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Abstract 

 

 

 Rapid coastal development has led to loss/alteration of wetlands, streams, riparian 

vegetated areas and headwater areas that buffer coastal waterways from pollution. Small 

wetlands, besides being easily altered, have also shown to have higher capacity for nonpoint 

source amelioration. Consequently, the protection and restoration of small wetlands and their 

vegetated buffer systems are critical in regulating flows and enhancing water quality on the 

landscape. This requires good understanding of their functionality so that appropriate steps can 

be taken for their management and preservation. In Chapters 2, 3 and 4, this study evaluates 

headwater slope wetlands in Alabama’s coastal plain using field data and process-based 

modeling, and in Chapter 5, improves existing relationships describing sediment removal by 

vegetated buffers through data-based modeling. Very little data exists for headwater slope 

wetlands (groundwater-fed wetlands above and alongside 1st order streams) in the region; to 

address this knowledge gap we observed hydrology and dissolved inorganic nitrogen (DIN) 

trends in select wetlands, addressed challenges associated with modeling their hydrology and 

lastly, identified nitrogen inputs pertinent to predicting nitrate export through a sensitivity 

analysis. Delineated watersheds were small (<2 km2); flashy flows followed level of urbanization 

in the watershed, with the least altered wetland having stable and damped flows. Despite 

watershed alterations, wetlands still showed DIN load reductions ranging from 9% to 50%. One 

of the study wetlands showed unusually large flows, indicating the presence of a larger 

groundwater watershed relative to the extent the delineated surficial watershed; a common issue  
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in coastal plain regions where topography is flat and water tables are shallow. Using this as a 

case study, we investigated different approaches of modelling flow using popular watershed 

model SWAT (Soil and Watershed Assessment Tool) as a simpler alternative to complex 

groundwater models. Since flows in SWAT are limited by watershed precipitation, simulated 

flows were several times smaller in magnitude than observed flows. Calibration approaches 

involved manual amplification of baseflow with a multiplier (ENASH = 0.66), tweaking parameter 

RCHRGE_DP to allow extra water to be added to the system (ENASH = 0.75), and incorporating 

ANN (Artificial Neural Network) with SWAT to further improve calibration performance (ENASH 

= 0.88). These approaches provide managers and modelers useful tools to navigate similar flow 

calibration challenges in other groundwater dominant watersheds. Since data for models aimed at 

understanding wetland function are especially scarce for smaller wetlands (e.g., headwater slope 

wetlands), optimizing data collection to include only those most valuable for model predictions 

is a pressing need. Taking the case of nitrate, we conducted a sensitivity analysis to assess if 

detailing surface inputs of organic nitrogen and ammonia (whose fluxes are linked with nitrate) 

were necessary to predict nitrate export from study headwater slope wetlands. Nitrate export, 

modelled by model WetQual, showed negligible sensitivity to organic nitrogen and ammonia 

inputs. Perhaps low residence times in study headwater slope wetlands, which are typically 

gaining wetlands with no depressional storage, afforded too little time for N transformations to 

effect nitrate export leading us to conclude that organic nitrogen and ammonia input data at high  
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resolution are not as important as detailing nitrate inputs in low residence time, groundwater 

interacting wetlands such as headwater slope wetlands. Wetland management also involves 

revitalizing streamside vegetation which are crucial in mitigating nonpoint pollution, such as 

sediment pollution. With the objective of improving existing relationships describing sediment 

removal, we compiled data from 54 studies (including online BMP database) concerning 

sediment trapping by vegetated buffers and recorded buffer characteristics (such as buffer width, 

slope, area, vegetation type, sediment and runoff loading, runoff rates, residence time, roughness 

and sediment removal efficiency). An exponential regression model best described the 

relationship between sediment removal efficiency and volume ratio, residence time and width 

further (R2 = 40.5%). This model was compared with performances derived from applying other 

sediment reduction regression models reported in literature namely those in White and Arnold 

(2009), Liu et al. (2008) and Zhang et al. (2010) to our database. Of these, only the model 

presented by White and Arnold (2009) was statistically significant presumably because of the 

inclusion of runoff reduction in their study. The results of this study point towards the 

importance of considering flow in buffer design.  
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Chapter 1 

Brief overview and justification for study 

Water quality prediction has large implications on the environment, human health, and economy. 

In this regard, riparian zones and wetlands have only recently been acknowledged for the 

important role they play in improving water quality and regulating flows on the landscape. 

Historically wetlands were looked upon as ‘unhealthy’ lands (Amezaga et al. 2002) which 

allowed for the loss and destruction of >50% of U.S wetlands over the last century. Wetlands 

became the most degraded ecosystem, both within the U.S and on a global scale. Significant 

steps were taken in the late 1980s to preserve the remainder of America’s wetlands, and to create 

and restore wetlands when feasible to increase the quality and quantity of the nation’s wetland 

resource base (National Wetlands Policy Forum 1988).  

Wetlands and riparian areas perform many important functions such as flood attenuation, 

improving water quality and improving biodiversity beside a host of other ecosystem services 

and functions. Strong relationships have been documented between water quality, water quantity 

and runoff with landscape characteristics within a watershed. Changes in land use can disrupt 

water budgets by changing the partitioning of precipitation between the different components of 

the water cycle such as evapotranspiration, runoff, and groundwater flow (Foley et al. 2005). 

Loss of native vegetation cover and increased impervious area cover causes increased surface 

runoff, flashiness in urban streams, reduced base flows, increased river discharges and initiate 

incision where stream power is high (Foley et al. 2005; Forman and Alexander 1998, Bledsoe 

and Watson 2001). Roads can block or redirect natural flows to the wetland, raising upslope 

water table and lowering that downslope (Forman and Alexander 1998). Agricultural runoff may 

contain large amounts of nutrients and sediment while runoff from heavily urban areas can 
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contain excess nutrients from sewage pipes and fertilized lawns, sediment from construction 

sites, and oils, greases, and heavy metals, rubber fragments, sodium and sulfate and various other 

contaminants (Forman and Alexander 1998). High nutrient and sediment loading in surface 

waters within the watershed can ultimately compromise the quality and quantity of water 

reaching estuaries, bays and oceans through eutrophication, hypoxia, and degraded aquatic 

habitats. A classic example is presented by the Gulf of Mexico which has been facing numerous 

problems with eutrophication and hypoxia for years as a result of excessive nutrient loadings 

from the Mississippi River basin.  

Despite acceptance of the socioeconomic and ecological importance of wetlands and 

riparian areas, their role has largely been ignored in watershed modeling and water resource 

planning, partly because of the complexity of processes that occur in them. Simple methods such 

as regression/statistical models, as well as process-based models are useful prediction tools to 

gain understanding of the influence of wetlands and riparian zones on overall watershed water 

and nutrient/sediment balances. While the former is limited in scope and sheds light on the 

relative significance of different processes and sources, the complexity of wetland processes 

generates a need for more sophisticated process-based dynamic models that can consider 

vegetation and soil fluxes, nutrient retention and interaction with surface water, groundwater, 

and soil (Hattermann et al. 2006). Integration of these complex wetland-scale models within 

larger watershed scale models such as SWAT (Soil and Watershed Assessment Tool) represents 

a difficult challenge since SWAT is associated with specific datasets which limits its 

transferability (Krysanova et al. 1998). However, ignoring wetland function in a watershed can 

grossly influence policy decisions with respect to pollution reduction and water quality 

improvement and the quantification of ecosystem services.  
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 My dissertation will touch upon both modeling approaches for understanding wetland 

and riparian area influences on various aspects of hydrology and water quality as well as 

providing tools to better redirect wetland management and restoration efforts. Here the focus is 

on assessing a lesser studied wetland type in Alabama’s coastal plain region, called the 

headwater slope wetland, to generate more understanding about its functional capacity in light of 

increasing urbanization in the region using process-based models such as SWAT and WetQual 

for hydrology and water quality prediction, while the other part of the dissertation will deal with 

improving data-based regression models for sediment removal by riparian buffers for better 

water quality prediction and management. The overall objective of my dissertation is to improve 

water quality prediction by incorporating the functional role of wetlands within a larger 

watershed context to aid in different water quality management objectives.  

Overall Objectives  

The broad objectives for my dissertation are as follows: 

1. Evaluate the influence of increasing land use/land cover change on the functional capacity of 

headwater slope wetlands in Baldwin County, AL 

2. Develop a data-based regression tool for sediment removal prediction from riparian buffers  

 

Objective 1: Evaluate the influence of increasing land use/land cover change on the 

functional capacity of headwater slope wetlands in Baldwin County, AL 

In my first three chapters, I will focus on the evaluation of a lesser studied wetland type in 

Alabama’s coastal plain region, called ‘headwater slope wetland’. These are groundwater-fed 

forested wetlands that occur in the upper reaches (headwater areas) of 1st order streams 

(Barksdale et al. 2013). Headwater slope wetlands form the interface of terrestrial uplands and 
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coastal creeks, and occur numerously in the U.S coastal plain region. Slope wetlands form where 

topographic features allow for subsurface flows from the surrounding landscape to intersect the 

surface resulting in consistently high water tables (Stein et al. 2004; Barksdale and Anderson 

2015; Noble et al. 2007). They branch out into numerous creeks and extend throughout local 

watersheds as smaller streams and creeks which join larger drainage networks and ultimately 

flow into local bays and oceans. Cumulatively, headwater streams can account for over two-

thirds of the total stream length in a river and at least 80% of the nation’s stream network 

(Freeman et al. 2007; Meyer et al. 2003; Roy et al. 2009). They can also contribute ~55% of the 

water volume and 40% of nitrogen fluxes to 4th order streams (Alexander et al. 2007); as a result, 

hydrologic alteration of headwater wetland systems has the potential to impact ecological 

functions of the drainage networks at large scales (Freeman 2007). Because of their unique 

landscape position and their small size, they are highly vulnerable to watershed land use 

alterations.  

Headwaters provide important ecosystem services such as habitat for aquatic life, nutrient 

uptake and cycling, downstream temperature regime regulation and mitigation of flows, 

sediment and nutrient fluxes (Roy et al. 2009). They have been shown to remove/transform over 

half of watershed load inputs of dissolved inorganic nitrogen (Peterson et al. 2001). Thompson et 

al. (2000) identified denitrification in estuarine headwaters as an important mechanism in 

reducing nitrate inputs to estuarine creeks. Observing the dense coastal stream networks of 

Baldwin County, as presented in Figure 1, and assuming a slope wetland at the headwaters and 

alongside each 1st order stream gives a visual picture of their sheer density on the landscape and 

the potential magnitude of their cumulative ecosystem function. Rapidly increasing population 

pressure in coastal areas has been an important stressor on coastal wetlands, including headwater 



5 

 

wetlands - in Baldwin County (along the Gulf of Mexico in south Alabama), population 

increased by 42.9% from 1990 to 2000 and is expected to rise significantly in the future (BCPZD 

2005). As a result, critical wetland habitat is continually being drained, dredged or altered to 

make way for agricultural or urbanized land use from native ecosystems which disrupts natural 

biogeochemical balances of the landscape as streams and rivers are no longer buffered from 

upland areas (Day Jr. et al. 2003). Headwater streams and wetlands are easily ‘buried’, i.e., 

redirected through channels, pipes, and ditches, or by directly paving over the stream (Elmore 

and Kaushal 2007) to make way for agricultural and urban development. Elmore and Kaushal 

(2007) reported a positive correlation between increasing impervious area cover and fraction of 

headwater streams buried, and that headwater streams were more likely to be buried than larger 

streams at every degree of urban development. Increased nutrient inputs into these headwater 

systems due to anthropogenic influences may overwhelm their capacity for nutrient 

transformation, and nutrients maybe transported to greater distances downstream in the drainage 

network (Peterson et al. 2001).  

As the Gulf Coast continues to develop, groundwater driven headwater slope wetlands 

are likely to shift to more surface water driven systems, which can alter their hydrological, 

biogeochemical and physical characteristics and have far-reaching implications for downstream 

and coastal waters. Recent studies in Baldwin County, AL conducted by Barksdale et al. (2014) 

and Barksdale and Anderson (2015) reported flashier hydrologies and greatly altered species 

composition in headwater slope wetlands with higher watershed Curve Number (CN, which was 

used as a surrogate measure of watershed imperviosness) and landuse conversion. The main goal 

of this research is to expand on the body of knowledge regarding headwater slope wetland 
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function in the region and giving valuable insights with regard to hydrology and water quality 

prediction in these systems to aid in their restoration and protection. 

 In Chapter 2, I examine hydrology and nutrient trends in data collected from four headwater 

slope wetlands in Baldwin County AL. 

 In Chapter 3, I assess the challenges of predicting flow for groundwater dominated hydrology 

in regions of low topographical relief, such as Alabama’s coastal Plain region. Here, I focus 

on one of the study wetlands and use it as a case study to present different approaches of 

calibrating hydrology using commonly used watershed model, SWAT (Soil and Watershed 

Assessment Tool).  

 In Chapter 4, I inquire whether detailed collection of surface water concentrations of 

Organic-N and Ammonia-N is pertinent to predicting nitrate export from these headwater 

slope wetlands through a sensitivity analysis involving watershed model SWAT and wetland 

model WetQual.   

 

 Objective 2: Develop a data-based regression tool for sediment removal prediction from 

riparian buffers  

Riparian ecotones form the transition zone between terrestrial and aquatic ecosystems. Water 

from terrestrial systems typically pass through this ecotone to reach the aquatic system, mainly 

through surface runoff, seepage, shallow subsurface flow, deep subsurface flow, and through 

drainage tiles (Vought et al. 1994). Naturally occurring riparian forests and streamside vegetation 

thus form a natural interface between uplands and aquatic processes (Sweeney and Newbold 

2014). They not only intercept and purify pollutant-laden runoff, but also enhance the physical, 

chemical and biological characteristics of the riparian ecosystem that enable pollutant filtration 
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and sequestration (Sweeney and Newbold 2014). Degradation of riparian vegetation in addition 

to non-point source pollutant export was identified as a significant stressor contributing to the 

deterioration of over 50% of stream and river length in the U.S (Sweeney and Newbold 2014).  

Non-point source pollutants need to be tackled using several strategies: either pollutants 

can be managed at the source, or else, runoff should be intercepted to filter out nutrients and 

sediment before they reach surface waters (Vought et al. 1994; Ribaudo et al. 2001). The 

establishment and maintenance of vegetative filter strips (VFS) and riparian buffers have gained 

immense popularity as a cost-effective interception strategy for enhancing streamside ecosystem 

quality and water quality improvement by non-point source pollutant removal (Lowrance 1997; 

Mayer et al. 2003). Vegetative filter strips (VFS) are bands or areas of closely grown vegetation 

that receive and purify runoff from upslope areas such as croplands or pastures or other pollutant 

source areas (Dillaha et al. 1988). They perform a wide array of functions - they filter out 

sediments and nutrients from runoff, promote filtration, and increase retention time allowing for 

sediment deposition and lower velocity of runoff. A number of studies have documented 

effectiveness of vegetated filter strips. Le Bissonais et al. (2004) reported as much as 98% 

decrease in sediment concentration using a 6m wide grass strip. Duchemin and Hogue (2009) 

reported 87% decrease in total suspended solids using grass strips and 85% reduction in total 

suspended solids using mixed grass and tree buffer strips.  

The maintenance of riparian buffers depends highly on understanding specific transport 

mechanisms through these ecosystems. Models are used to test different scenarios for reducing 

pollutant loads; however models used for this purpose are oftentimes too simplistic in their 

approach and may apply a simple user-defined reduction factor or empirical formula to simulate 

the effectiveness of the buffer strip (or BMP). Regression (statistical) models are a useful tool 
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for water quality prediction and an important baseline for making management decisions 

regarding buffer maintenance and pollutant attenuation (Mayer et al. 2007).  

 In Chapter 5, I compiled a database from peer reviewed literature and online BMP databases 

for buffer sediment control. This was used to develop regression-based relationships between 

sediment removal and buffer characteristics.  

Chapters 2 – 5 have been organized as stand-alone chapters for ease of publication purposes. In 

Chapter 6, I summarize the major findings from each chapter and outline recommendations for 

future work.  
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Figure 1. The triangles represent study headwater slope wetlands in Baldwin County, AL. 

Baldwin County has an extensive stream network; nearly each of the streams/creeks start out as 

headwater wetlands. This schematic is a good representation of the density of headwater 

wetlands in this region, and consequently a relative measure of their importance in water quality 

improvement and flow regulation. 
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Chapter 2 

Hydrology and nitrogen trends in coastal plain headwater slope wetlands  

 

Abstract 

Rapidly increasing population pressure and land use conversion from forests to urban and 

agricultural uses in Alabama’s coastal plain have been important stressors on coastal wetlands. 

Headwater wetlands are particularly vulnerable because of their small size; they are easily 

“buried” by altering water conveyance through ditching, tiling or directly paving over. Since 

headwater areas play a disproportionately high influence on watershed flow and nutrient fluxes 

(e.g., headwater streams contribute >40% of flow and nitrogen fluxes to fourth order streams), 

alterations to their functionality can have significant impacts downstream and in coastal waters. 

Here we examine flow and dissolved inorganic nitrogen (DIN) trends in four “headwater slope 

wetlands” across a range of watershed alterations. This wetland type exists as groundwater-fed 

wetlands above and alongside 1st order streams and occurs in high densities in the Alabama-

Mississippi coastal plain region. Watershed sizes ranged from 0.5 – 1.8 km2 and % 

imperviousness varied from 1.5 to 41.6%. Each wetland showed different hydrology and DIN 

trends. High levels of urban cover caused wetland hydrology to be flashy with increasing RB 

indices (flashiness index) corresponding to level of urbanization in the watershed. The wetland in 

the least altered watershed showed stable, persistent and damped flows with the highest baseflow 

contribution (>70%) compared with wetlands located further inland. Overall, observed DIN 

concentrations were low in the wetlands except for the wetland in a dominantly agricultural 

watershed. Despite watershed alterations, wetlands still showed DIN load reductions ranging 

from 9% to 50%. We also considered headwater slope wetlands cumulatively on a county level 
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by identifying all headwater slope wetlands in Baldwin County and delineating their watersheds. 

Overall, the county north of I-65 is more forested with wider and more complete stream 

networks, while south of I-10 is dominantly agricultural and/ urbanized with narrower and more 

fragmented stream networks. This was reflected in watershed land use, with currently % 

watershed area covered by agriculture varying from 3.3% north of I-65 to 44.1% south of I-10, 

and urban areas varying from 4% north of I-65 to 15.6% south of I-10. Density of headwater 

wetlands also decreased from 0.3 wetlands/km2 to the north of I-10 to 0.2 wetlands/km2 to the 

south of I-10. Findings from this study give preliminary understanding of the diversity of 

headwater slope wetland function in the region which will be critical towards their protection and 

restoration in the face of ever increasing development in Baldwin County.  

Keywords: Wetland, headwater slope wetlands, urbanization, coastal plain, Alabama, DIN 

 

1. Introduction 

Wetland type, distribution and function varies widely with geology, climate, topography, 

hydrology, water quality and the degree of anthropogenic disturbance (Carter 1996). In the 

Alabama-Mississippi coastal plain, streams typically originate from forested groundwater fed 

slope wetlands in the headwater areas (Shaneyfelt and Metcalf 2014; Figure 1). These headwater 

slope wetlands, like other wetland types, maintain flows, store and transform carbon and 

nutrients, and support and maintain biodiversity (Nelson et al. 2011). Headwater areas have high 

levels of hydrological independence and ecological autonomy because of their location at the top 

of the drainage network (Lowe and Likens 2005). They have small contributing watersheds and 

processes in them are directly impacted by terrestrial inputs (e.g., nutrients, toxins, heavy metals) 

compared to larger streams, rivers and floodplain wetlands which are impacted by upstream 
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networks and processes (Saunders et al. 2002; Lowe and Likens 2005). Moreover, wetlands 

associated with lower order streams such as headwater streams, affect nonpoint source 

amelioration to greater levels than floodplain wetlands further downstream (Brinson 1993; 

Rheinhardt et al. 1998). Headwater wetlands thus warrant significant protection efforts. Given 

the high density of coastal creeks in the Alabama-Mississippi coastal plain, the cumulative 

impacts on headwater slope wetland function are potentially significant; however, little 

information exists regarding their flow and nutrient attenuation functions in the region. This 

study presents baseline flow and nutrient data collected from four headwater slope wetlands in 

Baldwin County, AL, draining different land uses and situated at varying proximities from the 

coast.  

Lowe and Likens (2005) aptly likens headwater streams to the alveoli of the lungs. Just as 

alveoli are the finest branches of the human lung and are units of primary gas exchange, 

headwater systems are the finest branches of the stream network and are most important in 

maintaining the functioning of the whole network (White and Crisman 2014). Headwater 

systems intercept runoff from terrestrial areas and their functioning is strongly tied to 

interactions with land use around them (Lowe and Likens 2005). This can have strong 

implications for wetland responses and downstream conditions, particularly for those in coastal 

watersheds. Rapidly increasing population pressure in coastal regions has been an important 

stressor on coastal wetlands - population of coastal counties along the Gulf of Mexico increased 

by 150% from 1960 – 2008 (Wilson and Fischetti 2010). Population in coastal Baldwin County, 

AL (along the Gulf of Mexico in south Alabama) increased by 42.9% from 1990 to 2000 

(BCPZD 2005) and is expected to grow by 65% by 2040 (CBER 2017), making it the fastest 

growing county in Alabama. As coastal regions continue to develop, critical wetland habitat is 
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often drained, dredged or altered to make way for agricultural or urban land use. Loss or 

alteration in wetlands can disrupt natural biogeochemical balances of the landscape as streams 

and rivers are no longer buffered from upland areas (Day Jr. et al. 2003). 

Headwater systems are highly vulnerable to ‘burial’, i.e., redirected conveyance through 

pipes, ditches or directly paving over, because of their smaller size (Roy et al. 2009; Elmore and 

Kaushal 2008). Headwater streams are easily impounded to form ponds for recreational, 

residential and agricultural uses (Noble et al. 2007). Roads and impervious surfaces limit 

infiltration and groundwater recharge, intercept subsurface flows and interflow, and also funnel 

flow, nutrient and sediments rapidly to the waterbodies (Noble et al 2007). They can also incise 

headwater streams and result in a drawdown of the water table from immediately adjacent 

wetlands (Havens et al. 2004; Forman and Alexander 1998; Bledsoe and Watson 2001). Reduced 

infiltration and increased runoff velocity in urban areas can cause more frequent flood pulses and 

lower baseflows; consequently, hydrographs tend to be flashier in urban streams when compared 

to forested streams (Nagy et al. 2012; Havens et al. 2004; Forman and Alexander 1998; Bledsoe 

and Watson 2001). Elmore and Kaushal (2008) reported a positive correlation between 

increasing impervious area cover and fraction of headwater streams buried, and that headwater 

streams were more likely to be buried than larger streams at every degree of urban development. 

They also observed that headwater systems in coastal watersheds are more completely buried 

than those in upland areas due to higher population density along coastal plains than upland 

areas. 

Since headwater wetlands and streams are highly connected to the conditions of their 

surrounding watershed, they can readily reflect alterations due to watershed development in their 

physical, chemical or biological responses (Schwartz 2010). Contamination of water resources 
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occurs from increased nutrients, sediment, bacteria, heavy metals and other pollutants associated 

with increasingly dense urban populations, and land use changes to agriculture and urban sprawls 

(Nagy et al. 2012; Schwartz 2010). Fertilizers from lawns and crop fields, leaky sewers and 

sewage overflows, NOx emissions, etc., are some significant sources of nitrogen loading to 

headwaters in agricultural and urbanized watersheds (Wollheim et al. 2005). Compounded with 

hydrological changes resulting from land use alterations, pollutants are swiftly routed to water 

bodies along altered flow paths with reduced residence times (Wollheim et al. 2005). Wollheim 

et al. (2005) estimated 45% higher nitrogen loading in the urban head watershed compared to a 

forested head watershed of similar size.  

Typically, headwater areas are sites of significant nutrient conversion and retention 

(Roberts et al. 2006) due to their diverse channel morphology, storage capacity and low 

discharge which allows them to retain and process large amounts of nutrients and organic matter 

from their watersheds (Weigelhofer 2017; Alexander et al. 2007). Peterson et al. (2001) reported 

that headwater streams retain and transform over 50% of inorganic nitrogen inputs from their 

watersheds. Thompson et al. (2000) identified denitrification in estuarine headwaters as an 

important mechanism in reducing nitrate inputs to estuarine creeks. Increased nutrient inputs into 

these headwater systems due to anthropogenic influences may overwhelm their capacity for 

storage or transformation, and therefore nutrients may be transported to greater distances 

downstream in the drainage network (Peterson et al. 2001).  

Sanger et al. (2015) observed that health risks and flooding vulnerability in headwater 

regions became concerning when watershed impervious cover exceeded 10-30%. While 

watershed impervious cover of 10-20% is sufficient to observe adverse changes in physical and 

chemical environments, impervious cover exceeding 20-30% is sure to impair ecological 
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processes in headwater creek systems (Sanger et al. 2015). Recent studies on headwater slope 

wetlands in coastal Alabama reported influence of surrounding land use on wetland water levels 

(Barksdale et al. 2014), which impacted forest structure and composition, soil conditions 

(Barksdale et al. 2014 and Barksdale and Anderson 2015) and amphibian distributions (Alix et 

al. 2014). Barksdale et al. (2014) reported headwater wetland hydrology changing to more 

surface water driven, flashy regimes with increase in the watershed Curve Number (a surrogate 

metric used to describe level of imperviousness and runoff in the watershed).  

Amidst rapid rates of urban development and high levels of surface and groundwater 

interaction in coastal Alabama, there is much concern about nonpoint source pollution risk to 

both surface and groundwater resources. As priority areas in terms of their influence on the 

stream network, headwater slope wetlands have been frugally assessed for their flow 

characteristics and nutrient reduction function in the Alabama Coastal Plain. Our objectives for 

this study are to: 1) report baseline data regarding flow characteristics, as well as water quality 

reduction (DIN) for four headwater wetlands in Baldwin County, AL, and 2) delineate headwater 

slope wetlands across Baldwin County to get a general idea of their potential impact on the 

landscape. We hypothesized that wetlands that received runoff from agricultural and urban 

watersheds to have flashier, surface-water driven hydrology accompanied by higher nutrient 

concentrations and loads than those in more forested ones. 

2. Materials and Methods 

2.1 Site description  

Data for this study was collected from four headwater slope wetlands located in Baldwin County, 

AL: New Foley wetland (NF) located at the headwaters of a smaller tributary to Owen’s Bayou, 

Old Foley wetland (OF) located at the headwaters of Graham Creek, Bay Minette wetland (BM) 
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located at the headwaters of a tributary to Bay Minette Creek, and Stapleton wetland (ST) 

located at the headwaters of a tributary to Fish River (Figure 2). Wetlands OF and NF are located 

within the city of Foley, wetland BM in the city of Bay Minette, and wetland ST in the city of 

Stapleton. In order of proximity to the coast from closest to farthest, the wetlands are ordered 

from OF, NF, ST and BM.  

These wetlands lie in Baldwin County, AL within the Southern Coastal Plain 

physiographic region, an area characterized by hot, humid summers and mild winters with mean 

annual temperatures of ~19ºC and precipitation of ~1676 mm (Robinson et al. 1996). Headwater 

wetlands in coastal Alabama occur at the headwaters of 1st order streams - they are typically 

groundwater fed and exist as braided channels along a gradual slope (Figure 1; Noble et al. 2007; 

Shaneyfelt and Metcalfe 2014). Following heavy rains, headwater wetlands maybe become 

inundated but rarely do they flood for extensive periods of time (Noble et al. 2007). Water moves 

slowly through the wetland collecting into small, braided channels that eventually converge into 

a single creek channel. Wetland soils are generally alluvial in nature while surrounding upland 

areas are typically comprised of sandy soils (Barksdale et al. 2014; McBride and Burgess 1964).  

The study wetlands were selected to be comparable in watershed size, and display a range 

of land uses typical to the region. Watershed boundaries were delineated for the four wetlands 

using the Soil and Watershed Assessment Tool (SWAT-2012) through the ArcSWAT interface 

in ArcGIS 10.0. Watershed sizes were very small and ranged in size from 0.5 to 1.3 km2 at 

discernible surface inflows and 0.5 to 1.8 km2 at the discernible surface outflows (Table 1), 

which are typical for headwater wetlands. The four wetlands occur alongside 1st order stream 

reaches; OF and NF watersheds are located in the coastal plain lowlands at ~ 3-18m above MSL, 

while BM and ST watersheds are located further inland at elevations of ~ 64-84 m above MSL 
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and 59 – 68m above MSL respectively. Wetland OF is located within the Graham Creek Nature 

Preserve and almost all of its watershed falls within the area of the preserve and is predominantly 

forested. NF, located just north of OF, is predominantly residential (~57%) with housing areas 

upstream, to the north and another proposed one to the south of the wetland. Also, a residential 

impounded lake drains into the NF wetland. The ST watershed is predominantly agricultural 

(dominated by peanut and cotton) upstream of the wetland with very little impervious cover. 

