamic pressure among 

other machine bearings, such as journal bearings, slider bearings, and or gas lubricated bearings. 

With this, Reynolds equation can also be written in its compressible form as 
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 (6) 

The Reynolds equation can also be used for not just Newtonian fluid, but also non-

Newtonian fluids. Peiran and Shizhu [33] derive a form of the Reynolds Equation for non-

Newtonian thermal elasto-hydrodynamic lubrication. Dien and Elrod [34] then combine these two 

applications and apply the generalized Reynolds equation for non-Newtonian fluids to a journal 

bearing. The non-Newtonian Reynolds equation model was then applied to not only laminar flow, 

but also transitional flow and turbulent flow regimes by Metzner and Reed [35]. Mitsuya et. al. 

[36] sought to incorporate not only roughness, but also slip past the asperities into an average 

Reynolds equation. Wu [37] then took this slip model and applied it to the compressible Reynolds 

equation (Eq. (6)). 

 Having seen how the Reynolds equation is able to be applied and modified to solve for 

hydrodynamic pressures between various cases, the case in question is among power cylinder 

components. The form of the Reynolds equation derived is namely involving statistical flow 

factors which modify the Reynolds equation to account for various surface roughness in the full-

film lubrication regime. 

 

2.3 Flow Factors 

 Flow factors are a method for determining roughness effects on lubrication flow in the full 

film lubrication regime, the mixed lubrication regime, or boundary regime. The three major flow 

regimes are composed of thin viscous films that can be categorized by the Stribeck curve shown 

in Figure 2.6. The Stribeck curve is a plot of coefficient of friction versus the dimensionless bearing 
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number. The Stribeck curve is used to determine the transitions between the flow regimes. On the 

left side of the Stribeck curve is the boundary lubrication regime where there exists aggressive 

surface abrasion and wear is high, as seen in Figure 2.7. On the right side is the hydrodynamic 

regime where the surfaces are completely separated by a full film. Surface roughness plays a large 

part on load carrying capacity among all of these regimes. 

 

 

Figure 2.6: Stribeck curve with marked lubrication regimes [38] 
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Figure 2.7: Depiction of various lubrication regimes [39] 

 

 Lubricants interact not only at the macroscopic level, but also at the microscopic level; 

which is especially important for the surfaces themselves. While the Reynolds equation (Eq. (5)) 

can be used to solve for pressure at each asperity on a rough surface, this method is tiresome and 

computationally arduous. Surface roughness plays a large part in the hydrodynamic flow regime. 

It is computationally and numerically difficult to model the flow past individual asperities. 

Asperities of each surface in or near contact play a large role in the influence on lubrication flow. 

For this very reason the Reynolds equation is modified by the use of pressure and shear flow 

factors. 

 Patir and Cheng [1, 40] were the first to determine the effects of surface roughness on the 

flow between three-dimensional surfaces. The flow effects were determined through the use of 

statistical flow factors. The flow factors were incorporated into the Reynolds equation (Eq. (5)) 

through 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜑𝜑𝑥𝑥
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� +

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜑𝜑𝑧𝑧

ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� =

𝑈𝑈�
2
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

+
𝑈𝑈�
2
𝜕𝜕𝜑𝜑𝑠𝑠
𝜕𝜕𝑥𝑥

 (7) 



 
 

 
23 

 
 

 

where 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧 represent the effects the asperities have on the pressure driven flow in the absence 

of any surface movement or shearing. While 𝜑𝜑𝑠𝑠 represents the effects the asperities have on the 

shear driven flow, in the absence of any pressure induced gradient. 

Flow factors are a method used to statistically model a rough surface as a smooth surface. 

As the surface specific topography can be found through measuring tools, the flow past and around 

these points can then be statistically modeled. These models can then be used in conjunction with 

the Reynolds equation for a more accurate pressure solution which takes into account surface 

texturing. 

 Patir and Cheng derived their flow factors from numerically generated surfaces with known 

statistical properties, and then used empirical flow factor equations to modify the Reynolds 

equation. In contrast to Patir and Cheng, this work presents flow factors that are derived from 

actual measured surfaces, followed by the modification of the Reynolds equation with the surface 

specific empirical flow factor equations. This allows for a more accurate analysis of the pressure 

and shearing effects surface specific topography has on power cylinder components. 

 The Reynolds equation is seen to govern the behavior of the mean pressure in rough 

bearings and thin film interacting surfaces. However, a more accurate model taking into account 

surface topography layout can be used. The flow factors set forth by Patir and Cheng are a very 

reliable statistical model, however newer techniques are utilized to derive empirical models that 

may have improved accuracy among power cylinder components. 
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2.4 Cavitation 

 Cavitation is the spontaneous formation of pressure free voids or zones and is the result of 

placing excessive shearing and tensile forces on a lubricant. The lubricant is spontaneously able to 

overcome the molecular bonds holding the fluid together, thusly creating space between them and 

creating a negative pressure zone that is a two-phase composition. Cavitation can also happen 

when the pressure in a fluid spontaneously drops. This sudden drop in pressure is caused by the 

fluid shearing quicker than it can react which leaves trails of negative pressure. This is damaging 

to the lifespan of mechanical components as the cavitation zones collapse and implode on the 

surfaces causing undesired cyclic stress. 

 

2.4.1 Cavitaion Models 

 Cavitation is an area that has not gained too much interest among power cylinder 

components until recent years. Several cavitation models have been formulated and or 

implemented in conjunction with calculating more accurately the total hydrodynamic pressure a 

fluid film undergoes among tribological components. A few cavitation models that have been 

integrated with power cylinder components are: 

1. Universal Cavitation Model [41] 

2. Jakobsson, Floberg, and Olsson (JFO) model [42] 

3. Flow Separation Model [43] 

4. Floberg Model [44] 

5. Swift Stieber Model [45, 46] 
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Yang and Keith [47] uses the universal cavitation model in examining the elasto-

hydrodynamic regime for piston ring lubrication. This combines the Rayleigh-Plesset equation for 

physical bubble dynamics, into a model containing cavitation which accounts for flow continuity 

of mass. The resulting equation is: 

 𝑅𝑅
𝑑𝑑2𝑅𝑅
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−
2𝑆𝑆
𝜌𝜌𝐷𝐷𝑅𝑅

 (8) 

where 𝜈𝜈𝐷𝐷 represents the kinematic viscosity of the fluid, S is surface tension between the boundary 

of the cavity and the fluid, 𝜌𝜌𝐷𝐷 is the density of the liquid, and 𝑒𝑒 is the fluid pressure far from the 

bubble. This relates the time rate of change of the bubble radius, R, and the bubble 

pressure, 𝑒𝑒𝑐𝑐𝑆𝑆𝑐𝑐𝐶𝐶𝑆𝑆𝐷𝐷, to the fluid properties while holding true to conservation of mass [48]. 

The JFO model has received much of the attention. The JFO model was initiated by 

Jakobsson and Floberg [49] and further extended by Olsson [42]. Their model can properly treat 

the spontaneous nature of the cavitation film rupture and the film reformation. Elrod [50] sought 

to simplify the model into a universal governing equation that is valid for both the fully 

hydrodynamic regime and the cavitation voids. He introduced a numerical analysis that enabled 

the prediction of the cavitaion region. Paydas and Smith [51] were the first to apply Elrod’s 

universal algorithm to a practical application, namely involving journal bearings [52]. 

Ma [53] was the first to apply the simplified JFO model to the study of piston ring 

lubrication [52]. He found that the operating performance of the piston ring is largely influenced 

by lubricant starvation. Specifically as starvation increases, the conditions that could lead to 

gaseous blow-by are greatly enhanced [53]. The JFO model can be directly incorporated into the 

Reynolds equation and therefore has had a large interest in the development of piston ring 
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lubrication modeling considering cavitation. The accuracy of the hydrodynamic pressure is still 

just as accurate. This led Harp and Salant [54] to derive a density flow factor that was derived 

experimentally and fit with an empirical equation similar to the pressure and shear flow factors as 

mentioned in Section 2.3. This density flow factor is new and specific to the cavitation model. It 

accounts for the reduced density in the control volume due to the pockets of air [54]. The average 

Reynolds equation is kept in the same form as in Sections 2.2 and 2.3 except it improves the 

accuracy of the hydrodynamic pressure calculations by including the effect of inter-asperity 

cavitation. 

 

2.4.2 Cavitated Region Boundary Conditions 

 There are several methods for setting the boundary conditions of the cavitated regions of 

the lubricant. Sommerfeld [55] derived the hydrodynamic pressure solution for the journal bearing 

in 1904 and the solution can be seen in Figure 2.8(a). 
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Figure 2.8: (a) The full-Sommerfeld boundary conditions and 
            (b) Half-Sommerfeld boundary condition [28] 

 

This approach is unrealistic in the application among power cylinder components as it 

requires the lubricant to sustain very large negative hydrodynamic pressures for an extended period 

of time and will lead to an under prediction of the hydrodynamic load carrying capacity [56]. When 

gaseous cavities form in a lubricant, the flow rate at the cavitation boundary must increase to 

maintain the mass flow continuity of the lubricant due to the void regions. The JFO model requires 

that there is zero pressure gradient and mass is conserved at the rupture and reformation boundaries 
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of the cavitaion zones. The Gümbel solution, also known as the half-Sommerfeld solution, realizes 

that a lubricant cannot sustain large negative pressures over extended periods of time and as a 

result simply neglects the negative pressures [57], this can be seen in Figure 2.8(b). This solution 

condition, however, does not satisfy the mass flow continuity and is rarely used among power 

cylinder components. A popular boundary condition is the Reynolds condition formulated by Swift 

[46] and Steiber [45], where boundary conditions are applied to the cavitation boundary and are 

 𝑒𝑒 = 𝑒𝑒𝑐𝑐𝑆𝑆𝑐𝑐𝐶𝐶𝑆𝑆𝐷𝐷      ,     
𝑑𝑑𝑒𝑒
𝑑𝑑𝑥𝑥

= 0 (9) 

where 𝑒𝑒𝑐𝑐𝑆𝑆𝑐𝑐𝐶𝐶𝑆𝑆𝐷𝐷 is the saturation pressure of the gaseous cavities. This condition is preferred over 

the Sommerfeld or half-Sommerfeld solution as the mass continuity is held across the cavitation 

boundary layer. This boundary condition can also be directly implemented with the Reynolds 

equation, and will be tested numerically in a later section. 

 There are other highly accurate cavitation models that deal in calculating bubble dynamics, 

however they deal primarily with the full universal cavitation model and are beyond the scope of 

this thesis. For completeness they are listed as follows 

1. Singhal et al. Model [41] 

2. Zwart-Gerber-Belamri Model [58] 

3. Schnerr and Sauer Model [59] 

More commonly, these cavitaion models are utilized in Computational Fluid Dynamics 

(CFD) analysis using software packages such as ANSYS, ABAQUS, Star CCM, etc. due to their 

complexity.  
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Measurement of Interacting Surfaces 

 There are several methods for measuring precision surface finishes. Two general categories 

are contacting and noncontacting. For this thesis contacting methods were used and are the focus 

of the analysis. A stylus profilometer is under the category of utilizing contacting methods. A 

profilometer is a tool that’s designed based on the principle of using the vertical motion of a stylus 

tip and transforming it into lateral surface heights. This rough surface measurement is utilized in 

the derivation of the surface specific flow factors. While this method was performed on power 

cylinder components, the method of deriving surface specific characterizations can be done with 

almost any engineered surface. 

 

3.1.1 Profilometer 

 The use of a profilometer is one of the most common tools in measuring surface finish due 

to its accuracy, range of tribological uses, and cost. The stylus tip utilized in this work is made of 

diamond, has a tip radius of 2𝜇𝜇𝑚𝑚, uses a static load of 10mg, and has a resolution of 1 nm. If the 

load of the stylus tip is too low and the velocity is too high, this may result in bouncing on the 
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surface and results in the loss and misreading of surface resolutions. In a similar fashion if the load 

is too high and the velocity too high, this results in abrasion of the tip on the surface, which leads 

to not only damage of the stylus but also the surface. Several issues can arise from the stylus tip. 

One is that the tip is relatively large in comparison with the smallest roughness features. Features 

may inadvertently be filtered as shown with the stylus tips in Figure 3.1. 

 

 

Figure 3.1: Influence of stylus tip on surface measurement [60] 

 

 Due to the sensitivity of the instrument, the profilometer is operated on a self-leveling 

pneumatic vibration isolation table. This ensures the steadiness of the machine when measuring 

the surfaces. 

 The current thesis used a rough surface sample cut out of a cylinder wall from an internal 

combustion engine supplied by Ford Motor Company. For the sample surface, 1,000 rows, 

1,000𝜇𝜇𝑚𝑚 long were measured each spaced 1𝜇𝜇𝑚𝑚 apart, thus the length-to-width dimensions of the 

surface sample is 1000𝜇𝜇𝑚𝑚 X 1000𝜇𝜇𝑚𝑚. The measured raw surface data for the cylinder wall 

measurements are shown in Figures 3.2 and 3.3. 
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Figure 3.2: Current Production Engine Cylinder Wall (Isometric View) 

  

 

Figure 3.3: Current Production Engine Cylinder Wall (Top View) 
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3.1.2 Cylinder Wall – Level Data 

 With the raw data surveyed, the cylinder wall surface heights must now be leveled. In 

leveling the surface this ensures that the average surface height is set to zero, and can be expressed 

mathematically as 

 𝑦𝑦𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 = 𝑦𝑦𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷𝑐𝑐𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑 − 𝑦𝑦𝑐𝑐𝐶𝐶𝑆𝑆𝑐𝑐𝐷𝐷 𝑜𝑜𝐶𝐶𝑆𝑆 (10) 

 Due to the nature of the profilometer measuring each of the 1,000 rows individually, each 

row must be leveled separately. This ensures that each rows average is leveled at zero. If the whole 

surface was leveled at once this could filter out surface data from other rows. As the stylus traverses 

the surface in a single row there is an amount of error that arises as mentioned in Section 3.1.1. If 

all the surface heights were summed across the whole surface so would the error, thus each row is 

leveled separately to reduce the amount of error. With the cylinder wall surface data leveled with 

an average surface height centered at zero, attention is now shifted to the piston ring surface. 

 

3.1.3 Piston Ring – Curvature 

 The opposing surface in question is the piston ring. The piston ring raw data and surface 

heights were sent directly from Ford Motor Company. The piston ring is from the same production 

engine, with the same length-to-width measurements. The surface and its heights can be seen in 

Figure 3.4. 
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 In deriving surface specific flow factors from surface topography, only the surface features 

are needed. The geometry of the ring is not needed in the derivation. Later on the Reynolds 

equation will be seen to take care of the flow field geometry. In a similar fashion to the cylinder 

wall, in looking at the piston ring roughness, a leveled surface is desired. This includes fitting each 

row with a curve, finding the average surface height from the curve fit, then subtracting out the 

average. Figure 3.5 shows one of the rows of data curve fitted to a fifth order polynomial with 

coefficients that have 95% confidence bounds at every node. This procedure was iterated for each 

of the 1,000 rows of data to be leveled at zero. A side view of the entire piston topographic structure 

is seen as a comparison in Figure 3.6. In Figures 3.7 and 3.8 the piston ring can be seen without 

Figure 3.4: Piston ring with curvature (Isometric View) 
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any curvature after it has been removed. The piston ring now has no curvature and is leveled with 

an average surface height centered at zero. 
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Figure 3.5: One row of measured data points on the curved piston ring 
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Figure 3.6: Side view of piston ring structure 

 

Figure 3.7: Piston ring without curvature (Isometric View) 
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3.1.4 Surface Topography 

 Surface topography is the key influence on the derivation of surface-specific flow factors. 

How the lubricant is conveyed past asperities is the basis of the empirical flow factor equations. 

The transversely oriented asperities hinder the flow of lubricant while longitudinally oriented 

asperities aid in the movement of lubricant. This is synonymous with the design of the engineered 

cylinder wall surface where lubricant is channeled through the grooves to aid in the lubrication of 

the piston ring-pack. The local hydrodynamic pressure on these rough surfaces is desired to have 

an average flow model predicting the average hydrodynamic pressure across a set of surfaces. 

 

Figure 3.8: Piston ring without curvature (Top View) 
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3.1.4.1 Cylinder Wall Features 

 The cylinder wall features play a major role among power cylinder components. Namely 

to contain the combustion reaction inside the engine bore. As the piston’s connecting rod traverses 

around the crankshaft the rotational dynamic movement is transferred into rectilinear movement 

by way of the piston and engine bore. The cylinder wall guides the piston from TDC to BDC, and 

vice versa, continually. As the piston moves in a rectilinear fashion several thousand times per 

minute, constant lubrication is required to prevent components from generating heat, by way of 

friction, causing significant wear and leading to mechanical failures. 

 The cylinder wall’s capabilities of providing lubrication to the engine bore have greatly 

increased over the recent years. The cross-hatched pattern, seen in Figure 3.3, is engineered to 

better channel the lubricant along the direction of piston motion (x direction). As lubricant 

traverses through the grooves, additional hydrodynamic load support is generated due to the added 

conveyance of lubricant, as compared to a smooth cylinder wall surface. In analyzing the entirety 

of the cylinder wall around the engine bore, this hydrodynamic lift causes a pseudo steady-state 

model. Prior to the development of the cylinder wall lubricant grooves, the increase in 

hydrodynamic lift force on one side of the bore resulted in a decrease in hydrodynamic lift force 

on the opposing side of the bore. This lift force would reverberate several times back and forth in 

one combustion cycle causing the piston to shake within the chamber. The cylinder wall grooves 

aid in the result of a steady flow of lubricant and thus a more constant hydrodynamic load, instead 

of reverberating from one side to the other side, throughout the piston cycle. 
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For the cylinder wall the materials used are gray cast iron with controlled hardness and 

microstructure to achieve optimum cylinder liner characteristics. This hardness resists 

deformations due to mechanical contacts on the cylinder wall by the piston ring. The chemical 

breakdown of the cylinder wall can be seen in Figure 3.9. 
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Figure 3.9: Chemical make-up of cylinder wall to improve 
lubrication and hardness effects. In (a) is Carbon, (b) is 
Chromium, (c) is Copper, (d) is Iron, (e) is Manganese, (f) 
is Oxygen, (g) is Phosphorus, (h) is Silicon, (i) is SEM of 
cylinder wall, and (j) is the Zinc map 

*Special thanks to Ford for supplying the photos 

(a) (b) (c) 
 

(d) (e) (f) 
 

(g) (h) (i) 
 

(j) 
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 In Figure 3.9, black represents space between the chemical concentration areas, while each 

color represents that particular elements concentrated area. Each sample has length-to-width 

dimensions of 150𝜇𝜇𝑚𝑚 X 150𝜇𝜇𝑚𝑚. It can be seen from Figure 3.9(d) that the cylinder wall is 

primarily iron; seen from the prominent amount of color compared to black. Also, there are certain 

spots on the cylinder wall where the elements are concentrated in porous regions, as seen by the 

concentration of color in Figures 3.9(f) and 3.9(g). These concentration spots can be seen in Figure 

3.3 as craters where the surface height is below zero. Thus there are porous regions in the cylinder 

wall. There are also porous regions that are more prominent on the piston ring. 

 

3.1.4.2 Piston Ring Features 

 Similar to the cylinder wall, the piston ring is also engineered for improved functional 

surface properties. The piston ring is given more porous features. These pores allow lubricant to 

nucleate providing additional hydrodynamic lift and load support. These pores are seen in Figure 

3.8 as surface heights below the leveled surface. They serve as a similar function to the cylinder 

wall grooves where they are engineered to carry lubricant, thus increasing hydrodynamic load 

support. These porous regions prevent severe mechanical damage from the piston ring on the 

cylinder wall by ensuring there is a constant supply of lubricant on the piston ring surface. The 

reverberations from one side of the engine bore to the other side are also reduced for the same 

reasons mentioned in Section 3.1.4.1. 

 Tribological surface characteristics are very prominent in the mechanical success of power 

cylinder components and are often underestimated. These surface features are, and will be, seen to 
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have a large effect on lubrication of the cylinder wall and piston ring, not only by aiding in 

additional transport of fluid, but also the longevity of engine component life. These surface specific 

topographic features will be seen to have a major influence on the empirical flow factors. 

 

3.2 Surface Roughness Directionality Characterization 

Many engineered surfaces are given certain roughness parameters whether on purpose or 

due to a manufacturing technique, such as turning or milling. In most applications a statistical 

description of the surface will be satisfactory by means of its first and second moments of the 

probability density distribution function along with its Root-Mean-Square (RMS) roughness [61]. 

However, in analyzing the relatively low tolerances that are involved with power cylinder 

components, such as the piston, ring, and cylinder wall, more adequate surface characterization 

techniques are required. The elementary correlation function may describe analytically the surface 

topography based on the correlation lengths [2]. 

 

3.2.1 Auto-Correlation Function 

The auto-correlation function (ACF) reflects the profile of surface topography by relating 

the spaces between individual surface asperity heights. This is completed by relating a random 

signal to a delayed copy of itself as a function of delay [2]. The 2-D auto-correlation function 

provides a sufficient statistical description of a surface whose topography may be considered a 

general random process [62]. It is obtained by multiplying each asperity height by the height of 

another at a fixed horizontal distance farther along the profile. The horizontal distance starts with 
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an adjacent asperity and is iterated up to the length of the surface profile. Therefore the local 

asperities have more of an effect on each other than an asperity further away. This is very 

prominent under pressure driven flow and shearing of a fluid over asperities. 

The average of the product over the 2-D surface length represents the auto-correlation 

function and can be expressed in its primary tensor notation as 

 𝜌𝜌𝐶𝐶𝐶𝐶(𝜆𝜆) =  
1

𝑁𝑁 − 𝜆𝜆
� 𝑋𝑋𝐶𝐶𝐶𝐶(𝑙𝑙)
𝑁𝑁−𝜆𝜆

𝐶𝐶=1

𝑋𝑋𝐶𝐶𝐶𝐶(𝑙𝑙 + 𝜆𝜆) (11) 

where 𝑋𝑋𝐶𝐶𝐶𝐶(𝑙𝑙) represents the measured surface profile and 𝜆𝜆 represents the variable horizontal 

distance between asperities. This can be visualized from the surface profile in Fig. 3.10. 

 

Figure 3.10: Surface profile of auto-correlation parameters [2] 

 

In analyzing the 2-D auto-correlation function, on a 3-D surface, each row of asperities is 

correlated separately. Followed by averaging the correlations over the entire surface. This 

procedure is followed for both the x and z directions. Let λ0.5 represent the length at which the 

auto-correlation reduces to 50% of its initial value. Three cases are run to determine the correlation 

lengths for the cylinder wall surface, the piston ring surface, and the convoluted surfaces 

superimposed together through the principle of superposition. The cylinder wall asperity heights, 
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along with the piston ring asperity heights were superimposed to form one rough surface that 

incorporates all surface topography. With this the overall correlation lengths are able to be 

calculated for the piston ring-pack interface. Figure 3.11 shows the auto-correlation function for 

the cylinder wall, while Figure 3.12 shows the piston ring, and Figure 3.13 shows the convoluted 

surfaces. 

 

 

 

 As seen in Figure 3.11, the ACF gradually decays showing that as the correlation length 

increases, the asperities have less correlation and effect on each other. 

Figure 3.11: Auto-Correlation Function for the cylinder wall 
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 The asperities in the x direction have little correlation with each other, as seen in Figure 

3.11. This is graphically seen as the function reaches a minimum at a faster rate as compared to 

the z direction. The z direction is seen to take a longer time to decay. This is in agreement with the 

surface engineered topography. The cross-hatching pattern (Figure 3.3) is seen to have more of an 

effect on the local asperities in the z direction. This aids in the transport of fluid as asperities work 

in unison in this direction. This improves lubrication flow along the wall through the combustion 

cycle as the piston moves from Bottom Dead Center to Top Dead Center, and vice versa. 

 In Figure 3.12 are the x and z direction correlation functions for the piston ring. It is noticed 

that unlike the cylinder wall, there is not a strong correlation in one direction or the other. This is 

seen graphically as both the x and z correlation curves decay rather abruptly; this results in very 

little aid in the transportation of lubricant from local asperities. 
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Figure 3.12: Auto-Correlation Function for the piston ring 
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Figure 3.13: Auto-Correlation Function for convoluted surfaces 
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 The correlation lengths for the convoluted surfaces are seen in Figure 3.13. The x direction 

correlation length decays rather quickly in a similar fashion to both the cylinder wall and piston 

ring. The z direction correlation curve, however, is observed to be higher than the piston ring, but 

lower than the cylinder wall. This is where the curve should be observed due to the fact one surface 

is engineered for lubricant flow and one surface is not. It is still noticed by the z direction 

correlation curve for the convoluted surface that asperities farther away are more correlated. 

 

3.2.2 Cross-Correlation Function 

New developments have led to a more accurate model of the auto-correlation function by 

expanding its surface characterization capabilities [2]. Instead of correlating multiple 2-D ACF’s 

together over a 3-D surface, Peklenik suggested a 3-D cross-correlation function (CCF) instead of 

the auto-correlation function. Instead of correlating each row of asperities in a rectilinear fashion 

then averaging the correlations over the entire surface, it was suggested to move in a diagonal 

pattern across the surface. Figure 3.14 shows the movement of the cross correlation function. 
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Figure 3.14: Cross-Correlation Function direction [2] 

 

For three dimensional surface characterizations the auto-correlation function is able to be 

written in its primary tensor notation as the cross-correlation function 

 𝜌𝜌𝐶𝐶𝑗𝑗(𝜆𝜆) =  
1

𝑁𝑁 − 𝜆𝜆
� 𝑋𝑋𝐶𝐶𝐶𝐶(𝑙𝑙)
𝑁𝑁−𝜆𝜆

𝐶𝐶=1

𝑋𝑋𝐶𝐶𝑗𝑗(𝑙𝑙 + 𝜆𝜆) (12) 

The primary difference from the ACF and CCF is that multiple signals are now related to 

each other. This application is largely more accurate when analyzing the full intricacies of three 

dimensional surface characterizations of a real measured tribological surface. The assumption of 

a linear auto-correlation function for small decay lengths, λ, may be held true for most engineering 

surfaces under two dimensions [1], however this assumption is not held when expanded to three 

dimensions, especially for the accurate analysis of the piston ring interface. Figure 3.15 shows the 

cross-correlation function for the convoluted surfaces. 
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 The cross-correlation function is seen to have several differences from the auto-correlation 

function. Firstly is the amount of noise that is seen. The function is seen to have a very consistent 

and stable decay rate with little interferences. This is due to the amount of averages across each 

diagonal of the surfaces. Where the ACF averages each correlation length together to get one 

length, the CCF continually updates the average as more correlation signals are measured. 

Secondly, strong correlations exist at relatively evenly spaced distances, denoted by the curve 

peaks. This is due to the repetitive cross-hatching structure on the cylinder wall surface. 

Figure 3.15: Cross-Correlation Function for convoluted surfaces 
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For the evaluation of the directional surface patterns in the current study the cross-

correlation function must be normalized [2]. For deterministic characteristics and surfaces 

measured in identical parallel directional patterns (i.e. on a profilometer), the following condition 

must be satisfied 

 𝜌𝜌𝐶𝐶𝑗𝑗(𝜆𝜆)𝐶𝐶𝑆𝑆𝑥𝑥 =  𝜌𝜌𝐶𝐶𝐶𝐶(0) = 𝜌𝜌𝑗𝑗𝑗𝑗(0) = 1 (13) 

where the correlation function is normalized by its maximum value such that the value is unity. 

Likewise the correlation length is normalized by the root-mean-square roughness. With the 

correlation lengths calculated, deterministic methods can now be employed to classify the flow of 

lubricant past asperities among the surface interactions. 

 

3.2.3 Surface Anisotropy Index 

In order to study the specific effects of flow factors on directional surface topography we 

use the Peklenik [2, 63] number, γ, also known as the surface anisotropy index. The Peklenik 

number is defined as the ratio of correlation lengths in the x and z direction: 

 𝛾𝛾 =  
𝜆𝜆0.5𝑧𝑧

𝜆𝜆0.5𝑥𝑥
 (14) 

The Peklenik number can be visualized from Patir and Cheng [1] as the individual asperity 

length-to-width ratio shown in Figure 3.16. 
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Figure 3.16: Typical surface characterization for transversely (𝛾𝛾 < 1) oriented, isotropic 
(𝛾𝛾 = 1), and longitudinally oriented (𝛾𝛾 > 1) surfaces [1] 

 

 As previously mentioned, the transversely oriented asperities hinder the flow of lubricant 

while longitudinally oriented asperities aid in the movement of lubricant. This is synonymous with 

the design of the engineered cylinder wall surface where lubricant is channeled through the grooves 

to aid in the lubrication of the piston ring-pack. 

While the surface anisotropy index number has previously been calculated for the 

interactions of one rough surface and one smooth surface, its use is currently expanded to two 

rough surfaces through the principal of superposition as accomplished with the convoluted 

surfaces used for the ACF and CCF calculations. For completeness, the studied surface interactions 

are able to be compared to Patir and Cheng [1, 40] through the Peklenik number. Table 3.1 lists 

the calculated parameters from the combined surface data. 
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Table 3.1: Surface data parameters 

Parameter Value Units 

Correlation length in x direction (𝝀𝝀𝟎𝟎.𝟓𝟓𝟓𝟓) 5.492 μm 

Correlation length in z direction (𝝀𝝀𝟎𝟎.𝟓𝟓𝟓𝟓) 14.493 μm 

RMS roughness of cylinder wall (𝝈𝝈𝟏𝟏) 0.892 μm 

RMS roughness of piston ring (𝝈𝝈𝟐𝟐) 0.294 μm 

Composite RMS roughness (𝝈𝝈) 0.939 μm 

 

Table 3.2 lists the Peklenik numbers for the various surfaces, with each respective method 

used to calculate it. 

 

Table 3.2: Surface anisotropy index values 

Parameter Method Peklenik Number 

Cylinder wall ACF 3.45 

Piston ring ACF 1.32 

Convoluted surfaces ACF 2.64 

Convoluted surfaces CCF 2.79 

 

Considering the cylinder wall and piston ring interface, their combined Peklenik number, 

γ, is calculated to be 2.79. This agrees with previous works as the surface topography on the 

cylinder wall aides in the conveyance of fluid and therefore results in a surface anisotropy number 
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greater than unity (γ > 1). The piston ring also results in a value greater than unity indicating it 

also aids in the flow of lubrication. This agrees with Figure 3.8 as the pores in the surface are 

meant to house lubricant. This results in lubricant flowing over the lubricant filled pores and results 

in a lower coefficient of friction; as opposed to the lubricant sliding across the asperities 

themselves which would raise the coefficient of friction. 

 With a study of the surface roughness directionality characterizations and surface 

topography completed, a study is now shifted over to analyze the flow of lubricant under these 

various conditions. 

 

3.3 The Reynolds Equation 

 The Reynolds equation is solved to calculate the fluid film pressure distribution of thin 

viscous fluid films. The equation is used to estimate the hydrodynamic, squeeze, and hydrostatic 

pressure variations across any type of fluid film bearing. The Reynolds equation is derived from 

the Navier-Stokes equations under the following conditions 

1. Incompressible flow 

2. Thin film 

i. Laminar flow 

ii. Neglected convective accelerations 

iii. Neglected body forces and inertia 

3. Steady-State 

4. Newtonian fluid 
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5. No slip at solid boundaries 

 

3.3.1 Derivation from Navier-Stokes 

 The Navier-Stoke equations are a set of three nonlinear scalar differential equations that 

come from the conservation of momentum equation and the constitutive relations for a Newtonian 

fluid. In their primary tensor notation, with three possible values of the free subscript j, can be 

expressed by Eq. (15) 

 𝜌𝜌
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑢𝑢𝑘𝑘
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑘𝑘

= −
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜆𝜆
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

� +
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜇𝜇 �
𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�� + 𝜌𝜌𝑓𝑓𝑗𝑗 (15) 

Under the assumption of an incompressible fluid the continuity equation is equivalent to 

zero. This is expressed in tensor notation in Eq. (16) 

 
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (16) 

Also under the assumption of steady state the temporal acceleration, expressed as the first term of 

Eq. (15), becomes zero. Expressed as Eq. (17) 

 𝜌𝜌
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝜕𝜕

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 (17) 

Likewise neglecting convective accelerations, such as when flow moves around an obstruction, 

the second term on the left hand side of Eq. (15) becomes zero. Expressed as Eq. (18) 

 𝜌𝜌𝑢𝑢𝑘𝑘
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑘𝑘

= 0 (18) 
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Under the assumption of a thin film, body forces, such as gravity, which act on the mass 

of the fluid, are neglected. Therefore the last term on the right hand side of Eq. (15) reduces to 

zero and is expressed by Eq. (19) 

 𝜌𝜌𝑓𝑓𝑗𝑗 = 0 (19) 

Thusly the Navier-Stokes Equations (15) reduce to Eq. (20), as expressed in primary tensor 

notation. 

 0 = −
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝐶𝐶

�𝜇𝜇 �
𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�� (20) 

where the first term on the right hand side represents the pressure gradient across the fluid film 

and the second term on the right hand side represents the viscous-shear term. Under the assumption 

of a very thin film, the pressure gradient across the width of the film does not change. Also under 

this same assumption of a thin film, the velocity of the film changes quickly. This can be expressed 

by Eq. (21) 

 
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

≫
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

 𝑎𝑎𝑎𝑎𝑑𝑑 
𝜕𝜕2𝑢𝑢
𝜕𝜕𝜕𝜕2

 (21) 

Under these assumptions Eq. (20) reduces to two directions. The x direction and z direction flow 

equations respectively become 

 0 = −
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥

+ 𝜇𝜇
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

 (22) 

 0 = −
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝜇𝜇
𝜕𝜕2𝜕𝜕
𝜕𝜕𝑦𝑦2

 (23) 
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Both of which are dependent on the y direction velocity gradient as stated in Eq. (21). By 

integrating Eqs. (22) and (23) to get u and v, respectively, the x and z direction velocity profiles 

are 

 𝑢𝑢 =
1

2𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥

(𝑦𝑦2 − ℎ𝑦𝑦) +
2𝑈𝑈�𝑦𝑦
ℎ

 (24) 

 𝜕𝜕 =
1

2𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

(𝑦𝑦2 − ℎ𝑦𝑦) (25) 

Assume an arbitrary control volume as shown in Figure 3.17. 

 

 

𝑞𝑞𝑥𝑥 𝑞𝑞𝑥𝑥+∆𝑥𝑥  

𝑞𝑞𝑧𝑧 

𝑞𝑞𝑧𝑧+∆𝑧𝑧  

∆𝜕𝜕 

∆𝑥𝑥 

Figure 3.17: Control volume 



 
 

 
56 

 
 

 

As the flow rate increases, the control volume decreases in volume. Vice versa holds true; 

as the flow rate decreases the control volume increases in volume. 

The local flow per unit width can be expressed in terms of the changing film thickness 

 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=  
𝑞𝑞𝑥𝑥 − 𝑞𝑞𝑥𝑥+∆𝑥𝑥

∆𝑥𝑥
+  
𝑞𝑞𝑧𝑧 − 𝑞𝑞𝑧𝑧+∆𝑧𝑧

∆𝜕𝜕
 (26) 

As ∆x and ∆z become infinitesimally small and approach zero, under the assumption the base area 

still contains a sufficient number of asperities to perform the integration, Eq. (26) becomes:  

 𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

=  −
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝜕𝜕

 (27) 

Thusly, the local flow rates per unit width are calculated from the integration of Eqs. (24) and (25). 

The integrals may be expressed as 

 𝑞𝑞𝑥𝑥 = � 𝑢𝑢𝑑𝑑𝑦𝑦
ℎ

0
 (28) 

 𝑞𝑞𝑧𝑧 = � 𝜕𝜕𝑑𝑑𝑦𝑦
ℎ

0
 (29) 

And are calculated to be  

 𝑞𝑞𝑥𝑥 = −
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥

+ 𝑈𝑈� ℎ (30) 

 𝑞𝑞𝑧𝑧 = −
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

 (31) 

Now the reduced Navier-Stokes equation (Eq. (20)) is able to be expressed in terms of the 

pressure gradient and changing film thickness. Using Eqs. (30) and (31) to modify Eq. (20), the 

Reynolds equation is obtained, 
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𝜕𝜕
𝜕𝜕𝑥𝑥

�
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� +  

𝜕𝜕
𝜕𝜕𝜕𝜕
�
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
� =  

𝑈𝑈�
2
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

+
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 (32) 

This equation is also commonly rearranged as 

 𝜕𝜕
𝜕𝜕𝑥𝑥

�ℎ3
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� +  

𝜕𝜕
𝜕𝜕𝜕𝜕
�ℎ3

𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
� =  6𝜇𝜇𝑈𝑈�

𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

+
𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

 (33) 

The two terms on the left hand side of the Reynolds equation (Eq. (32)), represent the 

pressure driven flow, or Poiseuille flow. Poiseuille flow is the viscous flow due to a pressure 

gradient in the direction of the fluid motion, as seen in Figure 3.18. The first term on the right hand 

side represents the shear-driven flow, or Couette flow. Couette flow is the viscous flow due to a 

velocity gradient perpendicular to the direction of motion of the fluid, as seen in Figure 3.19. 

Lastly, the second term on the right hand side represents how the film thickness changes with time, 

also called the squeeze film term. This term is neglected under steady state and therefore is beyond 

the scope of this thesis. 

 

 

Therefore under the above assumptions, the Navier-Stokes equations are simplified to the 

Reynolds equation (Eq. (32)). 

𝑒𝑒𝐴𝐴 𝑒𝑒𝐵𝐵 

Figure 3.18: Poiseuille flow Figure 3.19: Couette flow 
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3.3.2 Discretization 

 The Reynolds equation is numerically solved for using the centered finite difference 

method. There are several forms in which the equation solution can be expressed. Firstly, the 

method of breaking the equation down into multiple parts through the use of coefficients to 

enhance computational efficiency [64], and secondly is keeping the solution as one equation. These 

two forms of the solution are outlined below. 

 

3.3.2.1 Coefficients for Reynolds Equation Discretization 

 The Reynolds equation is solved for the pressure flows using the centered finite difference 

method by setting up a nodal network shown in Figure 3.20. 

 

 

The intermediate pressures at the midpoints are calculated through Eqs (34-37) 

ℎ𝐶𝐶,𝑗𝑗−1/2 ℎ𝐶𝐶,𝑗𝑗+1/2 

ℎ𝐶𝐶−1/2,𝑗𝑗 

ℎ𝐶𝐶+1/2,𝑗𝑗 

𝑒𝑒𝐶𝐶−1,𝑗𝑗 

𝑒𝑒𝐶𝐶+1,𝑗𝑗 

𝑒𝑒𝐶𝐶,𝑗𝑗−1 𝑒𝑒𝐶𝐶,𝑗𝑗+1 
𝑒𝑒𝐶𝐶,𝑗𝑗 

∆𝜕𝜕 

∆𝜕𝜕 

∆𝑥𝑥 ∆𝑥𝑥 

Figure 3.20: Discretization of Pressure (p) and Film Thickness (h) 
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 �
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
�
𝐶𝐶,𝑗𝑗+1/2

=
𝑒𝑒𝐶𝐶,𝑗𝑗+1 − 𝑒𝑒𝐶𝐶,𝑗𝑗
∆𝑥𝑥𝑗𝑗+1

 (34) 

 �
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
�
𝐶𝐶,𝑗𝑗−1/2

=
𝑒𝑒𝐶𝐶,𝑗𝑗 − 𝑒𝑒𝐶𝐶,𝑗𝑗−1

∆𝑥𝑥𝑗𝑗
 (35) 

 �
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
�
𝐶𝐶+1/2,𝑗𝑗

=
𝑒𝑒𝐶𝐶+1,𝑗𝑗 − 𝑒𝑒𝐶𝐶,𝑗𝑗

∆𝜕𝜕𝐶𝐶+1
 (36) 

 �
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
�
𝐶𝐶−1/2,𝑗𝑗

=
𝑒𝑒𝐶𝐶,𝑗𝑗 − 𝑒𝑒𝐶𝐶−1,𝑗𝑗

∆𝜕𝜕𝐶𝐶
 (37) 

In using the normalized Reynolds equation (Eq. (33)), in conjunction with using the central 

difference for calculating the expressions at the primary node (i, j), the Poiseuille terms in the x 

and z directions become Eqs. (38) and (39), respectively 

 �
𝜕𝜕
𝜕𝜕𝑥𝑥

�ℎ3
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� �

𝐶𝐶,𝑗𝑗
=
ℎ𝐶𝐶,𝑗𝑗+1/2
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝑥𝑥�𝐶𝐶,𝑗𝑗+1/2

−  ℎ𝐶𝐶,𝑗𝑗−1/2
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝑥𝑥�𝐶𝐶,𝑗𝑗−1/2

∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1
2

 (38) 

 �
𝜕𝜕
𝜕𝜕𝑥𝑥

�ℎ3
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
� �

𝐶𝐶,𝑗𝑗
=
ℎ𝐶𝐶+1/2,𝑗𝑗
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝜕𝜕�𝐶𝐶+1/2,𝑗𝑗

−  ℎ𝐶𝐶−1/2,𝑗𝑗
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝜕𝜕�𝐶𝐶−1/2,𝑗𝑗

∆𝜕𝜕𝐶𝐶 + ∆𝜕𝜕𝐶𝐶+1
2

 (39) 

The partial derivatives on the right hand side of Eqs. (38) and (39) are exactly equivalent 

to the intermediate pressures discretized in Eqs. (34-37). In a similar manner the Couette flow term 

becomes 

 �
𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

 �
𝐶𝐶,𝑗𝑗

=
ℎ𝐶𝐶,𝑗𝑗+1/2 − ℎ𝐶𝐶,𝑗𝑗−1/2
∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1

2

 (40) 

 Substituting the above discretized expressions into the normalized Reynolds equation (Eq. 

(33)) and solving for 𝑒𝑒𝐶𝐶,𝑗𝑗 leads to the overall pressure equation 
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 𝑒𝑒𝐶𝐶,𝑗𝑗 =
1
𝑎𝑎5
�𝑎𝑎1𝑒𝑒𝐶𝐶,𝑗𝑗−1 + 𝑎𝑎2𝑒𝑒𝐶𝐶,𝑗𝑗+1 + 𝑎𝑎3𝑒𝑒𝐶𝐶−1,𝑗𝑗 + 𝑎𝑎4𝑒𝑒𝐶𝐶+1,𝑗𝑗 + 𝑎𝑎0� (41) 

where the coefficients are expressed in Eq. (42) 

 

𝑎𝑎0 =
ℎ𝐶𝐶,𝑗𝑗+1/2 − ℎ𝐶𝐶,𝑗𝑗−1/2

∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1
 𝑎𝑎1 =

ℎ𝐶𝐶,𝑗𝑗−1/2
3

∆𝑥𝑥𝑗𝑗�∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1�
 

𝑎𝑎2 =
ℎ𝐶𝐶,𝑗𝑗+1/2
3

∆𝑥𝑥𝑗𝑗+1�∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1�
 𝑎𝑎3 =

ℎ𝐶𝐶−1/2,𝑗𝑗
3

∆𝜕𝜕𝐶𝐶(∆𝜕𝜕𝐶𝐶 + ∆𝜕𝜕𝐶𝐶+1) 

𝑎𝑎4 =
ℎ𝐶𝐶+1/2,𝑗𝑗
3

∆𝜕𝜕𝐶𝐶+1(∆𝜕𝜕𝐶𝐶 + ∆𝜕𝜕𝐶𝐶+1) 𝑎𝑎5 = 𝑎𝑎1 + 𝑎𝑎2 + 𝑎𝑎3 + 𝑎𝑎4 

 

(42) 

Thusly the pressure at the node of interest is able to be calculated through the summation of its 

counterparts. 

 

3.3.2.2 Complete Discretized Equation 

 The second numerical solution form for the Reynolds equation is using the complete 

discretized equation. This method comes from substituting in Eq. (42) into Eq. (41) and calculating 

the nodal pressure (𝑒𝑒𝐶𝐶,𝑗𝑗) by one equation. It is computationally more efficient for the Couette flow 

case as the majority of the coefficients in Eq. (42) are dependent on the Poiseuille flow case. 

 Substituting Eqs. (38-40) into the Reynolds equation (Eq. (33)) gives the following 
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ℎ𝐶𝐶,𝑗𝑗+1/2
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝑥𝑥�𝐶𝐶,𝑗𝑗+1/2

−  ℎ𝐶𝐶,𝑗𝑗−1/2
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝑥𝑥�𝐶𝐶,𝑗𝑗−1/2

∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1
2

+
ℎ𝐶𝐶+1/2,𝑗𝑗
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝜕𝜕�𝐶𝐶+1/2,𝑗𝑗

−  ℎ𝐶𝐶−1/2,𝑗𝑗
3 �𝜕𝜕𝑒𝑒𝜕𝜕𝜕𝜕�𝐶𝐶−1/2,𝑗𝑗

∆𝜕𝜕𝐶𝐶 + ∆𝜕𝜕𝐶𝐶+1
2

= 6𝜇𝜇𝑈𝑈�  
ℎ𝐶𝐶,𝑗𝑗+1/2 − ℎ𝐶𝐶,𝑗𝑗−1/2
∆𝑥𝑥𝑗𝑗 + ∆𝑥𝑥𝑗𝑗+1

2

 

(43) 

Substituting in Eqs. (34-37) and solving for 𝑒𝑒𝐶𝐶,𝑗𝑗 gives the complete discretized equation 

 

6𝜇𝜇𝑈𝑈�∆𝑥𝑥(∆𝜕𝜕)2 �
ℎ𝐶𝐶,𝑗𝑗+1 − ℎ𝐶𝐶,𝑗𝑗−1

2 � − �ℎ𝐶𝐶,𝑗𝑗−1/2
3 ��𝑒𝑒𝐶𝐶,𝑗𝑗−1�(∆𝜕𝜕)2 − �ℎ𝐶𝐶,𝑗𝑗+1/2

3 ��𝑒𝑒𝐶𝐶,𝑗𝑗+1�(∆𝜕𝜕)2

(∆𝜕𝜕)2�ℎ𝐶𝐶,𝑗𝑗−1/2
3 − ℎ𝐶𝐶,𝑗𝑗+1/2

3 � + (∆𝑥𝑥)2�ℎ𝐶𝐶−1/2,𝑗𝑗
3 − ℎ𝐶𝐶+1/2,𝑗𝑗

3 �
…

−
�ℎ𝐶𝐶−1/2,𝑗𝑗

3 ��𝑒𝑒𝐶𝐶−1,𝑗𝑗�(∆𝑥𝑥)2 + �ℎ𝐶𝐶+1/2,𝑗𝑗
3 ��𝑒𝑒𝐶𝐶+1,𝑗𝑗�(∆𝑥𝑥)2

(∆𝜕𝜕)2�ℎ𝐶𝐶,𝑗𝑗−1/2
3 − ℎ𝐶𝐶,𝑗𝑗+1/2

3 � + (∆𝑥𝑥)2�ℎ𝐶𝐶−1/2,𝑗𝑗
3 − ℎ𝐶𝐶+1/2,𝑗𝑗

3 �
= 𝑒𝑒𝐶𝐶,𝑗𝑗 

(44) 

Thusly the pressure at the node of interest is able to be calculated at a greater computational 

efficiency for the Couette flow case. 

 

3.3.3 Verification 

 The Reynolds equation is initially solved for the case of a slider bearing, operating only in 

the hydrodynamic regime. A slider bearing utilizes a converging diverging wedge shape geometry 

to generate load support. The entrance is at a larger film thickness than the exit as shown in Figure 

3.21.  
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For the verification of the discretized and programmed Reynolds equation, 1-D geometry 

is used. Flow is only considered in the x direction. Thusly The Reynolds equation (Eq. (32)) 

reduces to its simplified 1-D form; 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�
ℎ3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� =  2𝑈𝑈�

𝜕𝜕ℎ
𝜕𝜕𝑥𝑥

 (45) 

To numerically solve this equation, the nodal network set up on the slider bearing is shown 

in Fig 3.22. 

 

Figure 3.21: Fixed incline slider bearing geometry 

y 

x 
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As lubricant travels from the entrance of the bearing (ℎ1) to the exit (ℎ2), the pressure 

increases while the velocity of the lubricant decreases in accordance with Bernoulli’s principle. 

This relative fluid film motion generates hydrodynamic pressure in the lubricant which is able to 

carry a load on the upper surface of the bearing. By solving the Reynolds equation, with the slider 

bearing geometry in 1-D, the hydrodynamic pressure in the bearing can be calculated as mentioned 

in Section 3.3.2. The load carrying capacity of the bearing can then be numerically calculated by 

integrating the pressure per unit area. This can be done with Simpsons rule, expressed as follows 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝑒𝑒
𝑊𝑊𝑊𝑊𝑑𝑑𝜕𝜕ℎ

= � 𝑒𝑒𝑑𝑑𝑥𝑥
𝑥𝑥𝑗𝑗+1

𝑥𝑥𝑗𝑗−1
=

2∆𝑥𝑥
6

�𝑒𝑒�𝑥𝑥𝑗𝑗−1� + 4𝑒𝑒(𝑗𝑗) + 𝑒𝑒�𝑥𝑥𝑗𝑗+1�� (46) 

It should be mentioned that in calculating the load carrying capacity, every other node is 

used because Simpsons rule integrates over a block defined by three adjacent nodes. 
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Figure 3.22: Nodal discretization for slider bearing 



 
 

 
64 

 
 

 

With the geometry initialized the boundary conditions are now initialized. The pressure at 

the first and last node are assumed to be atmospheric and no hydrodynamic pressure is calculated 

at those nodes. They still serve as part of the nodal grid to calculate the pressure at all interior 

nodes. The pressure at each node may now be calculated numerically based on the discretized film 

thickness. The parameters for this system are outlined in Table 3.3. 

 

Table 3.3: System parameters 

Parameter Variable Value Units 

Dynamic viscosity 𝜇𝜇 0.1 𝑃𝑃𝑎𝑎 ∙ 𝑠𝑠 

Relative velocity 𝑢𝑢 1 𝑚𝑚/𝑠𝑠 

Length of bearing 𝐿𝐿 0.01 𝑚𝑚 

Height at inlet of incline ℎ1 3 𝜇𝜇𝑚𝑚 

Height at outlet of incline ℎ2 1 𝜇𝜇𝑚𝑚 

 

 The analytical pressure solution to the 1-D Reynolds equation (Eq. (45)) has been solved 

analytically under the infinitely long approximation [65] and is 

 𝑃𝑃 = 6𝜇𝜇𝑈𝑈
𝐿𝐿

ℎ12 − ℎ22
(ℎ1 − ℎ)(ℎ − ℎ2)

ℎ2
 (47) 

where the film thickness (h) along the bearing is 

 ℎ(𝑥𝑥) = −
(ℎ1 − ℎ2)

𝐿𝐿
𝑥𝑥 + ℎ1 (48) 
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 The load-carrying capacity has also been analytically solved for the infinitely long 

approximation [65] and is 

 𝜕𝜕 =
6𝜇𝜇𝑈𝑈𝐿𝐿2

(𝜆𝜆 − 1)2ℎ22
 �𝑙𝑙𝑎𝑎𝜆𝜆 −

2(𝜆𝜆 − 1)
𝜆𝜆 + 1

� (49) 

where the film thickness ratio (λ) is defined as 

 𝜆𝜆 =
ℎ1
ℎ2

 (50) 

The numerical 1-D Reynolds equation solution can now be validated from the analytical 

solution for both hydrodynamic pressure and load-carrying capacity. 

The film thickness is shown in Figure 3.23. It can be seen that the inlet and outlet heights 

are the same as in Table 3.3 along the length of the bearing. The hydrodynamic pressure is shown 

in Figure 3.24. As previously stated the boundary nodes are set to zero, as can be seen. 

 
Figure 3.23: Film thickness of 1-D slider bearing 
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With a maximum error between the numerical and analytical pressure solutions of 2.3%, 

the numerical solution is verified by the minimal deviations from the analytical solution. 

Upon integration of pressure the load carrying capacity per unit width is numerically 

calculated and plotted in Figure 3.25 as a function of the inlet to outlet ratio, along with the 

analytical solution for verification.  
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Figure 3.24: Pressure distribution along 1-D slider bearing 
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It is observed that as the inlet and outlet approach the same film thickness, the load carrying 

capacity decreases. This is due to much less hydrodynamic pressure generation in the fluid as the 

geometry converges in the gap. Similar to the hydrodynamic pressure verification, with a 

maximum error between the numerical and analytical solutions of 3.0%, the numerical solution is 

verified by the minimal deviations from the analytical solution. 

 Upon successful verification of the 1-D fixed incline slider bearing model, the model can 

now be expanded to 2-D by using the derived Reynolds equation (Eq. (32)). In this manner the 

general procedure stays identically the same: 
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Figure 3.25: Force per unit width of the slider bearing 
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1. Initialize geometry 

2. Initialize boundary conditions 

3. Discretize film thickness 

4. Calculate nodal pressure from Reynolds equation (Eq. (32)) 

The 2-D Reynolds equation does not have a closed form analytical solution and can only 

be solved numerically. However with the verification of the 1-D case system model, and 

employing the same numerical discretization techniques for the z direction, the 2-D model is 

assumed to be accurate. 

The boundary conditions are still assigned to zero for the verification stage of the 2-D 

Reynolds solution. The primary difference in this case is the slider bearing now has depth. The 

slider bearing is modeled as having the same width and length (0.01m) set up by a 50x50 nodal 

grid, as can be seen from the film thickness in Figure 3.26. With all the same system parameters 

as mentioned in Table 3.3, the pressure of the bearing is shown in Figure 3.27. 
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Figure 3.26: Film thickness of 2-D slider bearing 

Figure 3.27: Pressure distribution along 2-D slider bearing 
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 The Reynolds equation is seen to predict the hydrodynamic pressure in a fluid film bearing 

under several cases. With the system and programmatic set-up concluded for these slider bearing 

verification cases, the accuracy of the solutions must now be analyzed. 

 

3.3.4 Convergence and Relaxation 

 In solving the Reynolds equation for pressure an iterative method is used. Starting with an 

initial guess the pressure is calculated and iterated approaching a converged solution. The solution 

has converged based on a convergence criteria, or percent error, between the current solution and 

the previous solution. The pressure at every node is calculated, along with the average error for 

the entire surface. The average error for the entire surface expressed mathematically is 

 𝐸𝐸𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = ���
�𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾 − �𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾−1

�𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾−1

𝑀𝑀

𝐶𝐶=1

𝑁𝑁

𝑗𝑗=1

��
1
𝑁𝑁𝑁𝑁

� (51) 

where K represents the iteration number. Figure 3.28 shows a plot of the calculated pressure, for 

the 1-D case, every tenth iteration until convergence is reached. The initial pressure guess is zero 

at every node. 
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It can be seen that the initial guess was zero and the curves are trending towards a solution. 

The closer the two curves are to one another the smaller the error between them. Once the 

convergence criteria is reached the solution has been reached. As shown from Figure 3.28, the 

curves move closer together as the pressure increases, indicating the calculated pressure is getting 

closer to the solution. 

Figure 3.28: Pressure convergence of modeled slider bearing 
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 While the Reynolds equation is a stable, second order, linear differential equation, 

relaxation methods can be used to either accelerate or decelerate the convergence process. At each 

iteration the pressure is calculated and the results can be relaxed through 

 �𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾 = �𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾𝑊𝑊 + �𝑒𝑒𝐶𝐶,𝑗𝑗�𝐾𝐾−1(1 −𝑊𝑊) (52) 

where 𝑊𝑊 is called the relaxation factor. For most cases where relaxation is implemented the 

relaxation factor is close to 1. It represents an assigned weight value to the new solution and the 

previous solution. For a relaxation factor of 0.9, that is 𝑊𝑊 = 0.9, then the first term on the right 

hand side of Eq. (52) tells the calculated nodal pressure to be weighted as 90% of the new solution. 

While, the second term on the right hand side tells the calculated pressure to be weighted by 

(1 −𝑊𝑊), that is 0.1, or 10% of the pressure calculated from the previous iteration. 

 When 𝑊𝑊 = 1 no relaxation takes place and the nodal pressure is calculated and the solution 

converges at its standard rate. By assigning a value of 𝑊𝑊 > 1 more weight is given on the new 

solution while reducing the weight of the previous solution. This scheme is called successive over-

relaxation (SOR) and results in an accelerated convergence; typically used for very stable 

differential equations. As opposed to when 𝑊𝑊 < 1  the weight scheme is reversed and less weight 

is given to the new solution and more weight is given to the previous solution. This scheme is 

called successive under-relaxation (SUR) and results in a decelerated convergence; typically used 

for differential equations that have stability issues. 

 In terms of the Reynolds equation, a relaxation factor between 1.1 and 1.2 is observed to 

be very stable. With too large of a relaxation factor employed, the solution runs the risk of 

diverging and not approaching a converged solution. Figure 3.29 shows the convergence error for 
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various values of relaxation factor from the same modeled bearing problem outline in Section 

3.3.3. 

 

 

 

It can be seen that with a larger relaxation factor, the solution converges faster, and vice 

versa is true; when the relaxation factor is smaller the solution takes more iterations to converge. 