Wetland BM is predominantly an urbanized watershed with a mix of different urban land uses. It 

lies next to the Faulkner State Community College and receives a lot of runoff and debris from 

the college campus. A sediment detention pond and other construction on campus sometimes 

leads to large amounts of sediment entering the wetland channel causing flow obstruction 

periodically. Chinese privet (Ligustrum sinense), a highly invasive species, is a common sight 

along the stream.  The inflow to the wetland is a concrete and riprap lined channel by the side of 

a parking lot.  

Based on the National Land Cover Dataset (NLCD), nearly 84% of the BM watershed is 

classified as urban, followed by NF watershed with 45.6%, ST watershed with 5.7% and OF 

watershed with only 0.5% urban land use. Percent imperviousness was also derived in each 

watershed, defined as the percentage of the watershed that is impervious, by manually digitizing 

impervious cover in the watershed using 1m resolution aerial images photographed by the 

USDA-FSA Aerial Photography Field Office (downloaded from USDA Geospatial Data 

Gateway) (Table 1). The three watersheds were inspected in the field to verify conditions noted 

above.  
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2.2 Data collection 

2.2.1 Hydrology monitoring 

Hydrological data for the study wetlands were collected for varying time periods in 2013 and 

2014 at discernible wetland inlets and outlets. Stage was measured every 15 min using InSitu 

Mini-Troll 500 pressure transducers and data loggers at discernible surface-water inlets and 

outlets to the wetland. Stage was associated with discharge measurements taken at the site at 

different times (~9 – 12 readings per transducer location) to develop stage-discharge 

relationships (i.e., rating curves). For each discharge measurement, surface water velocity and 

depth were measured every 10 cm across the channel width and used to calculate total stream 

discharge (based on USGS stream gauging guidelines, Rantz 1982). The surface water velocity 

was measured by using a Marsh-McBirney, Inc. Flo-Mate Model 2000 Portable Flowmeter.  

A modified Manning’s equation was used to generate estimates of discharge as a function 

of measured stage. Manning’s formula can be described as  

Q = 1/n AR(2/3) √S0 …………………………………………………. (1) 

Q = kAR(2/3) ………………………….……………………………... (2) 

where Q = flow (m3/s), R = hydraulic radius, i.e. Area / Wetted Perimeter (m), S = slope, 

estimated as bedslope (S0), n = Manning's roughness coefficient, A = Cross-sectional area, and 

k=√S0 /n. From channel dimensions, A, P and R were calculated and applied to observed stage-

discharge data to calculate k values and eventually a k-h relationship was developed at each 

monitoring site. These k-h relationships were utilized in eqn (2) to calculate discharges which 

were then averaged to get daily estimates. This approach was adopted in order to incorporate 

channel roughness in discharge estimation. In instances when the k-h relationship seemed weak, 
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we either modified the value of the power of R or used a direct stage-discharge relationship to 

calculate discharge.  

To characterize stormflow flashiness, the Richards-Baker Flashiness Index (RB) (Baker 

et al. 2004) was calculated for storm flow events at each site, this is a dimensionless index used 

to characterize the degree of flashiness observed in the hydrograph as 

RB = 
∑ |𝑄𝑖−𝑄𝑖−1|
𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

  × 1000 …………………………………………………. (3) 

where 𝑄𝑖 = discharge at daily time step i. RB indices were transformed by multiplying with 1000 

for reporting purposes (Barksdale et al. 2014).  

We also used the Web-based Hydrograph Analysis Tool (WHAT; Lim et al. 2005) to 

derive baseflows from observed daily flows at the transducer locations. WHAT was run using 

inbuilt BFImax value (maximum value of long term ratio of base flow to total streamflow) of 0.80 

for perennial streams with porous aquifers. Baseflow contribution (% BF) to total flow at each 

transducer location was then derived as  

% BF = 
∑ 𝑄𝑏𝑓,𝑖
𝑛
𝑖=1

∑ 𝑄𝑖
𝑛
𝑖=1

  × 100 ……………………………………………………. (4) 

where 𝑄𝑏𝑓,𝑖 is the baseflow at the transducer location at daily time step i. Transducers were 

continually damaged at the ST wetland, and hence we did not have stage data (and flow 

estimates) for this wetland. 

2.2.2 Water quality monitoring  

Both grab samples and automated ISCO samples (ISCO 6712 Portable Sampler, Teledyne ISCO, 

Lincoln, NE) were collected to determine concentrations of Dissolved Inorganic Nitrogen (DIN) 

at discernible (and easily accessible on foot) surface water wetland inlets and outlets. Baseflow 

water quality was analyzed from grab samples taken periodically between August 2012 and May 
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2014. Water was collected in pre-washed polypropylene bottles and stored in an iced cooler until 

returning to the Weeks Bay Research Laboratory. Care was taken to ensure that sampling was 

done throughout the year and during baseflow conditions at least 2 days after rain events when 

the discharge peak after the storm had passed.  

From December 2013 to May 2014, automated ISCO samplers were used to determine 

DIN concentrations during storm events. The ISCO samplers were installed at water quality 

sampling sites (wetland inlets and outlets) and were connected to the InSitu Mini-Troll 500 

pressure transducers. In anticipation of an upcoming storm event, ISCOs were programmed to 

collect an aggregate stormwater sample. Each ISCO was individually programmed so that the 

amount of water sampled at each 15-min interval was proportionate to stream flow (gaged 

through stage level provided by the pressure transducer and by programming stormflows). 

Programmed relationships between stage data (surrogate for flow) and sample volume intake 

were developed for each sampling location based on rating curves and fitted to a linear 

relationship. Aggregate stormflow samples were collected in up to four pre-washed 3.7 L 

polyethylene bottles (total volume depended on stormwater duration). Samples were kept cool in 

the ISCO with ice, collected within 5 hours of the storm event, and transported for analysis at the 

Week’s Bay Research Laboratory. Samples were analyzed for DIN using methodologies 

described in Rice et al. (2012). Thus event mean concentrations were derived for each storm 

event sampled. Stormflow DIN was collected for multiple storms to get a good picture of 

stormflow concentrations. Only grab samples measures exist for the ST wetland due to repeated 

fouling of transducers at the site. Significant differences between inlet and outlet concentrations 

at the wetlands were tested with Wilcoxon sign rank tests. 
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2.2.3 Wetland DIN loads 

Grab samples were taken before transducers were deployed at the sites at some locations, which 

meant an absence of associated flow data. To reconstruct missing flows, we used the SWAT 

(Soil and Watershed Assessment Tool) model; observed flows were used to calibrate SWAT via 

the SWAT-CUP software, and calibrated flows, then, served to hindcast missing flows. SWAT 

models were created for the three wetlands with flow data (BM, OF and NF), and calibrated with 

SWAT-CUP using observed flows. The SWAT Calibration and Uncertainty Program (SWAT-

CUP) is an automated calibration program designed for automatic calibration, uncertainty 

analysis and sensitivity analysis for SWAT models (Abbaspour et al. 2008). SWAT-CUP allows 

SWAT to be run using parameters propagated within a range of feasible upper and lower values. 

Refer to Neitsch et al. (2009) and Abbaspour et al. (2008) for descriptions of SWAT and SWAT-

CUP, respectively. Performance measures such as the Nash Sutcliffe coefficient (ENASH) and bias 

ratio (RBIAS) were used to assess model fit based on the modified criteria presented in Kalin et al. 

(2010) for daily flow calibration. According to these criteria, a model has “very good” fit when 

ENASH > 0.7 and RBIAS < 0.25, “good” when 0.5 < ENASH > 0.7 and 0.25 < RBIAS < 0.5, 

“satisfactory” when 0.3 < ENASH > 0.5 and 0.5 < RBIAS < 0.7 and “unsatisfactory” when ENASH < 

0.3 and RBIAS > 0.7. The “best” simulation with the highest ENASH for predicted flow was used to 

fill in data gaps. Details about flow calibrations are presented in chapters 3 and 4. The “best” 

simulations for inflows had ENASH values of 0.88, 0.75 and 0.44, and outflows had ENASH values 

of 0.59, 0.61 and 0.70 at BM, NF and OF, respectively. Thus, missing flows were reconstructed 

to get continuous daily flow estimates from Jan 1, 2013 to May 1, 2014 for BM, NF and OF 

wetlands.  
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The USGS load estimator model (LOADEST; Runkel et al. 2004) was used to generate 

daily water quality time series in order to get a better picture of nutrient loading and load 

reductions in the wetlands. LOADEST generates a regression relationship using user-provided 

observed water quality and flow measurements (calibration dataset), using which it extrapolates 

daily loads from user-provided daily discharge. LOADEST gives the user the option of selecting 

a regression model for load estimation, or allowing the program to choose the best model from a 

set of predefined models. The choice was made based on the ENASH values obtained on 

comparing load estimates with observed loads on days when both flow and nutrient 

concentrations were available. Thus, DIN loads at wetland inflows and outflows were derived for 

BM and NF wetlands. Since a good regression relationship using LOADEST was not achievable 

for OF outflow, DIN load reductions were not quantifiable using this method at OF wetland, 

probably because flows and concentrations were so low at this wetland. Instead DIN loads were 

calculated using flow-averaged baseflow and stormflow concentrations, 𝐶𝑏𝑓̅̅ ̅̅̅  and 𝐶𝑠𝑓̅̅ ̅̅ , calculated 

as 𝐶̅ = 
∑𝐶𝑄

∑𝑄
, where C is the measured concentration (grab sample or ISCO sample concentration 

in mg/L) and Q is the associated daily flow estimate (m3/s). 𝐶𝑏𝑓̅̅ ̅̅̅   was assigned to baseflows 

(flows corresponding to stage below which the ISCO was triggered), and 𝐶𝑠𝑓̅̅ ̅̅  was assigned to 

stormflows (flows corresponding to stage above which ISCO was triggered). For days with inlet 

and outlet data, flows and concentrations were multiplied at 15min intervals to yield loads which 

were then averaged over each day and summed to get total loads over the duration (days) for 

which the transducer was deployed.  

Hence, DIN loads were derived from January 1, 2013 to May 1, 2014 for all wetland 

inlets and outlets. Since DIN loads at the inlets did not include loads entering the wetland area 

further downstream (of the inlet), the total load entering the wetland area had to be quantified by 
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area-scaling DIN loads at the inlet. Thus, total inflow load was quantified as the sum of DIN 

loading at the discernible surface water inlet and loads from the remainder of the watershed, i.e., 

loads at discernible inlet scaled by area for the reminder of the watershed. The relative 

contributions of baseflow and stormflow to DIN loads at the inlets and outlets were calculated 

from median baseflow concentration (median of grab sample concentrations) and baseflow 

(derived from the WHAT tool) at the study wetlands.  

2.3 Assessing headwater wetlands on a larger scale in Baldwin County, AL 

To understand the cumulative effect of headwater slope wetlands on the water quality of coastal 

waters, it is necessary to prioritize headwater protection strategies. This requires location and 

assessment data for individual headwater slope wetlands to specify mitigation/protection efforts 

(U.S. EPA 2014). Here headwater slope wetlands were identified in Baldwin County and their 

watersheds, delineated. A 10m digital elevation model (DEM) for Baldwin County was used to 

generate flow paths with the National Hydrography Database (NHD) layer as a reference (DEM 

and NHD layers were downloaded from USGS’s online Seamless Data Warehouse at 

https://datagateway.nrcs.usda.gov). This was done to determine stream order, as the NHD flow 

line layer does not have streams categorized by hierarchy of stream order. A threshold of 50 

acres (0.202 km2) drainage area was set to generate a high resolution stream network. The 

generated stream order network was then separated by order, and 1st order streams were exported 

as a separate layer. All 1st order streams were assumed to originate as slope wetlands in Baldwin 

County (Shaneyfelt and Metcalf 2014).  

In ArcGIS 10.4, points were generated at the start of each 1st order stream. These points 

were used as outlet points for delineating head watersheds using the Spatial Analyst Hydrology 

toolset. The delineated watershed layer was superimposed with data from the National Wetlands 

https://datagateway.nrcs.usda.gov/
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Inventory (NWI) (https://www.fws.gov/wetlands/data/mapper.html) as well as background aerial 

imagery to determine existence of wetlands within delineated watersheds. If the wetland didn’t 

exist, or was buried or ditched by other land uses such as crop fields/drainage ditches/parking lot 

or some other land use, then that watershed polygon was eliminated from consideration. 

This approach may have underestimated actual headwater slope wetland density, since in 

some cases: 1) the delineated 1st order stream may extend too far upstream to where the assigned 

outlet point for watershed delineation was affixed upstream of the actual headwater wetland 

causing the delineated watershed to completely miss the wetland, 2) the headwater wetland at the 

head of the 1st order stream has been drastically altered but remnants of the headwater wetland 

still exist downstream of the alteration which were not captured in the head watershed. 

Nevertheless, this approach yielded a useful rough approximation about the potential headwater 

wetland density and cumulative function on the landscape.  

Relative cover of urban, agriculture and forested land was derived for each of the head 

watersheds using the latest NLCD dataset. General trends in head watershed land cover and their 

spatial distribution were assessed to understand potential and current threats to their headwater 

slope wetlands as Baldwin County continues to develop and urbanize. For each head watershed, 

land use areas classified under “Developed”, “Forest” and “Agriculture” categories from NLCD 

land use classification were identified to get their extent within each watershed. Since two major 

interstates run East-West through Baldwin County, I-65 and I-10, we assessed trends in three 

categories - north of I-65, those between I-65 and I-10, and those south of I-10 towards the coast. 

These three regions are henceforth referred to as regions 1, 2 and 3 respectively; with 1 being 

farthest away from the coast and 3 being the closest.  
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3. Results 

3.1 Hydrology 

The hydrographs for the three wetlands are presented in Figure 3. Hydrological trends are 

consistent with proximity from the coast and degree of watershed urbanization. The hydrograph 

for BM, being farthest from the coast and with the highest amount of urbanized watershed, is 

dominated by surface flows with very little baseflow. On the other hand, the Foley wetlands have 

clearly observable baseflow contributions. Moreover, hydrological responses in OF are more 

stable and damped than the more urbanized NF right above it, consistent with what we expect to 

see in a reference wetland.  

3.1.1 BM wetland 

Observed flow data in the BM wetland were available for 252 days at the inlet (August 10, 2013 

until May 1, 2014 with missing days) and for 473 days at the outlet (from January 1, 2013 until 

May 1, 2014 with missing days). The area received 1511 mm of rainfall in all of 2013 and 602 

mm in 2014 (until May). Figure 3a presents the inflow and outflow hydrographs during the study 

period. On days when both inflows and outflows were available, observed flows at the inlet 

varied from 0 to 0.96 m3/s and from 0 to 0.40 m3/s at the outlet, with average flows of 0.04 m3/s 

and 0.05 m3/s respectively. Hydrology trends show an extremely flashy system in response to 

rain events, with barely any baseflow during other times. Calculated RB indices were highest at 

the BM wetland; values were 7.9 at the inlet to 17.5 at the outlet indicating a flashier outflow. 

Baseflows were less and contributed to 24% of the inflow and 28% of the outflow, indicating a 

surface flow dominated system. Runoff ratios (runoff : precipitation) of 0.8 were observed at the 

inlet and outlet respectively.  
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3.1.2 NF wetland 

Observed flows at the NF wetland were available for 252 days at the inlet and outlet (from 

August 10, 2013 until May 1, 2014). The watershed received a total of around 1726 mm of 

precipitation during the study period. Observed inflow varied from 0.05 m3/s to 0.95 m3/s 

(average of 0.15 m3/s) and outflow, from 0.06 m3/s to 0.73 m3/s (average of 0.18 m3/s) (Figure 

3b). The hydrograph (Figure 3b) shows some flashiness; RB indices decreased from 7.1 at the 

inlet to 4.6 at the outlet indicating a hydrologic damping effect of the wetland. Baseflow 

contributions are considerably higher when compared to the BM wetland and accounted for 67% 

of the inflow and 70% of the outflow. Runoff ratios for the period of observed data were 

abnormally large at 3.8 and 3.0 at the inlets and outlets respectively, indicating that runoff far 

exceeded precipitation at both locations. This anomaly is further investigated in Chapter 3.  

3.1.3 OF wetland 

Observed flows at the OF wetland were available for 315 days at the inlet and for 433 days at the 

outlet (from January 1, 2013 until May 1, 2014). During this time the watershed received 2876 

mm of precipitation. Figure 3c represents the observed flows during the study period. To allow 

for comparison, we focused on days for which both inflow and outflow were available (315 

days). Flows ranged from 0.01 to 0.13 m3/s at the inlet (average of 0.07 m3/s) and from 0.06 to 

0.33 m3/s (average of 0.1 m3/s) at the outlet. Only 1.3% of the watershed draining into the OF 

wetland is impervious (road). The hydrographs for this wetland show much lower flows 

compared to the BM and NF wetlands with calculated RB indices of 1.0 at the inflow and 0.8 at 

the outflow. Flows at this site also show more and sustained baseflows compared to the previous 

wetlands; baseflows contributed 75% of the observed flows at the inlet and 74% at the outlet. 
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Runoff ratios for this wetland were 0.7 for both the inflow and outflow. Unlike the NF wetland, 

flows here are lower and damped (stable and less flashy) consistent with our understanding of a 

forested watershed on a coastal plain.  

3.2 Observed concentrations and load reductions 

The four wetlands exhibited large variations in DIN concentrations (Figures 3 and 4). Significant 

concentration reductions were observed at NF and ST wetlands based on Wilcoxon signed rank 

tests on measured data (significant at p<0.1). The ST wetland had the highest observed DIN 

concentration ranging from 0.01 to 1.64 mg/L (0.46 ± 0.25 mg/L) at the inlet and 0.002 to 0.62 

mg/L (0.10 ± 0.07 mg/L) at the outlet (Figures 3d and 4). For days during which we had both 

inflow and outflow measurements, we observed average DIN concentration reduction of 67%. In 

the NF wetland, relatively higher overall DIN concentrations, 0.32 ± 0.06 mg/L at the inlet and 

0.16 ± 0.03 mg/L at the outlet, were observed (Figure 4a) with DIN concentration reductions of 

37% and 35% in baseflow and storm measurements (calculated for days when both inlet and 

outlet concentrations were available (Figure 4b). DIN concentrations at the BM wetland were 

low and averaged 0.06 ± 0.02 mg/L at the inlet and 0.06 ± 0.02 mg/L at the outlet after pooling 

all measurements (Figure 4a); baseflow DIN ranged from 0.06 ± 0.03 mg/L at the inlet to 0.05 ± 

0.02 mg/L at the outlet, and stormflow DIN ranged from 0.06 ± 0.03 mg/L to 0.07 ± 0.04 mg/L 

(Figure 4b). In the most forested OF wetland, both incoming and outgoing DIN concentrations 

were low (0.05 ± 0.02 mg/L and 0.04 ± 0.01 mg/L respectively) (Figures 4a and 4b). Significant 

concentration reductions were not observed from DIN measurements at BM or OF wetlands.  

 Table 2 presents load reductions for the three wetlands, where load calculations for BM 

and NF wetlands were performed using the LOADEST software, and for OF using flow 

averaged baseflow and stormflow concentrations. All wetlands showed DIN load reductions; 
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BM, NF and OF reduced DIN loads by 9%, 49.7% and 21% respectively. Splitting by year, 

higher DIN reductions were observed at NF wetland with 51.8 % and 47.6% in 2013 (January – 

December, 2013) and 2014 (January – May, 2014) respectively, followed by OF wetlands with 

DIN reductions of 27.5% and 12.1% for the same time periods. The BM wetland showed DIN 

reduction of 31.8% in 2013, but exported 12.1% between January – May, 2014.  Figure 5 shows 

the relative DIN contribution from baseflows and stormflows for the three wetlands. The BM 

wetland had the least baseflow load contributions of DIN amounting to 5.5% and 7.5% of the 

total DIN loads at the inlet and outlet i.e., >92% DIN loads contributed by stormflow. NF and 

OF wetlands had higher baseflow contributions of DIN; 25.6% and 23.6% of inlet and outlet 

DIN loads, respectively, were contributed by baseflow at NF wetland, while 14.3% and 35.6% 

were contributed by baseflows at OF wetland (stormflow loads amounting to 74-77% of total 

DIN loads at NF wetland and 64-86% at OF wetland). 

3.4 Headwater slope wetlands and watersheds in Baldwin County 

Using the Spatial Analyst Hydrology toolset, a total of 1569 watersheds for headwater slope 

wetlands were delineated in Baldwin County. This was reduced to a total of 1,143 based on data 

from NWI and background aerial imagery (Figure 6); 257, 495 and 391 watersheds were 

delineated in regions 1, 2 and 3 respectively. These delineated headwater areas constitute 

roughly 18% (735.33 km2) of the total land area in Baldwin County (4118.1 km2; obtained from 

US Census Bureau). 

Of the total delineated watershed area, NLCD land use classified as “Developed” 

accounted for 7.4% and included developed high, medium and low density areas as well as 

developed open spaces. Forested and agricultural areas occupied 34.9% and 12.1%, respectively, 

while wetlands (classified as “woody” or “emergent”) accounted for 12.2% of the total 
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watershed area. Thirteen watersheds had >60% urban cover ranging from 61% to 97%; of these 

five of them were situated in region 2 and the remaining eight in region 3. 1086 watersheds had 

0-30% urban cover and included all 257 in region 1, 466 in region 2 and 354 in region 3. Forty-

four watersheds had 30-60% urban cover with 21 in region 2 and 23 in region 3. Percentage of 

watershed area under urban cover and agriculture increased towards the coast in the three 

categories by 4%, 11% and 15.6% for the former and 3.3%, 3.3% and 44.1% for the latter in 

regions 1, 2 and 3 respectively. Percentage of watershed area under forest cover decreased 

steeply from 76.7%, 66.9% to 21% in regions 1,2 and 3 respectively.  

Based on county land use, urban land cover increased steadily from approximately 2.4% 

in the region of Baldwin County north of I-65, to 5.4% between I-65 and I-10, to 14.3% south of 

I-10 (Figure 7). Percentage of land dedicated to agriculture, at 22.2%, was also highest south of 

I-10 compared with 2.2% and 1.9% north of I-65 and between I-65 and I-10 respectively (Figure 

7). Figure 8 presents a snapshot of Baldwin County around I-10; here stream networks appear 

denser and wider with good connectivity from headwaters to the river mouth to the north of I-10, 

while in contrast, the region south of I-10 has stream/riparian systems that are fragmented with 

the narrower riverine networks. Regions 1 and 2 combined had a density of 0.3 headwater 

wetlands/km2 which reduced to 0.2 headwater wetlands/km2 in region 3.  

Though we assumed a headwater slope wetland at the start of each 1st order stream, 

headwater areas of many first order streams didn’t yield in a delineation; either because 

superimposing with NWI layer showed no wetland at that location, or the headwater area was too 

small to be detected by this exercise. Hence, it is most likely that numbers of headwater wetlands 

in Baldwin County were underestimated and their true density is much larger.   
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4. Discussion  

In this study, we examined baseline flow and DIN data obtained from 4 headwater slope 

wetlands (named BM, ST, NF and OF) in Baldwin County and quantified load reductions for 

three of four wetlands (BM, NF, OF). All the studied wetlands were forested; however, they all 

differed in the degree of urban development and agriculture within their watersheds. We 

expected wetlands closer to the coast to have higher water tables and consequently larger 

groundwater inputs to the wetlands. We also expected to see a shift in influence from 

groundwater to surface water with increasing levels of watershed urbanization and distance from 

the coast. From a nutrient perspective, we expected more watershed development (through 

agriculture and urbanization) to translate in higher DIN concentrations in the wetlands. While 

our expectations were reflected in monitored flows at the wetlands, they did not always hold for 

observed DIN concentrations. 

Groundwater contributions to stream waters from these headwater slope wetlands were 

substantial and increased with proximity to the coast, from ~24-28% at BM to >70% at OF. This 

is consistent with other studies where reported contributions to streamflow from groundwater 

discharge wetlands range from 30% to >70% (Morley et al. 2011; Alexander et al. 2007). As 

expected, the wetland with the most forested watershed (OF) had very low flows with damped 

peaks, high baseflow contributions (% BF = 74-75%) and low concentrations (and consequently 

low loads) of DIN entering and leaving the wetland. The other wetlands, BM and NF, had more 

urban development within their watersheds and exhibited different hydrology and DIN-trends. 

The NF wetland had high flows with 67-70% contributed by baseflow. Flows here were flashier 

than OF (NF: RB > 4; OF: RB <1) but less so compared to BM (RB > 7) whose watershed was 

highly urban (42% impervious cover in BM watershed compared to 23% in NF watershed). High 
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imperviousness in the BM watershed most likely explains the lack of persistent baseflow since 

imperviousness is known to reduce low flows and baseflow due to reduced infiltration and low 

groundwater recharge (Nagy et al. 2012; Havens et al. 2004; Forman and Alexander 1998; 

Bledsoe and Watson 2001). This might also explain the higher flashiness and low baseflow 

contributions observed in this wetland (% BF =24 – 28 %). This is consistent with results 

reported by Barksdale et al. (2013) who observed that headwater slope wetlands became 

increasingly surface water driven (flashy) with increase in watershed imperviousness (decrease 

in forested land cover). Or perhaps, the BM wetland acts more like a recharge pathway for 

groundwater than as a discharge, with water quickly percolating through the channel’s sandy 

soils.  

For higher elevations along the coastal plain, such as at the BM wetland, different forces 

might influence flow paths when compared to their lower elevation counterparts. Epps et al. 

(2013) documented strong relationships between water table elevations and runoff generation in 

lower coastal plain watersheds and observed that runoff response to rainfall depended on 

antecedent moisture conditions related with groundwater elevation. In the region, groundwater 

moves in the south/south-west direction from inland areas (~50m above MSL) to the lower 

marshlands at 0m above MSL (Murgulet and Tick 2013) resulting in significant discharges in the 

Wolf Bay watershed in which the Foley wetlands are situated (Beasley 2010). Consequently, 

depths to the water table may be greater around BM wetland (Robinson et al. 1996) which might 

cause the area of saturation around the stream to decrease (Epps et al. 2013) and wetland soils to 

reach surface saturation more intermittently than at NF and OF wetlands. The latter which, 

possibly due to their proximity to the coast, receive significant groundwater discharge from 

upland areas which may cause areas of saturation around the stream to increase and reach surface 
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soil saturation all year round. This is reflected in consistent baseflows observed in the Foley 

wetlands and their lack thereof at the BM wetland. Moreover, ground-watershed boundaries in 

low relief areas do not always follow those of the surficial watershed and wetlands may receive 

groundwater flows from areas much larger than the delineated extent of the surface watershed 

(Winter et al. 2003; Nagy et al. 2012). This might explain why flows at the NF wetland exhibit 

runoff ratios >1; they probably receive groundwater flows from a much larger area than the 

delineated surface watershed. Observed flows at NF were also several orders of magnitude 

higher than OF despite the nearness of the sites to each other. Perhaps the presence of 

impoundments, both directly upstream of NF and at the headwaters of Owens Bayou to the north 

of NF adds additional groundwater through percolation to the NF system resulting in the higher 

flows. Hydrology at NF wetland has been further investigated in Chapter 3.  

The highest DIN concentrations were observed at ST, followed by NF, BM and OF 

wetlands. The ST wetland reflected the highest concentrations, presumably an effect of the 

agricultural area upstream of the wetland. This agrees with findings from other studies such as 

Schaefer (2014), who also observed high nitrate concentrations in agricultural headwater 

streams. Elevated concentrations at NF wetland relative to OF and BM wetlands may have come 

from urban lawns in the watershed. The watershed also drains a small agricultural field (~9% of 

the watershed area) which may have contributed to the higher DIN concentrations in the inflow. 

DIN concentration reductions were consistently observed in the measured data for ST and NF 

wetlands. The BM wetland showed low DIN concentrations, probably because its watershed is 

predominantly non-residential, i.e., fewer sources of nitrogen such as lawns. Perhaps the BM 

wetland may show evidence of other forms of urban water quality footprints such as heavy 

metals, oils, etc., which were not analyzed during this study.  
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As hypothesized, the wetland with the most watershed imperviousness, i.e., BM, had the 

least DIN removal. Both NF and OF wetlands showed considerable DIN load reductions over the 

period during which they were evaluated. Temporary hydrologic storage in pools and side-

channels could have enhanced uptake/transformation of DIN by increasing residence time 

(Angier and McCarty 2008; Ranalli and Macalady 2010). At the NF wetland, natural stream 

dams from fallen trees and snags were regularly observed. Minimal load reduction observed at 

the BM wetland could be a result of an extremely flashy hydrology where flows are quickly 

routed through the channel. This wetland often received sediment loads from construction sites 

adjacent to the wetland which obstructed water flow resulting in dammed pools in the channel 

which could explain higher DIN load reduction in 2013. DIN loads entering the wetlands ranged 

from 0.43 kg/day (1.73 kg/ha) at the BM wetland, 5.06 kg/day (32.6 kg/ha) at the NF wetland, to 

0.29 kg/day (0.51 kg/ha) at the OF wetland. Loads at BM and NF are consistent with values 

reported by other studies such as Berkowitz et al. (2014) who documented values between 0.92 

to 75.3 kg/ha from forested headwater streams in Virginia. Loading at the OF wetland is the least 

altered of the three wetlands, and perhaps closest represents reference loads in the region.  