This modeled slider bearing problem paired with the Reynolds equation is very stable and thus an 

uncharacteristically high value of relaxation factor (1.9) is used to emphasize convergence speed. 
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Figure 3.29: Convergence error of modeled slider bearing 
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As previously mentioned, the Reynolds relaxation factors are typically between 1.1 and 1.2, as 

will be seen in the following chapter. These factors (1.1-1.2) are used due to the complex surface 

topography. Table 3.4 shows the relaxation factors used for the slider bearing system models. 

 

Table 3.4: Relaxation factors for slider bearing models 

Geometry Relaxation Factor 

1-D Slider bearing 1.9 

2-D Slider bearing 1.9 

 

3.3.5 Alternate Numerical Schemes 

 The numerical scheme outline in Section 3.3.2 utilizes the standard finite difference 

method of moving from left to right then up as shown in Figure 3.30. This allows for easy 

programming and is beneficial in stable situations. 

 
Figure 3.30: Typical progression of numerical nodal scheme calculations 
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A variation of this method was tested in order to verify the results of the Reynolds equation 

pressure solutions under various numerical schemes. Instead of moving in a repetitive 

synchronized path, the calculations move in a “snake” like fashion from one node to another. This 

allows for less of an abrupt change in pressure, or film thickness, from one node to another as the 

nodes flow together. Typically this scheme is very useful when dealing with unstable systems. 

 

 

 With the numerical solution to the Reynolds equation verified for 1-D and 2-D geometry 

of a modeled slider bearing, the same numerical modeling techniques can now be employed for 

the interaction of the measured cylinder wall and piston ring surfaces. Similar steps will be taken 

in calculating the hydrodynamic pressure between these surfaces in order to determine the effect 

the asperities and surface topography have on the flow of lubricant. 

 

  

Figure 3.31: Alternate progression of numerical nodal scheme calculations 
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CHAPTER 4 

 

FLOW FACTOR DERIVATION 

 

 This chapter outlines the method for deriving flow factors from specific surfaces of power 

cylinder components. Prior to this work, surface specific flow factors have not been used in a 

multi-physical model of power cylinder components. The average Reynolds equation is defined 

for rough surfaces in terms of shear and pressure flow factors obtained through numerical flow 

simulation. While the derivation remains the same, the empirical flow factor equations themselves 

are not universal and specific to one set of interacting surfaces. 

The local film thickness is defined in terms of the nominal film thickness, and the rough 

surface distance from their mean levels, expressed mathematically as 

 ℎ𝑇𝑇 = ℎ + 𝛿𝛿1 + 𝛿𝛿2 (53) 

where 𝛿𝛿1 and 𝛿𝛿2 are the local asperity distances from the mean level for each surface respectively, 

ℎ𝑇𝑇 is the local film thickness and ℎ is the nominal film thickness. This can be seen graphically in 

Figure 4.1. 
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Figure 4.1: Film thickness function [1] 

 

4.1 Flow Rate Ratios 

 As previously mentioned, a pressure flow factor is mathematically the ratio of rough 

surface flow rate to smooth surface flow rate between two surfaces at one film thickness. The film 

thickness can then be iterated, producing various flow factors. It is therefore desired to determine 

the effect roughness has on the rough surface flow rate. 

The local flow rates in Eq. (27) are able to be rewritten in terms of local film thickness and 

expressed as 

 𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝜕𝜕

=  −
𝜕𝜕𝑞𝑞𝑥𝑥
𝜕𝜕𝑥𝑥

−
𝜕𝜕𝑞𝑞𝑧𝑧
𝜕𝜕𝜕𝜕

 (54) 

The Reynolds equation (Eq. (32)) can be written in terms of local film thickness as 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥
� +  

𝜕𝜕
𝜕𝜕𝜕𝜕
�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
� =  

𝑈𝑈1 + 𝑈𝑈2
2

𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝑥𝑥

+ 
𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝜕𝜕

 (55) 
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Thusly, the local flow rates per unit width are defined from the Reynolds equation (Eq. (32)) as 

 𝑞𝑞𝑥𝑥 = −
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥

+
𝑈𝑈1 + 𝑈𝑈2

2
 ℎ𝑇𝑇 (56) 

 𝑞𝑞𝑧𝑧 = −
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

 (57) 

Now considering the local flows per unit width, Eqs. (56) and (57), entering the control 

volume, the expected mean flow rates are able to be expressed as 

 𝑞𝑞�𝑥𝑥 =  
1
∆𝜕𝜕

� 𝑞𝑞𝑥𝑥𝑑𝑑𝜕𝜕
𝑧𝑧+∆𝑧𝑧

𝑧𝑧
=

1
∆𝜕𝜕

� �−
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥

+
𝑈𝑈1 + 𝑈𝑈2

2
 ℎ𝑇𝑇�𝑑𝑑𝜕𝜕

𝑧𝑧+∆𝑧𝑧

𝑧𝑧
 (58) 

 𝑞𝑞�𝑧𝑧 =  
1
∆𝑥𝑥

� 𝑞𝑞𝑧𝑧𝑑𝑑𝑥𝑥
𝑥𝑥+∆𝑥𝑥

𝑥𝑥
=  

1
∆𝑥𝑥

� �−
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕
�𝑑𝑑𝑥𝑥

𝑥𝑥+∆𝑥𝑥

𝑥𝑥
 (59) 

We are then able to define the pressure flow factors, 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧, along with the shear flow factor, 

𝜑𝜑𝑠𝑠, such that the above expected mean flow rates become 

 𝑞𝑞�𝑥𝑥 = −𝜑𝜑𝑥𝑥
ℎ3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝑥𝑥

+
𝑈𝑈1 + 𝑈𝑈2

2
 ℎ𝑇𝑇 +

𝑈𝑈1 − 𝑈𝑈2
2

𝜎𝜎𝜑𝜑𝑠𝑠 (60) 

 𝑞𝑞�𝑧𝑧 = −𝜑𝜑𝑧𝑧
ℎ3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝜕𝜕

 (61) 

Using Eqs. (60) and (61) to modify Eq. (55), the modified Reynolds equation is obtained 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�𝜑𝜑𝑥𝑥
ℎ3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝑥𝑥
� +  

𝜕𝜕
𝜕𝜕𝜕𝜕
�𝜑𝜑𝑧𝑧

ℎ3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝜕𝜕
� =  

𝑈𝑈1 + 𝑈𝑈2
2

𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝑥𝑥

+
𝑈𝑈1 − 𝑈𝑈2

2
𝜎𝜎𝜑𝜑𝑠𝑠 +

𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝜕𝜕

 (62) 

 As ℎ/𝜎𝜎 → ∞ we know from Patir and Cheng [40], that Eq. (62) becomes the Reynolds 

equation for smooth surfaces and the pressure flow factors 𝜑𝜑𝑥𝑥, and 𝜑𝜑𝑧𝑧 satisfy 

 𝜑𝜑𝑥𝑥 ,𝜑𝜑𝑧𝑧 → 1   𝑎𝑎𝑠𝑠   ℎ/𝜎𝜎 → ∞  (63) 
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 The average film thickness, ℎ, is iteratively varied to get several different flow factor ratios 

at each of their respective surface separations. At low ratios of average film thickness no contact 

or overlap of the surfaces occurs for ℎ/𝜎𝜎 ≥ 2.55 in this piston ring-pack assembly. At locations 

below this film ratio, contact exists in the simulations. In the derivation of the flow factors these 

contact zones are set to zero pressure. However, this will change in the overall piston ring model 

(Chapter 5) where contact is accounted for. For every node, there is one solution of rough surface 

flow rate to smooth surface flow rate. 

To obtain 𝜑𝜑𝑥𝑥, we consider the following model (see Figure 4.2): 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝑥𝑥
� +  

𝜕𝜕
𝜕𝜕𝜕𝜕
�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝜕𝜕
� =  

𝑈𝑈1 + 𝑈𝑈2
2

𝜕𝜕ℎ𝑇𝑇
𝜕𝜕𝑥𝑥

 (64) 

𝑒𝑒 = 𝑃𝑃𝐴𝐴 𝑒𝑒 = 𝑃𝑃𝐵𝐵 𝐿𝐿𝑧𝑧  

𝐿𝐿𝑥𝑥 
Figure 4.2: Pressure flow region for model 
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In looking only at the pressure flow factors, i.e. pressure driven flow between the cylinder wall 

and piston ring, relative sliding velocity is set to zero to isolate the effect of the applied nominal 

pressure gradient on the surface topography. By doing so, Eq. (64) becomes 

 
𝜕𝜕
𝜕𝜕𝑥𝑥

�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝑥𝑥
� + 

𝜕𝜕
𝜕𝜕𝜕𝜕
�
ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕�̅�𝑒
𝜕𝜕𝜕𝜕
� =  0 (65) 

Using the mean flow rate in the x direction (𝑞𝑞�𝑥𝑥) by setting Eqs. (58) and (60) equal, cancelling 

terms, and simplifying, the x direction pressure flow factor becomes: 

 𝜑𝜑𝑥𝑥 =  

1
∆𝜕𝜕 ∫ �− ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥� 𝑑𝑑𝜕𝜕

𝑧𝑧+∆𝑧𝑧
𝑧𝑧

ℎ3
12𝜇𝜇

𝜕𝜕�̅�𝑒
𝜕𝜕𝑥𝑥

 (66) 

For the z direction pressure flow factor, a pressure gradient is applied in the z direction. Following 

a similar procedure, the z direction pressure flow factor becomes: 

 𝜑𝜑𝑧𝑧 =  

1
∆𝑥𝑥 ∫ �− ℎ𝑇𝑇3

12𝜇𝜇
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕� 𝑑𝑑𝑥𝑥

𝑥𝑥+∆𝑥𝑥
𝑥𝑥

ℎ3
12𝜇𝜇

𝜕𝜕�̅�𝑒
𝜕𝜕𝜕𝜕

 (67) 

 The pressure flow factors are now in their final form representing the ratio of rough surface 

flow rate to smooth surface flow rate. 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧 are calculated at each node and then averaged 

over the entire surface to find a single value representing the average flow rate of the entire surface 

at that respective film thickness. 

 The shear flow factor is calculated differently than the pressure flow factors and requires 

the cylinder wall surface and piston ring surface to be analyzed separately. With this, the 

transportation of lubricant due to surface roughness is obtained for each surface. From Patir and 

Cheng [40] it is known that 
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 𝜑𝜑𝑠𝑠  → 0   𝑎𝑎𝑠𝑠   ℎ/𝜎𝜎 → ∞  (68) 

The discretization technique resembles that of Section 3.3.2. Thusly, in conjunction with 

the average Reynolds equation (Eq. (32)) the shear flow factor for each respective surface is 

calculated as 

 Φ𝑠𝑠,𝐶𝐶 =  

2
𝐿𝐿𝑥𝑥𝐿𝐿𝑧𝑧 ∫ ∫ �− ℎ𝑇𝑇3

12𝜂𝜂
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥�𝑑𝑑𝜕𝜕𝑑𝑑𝑥𝑥

𝐿𝐿𝑧𝑧
0

𝐿𝐿𝑥𝑥
0

(𝑈𝑈1 − 𝑈𝑈2)𝜎𝜎𝐶𝐶
     𝑊𝑊 = 1,2 (69) 

The compound shear flow factor is a function of Φ𝑠𝑠,1 and Φ𝑠𝑠,2 and are convoluted through each 

surfaces variance ratios given as 

 𝑉𝑉𝑆𝑆1 = �
𝜎𝜎1
𝜎𝜎
�
2

   𝑎𝑎𝑎𝑎𝑑𝑑   𝑉𝑉𝑆𝑆2 = �
𝜎𝜎2
𝜎𝜎
�
2
 (70) 

Therefore, in combining Eqs. (69) and (70) the cumulative shear flow factor may be written as 

 𝜑𝜑𝑠𝑠 =  �
𝜎𝜎1
𝜎𝜎
�
2
Φ𝑠𝑠,1 +  �

𝜎𝜎2
𝜎𝜎
�
2
Φ𝑠𝑠,2 (71) 

Keeping in mind that Φ𝑠𝑠 is associated with a single surface and 𝜑𝜑𝑠𝑠 is associated with the case when 

both surfaces are brought together. 

 

4.2 Boundary Conditions 

 In solving the Reynolds equation the initial conditions, or boundary conditions, must be set 

to solve the hydrodynamic pressure at each node. The boundary conditions depend on the type of 

flow being analyzed, Poiseuille or Couette. These specific boundary conditions are set for the 

derivation of the flow factors only. Other applications-based boundary conditions are set in the 

whole piston ring model. 
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4.2.1 Pressure Flow Factor Boundary Conditions 

 In order to derive the pressure flow factors, an arbitrary pressure gradient is induced 

between the cylinder wall and the piston ring in the x and z directions separately without any 

shearing or sliding velocity of the surfaces. This ensures only Poiseuille flow is simulated in 

examining 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧. In this case from 100 𝑃𝑃𝑎𝑎 to 400 𝑃𝑃𝑎𝑎. While those two boundaries remain 

fixed, the other two sides of the surface have periodic boundary conditions. This ensures that at 

the same rate any amount of lubricant leaves one side, it enters the opposite side. Thus there is no 

net change in volume of fluid leaving the system. These boundary conditions are held for any 

pressure gradient applied, effectively holding the mass flow rate constant. 

 

4.2.2 Shear Flow Factor Boundary Conditions 

 When considering the shear flow factor, only shearing effects are considered. No initial 

pressure gradient is applied, however a relative sliding velocity between the surfaces is. Therefore, 

on all four sides of the surface interactions periodic boundary conditions are applied. This ensures 

the amount of mass flowing in the simulation stays the same. As the lubricant enters from one 

direction it leaves in the other direction. This is true in the direction of flow and in the transverse 

direction. 

 These periodic boundary conditions were not utilized in Patir and Cheng’s [1, 40] 

derivation of the flow factor equations. Instead, it was assumed there was no flow across the 

boundaries. 
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4.3 Pressure Flow Factor 

 The x and z direction pressure flow factors must be derived separately. Figures 4.3 and 4.4 

show the interaction of these two surfaces in the rough surface Poiseuille flow calculations. 

 

 

Cylinder Wall 

Piston Ring 

Figure 4.3: Interacting power cylinder components (Isometric View) 
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The Reynolds equation is solved for the pressure flows using the finite difference method 

by setting up a nodal network shown in Fig. 3.20, as previously mentioned. Upon discretization of 

the film thickness at each intermediate node, the pressure at each node is solved for based on a 

convergence criteria of 0.1%. By using this same methodology for the rough surfaces in question, 

as well as two arbitrary smooth surfaces with the same nominal film thickness and induced 

pressure gradient, we are able to get the ratio of rough surface flow rate to smooth surface flow 

rate. 

 The range of the pressure gradient does not matter in this case, what does matter is the 

pressure changes due to the asperities relative to the smooth surface case. The flow factor looks at 

Piston Ring 

Cylinder Wall 

Figure 4.4: Interacting power cylinder components (Y-Z View) 

 



 
 

 
85 

 
 

 

the change in hydrodynamic pressure between the smooth surface pressure gradient and the rough 

surface pressure gradient. This ensures the results are a function of local asperities effect on 

hydrodynamic pressure only. As previously mentioned, the arbitrary pressure gradient applied is 

from 100𝑃𝑃𝑎𝑎 to 400𝑃𝑃𝑎𝑎. The gradient is first applied in the x direction, followed by the z direction. 

 

4.4 Shear Flow Factor 

 The derivation of the shear flow factor is more complex, and requires the problem to be 

broken down into several parts. The shear flow factor is a numerically simulated flow quantity that 

relates the effect of neighboring asperities with each other in terms of pure shearing. When 

shearing is introduced there is the possibility of cavitation at the trailing edge of the asperities [40]. 

In the present study, cavitation is included in the numerical Reynolds solution. However, a relative 

sliding speed of 1𝑚𝑚/𝑠𝑠 was used in the derivation and did not induce negative pressures large 

enough to induce cavitation. The magnitude of these pressures is related to the sliding speed and 

rough surface geometry. 

In dealing with shearing between channels, locations of decreased pressure (e.g. below the 

reference pressure) are possible along the flow direction just at the edge of the channel. The load-

carrying capacity is not greatly affected, when this reference pressure is above atmospheric, as 

these sites occur near the trailing edge of the valleys of the surface. 

Two reference pressures are tested to validate the consistency of the change in the 

hydrodynamic pressure. One pressure is tested in a vacuum at 0 𝑘𝑘𝑃𝑃𝑎𝑎 to test for cavitation and the 

second is tested at atmospheric (101,325 𝑃𝑃𝑎𝑎) for the solution among power cylinder components. 
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The change in hydrodynamic pressure among the surfaces can then be compared and validated 

regardless of reference pressure. 

 An analysis of the two interacting surfaces is completed by simulating the hydrodynamic 

effects of each surface separately, sliding against a smooth surface in the absence of any pressure 

induced gradient. This allows for the extraction of the flow parameters from each surface 

individually based only on shearing effects. The model was run with the parameters shown in 

Table 4.1. 

Table 4.1: System Parameters 

Parameter Variable Value Units 

Dynamic viscosity 𝜇𝜇 0.1 𝑃𝑃𝑎𝑎 ∙ 𝑠𝑠 

Relative Velocity 𝑢𝑢 1 𝑚𝑚/𝑠𝑠 

 

4.4.1 Ambient Pressure of 0 kPa 

 Figures 4.5-4.7 show the results of the pressure calculations from the cylinder wall sliding 

parallel to a smooth surface along the z direction. In Figure 4.5, pressure is seen to be larger in the 

grooves, as marked by the lighter colors. This agrees with theory as this is where the load-carrying 

capacity is generated (Seen in Section 3.1.4.1). It can also be seen that the fluid cavitates at the 

trailing edge of the grooves in the direction of flow, as marked by the darker colors. In Figure 4.6 

the entire surface’s hydrodynamic pressure gradient is seen as a result of pure shearing. Figure 4.7 

is a zoomed in isometric view of Figure 4.5. The grooves can be seen clearly where the pressure 

is primarily generated. 
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Based on the common practice of assuming fluid cavitates at negative pressures, this 

suggests cavitation could occur. However, this neglects the effect of the ambient pressure, which 

is atmospheric in this case. 

 Figure 4.5: Cylinder wall pressure distribution due to shearing (Top View) 

Flow Direction 
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Figure 4.6: Cylinder wall pressure distribution due to shearing (Isometric View) 

Figure 4.7: Cylinder wall pressure distribution due to shearing (Isometric View) 
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 Due to the reference pressure being at zero, which is common when modeling using the 

gage pressure, this is also synonymous of a space of vacuum application. While beyond the scope 

of this thesis it is noted that even at this reference pressure this specific surface topography will 

generate cavitation sites at the trailing edge of the grooves, as marked by the negative pressure. 

The total hydrodynamic load carrying capacity is given as 

 𝑭𝑭 = �𝑒𝑒𝑑𝑑𝑨𝑨 (72) 

Recalling that the surface dimensions are 1000𝜇𝜇𝑚𝑚 X 1000𝜇𝜇𝑚𝑚, the total load carrying capacity for 

the cylinder wall surface is 0.001𝑁𝑁. With no cavitation included in the model, this represents 

numerical error. This implies that there is just as much positive pressure as there is negative 

pressure in these grooves, which can be seen by the balance of pressure above and below zero in 

Figure 4.8. 

 
Figure 4.8: Cylinder wall pressure distribution due to shearing (X-Y View) 

Flow Direction 
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 The piston ring is now run through the same model at 0 𝑘𝑘𝑃𝑃𝑎𝑎, with the same system 

parameters, against a smooth surface. In Figure 4.9, pressure is seen to be larger in the pores of the 

piston ring, as marked by the lighter colors, similar to the cylinder wall grooves. It can be seen that 

if the fluid is to leave these pores there is cavitation pressure at the trailing edge as marked by the 

darker colors. These pressures inside the pores are also observed to be larger than anywhere on the 

surface of the cylinder. This is due to the depth of the surface topography; as pressure is generated 

at the front of the wedge shape geometry, negative pressure is induced at the trailing edge of the 

pore. This resting fluid in the pore is able to generate large amounts of pressure over a small area. 

In Figure 4.10 the entire surface’s hydrodynamic pressure gradient is seen as a result of pure 

shearing. Figure 4.11 shows a side view of the piston ring surface. The pressure in the pores can 

be seen by the lighter color spikes. Following the lighter color positive spikes, in the direction of 

flow, are the darker color negative spikes, i.e. the cavitation sites. 

 The load carrying capacity is calculated in the same manner and is seen to be 0.003 N. 

Similarly, with no cavitation in the model, this is numerical error. For previously mentioned 

reasons this agrees with theory as this is the load carried in a vacuum. 
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Figure 4.9: Piston ring pressure distribution due to shearing (Top View) 

Flow Direction 

Figure 4.10: Piston ring pressure distribution due to shearing (Isometric View) 
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4.4.2 Ambient Pressure of 101 kPa 

 The reference pressure is now raised to atmospheric (101𝑘𝑘𝑃𝑃𝑎𝑎) with the same system 

parameters. With this the cylinder wall against a smooth surface is simulated first. The results of 

shearing for the cylinder wall at an ambient pressure of atmospheric are shown in Figures 4.12 and 

4.13. Similar decreases in pressure are seen due to shearing across asperities near the grooves. The 

load carrying capacity was calculated in a similar manner using Eq. (72). The result was found to 

be a load of 101N, similar to the reference pressure. Since no cavitation is included, no load support 

is generated (i.e. 𝐹𝐹 = 𝑃𝑃𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐶𝐶𝑆𝑆𝐴𝐴). 

Flow Direction 

Figure 4.11: Piston ring pressure distribution due to shearing (X-Y View) 



 
 

 
93 

 
 

 

 

 

Figure 4.12: Cylinder wall pressure distribution due to shearing 
without cavitation (Top View) 

Flow Direction 

Figure 4.13: Cylinder wall pressure distribution due to shearing 
without cavitation (Isometric View) 
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 The piston ring is now run through the same model at an ambient pressure of 101 𝑘𝑘𝑃𝑃𝑎𝑎, 

with the same system parameters, against a smooth surface. Similar decreases in pressure are seen 

due to shearing across asperities near the pores. Due to a much larger reference pressure, the 

relative change in pressures is very small and hence it is difficult to see the amount of change in 

pressures. This can be seen in Figures 4.14 and 4.15.  

 

 

 

Figure 4.14: Piston ring pressure distribution due to shearing (Top View) 

Flow Direction 
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 Table 4.2 shows the total calculated load-carrying capacity of each surface for the various 

cases. It may be noticed that the loads at ambient pressure are almost identical to the ambient 

pressure multiplied by the area. This is because the amount of pressure change due to the asperities 

is minimal in comparison to the atmospheric reference pressure. The simulation using zero ambient 

pressure shows the hydrodynamic pressures to be on the scale of (101𝑃𝑃𝑎𝑎), as opposed to the case 

when assuming atmospheric at the boundaries, the hydrodynamic pressures are on the sale of 

(105𝑃𝑃𝑎𝑎). 

 

 

Figure 4.15: Piston ring pressure distribution due to shearing (Isometric View) 
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Table 4.2: Load carrying capacity due to numerical error results 

Surface 𝑷𝑷𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹𝑹 (𝒌𝒌𝑷𝑷𝒌𝒌) Load-Carrying Capacity (N) due to numerical error 

Cylinder wall 0 0.001 

Piston ring 0 0.003 

Cylinder wall 101 101 

Piston ring 101 101 

 

 With this change in pressure, the hydrodynamic pressure deviations from the reference 

pressure are noticed to be very similar at each node from both cases of reference pressure . This 

validates the hydrodynamic pressures are correct in the calculation of the shear flow factor. 

 

4.5 Numerical Results 

 Following the surface specific flow factor method outlined, several iterations were run by 

varying the film thickness in analyzing the sample surface set. Along with this, the x and z direction 

pressure gradients are also altered for 𝜑𝜑𝑥𝑥, and 𝜑𝜑𝑧𝑧, respectively. With the Cross Correlation 

Function also calculated, a comparison to previous works [1, 40] can now be made knowing both 

Peklenik numbers. When Patir and Cheng [1, 40] fit their flow factor equations they modeled 

several different Peklenik values. They were able to generate coefficients for their empirical fits 

based on the Peklenik number (γ). Their fit equation is of the form 

 𝜑𝜑𝑥𝑥 = 1 − 𝐶𝐶𝑒𝑒−𝑆𝑆(ℎ/𝜎𝜎)     𝑓𝑓𝐹𝐹𝐹𝐹     𝛾𝛾 ≤ 1 (73) 
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 𝜑𝜑𝑥𝑥 = 1 + 𝐶𝐶(ℎ/𝜎𝜎)−𝑆𝑆     𝑓𝑓𝐹𝐹𝐹𝐹     𝛾𝛾 > 1 (74) 

Their numerical results for the pressure flow factor coefficients are tabulated in Table 4.3. 

Taking the same coordinate system, they also found 𝜑𝜑𝑧𝑧 to be equal to 𝜑𝜑𝑥𝑥 corresponding to the 

reciprocal directional properties. In functional form 

 𝜑𝜑𝑥𝑥(𝐻𝐻, 𝛾𝛾) =  𝜑𝜑𝑧𝑧(𝐻𝐻, 1/𝛾𝛾) (75) 

 

Table 4.3: Coefficient of Eqs. (73) and (74) for 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧 [1] 

𝜸𝜸 C r Range 

1/9 1.48 0.42 𝐻𝐻 > 1 

1/6 1.38 0.42 𝐻𝐻 > 1 

1/3 1.18 0.42 𝐻𝐻 >  0.75 

1 0.90 0.56 𝐻𝐻 > 0.5 

3 0.225 1.5 𝐻𝐻 > 0.5 

6 0.520 1.5 𝐻𝐻 > 0.5 

9 0.870 1.5 𝐻𝐻 > 0.5 

 

Their shear flow factor is of the form 

 𝜑𝜑𝑠𝑠 = 𝐴𝐴1(ℎ/𝜎𝜎)𝛼𝛼1𝑒𝑒−𝛼𝛼2(ℎ/𝜎𝜎)+𝛼𝛼3(ℎ/𝜎𝜎)2      𝑓𝑓𝐹𝐹𝐹𝐹     (ℎ/𝜎𝜎) ≤ 5 (76) 

 𝜑𝜑𝑠𝑠 = 𝐴𝐴2𝑒𝑒−0.25(ℎ/𝜎𝜎)     𝑓𝑓𝐹𝐹𝐹𝐹     (ℎ/𝜎𝜎) > 5 (77) 

where the coefficients are given in Table 4.4 
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Table 4.4: Coefficient of Eqs. (76) and (77) for 𝜑𝜑𝑠𝑠 [40] 

𝜸𝜸 𝑨𝑨𝟏𝟏 𝜶𝜶𝟏𝟏 𝜶𝜶𝟐𝟐 𝜶𝜶𝟑𝟑 𝑨𝑨𝟐𝟐 

1/9 2.046 1.12 0.78 0.03 1.856 

1/6 1.962 1.08 0.77 0.03 1.754 

1/3 1.858 1.01 0.76 0.03 1.561 

1 1.899 0.98 0.92 0.05 1.126 

3 1.560 0.85 1.13 0.08 0.556 

6 1.290 0.62 1.09 0.08 0.388 

9 1.011 0.54 1.07 0.08 0.295 

 

Keep in mind that these values were calculated for statistically generated Gaussian 

surfaces. There are differences expected in this work having derived the flow factor quantities 

from specific surfaces. Recall that it was shown in Sections 4.1 as ℎ/𝜎𝜎 → ∞ we know, that the 

average Reynolds equation (Eq. (62)) becomes the Reynolds equation for smooth surfaces and the 

flow factors 𝜑𝜑𝑥𝑥, 𝜑𝜑𝑧𝑧, and 𝜑𝜑𝑠𝑠 satisfy 

 𝜑𝜑𝑥𝑥 ,𝜑𝜑𝑧𝑧 → 1  𝑎𝑎𝑎𝑎𝑑𝑑  𝜑𝜑𝑠𝑠  → 0    𝑎𝑎𝑠𝑠     ℎ/𝜎𝜎 → ∞ (78) 

 As mentioned in Section 3.3.4, relaxation techniques were taken enhance convergence 

based on the flow factor being derived. Table 4.5 summarizes the relaxation factors for the various 

simulations. 
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Table 4.5: Relaxation factors for simulation cases 

Simulation Case Relaxation Factor 

Couette flow, Cylinder wall against Smooth surface 1.1 

Couette flow, Piston ring against Smooth surface 1.1 

Poiseuille flow, Rough surfaces, X direction 1.2 

Poiseuille flow, Smooth surfaces, X direction 1.9 

Poiseuille flow, Rough surfaces, Z direction 1.2 

Poiseuille flow, Smooth surfaces, Z direction 1.9 

 

4.5.1 X-Direction Pressure Flow Factor 

It can be seen in Figures 4.16 and 4.17 that the pressure is constant at the boundaries of 

𝑥𝑥 = 0 and 𝑥𝑥 = 1000𝜇𝜇𝑚𝑚. Figure 4.16 shows the pressure gradient between two smooth surfaces. 

Figure 4.17 shows the results for the same nominal pressure gradient applied between the cylinder 

wall and the piston ring rough surfaces at the same nominal film thickness. 
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Figure 4.16: Poiseuille flow in x direction for smooth surfaces 

Figure 4.17: Poiseuille flow in the x direction for rough surfaces 
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The surface asperity features are seen to affect the pressure gradient in the direction of 

flow, thus influencing the flow rate at each node as well. From this, the ratio of the rough surface 

flow rate to smooth surface flow rate, at this film thickness, is able to be calculated for the 

prescribed flow factor. 

Multiple flow factor ratios are calculated by iterating the film thickness. The flow factor 

value can then be plotted against the changing film thickness. Shown in Figure 4.18 is the derived 

x direction pressure flow factor, 𝜑𝜑𝑥𝑥, raw data and its curve fit for the considered power cylinder 

surfaces, as well as its comparison to Patir and Cheng’s [1] statistical model. 

 

 Figure 4.18: 𝜑𝜑𝑥𝑥 pressure flow factor 
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Fitting the flow factor curve with an empirical equation results in the new flow factor 

equation given by Eq. (79). 

 𝜑𝜑𝑥𝑥 = 2.4827(ℎ/𝜎𝜎)−1.6955 + 0.9752 (79) 

It is noticed that with the derived x direction pressure flow factor, surface specific 

roughness is predicted to have a larger influence on pressure driven flow than a Gaussian surface 

roughness. 

 

4.5.2 Z-Direction Pressure Flow Factor 

 The z direction flow factor is calculated in a similar manner; by applying the same pressure 

gradient between the two surfaces in the z direction, calculating the flow rate ratio, and iterating 

the film thickness to calculate several flow rate ratios to acquire an empirical flow factor curve. 

The result for the smooth surfaces can be seen in Figure 4.19, while the rough surface result 

can be seen in Figure 4.20. In the z direction the roughness is seen to have less effect than in the x 

direction (Figure 4.17). This is due to the grooves and specific surface topography mentioned in 

Section 3.1.4.1. 
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Figure 4.19: Poiseuille flow in z direction for smooth surfaces 
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Figure 4.20: Poiseuille flow in the z direction for rough surfaces 
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Upon iterating the film thickness, the z direction pressure flow factor curve is obtained. 

With the z direction pressure flow factor there is a larger discrepancy between the statistical models 

and the surface specific model, as seen in Figure 4.21. At ℎ/𝜎𝜎 less than 4, the measured surfaces 

are seen to better channel the flow of lubricant compared to the statistically generated surfaces. 

This agrees with the theory behind the cross-hatching as discussed in Section 3.1.4.2. 

 

 

The new z pressure flow factor’s empirical fit for the piston ring and cylinder wall surfaces 

is  

 𝜑𝜑𝑧𝑧 = 1 − 0.4824𝑒𝑒−0.2477(ℎ/𝜎𝜎) (80) 

Figure 4.21: 𝜑𝜑𝑧𝑧 pressure flow factor 
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 Similar to Patir and Cheng, the same relationship is established for surface specific flow 

factor quantities. For the same set of surfaces, 𝜑𝜑𝑥𝑥 and 𝜑𝜑𝑧𝑧 are seen to be related through their film 

thickness, root mean square roughness, and the Peklenik number as 

 𝜑𝜑𝑥𝑥(𝐻𝐻, 𝛾𝛾) =  𝜑𝜑𝑧𝑧(𝐻𝐻, 1/𝛾𝛾) (81) 

 

4.5.3 Shear Flow Factor 

 The shear flow factor, as previously stated, must be calculated for each surface separately 

against a smooth surface then convoluted for the governing shear flow factor. Figure 4.22 shows 

the cylinder wall shear flow factor, Φs1, as well as the piston ring shear flow factor, Φs2. With the 

convolution of Φs1 and Φs2, the governing shear flow factor, 𝜑𝜑𝑠𝑠 is able to be calculated, plotted, 

and curve fit. 

 
Figure 4.22: Shear flow factors 
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 The resulting shear flow factor is also seen to vary from Patir and Cheng’s [1, 40] model, 

shown in Figure 4.23. As the film thickness between the surfaces decreases, the engineered 

surfaces are seen to predict less obstruction of lubricant by surface roughness. This results in larger 

amounts of lubricant transported across asperities by way of shearing. In previous works, at values 

of ℎ/𝜎𝜎 greater than 5, several piece-wise models had to be used. With the use of a surface specific 

shear flow factor one continuous equation is needed. 

 

The empirical equation for the shear flow factor for the convoluted surfaces is able to be 

fit and is given as 

 𝜑𝜑𝑠𝑠 = 0.5086(ℎ/𝜎𝜎)−1.0149 + 0.0022 (82) 

Figure 4.23: Shear flow factor comparison 
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 The shear flow factor was attempted to be fit in the same form as Patir and Cheng’s, 

however the solution was unstable and diverged. This is because they fit their shear flow factor 

using a Gaussian fit. This fit is very stable for a Gaussian surface, however in using measured 

surfaces this form was seen as an unstable fit. Thus, an exponential form was fit for the shear flow 

factor. For comparison, Patir and Cheng’s empirical equations are given in the Appendix for the 

same Peklenik number, γ, of 2.79 as previously calculated. With the governing empirical flow 

factor equations derived, the Reynolds equation is now able to be modified to account for surface 

roughness features in the pressure calculations involving the cylinder wall and piston ring surfaces. 
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CHAPTER 5 

 

PISTON RING MODEL 

 

 This chapter outlines how the various mechanisms were incorporated into the overall piston 

ring model. This model pairs MATLAB and ABAQUS to calculate the piston ring deformations 

due to various forces that are transmitted throughout the power cylinder components. The 

governing piston ring model includes the previously derived flow factors from the cylinder wall 

and piston ring interface for a lubrication model. A contact model, force and moment calculations, 

and their application to the piston ring-pack assembly is also discussed. 

 

5.1 Lubrication Model 

 The primary focus of this model is on the piston, piston ring, and cylinder wall lubricated 

surface interactions. The modeling of these hydrodynamic rough surface interactions gives a better 

understanding of the dynamics involved and can lead to superior surfaces, surface coatings, 

lubricants, etc. The method chosen for modeling this lubricant flow is the method of flow factors. 

Flow factors were shown as a method used to statistically model a rough surface as a 

smooth surface in solving a thin film lubrication problem. In previous models [1, 40] the layout of 

asperities was assumed to be either purely transverse, isotropic, or purely longitudinal and the flow 
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past and around these points were modeled with a statistically generated surface. These models 

were then able to be used in conjunction with the Reynolds equation for a more accurate solution 

which takes into account small-scale surface features. While far more accurate than modeling the 

hydrodynamic properties of flow across smooth surfaces, these generic flow model equations are 

less accurate than deriving surface specific flow factor models for predicting the fluid interactions 

in the hydrodynamic regime. Flow factors need to be derived for specific surfaces because 

generalized results are not always accurate for a specific surface. Thus more precise flow modeling 

equations are necessary for more accurate flow predictions and computational efficiency. 

Three flow factors are paired with the Reynolds equation to account for surface impedance 

on the flow of a lubricant. The first of these, 𝜑𝜑𝑧𝑧, measures the flow resistance across asperities due 

to a pressure induced gradient along the flow direction. Similarly, 𝜑𝜑𝑥𝑥 measures the flow resistance 

along the transverse direction. Lastly, 𝜑𝜑𝑠𝑠 measures the lubricant transport due to shearing effects. 

These flow parameters are a function of the film thickness, standard deviation of the surfaces (i.e. 

RMS surface roughness), and the Peklenik number (𝛾𝛾) as defined by the auto-correlation function 

derived from the specific surface topography [2]. 

A rough surface profile of the cylinder wall from the current production internal 

combustion engine was shown in Figure 3.2. In dealing with surface specific flow factors, only the 

small-scale surface features are needed while the Reynolds equation handles the large scale 

geometry. Therefore, the curvature of the piston ring is subtracted out, resulting in a nominally flat 

surface with the same small-scale surface features. The piston ring without curvature can be seen 

in Figure 3.7. The interaction of the cylinder wall and the piston ring is seen in Figure 4.3. 
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Using the cylinder wall and nominally flat piston ring surfaces several cases were run, as 

outlined in Sections 4.3 and 4.4. These results were plotted against film thickness and the results 

are seen in Figures 4.18 and 4.21 for the x and z direction pressure flow factors respectively. For 

comparison, Patir and Cheng’s curves are plotted for the same Peklenik number. Similarly the 

shear flow factor is calculated by applying a sliding velocity at various film thicknesses. The results 

for each case are plotted in Figure 4.22. With these three curves empirical relationships were fit 

and described as the governing flow factor equations for this set of specific surfaces. The three 

equations are shown below. 

 𝜑𝜑𝑥𝑥 = 2.4827(ℎ/𝜎𝜎)−1.6955 + 0.9752 (83) 

 𝜑𝜑𝑧𝑧 = 1 − 0.4824𝑒𝑒−0.2477(ℎ/𝜎𝜎) (84) 

 𝜑𝜑𝑠𝑠 = 0.5086(ℎ/𝜎𝜎)−1.0149 + 0.0022 (85) 

 By employing these equations, the Reynolds equation (Eq. (32)) is able to be modified to 

account for surface roughness. 

With this surface specific flow factor derivation method, the three piston rings on the piston 

and each of their respective housings could also be modeled as rough surfaces and account for 

surface asperities. This model would still be able to run at a computational time equivalent to 

modeling the surfaces as smooth, while still considering the roughness of the surfaces. The 

modeling of multiple piston rings considering surface roughness is, however, beyond the scope of 

this current ring model. 
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5.2 Solid Contact Model 

 The following solid contact model was derived by Nolan Chu [66], who is a partner on this 

piston ring model project for Ford Motor Company. To represent the contact mechanics model, 

three different rough surface contact models were considered. 

The first model, the Greenwood-Williamson statistical model [67], assumes a Gaussian 

distribution of spherical asperities. From the surface profile, the asperity density, η, the asperity 

radius, Rah, and the asperity height roughness, σs, were calculated in two different directions. 

However, it was found that the distribution of surface heights in one of the directions for the 

cylinder wall had a highly non-Gaussian distribution. The use of the statistical parameters directly 

from that direction (z) rendered the Greenwood and Williamson model ineffective. Thus, two sets 

of parameters were evaluated: those based on the heights in the x direction, and those based on the 

averaging of parameters found independently in both directions. 

The second model considered was the full multiscale model [68]. In this model the 

asperities were assumed to be sinusoidal in shape. The surface profile was transformed into the 

frequency domain, and a one dimensional equivalency was obtained. On each scale level, the force 

was assumed to be applied equally to all asperities. This model considered both elastic and elastic-

plastic deformation as well, but does not depend on the surface being Gaussian. 

The third model applied sinusoidal asperities to the Greenwood-Williamson statistical 

model. As the surface separation must be known, results from a finite element model were adapted 

[69]. Both elastic and elastic-plastic deformation were considered as well. 
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All three models were applied to the combined surfaces. The variables η, Rah, and σs were 

calculated in a similar manner. There were no problems with the distribution of surface heights, 

and three sets of parameters were evaluated: those based on the heights in the x direction, those 

based on the heights in the z direction, and those based on the averaging of parameters found 

independently in both directions. Both the wall and the piston ring were assumed to have identical 

material properties. 

Figure 5.1 shows the normalized load as a function of normalized surface separation. The 

three different types of models are represented: the statistical model using spherical asperities, the 

statistical model using sinusoidal asperities, and the multiscale model. 

 
Figure 5.1: Elastic-Plastic contact pressure for the combined surfaces 
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As seen in Figure 5.1, pressure decreases as the surface separation grows and as they come 

out of contact. As the multiscale model predicts a much different relation, the more established 

statistical model will be used in the piston-cylinder model to consider solid contact between the 

cylinder wall and piston ring. This solid contact effects the orientation of the piston ring in the 

groove as the piston traverses in a linear fashion from TDC to BDC. This in turn effects the amount 

of lubricant distributed across the bore of the cylinder, which has a large effect on component 

performance, efficiency, and longevity. 

 

5.3 Coupled Lubrication and Solid Contact Model 

 To model the cylinder wall and piston ring interface the coupled effect of the lubricant 

hydrodynamic pressure and the rough surface contact pressure must be considered. These 

pressures are predicted by the models in Sections 5.1 and 5.2, respectively. The hydrodynamic 

pressure and rough surface contact pressure are then superimposed to find their net effect on the 

ring, the cylinder, and the piston through 

 𝑃𝑃𝑇𝑇𝑜𝑜𝑆𝑆𝑆𝑆𝐷𝐷 = 𝑃𝑃𝐻𝐻𝐷𝐷𝑑𝑑𝑆𝑆𝑜𝑜𝑑𝑑𝐷𝐷𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑐𝑐 + 𝑃𝑃𝐶𝐶𝑜𝑜𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆 (86) 

 The hydrodynamic and contact pressures are superimposed on each side of the piston ring. 

With the pressures acting through a known area of the piston ring, the net forces on the ring may 

be calculated. 
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5.3.1 Coupled Model Test Cases 

 Before the forces on all sides of the ring are calculated, several test cases are run to verify 

the coupled lubrication solid contact model. The first test case is run at a larger film thickness to 

demonstrate the accuracy of the hydrodynamic model. The second test case was run at a much 

smaller film thicknesses that brings the surfaces into contact. This will demonstrate the accuracy 

of the rough surface contact model. The test cases are run for a one-dimensional slider bearing 

(Figure 3.21), which is meant to simulate the cylinder wall and piston ring interactions. The nodal 

discretization can be seen in Figure 3.22. The upper surface is treated as the axial width of the 

piston ring, and the lower surface is treated as the cylinder wall. The axial width of the piston ring 

is modeled as a converging diverging gap; the system parameters for this test case are given in 

Table 5.1. 
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Table 5.1: Coupled model test case 1 parameters 

Parameter Variable Value Units 

Axial width of piston ring 𝑎𝑎 1.2 𝑚𝑚𝑚𝑚 

Radial width of piston ring 𝐹𝐹 2.9 𝑚𝑚𝑚𝑚 

Dynamic viscosity 𝜇𝜇 0.1 𝑃𝑃𝑎𝑎 ∙ 𝑠𝑠 

Relative velocity 𝑢𝑢 9 𝑚𝑚/𝑠𝑠 

Length of bearing 𝐿𝐿 0.0012 𝑚𝑚 

Height at inlet of incline ℎ1 8 × 10−6 𝑚𝑚 

Height at outlet of incline ℎ2 7 × 10−6 𝑚𝑚 

Crankcase pressure 𝑒𝑒1 101 kPa 

Chamber pressure 𝑒𝑒2 1500 kPa 

 

 The relative velocity of 9 𝑚𝑚/𝑠𝑠 was chosen to match the typical Mean Piston Speed (MPS) 

for this engine’s application. The predicted pressure due to the hydrodynamic and rough surface 

interactions is given in Figure 5.2. 

 



 
 

 
116 

 
 

 

 

 

 As expected with these inlet (ℎ1) and outlet (ℎ2) gaps, the pressure is seen to be only 

hydrodynamic. As the film thickness gets larger, and the surfaces move further apart, the contact 

model is weighted less and the hydrodynamic model is weighted heavier. 

The second case was run with the exact same parameters, except the inlet and outlet gaps 

are decreased to ℎ1 = 1𝜇𝜇𝑚𝑚 and ℎ2 = 0.5𝜇𝜇𝑚𝑚, respectively. With this decrease in film thickness, 

the pressure profile across the piston ring and cylinder wall become Figure 5.3. 

 

Figure 5.2: Total pressure acting on outer piston ring surface 
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 As expected, the contact pressure is largely increased as the film thickness decreased such 

that the surfaces came into contact. Interestingly, the hydrodynamic pressure also increased. This 

is due to the implementation of the flow factors, simultaneously in the absence of a piston ring 

deformation model. This will change upon integration of the ring deformation model. 

 The combined lubrication and contact model has been demonstrated for the cylinder wall, 

piston ring interface with macroscale deformations neglected. This same methodology of applying 

the hydrodynamic pressures and contact pressures is now expanded to each side of the piston ring. 

Figure 5.3: Pressure acting on outer piston ring surface 
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5.4 Finite Element Ring Model 

This section demonstrates the ability to use the pressures from the lubrication and solid 

contact models in a finite element model of the ring to then calculate the ring deformations. The 

ring pressures due to the lubrication and contact models are calculated in MATLAB and sent to 

ABAQUS, where the ring deformations are calculated and the data is sent back to MATLAB. 

A simple finite element model of an axisymmetric ring was implemented in ABAQUS to 

demonstrate this. The axisymmetric ring was meshed, as seen in Figure 5.4, then forces and 

boundary conditions were applied to it. The analysis was run to generate an .inp file, which could 

be written exclusively within MATLAB so the fluid and contact pressures could be applied. Using 

the toolbox abaqus2matlab, displacements can then be calculated for the piston ring analysis in 

ABAQUS and extracted then plotted in MATLAB. 
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Figure 5.4: Sample ABAQUS mesh 
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5.5 Boundary Conditions 

 The lubricant flow around the ring is broken up into six different sections to account for 

the various conditions each part of the ring experiences, as seen in Figure 5.5. Each sections’ 

boundary conditions are assumed to have a pressure applied, consisting of a hydrodynamic 

pressure and a solid contact pressure. Also specified along each piston ring surface is the relative 

velocity of the lubricant, used for the hydrodynamic pressure calculations. 

Section 1 of the piston ring (Figure 5.5) is assumed to experience the pressure from the 

combustion chamber. The relative sliding velocity of the lubricant on the surface is assumed to be 

zero. 

In a similar manner, Section 5 is assumed to experience the pressure from the crankcase 

with a relative lubricant sliding velocity of zero as well. 

As the pressure in the combustion chamber is larger than the crankcase pressure, which is 

at atmospheric, there is assumed to be a linear decreasing pressure gradient from Sections 2 

through 4. This linear decreasing pressure gradient forces lubricant to flow from the combustion 

chamber (higher pressure) to the crankcase (lower pressure) around the groove housing. The 

relative fluid velocity around these three sections is also assumed to be zero. While the fluid 

shearing velocity is assumed to be zero, there are still minimal amounts of lubricant that leak past 

the ring through the groove housing due to the pressure gradient. These leakage rates can be 

calculated. 
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Lastly, at section 6 is the piston ring, cylinder wall interface. The pressures here are due to 

hydrodynamic and contact interactions, as well as the boundary pressures. There also exists a large 

sliding velocity between these two surfaces. More is discussed in Appendix B. 

 

 

 

5.6 Force and Moment Balance 

To find a pseudo-steady state solution, the position of the ring relative to the piston groove 

is adjusted until all the forces on the ring balance. Figure 2.5 shows the motion of the piston ring 

in the groove housing. The pressure at each node is calculated by superimposing hydrodynamic 
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and solid contact pressures over the area at each node. The force is then found by integrating over 

the entire surface. The force at node (i,j) is expressed as 

 𝐹𝐹𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆𝐷𝐷 = � 𝑒𝑒ℎ𝐷𝐷𝑑𝑑𝑆𝑆𝑜𝑜𝑑𝑑𝐷𝐷𝐶𝐶𝑆𝑆𝐶𝐶𝐶𝐶𝑐𝑐𝑑𝑑𝐴𝐴𝐶𝐶,𝑗𝑗
𝐴𝐴𝑖𝑖,𝑗𝑗

+ � 𝑒𝑒𝑐𝑐𝑜𝑜𝐶𝐶𝑆𝑆𝑆𝑆𝑐𝑐𝑆𝑆𝑑𝑑𝐴𝐴𝐶𝐶,𝑗𝑗
𝐴𝐴𝑚𝑚,𝑛𝑛

 (87) 

 The pseudo-steady state position of the piston ring has been reached when the forces and 

moments sum to zero. Taking the center of mass of the piston ring to be the point where the 

moments are summed about gives 

 (𝐹𝐹𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆𝐷𝐷)𝑥𝑥 = �𝐹𝐹𝐶𝐶 = 0 (88) 

 (𝐹𝐹𝑆𝑆𝑜𝑜𝑆𝑆𝑆𝑆𝐷𝐷)𝑧𝑧 = �𝐹𝐹𝑗𝑗 = 0 (89) 

 𝑁𝑁𝐶𝐶𝑀𝑀 = �𝐹𝐹𝐶𝐶 ∙ 𝜕𝜕 −  �𝐹𝐹𝑗𝑗 ∙ 𝑥𝑥 = 0 (90) 

The piston ring with the applied forces due to lubrication, contact, shearing, and the 

combustion cycle are drawn in the free-body diagram depicted in Figure 5.5. The pressure is also 

used to calculate the deformed shape of the ring, which will in turn affect the surface separation 

between the parts, which govern the hydrodynamic and contact pressures. Therefore the models 

are coupled together and must be solved iteratively; this iterative process is examined in more 

detail in Section 5.7. 

 It should be noted that the surface specific derived flow factors only accurately model the 

surface topography on the outer piston ring interface with the cylinder wall. For flow models 

involving rough surfaces on any other side of the piston ring, additional surface data must be 

acquired. This includes the flow around the piston ring through the piston groove housing (seen in 
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Figure 5.7). Accurate flow models are still applied, however the effect of those specific surface 

roughnesses is not taken into account. Instead the flow factors derived from the piston ring – 

cylinder wall interface are used to model the flow past those surfaces topography. While not 

specific to that respective face of the piston ring, the use of flow factors still improves the accuracy 

of the average flow model to include roughness. 

 

5.7 Convergence 

 The previously outlined methods are combined together through their boundary conditions. 

The piston ring model must be solved iteratively in order to reach a specified tolerance with the 

converged solution. The Newton-Raphson method is used to solve the coupled nonlinear force and 

moment equations on the piston ring (Eqs. (88-90)). The Newton-Raphson method is used in 

numerical analysis for finding successively better approximations of the root of a function. This 

allows to find the steady-state position of the ring where the forces and moments sum to zero. 

Newton’s method is outlined as 

 𝑥𝑥𝐶𝐶+1 = 𝑥𝑥𝐶𝐶 −
𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓(𝑥𝑥𝑛𝑛)
′  (91) 

Due to the fact that the derivative of these functions is not an analytical expression, the 

centered finite difference method must be used to discretize the derivative. Using centered finite 

difference, Newton’s method becomes 

 𝑥𝑥𝐶𝐶+1 = 𝑥𝑥𝐶𝐶 −
𝑓𝑓(𝑥𝑥𝑛𝑛)

𝑓𝑓(𝑥𝑥𝑛𝑛+1) − 𝑓𝑓(𝑥𝑥𝑛𝑛−1)
𝑥𝑥(𝐶𝐶+1) − 𝑥𝑥(𝐶𝐶−1)

 (92) 
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where the function, f, is the sum of the unbalanced forces and x is the height of the center of mass 

of the ring inside the groove housing to achieve the steady-state position. The flow chart for the 

governing piston ring model is shown in Figure 5.6. Several models have not yet been 

implemented, however significant progress has been made on them. Several included are the 

temperature model, viscosity model, and a dynamic model which are discussed in greater detail in 

Appendix B.  
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Input operating conditions, 
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surface properties 

Initialize component location, orientation, 
fluid pressure, and contact forces in a finite 

element model (FEM) 

Set boundary conditions and 
initial piston ring orientation 

Derive Flow Factors 
for two surfaces 

Balance axial loads and moments by translating or 
rotating components using Newton-Raphson Method 
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Figure 5.6: Flowchart of the 
iterative scheme used to solve the 
coupled contact and lubrication 
problem 
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5.8 Piston Ring Model Results 

The numerical results from the combined and fully coupled model is able to give the 

superimposed hydrodynamic and contact pressures on all sides of the piston ring. These results 

can then be implemented in the design and optimization of various coatings and materials for the 

cylinder wall or the piston ring. Along with coatings, the geometry of the piston ring can also be 

optimized in terms of leakage past the piston ring by way of the piston ring groove housing. For 

example, some piston rings have rounded edges to allow for smoother pressure transition regions, 

as well as hydrodynamic lift even for a diverging gap. At the corner of each surface of the ring the 

pressures are larger as there is seen to be a discontinuity. This causes the mechanical instability 

and stress to greatly build up over the cyclic nature of the piston. The following case was run in 

accordance with the parameters from Table 5.1. 

Recall from Figure 5.5 that the piston ring was broken down into six different sections to 

solve for the pressures acting on each surface. Figure 5.7 shows the orientation of the piston ring 

at a 10° angle from it horizontal position. The flow is forced to move past the piston ring from 

north to south while the piston ring orientation remains fixed. This is to demonstrate the lift on the 

surfaces. Future models will be implemented where the piston ring tilts as the piston moves in a 

rectilinear fashion. 

The piston ring is assumed to be at its maximum piston speed of 9𝑚𝑚/𝑠𝑠 halfway in between 

TDC and BDC. The outer wall interface with the cylinder wall is observed to be the same geometry 

as the slider bearing in Section 3.3.3, therefore the pressure profile is observed to be similar (Figure 

5.8). 
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Figure 5.7: Piston ring rotation about the Center of Mass 
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Figure 5.8: Pressure on outer ring surface 

0 0.2 0.4 0.6 0.8 1 1.2

Distance (m) 10 -3

0

0.5

1

1.5

2

2.5

Pr
es

su
re

 (P
a)

10 7

Section 6 



 
 

 
127 

 
 

 

 As previously mentioned, there is an assumed linear decreasing pressure gradient from the 

combustion chamber to the crankcase around the piston ring through the groove housing. In Figure 

5.9 the pressure gradient is shown for the upper surface. The sections of the piston ring are labeled. 

As expected, section 1 is seen to be at the same pressure as the combustion chamber. The geometry 

for section 2, as seen in Figure 5.7, is seen to be the opposite of the slider bearing geometry, and 

is a diverging wedge shape instead of a converging wedge shape. This results in a pressure drop 

across the upper surface. As previously mentioned, it can also be noticed from Figure 5.9, that 

there is a sudden drop in pressure at the corner of the surface. Two pressure profiles are affecting 

this section of the upper surface and result in the sudden decrease. The first are the boundary 

conditions that are governed by the linear decreasing pressure from the combustion chamber to the 

crankcase. The second are the pressures generated due to the reverse wedged shape of the upper 

surface from hydrodynamic and contact forces. This results in the pressure curve shown for the 

entire upper surface of the piston ring. 
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 The inner surface of the piston ring is also seen to be a diverging gap in the direction of 

lubricant flow, as seen in Figure 5.7. Similar to the upper piston ring surface, there are two pressure 

profiles that effect the net pressure acting on the inner piston ring surface, as seen in Figure 5.10. 

The firstly being the linear decrease in pressure from the combustion chamber to the crankcase. 

The second is from the reverse wedge shape of the piston ring that affect the hydrodynamic and 

contact forces. Both of these result in a net decrease in pressure across the inner surface. 

The pressure profile for the lower piston ring surface is seen in Figure 5.11. Similar to the 

upper surface, it can be seen that at section five, the crankcase pressure is constant across that part 

of the piston ring. Across section four is the same decreasing pressure gradient and diverging 

wedge slider bearing shape. 
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Figure 5.9: Pressure on upper ring surface 
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Figure 5.10: Pressure on inner ring surface 
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Figure 5.11: Pressure on lower ring surface 
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 Figure 5.12 shows the pressure change across all 6 sections of the piston ring, in accordance 

with the test case parameters of Table 5.1. The pressure is seen to be the largest on the outer piston 

ring surface (section 6). To show the pressure profiles of each section in greater detail, the film 

thickness is increased to ℎ1 = 0.1𝑚𝑚𝑚𝑚 and ℎ2 = 0.2𝑚𝑚𝑚𝑚. This can be seen in Figure 5.13. Also the 

linear decreasing pressure through the piston groove housing can be seen. At each of the sections 

around the ring in the piston groove housing (sections 2, 3, and 4), diverging surface geometry is 

observed and hence no lift is generated. 

 

 
Figure 5.12: Total pressure on piston ring surfaces (smaller film thickness) 
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 With the pressures calculated on each side of the ring, the deformations of the ring are 

calculated in ABAQUS and are iterated through MATLAB. The deformations for the piston ring 

due to mechanical interactions are seen in Figure 5.14. The y-displacement represents the axial 

height displacement of the upper surface on the piston ring. 
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Figure 5.13: Total pressure on piston ring surfaces (larger film thickness) 
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 It can be seen that at distances further from the center of the piston ring, the deformations 

become more exaggerated. This is attributed to the points that see the initial stresses and pressures 

generated on the surfaces, as governed by the boundary conditions. Also, as seen, this can be 

attributed to the larger pressures at each corner of the piston ring. Therefore it can be designed that 

the piston ring corners should be rounded. Ford has taken this into account and their piston rings 

are designed such to eliminate these abnormally higher pressures at the corners. Figure 5.15 shows 

a cross sectional schematic of a piston ring from one of their internal combustion engines. The 

inner corners are noticed to be rounded to eliminate any abnormal discontinuous pressures. Also 

Figure 5.14: Output deformation results in MATLAB 
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it is noticed that a coating has been applied in the spray filled groove. This is to improve the 

tribological interactions the piston ring makes with the cylinder wall. 