Since headwater slope wetlands are typically open, gaining systems (as opposed to 

depressional systems), outflows tend to be larger than inflows as was observed in NF and OF 

wetlands. DIN concentration reductions, then could be an effect of dilution; but quantified load 

reduction despite increase in discharge clearly points to DIN removal. DIN concentrations could 

be influenced by the degree and direction of groundwater upwelling, i.e., whether groundwater 

flows follow lateral or vertical gradients through the subsurface of the riparian zone (Lowrance 

et al. 1995; Jordan et al. 1993), and locations of upwelling zones with respect to the riparian zone 

and stream channels (Angier et al. 2005). All the wetlands had vastly different flows and DIN 
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trends; but under natural circumstances wetlands would have low DIN concentrations and loads 

entering and leaving the wetland as observed at OF.  As Baldwin County continues to urbanize 

rapidly along the coast as evidenced by land use maps (Figure 7), then headwater slope wetlands 

closest to the coast would be less equipped to deal with higher DIN loads (resulting from urban 

pollution) which could then easily be transported to the coast.  

In general, coastal development is more prolific at topographical highs, for e.g., near 

watershed boundaries, to lower the chance of flooding. This directly coincides with headwater 

wetland function since they occupy similar landscape positions, i.e., at higher elevations within a 

watershed. From this study, the region south of I-10 had lesser density of headwater slope 

wetlands compared to the more forested (less altered) regions to the north of I-10; this decreased 

headwater wetland density along the coast is most likely a consequence of coastal development. 

Our attempts at headwater area delineation very likely underestimated their true density in the 

region; despite this, delineated headwater areas still accounted for a significant 18% of the 

county area. Headwater wetlands in heavily urbanized or agricultural watersheds may be 

functionally similar to BM, ST or NF wetlands and demonstrate altered surface-driven hydrology 

or transport high DIN loads. As more areas in the county undergo land use conversion, loss of 

hydrologic connectivity and the loss of functional headwater slope wetlands is bound to have an 

adverse impact on hydrology and nitrogen loads of entire stream networks, and consequently be 

greatly detrimental to coastal water quality. While individually headwater catchments contribute 

the lowest nitrogen loads among all steam orders, their cumulative loading is of similar 

magnitude to that originating from the incremental watersheds of higher order streams 

(Alexander et al. 2007).  
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5. Conclusions and next steps 

Here we presented data from preliminary monitoring efforts in four headwater slope wetlands in 

Baldwin County, quantified DIN removal by these wetlands. We also attempted to identify the 

distribution of headwater slope wetland systems in the county and highlighted the trends in land 

use alterations within their watersheds. These were done as a preliminary step in addressing 

knowledge gaps in hydrology and water quality in coastal plain headwater slope wetland systems 

as well as to provide information to support decision makers set management priorities for 

restoration and management of these systems.  

We acknowledge that there are some limitations to this study. For one, we monitored 

only at discernible surface water inlets and outlets of the wetlands; we were unable to monitor 

other potential sources of flow and nutrient to the wetlands, or zones of upwelling. As a result, 

our quantification of DIN loads at the inlets and outlets may be too simplistic in their ability to 

represent the actual uptake/transformation happening at the sites. The short duration of available 

data also constrained our ability to make generalizations about wetland function. Moreover, 

headwater slope wetlands occur at the head of coastal creeks and transition into riverine riparian 

areas along the length of the stream. Therefore, the outlets we monitored may or may not have 

captured the entire extent of the “headwater slope” wetland area. Another important shortcoming 

with the wetlands in altered watersheds is our assumption that the headwater slope wetland 

begins at the forested riparian area at the head of the stream, when in reality, the headwater slope 

wetland might have originally existed much farther upstream and was probably buried, i.e., we 

might not have captured the true headwater slope wetland. Head watersheds delineated were 

based on latest elevation maps, NWI and Google map imagery. This does not include headwater 

slope wetlands that have been lost to agriculture or urban development. Hence the historical 
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extent of head watersheds would have occupied a much larger portion of Baldwin County. Given 

this large density of headwater slope wetlands and the diversity of their function, there is a need 

for their greater scrutiny in coastal Alabama.  

Given the groundwater driven nature of these systems, there is also much uncertainty due 

to our limited understanding of the different hydrological flow paths and N removal processes. 

Further research involving quantification of subsurface inflows and outflows using piezometers 

and quantifying associated N concentrations to get a better picture of hydrological and nutrient 

budgets is required to reduce some of the uncertainties. Additional scrutiny regarding wetland 

biogeochemistry and interactions with hydrological processes will present a better picture 

regarding wetland function. In a hypothetical scenario involving unlimited funding and 

manpower resources to sustain a multi-year long-term project, limitations could be addressed by 

1) selecting multiple study sites across a gradient of land use alterations within their watersheds 

at varying proximities to coast, 2) identifying major channels and smaller sub-channels in the 

wetlands through detailed ground-truthing in the field, 3) improving monitoring of surface 

waters by installing weirs and transducers to get improved rating curves to improve discharge 

estimations and to better program the automated ISCO water quality samplers, 4) improving 

groundwater measurements using multiple piezometers fitted with transducers, applied along 

transects and at different depths, both around and within the channels, to quantify horizontal and 

vertical gradients and water levels, 5) procuring weekly samples of water quality by hand as well 

as automated ISCO samplers, with increased frequency during and following storm events within 

and beneath channels, 6) sampling soil cores to better understand wetland soil properties, and 7) 

conducting tracer studies to accurately quantify residence times. With these data, we would not 

only reveal important information about hydrological and water quality characteristics but also 
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potentially tease apart the influence of different processes, land use alterations and proximity to 

coast on wetland function. What we have presented through this study forms the beginnings of 

our understanding of this wetland type in coastal Alabama.  
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Figures 

 

Figure 1. (Top) Aerial image of headwater wetlands in Gulf Coastal Plain.  

(Bottom) Landscape position of headwater slope wetlands at the head of 1st order streams in the 

Gulf Coastal Plain. Both images have been borrowed from Noble et al. (2007). 
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Figure 2. Location of study headwater slope wetlands in Baldwin County. 
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Figure 3. Observed flows and DIN concentrations at the headwater slope wetlands in Baldwin 

County AL. All data from Dec 2013 are ISCO collected observations – these were not available 

at ST wetland. Dashed lines indicate reconstructed flows where observed flows were missing. 
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(a)

 

(b) 

 

  

Figure 4(a) Average of measured DIN from pooled grab and automated samples ± standard error 

(mg/L) at the four study headwater slope wetlands. The number of measurements, including grab 

samples and automated samples, for each location is presented above the bar.  

(b) Average of measured DIN ± standard error (mg/L) for the study headwater slope wetlands, 

each for grab samples and automated samples. Only grab sample data exists for the ST wetland. 
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Figure 5. DIN loads contributed by baseflow and stormflow at the inlets and outlets of the study 

headwater slope wetlands. For comparison purposes, the calculations were done for the 315 days 

(January 2013 – May 2014) for which DIN loads for OF were calculated. 
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Figure 6. 1,143 delineated watersheds of headwater slope wetlands in Baldwin County AL. Data 

used for this exercise included 10m DEM, NHD layer, NWI layer and Google imagery for 

Baldwin County. The yellow stars indicate locations of study headwater slope wetlands. 
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Figure 7. Distribution of urban cover and agriculture in Baldwin County. The region below I-10 

has much of the agriculture and urban development in the county. 
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Figure 8. Snapshot of stream networks and delineated headwater catchments around I-10 in 

Baldwin County. Stream networks north of I-10 are wider and denser compared to stream 

networks south of I-10 due to increased agriculture and urban development south of I-10. 
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Tables 

Table 1. Names and geographic coordinates of study headwater slope wetlands, their 

respective drainage areas, predominant land use and % imperviousness within the watershed 
 

Name Coordinates 

Wetland area 

between 

discernible 

surface inflow 

and outflow 

(km2) 

Watershed 

area at 

discernible 

surface 

inflow 

(km2) 

Watershed 

area at 

discernible 

surface 

outflow 

(km2) 

Dominant 

land use in 

watershed 

Impervious

-ness in 

watershed 

(%) 

Bay Minette 

wetland (BM) 

30.855272°, 

-87.779157° 

0.01 1.07 1.20 Mixed urban 41.6 

Stapleton 

wetland (ST) 

30.729401°, 

-87.800582° 

0.01 0.40 0.54 Agriculture 5.6 

New Foley 

wetland (NF) 

30.354235°, 

-87.631394° 

0.09 0.49 0.75 Residential 23.4 

Old Foley 

wetland (OF) 

30.342071°, 

-87.638012° 

0.20 1.28 1.78 Forest 1.5 

 

Table 2. Loads entering and leaving the study headwater slope wetlands, and the corresponding 

load reductions. Loads were quantified for BM and NF using the LOADEST software to 

generate loads after filling in missing bits of the hydrograph using SWAT and SWAT-CUP 

software. For OF loads were quantified by applying flow-averaged baseflow and stormflow 

concentrations to flows beneath and above the ISCO triggers for the duration of observed data  

       

Site 
Dominant 

land use 

Duration 

(days) 
Duration* 

DIN in 

inflow 

(kg/day) 

DIN in 

outflow 

(kg/day) 

Load 

reduction 

(%) 

Bay Minette 

(BM) Mixed urban 483 January 2013 - May 2014 0.43 ± 0.08 0.39 ± 0.06 9.0 

   362 2013 0.28 ± 0.06 0.19 ± 0.04 31.8 

   121 2014 0.89 ± 0.24 0.99 ± 0.18 -12.1 

New Foley 

(NF) Residential 483 January 2013 - May 2014 5.06 ± 0.25 2.55 ± 0.13 49.7 

   362 2013 3.46 ± 0.24 1.67 ± 0.10 51.8 

    121 2014 9.88 ± 0.46 5.18 ± 0.30 47.6 

Old Foley 

(OF) Forested 315 January 2013 - May 2014 0.29 ± 0.01 0.23 ± 0.02 21.0 

  209 2013 0.25 ± 0.01 0.18 ± 0.02 27.5 

  106 2014 0.36 ± 0.02 0.32 ± 0.04 12.1 
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Chapter 3 

Challenges calibrating hydrology for a small coastal plain watershed - a headwater 

wetland case study 

 

Abstract 

Modeling watersheds in coastal Alabama, USA, presents unique challenges pertinent to a low 

gradient coastal plain system including gentle slopes, high water table and significant 

groundwater interaction. Observed flow data from one such watershed draining into a headwater 

slope wetland in the city of Foley in Baldwin County, AL showed very high baseflow 

contribution leading to overall flows in excess of precipitation within the watershed: flows were 

3.8 times precipitation during the study period. This larger groundwater contribution (compared 

to surface contribution) indicates that the ground watershed is much larger than the surficial 

watershed, an issue common in coastal plain regions where topography is flat and water tables 

are shallow. In this study we investigated approaches by which the Soil and Watershed 

Assessment Tool (SWAT), a ubiquitously used watershed model, could be used to predict and 

calibrate flow from a small watershed where groundwater input was so large that total flow 

exceeded precipitation. SWAT simulated flow for the watershed was limited by precipitation 

which is the major driver of SWAT’s water budget, and consequently simulated flows were 

several times smaller in magnitude than observed flows. Thus, our first approach involved a 

separate baseflow and stormflow calibration followed by a manual magnification of baseflow. 

This yielded ENASH = 0.66 and matched well with observed flow. Our next approach involved 

adapting SWAT to simulate upwelling groundwater discharge instead of deep aquifer losses. 

Assigning a negative value to parameter βdeep, instead of its default positive value, constrains the 

range of deep aquifer losses and produces groundwater-base recharge to the wetland; this 
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calibration approach had higher ENASH = 0.75. Finally, we also investigated the use of Artificial 

Neural Networks (ANN) in conjunction with SWAT in further improving the calibration 

performance. Calibration using SWAT calibrated flow with evapotranspiration and precipitation 

as inputs to ANN results in ENASH = 0.88. The methods investigated in this study can be used to 

navigate similar flow calibration challenges in other groundwater dominant watersheds which 

can be very useful tool for managers and modelers alike.   

Keywords: Wetland, model, SWAT, headwater slope wetlands, urbanization, large ground 

watershed, high baseflow 

 

1. Introduction 

The biogeochemical state or nutrient content of a drainage network is dictated by that of its 

headwaters which forms the beginning of water movement from uplands into streams (Brinson 

1993). Headwater streams also comprise the highest proportion of stream miles (Rheinhardt et al. 

1999; Leopold et al. 1964) which explains their disproportionately high influence in the drainage 

(Rheinhardt et al. 1999; Brinson 1993). Wetlands of headwater streams provide important 

ecosystem services such as habitat for aquatic life, nutrient uptake and cycling, clean drinking 

water, downstream temperature regime regulation and reduce loads of nitrogen, phosphorous and 

sediment to coastal waters (Rheinhardt et al. 1998; Roy et al. 2009). As a class, wetlands on 

lower order streams have higher capacity for water quality mitigation from nonpoint source 

pollution since channel flow in higher order downstream reaches does not come in contact with 

the floodplain wetland surface very often (due to infrequent overbank flooding) - this calls for 

greater scrutiny of wetland alterations on low order streams (Brinson 1993; Rheinhardt et al. 

1998).  



57 

 

Forested, groundwater-fed headwater slope wetlands occur throughout the Alabama-

Mississippi coastal plain at the headwaters of coastal creeks (Noble et al. 2007). Given their 

density on the landscape and their location at the interface of uplands and coastal creeks, these 

wetlands are likely to be extremely important in ameliorating runoff. However, headwater 

streams and associated wetlands have been severely altered in the Southeast, and data from 

headwater wetlands in the region are sparse (Rheinhardt et al. 1998). In coastal Alabama, 

increasing urbanization has caused critical wetland habitat to be drained, dredged or altered to 

make way for agricultural and urban development (Shaneyfelt and Metcalf 2014). Changes in 

watershed land use can disrupt water budgets by changing the partitioning of precipitation 

between the different components of the water cycle such as evapotranspiration, runoff, and 

groundwater flow (Foley et al. 2005). Roads and other impervious surfaces in the watershed can 

limit infiltration and groundwater recharge, obstruct or redirect natural flows to the wetland, 

incise headwater streams, result in a drawdown of the water table from immediately adjacent 

wetlands, and cause wetland hydrology to be dominantly surface-water driven (Havens et al. 

2004; Forman and Alexander 1998; Bledsoe and Watson 2001). Previous studies on headwater 

slope wetlands in Alabama’s coastal plain reported that surrounding land use influenced 

variations in water levels within headwater wetlands (Barksdale et al. 2014), which impacted 

forest structure and composition, soil conditions (Barksdale and Anderson 2015) and amphibian 

distributions (Alix et al. 2014). Though watersheds draining into headwater wetlands tend to be 

small (<1 sq. km (Gomi et al. 2002)), understanding the impact of human activities in these small 

head watersheds is critical to the restoration and management of headwater slope wetlands. In 

order to predict watershed impacts on headwater slope wetlands, models have to be applied and 

calibrated. 
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An important aspect of using models to simulate flow and water quality is ascertaining 

their accuracy (Gitau and Chaubey 2010). This is addressed by comparisons of model predictions 

with observed data and calibrating model parameters (i.e., fine-tuning model parameters either 

manually or automatically, through objective functions) to achieve a high degree of matching 

with the observed data; this exercise is only possible in gauged watersheds. Calibration is a 

required step in reproducing system behavior accurately since it is not possible to obtain reliable 

estimates for system behavior based on physical watershed characteristics alone due to inherent 

landscape heterogeneity and complex nature of hydrologic interactions (Wagener and Montanari 

2011; Ssegane et al. 2003). The primary challenges for this are twofold: (1) models are 

essentially simpler representations of natural systems since it is not possible to account for the 

entire extent of real world complexity, and (2) models are defined by the values of their 

parameters. This can cause even highly complex models to fail in simulating watershed 

processes. A calibrated model can then be used to perform scenario analysis for different 

conditions of landscape, climate, etc. to provide us with a better understanding of the hydrologic 

conditions at that location. The assumption here is that future system responses are strongly 

conditioned by past observations and watershed responses (Ssegane et al. 2003; Gupta et al. 

2003). This poses big challenges in ungauged watersheds, or where little data exists.  

Another complexity is brought about by the influence of watershed size on the predictive 

ability of the model. In larger watersheds, the waterbody response may be driven by many 

landscape elements which are not spatially explicit, such as impervious surfaces within a 

watershed. However, as modelled watersheds get smaller, the significance of spatially explicit 

variables increases, e.g., spatial arrangement of the land uses or their individual management 

(Strayer et al. 2003). Disparities between surficial and ground watershed size in small watersheds 
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can also introduce challenges to the model calibration process. Since ground watersheds cannot 

be observed from the land surface, defining their extent can be challenging (Winter et al. 2003). 

Additionally, groundwater flow systems of different magnitudes may be superimposed on one 

another, or the groundwater divides themselves may move in response to dynamic recharge and 

discharge conditions (Winter et al. 2003). These associations are further influenced by watershed 

size and their location within the groundwater flow system. For small watersheds located on 

terrains with high permeability and low regional topographic relief, as encountered in coastal 

Alabama, ground watershed area contributing water to the watershed can extend beyond the 

boundaries of the surficial watershed unless the watershed is situated on groundwater divides 

(Winter et al. 2003).  

Subsurface processes are also difficult to observe or represent in watershed models 

because of the high level of soil/aquifer heterogeneity (Pechlivanidis et al. 2011). While the 

parameters of these processes maybe measured, they are prohibitive for use in larger watershed 

modeling since these are usually point scale measurements – for use in models these may be 

averaged or used at grid scales, which are larger than the scale of variations of these processes 

and as such do not capture catchment heterogeneity (Pechlivanidis et al. 2011). While there is 

consensus about the holistic existence of surface water and groundwater systems, these 

integrated systems are not very well developed in models (Zeng and Cai 2014; Sophocleous 

2010).  

A wide variety of models are utilized nowadays to understand hydrological and water 

quality responses to land use changes and environmental alterations. Watershed scale models 

such as the Soil and Watershed Assessment Tool (SWAT) have combined recent advancements 

in computational power with the use of Geographic Information Systems (GIS) technology to 
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establish semi- to fully-distributed hydrologic models to better represent physical processes 

governing complex natural systems. Since SWAT allows for manipulations of land use, soils, 

slope and climate on watershed scales, its uses are extremely versatile; e.g., it can determine 

inputs to a wetland draining from a watershed, determine impacts of different land use practices 

on coastal waters, determine reference conditions for streams, etc. (Makareweicz et al. 2015). 

Moreover, it enjoys a great degree of support available through its various online user groups 

(Spruill et al. 2000). SWAT also has provisions for automated parameter calibration through the 

use of SWAT Calibration and Uncertainty Program, or SWAT-CUP, which enables sensitivity 

analysis, calibration and uncertainty analysis for SWAT models (Abbaspour et al. 2008). 

However, SWAT struggles with accurate groundwater predictions for reasons explained earlier. 

This study presents challenges in using the SWAT model to predict flows draining from a small 

groundwater dominated watershed into a headwater slope wetland in Alabama’s coastal plain, as 

well as demonstrates easy to implement solutions to address these challenges.  

Data-driven approaches such as the use of Artificial Neural Networks (ANN) are also 

being used extensively in hydrology modeling (Noori and Kalin 2016; Rezaienzadeh et al. 2015; 

Srivastava et al. 2006).  ANNs are black-box models which can be trained to learn the 

relationships between inputs and outputs (including highly complex, multidimensional, nonlinear 

relationships) in a process without actually needing to delve into the physical characteristics of 

the process (Noori and Kalin 2016; Rezaienzadeh et al. 2015; Srivastava et al. 2006). ANNs, 

then provide a useful alternative for streamflow predictions while steering clear of issues 

affecting process-based models such as SWAT due to reasons such as large spatial scale, and 

complex but poorly understood processes (as described in previous paragraphs). ANNs may also 

be applied together with a watershed model to enhance streamflow prediction capabilities. Only 
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one study to our knowledge has evaluated the use of ANN and SWAT together (Noori and Kalin 

2016) to improve calibration ability. Our study also aims to add to the body of literature using 

ANN models in conjunction with SWAT to improve hydrological prediction ability. 

The flow data utilized for this study was measured at the inlet to a headwater slope 

wetland in Foley, Alabama. Delineated surface watershed for this wetland was very small (0.49 

km2), and the flow data exhibited several peculiarities, the most important being that observed 

flow exceeded precipitation. Given the quality assurance and quality control of flow data, the 

only rational explanation is presence of another source of water besides rainfall. This led us to an 

interesting quandary: where was all this excess water coming from? Talking with local 

practitioners and other researchers didn’t yield any explanations. Increasing the delineated 

watershed area to twice its current extent still didn’t make up the difference in flows. This led us 

to believe that the groundwater component contributing to the wetland was a great deal larger 

than the surface flow component, as explained by Winter et al. (2003). If precipitation represents 

the maximum amount of water in the watershed, how does one model flows which exceed 

precipitation? The SWAT model has been criticized for its inability to accurately predict 

groundwater interactions: to remedy this deficiency, an integrated version of the SWAT model 

linking SWAT with groundwater model MODFLOW (SWAT-MODFLOW) was developed 

which links groundwater outputs from SWAT as inputs for MODFLOW (Guzman et al. 2015). 

However, this modeling approach is data, computation and expertise intensive, all of which may 

be too high of an investment for project goals in a small watershed. Instead, could we come up 

with an easier approach using just SWAT to model watershed flows when observed flows exceed 

precipitation in the watershed? Modelling flows which clearly reflect the presence of a larger 



62 

 

ground watershed extent (relative to the surficial watershed), has not been confronted to our 

knowledge - this study aims to address this knowledge gap.  

Our objectives for this study then target the use of SWAT, a fairly ubiquitously used 

watershed model, to predict flows for the watershed draining into the aforementioned headwater 

slope wetland. More specifically, our objectives for this study were: (1) to explore hydrological 

trends of the watershed outflows draining into a headwater slope wetland in coastal Alabama, (2) 

to apply different approaches of hydrology calibration using SWAT and (3) to test the use of 

ANN with SWAT to improve calibration performance. The study will yield useful modeling 

approaches in SWAT to model high groundwater systems such as the watershed used in this 

study as an alternative to more complex groundwater-surface water interaction models. 

Additionally, the study explores the use of Artificial Neural Networks (ANN) in improving flow 

calibration.  

2. Materials and methods  

2.1 Site description and hydrology monitoring 

Data for this study was collected from a discernible inlet to a headwater slope wetland in 

Baldwin County, AL: New Foley wetland (30.354235°, -87.631394°) located at the headwaters 

of a smaller tributary to Owen’s Bayou (Figure 1) within the city of Foley. Headwater slope 

wetlands in coastal Alabama occur above and alongside 1st order streams - they are typically 

groundwater fed and exist as braided channels along a gradual slope. Wetland soils are generally 

alluvial (Barksdale et al. 2014; McBride and Burgess 1964) and remain saturated or close to 

saturated throughout the year due to fairly stable water levels that are at or slightly below the 

ground surface (Noble et al. 2007). Land use in the watershed draining to the study wetland is 

predominantly residential, with residential areas to the north, west (upstream) and another 
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proposed residential area to the south. A residential lake is also located directly upstream of the 

wetland which drains into the wetland through a concrete spillway. The watershed also 

comprises some agricultural area (Figure 1). The study area is characterized by hot, humid 

summers and mild winters with average annual temperatures of 19ºC and precipitation of 170 cm 

mostly evenly distributed throughout the year with peaks occurring in early spring and 

midsummer (Barksdale et al. 2014; Noble et al. 2007; Robinson et al. 1996).  

Hydrological data was collected at the study wetland from August 2013 until December 

2014. Stage was measured every 15 min using InSitu Mini-Troll 500 pressure transducers and 

data loggers at a discernible inlet to the wetland. Stage was associated with discharge 

measurements taken at the site at twelve different times to develop stage-discharge relationships 

(i.e., rating curves). Surface water velocity and depth were measured every 10 cm across the 

channel width and used to calculate average surface water discharge (based on USGS stream 

gauging guidelines, Rantz 1982). The surface water velocity was measured by using a Marsh-

McBirney, Inc. Flo-Mate Model 2000 Portable Flowmeter.  

A modified Manning’s equation was used to generate estimates of discharge as a function 

of measured stage. Manning’s formula can be described as  

Q = 
1

𝑛
𝐴𝑅

2

3√𝑆0 …………………………………………………. (1) 

Q = 𝑘𝐴𝑅
2

3 ………………………………………………………... (2) 

where Q = flow (m3/s), R = hydraulic radius (m), S0 = friction slope, estimated as bedslope, n = 

Manning's roughness coefficient, A = channel cross-sectional area, and 𝑘 = √𝑆0/𝑛. From 

channel dimensions, channel cross-sectional areas, wetted perimeters and hydraulic radius were 

calculated and applied to observed stage-discharge data to calculate k from eqn (2), and 

subsequently a k-h relationship was developed through regression. This k-h relationship was 
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combined with eqn (2) to convert the measured stage time series at 15-min time intervals into 

discharge time series. The discharge time series at 15-min time interval were then used to 

estimate average daily streamflows. 

2.2 SWAT and SWAT-CUP model descriptions  

The Soil and Watershed Assessment Tool (SWAT) is a widely used watershed scale, process-

based hydrologic model that was developed by the United States Department of Agriculture 

(Arnold et al. 1998; Cibin et al. 2013). It can operate on hourly, daily, monthly or annual scales, 

and has been used effectively for assessing nonpoint source pollution problems at different scales 

and environmental conditions all over the world (Cibin et al. 2013). SWAT divides the 

watershed into multiple subwatersheds which are further divided into hydrologic response units 

or HRUs - these represent percentages of the subwatershed area and are not identified visually 

within a SWAT simulation (Gassman 2007). SWAT defines multiple HRUs each having unique 

land use, soil and slope combinations. Hydrology is separated into the land phase and the routing 

phase of the hydrologic cycle - water to the main channel is determined by the land phase of the 

hydrologic cycle while the routing phase determines water from the channel network to the 

outlet. SWAT uses either the service curve number (CN) method or the Green & Ampt 

infiltration method to estimate surface runoff. Three methods are included for evapotranspiration 

estimation based on the number of inputs required – the Penmen-Monteith method, the Priestly-

Taylor method and the Hargreaves method. Surface, lateral subsurface, and baseflow waters 

reaching the stream channels are routed either through Muskingum or variable storage 

coefficient method. The water budget is developed for each HRU, and then aggregated for the 

subbasin by a weighted average (Lam et al. 2010). 
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 Water enters groundwater primarily through infiltration/percolation from land surfaces 

and seepage from surface water bodies (Neitsch et al. 2009). SWAT simulates two aquifers 

within each subbasin, a shallow aquifer which is unconfined and contributes baseflow to the 

reach or main channel of the subbasin, and a deep confined aquifer which contributes to 

streamflow somewhere outside the watershed. Below we describe the groundwater component of 

the SWAT model in more detail given its significant contribution to the study system.  

SWAT calculates baseflow contribution to a channel on a given day as  

𝑄𝑔𝑤,𝑖 = 𝑄𝑔𝑤,𝑖−1. exp(−𝛼𝑔𝑤. ∆𝑡) + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ. (1 − exp[−𝛼𝑔𝑤. ∆𝑡]), if 𝑎𝑞𝑠ℎ > 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 …........ (5) 

𝑄𝑔𝑤,𝑖 = 0, if 𝑎𝑞𝑠ℎ < 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 …………………………………………………………………………………………………... (6) 

where, 𝑄𝑔𝑤,𝑖 and 𝑄𝑔𝑤,𝑖−1 are baseflow or groundwater flows into the main channel on days i and 

i-1 respectively (mm H2O), ∆𝑡 is the daily time-step (∆𝑡 = 1 𝑑𝑎𝑦), 𝑤𝑟𝑐ℎ𝑟𝑔𝑒,𝑠ℎ is the amount of 

recharge entering the shallow aquifer on day i (mm H2O), 𝑎𝑞𝑠ℎ is the amount of water stored in 

the shallow aquifer at the beginning of day i, 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 is the threshold water level in the shallow 

aquifer for groundwater contribution to the main channel to occur (mm H2O), and 𝛼𝑔𝑤 is the 

baseflow recession constant (a direct index of groundwater flow response to changes in 

recharge).  

The amount of recharge entering the shallow aquifer, 𝑤𝑟𝑐ℎ𝑟𝑔𝑒,𝑠ℎ is a portion of the total 

aquifer recharge, 𝑤𝑟𝑐ℎ𝑟𝑔 after accounting for percolation to the deep aquifer which is lost from 

the system. This is represented as  

𝑤𝑟𝑐ℎ𝑟𝑔𝑒,𝑠ℎ = 𝑤𝑟𝑐ℎ𝑟𝑔 − 𝑤𝑑𝑒𝑒𝑝 ……………………………………………..……………………………... (7) 

where, 𝑤𝑟𝑐ℎ𝑟𝑔 is the total aquifer recharge on day i (mm H2O), and 𝑤𝑑𝑒𝑒𝑝 is the amount of water 

percolating from the shallow aquifer to the deep aquifer on day i (which is essentially lost since 

it does not contribute to flows within that subbasin) (mm H2O).  
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Default parameter ranges for calculating 𝑤𝑑𝑒𝑒𝑝 in the SWAT model ensures 𝑤𝑑𝑒𝑒𝑝 ≥ 0 

mm/day, i.e., SWAT only assumes water loss from the shallow aquifer to the deep aquifer. The 

reverse scenario of discharge from the deep aquifer into the shallow aquifer is not considered.   

Aquifer recharge, 𝑤𝑟𝑐ℎ𝑟𝑔 is comprised of water percolating past the lowest depth of the 

soil profile and bypass flow flowing through the vadose zone. An exponential decay weighting 

function is used to model recharge to the aquifers as 

𝑤𝑟𝑐ℎ𝑟𝑔,𝑖 = (1 − exp [−
1

𝛿𝑔𝑤
])𝑤𝑠𝑒𝑒𝑝 + exp [−

1

𝛿𝑔𝑤
]𝑤𝑟𝑐ℎ𝑟𝑔,𝑖−1 ………………………………………………... (8) 

where 𝑤𝑟𝑐ℎ𝑟𝑔,𝑖 is the amount of recharge entering aquifers on day i (mm H2O), 𝛿𝑔𝑤 is the delay 

time or drainage time of the overlying geologic formations which has been shown to remain 

somewhat constant within the same geomorphic area, 𝑤𝑠𝑒𝑒𝑝 is the total amount of water exiting 

the bottom of the soil profile on day i (mm H2O), and 𝑤𝑟𝑐ℎ𝑟𝑔,𝑖−1 is the amount of recharge 

entering the aquifers on day i-1 (mm H2O).  

Parameters for the SWAT model can be calibrated through manual and automated 

methods – the former involves running SWAT model with manually modified deterministic 

values for parameters, while the latter allows the user to run SWAT models using parameters 

propagated within a range of specified feasible upper and lower values for parameters. An 

automated calibration software called SWAT Calibration and Uncertainty and Program (SWAT-

CUP) was developed specifically to be used with SWAT in order to report uncertainty in the 

results by propagating parameter uncertainties (Abbaspour et al. 2008). Various SWAT 

parameters are identified for auto-calibration, through initial manual calibration as well as from 

literature. Parameter ranges are then propagated by Latin hypercube sampling using the SUFI-2 

algorithm in SWAT-CUP (Abbaspour et al. 2008). Propagating parameter uncertainties results in 

uncertainties in the outputs which are represented as 95% probability distributions - calculated at 
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2.5% and 97.5% levels of the cumulative output distributions - also known as the 95% prediction 

uncertainty or the 95PPU. The goal of the SWAT-CUP calibration process is to have the 95PPU 

envelop most of the observations (measured data). The fit between simulation results, i.e., the 

95PPU, and the observations is represented by two main factors - the P-factor and R-factor. The 

P-factor represents the percentage of observations enveloped by the 95PPU, and the R-factor is 

the thickness of the 95PPU band. No hard values exist for these values -  for flow, a P-factor ≥ 

0.7 and R-factor ≤ 1 are considered acceptable (Abbaspour et al. 2008). A few iterations (usually 

< 5) of multiple simulations (300-500 depending on the time it takes) are performed in 

SWATCUP, where initially the user starts out with larger parameter ranges which get smaller 

with each iteration. Various criteria such as coefficient of determination (R2), Nash–Sutcliffe 

efficiency (ENASH) (Nash and Sutcliffe 1970) and bias ratio (RBIAS) (Salas et al. 2000) are used to 

measure the closeness of the model output and the observed data. 

2.2.1 SWAT and SWAT-CUP model setup and data 

The SWAT model was developed and applied for the watershed draining into the New Foley 

wetland. We used SWAT version SWAT-2012 through the ArcSWAT interface in ArcGIS 10.0 

for all SWAT simulations. All the GIS data required for ArcSWAT setup was downloaded from 

the USGS’s online Seamless Data Warehouse (https://datagateway.nrcs.usda.gov). The 

watershed boundaries for the wetland were delineated by ArcSWAT using elevation data 

obtained from the National Elevation Dataset (NED) DEM with a resolution of 1/3 arc-second 

(10m pixels) developed by USGS, and hydrography data from the National Hydrography Dataset 

(NHD). Hydrography was further modified and digitized to include headwaters with channel 

extensions to improve more accurate watershed delineation and streamflow routing in ArcSWAT 
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(Amatya and Jha 2011). The delineated watershed contributing to the discernible wetland inflow 

where the transducer was located had an area of 0.49 km2 (49 ha).  

Land use data was obtained from the 2011 National Land Cover Dataset (NLCD) and soil 

parameters were derived from the county level Soil Survey Geographic (SSURGO) dataset. 

Some classifications in the NLCD layer were edited slightly to reflect current land use in the 

watershed. About 45.6 % of the watershed area was classified urban. Slopes were divided into 3 

% classes (1-3%, 3-6%, etc.). Threshold values of 5% were used for land use, soils and slope 

definition. Daily maximum and minimum temperature for the study period was available from a 

station in Robertsdale (station GHCND: USC00016988) in Baldwin County (Figure 1). Daily 

precipitation was obtained from NEXRAD data for a period from 2008 to 2014, and the 

Hargreaves method was used for calculation of potential evapotranspiration.  

The study area received very high rainfall of ~380 mm between April 28 and May 1, 

2014, and fluctuations in transducer data after these dates were highly variable and exaggerated. 

We believe that the sudden extreme rainfall may have affected the functioning of the transducer 

and caused it to produce faulty data. Consequently, these dates were excluded from the 

calibration. Since the duration of observed data was so small (<1 year), we did not split the data 

to perform validation – instead all the data was used for calibration alone. While the small 

duration of observed data are an important limitation to the study, it is not detrimental to the 

overall objectives of the study which are to present different approaches of dealing with 

challenging hydrology calibrations in a head watershed with extensive groundwater inputs which 

cannot be accounted for by the SWAT model. 

Previously calibrated parameter values reported in Wang and Kalin (2011) for Magnolia 

River watershed, which is situated adjacent (in the northeast side) to the Wolf Bay watershed of 
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which the study watershed is a part (Figure 2), were applied as starting values in the SWAT 

model for the study wetland (Table 1).  Since the Magnolia River and Wolf Bay watersheds 

neighbor each other and have similar physical characteristics (soils, slope, geology), SWAT 

parameters calibrated for the Magnolia river watershed can be transferred to the Wolf Bay 

watershed (Wang and Kalin 2011). Literature has shown that model simulations require a long 

warmup period to accurately represent conditions being simulated such as antecedent moisture 

and initial groundwater table height which can influence predictions of streamflow and 

baseflows (Bosch et al. 2004; Wang and Kalin 2010; Kalin and Hantush 2006). The SWAT 

model was run for 7 years, with a warmup period of 5 years (2008-2012) prior to the 2-year 

period (2013-2014) of which the study period (8/10/2013 – 4/28/2014) is a part, to accurately 

initialize SWAT parameters.  

SWAT-CUP requires that the default simulation (simulation that is fed into SWATCUP 

for calibration) not be too different from observed data. For this reason, some manual calibration 

was done (in addition to applying parameter values from Table 1) to ensure some parity between 

simulated and observed flows. Procedures explained in Neitsch et al. (2001) and personal 

communication with different SWAT users was used to adjust parameters for calibration. For 

baseflow dominated areas, parameters such as groundwater delay (GWDELAY), deep aquifer 

recharge coefficient (RCHRGE_DP) and baseflow alpha factor (ALPHA_BF) were adjusted, 

along with SCS curve number (CN2). Model parameters were calibrated at daily timescales for 

flow. Following manual calibration, around sixteen parameters influencing different aspects of 

surface and subsurface flows were chosen for SWAT-CUP auto-calibration from literature 

(Table 2). SWAT-CUP 2012 version 5.1.6 was used to conduct auto-calibration runs. 
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2.3 Coupled SWAT-ANN model description and setup  

While hydrological models may be calibrated to some satisfying measure of performance ability, 

they may not always preserve all aspects of the hydrograph, i.e., not all simulated flow values 

will correspond to observed values (Vis et al. 2015). For example, a model might have a 

reasonably high value of the objective function (such as Nash–Sutcliffe efficiency which is a 

measure of the closeness of observed and simulated values), but fails in adequately capturing 

high- or low flow extremes which may be critical in predicting specific ecological responses (Vis 

et al. 2015). One way of dealing with this limitation, involves a step-wise coupled approach by 

first calibrating with SWAT through a process-based hydrological understanding of the system 

followed by black-box models such as Artificial Neural Networks (ANN) to improve the former 

calibration. A few studies have compared the ability of SWAT and ANN in predicting 

streamflow (Srivastava et al. 2006; Kim et al. 2012; Talebizadeh et al. 2010), but only one study 

to our knowledge has tested the utility of coupling SWAT and ANN for improved streamflow 

prediction (Noori et al. 2016). This study expands on the usefulness of SWAT-ANN coupled 

approach in improving hydrological calibration to better preserve key aspects of the streamflow 

hydrograph. 

ANNs are black-box models where detailed understanding of the internal processes is not 

required to develop relationships between the inputs and outputs (Isik et al. 2013; Srivastava et 

al. 2006; Noori and Kalin. 2016). Many kinds of ANN exist, but the feed forward ANN is used 

most commonly in hydrological applications and consists of several nodes organized in layers. 

Between the input and the output layers, a number of user-defined hidden layers exist where 

most of the processing takes place. Input data are fed into the input layer, which communicates 

with nodes in the hidden layer(s), which then link to an output layer where the response of the 
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ANN model corresponding to each input data point is received (Srivastava et al. 2006). A 

process called training corresponds with the calibration process in traditional models (Srivastava 

et al. 2006). During training, the inputs together with the desired response (target 

response/observed data) is fed to the ANN model. The ANN model process is started with an 

initial random choice of weights, input data and target response and the model is allowed to 

compute responses which are compared with the desired response: this process is repeated in an 

iterative manner, each time adjusting the weights, until the desired subjective stopping criterion 

stopping criterion is reached. Training aims to minimize a predefined error function by searching 

for a set of connection strengths and threshold values so that ANN outputs are close or equal to 

the desired response/target (Kalin et al. 2010; Srivastava et al. 2006). Inputs are usually 

normalized to avoid differences in magnitudes and variance from interfering with the training 

process (Srivastava et al. 2006).  

The size of the hidden layer and the number of neurons are important considerations in 

ANN development. There is no singular setup structure, rather trial and error is used to establish 

the optimum number of hidden layers and neurons (Isik et al. 2013). We varied the number of 

neurons in the hidden layer from 5 to 10 but restricted the number of hidden layers to 1 to avoid 

over-fitting with such limited data. We also used two different transfer functions to translate 

input signals to output signals – the log-sigmoid and the hyperbolic tangent sigmoid functions 

(Noori and Kalin 2016) - and picked the one which gave better results. We used SWAT 

calibrated streamflow together with precipitation and potential evapotranspiration (PET) 

calculated by the Hamon method (Hamon 1961) as inputs to the ANN model. The Hamon 

method calculates daily PET as a function of daily mean air temperature and hours of daylight, 

and has been shown to work favorably in the southeastern US (Lu et al. 2005; Noori and Kalin 
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2016). Here we checked to see if coupling ANN with SWAT calibrated streamflow would yield 

better calibration results than calibrating with SWAT alone. We used MATLAB R2016a version 

9.0.0 for model construction and implementation. See Figure 3 for SWAT-ANN coupled model 

setup. 

2.4 Performance measures and evaluation criteria 

Model performances was measured using metrics such as coefficient of determination (R2), 

Nash–Sutcliffe efficiency (ENASH) (Nash and Sutcliffe 1970) and bias ratio (RBIAS) (Salas et al. 

2000). The coefficient of determination (R2) is a measure of linear correlation between the two 

quantities, while the Nash–Sutcliffe efficiency statistic (ENASH) is a measure of how the plot of 

observed versus simulated data deviates from the 1:1 line (i.e., perfect model). ENASH values vary 

from –∞ to 1 where 1 corresponds to the perfect model. The bias ratio (RBIAS) in percentage 

measures the degree to which the forecast is under- or overpredicted – negative values indicate 

underprediction and positive values indicate overprediction (Salas et al. 2000). 

Model performances for flow simulations were assessed based on the guidelines 

presented by Moriasi et al. (2007) for assessments of flow and nutrients at monthly time scales. 

Since our study is assessed at a daily time scale, the modified relaxed constraints in Kalin et al. 

(2010) were adopted for the purposes of this study: 

Very Good: ENASH ≥ 0.7; |RBIAS| ≤ 0.25  

Good: 0.5 ≤ ENASH < 0.7; 0.25 < |RBIAS| ≤ 0.5 

Satisfactory: 0.3 ≤ ENASH < 0.5; 0. 5 < |RBIAS| ≤ 0.7 

Unsatisfactory: ENASH < 0.3; |RBIAS| > 0.7  
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3. Results and calibration approaches 

The hydrology at the watershed outlet showed distinctive trends consistent with ecological 

understanding of flow as a function of urbanization and coast proximity. As can be seen in 

Figure 4, observed flow had consistently high baseflow contribution. For the study period, 

observed flow at the watershed outlet ranged from 0.048 m3/s to 0.95 m3/s and averaged around 

0.15 m3/s.  

SWAT simulations, after transferring parameters from the adjacent Magnolia River 

watershed, failed to simulate the magnitude of observed flows (R2 = 0.52, ENASH = -0.57, RBIAS = -

0.82; Figure 4). The figure indicates that the model simulations were able to capture trends but 

disproportionately (and consistently) underpredicts the magnitude. The watershed received a 

total of around 1726 mm of precipitation during the study period. It was, however, interesting to 

note that the sum of daily flows during this period equaled 6599 mm (depth calculated for 

ArcSWAT delineated watershed), which exceeded precipitation by a multiplier of 3.8, i.e., 

streamflow ratio, or the percentage of precipitation converted to streamflow, was 3.8. So where 

was all this excess water coming from? For reasons described earlier, the only logical conclusion 

was the presence of a ground watershed larger in extent than the surficial watershed that 

ArcSWAT was failing to account for. Thus, the remainder of the results section is focused on the 

different approaches we used to calibrate a system with this unique hydrological behavior. As 

mentioned previously, extreme rainfall from April 28, 2014 seemed to have affected transducer 

functioning causing faulty and highly exaggerated fluctuations in the data - consequently, dates 

following April 28, 2014 were excluded from the calibration. 
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3.1 Approach 1 – Baseflow amplification 

In this approach we followed a two-step calibration process where we separately calibrated 

baseflow trend and stormflow components. A magnification multiplier was then applied to the 

baseflow trend and added to the calibrated stormflow component to get total streamflow.  

First, we partitioned observed streamflow into baseflow and stormflow components using 

the Web-based Hydrograph Analysis Tool (WHAT; Lim et al. 2005) using inbuilt BFImax value 

(maximum value of long term ratio of base flow to total streamflow) of 0.80 for perennial 

streams with porous aquifers. On comparing observed baseflow and stormflow with that 

simulated by ArcSWAT (Figures 5 and 6), we observed that stormflow matched “satisfactorily” 

(R2 = 0.59, ENASH = 0.44, RBIAS = -0.55), which was not the case for baseflows which greatly 

differed in magnitude or the match was “unsatisfactory” (R2 = 0.28, ENASH = -5.6, RBIAS = -0.93). 

So we then constructed two SWAT models, one for baseflow and the other for stormflow.  

 In the baseflow model we manually adjusted different parameters to match the baseflow 

trend (not magnitude) by comparing GW_Q (groundwater contribution to streamflow) with 

observed baseflow. All parameters for Magnolia River watershed from Wang and Kalin (2011) 

mentioned in Table 1 were applied such as REVAPMN, which is the threshold depth of water in 

the shallow aquifer to occur, and ALPHA_BF which is the baseflow recession constant and 

indicates the groundwater flow response to changes in recharge. The parameters which were 

critical in matching baseflow trend were GW_DELAY which is the time required for water 

leaving the bottom of the root zone to reach the shallow aquifer, and RCHRGE_DP which is the 

deep aquifer percolation fraction. GW_DELAY was decreased to 1 day to mimic the high 

permeability of sandy soils in the coastal plain area where flow from the aquifer to the root zone 

is rapid (Bosch et al. 2004). We also decreased ALPHA_BF_D, which is the alpha factor for 
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groundwater recession curve of the deep aquifer, from the default value of 0.01 (1/days) to 0. 

RCHRGE_DP was set to 0 (from default value of 0.05) which prevents percolation loss to the 

deep aquifer. Comparison of ArcSWAT simulated and observed baseflow trends now yielded a 

good match in trends (R2 = 0.72; Figure 7). The magnification multiplier was determined by 

dividing averages of observed baseflow and trend calibrated baseflow (from ArcSWAT). 

Observed baseflow was on average, 13 times ArcSWAT calibrated baseflow. ArcSWAT 

simulated baseflow was amplified by multiplying with 13 and performing appropriate unit 

conversions to m3/s. This magnified baseflow had a “very good” match with observed baseflow 

(R2 = 0.72, ENASH = 0.72, RBIAS = 0.01). 

 A separate calibration was done for the stormflow component of observed streamflow. 

This calibration was done using SWAT-CUP software with 13 parameters concerned with both 

groundwater and surface water components (Table 2). Since SWAT’s baseflow and groundwater 

parameters interact with each other, we didn’t completely remove the baseflow parameters from 

this calibration. In any case, this does not affect actual baseflow estimates whose calibration was 

undertaken using a separate model. Three iterations of 500 simulations each were conducted -  

calibrated parameter ranges and the values for the best simulation are presented in Table 3. The 

best simulation from this calibration had a “good” match with observed stormflow (R2 = 0.71, 

ENASH = 0.62, RBIAS = -0.5). ArcSWAT calibrated streamflow was calculated as the sum of 

amplified calibrated baseflow and calibrated stormflow, which yielded a “good” match with that 

of the observed streamflow (R2 = 0.74, ENASH = 0.67, RBIAS = -0.14; Figure 8). While this 

approach resulted in a decent calibration, a look at the flow exceedance curve (Figure 8) shows 

that flows > 0.08 m3/s are slightly but consistently underpredicted. 
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3.2 Approach 2 – Adjusting RCHRGE_DP to allow for groundwater discharge 

In this approach, we evaluated the parameter RCHRGE_DP for its role in removing surface 

water by percolation to the deep aquifer. The default value of this parameter (fraction) is set to 

0.05 and its range extends between 0 and 1. A positive RCHRGE_DP indicates shallow aquifer 

losses to the deep aquifer. However, in certain cases, the deep aquifer may recharge to the 

shallow aquifer which can be addressed by assigning a negative value to RCHRGE_DP. 

Tweaking this parameter in such a way has not been explored for the circumstances surrounding 

the watershed evaluated in this study. 

In the SWAT manual (Neitch et al. 2009), water lost to deep aquifer is not contributed 

back to the stream. The fraction RCHRGE_DP (βdeep) controls the amount of water diverted from 

the shallow aquifer by percolation to the deep aquifer on a given day (Neitsch et al. 2009) as 

wdeep = βdeep.wrchrg ………………………………………………………………………………………..……... (9) 

where, wdeep is the amount of water moving in the deep aquifer on a given day, βdeep is the aquifer 

percolation coefficient and wrchrg is the amount of recharge entering both aquifers on the same 

day. Recharge to the shallow aquifer is then calculated as  

       wrchrge,sh = rrchrg – wdeep ……………………………………………………….…………………………... (10) 

where wrchrge,sh is the amount of recharge entering the shallow aquifer on the same day. If this is 

larger than the user specified threshold, then the shallow aquifer contributes baseflow to the 

reach (Neitsch et al. 2009). If the fraction βdeep is made negative, this implies a flow from the 

deep aquifer into the shallow aquifer since wdeep will be negative which in turn increases wrchrge,sh 

allowing for higher baseflow contribution from the shallow aquifer to enter the reach.  

In this approach of streamflow calibration, we first manually manipulated SWAT 

parameters to ensure some match between the simulated and observed flows, following which 
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we used SWAT-CUP to complete the calibration. Like in the previous approach, parameters 

from Wang and Kalin (2011) were first applied following which GW_DELAY was reduced to 1 

and ALPHA_BF_D was changed to 0. Instead of a 2-step calibration like the previous approach, 

we changed RCHRGE_DP to -13 (rounding off the baseflow amplification multiplier from the 

previous approach). In order for this to work, ranges in the ArcSWAT database should be 

changed before applying negative RCHRGE_DP values in the model.  

We then used SWAT-CUP to further calibrate the model. Three iterations of 500 

simulations each were conducted - calibrated parameter ranges are presented in Table 4. The best 

streamflow simulation matched well with observed streamflow, and the 95PPU enveloped 84% 

of the observations (P-factor = 0.84, R-factor = 1.04, R2 = 0.78, ENASH = 0.75, RBIAS = -0.03; 

Figure 9). From the flow exceedance curve in Figure 9, it can be observed that the hydrograph is 

mostly well preserved, except for low flows (< 0.1 m3/s) which are slightly underestimated. 

3.3 Approach 3 – ANN-SWAT Coupling 

If accurately predicting low flows is an important concern, then the best simulation from the 

previous approach is slightly lacking (flow exceedance curve in Figure 9). To improve upon this 

limitation, previously calibrated streamflow from approach 2 was fed into ANN together with 

daily precipitation and PET as inputs. Due to the small calibration dataset (249 data points) and 

to maintain consistency with the different approaches, we used all of the data for training (or 

calibration) alone. Through trial-and-error, the ANN model with one hidden layer, 8 nodes and a 

log-sigmoid transfer function, predicted flows which had “very good” match with observed 

flows (R2 = 0.89, ENASH = 0.89, RBIAS = -0.012; Figure 10). Coupling SWAT calibration with 

ANN in this hybrid approach much improved streamflow calibration compared to the previous 

approaches discussed in the study. From the flow exceedance curve in Figure 10, all aspects of 



78 

 

the hydrograph are well estimated and the previously observed limitation of low flow 

underestimation has been resolved.  

Sometimes process-based models, through advanced physical understanding of the system 

can allow for model calibration up until a certain point beyond which the model faces difficulties 

improving calibration, perhaps due to system complexity. The use of ANN allows further 

attempts at improving calibration without delving into the process details. Thus, ANN serves as a 

tool to improve upon deficiencies observed in SWAT simulated (and SWATCUP calibrated) 

flows.  

4. Discussion and conclusions 

In this study we explored different options for calibrating a very small head watershed in 

Alabama’s coastal plain region draining into a headwater slope wetland which feeds Owen’s 

bayou and eventually, Wolf Bay. This watershed exhibited unique characteristics most notably 

that flows exceeding precipitation - total precipitation and flows for the study period were 1726 

mm and 6599 mm respectively – potentially due to high amounts of groundwater discharging at 

the watershed outlet. In general, models such as SWAT despite their capabilities show many 

deficiencies in modelling surface and groundwater interactions, which may be redeemed by 

using SWAT in conjunction with groundwater models such as MODFLOW. However, this 

comes with the added cost of increased complexity, heavy data requirements, technical expertise 

and computing prowess. Moreover, this level of integrated modeling may not be appropriate for 

the case at hand where very limited data are available and the watershed size is too small to 

warrant the use of very complex integrated models. In this study we evaluated the use of SWAT 

to tackle calibration of this groundwater-fed head watershed system with minimal observed data. 
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The three approaches evaluated for calibration had “good” to “very good” performance 

with ENASH > 0.66. In the first approach, baseflow and stormflow components were calibrated 

separately and summed to yield total streamflow: ArcSWAT simulated baseflow trend was 

matched to that observed and then manually amplified to the observed magnitude. The second 

approach involved attributing a negative value to the parameter RCHRGE_DP, which controls 

loss of surface water to the deep aquifer by percolation, to allow for recharge and discharge into 

streamflow instead. The calibrated range for this parameter from the SWAT-CUP calibration 

ranged from -13 to -20. Whether and how changing the value of RCHRGE_DP so far outside its 

range affects other aspects of streamflow and nutrient dynamics is unknown and worthy of future 

investigation. However, if hydrology calibration is the ultimate goal of the study, then tweaking 

RCHRGE_DP in this manner is a useful trick to be aware about. In this study we further 

attempted to improve hydrology calibration through the application of ANN in conjunction with 

SWAT. Feeding calibrated streamflow from ArcSWAT together with precipitation and ET to the 

ANN model resulted in a much improved performance with ENASH of 0.88. Using ANN together 

with SWAT in this hybrid approach has the advantage of better calibration by letting ANN deal 

with complexities that we have less knowledge about and cannot be modeled while also 

incorporating a process-based hydrological understanding of the system through the SWAT 

model. 

 The study watershed is located at an elevation of 4 to 15 m above mean sea level where 

depth to water table is probably lower than 1.2 m below ground surface (Murgulet and Tick 

2008). In parts of the Graham Creek Nature preserve immediately south of the study watershed, 

the water table was found to be as close as 12 inches below the ground surface (personal 

communication with Preserve manager). This indicates that high baseflows are natural to the 
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system. However, baseflows may be still higher than natural conditions due to some upland 

contribution from an impounded lake in the residential area just upstream of the wetland. We 

suspect that percolation from the impounded lake have further raised the water table and 

contributed to groundwater discharge at the watershed outlet (Winter 2007), thus creating large 

parameter values for RCHRGE_DP.  

Most headwater streams in Alabama originate from headwater slope wetlands (Shaneyfelt 

and Metcalf 2014). However, these systems are highly imperiled due to pressure from various 

land use activities such as transportation, construction, poorly planned residential and 

commercial developments, channel excavation, among others (Shaneyfelt and Metcalf 2014). 

These headwater slope wetlands, impacted to varying degrees by modifications to hydrological 

regimes and connectivity, will also exhibit differences in functioning along a gradient of land use 

pressure. Documenting existing hydrological trends of headwater slope wetlands and providing 

tools for hydrology calibration provides a very valuable tool for understanding impacts of 

watershed land use on wetland function, thus aiding in the understanding, protection and 

preservation of these systems. This study adds to that body of knowledge and gives managers 

useful tools for hydrology calibration in groundwater dominated wetlands when accurate 

predictions of hydrology are necessary. 

5. Limitations and future steps 

In this study we presented ways to model a complex hydrological trend with dominant 

groundwater input using relatively simple approaches involving the SWAT model. Given that 

watershed runoff to the NF wetland was >3X the precipitation, it is doubtful that any model 

would be able to simulate flows observed in this groundwater dominant system without the 

knowledge of detailed surface and subsurface hydrology and geology. In the absence of such 
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detailed data, the approaches we present are useful alternatives to aid in management decisions, 

scenario analyses, or other pressing concerns which necessitates having a calibrated hydrological 

model. In no way do we deny the importance of using more relevant groundwater models to get a 

better handle on NF wetland hydrology; however, data presently available for the wetland do not 

support the application of groundwater models which tend to be highly data-intensive and 

require a lot of calibration, for e.g., to ascertain hydraulic conductivity of the soil layers. Another 

limitation is the absence of adequate data for validation. Since flow data at the wetland were 

limited, splitting the same into calibration and validation datasets were not possible. We 

acknowledge that model validation, as more data become available, would improve confidence 

in the calibration approaches presented in the study. In a hypothetical scenario involving 

unlimited funding and manpower resources to sustain a multi-year long-term project, limitations 

can be addressed by 1) improving monitoring of surface waters by installing weirs and 

transducers to get improved rating curves and discharge estimations, 2) improving groundwater 

measurements using multiple piezometers fitted with transducers, applied in transects and at 

different depths, both around and within the channels, to quantify horizontal and vertical 

gradients and water levels, and 3) conducting the study at multiple headwater slope wetlands 

across Alabama’s lower coastal plain region to detect other wetland systems with similar 

hydrological characteristics. These data would not only enable validation of presented 

approaches but also support the application of improved models for flow prediction, as well as 

generate a greater understanding of the hydrological processes sustaining these wetland types. In 

any case, wetland management is an adaptive process which relies on existing data to make 

decisions which can be improved or altered as and when new data become available – until then, 
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the approaches presented in this study provide a useful alternative to flow prediction in 

groundwater dominant systems. 
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Figures  

 

Figure 1. The head watershed used for this study drains into a headwater slope wetland that feeds 

a tributary to Owens’s bayou. The watershed area is 0.49 km2 with ~46% classified as urban 

Owen’s Bayou 
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Figure 2. This image, borrowed from Wang and Kalin (2011), shows the spatial proximity of the 

Magnolia River watershed to the study watershed (represented by the yellow star). The study 

watershed is part of the Wolf Bay watershed which is situated adjacent to the Magnolia River 

watershed. 
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Figure 3. Conceptual framework of the coupled SWAT-ANN model. 
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Figure 4. Comparisons between observed flow from the study watershed and SWAT simulated 

flow after applying parameters from Wang and Kalin (2011) for the same. From the figure, the 

magnitude of observed flow is many times larger than the SWAT simulation.  
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Figure 5. Comparisons between observed baseflow and SWAT simulated baseflow after 

applying parameters from Wang and Kalin (2011). From the figure, the magnitude of observed 

baseflow is many times larger than the SWAT simulation, and the trend is different as well 

(ENASH = -5.6) 

 

 
 

Figure 6. Comparisons between observed stormflow and SWAT simulated streamflow after 

applying parameters from Wang and Kalin (2011) for the same. From the figure, there is some 

parity between the magnitude of observed stormflow and SWAT simulated streamflow (ENASH = 

0.44) 
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Figure 7. Comparisons between observed baseflow and SWAT simulated baseflow after 

manually calibrating the trend. Here SWAT baseflow trend was adjusted to match observed 

baseflow. On average, observed baseflow is about 13 times simulated baseflow. Hence, 

simulated baseflow was manually magnified by multiplied by 13 to match observed baseflow. 