 

 

 

5.9 Future Model Implementations 

 There are several other modules that have made smaller advancements since the initiation 

of this project, however have not yet been integrated into the whole piston ring model. Those can 

be found in Appendix B. This section goes into detail about the implementation of a dynamic 

model that is also forthcoming on this project, and its effect it will have on the entirety of the piston 

ring model. 

 

 

 

Figure 5.15: Ford piston ring with rounded edges 
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5.9.1 Dynamic Model 

 Currently, the piston ring model assumes a constant velocity of the piston throughout the 

cycle in order to calculate the forces on the piston ring. In practice, the piston’s Mean Piston Speed 

(MPS) varies from 0 to 25𝑚𝑚/𝑠𝑠 for all internal combustion engines. Among average automotive 

engines, the value of MPS will reach 12𝑚𝑚/𝑠𝑠. For racing vehicle engines this value is higher. 

 A dynamic velocity model was implemented for the test case of a slider bearing. This 

simulation is nearly identical to the 2-D simulation in Section 3.3.3. The only difference is that the 

velocity of the bearing is not constant. The current piston speed model is taken from a racing 

engine which results in larger piston speeds. The piston speed model can be seen in Figure 5.16. 

 
Figure 5.16: Modeled piston speed for slider bearing 

0 50 100 150 200 250 300 350 400

Crank Angle (Degrees)

-25

-20

-15

-10

-5

0

5

10

15

20

25

Ve
lo

ci
ty

 (m
/s

)

Current Modeled Mean Piston Speed

BDC

Center

TDC

Center

BDC

U1: Center to TDC

U2: TDC to Center

U3: Center to BDC

U4: BDC to Center

Curve Fit (NLR)



 
 

 
135 

 
 

 

As the piston traverses the bore, the head starts at rest at TDC. It accelerates to its maximum 

piston velocity half way down the chamber at the center. Followed by a gradual deceleration from 

at its maximum piston velocity at the center of the bore to rest at BDC. This piston cycle continues 

throughout operation and can be seen in Figure 5.16. 

 In practice the piston velocity is modeled as a sinusoidal curve governed by the velocity 

equation 

 �̇�𝑥 =
𝑑𝑑𝑥𝑥
𝑑𝑑𝜕𝜕

= 𝜕𝜕 = −𝐹𝐹

⎝

⎛sin𝜃𝜃 +
sin 2𝜃𝜃

2��𝑙𝑙𝐹𝐹�
2
− sin2 𝜃𝜃⎠

⎞ (93) 

where l is the connecting rod length, r is the crankshaft radius, and 𝜃𝜃 is the crankshaft angle. This 

practical modeled equation can be seen in Figure 5.16. In working towards a sinusoidal piston 

speed model, a linear velocity model is first implemented. The stroke of the piston cycle is broken 

into four parts, each with a different linear velocity gradient. The velocity sections are broken 

down as follows: 

1. Center to TDC 

2. TDC to Center 

3. Center to BDC 

4. BDC to Center 

In applying these velocity profiles to the modeled slider bearing, the pressures are able to 

be calculated at each location in the bore due to the nature of the converging gap geometry of the 

sliding piston ring. This dynamic piston model will be incorporated into the entire piston ring 

model in the future.  
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CHAPTER 6 

 

CLOSURE 

 

6.1 Conclusions 

Surface topography was seen to play a large role in not only power cylinder component 

longevity, but also more importantly efficiency and performance. In the past hydrodynamic 

lubrication models, stochastic theory, along with random process analysis, all have been used to 

predict the flow of lubricant across rough surfaces. The direct asperity interactions within the fluid 

flow varies from surface to surface. The research presented in this thesis sought to modify existing 

theories that govern flow over general surfaces, to a more accurate model of flow over specific 

surface topography, namely power cylinder surfaces. For this very reason the governing lubricant 

flow equation, the Reynolds equation, was able to be modified by the use of pressure and shear 

flow factors. 

An updated method of deriving surface specific flow factors uses the average Reynolds 

equation to calculate specialized pressure and shear flow factors, which are able to predict surface 

specific roughness effects in the hydrodynamic lubrication regime. While numerical iterations are 

required, the method of flow factors is computationally more efficient for accurate flow model 

predictions. The empirical flow factor models are used in conjunction with the Reynolds equation 
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for any Gaussian or non-Gaussian surface. This method of deriving surface specific empirical flow 

models has minimal limitations among the application of engineered surfaces throughout a 

multitude of fields considering tribological interactions, and is able to be used confidently and 

more accurately in the analysis of any surface interaction. 

 

6.2 Future Work 

 This work found the importance of surface texturing among power cylinder components. 

Surface texturing provides a foundation for component efficiency and performance. Therefore, the 

presence of a coating on the surface should also be considered. This can be accomplished using 

three possible methods, depending on the thickness of the coating. For coatings that are thinner 

than the scale of the roughness, the coating will be considered at the asperity scale. For instance, 

models are available to predict initial yield and possible failure of coated asperities [70-73]. 

Second, by using a hierarchal multiscale model a coating can be considered by changing the 

properties of the material at the different scales in the model (see these works by Jackson: [11, 14, 

74, 75]). Third, the coating could be considered deterministically as necessary (where it is modeled 

in the macroscale FEM model as in [11]). This also considers the failure initiated due to thermal 

expansion mismatch between the materials. 

The future model should include heat generation due to solid and viscous friction. This 

heat generation can then be used to predict the temperature rise in the lubricant and components. 

Thermal deflections and temperature dependent viscosity should also be considered. A thermal 
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contact resistance model can be included to consider heat conduction across the interfaces, similar 

to Jackson’s previous work [76, 77]. 

Using this, along with models for viscous and solid friction, a Stribeck curve can be 

generated. Each Stribeck Curve is unique to a certain surface geometry, lubricant, and material. 

The code can provide a prediction of the separation distance between the surfaces at each location. 

This surface separation can then be used to predict the fluid flow across the piston, or blow-by. In 

addition, the code could be able to make predictions of film thickness, pressure profiles, frictional 

torques, temperature rises in the material and lubricant, stresses in the material, and other 

quantities. Most importantly, the stresses can also be used to predict failure and wear of the coating 

and surface material itself. 

The future model should also include the transient nature of the combustion cycle as it is a 

time variant process and should be modeled as such. For this reason, a transient model would better 

predict the relative velocity between the piston, piston ring, and the cylinder wall. This transient 

model thusly would predict a more accurate film thickness, pressure induced gradients, thermal 

stresses, and more importantly the cyclic stresses experienced. This leads to a more accurate 

prediction of failure and wear among the power cylinder component interface. 
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APPENDIX A 

 

PROGRAM CODE 

 

 The following is a list of all the scripts and functions in this Appendix and the pages where 

they appear. 

 

Governing Program ................................................................................................................... 141 

 

Functions 

 CylinderWall_GP .......................................................................................................... 149 

 FlattenedTopRing_GP .................................................................................................. 151 

 True_FF_CalculationsWallRing_X_GP ....................................................................... 152 

           True_FF_Calculations_RoughSurfaceWallRing_X_GP .................................... 153 

           True_FF_Calculations_SmoothSurfaceV2XDIRECTION_GP ......................... 159 

 True_FF_CalculationsWallRing_Z_GP ....................................................................... 164 

           True_FF_Calculations_RoughSurfaceWallRing_Z_GP..................................... 165 

           True_FF_Calculations_SmoothSurfaceV2ZDIRECTION_GP .......................... 171 

 True_FF_Calculations_ShearV2_GP ........................................................................... 176 
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           True_FF_CalculationsRoughSurfaceWallShear_GP .......................................... 178 

           True_FF_CalculationsRoughSurfaceRingShear_GP .......................................... 184 

 Fit_FF_Curves_GP ....................................................................................................... 191 

 RE2DwithFF_GP .......................................................................................................... 196 

 ACF_SurfaceTest .......................................................................................................... 200 

 eplasticG_Wcf_GP ....................................................................................................... 206 

 Simpsons_1_3_GP ........................................................................................................ 207 
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%**************************************************************************** 
%******                                                                ****** 
%***            USE OF SURFACE SPECIFIC FLOW FACTORS IN A MULTI-          *** 
%*                                                                          * 
%*                PHYSICAL MODEL OF POWER CYLINDER COMPONENTS               * 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
 
 
 
%**************************************************************************** 
% The following program is the governing program for the combined lubrication 
% and contact models. The program first takes in two sets of surfaces, assuming 
% they are the same size. Then the program derives the three set of flow factor 
% equations, namely (X,Z,S), for the two interacting surfaces. Following this 
% derivation the program iterates the film thickness, h, and utilizes the flow 
% factor equations along with the contact models to predict the pressure at    
% each point in the mesh. The program is assumed that at film thickness greater 
% than 10*Rq the pressure is solely due to hydrodynamic forces and the contact 
% pressures are ignored. 
%**************************************************************************** 
 
%****************************Call the Two Surfaces*************************** 
  
%                      |--------------------------------|  
%                      | Plot the Cylinder Wall Surface | 
%                      |--------------------------------| 
  
CylinderWall_GP 
figure() 
mesh(Leveledz2); 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('D35 Cylinder Wall Surface','Fontsize',20) 
  
%Calculate Root Mean Square Roughness (Standard Deviation) of Surface 1 
(Cylinder Wall) 
Rq1 = 0; 
len = length(Leveledz2); 
for j = 1:len 
    OldRq1 = Rq1; 
    Rq1 = (z2(j)-avgz(j))^2 + OldRq1; 
    if j == len 
        Rq1 = (Rq1/len)^(1/2); 
    end 
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    j = j + 1; 
end 
Rq1 = Rq1 * (1e-4); 
  
  
  
%                           |------------------------------|  
%                           | Plot the Piston Ring Surface | 
%                           |------------------------------| 
  
FlattenedTopRing_GP 
figure() 
mesh(LeveledFit) 
% axis([0 1000 0 1000 -2 4]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('D35 Piston Ring Surface without Curvature','Fontsize',20) 
grid on 
  
%Calculate Root Mean Square Roughness (Standard Deviation) of Surface 2 (D35 
Ring) 
Rq2 = 0; 
len2 = length(fitwall); 
for j = 1:len2 
    OldRq2 = Rq2; 
    Rq2 = (fitwall(j)-AverageData)^2 + OldRq2; 
    if j == len2 
        Rq2 = (Rq2/len2)^(1/2); 
    end 
    j = j + 1; 
end 
Rq2 = Rq2 * (1e-4); 
  
%Calculate the Composite RMS Roughness 
sigma = sqrt(Rq1^2 + Rq2^2); 
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%***************************Derive the Flow Factors************************** 
%**************************************************************************** 
% NOTE: The following is derived under several assumptions:  
%    -Below 2*sigma: Only the shear flow factor, and contact models are used 
%    -Between 2*sigma and 10*sigma all flow factors and contact models are used 
%    -Above 10*sigma only flow factor are used 
%**************************************************************************** 
  
for FR = 1:1:12 
    h = FR*sigma; 
    if FR < 2 
        [phis(FR),LPS1(FR),LPS2(FR)] = True_FF_Calculations_ShearV2_GP(h); 
         
    elseif FR < 10 
        phix(FR) = True_FF_CalculationsWallRing_X_GP(h); 
        phiz(FR) = True_FF_CalculationsWallRing_Z_GP(h); 
        [phis(FR),LPS1(FR),LPS2(FR)] = True_FF_Calculations_ShearV2_GP(h); 
     
    else 
        phix(FR) = True_FF_CalculationsWallRing_X_GP(h); 
        phiz(FR) = True_FF_CalculationsWallRing_Z_GP(h); 
        [phis(FR),LPS1(FR),LPS2(FR)] = True_FF_Calculations_ShearV2_GP(h); 
         
    end       
end 
  
phix = phix(1,2:end); %Unstable below 1.5*sigma -> Only extract 2*sigma and 
greater 
phiz = phiz(1,2:end); %Unstable below 1.5*sigma -> Only extract 2*sigma and 
greater 
  
 
%                    |----------------------------------|                    
%                    | Results for D35 Ring and Surface | 
%                    |----------------------------------| 
 
% FilmRatio = [   1       2       3       4       5       6       7       8  

9      10      11      12  ]; 
% phis      = [0.5111  0.2526  0.1697  0.1276  0.1019  0.0846  0.0726  0.0639 

0.0573  0.0513  0.0466  0.0427]; 
% LPS1      = [0.4522  0.2219  0.1491  0.1128  0.0893  0.0743  0.0637  0.0562 

0.0504  0.0453  0.0412  0.0377]; 
% LPS2      = [1.0544  0.5358  0.3601  0.2643  0.2182  0.1793  0.1552  0.1347 

0.1216  0.1065  0.0965  0.0882]; 
% phix      = [        1.7376  1.3714  1.2198  1.1351  1.0872  1.0430  1.0379 

1.0339  1.0306  1.0280  1.0257]; 
% phiz      = [        0.6779  0.7838  0.8396  0.8866  0.9038  0.9166  0.9263 

0.9340  0.9402  0.9454  0.9497]; 
  
%Set up Film Ratio Vector 
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FilmRatio = (1:1:max(FR));  
  
%Fit curves to derived data 
[ax,bx,cx, az,bz, as,bs,cs] = 
Fit_FF_Curves_GP(FilmRatio,phis,LPS1,LPS2,phix,phiz); 
  
 
%                         |--------------------------| 
%                         | Governing Equation Forms | 
%                         |--------------------------| 
%        phix_eqn = ax*H^bx + cx      where  ax=2.4827  bx=-1.6955  cx=0.9752   
%        phiz_eqn = 1 - az*exp(bz*H)  where  az=0.4824  bz=-0.2477 
%        phis_eqn = as*H^bs + cs      where  as=0.5086  bs=-1.0149  cs=0.0022 
 
 

%***************************Determine the Pressures*************************** 
%****************************************************************************
% NOTE: The following section utilizes the above derived flow factor equations, 
% along with the contact models to determine the total combined pressures. The 
% total pressure is equal to the hydrodynamic pressure plus the contact            
% pressure for each surface, under the above assumptions. New Assumptions: 
%                           -Model is axisymmetric 
%                                 | 
%                                 |--> No dynamic movement in the x-direction 
%                           -Pressure gradient is due to combustion chamber and  
%                           crankshaft pressures 
%                                 | 
%                                 |--> Crankshaft is ambient 
%                          -Flow factors take into account roughness, smooth 
%                           surfaces are modeled 
%                          -Radial Wall thickness: 2.9e-3 meters 
%                          -Axial Width:           1.2e-3 meters 
%**************************************************************************** 
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%***************************Piton Ring Pack Diagram************************** 
% 
%                                      |                      | 
%                                      |                      | 
%                                      |                      | 
%                                      |                      | 
%        |-----------------------------|                      | 
%        |                                                    | 
%        |                    P_Upper                         | 
%        |          |----------------------------|            | 
%        |          |        S2           S1     |            | 
%        |          |                            |            | 
%        |  P_Inner | S3                      S6 | P_Outer    | 
%        |          |                            |            | 
%        |          |        S4           S5     |            | 
%        |          |----------------------------|            | 
%        |                    P_Lower                         | 
%        |                                                    | 
%        |-----------------------------|                      | 
%                                      |                      | 
%                                      |                      | 
%                                      |                      | 
%                                      |                      | 
  
 
% Define Variables and Constants 
RingNodes    = size(testz);  % Matrix size of the ring 
height       = RingNodes(1); % Number of nodes along inner and outer surfaces 
width        = RingNodes(2); % Number of nodes along upper and lower surfaces 
u1           = 0;       % Assumed relative fluid velocity of Section 1 
u2           = 0;       % Assumed relative fluid velocity of Section 2 
u3           = 0;       % Assumed relative fluid velocity of Section 3 
u4           = 0;       % Assumed relative fluid velocity of Section 4 
u5           = 0;       % Assumed relative fluid velocity of Section 5 
u6          = 9;       % Velocity of the bearing (1) (9m/s for Mean Piston 
Speed) 
ho = 8e-6;% Height at edge of incline (8e-7 m)---> if h >= e-6 then no P_contact 
hi = 7e-6;         % Height at edge of incline (7e-7 m)------^ 
L  = 2.9e-3;       % Radial wall thickness of top piston ring (m) 
A  = 1.2e-3;       % Axial width of ring (m) 
dx = L/(width-1);  % Distance between nodes (m) 
dz = A/(height-1); % Distance between nodes (m) 
P_crankshaft = 101325;  % Pressure in the crankshaft (Pa) 
P_chamber    = 1500000; % Pressure in the combutrion chamber (Pa) 
L2           = 1.4e-3;  % Assumed length of Section 2 AND Section 4 
Sec2         = round(width*L2/L); % Number of nodes of Section 2 AND Section 4 
Sec1         = width - Sec2;      % Number of nodes of Section 1 AND Section 5 
  
% Boundary Conditions 
BCs  = (P_chamber-P_crankshaft)/(4-1); % 4 BC's calculated, this represents the 
delta between each node 
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BC16 = P_chamber;         % Section 1 
BC12 = P_chamber;         % Bewteen Section 1 and Section 2 
BC23 = P_chamber - BCs;   % Pressure decreses going frm Section 1 to Section 5 
around ring 
BC34 = P_chamber - 2*BCs; % Between Section 3 and Seection 4, two nodes away 
from BC1 
BC45 = P_crankshaft;      % Between Section 4 and Section 5 
BC56 = P_crankshaft;      % Between Section 5 and Section 6 
  
 
%***********************Pressure On Upper Ring Surface************************ 
%**************************SECTION 1  &  SECTION 2**************************** 
%----------------SECTION 1---------------- 
P_total1(1:Sec1) = P_chamber; 
  
%----------------SECTION 2---------------- 
count = 1; 
for i = 1:Sec2 
   z2(i) = dx * (i-1); 
   h2(i) = testz(1,(width-(Sec2-count))); 
   count=count+1; 
end 
  
%Combined location along width of ring 
for i = 1:width 
    z1and2(i) = dx * (i-1); 
end 
  
P_hydro2 = RE2DwithFF_GP(h2,z2,dx,u2,BC12,BC23,az,bz,as,bs,cs,sigma); 
%Calculate the hydrodynamic pressure at each node 
P_contact2 = eplasticG_Wcf_GP(h2); 
% Calculate the contact pressure at each node 
P_contact2 = P_contact2(:,3)'; 
% Column1=X-Direction   Column2=Z-Direction  Column3=Average  
P_total2 = P_hydro2 + P_contact2; 
% Sum the hydrodynamic and contact pressures (Pa) 
P_TotalUpper = [P_total2 P_total1]; 
% Total Pressure forces on upper ring surface 
% z1and2 = [z1 z2]; 
% Combined Numerical discretization grid 
  
  
%************************Pressure On Inner Ring Surface*********************** 
%**********************************SECTION 3********************************** 
% Set up numerical grid along axial width of the ring 
for i = 1:height 
    z3(i) = dz * (i-1); 
    h3(i) = testz(i,width); 
end 
  



 
 

 
147 

 
 

 

P_hydro3 = RE2DwithFF_GP(h3,testz(:,1),dz,u3,BC23,BC34,az,bz,as,bs,cs,sigma) 
% Calcualte the hydrodynamic pressure at each node 
P_contact3 = eplasticG_Wcf_GP(h3); 
% Calculate the contact pressure at each node 
P_contact3 = P_contact3(:,3)'; 
% Column1=X-Direction   Column2=Z-Direction  Column3=Average  
P_total3 = P_hydro3 + P_contact3; 
% Sum the hydrodynamic and contact pressures (Pa) 
P_TotalInner = [P_total3];         % Total Pressure forces on inner ring surface 
  
  
%***********************Pressure On Lower Ring Surface*********************** 
%**************************SECTION 4  &  SECTION 5 ************************** 
%----------------SECTION 4---------------- 
count = 1; 
for i = 1:Sec2  %Try last 5 nodes [5 would be #2] 
   z4(i) = dx * (i-1); 
   h4(i) = testz(1,(width-(Sec2-count))); 
   count=count+1; 
end 
  
%----------------SECTION 5---------------- 
P_total5(1:Sec1) = P_crankshaft; %15 would be #1 
  
%Combined location along width of ring 
for i = 1:width 
    z4and5(i) = dx * (i-1); 
end 
  
P_hydro4 = RE2DwithFF_GP(h2,z2,dx,u2,BC12,BC23,az,bz,as,bs,cs,sigma); 
% Calculate the hydrodynamic pressure at each node 
P_contact4 = eplasticG_Wcf_GP(h2); 
% Calculate the contact pressure at each node 
P_contact4 = P_contact4(:,3)'; 
% Column1=X-Direction   Column2=Z-Direction  Column3=Average  
P_total4 = P_hydro4 + P_contact4; 
% Sum the hydrodynamic and contact pressures (Pa) 
P_TotalLower = [P_total4 P_total5]; 
% Total Pressure forces on lower ring surface 
% z1and2 = [z1 z2]; 
% Combined Numerical discretization grid 
  
  
%***********************Pressure On Outer Ring Surface*********************** 
%**********************************SECTION 6********************************** 
% Set up numerical grid along axial width of the ring 
for i = 1:height 
       z6(i) = dz * (i-1);                    %Z location at each node 
       h6(i) = ho + (hi-ho)/(height-1)*(i-1); %Linear equation for film 
thickness at each node    
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end 
  
P_hydro6 = 
RE2DwithFF_GP(h6,z6,dz,u6,P_crankshaft,P_chamber,az,bz,as,bs,cs,sigma); 
% Calculate the hydrodynamic pressure at each node 
P_contact6 = eplasticG_Wcf_GP(h6); 
% Calculate the contact pressure at each node 
P_contact6 = P_contact6(:,3)'; 
% Column1=X-Direction   Column2=Z-Direction  Column3=Average  
P_total6 = P_hydro6 + P_contact6; 
% Sum the hydrodynamic and contact pressures (Pa) 
P_TotalOuter = [P_total6] 
% Total Pressure forces on outer ring surface 
  
 
%*******************Plot the Pressure on each ring surface******************* 
%----------------UPPER---------------- 
figure() 
plot(z1and2,P_TotalUpper)  %Can also make (z1and2,P_TotalUpper) 
title('Pressure on Upper Ring Surface','Fontsize',20) 
ylabel('Pressure (Pa)') 
xlabel('Distance (m)') 
grid on 
  
%----------------Inner---------------- 
figure() 
plot(z3,P_TotalInner) %Can also make (z3,P_TotalOuter) 
title('Pressure on Inner Ring Surface','Fontsize',20) 
ylabel('Pressure (Pa)') 
xlabel('Distance (m)') 
grid on 
  
%----------------Lower---------------- 
figure() 
plot(z4and5,P_TotalLower)  %%Can also make (z4and5,P_TotalUpper) 
title('Pressure on Lower Ring Surface','Fontsize',20) 
ylabel('Pressure (Pa)') 
xlabel('Distance (m)') 
grid on 
  
%----------------Outer---------------- 
figure() 
plot(z6,P_TotalOuter) %Can also make (z6,P_TotalOuter) 
title('Pressure on Outer Ring Surface','Fontsize',20) 
ylabel('Pressure (Pa)') 
xlabel('Distance (m)') 
grid on 
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%**************************************************************************** 
%******                                                                ****** 
%***                         CYLINDER WALL FUNCTION                       *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function calls the raw surface data heights from a text file   
% that was created by the profilometer. Upon collecting the surface heights,  
% the data heights are then leveled, where the average is subtracted out. The 
% average is subtracted out one row at a time in the order the profilometer    
% measured the surface row. 
%**************************************************************************** 
 
 
%//////////////////////////////////////////////////////////////////////////// 
%                             ------------------ 
%                            |  FORD SURFACE 1  | 
%                             ------------------ 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Read in the data into 5 columns 
 [A B C D E] = textread('Surface1_NoWords_GP.txt','%f %c %f %c 
%c','headerlines',20);        %Need file to end with numbers 
  
%FOR THE Y VALUES USE THIS CODE 
w = 1000;   %Number of Samples per row 
n = 999; %Number of Repeating Samples 
v = repmat(0:n,[w 1]); 
v = v(:); 
  
x1 = A; 
y1 = v; 
z1 = C; 
  
%***************************LEVEL THE DATA********************************* 
for j = 1:1000 
   sumz = 0; 
  
        if j==1 
             
               for i = 1:1000                     %Sum points from 1 to 1000 
                   sumz = sumz + z1(i); 
               end 
               a = polyfit(i,j,1); 
               avgz(j) = sumz/1000;   
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               k=0; 
               for i = 1 : 1000  %Sum points from X001 to (X+1)000 
                   k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-a(1); 
               end   
        elseif j<=999 
            sumz=0; 
               for i = (1000*j+1) : (1000*j+1000)  %Sum points from X001 to 
(X+1)000 
                        sumz = sumz + z1(i); 
               end 
               w = polyfit(i,j,1); 
               avgz(j) = sumz/1000; 
               k=0; 
               for i = (1000*j+1) : (1000*j+1000)  %Sum points from X001 to 
(X+1)000 
                k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-w(1); 
                         
               end               
  
        else                                       %For the last point 
               for i = 999001:1000000 
                   sumz = sumz + z1(i);      
               end 
                e = polyfit(i,j,1); 
               avgz(j) = sumz/1000 - e(1); 
               k=0; 
               for i = 999001:1000000  %Sum points from X001 to (X+1)000 
                   k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-e(1); 
               end   
             
        end %End j decision loop 
end %End j loop 
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%**************************************************************************** 
%******                                                                ****** 
%***                         PISTON RING FUNCTION                         *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The piston ring data was supplied from ford with its curvature. This function 
% eliminates any curvature. 
%**************************************************************************** 
  
RingX = xlsread('RingData_GP.xlsx',1); 
RingY = xlsread('RingData_GP.xlsx',2); 
RingZ = xlsread('RingData_GP.xlsx',3); 
  
fitwall = xlsread('No Curve Cylinder Wall_GP.xlsx',1); 
  
%*************Level the Data by putting the average at zero**************** 
% size(fit) %The size of variable fit is 1000x1000 
% Total data points is 1e6 
AverageData = (sum(sum(fitwall))) / 1e6; 
LeveledFit = fitwall - AverageData; 
  
%Check Leveled fit (Average should be zero) 
AverageDataCheck = (sum(sum(LeveledFit))) / 1e6; 
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%**************************************************************************** 
%******                                                                ****** 
%***                    X DIRECTION PRESSURE FLOW FACTOR                  *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%****************************************************************************
% The following function is used to calculate the nodal pressures at one film 
% thickness. The film thickness is iterated in the governing program code.              
% This is the function to calculate the rough surface flow rate to smooth             
% surface flow rate. 
%****************************************************************************  
   
function [avg_phi_x] = True_FF_Calculations_X_GP(h) 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  X PRESSURE FLOW FACTOR   | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Call programs 
[q_x_RS] = True_FF_Calculations_RoughSurfaceWallRingXDIRECTION_GP(h); 
[q_x_SS] = True_FF_Calculations_SmoothSurfaceV2XDIRECTION_GP(h); 
  
%************************************************************************** 
%This assumes the above programs have already been run, this is the output 
%************************************************************************** 
  
%************************FINALIZED X PRESSURE FLOW FACTOR****************** 
phi_x = q_x_RS./q_x_SS; 
avg_phi_x = sum(phi_x(:))/numel(phi_x); 
  
  
  
end  %End function 
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%**************************************************************************** 
%******                                                                ****** 
%***             ROUGH SURFACE X DIRECTION PRESSURE FLOW FACTOR           *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film 
% thickness for the rough surface. The film thickness is iterated in the % 
governing program code. 
%****************************************************************************  
 
function [ q_x_RS ] = 
True_FF_Calculations_RoughSurfaceWallRingXDIRECTION_GP(h) 
  
%film thickness (h) is used in line 186 
  
clc; 
warning('off','all') 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1)    
u      = 0;        %Velocity of the bearing (1)     
M      = 100;      %Number of nodes (Rows) 
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PRS    = zeros(M,N); %Initial pressure guess 
PRS(:,:) = 250;   
PRS(:,1) = 100;     %Pressure in combustion chamber just after combustion 
                     (~30 bar = 30e6 Pa) 
PRS(:,M) = 400;     %Pressure in crankcase (~assuming atmospheric) 
PRSsmall = 100; 
PRSlarge = 400; 
  
error  = 10;        %Large initial error to enter loop 
crit   = 0.01;      %Convergence criteria of percent error (1%) 
sigma  = 1e-6;      %Standard Deviation 
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%Call Cylinder Wall 
CylinderWall_GP 
  