This calibration procedure is described in Approach 1 
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Figure 8 (top). This plot compares observed streamflow and SWAT calibrated streamflow from 

calibration Approach 1. Here SWAT flow was calibrated in two parts – (1) the trend of simulated 

baseflow was first matched to observed baseflow, following which a multiplier was applied to 

match the magnitudes, and (2) SWAT streamflow was calibrated to observed stormflow – and 

then (1) and (2) were summed. From the figure, the magnitude of observed flow has “very good” 

match with the SWAT simulation (ENASH = 0.67) 

Figure 8 (bottom). This plot compares the exceedance curves for observed and simulated flows 
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Figure 9 (top).  The top figure includes SWAT-CUP results for calibrating flow using the 

approach that assigns a negative value for RCHRGE_DP parameter. Performance, in this case, 

was “very good” with ENASH = 0.75. This is described in calibration Approach 2. 

Figure 9 (bottom). This figure represents the comparison of flow exceedance curves for the “best 

simulation” from SWAT-CUP calibration, and observed flow. 
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Figure 10 (top). Comparison of ANN simulated streamflow using SWAT calibrated flow, 

precipitation and PET as inputs, with observed inflow. The combination of SWAT-ANN yielded 

superior performance compared to using just SWAT with ENASH = 0.88. This is described in 

calibration Approach 3. 

Figure 10 (bottom). Exceedance curves for observed and SWAT-ANN predicted streamflow 

ENASH = 0.88) 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

8/4/2013 9/23/2013 11/12/2013 1/1/2014 2/20/2014 4/11/2014

F
lo

w
 (

m
3
/s

)
Observed streamflow SWAT-ANN simulated streamflow

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80 100

F
lo

w
 (

m
3
/s

)

Percent of time equaled or exceeded

Observed streamflow SWAT simulated streamflow



97 

 

Tables 

Table 1.  Calibrated parameters for Magnolia River watershed, Baldwin County, AL from Wang 

and Kalin (2011) 

Parameters Default  
 

Wang and Kalin 2010 

Magnolia River watershed 

CN2 Varies  +3* 

ESCO 0.95  1 

GW_DELAY 31  - 

GWQMN 0  - 

GWREVAP 0.02  - 

SURLAG 4  1 

SOL_AWC Varies  -0.01* 

REVAPMN 10  500 

ALPHA_BF 0.048  0.015 

CH_N2 0.014  0.114 

*  +/- sign indicates that parameter values are increased/decreased by adding/subtracting the given 

amount 
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Table 2. Parameters chosen from manual calibration and literature for inclusion in SWAT-CUP 

Parameter Parameter description Location 

CN2 Initital SCS runoff curve number for moisture condition II .mgt 

ALPHA_BF Baseflow alpha factor (1/days) .gw 

GW_DELAY Groundwater delay time (days) .gw 

GWQMN Threshold depth of water in the shallow aquifer required for return 

flow to occur (mm H2O) 

.gw 

GW_REVAP Groundwater revap coefficient which controls rate of water 

movement from shallow aquifer to the root zone 

.gw 

ESCO Soil evaporation compensation factor .hru 

CH_N(2) Manning's "n" value for the main channel .rte 

CH_K(2) Effective hydraulic conductivity in main channel alluvium 

(mm/hr) 

.rte 

ALPHA_BNK Baseflow alpha factor for bank storage (days) .rte 

SOL_AWC() Available water capacity of the soil layer (mm H2O)/mm soil) .sol 

SOL_K() Saturated hydraulic conductivity (mm/hr) .sol 

SOL_BD() Moist bulk density (Mg/m3 or g/cm3) .sol 

RCHRG_DP Deep aquifer percolation fraction .gw 
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Table 3. Final parameter ranges and the fitted values for the best simulation resulting from 

SWAT-CUP autocalibration with observed stormflow  

 

Parameter_Name Fitted_Value Min_value Max_value 

1: r__CN2.mgt 0.015 -0.015 0.121 

2: v__ALPHA_BF.gw 0.690 0.418 0.812 

3: v__GW_DELAY.gw 0.362 0.001 2.527 

4: v__GWQMN.gw 21.741 5.071 24.614 

5: v__GW_REVAP.gw 0.199 0.134 0.200 

6: v__ESCO.hru 0.842 0.796 0.887 

7: v__CH_N2.rte 0.224 0.191 0.352 

8: v__CH_K2.rte 32.122 0.010 43.114 

9: v__ALPHA_BNK.rte 0.884 0.549 0.986 

10: r__SOL_AWC(..).sol -0.151 -0.240 0.048 

11: r__SOL_K(..).sol 0.014 -0.116 0.370 

12: r__SOL_BD(..).sol -0.809 -0.855 -0.173 

13: v__RCHRG_DP.gw 0.006 0.001 0.284 

v__ means the existing parameter value is to be replaced by a given value   

a__ means a given value is added to the existing parameter value 

r__ means an existing parameter value is multiplied by (1+ a given value) 
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Table 4. Final parameter ranges and the fitted values for the best simulation resulting from 

SWAT-CUP autocalibration with observed flow, and assigning negative values for 

RCHRGE_DP 

Parameter_Name Fitted_Value Min_value Max_value 

1: r__CN2.mgt 0.285 0.126 0.421 

2: v__ALPHA_BF.gw 0.082 0.001 0.173 

3: v__GW_DELAY.gw 0.563 0.001 3.104 

4: v__GWQMN.gw 41.312 25.939 43.589 

5: v__GW_REVAP.gw 0.094 0.026 0.101 

6: v__ESCO.hru 0.952 0.916 0.985 

7: v__CH_N2.rte 0.144 0.125 0.254 

8: v__CH_K2.rte 131.781 85.332 142.185 

9: v__ALPHA_BNK.rte 0.386 0.232 0.740 

10: r__SOL_AWC(..).sol -0.435 -0.441 -0.068 

11: r__SOL_K(..).sol 0.241 -0.098 0.442 

12: r__SOL_BD(..).sol 0.029 -0.217 0.134 

13: v__RCHRG_DP.gw -15.293 -19.559 -13.066 

v__ means the existing parameter value is to be replaced by a given value   

a__ means a given value is added to the existing parameter value 

r__ means an existing parameter value is multiplied by (1+ a given value) 
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Chapter 4 

Evaluating sensitivity of Nitrate-N export to Organic-N and Ammonia-N inputs in 

headwater slope wetlands 

 

Abstract 

Rapid coastal development has led to loss/alteration of wetlands, streams, and headwater areas 

that buffer coastal waterways from pollution. Small wetlands are more vulnerable to urban 

expansion because they can easily be altered by draining, ditching or paving over. From a water 

quality perspective, preserving and restoring multiple small wetlands on the landscape are 

critical since they have higher capacity for nonpoint source amelioration. Management efforts 

require good understanding of wetland function and often use models to predict impacts of land 

use on wetland function. However, models usually require multiple inputs at high resolution 

which agencies, who are typically strapped for funding and manpower resources, are unable to 

gather. Data for smaller wetlands are especially scarce. Hence there is a need to strategize data 

collection efforts by identifying data that would add most value to model predictions instead. 

Here, we consider the example of Nitrate-N export from small wetlands in coastal watersheds. 

From a process perspective, Nitrate-N fluxes are linked to cycles of Organic-N and Ammonia-N, 

hence the latter must be important to collect when trying to predict Nitrate-N export. But with 

limited resources to spare, does detailing Organic-N and Ammonia-N inputs add to Nitrate-N 

export prediction from small wetlands? We examined this question in three headwater slope 

wetlands in Baldwin County, AL using process-based wetland model, WetQual, to assess the 

sensitivity of Nitrate-N export to Organic-N and Ammonia-N inputs to these wetlands. Modeled 

Nitrate-N export showed negligible sensitivity to inputs in the headwater slope wetlands. We 

concluded that since headwater slope wetlands are groundwater fed gaining wetlands with no 
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depressional storage, they have low residence times and consequently less time for N 

transformations to effect Nitrate-N export. This study is significant because it tells us that 

collecting Organic-N and Ammonia-N input data at high resolutions is not as important as 

detailing Nitrate-N inputs in low residence time, groundwater interacting wetlands such as 

headwater slope wetlands.  

Keywords: small wetland, sensitivity, Nitrogen, Nitrate, headwater slope wetland, coastal plain 

Alabama 

 

1. Introduction 

Wetlands and riparian areas perform many important functions such as flood attenuation, 

improving water quality and improving biodiversity beside a host of other ecosystem services 

and functions. However, wetlands have long borne the brunt of agriculture, urban development 

and population expansion; draining and destroying wetlands in the country (United States) were 

historically encouraged through political, financial and institutional incentives in the 1960s 

which resulted in widespread wetland loss to the order of 550,000 acres/year from the mid-1950s 

to the mid-1970s (Dahl and Allord 1996). However, rising awareness of wetlands as valuable 

areas that have an important role in regulating and enhancing environmental quality has allowed 

for the enactment of numerous programs for their restoration and maintenance (Dahl and Allord 

1996). Even so, this protection oftentimes does not extend to/not enforced for the protection of 

small wetlands which are highly vulnerable to loss and modification by virtue of their size. From 

a water quality mitigation perspective, having multiple small wetlands on the landscape is more 

effective than a single large wetland since smaller wetlands have greater pollutant removal per 

unit area of wetland (NRC 2001). Moreover, wetlands along lower order streams have a higher 
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potential for mitigating nonpoint source pollution than wetlands along higher order streams 

(floodplains) (Brinson 1999; Rheinhardt et al. 1998). Smaller wetlands thus deserve a lot of 

scrutiny to aid in their restoration as well as to better manage them at regional and local scales.  

Models are used extensively to evaluate wetland function and to predict potential changes 

from proposed land use or climate alterations. But modeling wetlands involves several 

constraints from the large number of sites, the diversity of wetland types, to their highly dynamic 

ecological and hydrological responses and functions (Lee et al. 2015). Hence, most wetland 

models are site-specific and require a detailed understanding of site hydrology, and fine-scale 

surface and subsurface processes. Yet, data are almost always lacking for wetlands, specifically 

small wetlands which are largely defined by microtopography of their surroundings and their 

connection to groundwater and small streams (Lee et al. 2015). Usually, available data may 

describe morphometry and watershed characteristics, and sometimes even hydrologic data and 

water quality from limited monitoring (Walker 1982). Even then, coinciding flow and water 

quality measurements to quantify direct loading is hard to come by. When data is available, their 

accuracy is a major concern. This can pose significant challenges to agencies and those entrusted 

in maintaining regional and local water quality since the reliability of model outputs depends 

largely on the value of its parameters and the precision of its inputs.  

Uncertainties in methodology and data are inherent to every model, and efforts are 

continuously underway to quantify them since they directly influence budgets and decision 

making (Glas et al. 2016; Loucks and van Beek 2017). Uncertainties in inputs can be reduced by 

collecting higher quality data more frequently. Since this poses a challenge for small wetlands, it 

would be useful to ask if measuring multiple inputs adds more value to model predictions over 

measuring just a few. The answer to this question could greatly help optimize resources and 
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mitigate expenditures by monitoring a few key variables than wasting resources over measuring 

many variables that don’t add any value in predicting model outputs. Identification of key 

variables can be accomplished by conducting a sensitivity analysis of model inputs where we 

explore and quantify the impacts of changes in model inputs on predicted model outputs (Loucks 

and van Beek 2017).  

A sensitivity analysis describes the extent of change in models outputs in response to 

perturbation of model inputs, such as input data observations or model parameters. While 

uncertainty analyses and identification of important model parameters that influence model 

outputs through sensitivity analyses are frequently conducted, assessing sensitivity of input data 

is less prevalent in literature. Some examples of evaluating input data sensitivity include Oudin 

et al. (2005) who described the effects of different types of potential evapotranspiration inputs on 

rainfall-runoff model predictions, Cotter et al. (2003) who described the influence of resolution 

of elevation maps, land use and soils data on watershed model predictions, Howden et al. (2011) 

who evaluated how uncertainty in loads of fertilizer, animal, ploughing and crop uptake loads 

influence total catchment-N loads, Singh et al. (2011) who evaluated the effects of soil data 

resolution on identification of critical source areas of sediment within the watershed, Kalin and 

Hantush (2006) who explored the use of Next Generation Weather Radar (NEXRAD) data as an 

alternative to rain guage data in an eastern Pennysylvania watershed, and Cerco (1995) who 

evaluated the response of Chesapeake Bay to reductions in P and N loads. By assessing 

sensitivity of the model to its inputs, the minimum data requirements for improved model 

outputs can be gleaned (Glas et al. 2016). While valuable, this application of sensitivity analysis 

is not common in literature.  
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Coastal wetlands intercept runoff from upland terrestrial areas and represent very 

important ecosystems for the unique ecosystem services they provide such as nutrient and 

sediment retention leading to improved downstream (and coastal) water quality and flood 

attenuation. However, rapidly increasing population pressure in these coastal regions has been an 

important stressor on coastal wetlands, and this can have consequences for nonpoint source 

pollution amelioration. Approximately 50% of the world’s human population lives within 100 

km of the coastline (NRC 2000); population of coastal counties along the Gulf of Mexico 

increased by 150% from 1960 – 2008 (Wilson and Fischetti 2010), and by 60% in the 

Chesapeake Bay watershed between 1990 and 2000 (Kaushal et al. 2008; Jantz et al. 2005). As 

urban development continues to rise in these watersheds, associated hydrologic alterations (e.g., 

burial of headwaters by channeling, ditching or paving over, and loss of hydrologic connectivity 

between streams, wetlands and riparian areas due to increased impervious surfaces) may amplify 

export of Nitrate-N from small watersheds (Kaushal et al. 2008). Since concentrations of 

available N limit primary production in coastal waters, factors that increase N loading can have 

important impacts on coastal ecosystems (Caraco and Cole 1999).  

Here we have as case studies, three headwater slope wetlands located at the headwaters 

of creeks in Alabama’s coastal plain region (in Baldwin County, AL), for which we have 

hydrology (<1.5 years) and sporadic water quality measurements (Dissolved Inorganic Nitrogen, 

or DIN). Headwater slope wetlands are a common wetland type occurring at the headwater 

reaches of first order streams in Mississippi-Alabama coastal plain area (Noble et al. 2007). They 

are primarily groundwater-fed and remain saturated for most of the year. The headwater slope 

wetlands used in the study are located along a gradient of watershed urbanization and at varying 

proximities to the coast. These slope wetlands feed coastal creeks that discharge into systems 
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that drain into the Gulf of Mexico. The Gulf of Mexico has long had issues with excessive 

Nitrate-N loading causing significant deterioration of coastal water quality, a problem that can be 

attributed to loss of wetlands and deteriorating hydrologic connectivity in watersheds draining to 

the coast (HTF 2015; Day Jr. 2003; Boesch et al. 2001), among others. While there is significant 

scientific consensus regarding the crucial role that small wetlands play in maintaining water 

quality and quantity and other ecological functions on the landscape (Freeman 2007; Meyer et al. 

2003; Noble et al. 2007; Roy et al. 2009; Peterson et al. 2001), flow and water quality data for 

these systems are sparse. Yet, in order to address questions of wetland function, having data is 

crucial. Hence, in this study we aim to evaluate inputs that are sensitive to the prediction of 

Nitrate-N export in these systems. 

From a process-based perspective, Nitrate-N transformation and export is tied to process 

cycles of Organic-N and Ammonia-N; Organic-N is converted to Ammonia-N through the 

process of ammonification or mineralization, which is then converted to Nitrate-N through 

nitrification. It makes sense, then, to perceive collection of Organic-N and Ammonia-N data as 

highly important to the prediction of Nitrate-N export. However, from a modeling perspective, is 

the prediction of Nitrate-N sensitive to Organic-N and Ammonia-N inputs? Or does this 

sensitivity vary between different kinds of wetlands? We used WetQual, a process-based wetland 

model (Hantush et al. 2012; Kalin et al. 2012) as a tool to evaluate the sensitivity of Organic-N 

and Ammonia-N in predicting Nitrate-N export from the Alabama headwater slope. The results 

from this study will be useful in optimizing data collection for model runs predicting Nitrate-N 

export from small wetlands.  
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2. WetQual model 

WetQual presents a detailed process-based model for nutrient (nitrogen, phosphorous and 

carbon) retention, cycling and removal in flooded wetlands (See Hantush et al. 2012; Kalin et al. 

2012; Sharifi et al. 2013). The model takes into account oxygen dynamics and its impacts on 

nitrogen cycling and release. A simple productivity model relates daily growth rate to daily solar 

radiation and annual plant growth; here free floating plant biomass such as phytoplankton are 

separated from rooted aquatic plants. The wetland is partitioned into two compartments; a free-

water layer and a soil layer. The soil layer is divided into aerobic and anaerobic zones whose 

boundaries are variable in response to oxygen dynamics. The model accounts for ammonia 

volatilization losses in addition to transport, retention, uptake, nitrification, mineralization, 

denitrification and burial processes. Nitrification occurs in the aerobic layer of the soil while 

denitrification in the anaerobic layer beneath. N cycling in WetQual has been presented in Figure 

1. The model uses forward difference approximation of time-derivatives for numerical 

integration. The following section is presented from Hantush et al. (2012). 

In Wetqual, N dynamics in the water column is modelled as: 

𝜙𝑤

𝑑(𝑉𝑤𝑁𝑜𝑤)

𝑑𝑡
= 𝑄𝑖𝑁𝑜𝑤𝑖 + 𝑎𝑛𝑎𝑘𝑑𝑎𝑎 + 𝑎𝑛𝑎𝑘𝑑𝑏𝑓𝑏𝑤𝑏 − 𝜙𝑤𝑉𝑤𝑘𝑚𝑤𝑁𝑜𝑤 − 𝜈𝑠𝜙𝑤𝐴𝑁𝑜𝑤

+ 𝜈𝑟𝜙𝑤𝐴(𝑁𝑜𝑟 + 𝑁𝑜𝑠) − 𝑄𝑜𝑁𝑜𝑤 + 𝐴𝑓𝑠𝑤𝑆 

𝜙𝑤

𝑑(𝑉𝑤𝑁𝑎𝑤)

𝑑𝑡
= 𝑄𝑖𝑁𝑎𝑤𝑖 + 𝑖𝑝𝐴𝑁𝑎𝑝 − 𝜙𝑤𝑉𝑤𝑓𝑁𝑘𝑛𝑤𝑁𝑎𝑤 + 𝛽𝑎1𝐴(𝑁𝑎1 −𝑁𝑎𝑤) + 𝐹𝑁𝑎𝑔

𝑤

− 𝑘𝜐𝜙𝑤𝐴(1 − 𝑓𝑁)𝑁𝑎𝑤 + 𝜙𝑤𝑉𝑤𝑘𝑚𝑤𝑁𝑜𝑤 − 𝑄𝑜𝑁𝑎𝑤 − 𝑓𝑎𝑤𝑎𝑛𝑎𝑘𝑔𝑎𝑎 + 𝐴𝑞𝑎 

𝜙𝑤

𝑑(𝑉𝑤𝑁𝑛𝑤)

𝑑𝑡
= 𝑄𝑖𝑁𝑛𝑤𝑖 + 𝑖𝑝𝐴𝑁𝑛𝑝 + 𝜙𝑤𝑉𝑤𝑓𝑁𝑘𝑛𝑤𝑁𝑎𝑤 + 𝛽𝑛1𝐴(𝑁𝑛1 − 𝑁𝑛𝑤) + 𝐹𝑁𝑛𝑔

𝑤

− 𝑓𝑛𝑤𝑎𝑛𝑎𝑘𝑔𝑎𝑎 − 𝑄𝑜𝑁𝑛𝑤 + 𝐴𝑞𝑛 
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where Now is particulate organic nitrogen concentration in free water [ML-3]; Naw = 

[NH4
+]+[NH3] is total ammonia-nitrogen concentration in free water [ML-3]; Nnw is nitrate-

nitrogen concentration in free water [ML-3]; Ow is oxygen concentration in free water [ML-3]; a 

is mass of free floating plant [M Chl a]; b is mass of rooted plants [M Chl a]; Nowi, Nawi, and Nnwi, 

respectively, are concentrations of organic nitrogen, total ammonia nitrogen, and nitrate nitrogen 

in incoming inflow [ML-3]; Na1 and Nn1, respectively, are pore-water concentrations of total 

ammonia nitrogen and nitrate nitrogen in oxygenated top soil layer (aerobic layer in Fig. 1) [ML-

3]; Nor is concentration of rapidly mineralizing organic nitrogen in wetland soil [ML-3]; Nos is 

concentration of slowly mineralizing organic nitrogen in wetland soil [ML-3]; Nap and Nnp, 

respectively, are concentrations of total ammonia nitrogen and nitrate nitrogen in precipitation 

[ML-3]; qa and qn, respectively, are dry depositional rates of total ammonia nitrogen and nitrate 

[ML-2T-1]; vs is effective settling velocity [LT-1]; vr is resuspension rate [LT-1]; S is rate of 

nitrogen fixation by microorganisms [ML-2T-1]; 𝐹𝑁𝑎𝑔
𝑤  and 𝐹𝑁𝑛𝑔

𝑤  are groundwater source/loss for 

total ammonia nitrogen and nitrate nitrogen respectively [MT-1]; and fN is the fraction of total 

ammonia in ionized form.  

Soil organic nitrogen is modelled as 

𝑉𝑠
𝑑𝑁𝑜𝑟

𝑑𝑡
= 𝑓𝑟𝑎𝑛𝑎𝑘𝑑𝑏𝑓𝑏𝑠𝑏 + 𝑓𝑟𝜈𝑠𝜙𝑤𝐴𝑁𝑜𝑤 − 𝜈𝑟𝜙𝑤𝐴𝑁𝑜𝑟 − 𝑉𝑠𝑘𝑚𝑟𝑁𝑜𝑟 − 𝜈𝑏𝐴𝑁𝑜𝑟 + 𝑓𝑟(1 − 𝑓𝑠𝑤)𝐴𝑆 

𝑉𝑠
𝑑𝑁𝑜𝑠

𝑑𝑡
= 𝑓𝑠𝑎𝑛𝑎𝑘𝑑𝑏𝑓𝑏𝑠𝑏 + 𝑓𝑠𝜈𝑠𝜙𝑤𝐴𝑁𝑜𝑤 − 𝜈𝑟𝜙𝑤𝐴𝑁𝑜𝑠 − 𝑉𝑠𝑘𝑚𝑠𝑁𝑜𝑠 − 𝜈𝑏𝐴𝑁𝑜𝑠 + 𝑓𝑠(1 − 𝑓𝑠𝑤)𝐴𝑆 

where 𝑁𝑜𝑟 and 𝑁𝑜𝑠 are defined above; 𝜈𝑏 is burial velocity [LT-1]; Vs = HA is volume of active 

sediment layer [L3]; and H is thickness of active soil layer [L]. 

N dynamics in the aerobic soil layer is modelled as: 
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𝜙𝑉1𝑅𝑠

𝑑𝑁𝑎1

𝑑𝑡
= −𝐴𝛽𝑎1(𝑁𝑎1 − 𝑁𝑎𝑤) + 𝐹𝑁𝑎𝑔

1 − 𝑓𝑎1𝑎𝑛𝑎𝑘𝑔𝑏𝑓1𝑏 − 𝜙𝐴𝜈𝑏𝑁𝑎1 − 𝜙𝑉1𝑓𝑁𝑘𝑛𝑠𝑁𝑎1

+ 𝐴𝛽𝑎2(𝑁𝑎2 − 𝑁𝑎1) + 𝑉1𝑘𝑚𝑟𝑁𝑜𝑟 + 𝑉1𝑘𝑚𝑠𝑁𝑜𝑠 
 

𝜙𝑉1
𝑑𝑁𝑛1

𝑑𝑡
= −𝐴𝛽𝑛1(𝑁𝑛1 − 𝑁𝑛𝑤) + 𝐹𝑁𝑛𝑔

1 + 𝜙𝑉1𝑓𝑁𝑘𝑛𝑠𝑁𝑎1 − 𝐴𝛽𝑛2(𝑁𝑛1 − 𝑁𝑛2) − 𝑓𝑛1𝑎𝑛𝑎𝑘𝑔𝑏𝑓1𝑏

− 𝜈𝑏𝜙𝐴𝑁𝑛1 
 

where V1 is volume of aerobic soil [L3]; Rs is total ammonia retardation factor in wetland soil; ϕ 

is wetland soil porosity; Na2 is total ammonia-nitrogen pore-water concentration in lower 

anaerobic layer [ML-3]; Nn2 is nitrate-nitrogen pore-water concentration in lower anaerobic layer 

[ML-3];  𝑓1 =
𝑙1

(𝑙1 + 𝑙2)
⁄ is volumetric fraction of aerobic soil layer; l1 is thickness of aerobic 

soil layer [L]; l2 is thickness of anaerobic soil layer [L]; 𝐹𝑁𝑎𝑔
1  and 𝐹𝑁𝑛𝑔

1   are, respectively, 

groundwater source/loss of total ammonia nitrogen and nitrate in the aerobic layer [MT-1]; and 

ms is soil bulk density [ML-3]. 

N dynamics in the anaerobic soil layer is modelled as: 

 

𝜙𝑉2𝑅𝑠

𝑑𝑁𝑎2

𝑑𝑡
= −𝐴𝛽𝑎2(𝑁𝑎2 − 𝑁𝑎1) − 𝜙𝐴𝜈𝑏(𝑁𝑎2 − 𝑁𝑎1) + 𝐹𝑁𝑎𝑔

2 + 𝑉2𝑘𝑚𝑟𝑁𝑜𝑟 + 𝑉2𝑘𝑚𝑠𝑁𝑜𝑠

− 𝑓𝑎2𝑎𝑛𝑎𝑘𝑔𝑏𝑓2𝑏 

𝜙𝑉2𝑅𝑠

𝑑𝑁𝑛2

𝑑𝑡
= −𝐴𝛽𝑛2(𝑁𝑛1 − 𝑁𝑛2) − 𝜙𝑉2𝑘𝑑𝑛𝑁𝑛2 − 𝜙𝐴𝜈𝑏(𝑁𝑛2 − 𝑁𝑛1) + 𝐹𝑁𝑛𝑔

2 − 𝑓𝑛2𝑎𝑛𝑎𝑘𝑔𝑏𝑓2𝑏 

where Nag is total ammonia-nitrogen concentration in ground water [ML-3]; Nng is nitrate-

nitrogen concentration in ground water [ML-3]; 𝑓2 =
𝑙2

(𝑙1 + 𝑙2)
⁄  is volumetric fraction of  

reduced soil layer; V2 is volume of anaerobic soil [L3]; 𝐹𝑁𝑎𝑔
2  and 𝐹𝑁𝑛𝑔

2  are groundwater 

source/loss of total ammonia nitrogen and nitrate in the anaerobic layer [MT-1]. For more 

information about parameters, their distributions and other information refer Hantush et al. 

(2012) and Kalin et al. (2012).  
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3. Study sites - Headwater slope wetlands in coastal Alabama: 

Data was collected from three headwater slope wetlands located in Baldwin County, AL: NF 

(30.354235°, -87.631394°) located at the headwaters of a smaller tributary to Owen’s Bayou, OF 

(30.342071°, -87.638012°) located at the headwaters of Graham Creek, and BM (30.855272°, -

87.779157°) located at the headwaters of a tributary to Bay Minette Creek (Figure 2). Wetlands 

OF and NF are located within the city of Foley, and wetland BM in the city of Bay Minette. OF 

and NF feed into Graham Creek and Owen’s Bayou respectively, which drain into Wolf Bay 

downstream. In order of proximity to the coast from closest to farthest, the wetlands are ordered 

from OF, NF and BM being the farthest away. Hydrology at these three wetlands were 

monitored at discernible surface water inlets and outlets from approximately 8 to 16 months in 

2013 and 2014, with sporadic baseflow (14-22 samples) and stormflow DIN concentrations (13-

20 samples) (Figure 3). As can be observed from Figure 2, the BM wetland drains a highly urban 

watershed and has the flashiest hydrology with very little baseflow (Figure 3). The NF wetland 

hydrology is also somewhat flashy but has a consistently high baseflow. In the most forested 

watershed, OF wetland has flows that are low and damped with consistent baseflows. DIN 

concentrations at all sites were quite low and load reductions were observed at all three wetlands 

(refer Chapter 2). Further details regarding headwater slope wetlands, and data collection can be 

found in Chapter 2. 

Bathymetry data (stage, volume, area) for the wetlands were generated using the Storage 

Capacity Tool, a tool available through the Spatial Analysis toolbox in ArcMap Vers.10.4. This 

tool generates a table of water surface elevations and corresponding storage capacities for a 

given surface raster. A 3m DEM for Baldwin County (raster) and extents of the three wetlands 

(polygons) were used as inputs to the Storage Capacity Tool to compute wetland area and 
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volume at 0.1m stage increments. Regression relationships between stage, area and volume were 

used to generate time series of wetland area and volume corresponding to observed stage at each 

wetland.  

4. Sensitivity analysis using WetQual 

4.1 Preparing flow data  

Hydrographs for all three wetlands are presented in Figure 3. Flow data for the headwater slope 

wetlands have gaps which need to be filled since WetQual requires continuous time series of 

flow. For this purpose, flows generated by the Soil and Watershed Assessment Tool (SWAT) 

(Neitsch et al. 2009) and calibrated with observed data using SWAT Calibration and Uncertainty 

Program (SWAT-CUP) (Abbaspour et al. 2008) were used to fill in data gaps.  

The SWAT model is a widely used watershed scale, process-based hydrologic model that 

was developed by the United States Department of Agriculture (Arnold et al. 1998) which can 

operate on daily, monthly or annual scales. Further details regarding SWAT can be referred from 

Neitsch et al. (2009). We used SWAT version SWAT-2012 through the ArcSWAT interface in 

ArcGIS 10.0 for all SWAT simulations. All the GIS data required for ArcSWAT setup was 

downloaded from the USGS’s online Seamless Data Warehouse 

(https://datagateway.nrcs.usda.gov). Watershed boundaries for each of the wetlands were 

delineated using elevation data obtained from the National Elevation Dataset (NED) DEM 

developed by USGS, and hydrography data from the National Hydrography Dataset (NHD). 

While DEMs of 3m resolution (1/9 arc-second) were available only for OF and NF wetlands, 

DEMs of 10m (1/3 arc-second) resolution were available for all three wetlands. Hence, the 10m 

DEM was used to delineate the watershed and simulate flow at the BM wetland. Since model 
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outputs did not differ between 10m and 3m DEMs at the NF wetland, results from the former 

were retained. At the OF wetland, however, model outputs were markedly different for the 3m 

DEM and these were retained. Hydrography was further modified and digitized to include 

headwaters with channel extensions to improve more accurate watershed delineation and 

streamflow routing in SWAT (Amatya and Jha 2011). Land use data was obtained from the 2011 

National Land Cover Dataset (NLCD) and manually updated to reflect current land use in the 

watersheds. Soil parameters were derived from the county level Soil Survey Geographic 

(SSURGO) dataset. Slopes were divided into 3% classes (0-3%, 3-6%, 6-9%, etc.). Daily 

weather data was obtained from the National Weather Service’s National Climatic Data Center 

stations closest to the wetlands. Daily maximum and minimum temperature for the study period 

was available from a station in Robertsdale (station GHCND: USC00016988) in Baldwin County 

(Figure 2) and daily precipitation for the wetlands was obtained from NEXRAD. HRUs were 

created using a 0-10 % overlay of landuse, soil and slope, and the Hargreaves method was used 

for calculation of potential evapotranspiration. Since the duration of observed data was short (≤ 

1.5 years), we did not split the data to perform validation – instead all the data was used for 

calibration, intended to fill gaps in observed flow data. 

The SWAT Calibration and Uncertainty Program (SWAT-CUP) was developed 

specifically to be used with SWAT in order to report uncertainty in the results by propagating 

parameter uncertainties (Abbaspour et al. 2008). Various SWAT parameters were identified for 

auto-calibration, through initial manual calibration as well as from literature. Parameter ranges 

were then propagated by Latin hypercube sampling using the SUFI-2 algorithm in SWAT-CUP 

(Abbaspour et al. 2008) and the outputs were represented as a 95% prediction uncertainty band 

(95PPU), bounded by the 2.5% and 97.5% levels of the cumulative distribution of the output 
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variable. Basically, the 95PPU represents an envelope of possible solutions generated by the 

parameter ranges. Usually <5 iterations each of 300-500 simulations (depending on the time it 

takes) are conducted in SWAT-CUP, where the user initially starts out with larger parameter 

ranges which get smaller with each iteration.  

SWAT models were set up for each of the study headwater wetlands. Previously 

calibrated parameter values reported in Wang and Kalin (2011) for Magnolia River watershed 

were used as starting parameter values in SWAT models for the Foley wetlands; this was done 

since the Magnolia River watershed is situated adjacent to the Wolf Bay watershed of which the 

Foley headwater slope wetlands are a part. Some manual calibration was done initially to ensure 

some parity between simulated and observed flows for all 3 study wetlands. For flashy systems, 

as observed in the BM wetland, parameters such as SCS curve number (CN2) were adjusted. For 

baseflow dominated wetlands such as OF and NF, parameters such as groundwater delay 

(GWDELAY), deep aquifer recharge coefficient (RCHRGE_DP) and baseflow alpha factor 

(ALPHA_BF) were adjusted, along with SCS curve number (CN2). For the OF and BM 

wetlands, activating the pond feature (.pnd) to account for wetland area in the SWAT subbasins 

improved flow prediction. Model parameters were calibrated at daily timescales for flow. For all 

wetlands, the parameter RCHRGE_DP was extended outside its default minimum of 0 to -50. 

This was done to allow for deep aquifer discharge into the shallow aquifer and consequently to 

baseflow (refer Approach 2 in Chapter 3 for more details).  

Following manual calibration, around sixteen parameters influencing different aspects of 

surface and subsurface flows were chosen for auto-calibration from literature. We considered 13 

– 18 parameters for automated calibration including ones that govern subsurface water response, 

surface water response, basin response and wetland response (if required). Depending upon the 
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needs of autocalibration, variables were added or deleted from the initial set to achieve improved 

performance measures. Performance measures such as the Nash Sutcliffe Coefficient (ENASH) 

(Nash and Sutcliffe 1970) was used to judge the closeness of SWAT simulations to observed 

flows. In all cases the “best” simulation for SWAT-CUP with the highest ENASH was used to fill 

up gaps in flow data. Since flows for BM and OF wetlands (inflow and/outflow) are available 

from January 2013, missing data was filled to get continuous daily flows from January 1, 2013 

until May 1, 2014. Both inflows and outflows for NF wetlands were available only from August 

10, 2013; hence daily continuous flow with missing days filled were generated only from August 

10, 2013 until May 1, 2014.   

4.2 Preparing nutrient data and scenarios 

We examined the sensitivity of Organic-N and Ammonia-N inputs on Nitrate-N export from the 

three wetlands using wetland model, WetQual as a tool. Inputs to WetQual include hydrology 

(inflow, outflow, groundwater recharge/discharge), bathymetry (stage, area, volume), climate 

(air temperature, precipitation, ET, wind speed), dissolved oxygen (DO), and nutrients entering 

the systems through inflows, groundwater and atmospheric deposition. Missing data in inflows 

and outflows for the headwater slope wetlands were reconstructed using the best simulation from 

SWAT-CUP results for flow calibration (January 1, 2013 – May 1, 2014 for BM and OF 

wetlands, and August 10, 2013 – May 1, 2014 for NF wetland). However, among input nutrient 

data at the headwater slope wetlands, only sporadic DIN concentrations were available to us 

(Figure 3). We used the LOADEST program (Runkel et al. 2004) to generate the daily DIN 

loading time series from which we computed daily DIN concentrations. LOADEST generates a 

regression relationship using user-provided observed water quality and flow measurements 

(calibration dataset), using which it extrapolates daily loads from user-provided daily discharge. 
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LOADEST gives the users the option of selecting a regression model for load estimation, or 

allowing the program to choose the best model from a set of predefined models. We relied on 

both options for the sites, depending on the ENASH values obtained on comparing load estimates 

with observed loads on days when both flow and nutrient concentrations were available. Daily 

DIN concentrations were then calculated from the LOADEST generated DIN load estimates.  

From the Alabama Department of Environmental Management (ADEM) water quality 

reports for stations along Bay Minette Creek and Wolf Creek (another creek in the Wolf Bay 

watershed close to NF and OF) (ADEM 2004, 2014, 2017a, 2017b), surface water DIN 

concentrations in the region are mainly dominated by Nitrate-N with very small levels of 

Ammonia-N; thus we used DIN as a proxy for Nitrate-N in the WetQual model for the headwater 

slope wetlands. Dissolved oxygen (DO) input was derived from SWAT-CUP outputs associated 

with flow calibration (which was used to fill up missing flows). Groundwater Nitrate-N 

concentration was set to a constant value as the average concentration of DIN in baseflow 

(represented by grab samples at the headwater slope wetlands). Atmospheric deposition data 

were derived from the National Atmospheric Deposition Program’s website (NADP; 

http://nadp.slh.wisc.edu/data/NTN/). When available, water temperature was derived from the 

transducer used to measure stage at the wetlands’ outflow; else water temperature from SWAT-

CUP outputs were used. Time-series of groundwater recharge/discharge was calculated using 

simple mass balance at daily time-step. 

Thirty scenarios of Organic-N and Ammonia-N concentrations were considered for each 

of the wetlands. Organic-N was varied as 0, 0.5,1, 2, 5 and 10X Nitrate-N concentrations, while 

Ammonia-N was varied as 0, 0.1, 0.25, 0.5 and 1X Nitrate-N concentrations. Water quality data 

reports for different watersheds in Alabama show that Ammonia-N concentrations rarely exceed 
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Nitrate-N in Alabama’s Coastal Plain (ADEM 2004, 2014, 2017a, 2017b), while Organic-N can 

constitute a significant percentage of total nitrogen loads in southeastern rivers close to the coast 

(Scott et al. 2007); thus Organic-N was varied by a much larger range compared to Ammonia-N. 

Since DO values estimated by SWAT-CUP simulations were very small (<0.1 mg/L), we also 

included one scenario varying DO as 100X SWAT-CUP simulated DO, resulting in a total of 31 

scenarios (Table 1). Parameter distributions from WetQual were informed from Kalin et al. 

(2012). Using these distributions, we generated 10,000 parameter sets. For each nutrient 

scenario, the pertinent inputs (hydrography, climate, nutrients) were fed into WetQual and 

Monte-Carlo simulations were performed by running WetQual one parameter set at a time thus 

yielding 10,000 time-series of Nitrate-N export for each scenario (Kalin et al. 2012). This was 

done for period from January 1, 2013 to May 1, 2014 for BM and OF wetlands, and from August 

10, 2013 to May 1, 2014 for NF wetland – the period for which we have daily flow and other 

pertinent inputs. For each scenario, the 25th and 75th percentiles (C25 and C75) and the median 

(CM) of 10,000 Nitrate-N time-series were extracted from the Monte-Carlo simulations. These 

three time-series were compared among the different scenarios for each wetland and a sensitivity 

index, calculated as the average of a normalized measure of band width for each of the three 

measures, was used to assess sensitivity of Nitrate-N export to input Organic-N and Ammonia-

N. The sensitivity index, SI was calculated as: 

Sensitivity index, SI = 
∑(𝑥𝑚𝑎𝑥,𝑖−𝑥𝑚𝑖𝑛,𝑖)

∑𝑥𝑚𝑑,𝑖
× 100 

where xmax, xmin and xmd are the maximum, minimum and median values of Nitrate-N output at 

daily time-step, i, each for C25, C75 and CM to assess the sensitivity of C25, C75 and CM to input 

Organic-N, Ammonia-N and DO at the four wetlands, and n is the number of days simulated at 

each wetland. 
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We also thought it pertinent to test sensitivity of Nitrate-N predictions for the headwater 

slope wetlands under different scenarios of reduced flow rates as a way to understand how 

smaller flow rates, and consequently smaller loadings and higher residence times, would 

influence sensitivity of Nitrate-N exports to Organic-N and Ammonia-N inputs. To this end, we 

conducted WetQual runs using different hydrological scenarios where inflows were reduced by 

20, 40, and 60%. Daily outflow, volume, area and stage corresponding to each reduced inflow 

scenario, to be used as inputs to WetQual, were generated using a combination of regression 

relationships and Artificial Neural Network (ANN) models developed from observed data at the 

wetlands. ANNs are black-box models where detailed understanding of the internal processes is 

not required to develop relationships between the inputs and outputs (Isik et al. 2013; Srivastava 

et al. 2006; Noori and Kalin 2016). Between the input and the output layers, a number of user-

defined hidden layers exist where most of the processing takes place. Input data is fed into the 

input layer, which communicates with nodes in the hidden layer(s), which then link to an output 

layer where the response of the ANN model corresponding to each input data point is received 

(Srivastava et al. 2006).  

First an ANN model, calibrated for observed outflow or stage, was created using daily net 

water input to the wetland (I) and antecedent water input calculated over three days’ prior (I3) as 

inputs. Daily net water input to the wetland, I, was calculated as 

 Ii = qin,i + Pi – ETi  ; 𝑞𝑖𝑛,𝑖 =
𝑄𝑖𝑛,𝑖

𝐴
  

where Qin is the inflow [L3T-1], A [L2] is the wetland area for h = 1m, P is the precipitation [LT-1], 

ET is the evapotranspiration [LT-1], and i is the daily time step. Antecedent water input 

calculated over three days’ prior, I3, was calculated as 

 I3,i = Ii-1+Ii-2+Ii-3 
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where i-1, i-2 and i-3 refer to one day prior, two day prior and three day prior time steps. The 

calibration performance between ANN model prediction and observed data was measured using 

ENASH (Nash and Sutcliffe 1970). In this way, an ANN model was created where outflow (or 

stage) was expressed as a function of I and I3. The choice of outflow or stage depended on which 

calibration fully captured the range of the target. This ANN model was then applied to each 

reduced inflow scenario (20, 40 and 60% reduction in inflow) and corresponding outflow or 

stage was generated. Regression relationships, previously developed among bathymetry elements 

and observed outflow, were then used to reconstruct the other relevant hydrological and 

bathymetry inputs from the generated outflow/stage for each reduced inflow scenario. For each 

of the three hydrological scenarios at the three wetlands, all 31 scenarios (30 nutrient scenarios + 

1 DO scenario) were run and SIs were calculated. We used MATLAB R2016a version 9.0.0 for 

ANN model construction and implementation.  

5. Results and Discussion 

5.1 Flow calibration and reconstructing gaps in observed flow 

Flows were calibrated using SWAT and SWAT-CUP software using observed flow data for the 

wetlands which were available (with data gaps) from January 1, 2013 - May 1, 2014 at BM and 

OF wetlands, and from August 10, 2013 to May 1, 2014 at the NF wetland. Calibrated parameter 

ranges and values for the “best” flow calibration using SWAT-CUP are presented in Table 2. 

Calibrated flows were used to fill in gaps in the observed flow data. All, except the inflow at OF 

had a high calibration performance with the best simulation having ENASH ≥ 0.6 (OF inflow 

calibration had ENASH = 0.4). Given the high baseflows at NF, flow calibration was considerably 

challenging and was accomplished by manually manipulating the deep aquifer recharge factor, 
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RCHRGE_DP, from its default positive value to a negative value to recover losses to the deep 

aquifer as contributions to baseflow. This is described in detail in Chapter 3. Following 

reconstruction of missing flows, BM and OF wetlands had continuous flow data from January 1, 

2013 to May 1, 2014, and NF wetland from August 10, 2013 to May 1, 2014, for which period 

the sensitivity analysis was carried out. 

From SWAT-CUP results, the most sensitive parameters at the 0.05 significance level for 

BM inflow included CH_K2 (effective hydraulic conductivity in the channel), ALPHA_BNK 

(baseflow alpha factor for bank storage), CH_N2 (Manning’s n value for the main channel) and 

ESCO (soil evaporation compensation factor), and for BM outflow included CH_K2 and 

ALPHA_BNK. Since most of these parameters describe physical processes of the channel, it 

confirms the highly surface flow driven character of the wetland. A mix of surface flow and 

groundwater flow parameters were sensitive at the NF inflow and outflow giving further 

credence to the fact that hydrology here is influenced by both surface water and groundwater 

characteristics. The most sensitive parameters at the NF inflow were CN2 (SCS curve number), 

RCHRGE_DP (deep aquifer recharge factor), GW_DELAY (groundwater delay time), SOL_BD 

(soil bulk density), ALPHA_BF (baseflow alpha factor), and at NF outflow were CN2, 

RCHRGE_DP, ALPHA_BF and SOL_AWC (available water capacity of the soil). This is in 

contrast with the OF wetland where purely groundwater parameters were sensitive reflecting the 

entirely groundwater driven nature of the wetland. Parameters RCHRGE_DP, ALPHA_BF, and 

NDTARG (pond parameter describing number of days needed to reach target storage from 

current pond storage) were sensitive at OF inflow and outflow.  
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5.2 Sensitivity analysis 

The SIs for the three wetlands for C25, C75 and CM of Nitrate-N outputs are presented in Figure 4. 

From the figure, all the study headwater slope wetlands had very low variation in Nitrate-N load 

outputs from changing Organic-N, Ammonia-N and DO inputs sensitivity (SI < 0.5%). 

Sensitivity of Nitrate-N export to fluctuations in each, Organic-N and Ammonia-N, are shown in 

Figure 5. While still extremely small, Nitrate-N export showed relatively higher sensitivity to 

changing Ammonia-N inputs compared with Organic-N inputs, perhaps because it can readily 

undergo nitrification to Nitrate-N. Changing DO also had negligible influence on Nitrate-N 

export (hence not presented separately in a figure or table). Sensitivities increased marginally 

with decreased flow rate scenarios in the headwater slope wetlands; the change was higher for 

OF wetland than for BM or NF wetlands (Figure 6). Possibly the flow reductions in NF and BM 

wetlands, whose flows are much larger than the OF wetland, were not enough to reap the 

benefits of increased residence time and effect N transformation. From this exercise we 

concluded that Nitrate-N predictions in headwater slope wetlands were insensitive to Organic-N, 

Ammonia-N and DO in the inflows, and consequently their lack of data thereof would not impact 

WetQual predictions of Nitrate-N. At this juncture, we paused to consider if these results applied 

to any other kinds of wetlands, primarily because flow and nutrient data from a vastly different 

wetland was available to us and performing a similar analysis sensitivity might be a useful way 

of double-checking and interpreting results. This wetland is a surface-water driven depressional 

wetland located, not at the headwaters, but near the mouth of Prospect Bay which is an inlet of 

the Chesapeake Bay in Maryland. Would the same sensitivity analysis results from the headwater 

slope wetlands hold for this wetland type? And how might that improve our understanding in 

context of the headwater slope wetlands? 
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The wetland, called Barnstable (BS), is located in the southern portion of Kent Island, a 

part of the Delmarva Peninsula in Maryland (Figure 7). The watershed is predominantly 

agricultural with some forested area. This wetland was restored from an artificially drained 

cropland by the Chesapeake Wildlife Heritage to improve wildlife habitat and mitigate pollutant 

loads from agricultural runoff (Sharifi et al. 2013). The BS wetland is purely surface-water fed 

since an impermeable clay layer was laid within 0.5m of the soil surface during restoration which 

blocks all groundwater exchanges and infiltration. The wetland was monitored for approximately 

two years for flow and water quality data from 1995 through 1997 (Figure 8; see Jordan et al. 

2003) and was used to validate the wetland nutrient cycling model, WetQual, utilized in this 

paper (Hantush et al. 2012; Kalin et al. 2012; Sharifi et al. 2013). While parametric sensitivity 

and uncertainty has been assessed at this wetland previously, input data sensitivity has not. 

All input data such as hydrology, bathymetry and water quality data were available for 

the depressional wetland in Maryland for a period of 2 years from 1995-1997. Since Nitrate-N 

data was measured on a weekly basis at the Maryland wetland, we converted it to daily values by 

assuming concentrations to remain constant over the week and missing data was filled by taking 

averages of the last available measurement before the gap and the first available measurement at 

the end of the gap (refer to Kalin et al. 2012). The same 31 scenarios considering variations in 

Organic-N, Ammonia-N and DO were applied to this wetland and Nitrate-N export was 

generated using WetQual in the same manner described for the headwater slope wetlands. At this 

site, however, Nitrate-N load export showed much higher sensitivity to surface water inputs of 

Organic-N and Ammonia-N with SI of 7.6-9.1% (Figure 9). Keeping all else the same between 

scenarios, Nitrate-N export concentrations were more sensitive to fluctuations in Ammonia-N (SI 
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= 8.2 to 9.2%) than Organic-N (SI < 2%) which followed similar trends as that observed at the 

headwater slope wetlands.  

The differences in SIs between the headwater slope wetlands and the BS wetland could 

be due to several reasons. A major factor is the difference in bathymetry between the four 

wetlands. The BS wetland is a predominantly surface-water driven depressional wetland; all 

inputs enter via surface water and are retained in the wetland where nutrient transformations take 

place, until outflow stage exceeds 1m beyond which outflows occur. Average depth at the 

wetland is about 0.2 m and hydraulic detention time, calculated as the ratio of volume to inflow 

rate, is >1week though days with detention times as low as 0.5 days were reported (Jordan et al. 

2003). The soils are silty loam with a clay impermeable aquiclude beneath effectively cutting off 

any groundwater interactions. The headwater slope wetlands, on the other hand, are riparian 

wetlands that occur above and alongside 1st order headwater streams. These wetlands have 

highly permeable soils and groundwater interactions are high; groundwater dominated the flow 

for over > 88% of the time at NF and OF, and ~35% of the time at BM (52% at the inflow and 

19% at the outflow). Average flow depths were similar between the wetlands for the time period 

for which each of them was studied; 0.36m at BM, 0.27 m at NF, 0.33m at OF, and 0.2m at BS. 

However, while flows are stored in the depressional BS wetland, headwater slope wetlands are 

typically incapable of depressional storage because they lack closed contours (NRCS 2008). 

Outflows are continuous in the headwater slope wetlands with the deepest part of the wetlands 

occurring at the outflows. Headwater slope wetlands occur along a gradual slope and contribute 

flows and other material to the creeks. Water detention time is very small at these wetlands and 

averages 0.05 days at BM, 0.04 days at NF and 0.02 days at OF. However, this detention time 

considers only the main advection flow in the stream channel since sampling was done at the 
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discernible flow channels entering and leaving the wetlands. It is widely reported that bulk of 

nutrient transformation and uptake in small riparian wetlands happens through transient storage, 

i.e., temporary hydrologic retention of stream water apart from the main advection flow in the 

stream channel (Ensign and Doyle 2005). However, this was not measured in this study.   

Of the headwater slope wetlands, Nitrate-N export from the BM wetland showed higher 

sensitivity to changing N inputs. The BM wetland is situated at a much higher elevation 

compared to the Foley wetlands, as well as in the most urbanized watershed. The channel here is 

also more incised compared to the Foley wetlands. Of the three wetlands, water residence time 

associated with advection flow was relatively larger for this wetland (~0.04 days). The stream 

channel here went dry multiple times and did not have a consistent baseflow; it is possible that 

flows quickly percolated contributing to groundwater recharge here, or got trapped behind 

sediment accumulations in the channel which may have allowed for transient storage leading to 

prolonged contact between the water column and the streambed thus allowing favorable 

conditions for N transformations to take place. The presence of higher percentage of impervious 

surfaces within the BM watershed could have decreased groundwater input to the wetland 

leading to periodic discharge into the stream during storm events. The absence of constant 

groundwater Nitrate-N contributions combined with high propensity for transient storage due to 

sediment in the channel may have increased sensitivity of Nitrate-N export to varying Organic-N 

and Ammonia-N inputs. For both the Foley wetlands, constant groundwater input to the wetland, 

and consequently Nitrate-N input through this pathway, could have contributed to decreased 

water retention time and negligible sensitivity to varying N inputs. Very low Nitrate-N inputs, 

Organic-N and Ammonia-N inputs in the headwater slope wetlands could also have contributed 

to the low sensitivity indices observed in these wetlands.  
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6. Conclusions and limitations 

The results of this study indicate that when predicting Nitrate-N export from small wetlands such 

as these in the study, details regarding Organic-N and Ammonia-N inputs are significant for 

surface fed depressional wetlands and not necessarily for groundwater fed systems. In the latter, 

it may be more important to accurately quantify all sources of Nitrate-N entering the system to 

improve predictions of Nitrate-N export from these systems. In these systems changes in Nitrate-

N could be affected by elevated baseflows which add more Nitrate-N to the system, and instream 

processing in stagnant pools formed around natural stream dams (Angier and McCarty 2008). 

This is an important finding, because often detailed input data for running and calibrating models 

are missing. We show that when we are modeling Nitrate-N, having Ammonia-N and Organic-N 

data are not too critical for groundwater fed headwater slope wetlands, but very critical for 

surface water driven depressional wetlands.  