%Calculate Root Mean Square Roughness (Standard Deviation) of Surface 1 
(Cylinder Wall) 
Rq1 = 0; 
len = length(Leveledz2); 
for j = 1:len 
    OldRq1 = Rq1; 
    Rq1 = (z2(j)-avgz(j))^2 + OldRq1; 
     
    if j == len 
        Rq1 = (Rq1/len)^(1/2); 
    end 
     
    j = j + 1; 
end 
Rq1 = Rq1 * (1e-6); 
  
%Call Second Surface (D35 Ring) 
FlattenedTopRing_GP 
  
  
%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
% dx = 2.0408e-6 meters;  
% dz = 2.0408e-6 meters; 
  
for i = 1:M 
     
    for j = 1:N 
       z(i) = dz * (i-1); 
  
       %*********Basic Equation for h******** 
       hRS(i,j) = (LeveledFit(i) - Leveledz2(i,j))*(10^-5) + h*(1e-1);  
        
       x(j) = dx * (j-1);               %X location at each node 
        
       %Initial Pressure Guess (Line) 
       PRS(i,j) = PRSsmall + (PRSlarge-PRSsmall)/(N-1)*(j-1);        
  
    end 
end 
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%Plot the Film Thickness 
figure() 
surf(hRS) 
axis([0 100 0 100 0 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
%Plot the two Sliding Surfaces 
figure() 
mesh(z2-3) 
hold on 
mesh(fit) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Two Sliding Surfaces','Fontsize',20) 
grid on 
  
% FOR DISTANC BEWTEEN TWO SURFACES - UPDATED FILM THICKNESS 
% hRS = hRS - (-hRS); 
  
%************************2D PRESSURE PROFILE******************************* 
figure(); 
grid on; 
plot(x,PRS);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;       %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1;  %Uncomment for increment 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PRS; %Updates new pressure 
    error = 0;       %Set error to zero to initialize it 
     
    %**********************NUMERICAL GRID CALCULATIONS*********************** 
    for i = 1:(M)     %Calculate Pressure at all nodes with periodic BC's [i 
                        direction] 
         
        for j = 2:(N-1) %Calculate Pressure at all nodes with periodic BC's 
                         [j direction] 
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            %Periodic Boundary Conditions with Ghost Nodes 
            %****************M Direction (i direction)**************** 
                ii_1 = i+1; 
                ii_2 = i-1; 
                 
                if ii_1 > M 
                    ii_1 = ii_1 - M; 
                end 
                 
                if ii_2 < 1 
                    ii_2 = ii_2 + M; 
                end 
                  
           %*******************NUMERICAL FILM THICKNESS GRID***************** 
           %In the i direction 
           h3 = (hRS(ii_1,j)+hRS(i,j))/2;  %Halfway in between node ahead 
           h4 = (hRS(i,j)+hRS(ii_2,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hRS(i,j+1)+hRS(i,j))/2;  %Halfway in between node ahead 
           h2 = (hRS(i,j)+hRS(i,j-1))/2;  %Halfway in between node behind 
            
           %******************NUMERICAL GRID FOR DELTA*********************** 
           %In the j direction 
           delx(j+1) = dx; %x(j+1)-x(j);   %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(ii_1) = dz; %z(i+1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
            
           %******************REYONLDS COEFFICIENTS************************** 
           a0 = 6*mu*u*((h3-h4)/(delx(j)+delx(j+1))); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(j+1))); 
           a2 = (h3^3)/(delx(j+1)*(delx(j)+delx(j+1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(ii_1))); 
           a4 = (h1^3)/(delz(ii_1)*(delz(i)+delz(ii_1))); 
           a5 = a1 + a2 + a3 + a4; 
            
           %*********************3D PRESSURE EQUATION************************ 
           PRS(i,j) = a1*PRS(i,j-1) + a2*PRS(i,j+1) + a3*PRS(ii_2,j) + 
                      a4*PRS(ii_1,j) - a0; 
           PRS(i,j) = PRS(i,j)/(a5); 
            
           %***************FLOW RATES FOR POISEULLE FLOW********************* 
           q_z_RS = (-(hRS^3)/(12*mu)) * ((PRS(ii_1,j)-PRS(ii_2,j))/dz); 
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           q_x_RS = ((-(hRS^3)/(12*mu)) * ((PRS(i,j+1)-PRS(i,j-1))/dx)) + 
                    u*hRS; 
 
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_RS_C = (u/2) * (hRS/M); 
                       
           %***********************CALCULATE ERROR*************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PRS(i,j))>0)  
              error = error + abs((PRS(i,j)-OldPressure(i,j))/PRS(i,j));  
           end 
                       
           %****************RELAXATION**************** 
           PRS(i,j)=0.9*PRS(i,j)-0.8*OldPressure(i,j);   %Relaxation of 0.8 
                       
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M; %/N    Uncomment to see error decrease 
    if(it<10) 
        error=10; 
    end 
     
    %************************PLOT THE TENTH ITERATION************************ 
    if (it==10) 
         plot(x,PRS);   
         title('Pressure Distribution','Fontsize',20) 
         grid on 
         grid minor 
         xlabel('x(m)') 
         ylabel('P(pa)') 
         
         hold off 
         plot(z,PRS);   
         title('Z-Pressure Distribution','Fontsize',20) 
         grid on 
         grid minor 
         xlabel('z(m)') 
         ylabel('P(pa)') 
         it=0;     %Reset iteration counter 
    end 
     
end   %End convergence criteria loop 
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%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
 %*************************PLOT FILM THICKNESS****************************** 
figure() 
plot(x,hRS) 
title('Film Thickness','Fontsize',20) 
grid on 
figure() 
surf(hRS) 
title('Film Thickness','Fontsize',20) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height(\mum)') 
grid on 
  
%*************************PLOT FLOW RATES****************************** 
figure() 
surf(q_x_RS_C) 
title('3D Flow Rates - Couette Flow','Fontsize',20) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Flow Rate (m^3/s)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(PRS) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
axis([0 50 0 50 -10e6 10e6]) 
colorbar 
title('3D Reynolds Plot - Poiseuille Flow','Fontsize',20) 
%Plot Mesh 
figure() 
mesh(PRS) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reynolds Plot - Couette Flow ','Fontsize',20) 
end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***             SMOOTH SURFACE X DIRECTION PRESSURE FLOW FACTOR          *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film 
% thickness for the smooth surface. The film thickness is iterated in the           
% governing program code. 
%**************************************************************************** 
  
function [q_x_SS] = True_FF_CalculationsV2XDIRECTION_GP(h) 
  
%film thickness (h) is used in line 58 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1)          
u      = 0;        %Velocity of the bearing (1)          
M      = 100;      %Number of nodes (Rows)                                                           
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PSS      = zeros(M,N); %Initial pressure guess 
  
PSS(:,:) = 250; 
PSS(:,1) = 100;     %Pressure in combustion chamber just after combustion 
                     (~30 bar = 30e6 Pa) 
PSS(:,M) = 400;     %Pressure in crankcase (~assuming atmospheric) 
PSSsmall = 100; 
PSSlarge = 400; 
  
error  = 10;       %Large initial error to enter loop 
crit   = 0.1;      %Convergence criteria of percent error (0.1%)      
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%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
for i = 1:M      %i is top and bottom (Z Direction) 
     
    for j = 1:N  %j is left and right sides (X Direction) 
       %Set z = i for infinitely long bearing 
       z(i) = dz * (i-1); 
        
       hSS(i,j) = h*(1e-1);%2e-5;  %take complete average of hRS (5.7665e-5) 
       
       x(j) = dx * (j-1);               %X location at each node 
       
       %Initial Pressure Guess (Line) 
       PSS(i,j) = PSSsmall + (PSSlarge-PSSsmall)/(N-1)*(j-1); 
        
    end 
end 
  
figure() 
surf(hSS) 
axis([0 100 0 100 1e-5 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
%************************2D PRESSURE PROFILE******************************* 
figure(); 
grid on; 
plot(x,P);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;      %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1; 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PSS; %Updates new pressure 
    error = 0;       %Set error to zero to iitialize it 
     
    %*******************NUMERICAL GRID CALCULATIONS************************* 
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    for i = 1:(M)     %Calculate Pressure at all nodes except at the 
                       edge(Boundary Conditions) {i direction} 
         
        for j = 2:(N-1) %Calculate Pressure at all nodes except at the edge 
                         {j direction} 
                    
                %Periodic Boundary Conditions with Shost Nodes 
                %****************M Direction (i direction)**************** 
                ii_1 = i+1; 
                ii_2 = i-1; 
                 
                if ii_1 > M 
                    ii_1 = ii_1 - M; 
                end 
                 
                if ii_2 < 1 
                    ii_2 = ii_2 + M; 
                end 
                  
           %**************NUMERICAL FILM THICKNESS GRID********************** 
           %In the i direction 
           h3 = (hSS(ii_1,j)+hSS(i,j))/2;  %Halfway in between node ahead 
           h4 = (hSS(i,j)+hSS(ii_2,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hSS(i,j+1)+hSS(i,j))/2;  %Halfway in between node ahead 
           h2 = (hSS(i,j)+hSS(i,j-1))/2;  %Halfway in between node behind 
            
           %*****************NUMERICAL GRID FOR DELTA************************ 
           %In the j direction 
           delx(j+1) = dx; %x(j+1)-x(j); %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(ii_1) = dz; %z(ii_1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
  
         %*******************REYONLDS COEFFICIENTS************************** 
           a0 = 6*mu*u*((h3-h4)/(delx(j)+delx(j+1))); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(j+1))); 
           a2 = (h3^3)/(delx(j+1)*(delx(j)+delx(j+1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(ii_1))); 
           a4 = (h1^3)/(delz(ii_1)*(delz(i)+delz(ii_1))); 
           a5 = a1 + a2 + a3 + a4; 
 
           %********************3D PRESSURE EQUATION************************* 
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           PSS(i,j) = a1*PSS(i,j-1) + a2*PSS(i,j+1) + a3*PSS(ii_2,j) + 
                      a4*PSS(ii_1,j) - a0; 
           PSS(i,j) = PSS(i,j)/(a5); 
  
           %**************FLOW RATES FOR POISEULLE FLOW********************** 
           q_z_SS = (-(hSS^3)/(12*mu)) * ((PSS(ii_1,j)-PSS(ii_2,j))/dz); 
           q_x_SS = ((-(hSS^3)/(12*mu)) * ((PSS(i,j+1)-PSS(i,j-1))/dx)) + 
                    u*hSS; 
  
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_SS_C = (u/2)* (hSS/M); 
            
           %**********************CALCULATE ERROR**************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PSS(i,j))>0)  
              error = error + abs((PSS(i,j)-OldPressure(i,j))/PSS(i,j));  
           end 
            
           %****************RELAXATION**************** 
           PSS(i,j)=1.9*PSS(i,j)-0.9*OldPressure(i,j);   %Relaxation of 1.9 
            
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M;  %Uncomment for decreasing error 
    if(it<10) 
        error=10; 
    end 
     
    %***********************PLOT THE TENTH ITERATION************************* 
    if (it==10) 
        plot(x,PSS);   
        title('X-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('x(m)') 
        ylabel('P(pa)') 
         
        hold off 
        plot(z,PSS);   
        title('Z-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('z(m)') 
        ylabel('P(pa)') 
        it=0;     %Reset iteration counter 
    end 
end   %End convergence criteria loop 
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%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
%NOTE: Pressure is induced between the two sliding surfaces due to pressure 
%in the chamber and the crankcase. 
   
%*************************PLOT FILM THICKNESS****************************** 
figure() 
plot(x,hSS) 
title('Film Thickness','Fontsize',20) 
grid on 
  
%*************************PLOT FLOW RATES****************************** 
figure() 
mesh(q_x_SS_C) 
title('3D Flow Rates - Couette Flow','Fontsize',20) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Flow Rate (m^3/s)') 
axis([0 100 0 100 0.5e-7 2.5e-7]) 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(x,z,PSS) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reyonalds Plot - Poiseuille Flow','Fontsize',20) 
  
% %Normalized Surface Mesh 
figure() 
surf(x/L,z/L,P) 
xlabel('X-direction') 
ylabel('Z-direction') 
title('3D Reyonalds Plot') 
  
%Plot Mesh 
figure() 
mesh(x,z,PSS) 
xlabel('X-direction') 
ylabel('Z-direction') 
title('3D Reynolds Plot - Couette Flow','Fontsize',20) 
end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***                    Z DIRECTION PRESSURE FLOW FACTOR                  *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%****************************************************************************
% The following function is used to calculate the nodal pressures at one film 
% thickness. The film thickness is iterated in the governing program code. This           
% is the function to calculate the rough surface flow rate to smooth surface      
% flow rate. 
%**************************************************************************** 
  
function [avg_phi_z] = True_FF_Calculations_Z_GP(h) 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  Z PRESSURE FLOW FACTOR   | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Call programs 
[q_z_RS] = True_FF_Calculations_RoughSurfaceWallRingZDIRECTION_GP(h); 
[q_z_SS] = True_FF_Calculations_SmoothSurfaceV2ZDIRECTION_GP(h); 
  
%************************************************************************** 
%This assumes the above programs have already been run, this is the output 
%************************************************************************** 
  
%************************FINALIZED Z PRESSURE FLOW FACTOR****************** 
phi_z = q_z_RS./q_z_SS; 
avg_phi_z = sum(phi_z(:))/numel(phi_z); 
  
  
  
  
end  %End function 
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%**************************************************************************** 
%******                                                                ****** 
%***             ROUGH SURFACE Z DIRECTION PRESSURE FLOW FACTOR           *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film 
% thickness for the rough surface. The film thickness is iterated in the           
% governing program code. 
%**************************************************************************** 
  
function [ q_z_RS ] = 
True_FF_Calculations_RoughSurfaceWallRingZDIRECTION_GP(h) 
  
%film thickness (h) is used in line 182 
  
clc; 
warning('off','all') 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1)          
u      = 0;        %Velocity of the bearing (1 
M      = 100;      %Number of nodes (Rows) 
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PRS      = zeros(M,N); %Initial pressure guess 
  
PRS(:,:) = 250;    %PRS(z,x) 
PRS(1,:) = 100;    %Pressure in combustion chamber just after combustion 
                    (~30 bar = 30e6 Pa) 
PRS(M,:) = 400;    %Pressure in crankcase (~assuming atmospheric) 
PRSsmall = 100; 
PRSlarge = 400; 
  
error  = 10;        %Large initial error to enter loop 
crit   = 0.01;      %Convergence criteria of percent error (1%) 
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sigma  = 1e-6;     %Standard Deviation 
  
  
%Call Cylinder Wall 
CylinderWall_GP 
  
%Calculate Root Mean Square Roughness (Standard Deviation) 
Rq = 0; 
for j = 1:N 
    OldRq = Rq; 
    Rq = (avgz(j)^2 + OldRq); 
     
    if j == N 
        Rq = (Rq/N)^(1/2); 
    end 
     
    j = j + 1; 
end 
  
  
%Call Second Surface (D35 Ring) 
FlattenedTopRing_GP 
figure() 
mesh(LeveledFit) 
% axis([0 1000 0 1000 -2 4]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('D35 Piston Ring Surface without Curvature','Fontsize',20) 
grid on 
  
  
  
%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
% dx = 2.0408e-6; meters 
% dz = 2.0408e-6; meters 
  
for i = 1:M 
     
    for j = 1:N 
       z(i) = dz * (i-1); 
  
       %*********Basic Equation for h******** 
       hRS(i,j) = (LeveledFit(i) - Leveledz2(i,j))*(10^-5) + h*(1e-1);        
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       x(j) = dx * (j-1);               %X location at each node 
        
        %Initial Pressure Guess (Line) 
       PRS(i,j) = PRSsmall + (PRSlarge-PRSsmall)/(N-1)*(i-1); 
 
    end 
end 
  
figure() 
surf(hRS) 
% axis([0 100 0 100 0 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
%Plot the two Sliding Surfaces 
figure() 
mesh(z2-3) 
hold on 
mesh(fit) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Two Sliding Surfaces','Fontsize',20) 
grid on 
  
% FOR DISTANC BEWTEEN TWO SURFACES - UPDATED FILM THICKNESS 
% hRS = hRS - (-hRS); 
  
%************************2D PRESSURE PROFILE******************************* 
figure(); 
grid on; 
plot(z,PRS);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;      %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1;      %Uncomment to see error and and iterations go up 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PRS; %Updates new pressure 
    error = 0;       %Set error to zero to initialize it 
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%**********************NUMERICAL GRID CALCULATIONS************************* 
    for i = 2:(M-1)     %Calculate Pressure at all nodes with periodic BC's 
                        {i direction} [z] 
         
        for j = 1:(N) %Calculate Pressure at all nodes with periodic BC's {j 
                       direction} [x] 
             
            %Periodic Boundary Conditions with Ghost Nodes 
            %****************N Direction (j direction)**************** 
                jj_1 = j+1; 
                jj_2 = j-1; 
                 
                if jj_1 > N 
                    jj_1 = jj_1 - N; 
                end 
                 
                if jj_2 < 1 
                    jj_2 = jj_2 + N; 
                end 
 
           %**************NUMERICAL FILM THICKNESS GRID********************** 
           %In the i direction 
           h3 = (hRS(i+1,j)+hRS(i,j))/2;  %Halfway in between node ahead 
           h4 = (hRS(i,j)+hRS(i-1,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hRS(i,jj_1)+hRS(i,j))/2;  %Halfway in between node ahead 
           h2 = (hRS(i,j)+hRS(i,jj_2))/2;  %Halfway in between node behind 
            
           %*****************NUMERICAL GRID FOR DELTA************************ 
           %In the j direction 
           delx(jj_1) = dx; %x(j+1)-x(j); %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(i+1) = dz; %z(i+1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
            
           %*******************REYONLDS COEFFICIENTS************************* 
           a0 = 6*mu*u*((h3-h4)/(delx(j)+delx(jj_1))); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(jj_1))); 
           a2 = (h3^3)/(delx(jj_1)*(delx(j)+delx(jj_1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(i+1))); 
           a4 = (h1^3)/(delz(i+1)*(delz(i)+delz(i+1))); 
           a5 = a1 + a2 + a3 + a4; 
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           %********************3D PRESSURE EQUATION************************* 
           PRS(i,j) = a1*PRS(i,jj_2) + a2*PRS(i,jj_1) + a3*PRS(i-1,j) + 
                      a4*PRS(i+1,j) - a0; 
           PRS(i,j) = PRS(i,j)/(a5); 
            
           %**************FLOW RATES FOR POISEULLE FLOW********************** 
           q_z_RS = (-(hRS^3)/(12*mu)) * ((PRS(i+1,j)-PRS(i-1,j))/dz); 
           q_x_RS = ((-(hRS^3)/(12*mu)) * ((PRS(i,jj_1)-PRS(i,jj_2))/dx)) + 
                     u*hRS; 
 
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_RS_C = (u/2) * (sum(hRS'))/M; 
            
           %**********************CALCULATE ERROR**************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PRS(i,j))>0)  
              error = error + abs((PRS(i,j)-OldPressure(i,j))/PRS(i,j));  
           end 
                       
           %****************RELAXATION**************** 
            PRS(i,j)=0.9*PRS(i,j)-0.8*OldPressure(i,j);   %Relaxation of 0.8 
                       
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M; %/N  Uncomment to see error go down 
    if(it<10) 
        error=10; 
    end 
     
    %***********************PLOT THE TENTH ITERATION************************* 
    if (it==10) 
        plot(x,PRS);   
        title('Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('x(m)') 
        ylabel('P(pa)') 
         
        hold off 
        plot(z,PRS);   
        title('Z-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('z(m)') 
        ylabel('P(pa)') 
        it=0;     %Reset iteration counter 
    end 



 
 

 
170 

 
 

 

     
end   %End convergence criteria loop 
  
%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%*************************PLOT FILM THICKNESS****************************** 
figure() 
plot(x,hRS) 
title('Film Thickness','Fontsize',20) 
grid on 
  
figure() 
surf(hRS) 
title('Film Thickness','Fontsize',20) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height(\mum)') 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
mesh(PRS) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Pressure (Pa)') 
axis([0 50 0 50 -10e6 10e6]) 
colorbar 
title('3D Reynolds Plot - Couette Flow','Fontsize',20) 
  
%Plot Mesh 
figure() 
surf(PRS) 
xlabel('X-direction  (\mum)') 
ylabel('Z-direction  (\mum)') 
zlabel('Pressure (Pa)') 
%Set axis labels 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reynolds Plot - Poiseuille Flow ','Fontsize',20) 
  
  
  
end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***             SMOOTH SURFACE Z DIRECTION PRESSURE FLOW FACTOR          *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film 
% thickness for the smooth surface. The film thickness is iterated in the           
% governing program code. 
%**************************************************************************** 
  
  
function [q_z_SS] = True_FF_CalculationsV2ZDIRECTION_GP(h) 
  
%film thickness (h) is used in line 58 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1)          
u      = 0;        %Velocity of the bearing (1) 
M      = 100;      %Number of nodes (Rows) 
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PSS      = zeros(M,N); %Initial pressure guess 
  
PSS(:,:) = 250; 
PSS(1,:) = 100;     %Pressure in combustion chamber just after combustion 
                    (~30 bar = 30e6 Pa) 
PSS(M,:) = 400;     %Pressure in crankcase (~assuming atmospheric) 
PSSsmall = 100; 
PSSlarge = 400; 
  
error  = 10;        %Large initial error to enter loop 
crit   = 0.1;      %Convergence criteria of percent error (0.1%) 

  0.1=Alittle squiggly 0.01=straight 
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%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
for i = 1:M      %i is top and bottom (Z Direction) 
     
    for j = 1:N  %j is left and right sides (X Direction) 
        
       z(i) = dz * (i-1); 
        
       hSS(i,j) = h*(1e-1);%2e-5;  %take complete average of hRS (5.7665e-5) 
       
       x(j) = dx * (j-1);               %X location at each node 
        
       %Initial Pressure Guess (Line) 
       PSS(i,j) = PSSsmall + (PSSlarge-PSSsmall)/(N-1)*(i-1); 
        
    end 
end 
  
figure() 
surf(hSS) 
axis([0 100 0 100 1e-5 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
% %************************2D PRESSURE PROFILE******************************* 
figure(); 
grid on; 
plot(x,P);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;      %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1;  %Uncomment to see go up with error 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PSS; %Updates new pressure 
    error = 0;       %Set error to zero to initialize it 
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    %********************NUMERICAL GRID CALCULATIONS************************* 
    for i = 2:(M-1)     %Calculate Pressure at all nodes except at the edge 
                         (Boundary Conditions) {i direction} 
         
        for j = 1:(N) %Calculate Pressure at all nodes except at the edge {j 
                       direction} 
         
            %Periodic Boundary Conditions with ghost Nodes 
            %****************N Direction (j direction)**************** 
                jj_1 = j+1; 
                jj_2 = j-1; 
                 
                if jj_1 > N 
                    jj_1 = jj_1 - N; 
                end 
                 
                if jj_2 < 1 
                    jj_2 = jj_2 + N; 
                end 
  
           %**************NUMERICAL FILM THICKNESS GRID********************** 
           %In the i direction 
           h3 = (hSS(i+1,j)+hSS(i,j))/2;  %Halfway in between node ahead 
           h4 = (hSS(i,j)+hSS(i-1,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hSS(i,jj_1)+hSS(i,j))/2;  %Halfway in between node ahead 
           h2 = (hSS(i,j)+hSS(i,jj_2))/2;  %Halfway in between node behind 
            
           %*****************NUMERICAL GRID FOR DELTA************************ 
           %In the j direction 
           delx(jj_1) = dx; %x(j+1)-x(j); %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(i+1) = dz; %z(ii_1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
  
           %*******************REYONLDS COEFFICIENTS************************* 
           a0 = 6*mu*u*((h3-h4)/(delx(j)+delx(jj_1))); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(jj_1))); 
           a2 = (h3^3)/(delx(jj_1)*(delx(j)+delx(jj_1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(i+1))); 
           a4 = (h1^3)/(delz(i+1)*(delz(i)+delz(i+1))); 
           a5 = a1 + a2 + a3 + a4; 
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           %********************3D PRESSURE EQUATION************************* 
           PSS(i,j) = a1*PSS(i,jj_2) + a2*PSS(i,jj_1) + a3*PSS(i-1,j) + 
                      a4*PSS(i+1,j) - a0; 
           PSS(i,j) = PSS(i,j)/(a5); 
  
           %**************FLOW RATES FOR POISEULLE FLOW********************** 
           q_z_SS = (-(hSS^3)/(12*mu)) * ((PSS(i+1,j)-PSS(i-1,j))/dz); 
           q_x_SS = ((-(hSS^3)/(12*mu)) * ((PSS(i,jj_1)-PSS(i,jj_2))/dx)) + 
                    u*hSS; 
  
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_SS_C = (u/2)* (sum(hSS'))/M; 
            
           %**********************CALCULATE ERROR**************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PSS(i,j))>0)  
              error = error + abs((PSS(i,j)-OldPressure(i,j))/PSS(i,j));  
           end 
            
           %****************RELAXATION**************** 
           PSS(i,j)=1.9*PSS(i,j)-0.9*OldPressure(i,j);   %Relaxation of 1.9 
            
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M;  %Uncomment to see error go down 
    if(it<10) 
        error=10; 
    end 
     
    %***********************PLOT THE TENTH ITERATION************************* 
    if (it==10) 
        plot(x,PSS);   
        title('X-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('x(m)') 
        ylabel('P(pa)') 
         
        hold off 
        plot(z,PSS);   
        title('Z-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('z(m)') 
        ylabel('P(pa)') 
        it=0;     %Reset iteration counter 
    end 
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end   %End convergence criteria loop 
  
%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
%NOTE: Pressure is induced between the two sliding surfaces due to pressure 
%in the chamber and the crankcase. 
  