We acknowledge that there are some limitations to this study, the most important of 

which is the uncertainties associated with the availability of data at the slope wetlands. Flows 

and DIN for the headwater slope wetlands were available only at discernible surface water inlets 

and outlets; given our limited resources we were unable to monitor other sources of flow and 

DIN to the wetlands. Being a groundwater dominant system, there may have been other 

hydrological flow paths that we failed to consider which, in turn, may have affected our 

quantification of daily DIN concentrations and loads entering the slope wetlands. However, 

without preliminary monitoring efforts it is challenging to foretell the extent of groundwater 

dominance or identify enough resources for hydrology/water quality monitoring at high 

resolution. Usually it is the understanding gained from preliminary monitoring efforts that 

informs subsequent data collection and study directions. The other potential limitation could be 
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with our consideration of model WetQual to conduct the sensitivity analysis. Previous WetQual 

applications have involved depressional wetlands and not slope wetlands which could have 

influenced the results of the analysis. However, wetland models tend to be site-specific and data-

intensive; given data limitations, WetQual seems suitable for the data resolution at hand. Also, 

there is a possibility that DIN concentrations at the slope wetlands were too low for WetQual to 

result in sensitive trends in quantified outputs. Further research involving quantification of 

subsurface inflows and outflows using piezometers and quantifying associated N concentrations 

to get a better picture of hydrological and nutrient budgets is required to reduce some of the 

uncertainties. What we have presented through this study offers suggestions to prioritize data 

collection efforts for modeling efforts and consequently aid in decision making with regard to 

management efforts. A validation of similar sensitivity analysis on slope wetlands in other areas 

with higher DIN concentrations would be useful to validate the results presented in this study. 
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Figures 

 
Figure 1. Nitrogen cycling and retention in WetQual model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



131 

 

 

 
 

 

Figure 2. Study headwater slope wetlands in Baldwin County  
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Figure 3. Observed flows and DIN concentrations at headwater slope wetlands in Baldwin 

County AL. All data before Dec 1 2013 consist of grab samples, and all after Dec 2013 consist of 

automated samples using ISCOs. 
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Figure 4. Sensitivity indices for Median (CM), 25th percentile (C25) and 75th percentile (C75) of 

Nitrate-N load outputs generated by WetQual for varying inputs of Organic-N, Ammonia-N and 

DO in headwater slope wetlands in Alabama’s coastal plain  
 

 

 
 

Figure 5. Sensitivity indices for Median (CM), 25th percentile (C25) and 75th percentile (C75) of 

Nitrate-N concentration outputs from WetQual for varying inputs of Organic-N, Ammonia-N 

and DO in headwater slope wetlands in Alabama’s coastal plain. The figure on the left presents 

SIs for scenarios varying only in their Ammonia-N input, while the figure on the right represents 

SIs for scenarios varying only in their Organic-N input. As can be observed, Nitrate-N export 

was relatively more sensitive to variations in Ammonia-N inputs than Organic-N inputs.  
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Figure 6. Sensitivity indices for Median (CM), 25th percentile (C25) and 75th percentile (C75) of 

Nitrate-N load outputs from WetQual simulations for varying inputs of Organic-N, Ammonia-N 

and DO in headwater slope wetlands in Alabama’s coastal plain for 20, 40 and 60% reductions in 

inflow. While SI for OF increases some with reduction in inflow, observed SI is still <3%. 
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Figure 7. Barnstable (BS) wetland in Maryland. This is a depressional wetland 
 

  

Figure 8. Observed flows and Nitrate-N concentrations at the Barnstable wetland (BS) in 

Maryland 
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Figure 9. Comparison of sensitivity indices for Median (CM), 25th percentile (C25) and 75th 

percentile (C75) of Nitrate-N outputs from WetQual simulations for varying inputs of Organic-N, 

Ammonia-N and DO in headwater slope wetlands in Alabama’s coastal plain (BM, NF and OF) 

and a depressional wetland in Maryland (BS). From the calculated SIs, the BS wetland in 

Maryland is much more sensitive to varying Organic-N and Ammonia-N inputs than the 

headwater slope wetlands. 
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Tables 

 

Table 1. Thirty-one input scenarios used to test the sensitivity of Nitrate-N export to inputs of 

Organic-N, Ammonia-N and dissolved oxygen (DO). Sensitivity analyses were conducted using 

WetQual model. These analyses were also repeated for different scenarios of reduced flows for 

the headwater slope wetlands.  
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Table 2. Calibrated parameter ranges and fitted values for “best” simulation following flow 

calibration using SWATCUP at study headwater slope wetlands. The P-factor (% of observed 

data enveloped by 95PPU), R-factor (thickness of 95PPU) and ENASH are indicators of calibration 

performance, where the factors indicate the performance of the 95PPU and the latter indicates 

performance of the “best” simulation. No hard numbers exist for what values the factors should 

be. P-factor>0.7 and R-factor ~1 are suggested for flow calibration. High ENASH indicates good fit 

with observed data (Abbaspour et al. 2008) 

Wetland Location  Performance Parameter_Name 

Fitted_ 

Value 

Min_ 

value 

Max_ 

value 

Bay 

Minette 

(BM) Inflow P – factor = 0.44 1:R__CN2.mgt 0.2112 -0.0304 0.3091 

  R – factor = 0.26 2:V__ALPHA_BF.gw 1.1478 0.4340 1.3027 

  ENASH = 0.88 3:V__GW_DELAY.gw 124.0592 0.0100 272.6457 

   4:V__GWQMN.gw 71.8229 0.0100 110.2088 

   5:V__GW_REVAP.gw 0.1001 0.0200 0.1215 

   6:V__ESCO.hru 0.9736 0.8651 0.9955 

   7:V__CH_N2.rte 0.0675 0.0547 0.2183 

   8:V__CH_K2.rte 13.5896 0.0100 68.4786 

   9:V__ALPHA_BNK.rte 0.8288 0.3373 1.0000 

   10:R__SOL_AWC(..).sol 0.5241 0.0664 0.5996 

   11:R__SOL_K(..).sol 0.1802 -0.2977 0.7083 

   12:R__SOL_BD(..).sol 0.1656 -0.1125 0.6635 

   13:V__SURLAG.bsn 5.3977 0.0500 6.4545 

   14:V__NDTARG.pnd 15.5417 11.0713 31.2387 

   15:V__PND_K.pnd 0.7919 0.4506 1.3527 

   16:V__RCHRG_DP.gw 0.4723 -0.2277 0.5911 

 Outflow P – factor = 0.14 1:R__CN2.mgt 0.1504 0.0036 0.2033 

  R – factor = 0.23 2:V__ALPHA_BF.gw 0.5695 0.3509 0.7838 

  ENASH = 0.59 3:V__GW_DELAY.gw 587.4499 420.9120 771.5181 

   4:V__GWQMN.gw 119.4230 54.0581 127.3646 

   5:V__GW_REVAP.gw 0.0649 0.0596 0.1759 

   6:V__REVAPMN.gw 155.7637 130.1761 443.4945 

   7:V__ESCO.hru 0.9171 0.8600 0.9811 

   8:R__OV_N.hru -0.1163 -0.1166 0.0953 

   9:V__SURLAG.hru 2.6356 1.1899 3.5535 

   10:V__CH_N2.rte 0.3493 0.2310 0.4429 

   11:V__CH_K2.rte 219.8718 124.0657 242.5887 

   12:V__ALPHA_BNK.rte 0.9703 0.7172 1.0000 

   13:R__SOL_AWC(..).sol 0.2128 -0.1568 0.2754 

   14:R__SOL_K(..).sol 0.6854 0.2989 1.2691 

   15:R__SOL_BD(..).sol -0.0208 -0.1329 0.2559 

   16:V__NDTARG.pnd 9.8967 1.0000 12.7838 

   17:V__PND_K.pnd 0.3199 0.0000 0.3292 



139 

 

     18:V__RCHRG_DP.gw 0.2029 -0.0029 0.6176 

New 

Foley 

(NF) Inflow P – factor = 0.84 1:R__CN2.mgt 0.2852 0.1259 0.4215 

  R – factor = 1.04 2:V__ALPHA_BF.gw 0.0823 0.0010 0.1729 

  ENASH = 0.75 3:V__GW_DELAY.gw 0.5626 0.0010 3.1039 

   4:V__GWQMN.gw 41.3123 25.9386 43.5892 

   5:V__GW_REVAP.gw 0.0945 0.0258 0.1010 

   6:V__ESCO.hru 0.9519 0.9163 0.9852 

   7:V__CH_N2.rte 0.1436 0.1248 0.2542 

   8:V__CH_K2.rte 131.7807 85.3318 142.1848 

   9:V__ALPHA_BNK.rte 0.3857 0.2315 0.7403 

   10:R__SOL_AWC(..).sol -0.4349 -0.4405 -0.0683 

   11:R__SOL_K(..).sol 0.2406 -0.0977 0.4419 

   12:R__SOL_BD(..).sol 0.0287 -0.2174 0.1337 

   13:V__RCHRG_DP.gw -15.2932 -19.5595 -13.0659 

 Outflow P – factor = 0.76 1:R__CN2.mgt 0.3378 0.2939 0.4170 

  R – factor = 0.74 2:V__ALPHA_BF.gw 0.0116 0.0010 0.0361 

  ENASH = 0.61 3:V__GW_DELAY.gw 0.1886 0.1021 0.6139 

   4:V__GWQMN.gw 40.5962 39.6825 47.3605 

   5:V__GW_REVAP.gw 0.0647 0.0517 0.0757 

   6:V__ESCO.hru 0.9888 0.9804 1.0000 

   7:V__CH_N2.rte 0.1758 0.1414 0.1764 

   8:V__CH_K2.rte 153.7072 137.2320 156.9156 

   9:V__ALPHA_BNK.rte 0.4214 0.3403 0.5118 

   10:R__SOL_AWC(..).sol -0.3983 -0.4798 -0.2450 

   11:R__SOL_K(..).sol 0.1740 0.0464 0.2062 

   12:R__SOL_BD(..).sol 0.1356 0.0174 0.1695 

     13:V__RCHRG_DP.gw -18.3424 -18.9908 -17.4433 

Old 

Foley 

(OF) Inflow P – factor = 0.95 1:R__CN2.mgt -0.1788 -0.1874 -0.1146 

  R – factor = 3.01 2:V__ALPHA_BF.gw 0.0003 0.0002 0.0008 

  ENASH = 0.44 3:V__GW_DELAY.gw 728.3104 475.2162 737.4899 

   4:V__GWQMN.gw 45.6854 24.8645 74.6356 

   5:V__GW_REVAP.gw 0.1195 0.1000 0.2000 

   6:V__ESCO.hru 0.9192 0.9000 1.0000 

   7:V__CH_N2.rte 0.1694 0.1295 0.2388 

   8:V__CH_K2.rte 23.5557 17.4981 25.4512 

   9:V__ALPHA_BNK.rte 0.4141 0.3311 0.6406 

   10:R__SOL_AWC(..).sol 0.1660 0.1108 0.2581 

   11:R__SOL_K(..).sol 0.2817 0.0289 0.5361 

   12:R__SOL_BD(..).sol 0.4139 0.2548 0.4712 

   13:V__RCHRG_DP.gw -5.8333 -6.0000 -2.0000 
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   14:V__NDTARG.pnd 6.8938 5.6392 16.8745 

 Outflow P – factor = 0.82 1:R__CN2.mgt -0.1301 -0.1409 -0.1296 

  R – factor = 0.68 2:V__ALPHA_BF.gw 0.0006 0.0005 0.0007 

  ENASH = 0.70 3:V__GW_DELAY.gw 634.3761 495.0437 654.6455 

   4:V__GWQMN.gw 48.8116 42.5454 48.8178 

   5:V__GW_REVAP.gw 0.1038 0.0649 0.1198 

   6:V__ESCO.hru 0.8649 0.8428 0.8976 

   7:V__CH_N2.rte 0.2609 0.2410 0.3133 

   8:V__CH_K2.rte 16.3606 16.0171 19.4185 

   9:V__ALPHA_BNK.rte 0.5717 0.4664 0.5953 

   10:R__SOL_AWC(..).sol 0.3556 0.2883 0.3568 

   11:R__SOL_K(..).sol 0.9841 0.7070 0.9930 

   12:R__SOL_BD(..).sol 0.3896 0.3567 0.3995 

   13:V__RCHRG_DP.gw -4.3412 -4.4873 -3.2592 

   14:V__NDTARG.pnd 2.3590 1.5213 4.3228 
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Chapter 5 

A secondary assessment of sediment trapping effectiveness by vegetated buffers 

 

Abstract 

 Vegetated buffers and filter strips are a widely used Best Management Practice (BMP) for 

enhancing streamside ecosystem quality and water quality improvement by non-point source 

pollutant removal. This study explores the sediment removal ability of riparian buffers through a 

secondary analysis study. We compiled data from 54 studies (including data from an online BMP 

database) concerning sediment trapping by vegetated buffers. We recorded data regarding buffer 

characteristics such as buffer width, slope, area, vegetation type, sediment and runoff loading, 

runoff rates and sediment removal efficiency. Variables such as residence time and roughness 

were also calculated. We found that an exponential regression model describing the relationship 

between sediment removal efficiency by the buffer and volume ratio explained 36% of the 

variance. Adding the square of residence time increased the R2 to 39.2%, while adding an 

exponential transformation of width further increased R2 to 40.5%. The model was compared 

with other sediment reduction regression models reported in literature namely those in White and 

Arnold (2009), Liu et al. (2008) and Zhang et al. (2010). Of these only the model presented by 

White and Arnold (2009) was statistically significant presumably because of the inclusion of 

runoff reduction in their study. The results of this study point towards the importance of 

considering flow in buffer design. 

Keywords – buffer, filter strip, pollution, water quality, regression 
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1. Introduction 

Naturally occurring riparian forests and streamside vegetation play a critical role in intercepting 

and purifying pollutant laden runoff, but their degradation in addition with nonpoint source 

pollutant export has contributed to the deterioration of over 50% of stream and river lengths in 

the US (Sweeney and Newbold 2014). Sediment pollution can clog waterways, cause flooding, 

and reduce water quality for domestic uses (drinking, cooking), recreational uses and/or 

municipal and industry uses (Ribaudo et al. 1999). Sediment–laden water can destroy aquatic 

habitat by decreasing light-penetration in water, increasing water temperatures, reducing 

visibility of aquatic organisms, clogging fish gills, and by covering spawning areas and 

smothering aquatic biota (Cooper 1993; Ribaudo et al. 1999). The US EPA ranks siltation as the 

leading cause of pollution of streams and rivers in the United States (EPA 1998; Ribaudo et al. 

1999). 

Non-point source pollutants can either be managed at the source, or intercepted to filter 

out nutrients and sediment before they reach surface waters (Dillaha et al. 1989; Ribaudo et al. 

2001). The establishment and maintenance of vegetative filter strips (VFS) and riparian buffers 

have gained immense popularity as a cost-effective interception strategy for mitigating water 

quality and improving riparian ecosystem quality by non-point source pollutant removal 

(Lowrance et al. 1997; Webber et al. 2010; Sweeney and Newbold 2014). Vegetative filter strips 

(VFS) are bands or areas of closely grown vegetation that receive and purify runoff from upslope 

areas such as croplands or pastures or other pollutant source areas (Dillaha et al. 1988). 

Vegetative filter strips and buffers perform a wide array of functions - they filter out sediments 

and nutrients from runoff by promoting processes such as infiltration, adsorption, plant uptake, 

sedimentation and pollutant degradation through numerous biogeochemical processes (Webber 
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et al. 2010; Pinho 2008; Rahman et al. 2014). They prevent streambank erosion and improve 

habitat and biodiversity (Sweeney and Newbold 2014). A number of studies have documented 

effectiveness of vegetated filter strips for sediment trapping. Le Bissonais et al. (2004) reported 

as much as 98% decrease in sediment loads from a field using a 6m grass strip. Duchemin and 

Hogue (2009) reported total suspended solid load decreases of 87% using grass strips and 85% 

using mixed grass and tree buffer strips. Lee et al. (1999) documented 77% and 66% sediment 

load reduction from adjacent crop fields using 6m and 3m grass buffers respectively. Since 

vegetated buffers form an integral part of watersheds, either as on-site mitigation features in the 

form of grass hedges/vegetated filter strips at field (or other pollutant producing sites) edges or 

as end-of-pipe features such as riparian buffers, field and watershed scale models often need 

algorithms to better simulate hydrology and/or water quality through buffer systems. Hence there 

is a need to assess buffer effectiveness and/or load reductions from these systems through 

quantitative methods.  

Regression (statistical) models are useful tools for water quality prediction and for 

making management decisions regarding buffer maintenance and pollutant attenuation (Mayer et 

al. 2007). Published literature has identified various factors affecting the load mitigation 

performance of vegetated buffers including buffer width, slope, area ratio (pollutant source area : 

buffer area) and hydrological flow conditions (Arora et al. 1996; Abu-Zreig et al. 2004; Boyd et 

al. 2003; Barfield et al. 1998l; Daniels and Gilliam 1996; Dillaha et al. 1989; Dosskey et al. 

2008, 2011; Duchemin and Hogue 2009; Gharabaghi et al. 2006; Lee et al. 1999, 2000; Delectic 

and Fletcher 2005). A few studies have conducted meta-analysis assessments of sediment 

trapping-effectiveness by vegetated buffers. Liu et al. (2008) evaluated data from 31 studies and 

concluded that regardless of the area ratio of buffer to agricultural field, optimum sediment 
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trapping was obtained when buffer width was 10m and had a slope of 9%. In a meta-analysis 

study by Zhang et al. (2010) buffer width alone captured 37% of the total variance in sediment 

removal efficiency. Here, a 30m buffer with slope ≈ 10% removed >85% of the sediment. These 

studies primarily evaluated buffer width and slope as design variables for predicting sediment 

reduction. While these are important design variables to consider for sediment reduction as well 

as for estimating costs related to buffer installation and maintenance (Dosskey et al. 2008), there 

is a need for evaluating buffer and slope impacts in light of various site conditions such as soil 

textures, vegetation types, and runoff loads that can significantly influence buffer efficiency.  

Conducting secondary analysis studies on buffer efficiency can be quite daunting because 

of the variability in buffer parameterization across different studies. Quantifying loads and 

runoff with consistent dimensions and interpretation across experimental studies poses a 

significant challenge because of the large variations in site conditions in which the vegetative 

filter strip trials are tested. Sediment trapping efficiency (or sediment reduction) is represented 

by the following sediment mass balance equation: 

Rm = {
𝑀𝑖𝑛−𝑀𝑜𝑢𝑡

𝑀𝑖𝑛
}  × 100 % …………………………………………………………. (1) 

where Rm is the percent removal efficiency, Min is the sediment mass entering the buffer and Mout 

is the sediment mass leaving the buffer. However, there is a large variability in quantifying Min 

and Mout across different studies. Some studies such as Dillaha et al. (1988, 1989) and Lee et al. 

(1989, 2000, 2003) compare a control erosion plot with a buffered erosion plot, where the 

dimensions of the erosion plots are the same in both cases. Other studies such as Uusi-Kämppä 

and Jauhiainen (2010), Tingle et al. (1998) and Thayer et al. (2012) compare different ratios of 

erosion plot and buffer with each other to determine % removal. Studies such as Abu-Zreig et al. 

(2004) strictly evaluate loads entering and leaving the buffer area. Consequently, the units in 
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which loads have been calculated in the various studies differ. Most studies quantify loads as 

load per unit area. i.e., kg/ha, kg/m2, tons/ha/yr, etc. However, significant portion of them do not 

specify the area over which the load was calculated. For some studies such as Lee et al. (2000) 

and Uusi-Kämppä and Jauhiainen (2010), the reported loads were over the entire area of the plot 

which included the erosion plot and the buffer. For other studies such as Abu-Zreig et al. (2004), 

the loads were reported over the buffer area only. This can cause inconsistencies in the reporting 

of the loads and calculation of sediment trapping efficiency. Moreover, many experimental 

approaches are used to generate runoff required for testing the effects of the buffer. One 

approach is to let natural rainfall generate runoff (Lee et al. 2003; Arora et al. 1996; Duchemin 

and Hogue 2009; Daniels and Gilliam 1996); which in many cases did not produce enough water 

for this purpose (Hay et al. 2006). Other approaches include simulated rain events (Barfield et al. 

1998; Dillaha et al. 1989; Coyne et al. 1995; Chaubey et al. 1994), simulating inflows (Van Dijk 

et al 1996; Deng et al. 2011; White et al. 2007), or both (Schmitt et al. 1999). These create 

challenges in the quantification of inflows, runoff and rainfall, if measured at all. Meta-analysis 

studies have mostly overlooked these inconsistencies, which can have implications on the 

structure of the developed model. 

Stand-alone models such as the process-based model vegetative strip model (VFSMOD; 

Munoz-Carpena and Parsons 2004) and Riparian Ecosystems Management Model (REMM; 

Lowrance et al. 2000) have been used to evaluate sediment reduction for different site designs 

and vice versa. For instance, Dosskey et al. (2008, 2011) used VFSMOD to develop graphical 

design aids for width and area ratio to achieve specific sediment reduction targets under broad 

range of agricultural site conditions. However, VFSMOD algorithms are complex and require 

detailed inputs and significant computing resources to run the models and interpret results, and 
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as such are not used in site planning (Dosskey et al. 2008). Simpler mathematical models for 

buffer impacts based on theoretical equations, simplified mathematical abstractions, or 

regressions have been used within wider application models such as the Soil and Watershed 

Assessment Tool (SWAT). Earlier versions of SWAT considered a vegetated buffer model 

where trapping efficiency was solely a function of filter strip width (Nietsch et al. 2002). SWAT 

ver. 2012 considers an improved sediment reduction model where sediment trapping is a 

function of sediment loading to the buffer and runoff reduction actuated by the buffer. This 

model was developed by White and Arnold (2009) at the field scale using data from published 

literature, supplemented with data from VFSMOD simulations to deal with lack of inflow and 

runoff data. VFSMOD simulations were used to develop an empirical runoff reduction model in 

which runoff reduction is calculated as logarithm functions of runoff loading to the buffer and 

saturated hydraulic conductivity of the soils. A sediment reduction model was formulated based 

on measured data from 61 entries; here, sediment reduction was quantified as a function of 

sediment loading to the buffer and runoff reduction. They observed that sediment loading to the 

buffer alone accounted for 41% of the variability in buffer sediment trapping, which increased to 

64% when runoff reduction was added to the model.  

This study aimed to expand the dataset and develop a regression model while addressing 

the concerns in data quantification explained previously. The aim was to understand if this 

exercise would result in similarly sensitive parameters for buffer sediment trapping efficiency 

while using a larger dataset. We conducted a detailed secondary analysis of published studies on 

sediment trapping, evaluated the inflow and runoff conditions using different assumptions to 

glean realistic field relationships between buffer characteristics and trapping efficiency. Our 

specific objectives were to: 1) compile a database from published literature and online databases 
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with detailed site-specific buffer characteristics such as width, and slope, soil texture, runoff and 

sediment loading, and reduction and runoff rates 2) construct a sediment reduction model using 

multi-regression analysis as a function of various design characteristics and 3) compare and 

asses aforementioned model performance to other published sediment reduction models for 

vegetated buffers. The overall objective is to obtain improved relationships that can be used at 

local scales to understand sediment trapping potential by vegetated buffers for water quality 

mitigation purposes. 

2. Database compilation 

Most studies on buffer sediment removal efficiency are limited to small-scale evaluation of filter 

strips, and/or site-specific assessment of riparian areas. Few studies have assessed the 

effectiveness of riparian buffers on a larger scale. A comprehensive dataset can allow us insight 

into generalizations about factors that are crucial for improving sediment removal and can 

greatly inform best management practices in areas where data are scarce. We searched for peer-

reviewed literature using keywords filter strip, vegetated buffer, riparian buffer, vegetated filter, 

etc., alone or in combination to populate a Microsoft Excel® database with detailed information 

pertaining to sediment removal. Data was also obtained from an online stormwater BMP 

database (http://www.bmpdatabase.org/). We recorded detailed information about authors, buffer 

vegetation type, average slope, width, area, inflow and outflow loads, soil type, location, inflow 

and outflow volumes, and inflow and outflow rates. In addition to these attributes, we also 

recorded percentage sediment reduction (from eqn. 1) and source-buffer area ratio. We 

calculated percent sediment removal effectiveness in two ways depending on how data was 

provided: (1) as the percentage difference in loads between influent into and effluent out of the 

buffer, or (2) as the percentage difference in loads between edge of a cropland with no buffer and 
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that with a test buffer (Figure 1). We considered data from both plot and field scale systems; 

however, most entries were from plot-scale experimental plots. A total of 361 data entries from 

54 studies were compiled for the analysis (Appendix: Table 1A). Broadly, data were categorized 

as being “event-based”, where the data reported was measured for short-term events such as 

individual storm events or simulated rainfall events, or as “long-term”, where the measured data 

were reported as annual/multi-event/multi-year sums or averages. For the remainder of this 

paper, the terms ‘vegetated buffer’ or simply ‘buffer’ has been used to describe vegetated 

buffers, riparian buffers, vegetative filter strips (VFS), and vegetated hedges. 

3. Measured variables influencing buffer sediment trapping performance 

3.1 Buffer width, length, area 

Many studies have evaluated the effect of buffer width on sediment trapping. The terms ‘width’ 

and ‘length’ of the buffer have been used interchangeably in the literature to describe buffer 

dimensions. In this study, buffer width is defined as the distance of the buffer parallel to runoff 

flow and buffer length as the buffer distance perpendicular to runoff flow. Since most studies 

included in this database are rectangular experimental plots, the buffer area is the product of the 

buffer length and width.  

Intuitively sediment trapping increases with increase in buffer width. For instance, 

Dillaha et al. (1989) observed that increasing the buffer width from 4.6m to 9.1m increased 

sediment trapping efficiency by 14%. Coarser particles are easily trapped in the upper buffer 

while finer particles are harder to trap and are retained along the width of the buffer. However, at 

a certain buffer width, most of the sediment is effectively removed beyond which additional 

buffer width makes little difference (Zhang et al. 2010). A one-size-fits-all buffer width for 

optimum sediment trapping does not exist since buffer efficacy for trapping is influenced by 
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multiple synergistic factors. For instance, buffers work better under the influence of shallow 

uniform flow than under concentrated flow conditions (Liu et al. 2008). Runoff velocity can also 

significantly influence trapping efficacy. Higher runoff velocities can reduce residence time 

within the buffer as well as cause erosion within the buffer causing more sediment at the buffer 

outflows, thus decreasing trapping efficiency.  

3.2 Buffer slope 

Sediment trapping efficiency is also affected by the slope of the buffer. As buffer slope 

increases, velocity of runoff increases potentially decreasing residence time and decreasing 

buffer efficacy. Gradual slopes, however, have been shown to increase trapping efficacy by 

facilitating laminar runoff flow through the buffer (Zhang et al. 2010). At steeper slopes the 

effect of decreased residence time and increasing flow channelization dominates causing 

efficiency to decrease. Dillaha et al. (1989) found that for the same buffer width, sediment 

trapping efficiency by the buffer increased as slope increased from 5% to 11% and decreased 

when slope increased to 16%. Zhang et al. (2010) identified a critical slope of 10% above which 

buffer efficacy begins to decrease. Liu et al. (2008) observed that a polynomial regression 

relationship best described the influence of slope on buffer trapping efficiency. In another study 

by Yuan et al. (2009), analysis of plots of buffer efficiency against buffer width revealed that 

buffers were less effective for slopes that were >5% than for slopes ≤5%. 

3.3 Vegetation characteristics 

The height and density of vegetation can influence buffer efficiency in trapping sediment. Dense 

vegetation can increase sediment deposition by decreasing water velocity of runoff. In this study, 

we categorized buffer vegetation as grass buffers (1), woody buffers (2) and mixed vegetation 
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buffers (3). Grass buffers included buffers and filter strips that had mostly grasses, or stiff grass 

hedges, or crops (herbaceous vegetation). Woody buffers included filter strips and buffers that 

comprised of woody shrubs and/or trees. Mixed buffers included buffers and filter strips that 

comprised of mix of herbaceous and woody vegetation such as riparian buffer systems.  

3.4 Residence time and Roughness 

Residence time and roughness are important parameters that influence sediment retention within 

the buffer. Roughness, as used in this study, indicates above-ground obstacles to runoff and 

sediment flow contributed by vegetation density or by features that can hinder flow and increase 

sediment deposition. Increased residence time and roughness facilitates sediment deposition thus 

increasing sediment retention. However, most studies did not report residence time or roughness 

and very few studies measure roughness indicators such as vegetation height or vegetation 

densities. Hence, we included proxy terms to account for roughness and residence time as 

described below. 

Expressions for residence time and roughness were determined by modifying the 

Manning’s equation as described below.  

Residence time can be expressed as  

𝑡 =  
𝑤

𝑢
= 

𝑤𝐿ℎ

𝑄
 ………………………………………………….……………………….. (2) 

where t is the residence time, w is the buffer width, u is the average runoff velocity, L is the 

buffer length perpendicular to flow, h is the height of flow, and Q is the average flow rate. 

From Manning’s equation for overland flow, we have 

𝑄 =  
(𝐿ℎ)ℎ

2
3√𝑠

𝑛
=

1

𝑛
𝐿ℎ

5

3√𝑠 ….………………………………………….........………… (3) 

where s is the buffer slope, and n is the Manning’s coefficient.  
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Substituting for h from (3) in (2) we get an expression for residence time as 

𝑡 =  
𝑤0.6𝑛0.6

𝑞0.4𝑠0.3
  ; where q = 

𝑄

𝑤𝐿
 

𝑡 =  𝑛0.6 (
𝑤0.6

𝑞0.4𝑠0.3
)  

t ∝ (
𝑤0.6

𝑞0.4𝑠0.3
) ……….…………………………………………………………………. (4) 

Substituting for Q from (3) in (2), we get  

𝑡 =
𝑛𝑤

ℎ
2
3√𝑠

  

t ∝  
𝑤

√𝑠
 …………………………………………………………………………….......… (5) 

Flow velocity can also be represented as a function of flow depth h, gravitational constant g, bed 

slope s and channel roughness commonly described by the Darcy-Weisbach equation as 

 𝑢 = √(
8𝑔ℎ𝑠

𝑓
) ……………………………………………………………...……...…… (6) 

where u is the average flow velocity and f is the Darcy-Weisbach friction factor. 

For laminar flow f = 16/Re, where Re = 4uh/ν is the Reynold’s number (and ν is the kinematic 

viscosity). Substituting for f and Re in (6), we get 

𝑢 =  
𝑔ℎ2𝑠

2𝜈
   

Substituting for u = Q/hL from (2), we get an expression for h as 

ℎ =  √
2𝜈𝑄

𝑔𝑠𝐿

3
 ……………………………………………………...……………..……….. (7) 

Substituting (7) in (2) we get another expression for t as 

𝑡 =
𝑤𝐿

𝑄
√
2𝜈𝑄

𝑔𝑠𝐿

3
  

𝑡 ∝
𝑤𝐿2/3

𝑠1/3𝑄2/3  
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𝑡 ∝
𝑤1/3

𝑠1/3𝑞2/3
 ……………………………………………………………......…………… (8) 

where q = 
𝑄

𝑤𝐿
. 

Right-hand-side expressions for residence time from (4), (5) and (8) were used as proxies for 

residence time. Equations (4) and (5) are applicable to turbulent flow conditions (since 

Manning’s equation assumes turbulent flow conditions), and (8) for laminar flow conditions. 

Manning’s roughness 𝑛 =  
ℎ
5
3𝐿√𝑠

𝑄
 = 

ℎ
5
3√𝑠

𝑞𝑤
 

   n ∝  
√𝑠

𝑞𝑤
 ……………………………………………………...…………. (9) 

From here we used 
√𝑠

𝑞𝑤
 as a surrogate variable for roughness.  