%*************************PLOT FILM THICKNESS****************************** 
figure() 
plot(x,hSS) 
title('Film Thickness','Fontsize',20) 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(x,z,PSS) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction  (\mum)') 
zlabel('Pressure (Pa)') 
%Set axis labels 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reynolds Plot - Poiseuille Flow','Fontsize',20) 
  
%Normalized Surface Mesh 
figure() 
surf(x/L,z/L,P) 
xlabel('X-direction') 
ylabel('Z-direction') 
title('3D Reyonalds Plot') 
  
%Plot Mesh 
figure() 
mesh(x,z,PSS) 
xlabel('X-direction') 
ylabel('Z-direction') 
title('3D Reynolds Plot - Couette Flow','Fontsize',20) 
  
  
end  %End function 
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%**************************************************************************** 
%******                                                                ****** 
%***                           SHEAR FLOW FACTOR                          *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film 
% thickness. The film thickness is iterated in the governing program code. This 
% is the function to run the two other functions for the shear flow factor. The 
% shear flow factor is calculated for each surface separately, then convoluted 
% together. 
%**************************************************************************** 
  
function [phis,LPS1,LPS2] = True_FF_Calculations_Shear_V2_GP(h) 
  
%Call programs 
[LPS1,Rq1] = True_FF_Calculations_RoughSurfaceWallShear_GP(h); 
[LPS2,Rq2] = True_FF_Calculations_RoughSurfaceRingShear_GP(h); 
  
%Calculate cmpostire RMS sigmRoughness 
sigma = sqrt(Rq1^2 + Rq2^2); 
 
%Calculate the Shear Flow Factor  
phis = ((Rq1/sigma)^2)*(LPS1)  +  ((Rq2/sigma)^2)*(LPS2); 
  
                                                              
% RESULTS 
% hRS       = [ 9.3884e-5       1.4083e-04    1.8777e-04      2.3471e-04 

2.8165e-4       3.7554e-04    4.6942e-04      5.6331e-04 
6.5719e-04      7.5107e-04  ] 

% FilmRatio = [      1             1.5            2             2.5 
3              4             5              6 
7              8      ] 

% phis      = [   0.5111         0.3436       0.2526          0.2051 
0.1697         0.1276       0.1019          0.0846 
0.0726         0.0639    ] 

% LPS1(Wall)= [   0.4522         0.3027       0.2219          0.1809 
0.1491         0.1128       0.0893          0.0743 
0.0637         0.0562    ] 

% LPS2(Ring)= [   1.0544         0.7213       0.5358          0.4292 
0.3601         0.2643       0.2182          0.1793 
0.1552         0.1347    ] 

  
figure() 
plot(FilmRatio,phis) 
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legend('Convoluted Surfaces') 
axis([0 9 0 1]) 
grid on 
  
figure() 
plot(FilmRatio, LPS1) 
hold on 
plot(FilmRatio, LPS2) 
hold on 
plot(FilmRatio,phis) 
legend('Wall','Ring','Convoluted Surfaces') 
axis([0 9 0 1]) 
grid on 
  
end  %End function 
  
  



 
 

 
178 

 
 

 

%**************************************************************************** 
%******                                                                ****** 
%***                 WALL - SMOOTH SURFACE SHEAR FLOW FACTOR              *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film        
% thickness. The film thickness is iterated in the governing program code. This            
% is the function that runs the wall against a smooth surface. 
%**************************************************************************** 
 
function [LPS1,Rq1] = True_FF_CalculationsWallShear_GP(h) 
  
%film thickness (h) is used in line 95 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1) 
u      = 1;        %Velocity of the bearing (1) 
M      = 100;      %Number of nodes (Rows) 
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PRS1      = zeros(M,N); %Initial pressure guess 
PRS1(:,:) = 0;   
PRS1(:,1) = 0;     %Pressure in combustion chamber just after combustion (~30 
                    bar = 30e6 Pa) 
PRS1(:,M) = 0;     %Pressure in crankcase (~assuming atmospheric) 
PRS1small = 0; 
PRS1large = 0; 
error     = 10;        %Large initial error to enter loop 
crit      = 0.01;      %Convergence criteria of percent error (1%) 
% sigma   = 1e-6;      %Standard Deviation 
  
  
%Call the Cylinder Wall 
CylinderWall_GP 
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%Calculate Root Mean Square Roughness (Standard Deviation) of Surface 1 
(Cylinder Wall) 
Rq1 = 0; 
len = length(Leveledz2); 
for j = 1:len 
    OldRq1 = Rq1; 
    Rq1 = (z2(j)-avgz(j))^2 + OldRq1; 
     
    if j == len 
        Rq1 = (Rq1/len)^(1/2); 
    end 
     
    j = j + 1; 
end 
Rq1 = Rq1 * (1e-4); 
  
%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
% dx = 2.0408e-6; meters 
% dz = 2.0408e-6; meters 
  
for i = 1:M 
    for j = 1:N 
       z(i) = dz * (i-1); 
       %*********Basic Equation for h******** 
       hRS1(i,j) = Leveledz2(i,j)*(10^-5) + h; %1.6178 = point in contact 
       x(j) = dx * (j-1);               %X location at each node 
        %Initial Pressure Guess (Line) 
       PRS1(i,j) = PRS1small + (PRS1large-PRS1small)/(N-1)*(j-1);          
    end 
end 
  
figure() 
surf(hRS1) 
% axis([0 100 0 100 0 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
% FOR DISTANC BEWTEEN TWO SURFACES - UPDATED FILM THICKNESS 
% hRS = hRS - (-hRS); 
 
%************************2D PRESSURE PROFILE******************************* 
figure(); 
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grid on; 
plot(x,PRS1);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;      %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1;      %Uncomment to see number of iterations 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PRS1; %Updates new pressure 
    error = 0;       %Set error to zero to initialize it 
     
    %********************NUMERICAL GRID CALCULATIONS************************* 
    for i = 1:M     %Calculate Pressure at all nodes with periodic BC's {i 
                     direction} 
         
        for j = 1:N %Calculate Pressure at all nodes with periodic BC's {j 
                     direction} 
             
            %Periodic Boundary Conditions with Ghost Nodes 
            %****************N Direction (j direction)**************** 
                jj_1 = j+1; 
                jj_2 = j-1; 
                 
                if jj_1 > N 
                    jj_1 = jj_1 - N; 
                end 
                 
                if jj_2 < 1 
                    jj_2 = jj_2 + N; 
                end 
                  
                %****************M Direction (i direction)**************** 
                ii_1 = i+1; 
                ii_2 = i-1; 
                 
                if ii_1 > M 
                    ii_1 = ii_1 - M; 
                end 
                 
                if ii_2 < 1 
                    ii_2 = ii_2 + M; 
                end 
                  
           %***************NUMERICAL FILM THICKNESS GRID********************* 
           %In the i direction 
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           h3 = (hRS1(ii_1,j)+hRS1(i,j))/2;  %Halfway in between node ahead 
           h4 = (hRS1(i,j)+hRS1(ii_2,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hRS1(i,jj_1)+hRS1(i,j))/2;  %Halfway in between node ahead 
           h2 = (hRS1(i,j)+hRS1(i,jj_2))/2;  %Halfway in between node behind 
            
           %******************NUMERICAL GRID FOR DELTA*********************** 
           %In the j direction 
           delx(j+1) = dx; %x(j+1)-x(j); %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(i+1) = dz; %z(i+1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
            
           %********************REYONLDS COEFFICIENTS************************ 
           a0 = (h3-h4)/(delx(j)+delx(jj_1)); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(jj_1))); 
           a2 = (h3^3)/(delx(jj_1)*(delx(j)+delx(jj_1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(ii_1))); 
           a4 = (h1^3)/(delz(ii_1)*(delz(i)+delz(ii_1))); 
           a5 = a1 + a2 + a3 + a4; 
  
  
           %********************3D PRESSURE EQUATION*************************      
           PRS1(i,j) = dx*(dz^2)*((hRS1(i,jj_1)-hRS1(i,jj_2))/2) -    

((h4^3)*(PRS1(i,jj_2))*(dz^2)) - 
((h3^3)*(PRS1(i,jj_1))*(dz^2)) - 
((h2^3)*(PRS1(ii_2,j))*(dx^2)) - 
((h1^3)*(PRS1(ii_1,j))*(dx^2));             

PRS1(i,j) = PRS1(i,j) / ((dz^2)*(-(h4^3)-(h3^3)) + (dx^2)*(-
(h2^3)-(h1^3))); 

            
           %**************FLOW RATES FOR POISEULLE FLOW********************** 
           q_z_RS(i,j) = (-(hRS1(i,j)^3)/(12*mu)) * ((PRS1(ii_1,j)- 

PRS1(ii_2,j))/dz); 
           q_x_RS(i,j) = ((-(hRS1(i,j)^3)/(12*mu)) * ((PRS1(i,jj_1)-

PRS1(i,jj_2))/dx)); 
 
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_RS_C = (u/2) * (hRS1/M); 
            
           %****************FLOW RATES FOR COUETTE FLOW**********************        
           LargePhiS1(i,j) = ((2/N)   *    ((hRS1(i,j)^3)/(12*mu))    *  

((PRS1(i,jj_1)-PRS1(i,jj_2))/dx)   ) / (u*Rq1); 
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           %**********************CALCULATE ERROR**************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PRS1(i,j))>0)  
              error = error + abs((PRS1(i,j)-OldPressure(i,j))/PRS1(i,j));  
           end 
                       
           %****************RELAXATION**************** 
           PRS(i,j)=0.9*PRS(i,j)-0.8*OldPressure(i,j);   %Relaxation of 0.8 
                       
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M/N; %Uncomment to see error go down 
    if(it<10) 
        error=10; 
    end 
     
    %***********************PLOT THE TENTH ITERATION************************* 
    if (it==10) 
        plot(x,PRS1);   
        title('Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('x(m)') 
        ylabel('P(pa)') 
         
        hold off 
        plot(z,PRS1);   
        title('Z-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('z(m)') 
        ylabel('P(pa)') 
        it=0;     %Reset iteration counter 
    end 
     
end   %End convergence criteria loop 
  
 
 
%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%*************************PLOT FILM THICKNESS****************************** 
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figure() 
plot(x,hRS1) 
title('Film Thickness','Fontsize',20) 
grid on 
  
figure() 
surf(hRS1) 
title('Film Thickness','Fontsize',20) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height(\mum)') 
grid on 
  
%*************************PLOT FLOW RATES****************************** 
figure() 
surf(q_x_RS_C) 
title('3D Flow Rates - Couette Flow','Fontsize',20) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Flow Rate (m^3/s)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(PRS1) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
% axis([0 50 0 50 -10e6 10e6]) 
% colorbar 
title('3D Reynolds Plot - Poiseuille Flow','Fontsize',20) 
  
%Plot Mesh 
figure() 
mesh(PRS1) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reynolds Plot - Couette Flow ','Fontsize',20) 
  
% LargePhiS1 
LPS1 = sum(sum(LargePhiS1)); 
end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***                 RING - SMOOTH SURFACE SHEAR FLOW FACTOR              *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is used to calculate the nodal pressures at one film         
% thickness. The film thickness is iterated in the governing program code. This         
% is the function that runs the wall against a smooth surface. 
%**************************************************************************** 
  
function [LPS2,Rq2] = True_FF_CalculationsRingShear_GP(h) 
  
%film thickness (h) is used in line 110 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;      %Viscosity of the fluid (0.1 
u      = 1;        %Velocity of the bearing (1) 
M      = 100;      %Number of nodes (Rows) 
N      = 100;      %Number of nodes (Columns) 
ho     = 2e-5;     %Height at edge of incline (2e-6) 
hi     = 1e-5;     %Height at edge of incline (1e-6) 
L      = 0.01;     %Length of whole bearing (0.01) 
dx     = L/(N-1);  %Distance between nodes 
dz     = L/(M-1);  %Distance between nodes 
PRS2   = zeros(M,N); %Initial pressure guess 
  
PRS2(:,:) = 0;   
PRS2(:,1) = 0;    %Pressure in combustion chamber just after combustion (~30 
                   bar = 30e6 Pa) 
PRS2(:,M) = 0;    %Pressure in crankcase (~assuming atmospheric) 
PRS2small = 0; 
PRS2large = 0; 
  
error  = 10;        %Large initial error to enter loop 
crit   = 0.01;      %Convergence criteria of percent error (1%) 
sigma  = 1e-6;      %Standard Deviation 
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%////////////////////////////////////////////////////////////////////////// 
%                        ------------------ 
%                       |  FORD SURFACE 1  | 
%                        ------------------ 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Call Second Surface (D35 Ring) 
FlattenedTopRing_GP 
figure() 
mesh(LeveledFit) 
% axis([0 1000 0 1000 -2 4]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('D35 Piston Ring Surface without Curvature','Fontsize',20) 
grid on 
  
%Calculate Root Mean Square Roughness (Standard Deviation) of Surface 2 (D35 
Ring) 
Rq2 = 0; 
len2 = length(fitwall); 
for j = 1:len2 
    OldRq2 = Rq2; 
    Rq2 = (fitwall(j)-AverageData)^2 + OldRq2; 
      
    if j == len2 
        Rq2 = (Rq2/len2)^(1/2); 
    end 
     
    j = j + 1; 
end 
Rq2 = Rq2 * (1e-4); 
  
  
%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
% dx = 2.0408e-6; meters 
% dz = 2.0408e-6; meters 
  
for i = 1:M 
     
    for j = 1:N 
 
       z(i) = dz * (i-1); 
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       %*********Basic Equation for h********  
       hRS2(i,j) = (-LeveledFit(i,j))*(10^-5) + h; %1.6178 = point in contact 
         
       x(j) = dx * (j-1);               %X location at each node 
        
        %Initial Pressure Guess (Line) 
       PRS2(i,j) = PRS2small + (PRS2large-PRS2small)/(N-1)*(j-1);   
 
    end 
end 
  
figure() 
surf(hRS2) 
% axis([0 100 0 100 0 5e-5]) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height/Distance (\mum)') 
title('Film Thickness','Fontsize',20) 
grid on 
  
% FOR DISTANC BEWTEEN TWO SURFACES - UPDATED FILM THICKNESS 
% hRS = hRS - (-hRS); 
  
%************************2D PRESSURE PROFILE******************************* 
figure(); 
grid on; 
plot(x,PRS2);     %Plots every tenth iteration to show convergence 
grid on 
xlabel('x (m)'); 
ylabel('P (pa)'); 
hold off;      %Shows all lines (hold off = show most recent) 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
it2=0; 
while (error>crit) 
    it2=it2+1;      %Uncomment to see iterations calculated 
    it = it + 1;     %Increment iteration counter 
    OldPressure = PRS2; %Updates new pressure 
    error = 0;       %Set error to zero to initialize it 
     
    %********************NUMERICAL GRID CALCULATIONS************************* 
    for i = 1:M     %Calculate Pressure at all nodes with periodic BC's {i 
                     direction} 
         
        for j = 1:N %Calculate Pressure at all nodes with periodic BC's {j 

         direction} 
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            %Periodic Boundary Conditions with Ghost Nodes 
            %****************N Direction (j direction)**************** 
                jj_1 = j+1; 
                jj_2 = j-1; 
                 
                if jj_1 > N 
                    jj_1 = jj_1 - N; 
                end 
                 
                if jj_2 < 1 
                    jj_2 = jj_2 + N; 
                end 
                  
                %****************M Direction (i direction)**************** 
                ii_1 = i+1; 
                ii_2 = i-1; 
                 
                if ii_1 > M 
                    ii_1 = ii_1 - M; 
                end 
                 
                if ii_2 < 1 
                    ii_2 = ii_2 + M; 
                end 
                  
           %**************NUMERICAL FILM THICKNESS GRID********************** 
           %In the i direction 
           h3 = (hRS2(ii_1,j)+hRS2(i,j))/2;  %Halfway in between node ahead 
           h4 = (hRS2(i,j)+hRS2(ii_2,j))/2;  %Halfway in between node behind 
            
           %In the j direction 
           h1 = (hRS2(i,jj_1)+hRS2(i,j))/2;  %Halfway in between node ahead 
           h2 = (hRS2(i,j)+hRS2(i,jj_2))/2;  %Halfway in between node behind 
            
           %******************NUMERICAL GRID FOR DELTA*********************** 
           %In the j direction 
           delx(j+1) = dx; %x(j+1)-x(j); %Halfway in between node ahead 
           delx(j)   = dx; %x(j)-x(j-1);   %Halfway in between node behind 
            
           %In the i direction 
           delz(i+1) = dz; %z(i+1)-z(i); %Halfway in between node ahead 
           if i==1 
               delz(i) = 0.000101; 
           else 
           delz(i) = dz; %z(i)-z(ii_2);   %Halfway in between node behind 
           end 
            
           %********************REYONLDS COEFFICIENTS************************ 
           a0 = (h3-h4)/(delx(j)+delx(jj_1)); 
           a1 = (h4^3)/(delx(j)*(delx(j)+delx(jj_1))); 
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           a2 = (h3^3)/(delx(jj_1)*(delx(j)+delx(jj_1))); 
           a3 = (h2^3)/(delz(i)*(delz(i)+delz(ii_1))); 
           a4 = (h1^3)/(delz(ii_1)*(delz(i)+delz(ii_1))); 
           a5 = a1 + a2 + a3 + a4; 
  
%*************************3D PRESSURE EQUATION***************************** 
            PRS2(i,j) = dx*(dz^2)*((hRS2(i,jj_1)-hRS2(i,jj_2))/2) - 

((h4^3)*(PRS2(i,jj_2))*(dz^2)) - 
((h3^3)*(PRS2(i,jj_1))*(dz^2)) - 
((h2^3)*(PRS2(ii_2,j))*(dx^2)) - 
((h1^3)*(PRS2(ii_1,j))*(dx^2));             

           PRS2(i,j) = PRS2(i,j) / ((dz^2)*(-(h4^3)-(h3^3)) + (dx^2)*(-
(h2^3)-(h1^3))); 

            
           %**************FLOW RATES FOR POISEULLE FLOW********************** 
           q_z_RS(i,j) = (-(hRS2(i,j)^3)/(12*mu)) * ((PRS2(ii_1,j)-

PRS2(ii_2,j))/dz); 
           q_x_RS(i,j) = ((-(hRS2(i,j)^3)/(12*mu)) * ((PRS2(i,jj_1)-

PRS2(i,jj_2))/dx)); 
 
           %****************FLOW RATES FOR COUETTE FLOW********************** 
           q_x_RS_C = (u/2) * (hRS2/M); 
            
           %***********************CALCULATE ERROR*************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(PRS2(i,j))>0)  
              error = error + abs((PRS2(i,j)-OldPressure(i,j))/PRS2(i,j));  
           end 
                       
           %****************RELAXATION**************** 
            PRS(i,j)=0.9*PRS(i,j)-0.8*OldPressure(i,j);   %Relaxation of 0.8 
                       
        end   %End j Loop 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(N-2)*100/M/N;   %Uncomment to see error go down 
    if(it<10) 
        error=10; 
    end 
     
    %***********************PLOT THE TENTH ITERATION************************* 
    if (it==10) 
        plot(x,PRS2);   
        title('Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('x(m)') 
        ylabel('P(pa)') 
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        hold off 
        plot(z,PRS2);   
        title('Z-Pressure Distribution','Fontsize',20) 
        grid on 
        grid minor 
        xlabel('z(m)') 
        ylabel('P(pa)') 
        it=0;     %Reset iteration counter 
    end 
     
end   %End convergence criteria loop 
  
 
%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%*************************PLOT FILM THICKNESS****************************** 
figure() 
plot(x,hRS2) 
title('Film Thickness','Fontsize',20) 
grid on 
  
figure() 
surf(hRS2) 
title('Film Thickness','Fontsize',20) 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height(\mum)') 
grid on 
  
%*************************PLOT FLOW RATES****************************** 
figure() 
surf(q_x_RS_C) 
title('3D Flow Rates - Couette Flow','Fontsize',20) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Flow Rate (m^3/s)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'} 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
grid on 
  
%***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(PRS2) 
xlabel('X-direction (\mum)') 
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ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
axis([0 50 0 50 -10e6 10e6]) 
colorbar 
title('3D Reynolds Plot - Poiseuille Flow','Fontsize',20) 
  
%Plot Mesh 
figure() 
mesh(PRS2) 
xlabel('X-direction (\mum)') 
ylabel('Z-direction (\mum)') 
zlabel('Pressure (Pa)') 
set(gca,'XTickLabel',{'0';'200';'400';'600';'800';'1000'}) 
set(gca,'YTickLabel',{'0';'500';'1000'}) 
title('3D Reynolds Plot - Couette Flow ','Fontsize',20) 
LPS2 = sum(sum(LargePhiS2)); end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***                        FIT FLOW FACTOR CURVES                        *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function takes in the calculataed film ratio along with the            
% phix, phiz values as well as the shear flow factor for each surface and fits           
% these data points to a non-gaussian curve 
%**************************************************************************** 
  
function [ax,bx,cx, az,bz, as,bs,cs] = 
Fit_FF_Curves(FilmRatio,phis,LPS1,LPS2,phix,phiz) 
  
% LPS1 represents the Phis_s for the Wall 
% LPS2 represents the Phis_s for the Ring 
  
%////////////////////////////////////////////////////////////////////////// 
%                      --------------------- 
%                     |  SHEAR FLOW FACTOR  | 
%                      --------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Plot of Raw Data 
figure() 
plot(FilmRatio,phis, FilmRatio,LPS1, FilmRatio,LPS2) 
grid on 
legend('Convoluted Surfaces (\phi_s)','Piston Ring (\Phi_1)','Cylinder Wall 
(\Phi_2)') 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Shear Flow Factor \phi_s','Fontsize',15) 
title('Shear Flow Factor','Fontsize',20) 
  
%Fit exponential function 
phiscurvefit = fit((FilmRatio)',(phis)','power2'); 
phiscoeff    = coeffvalues(phiscurvefit); 
as   = phiscoeff(1); 
bs   = phiscoeff(2); 
cs   = phiscoeff(3); 
% ds = phiscoeff(4); 
  
%The General Model is of the form 
%      General model: 
%      f(x) = a*(x^b)*exp(-c*x + d*(x.^2)) 
%      Coefficients (with 95% confidence bounds): 
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%        a =      0.4042  (0.3686, 0.4398) 
%        b =      -1.117  (-1.243, -0.9912) 
%        c =     -0.1055  (-0.2034, -0.007549) 
%        d =   -0.005322  (-0.0128, 0.00216) 
  
figure() 
plot(phiscurvefit,'b',FilmRatio,phis,'m*') 
axis([1 7 0 0.8]) 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Shear Flow Factor \phi_s','Fontsize',15) 
title('Shear Flow Factor','Fontsize',20) 
legend('Data','Fitted Curve') 
  
txt1='a*(x^b)*exp(-c*x + d*(x.^2))'; 
txt1='\phi_s = 0.4042*(h/\sigma)^-^1^.^1^1^7e^{[-0.1055*(h/\sigma) + 
0.005*(h/\sigma)^2]} ';  
text(2.0,0.5,txt1,'HorizontalAlignment','left','VerticalAlignment','top','Bac
kgroundColor',[1 1 1],'FontSize',12); 
  
%********************Patir and Cheng Comparison**************************** 
%*********************SAME EQUATION THROUGHOUT***************************** 
%Use a,b,c,d for gamma=2.64 
a = 1.621;  %A1 
b = 0.873;  %alpha1 
c = 1.09;   %alpha2 
d = 0.075;  %alpha3 
  
phis_PandC = a*(FilmRatio.^b).*exp(-c*FilmRatio + d*(FilmRatio.^2));      
%Equation From Paper 
  
figure() 
plot(FilmRatio,phis,'b') 
hold on 
plot(FilmRatio,phis_PandC,'r') 
axis([1 7 0 0.8]) 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Shear Flow Factor \phi_s','Fontsize',15) 
title('Shear Flow Factor','Fontsize',20) 
legend('FORD D35 measured Rough Surfaces','Patir and Cheng Statistical 
Surfaces') 
  
%********************Patir and Cheng Comparison**************************** 
%********************SPLIT UP AT FILM RATIO OF 5*************************** 
%Use a,b,c,d for gamma=2.64 
a = 1.621;  %A1 
b = 0.873;  %alpha1 
c = 1.09;   %alpha2 
d = 0.075;  %alpha3 
e = 0.659;  %A2 
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%ForFilmRatio <= 5 
FilmRatioLess5 = [1 1.5 2 2.5 3 4 5]; 
phis_PandC_L5 = a*(FilmRatioLess5.^b).*exp(-c*FilmRatioLess5 + 
d*(FilmRatioLess5.^2));      %Equation From Paper 
  
%For FilmRatio < 5 
FilmRatioGreator5 = [5 6 7 8]; 
phis_PandC_G5 = e*exp(-0.25*FilmRatioGreator5); 
  
figure() 
plot(FilmRatio,phis,'b') 
hold on 
plot(FilmRatioLess5,phis_PandC_L5,'r', FilmRatioGreator5,phis_PandC_G5,'r') 
axis([1 7 0 0.8]) 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Shear Flow Factor \phi_s','Fontsize',15) 
title('Shear Flow Factor','Fontsize',20) 
legend('FORD D35 measured Rough Surfaces','Patir and Cheng Statistical 
Surfaces') 
  
%////////////////////////////////////////////////////////////////////////// 
%                    ------------------------- 
%                   | X PRESSURE FLOW FACTOR  | 
%                    ------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%Plot of Raw Data 
figure() 
plot(FilmRatio(1,2:end),phix,'bo') 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_x','Fontsize',15) 
title('X Pressure Flow Factor','Fontsize',20) 
  
%Fit exponential function 
phixcurvefit = fit((FilmRatio(1,2:end))',(phix)','power2'); 
phixcoeff = coeffvalues(phixcurvefit); 
ax = phixcoeff(1); 
bx = phixcoeff(2); 
cx = phixcoeff(3); 
  
%The General Model is of the form: General model Power2: 
%      g(x) = a*x^b+c 
%      Coefficients (with 95% confidence bounds): 
%        a =       2.006  (1.851, 2.161) 
%        b =      -1.442  (-1.682, -1.201) 
%        c =      0.9175  (0.851, 0.9839) 
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figure() 
plot(phixcurvefit,'b',FilmRatio(1,2:end),phix,'m*') 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_x','Fontsize',15) 
title('X Pressure Flow Factor','Fontsize',20) 
legend('Data','Fitted Curve') 
  
txt1='a*x^b+c'; 
txt1='\phi_x = 2.006*(h/\sigma)^-^1^.^4^4^2 + 1';  
text(3.2,1.45,txt1,'HorizontalAlignment','left','VerticalAlignment','top','Ba
ckgroundColor',[1 1 1],'FontSize',12); 
  
%********************Patir and Cheng Comparison**************************** 
phix_PandC = 0.87*((FilmRatio).^(-1.5)) + 1;      %Equation From Paper 
  
%Fit exponential function to Patir and Cheng curve data points 
gfit_PandC = fit((FilmRatio)',(phix_PandC)','power2'); 
  
figure() 
plot(phixcurvefit,'b') 
hold on 
plot(gfit_PandC) 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_x','Fontsize',15) 
title('X Pressure Flow Factor','Fontsize',20) 
legend('FORD D35 measured Rough Surfaces','Patir and Cheng Statistical 
Surfaces') 
 
%////////////////////////////////////////////////////////////////////////// 
%                    ------------------------- 
%                   | Z PRESSURE FLOW FACTOR  | 
%                    ------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
% NOTE: BECAUSE LOGARITHMIC FUNCTION, NEED TO FLIP THE CURVE ABOUT THE X AXIS 
% THEN FIT THE DATA, AS WELL AS HAVE POSITIVE VALUES. 
% USE '-TESTPHIZ+1' INSTEAD OF 'TESTPHIZ' JUST TO GET THE CURVE, THEN PLOT 
% PROPER CURVE 
  
%Plot of Raw Data 
figure() 
plot(FilmRatio(1,2:end),phiz,'bo') 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_z','Fontsize',15) 
title('Z Pressure Flow Factor','Fontsize',20) 
  
%Fit exponential function 
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phizcurvefit = fit((FilmRatio(1,2:end))',(-phiz+1)','exp1');   
phizcoeff    = coeffvalues(phizcurvefit); %Determine coefficients a and b 
az      = phizcoeff(1); 
bz      = phizcoeff(2); 
  
%Correct Logarathmic Equation 
FITEQUATION = 1 - az*exp(bz*(FilmRatio(1,2:end))); 
  
figure() 
plot(FilmRatio(1,2:end),phiz,'m*') 
hold on 
plot(FilmRatio(1,2:end),FITEQUATION,'b-') 
axis([1 7 0 1]) 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_z','Fontsize',15) 
title('Z Pressure Flow Factor','Fontsize',20) 
legend('Data','Fitted Curve','Location','southeast') 
  
txt1='1-a*exp^b'; 
txt1='\phi_z = 1 - 0.6065*e^-^0^.^3^3^5^7^*^(^h^/^\sigma^)';  
text(4,0.7,txt1,'HorizontalAlignment','left','VerticalAlignment','top','Backg
roundColor',[1 1 1],'FontSize',12); 
  
%********************Patir and Cheng Comparison**************************** 
%NOTES: Different method because matlab cannot handle fitting to a decaying 
%logarithmic function. A set of linearly spaced points was defined. The set 
%of fit methods were used on the equations and then translated to the 
%proper region of the graph. 
  
%Linearly spaced points (1 to 7 for h/sigma) 
x = linspace(1,7,100); 
  
%Fit from above with coefficients 
tNEW = 0.6065*exp(-0.3357*x); 
  
%Using Patir and Cheng coefficients 
tfit_PandCNEW = 1.48*exp(-0.42*x); 
  
%Plot the comparision 
figure() 
plot(x,-tNEW+1,'b') 
hold on 
plot(x,-tfit_PandCNEW+1,'r') 
grid on 
xlabel('h/\sigma','Fontsize',15) 
ylabel('Pressure Flow Factor \phi_z','Fontsize',15) 
title('Z Pressure Flow Factor','Fontsize',20) 
legend('FORD D35 measured Rough Surfaces','Patir and Cheng Statistical 
Surfaces','Location','southeast') 
end  %End function  
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%**************************************************************************** 
%******                                                                ****** 
%***          2D AXISYMMETRIC REYNOLDS EQUATION WITH FLOW FACTORS         *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%**************************************************************************** 
% The following function is the 2D axisymmetric version of the Reynolds                              
% equation. It utilizes the previously derived flow factors in the governing                                   
% piston ring model to account for surface roughness. 
%**************************************************************************** 
  
function [P] = 
RE2DwithFF_GP(h,z,dz,u,P_boundary1,P_boundary2,az,bz,as,bs,cs,sigma) 
  
clc; 
warning ('off','all'); 
  
%////////////////////////////////////////////////////////////////////////// 
%                    --------------------------- 
%                   |  VARIABLES AND CONSTANTS  | 
%                    --------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
mu     = 0.1;          %Viscosity of the fluid (0.1) 
M      = length(h);    %Number of nodes (Rows) 
P(2:M-1) = 0;          %Initial pressure guess 
q_z    = zeros(M);     %Allocate flow rate memory {z direction} 
error  = 1;            %Large initial error to enter loop 
crit   = 0.1;          %Convergence criteria of percent error (0.1%) 
sigma  = 1e-6;         %Standard Deviation 
P(1)   = P_boundary1;  %Boundary condition crankshaft pressure (atm) 
P(M)   = P_boundary2;  %Boundary condition combustion champer pressure (atm) 
phi_s  = zeros(M);     %Allocate flow factor memory {shear} 
  
%////////////////////////////////////////////////////////////////////////// 
%                        --------------- 
%                       |  CALCULATION  | 
%                        --------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%***************CALCULATE UNTIL CONVERGENCE CRITERA REACHED**************** 
it = 0;   %Iteration counter 
  
while (error>crit) 
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    it = it + 1;     %Increment iteration counter 
    OldPressure = P; %Updates new pressure 
    error = 0;       %Set error to zero to iitialize it 
     
    %*********************NUMERICAL GRID CALCULATIONS************************ 
    for i = 2:(M-1)     %Calculate Pressure at all nodes except at the edge 
                         (Boundary Conditions) {i direction} 
         
           %***************NUMERICAL FILM THICKNESS GRID********************* 
           %In the i direction 
           h1 = (h(i+1)+h(i))/2;  %Halfway in between node ahead 
           h2 = (h(i)+h(i-1))/2;  %Halfway in between node behind 
            
           %***************NUMERICAL SHEAR FLOW FACTOR GRID****************** 
           %In the i direction 
           phi_s_3 = (phi_s(i+1)+phi_s(i))/2; %Halfway in between node ahead 
           phi_s_4 = (phi_s(i)+phi_s(i-1))/2; %Halfway in between node behind 
            
           %****************PRESCRIBED FLOW FACTOR EQUATIONS***************** 
           H_i = h(i)/sigma;           %Film thickness for i direction (x) 
           phi_z = 1 - az*exp(bz*H_i); %Equation from "A mixed lubrication 

model considering elastoplastic 
contact for a piston ring and 
application to a ring pack" 

           phi_s(i) =    as*H_i^bs + cs ;  %Equation from "A mixed 
lubrication model considering 
elastoplastic contact for a piston 
ring and application to a ring 
pack" 

            
           %*******************REYONLDS COEFFICIENTS************************* 
           a0 = 6*mu*u * ((h1-h2)/(z(i)+z(i+1))); 
%            a1 = phi_x * ((h4^3)/(x(j)*(x(j)+x(j+1))));   %Unused for 

axisymmetric case 
%            a2 = phi_x * ((h3^3)/(x(j+1)*(x(j)+x(j+1)))); %Unused for 

axisymmetric case 
           a3 = phi_z * ((h2^3)/(z(i)*(z(i)+z(i+1)))); 
           a4 = phi_z * ((h1^3)/(z(i+1)*(z(i)+z(i+1)))); 
           a5 =  a3 + a4; 
           a6 = sigma * ((phi_s_3-phi_s_4)/(z(i)+z(i+1))); 
            
           %********************3D PRESSURE EQUATION************************* 
           P(i) = a3*P(i-1)  + a4*P(i+1) - a0 - a6; 
           P(i) = P(i)/(a5); 
  
           %***************************FLOW RATES**************************** 
           q_z = (-(h.^3)/(12*mu)) * ((P(i+1)-P(i-1))/dz);                               
%          q_x = ((-(h^3)/(12*mu)) * ((P(i,j+1)-P(i,j-1))/dx)) + u*h;  Not 

used for axisymmetric case 
%          New_q_x = q_x(:,1);            Not used for axisymmetric case 
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           %**********************CALCULATE ERROR**************************** 
           %Make sure Pressure is not zero and add errors 
           if(abs(P(i))>0)  
              error = error + abs((P(i)-OldPressure(i))/P(i));  
           end 
         
    end       %End i Loop 
     
    %Calculate average error in percent 
    error = error/(M-2)*100   
     
%***************PLOT THE 2D PRESSURE PROFILE TENTH ITERATION*************** 
    if (u ~= 0) 
        if (it==10) 
            plot(z,P);   
            title('Pressure Distribution','Fontsize',20) 
            grid on 
            grid minor 
            xlabel('x(m)') 
            ylabel('P(pa)') 
  
            it=0;     %Reset iteration counter 
        end 
    end 
     
end   %End convergence criteria loop 
  
%////////////////////////////////////////////////////////////////////////// 
%                           ---------- 
%                          |  OUTPUT  | 
%                           ---------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
  
%*************************PLOT FILM THICKNESS****************************** 
  
  
    if (u == 0) 
         
        sizez = size(z);       %-------| 
        if sizez(1) > sizez(2) %       | 
            z = z';            %       |----> Checks the dimsension of z 

   |      (Flips if along inner surface) 
        end                    %-------| 
         
        figure() 
        plot( z(1,(length(z)-length(h)+1):length(z)) ,  h  ) 
        title('Film Thickness','Fontsize',20) 
        xlabel('Distance (m)') 
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        ylabel('Distance (m)') 
        grid on 
    else 
        figure() 
        plot(z,h) 
        title('Film Thickness','Fontsize',20) 
        xlabel('Distance (m)') 
        ylabel('Distance (m)') 
        grid on 
    end 
  
  
% %***********************PLOT 3D PRESSURE CURVES**************************** 
%Plot Surface Mesh 
figure() 
surf(P) 
title('3D Reyonalds Plot') 
  
%Plot Mesh 
figure() 
mesh(P) 
title('3D Reyonalds Plot') 
  
%***********************PLOT 2D PRESSURE CURVES**************************** 
    if (u == 0) 
        figure() 
        plot( z(1,(length(z)-length(h)+1):length(z)) ,P) 
        title('Pressure','Fontsize',20) 
        xlabel('Distance (m)') 
        ylabel('Pressure (Pa)') 
        grid on 
    else 
        figure() 
        plot(z,P) 
        title('Pressure','Fontsize',20) 
        xlabel('Distance (m)') 
        ylabel('Pressure (Pa)') 
        grid on 
    end 
  
  
  
end  %End function 
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%**************************************************************************** 
%******                                                                ****** 
%***            ACF AND CCF SURFACE TOPOGRAPHY CHARACTERIZATION           *** 
%*                                                                          * 
%*                            MASTERS THESIS 2018                           * 
%*                                                                          * 
%***                           ALEX J. LOCKER IV                          *** 
%******                                                                ****** 
%**************************************************************************** 
  
%****************************************************************************
% The following script calculates the Peklenik number, commonly referred to as                  
% the surface anisotropy number. This is also referred to as Gamma. By                    
% calculating the X and Z direction Auto-Correlation Function values the ratio               
% is taken to get the ratio. Also the Cross Correlation Function is calculated                
% for a more accurate surface characterization parameter. 
%****************************************************************************  
 
sigma = 0.93884e-6; %Calculated from True_FF_Calculations_ShearV2_GP 
  
%Read in the data into 5 columns 
 [A B C D E] = textread('Surface1_NoWords.txt','%f %c %f %c 
%c','headerlines',20);        %Need file to end with numbers 
  
%FOR THE Y VALUES USE THIS CODE 
w = 1000;   %Number of Samples per row 
n = 999;    %Number of Repeating Samples 
v = repmat(0:n,[w 1]); 
v = v(:); 
  
x1 = A; 
y1 = v; 
z1 = C; 
  
%***************************LEVEL THE DATA********************************* 
for j = 1:1000 
   sumz = 0; 
  
        if j==1 
             
               for i = 1:1000                     %Sum points from 1 to 1000 
                   sumz = sumz + z1(i); 
               end 
               a = polyfit(i,j,1); 
               avgz(j) = sumz/1000;   
               k=0; 
               for i = 1 : 1000             %Sum points from X001 to (X+1)000 
                   k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-a(1); 
               end   
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        elseif j<=999 
            sumz=0; 
               for i = (1000*j+1) : (1000*j+1000)  %Sum points from X001 to 

   (X+1)000 
                        sumz = sumz + z1(i); 
               end 
               w = polyfit(i,j,1); 
               avgz(j) = sumz/1000; 
               k=0; 
               for i = (1000*j+1) : (1000*j+1000)  %Sum points from X001 to 

   (X+1)000 
                k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-w(1); 
                         
               end               
  
        else                                       %For the last point 
               for i = 999001:1000000 
                   sumz = sumz + z1(i);      
               end 
                e = polyfit(i,j,1); 
               avgz(j) = sumz/1000 - e(1); 
               k=0; 
               for i = 999001:1000000  %Sum points from X001 to (X+1)000 
                   k=k+1; 
                        z2(j,k)=z1(i)-avgz(j)-e(1); 
               end   
             
        end  %End j decision loop 
end          %End j loop 
  
  
%Subtract out any average Discrepancies ()size of z2 is 1000x1000) 
Average   = (sum(sum(z2))) / 1e6; 
Leveledz2 = z2 - Average; 
  
figure() 
mesh(Leveledz2); 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
colorbar 
title('D35 Cylinder Wall Surface','Fontsize',20) 
  
%Call Second Surface (D35 Ring) 
FlattenedTopRing 
figure() 
mesh(LeveledFit) 
% axis([0 1000 0 1000 -2 4]) 
xlabel('X-direction') 
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ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('D35 Piston Ring Surface without Curvature','Fontsize',20) 
grid on 
  
%****************************Add both Surfaces***************************** 
figure() 
FullSurface = Leveledz2 + LeveledFit;   %FOR INDIVIDUAL GAMMAS OR CONVOLUTE 
GAMMAS USE THIS LINE TO COMMENT OUT 
mesh(FullSurface); 
xlabel('X-direction') 
ylabel('Z-direction') 
zlabel('Height (\mum)') 
title('Cylinder Wall and Piston Ring Combined Surface Height','Fontsize',20) 
grid on 
   
%Columns are Z-Direction 
%Rows are X-Direction 
 
 
%////////////////////////////////////////////////////////////////////////// 
%                      ----------------------------- 
%                     |  AUTO CORRELATION FUNCTION  | 
%                      ----------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
   
%************************2D AUTO CORRELATION X DIRETION********************** 
x  = FullSurface(1,:); 
N  = 1000; 
Ls = 1000e-6; 
rhox(1:N) = 0; 
   
for bx = 1:N 
     
    betax(bx) = bx/(N-1) * Ls; 
     
    for i = 1:N-bx 
        rhox(bx) = rhox(bx) + (x(i)*x(i+bx))/N; 
    end 
     
end 
  
%Plot the ACF 
figure() 
plot(betax,rhox,'b'); 
xlabel('\beta (m)') 
ylabel('ACF (m^2)') 
grid on 
title('Auto-Correlation Function X-Direction','Fontsize',20) 
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%Calcualte Half correlation length 
HalfACFx = max(rhox)/2; 
HalfLambdax = interp1(rhox,betax,HalfACFx); 
hold on 
plot(HalfLambdax,HalfACFx,'b*') 
legend('ACF','Half ACF Length') 
  
%************************2D AUTO CORRELATION Z DIRETION********************** 
z = FullSurface(:,1); 
  
rhoz(1:N)=0; 
  
it=0; 
for bz = 1:N 
     
    betaz(bz) = bz/(N-1) * Ls; 
     
    for i = 1:N-bz 
        rhoz(bz) = rhoz(bz) + (z(i)*z(i+bz))/N; 
        it=it+1; 
    end 
     
end 
  
%Plot the ACF Z-Direction 
figure() 
plot(betaz,rhoz,'r'); 
xlabel('\beta (m)') 
ylabel('ACF (m^2)') 
grid on 
title('Auto-Correlation Function Z-Direction','Fontsize',20) 
  
%Calcualte Half correlation length 
HalfACFz = max(rhoz)/2; 
HalfLambdaz = interp1(rhoz,betaz,HalfACFz); 
hold on 
plot(HalfLambdaz,HalfACFz,'r*') 
legend('ACF','Half ACF Length') 
  
%****************************************************************************  
%Plot Both Functions together 
figure() 
plot(betax,rhox,'b'); 
hold on 
plot(HalfLambdax,HalfACFx,'b*') 
hold on 
plot(betaz,rhoz,'r'); 
hold on 
plot(HalfLambdaz,HalfACFz,'r*') 
xlabel('\beta (m)')  
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ylabel('ACF (m^2)') 
grid on 
% title('Auto-Correlation Functions','Fontsize',20) 
legend('X-Direction','1/2 X-Correlation Length','Z-Direction','1/2 Z-
Correlation Length')%  <----- Two possible legend entries 
% legend('X-Direction','\lambda_0_._5_X','Z-Direction','\lambda_0_._5_z')      
<-----------------| 
 
 
 
 
 %************************************** 
GAMMA = HalfLambdaz/HalfLambdax    % Surface Characterization number 
(Peklenik number) 
%************************************** 
 
%////////////////////////////////////////////////////////////////////////// 
%                      ----------------------------- 
%                     |  CROSS CORRELATION FUNCTION  | 
%                      ----------------------------- 
%\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 
 
%Use FullSurface for heights 
%TAKES 11.5 HOURS TO RUN BELOW HERE!!!!! CAUTION!!!!! 
 
rho(N:N)=0; 
  
for e = 1:N 
  
    for d = 1:N 
  
        for b = 1:N 
  
            beta(b) = b/(N-1) * Ls; 
  
            for i = 1:N-b 
                rho(b) = rho(b) + (FullSurface(i,d)*FullSurface(i+b,e))/N; 
                it=it+1; 
            end 
  
        end 
  
    end 
  
end 
  
%Plot the Cross Correlation Function 
figure() 
plot(beta,rho,'b'); 
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xlabel('\beta (m)') 
ylabel('CCF (m^2)') 
grid on 
title('Cross-Correlation Function','Fontsize',20) 
  
%Calcualte Half correlation length and plot 
HalfCCF = max(rho)/(2); 
HalfLambda = interp1(rho,beta,HalfCCF) 
hold on 
plot(HalfLambda,HalfCCF,'b*') 
legend('CCF','Half CCF Length') 
  
%NORMALIZE RHO FOR MAXIMUM OF 1 
normalizedrho = rho/max(rho); 
halfccftest = max(normalizedrho)/2; 
halflambdatest =  interp1(normalizedrho,beta,halfccftest) 
  
%Plot normalized rho 
figure() 
plot(beta,normalizedrho,'b') 
xlabel('\beta (m)') 
ylabel('CCF (m^2)') 
grid on 
% title('Cross-Correlation Function Normalized','Fontsize',20) 
hold on 
plot(halflambdatest,halfccftest,'b*') 
legend('Cross-Correlation Length','1/2 Correlation Length') 
% axis([0 9e-5 -0.4 1]) 
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%****************************************************************************
% The following function was written by Nolan Chu to calculate the contact                    
% pressure upon given the film thickness, h. 
%**************************************************************************** 
  
function PAn=eplasticG_Wcf(h) 
tic 
import=xlsread('derivscombined_GP.xlsx'); 
Rv=import(1,:);sigmav=import(3,:);etav=import(2,:);%converting to meters 
E=.965*10^11;%Pa 
nu=.26; 
Eprime=.5/((1-nu^2)/E);%in contact with a rigid surface 
Sy=22*10^7;%Pa 
for ru=1:length(etav) 
%Jackson and Green's prediction of initial loading, von Mises yield 
C=1.295*exp(.736*nu); 
omegac=Rv(ru)*(pi*C*Sy/(2*Eprime))^2; 
Acrit=pi^3*(C*Sy*Rv(ru)/(2*Eprime))^2; 
Pcrit=4/3*(Rv(ru)/Eprime)^2*(C/2*pi*Sy)^3;B=.14*exp(23*Sy/Eprime); 
for jj=1:length(h) 
    limit=linspace(h(jj),300*sigmav(ru),101); 
%     limit=h(jj):sigmav(ru)*.005:sigmav(ru)*10; 
    omega=limit-h(jj);a=sqrt(omega*Rv(ru));nodes(jj)=length(limit); 
    yv=normpdf(limit,0,sigmav(ru)); 
    
omegastar=omega/omegac;a=sqrt(1/pi()*Acrit*omegastar.*(omegastar/(1.9)).^B); 
    H=Sy*(2.84-.92*(1-cos(pi*a/Rv(ru)))); 
    Force=4/3*Eprime*sqrt(Rv(ru))*omega.^1.5; 
    Areacontact=pi*Rv(ru)*omega; 
    for kk=1:length(omega) 
    if omegastar(kk)>1.9*omegac; 
        Force=Pcrit*(exp(-
.25*omegastar.^(5/12)).*omegastar.^1.5+4*H/(C*Sy).*(1-exp(-
.04*omegastar.^(5/9))).*omegastar); 
        B=.14*exp(23*Sy/Eprime); 
        Areacontact=Acrit*omegastar.*(omegastar/(1.9)).^B; 
    end 
    end 
    integrand=Areacontact.*yv; 
    if nodes(jj)==1 
        Arat(jj,ru)=0;PAn(jj,ru)=0; 
    else 
    Arat(jj,ru)=etav(ru)*Simpsons_1_3_GP(limit,integrand); 
    integrand2=Force.*yv; 
    PAn(jj,ru)=etav(ru)*Simpsons_1_3_GP(limit,integrand2); 
    end 
end 
end 
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%**************************************************************************** 
% The following function was written by Nolan Chu that utilizes Simpson's            
% rule to determine the real area of contact and the normalized pressure. 
%**************************************************************************** 
  
function [ out ] = Simpsons_1_3( xv,yv ) 
%Simpsons_1_3 approximates an integral using parabolas 
  
[a,b]=size(xv);[c,d]=size(yv);sum=0;g=length(xv)/2; 
if a~=1 & b~=1 | c~=1 & d~=1 
    error('Inputs must not be matrices') 
elseif length(xv)~=length(yv) 
    error('Input vectors must be of the same length') 
elseif g==floor(g) 
    error('Simpson''s rule requires an even number of subintervals') 
end 
delta=xv(2)-xv(1); 
for f=2:length(xv)-1 
    if abs(delta-(xv(f+1)-xv(f)))>10^-7 
        error('independent vector intervals not equally spaced') 
    end 
end 
for n=2:2:length(xv)-1 
    simpson=(xv(n+1)-xv(n-1))/6*(yv(n-1)+4*yv(n)+yv(n+1)); 
    sum=sum+simpson; 
end 
out=sum; 
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APPENDIX B 

 

FUTURE MODELS 

 

 The following Appendix represent the models that have made progress, however have not 

yet been implemented into the overall piston ring model program, outlined in Chapter 5. 
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B.1 Heat Balance 

 In order to solve the steady-state heat conduction problem, the finite difference method 

was employed similar to the Reynolds equation. At the macroscopic level, the piston ring model 

utilizes cylindrical coordinates. At the microscopic level, a Cartesian coordinate system is able to 

be employed in the derivation of the flow factors. 

At the smaller scale level there is seen to be no curvature in the piston ring, and thusly the 

model was solved in Cartesian coordinates. In analyzing the ring dynamics involved, the 

cylindrical coordinate system is used to account for this curvature. The two-dimensional, steady 

state, axisymmetric conduction equation was derived from the energy equation. 

 

B.1.1 Heat Transfer Equation Derivation 

 The heat transfer equation for this particular system is derived from the energy equation, 

expressed in tensor notation as 

 𝜌𝜌
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑢𝑢𝑘𝑘
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥𝑘𝑘

= −𝑒𝑒
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

+
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑘𝑘
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥𝑗𝑗

� + 𝜆𝜆 �
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�
2

+ 𝜇𝜇 �
𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

 (94) 

where the dissipation function is equal to the last two term of Eq. (94) 

 𝛷𝛷 = 𝜆𝜆 �
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

�
2

+ 𝜇𝜇 �
𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

 (95) 

Employing continuity gives 

 
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑥𝑥𝑘𝑘

= 0 (96) 

With simplification the dissipation function (Eq. (95)) becomes 
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 𝛷𝛷 =
1
2
𝜇𝜇 �

𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�
2

 (97) 

The material derivative is related to the left hand side of Eq. (94) through 

 
𝐷𝐷𝑒𝑒
𝐷𝐷𝜕𝜕

=
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑘𝑘
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥𝑘𝑘

 (98) 

where e represents the internal energy per unit mass. Multiplying Eq. (98) through be density, 𝜌𝜌, 

gives 

 𝜌𝜌
𝐷𝐷𝑒𝑒
𝐷𝐷𝜕𝜕

= 𝜌𝜌
𝜕𝜕𝑒𝑒
𝜕𝜕𝜕𝜕

+ 𝜌𝜌𝑢𝑢𝑘𝑘
𝜕𝜕𝑒𝑒
𝜕𝜕𝑥𝑥𝑘𝑘

 (99) 

The first term on the right hand side of Eq. (99) represents the temporal change, and the second 

term on the right hand side represents the local convective changes as the fluid flows from one 

point to another. Assuming these changes are negligible than the material derivative of internal 

energy per unit mass (Eq. (99)) becomes 

 𝜌𝜌
𝐷𝐷𝑒𝑒
𝐷𝐷𝜕𝜕

= 0 (100) 

So the energy equation becomes 

 0 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝑘𝑘
𝜕𝜕𝑇𝑇
𝜕𝜕𝑥𝑥𝑗𝑗

� +
1
2
𝜇𝜇 �

𝜕𝜕𝑢𝑢𝐶𝐶
𝜕𝜕𝑥𝑥𝑗𝑗

+
𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝐶𝐶

�
2

     𝐹𝐹𝐹𝐹𝐹𝐹 𝑊𝑊, 𝑗𝑗 = 1,2 (101) 

Expanding this tensor notation gives the two dimensional steady state energy equation 

 0 = 2𝑘𝑘 �
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑥𝑥2

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2

� + 𝜇𝜇 �2 �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥
�
2

+ 2 �
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2

+ �
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦
�
2

� (102) 

Employing a cylindrical coordinate system gives the governing heat transfer equation 
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 𝜕𝜕2𝑇𝑇
𝜕𝜕𝐹𝐹2

+
1
𝐹𝐹
𝜕𝜕𝑇𝑇
𝜕𝜕𝐹𝐹

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

+
�̇�𝑞

2𝑘𝑘
= 0 (103) 

where the heat generation is a function of the viscous and frictional heating 

 �̇�𝑞 = 𝑞𝑞𝑐𝑐𝐶𝐶𝑠𝑠𝑐𝑐𝑜𝑜𝐶𝐶𝑠𝑠 + 𝑞𝑞𝑜𝑜𝑆𝑆𝐶𝐶𝑐𝑐𝑆𝑆𝐶𝐶𝑜𝑜𝐶𝐶 (104) 

And the conduction term is represented by the first three terms of Eq. (103) 

 𝜕𝜕2𝑇𝑇
𝜕𝜕𝐹𝐹2

+
1
𝐹𝐹
𝜕𝜕𝑇𝑇
𝜕𝜕𝐹𝐹

+
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

= 0 (105) 

The conduction equation (Eq. (105)) is able to be solved for by using a similar nodal 

network for the Reynolds equation discretization (shown in Figure 3.20). The nodal discretization 

for temperature is shown in Figure B.1. 

 

 

𝑇𝑇𝐶𝐶−1,𝐶𝐶 

𝑇𝑇𝐶𝐶+1,𝐶𝐶 

𝑇𝑇𝐶𝐶,𝐶𝐶−1 𝑇𝑇𝐶𝐶,𝐶𝐶+1 
𝑇𝑇𝐶𝐶,𝐶𝐶 

∆𝜕𝜕 

∆𝜕𝜕 

∆𝐹𝐹 ∆𝐹𝐹 

Figure B.1: Discretization of Temperature (T) 



 
 

 
212 

 
 

 

 

Employing the center difference for the first term on the left hand side of the conduction 

equation (Eq. (105)) 

 𝜕𝜕2𝑇𝑇
𝜕𝜕𝐹𝐹2

 =  
�𝜕𝜕𝑇𝑇𝜕𝜕𝐹𝐹�𝐶𝐶,𝐶𝐶+1/2

− �𝜕𝜕𝑇𝑇𝜕𝜕𝐹𝐹�𝐶𝐶,𝐶𝐶−1/2

𝐹𝐹𝐶𝐶,𝐶𝐶+1/2 − 𝐹𝐹𝐶𝐶,𝐶𝐶−1/2
 =  

𝑇𝑇𝐶𝐶,𝐶𝐶+1 − 𝑇𝑇𝐶𝐶,𝐶𝐶
∆𝐹𝐹 −

𝑇𝑇𝐶𝐶,𝐶𝐶 − 𝑇𝑇𝐶𝐶,𝐶𝐶−1
∆𝐹𝐹

∆𝐹𝐹
 (106) 

which simplifies too 

 
𝜕𝜕2𝑇𝑇
𝜕𝜕𝐹𝐹2

 =  
𝑇𝑇𝐶𝐶,𝐶𝐶+1 − 2𝑇𝑇𝐶𝐶,𝐶𝐶 + 𝑇𝑇𝐶𝐶,𝐶𝐶−1

(∆𝐹𝐹)2  (107) 

Applying the same methodology in the z direction for the third term on the left hand side of Eq. 

(105) gives 

 
𝜕𝜕2𝑇𝑇
𝜕𝜕𝜕𝜕2

 =  
𝑇𝑇𝐶𝐶+1,𝐶𝐶 − 2𝑇𝑇𝐶𝐶,𝐶𝐶 + 𝑇𝑇𝐶𝐶−1,𝐶𝐶

(∆𝜕𝜕)2  (108) 

The second term on the left hand side of the conduction equation (Eq. (105)) is discretized as 

 
1
𝐹𝐹
𝜕𝜕𝑇𝑇
𝜕𝜕𝐹𝐹

 =  
1
𝐹𝐹
𝑇𝑇𝐶𝐶,𝐶𝐶+1 − 𝑇𝑇𝐶𝐶,𝐶𝐶−1

𝐹𝐹𝐶𝐶,𝐶𝐶+1 − 𝐹𝐹𝐶𝐶,𝐶𝐶−1
=  

𝑇𝑇𝐶𝐶,𝐶𝐶+1 − 𝑇𝑇𝐶𝐶,𝐶𝐶−1

2(∆𝐹𝐹)2  (109) 

By combining Eqs. (107-109) and solving for 𝑇𝑇𝐶𝐶,𝐶𝐶 the total nodal temperature results in the 

expression 

 𝑇𝑇𝐶𝐶,𝐶𝐶 =
(∆𝜕𝜕)2�3𝑇𝑇𝐶𝐶,𝐶𝐶+1 + 𝑇𝑇𝐶𝐶,𝐶𝐶−1� + 2(∆𝐹𝐹)2�𝑇𝑇𝐶𝐶+1,𝐶𝐶 + 𝑇𝑇𝐶𝐶−1,𝐶𝐶�

−4[(∆𝜕𝜕)2 + (∆𝐹𝐹)2]  (110) 

Before incorporating this nodal temperature into the piston ring model, this heat transfer 

model was to be first run through a verification simulation. The simulation was run on a 

hypothetical plate acting as the piston ring. To test the convergence, three arbitrary points are 

chosen at various distances from each surface edge, with two temperatures applied at the upper 
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and lower piston ring face. It is assumed the combustion stroke has just initiated and the 

temperature in the combustion chamber is 2500K, thus the upper piston ring surface is modeled as 

being 2500K. The lower piston ring surface is modeled at the crankcase temperature of 273K. The 

steady-state solution is shown in Figure B.2. The convergence temperature at each point location 

is shown in Figure B.3. Similar to the method discussed in Section 3.3.4 the convergence criteria 

was chosen to be 1%. The final converged temperature values for each point is shown in Figure 

B.4. 

 

 

 

Figure B.2: Converged temperatures across four surfaces 
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The two dimensional, axisymmetric, steady state conduction equation has been solved and 

will be incorporated into the model in the future. 

 

 

 

Figure B.3: Temperatures at each point converging 

Figure B.4: Converged temperature value and time 
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B.2 Temperature/Viscosity Model 

 As the piston moves linearly throughout the combustion cycle, its frictional work generates 

heat. This heat causes the temperature of the lubricant to rise. Temperature has a large effect on 

viscosity; as the temperature rises, the lubricant becomes less viscous, and vice versa, as the 

temperature of a lubricant decrease, its viscosity increases. The lubricants viscosity is able to be 

modeled after the Roeland’s equation [78], which models the effect of temperature on viscosity 

independently from pressure as 

 log(𝑙𝑙𝐹𝐹𝑙𝑙𝜇𝜇 + 1.2) = −𝑆𝑆0𝑙𝑙𝐹𝐹𝑙𝑙 �1 +
𝑇𝑇𝐶𝐶

135
� + 𝑙𝑙𝐹𝐹𝑙𝑙(𝐺𝐺0) (111) 

Solving for viscosity gives 

 𝜇𝜇 = 10𝐺𝐺0(1+𝑇𝑇𝑚𝑚/135)−𝑆𝑆0  (112) 

where 𝑆𝑆0 and 𝐺𝐺0 are Roeland’s constants. This temperature dependent viscosity model will be 

incorporated into the piston ring model in the future to more accurately describe the changing 

viscosity throughout the combustion cycle. 
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