By a similar analysis for laminar flow, we get Darcy’s friction factor f ∝ √𝑠. Since (9) already 

considers proportionality to square root of buffer slope, we did not test this term explicitly in the 

model. 

3.5 Area Ratio 

Research has shown that area ratio, which is the ratio of the upland contributing area to the area 

of the vegetated buffer, significantly impacts sediment retention by the buffer (Dosskey et al. 

2011; Webber et al. 2009, 2010; Boyd et al. 2003). The contributing area is a surrogate for the 

size of the runoff load and the buffer area is a surrogate for trapping effectiveness of the buffer 

(Dosskey et al. 2011). As area ratio increases, sediment trapping efficiency of the buffer 

decreases. Boyd et al. (2003) reported higher sediment reduction for 15:1 plots than 45:1 plots. 

However, site conditions such as soil texture, slope, and runoff rate can influence the area ratio-

trapping efficiency relationship.  
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3.6 Soil texture  

Soil texture and hydraulic conductivity can impact sediment reduction by influencing infiltration 

rates causing vegetated buffer strips on fine textured soils to exhibit lower trapping efficiencies 

than those on coarser sandy soils. Fine-textured soils exhibit lower infiltration rates, and can also 

produce more fine sediment that cannot easily be trapped by the buffer (Dosskey 2008).  

Soil texture was reported in many ways in literature; some studies reported the soil series, 

while others, the percentage of sand, silt and clay. For the purposes of our meta-analysis, we 

categorized soil textural classes based on Hydrologic Soil Groups (HSG’s) as well drained (type 

1) which included sand, loamy sand and sandy loam soils, moderately well drained (type 2) 

which included silt loams and loams, low infiltration capacity (type 3) which included sandy 

clay loams, and very low infiltration capacity (type 4) which included clay loam, silty clay loam, 

sandy clay, silty clay and clay soils.  

3.7 Sediment loads in runoff 

Loads from the literature were converted to mass per buffer area after perusing them closely. We 

observed that while many studies reported loads in mass per unit area (kg/ha, kg/m2, tons/ha), 

oftentimes they failed to report the area over which loads were expressed, or that information 

lacked clarity. Sometimes this metric was reported as mass over the VFS area, and other times as 

mass over the total area of erosion plot paired with a buffer (Figures 2a and 2b). For instance, 

Lee et al. (2000) compares the sediment retention of a switchgrass buffer with that of a mixed 

switchgrass-woody buffer for different simulated rainfall intensities and durations. Sediment 

loads are reported in kg/ha and include the loads transported from the bare cropland source area 

paired with either no buffer, a 4.1m switchgrass buffer, or a 16.3m wide switchgrass-woody 
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buffer with the collectors located at the lower ends of these plots. Sediment loads from the bare 

cropland area is assumed to be loading into the buffers. Runoff volumes were converted to depth 

over the entire plot area (source plot with no buffer, or source plot + buffer as the case may be) 

(Figure 2a). In this case, we calculated sediment loading into the buffer as mass of sediment 

multiplied by source plot area, and sediment transported from the buffer as mass of sediment 

multiplied by total plot area (source plot + buffer). These loads entering and leaving the buffer 

were expressed in kgs/buffer area. 

In some other studies such as Uusi-Kämppä and Jauhiainen (2010) (Figure 2b) and 

Tingle et al. (1998), the dimensions of the buffered and non-buffered plots are different. For 

studies such as these, the sediment loads leaving the non-buffered plot (reported as mass/source 

area) were multiplied with the source area to calculate the total load. This value was then scaled 

for the source areas of buffered plots to get a more accurate representation of sediment loading 

into the buffer. Similarly, the sediment loads exiting the buffer was calculated over the entire 

plot (buffer + source area) and then expressed over area of the buffer.  

Where concentrations were reported, sediment loads were calculated by multiplying 

concentration and runoff volumes. Sediment trapping efficacy by the buffer was calculated as 

represented in eqn (1).  

3.8 Inflow and outflow runoff volumes, flow rates 

Runoff loading to the buffer combines several aspects of source area hydrology, precipitation 

and area ratio (White and Arnold 2009). In this study, runoff loading is expressed as total runoff 

volume from upslope contributing area divided by the VFS area. Similar problems were 

encountered with reporting runoff volumes as with sediment loads. In most cases runoff volumes 

were expressed as depth over the plot area, but oftentimes it was unclear if that included the 
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source area and the buffer or just the buffer. We calculated runoff volumes entering the buffer as 

the runoff volume produced from the contributing source area, and scaled it as needed. Runoff 

volume exiting the buffer was calculated similarly. 

Most meta-analysis studies do not include the effect of flow rate on the buffer’s sediment 

retention capacity. Evaluating flow rate is critical to understand the functioning of a vegetated 

buffer system. Understandably so, these data are the hardest to come by. Several studies did not 

report runoff depths, or volumes. If they did, then flow rates were not reported. Studies have 

created runoff conditions by simulating rain events, or have evaluated buffer functioning during 

natural rain events. Some studies provide the hydrograph, while others report the time over 

which rainfall was simulated. In this study, we tried to extract information on runoff volumes 

and flow rates based on the quantitative and qualitative descriptions of the study. If hydrographs 

were provided, runoff volumes were divided by duration of inflows and outflows gleaned from 

the hydrograph to estimate average inflow and outflow rates. Else, if the study employed rainfall 

simulators, the duration of rainfall simulation was assumed to be duration of inflow and outflow. 

Runoff loading to the buffer did not include rainfall occurring directly in the buffer, but included 

inflows, simulated or from rainfall, occurring upslope of the buffer. Runoff from the buffer, 

however, included flows from rainfall occurring on the buffer as it is not possible to separate 

these components from the buffer outflows. 

4. Statistical analyses 

The compiled data (Appendix Tables 1A and 1B) was used to conduct statistical analyses and 

discern relationships between different factors influencing sediment removal efficiency, as well 

as to develop a regression model predicting sediment removal by the buffers. Several procedures 

and assumptions were adopted for conducting statistical analyses. Studies were grouped by 
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vegetation type and soil types. Studies were also grouped by buffer width categories (0-5m, 5-

10m, 10-20m and >20m). Box plots were created to visualize the distribution of buffer sediment 

trapping efficiency with vegetation types, soil types and width categories. Linear and nonlinear 

relationships between different buffer design characteristics with removal effectiveness were 

fitted to regression models and evaluated. Regression relationships between variables were also 

examined for potentially reconstructing missing data and avoid losing valuable information. 

Manual stepwise regression (forward) approach was utilized using nonlinear regression 

fitting to construct a sediment reduction model using variables that we identified to be most 

relevant to buffer installation and maintenance. At every step, variables were added or discarded 

based on their goodness-of-fit measures such as R2 and AIC. All analyses were performed using 

R version 3.1.3 (R Core Team 2013).  

5. Results and discussion 

5.1 General efficacy 

The literature used for this analysis is summarized in Appendix: Table 1A and consists of 361 

data entries from 54 studies, which includes data from the online BMP database. The table 

includes parameters related to buffer characteristics such as width, area, vegetation type, slope, 

area ratio of contributing source to buffer, soil type categories, flow volumes, and flow rates. 

Only entries associated with positive sediment removal were considered. Overall sediment 

removal efficiency varied from 0 to 100% with a mean removal of 77% and median removal of 

83%. For data entries categorized as long-term, efficiency ranged from 0 - 100% with mean and 

median efficiencies of 75 and 79%, respectively. For the event-based category, the efficacies 

varied from 3.5 to 100% with mean and median efficacies of 78 and 84%, respectively. 
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5.2 Effect of vegetation type and soil drainage 

The effect of vegetation type on buffer’s sediment removal efficiency were statistically 

significant (Kruskal Wallis H = 11.45, df = 2, p = 0.003). From the boxplot in Figure 3 sediment 

trapping efficiency is significantly higher for grass buffers and mixed grass-woody vegetation 

than for woody vegetation-only buffers (p < 0.05; Wilcoxon rank sum test). However, of the 

studies considered, only 7 entries had woody-only vegetation and 44 had mixed vegetation while 

310 entries had grass vegetation. Clearly there is a need for more data on woody and mixed 

buffers to get an effective comparison of their performance with respect to grass buffers. Median 

trapping efficacy for herbaceous buffers was similar to that of mixed vegetation buffers. These 

results are similar to those in Yuan et al. (2009) who, in their literature review and analysis, 

found both forested and grassy vegetation buffers to have similar sediment trapping efficiencies. 

However, a common observation is that much more information exists for grass buffers than 

mixed buffers, and there is a need for more detailed studies on mixed vegetation buffers. The 

effect of soil type on % sediment reduction was not statistically significant. 

5.3 Effect of buffer width and slope 

From the boxplot in Figure 4, buffer width significantly influences the buffer’s sediment 

reduction efficiency (Kruskal-Wallis H = 22.12, df = 3, p<0.001), with the 10-20m buffer width 

achieving statistically higher sediment reduction than either the 0-5m, 5-10m or >20m width 

categories (Wilcoxon rank sum test p < 0.001). 

Plotting % removal versus buffer width on a regression plot seemed very scattered with 

no clear trend. For greater visual clarity we calculated the average sediment removal for each 

value of buffer width and analyzed this plot to discern relationships. These trends were assessed 
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for buffer widths between 1 to 40 m which included 95% of the data. Figure 5a shows the 

relationship between buffer sediment trapping efficiency and buffer width after pooling both 

event-based and longer-term data. From the plot, a polynomial regression model best describes 

the relationship (R2 = 0.31). Figure 5b shows that the relationships between % sediment removal 

and buffer width are described by a polynomial relationship for grass buffers (R2 = 0.31) and a 

logarithmic relationship for mixed buffers (R2 = 0.31).  

Yuan et al. (2009) observed that buffers were more effective for slopes >5% than for 

those with slope ≤ 5%. In our analysis we observed no clear relationship between width and 

removal for slopes ≤ 5%. Figure 6 shows the relationship between buffer width and average 

sediment removal for slopes > 5%. This relationship is best described using a polynomial 

relationship (R2 = 0.25). Similar relationship was obtained for grass buffers with slopes >5%. 

Zhang et al. (2009) observed that a critical slope of 10% changed the relationship between slope 

and sediment reduction from positive negative. In this study we could not clearly identify any 

critical slope which influenced the direction of impact on sediment reduction by the buffer.  

5.4 Volumes and Flow rates 

Volume ratio (Vr), calculated as inflow volume divided by outflow volume, was used to evaluate 

the effect of runoff reduction on sediment reduction. Figure 7 shows the relationship between 

volume ratio and sediment removal by the buffer. The relationship is best explained using an 

exponential regression model (R2 = 0.31); volume ratio, also a proxy for flow rate ratio in this 

study since volume and flow rate ratios were 99.9% correlated, is the best predictor for sediment 

removal yet in this study. These results are similar to those derived by White and Arnold (2009) 

where they observed that runoff reduction explained around 20% of the variability in their 

measured data.   
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Other variables including flow rates and volumes, area ratio, roughness and residence 

time parameters, sediment loading into the buffer did not present clear trends on plotting with 

sediment removal. 

5.5 Sediment removal multiple regression model 

For the purpose of developing a sediment reduction model only event-based data were 

considered which included 287 entries. Of these, flow rates could be calculated for fewer than 

180 entries. To avoid losing valuable information for model development and to enable the 

inclusion of flow rate as a predictor in model construction, we attempted to reconstruct missing 

flow data based on univariate regression relationships with good fit (high R2) between relevant 

variables. This included regression relationships between outflow rate and outflow volume (Qout 

= 14.7 * Vout; R
2 = 0.70; N = 161) and that between ratios of flow rates and flow volumes (1:1 

relationship with R2 = 1, N = 170) (Appendix: Table 1B). Of these, we considered data for which 

buffer widths were < 40m, slopes under 40%, and studies where inflow volume was no more 

than 60X outflow volume, and for which outflow volumes were no more than 3X inflow 

volumes, i.e., 0.3 ≤ Vin/Vout  ≤ 60. These bounds were considered since most of the event-based 

data entries fell within these boundaries. Omitting entries with missing values and applying 

afore-mentioned conditions resulted in a total of 203 entries which were used to construct the 

sediment reduction model. 

Factors considered for the model building process were buffer width (w), slope (s), 

sediment load per unit buffer area (Lin/A), inflow rate over unit buffer area (Qin/A), average flow 

rate (Qav), ratio of flow volumes (Vin/Vout or Vr), roughness factor (n), residence time factors (t1, 

t2 and t3 from eqns 4, 5 and 8 respectively), and their square, log and exponential 

transformations. Predictors (or their transformations) were added in a stepwise forward manner 
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to the nonlinear regression model based on the significance of their coefficients, overall R2 and 

AIC values. R2  varies from 0 to 1, and better model performance is indicated by a higher R2. AIC 

is an indicator of model parsimony, and a lower AIC relative to other models is representative of 

a more parsimonious model. 

The ratio of flow volumes (Vr) alone accounted for 36% of the variability in the observed 

data. Adding the square of residence time increased the R2 to 39.2%, while adding an 

exponential transformation of width further increased R2 to 40.5%. The final model (given 

below) has an acceptable R2 of 40.5% (Table 1). 

% Sediment reduction Rm = 96.82 - 66.53*e (-0.86*Vr) - 0.014*t2 - 2.26*10-11*e (w) 

where Vr = Vin/Vout, and t = (
𝑤0.6

𝑞0.4𝑠0.3
)  from eqn 4. From the sediment reduction plot in Figure 8, 

the model overpredicts for smaller values of observed reduction, but predicts higher values with 

greater precision.   

Model performance was compared with that derived from applying other sediment 

reduction regression models developed in literature, such as those of White and Arnold (2009), 

Liu et al. (2008) and Zhang et al. (2009), to data entries in this study (Table 1). Of these only the 

model presented by White and Arnold (2009) was statistically significant. This model had the 

next highest R2, with the Liu et al. (2008) and Zhang et al. (2009) models having much poorer 

performance. This could be because of the inclusion of runoff reduction in the White and Arnold 

(2009) model (calculated as [(Vin – Vout) *100]/ Vin) in their study). While the model in the White 

and Arnold (2009) study had a significant correlation between sediment loading and sediment 

reduction with their data (R2 = 41%), our study did not present any significant relationship with 

sediment loading. This could be because of the larger number of entries considered for this study 

(203 entries) as opposed to 61 in the White and Arnold (2009) paper. Another reason for this 
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difference could be the way in which we accounted for sediment loads and runoff volumes in 

this study. 

For grass buffers (N = 161), Vr alone accounted for 46.5 % of the variability in the 

observed data. Adding the exponential function of width and the square root of average flow rate 

further increased the R2 to 52.9%.  The only other statistically significant model was the White 

and Arnold (2009) model (R2 = 43%) The final sediment reduction model for mixed buffers (N = 

36) included inflow rate and the volume ratio with an R2 of 31.1% (Table 1) which was higher 

than the other models.  

The results of this study point towards the importance of considering flow in buffer 

design. This is evident from the better fit obtained for models that considered flows versus those 

which didn’t. However, the overall model accounted only for 40.5% of the total variance (and 

53% of the variance for grass buffers). Several other factors may be responsible for the large 

percentage of unaccounted variation. This study only considers sediment removal under uniform 

sheet flow conditions. However, it is not possible to assure complete sheet flow conditions in 

these systems. Surface structure variations as a result of surface peaks and depressions in the 

flow path, differential infiltration capacities along the flow path, presence of vegetation and 

other organic matter, rainfall on the buffer, sediment deposition and erosion can cause 

convergence or divergence of flow. Moreover, sediment accumulation can change 

microtopography of the buffer aiding flow concentration (Gharabaghi et al. 2006). Studies such 

as Helmers et al. (2005) observed decline in buffer’s sediment reduction with increase in flow 

convergence. Adjustments for flow concentration or divergence was not considered in this study. 

Factors such as vegetation height, density, shape and resilience can greatly influence the 

sediment deposition within the buffer. The denser the vegetation, more sediment can be trapped 
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by the buffer. However, vegetation density could not be accounted for in this study, due to lack 

of reporting. Further research is needed as more information becomes available. 

6. Conclusions 

Sediment reduction by vegetated buffers are a consequence of synergistic influences of the 

physical dimensions of the buffer as well as their site-specific hydrological responses to local 

runoff/storm events. Very few models consider hydrological responses, understandably, because 

of the lack of detailed information reported in literature. This study includes a comprehensive 

database of 54 studies consisting of 361 entries which were used for evaluating the influence of 

various factors including the buffer’s physical and hydrological characteristics on its sediment 

reduction capacity. Applying constraints to the database, 203 entries were used to construct a 

nonlinear sediment reduction model using stepwise forward regression approach. A regression 

equation considering the hydrological response of the buffer, included as the exponential 

transformation of ratio of flow volumes Vin/Vout, was observed to be the most influential factor in 

predicting sediment reduction capacity accounting for 36% of the variance in measured sediment 

reduction. Addition of terms considering residence time and width improved the performance to 

account for 40.5% of the variability in measured sediment reduction. The model developed 

during the course of this study outperformed existing models developed from similar work 

which considered fewer variables and/or which did not consider hydrological responses when 

applied to the data in this study – R2 was slightly higher than a previously published model 

which included runoff reduction (White and Arnold (2009) sediment reduction model), and 

significantly higher than models which considered only physical characteristics (sediment 

reduction models in Liu et al. (2008) and Zhang et al. (2009)). The sediment reduction model 

from this study may be used in conjunction with other models when necessary. For instance, 
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where runoff characteristics are lacking, models such as the VFSMOD derived runoff reduction 

equation from White and Arnold (2009) maybe used to calculate runoff reduction and used to 

determine the buffer’s sediment reduction efficiency.  

Presumably this model has many limitations. While effort was made to include data with 

uniform sheet flow, it is possible that this assumption was overlooked. For instance, buffer 

slopes intuitively influence runoff velocity and consequently flow conditions. Gradual slopes 

promote laminar sheet flow while steeper slopes can cause flow to concentrate leading to lesser 

sediment reduction. However, we did not find any relationship between slope and average flow 

rates in this study. Moreover, most of the data in the study comes from experimental plots, which 

many researchers suggest overestimate the real effectiveness of vegetated buffers (White and 

Arnold 2009). Experimental plots are typically tested over the short-term, and do not account for 

long-term sediment accumulation in the buffer that can decrease its sediment trapping efficiency 

(Sweeney and Newbold 2014). Another overlooked factor is rainfall on the buffer. This was 

deliberately overlooked in an attempt to compare apples-to-apples since studies showed much 

variation in how they initiated runoff, ranging from natural rain events on source and buffer, to 

rain events only on the contributing source area, to rainfall on entire areas together with 

sediment laden inflows, and so on. The intensity and duration of rainfall on the filters and 

antecedent soil moisture conditions can have a huge influence on the functional capacity of these 

buffer systems.  This could have influenced our consideration of flow rates and flow volumes in 

the absence of detailed flow characteristics. Moreover, most experimental plots consider 

sediment delivery from smaller contributing areas, or small design storms (in case of simulated 

rainfall), when it is >10 year return interval storms that deliver most sediment over the long term 

(Sweeney and Newbold 2014).  
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A high level of uncertainty still exists regarding the required conditions for the 

installation of the optimum buffer. Nevertheless, this study provides a valuable insight into the 

conditions of several vegetated buffers systems through the extensive data compiled, as well as 

formulates a more complete secondary analysis model that includes the importance of 

hydrological considerations. The results of this study can prove useful to managers to effectively 

asses the effectiveness of site-specific buffers along with a comprehensive baseline to make 

management decisions regarding buffers and sediment control. However, it is important to note 

that this study considers only the sediment trapping efficiency of the buffer, and cannot be 

extended as to other aspects of ecosystem improvement such as temperature regulation, stream 

bank stabilization, or maintenance of riparian habitats and biodiversity.  
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Figures 

(a)                                                              (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Percent sediment removal effectiveness was calculated in two ways depending on how 

data was provided. If load characteristics were reported for the buffer as presented in (a), then % 

removal (Rm) was calculated as the difference in loads between influent into (M1) and effluent 

out of the buffer (M2). If the study compared performances of control versus buffered sites and 

reported outflow load characteristics for these sites as presented in (b), then % removal (Rm) was 

calculated as the percentage difference in loads between edge of a cropland with no buffer (M1) 

and that with a test buffer (M2). 
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(a)                                                                                (b) 

  

 

Figure 2(a). Experimental plot design in study by Lee et al. (2000) where sediment loads from 

the bare cropland area is assumed to be loading into the buffers and runoff volumes were 

converted to depth over the entire plot area (source plot with no buffer, or source plot + buffer as 

the case may be).  

Fig. 2(b). Experimental plot design in study by Uusi-Kämppä and Jauhiainen (2010) where the 

dimensions of the buffered and non-buffered plots are different.  
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Figure 3. Boxplot of % sediment reduction for different vegetation types (grass, woody, mixed). 

The lower and upper boundary indicate the 25th and 75th percentile, while the bold line within the 

box indicates the median sediment removal for each vegetation type. Sediment reduction is 

higher for grass and mixed vegetation buffers and lower for woody vegetation buffers (Kruskal 

Wallis p = 0.003).  
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Figure 4. Boxplot of % sediment reduction for different width categories. The lower and upper 

boundary indicate the 25th and 75th percentile, while the bold line within the box indicates the 

median sediment removal for each width category. The bars above and below the box represent 

the 90th and 10th percentiles of sediment reduction respectively. Sediment reduction is highest for 

the 10m – 20m width category and significantly lower for the 0 – 5m, 5-10m and >20m width 

categories (Kruskal-Wallis p<0.001).  
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 (a) 

 
(b) 

 
 

Figure 5a. Relationship between buffer sediment trapping efficiency and buffer width after 

pooling both event-based and longer-term data for buffers widths ≥ 1m. From the plot, a 

polynomial regression model best describes the relationship (R2 = 0.31).  

Figure 5b. Relationship between buffer sediment trapping efficiency and buffer width after 

pooling both event-based and longer-term data for grass buffers and mixed vegetation buffers for 

widths ≥ 1m. From the plot, a polynomial regression model best describes the relationship for 

grass buffers (R2 = 0.31) and a logarithmic regression model best describes the relationship for 

mixed buffers (R2 = 0.31). 

*Each data point represents the average sediment reduction for each value of buffer width. 
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Figure 6. Relationship between buffer width and average sediment removal for slopes >5%. This 

relationship is best described by a polynomial relationship (R2 = 0.25). Similar relationship was 

obtained for grass buffers with slopes >5%. 
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Figure 7. Relationship between volume ratio and sediment removal by the buffer for 0.3 ≤ Vr ≤ 

60. The relationship is best explained using an exponential regression model (R2 = 0.31). 
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Figure 8. Plot of predicted sediment reduction (using model Rm = 96.82 - 66.53*e (-0.86*Vr) - 

0.014*t1
2 - 2.26*10-11*e (w) ) versus observed sediment reduction.  
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Tables 

Table 1. Nonlinear regression models for predicting % sediment reduction for the data presented in Appendix: Table 1B. Results are also presented 

for the application of other meta-analysis models to this data.  

 
                     * indicates significance at 0.05 level 

This study White and Arnold (2009) Liu et al. (2008) Zhang et al. (2010)

Full model a + b * exp(c * Vr) + d * (t1
2
) + e * exp(w) a + b * Lin/A + c * (Rr %) a + b*(w) + c*(s) - d*(s

2
) k * (1 - exp(-b * w)

a=96.82* (91.54 , 102.10) a=70.08* (67.16 , 72.99) a = 76.40* (68.24 , 84.55) k = 77.43* (74.51 , 80.35)

b=-66.53* (-85.07 , -48.00) b=0.008 (-0.34 , 0.36) b = -0.21  (-0.78 ,  0.36) b = 7.59 (-16.15 , 31.32)

c=-0.86* (-1.20 , -0.52) c=0.24* (0.19 , 0.29) c = 48.97   (-140.37 , 238.31)

d=-0.014* (-0.03 , -7.19e-04) d =32.17 (-926.67 , 991.02)

e=-2.26e-11* (-4.47e-11 , -4.35e-13)

R
2

0.40 0.32 0.02 0.00

AIC 1715.51 1738.59 1814.94 1814.40

N 203 203 203 203

p-value < 0.001 < 0.001 0.33 0.82

Grasses-only 

model a + b * exp(c * Vr) + d * exp(w) + e* a + b * Lin/A + c * (Rr %) a + b*(w) + c*(s) - d*(s
2
) k * (1 - exp(-b * w)

a = 94.08* (89.89 , 98.27) a =71.98* (69.24 , 74.72) a = 78.24* (69.55 ,  86.92) k = 78.90* (75.83 , 81.96)

b = -68.45* (-86.27 , -50.62) b =-0.06  (-0.36 , 0.24) b = -0.31 (-0.88 , 0.26) b = 6.73 (-7.37 , 20.82)

c = -0.94* (-1.28 , -0.60) c = 0.24* (0.19 , 0.28) c = 82.02  (-119.52 , 283.56)

d = -3.45e-11* (-5.09e-11 , -1.80e-11) d = 278.95  (-735.34 , 1293.24)

e = 0.22e* (1.97e-03 , 0.45)

R
2

0.53 0.43 0.02 0.00

AIC 1301.92 1329.85 1417.86 1416.89

N 161 161 161 161

p-value < 0.001 < 0.001 0.38 0.71

Mixed-only 

model a + b * exp(Qin/A) + c*log(Vr) a + b * Lin/A + c * (Rr %) a + b*(w) + c*(s) - d*(s
2
) k * (1 - exp(-b * w)

a = 69.33* (58.75 , 79.92) a = 45.84* (22.67 , 69.01) a = 64.32* (43.72 ,  84.91) a = 80.2960* (71.12 , 89.47)

b = -0.01* (-0.01 , -0.002) b = 24.47 (-4.02 , 52.95) b = 1.18 (-1.10 , 3.45) b = 0.53* (0.09 , 0.96)

c = 23.78 (3.75 , 43.82) c =  0.65* (0.25 , 1.05) c = 10.67 (-438.76 , 460.09)

d =-222.59  (-2509.73 , 2064.55)

R
2

0.31 0.25 0.07 0.03

AIC 313.41 316.61 326.19 323.68

N 36 36 36 36

p-value  0.002 ** 0.009 ** 0.49 0.30

√𝑄𝑎 
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Appendix: 

Table 1A. Data on vegetated buffers physical and hydrological characteristics compiled for the study. Overall this included 361 entries 

(includes entries from online stormwater BMP database). Flow rates and volumes were either directly taken from the study or 

calculated from other available information reported in the study. 

Study 
Soil 

type 

Veg. 

type 

Width 

(m) 

Area 

(m2) 

Slope 

(%) 

Area 

ratio 

Qin 

(L/min) 

Qout 

(L/min) 
Vin (m3) Vout (m3) 

Lin 

(kg/m2) 

Lout 

(kg/m2) 

Sediment 

removal (%) 

Lee et al 1999 4 1 6 9.00 3 20.00 40.00 32.00 - - - - 78.20 

Lee et al 1999 4 1 6 9.00 3 20.00 40.00 31.00 - - - - 74.80 

Lee et al 1999 4 1 3 4.50 3 40.00 40.00 36.00 - - - - 69.00 

Lee et al 1999 4 1 3 4.50 3 40.00 40.00 35.00 - - - - 62.00 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 2.45 2.51 0.44 0.13 70.44 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 0.82 0.72 0.18 0.04 80.25 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 0.36 0.24 0.04 0.01 67.08 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 2.08 1.07 16.67 0.92 94.49 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 2.45 1.43 44.57 1.47 96.71 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 0.82 0.48 4.82 0.12 97.52 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 2.51 2.20 0.13 0.11 16.53 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 0.72 0.63 0.04 0.03 12.56 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 0.24 0.08 0.01 0.01 34.42 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 1.08 0.79 0.92 0.55 40.38 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 1.44 1.10 1.47 0.85 42.42 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 0.48 0.16 0.12 0.02 86.88 

Deng et al 2011 - 3 10 30.00 2 - 138.00 - 2.66 1.22 4.62 0.15 96.83 

Deng et al 2011 - 3 10 30.00 2 - 138.00 - 2.94 1.22 7.94 0.24 96.92 

Deng et al 2011 - 3 10 30.00 2 - 138.00 - 3.08 1.58 5.14 0.15 97.14 

Deng et al 2011 - 3 10 30.00 2 - 228.00 - 3.08 1.72 4.87 0.51 89.56 

Deng et al 2011 - 1 10 30.00 2 - 138.00 - 2.66 0.49 4.34 0.05 98.75 

Deng et al 2011 - 1 10 30.00 2 - 138.00 - 2.66 0.63 4.38 0.06 98.60 

Deng et al 2011 - 1 10 30.00 2 - 228.00 - 2.66 0.66 4.46 0.09 97.92 
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Deng et al 2011 - 1 10 30.00 2 - 138.00 - 2.94 0.61 8.36 0.09 98.90 

Coyne et al 1995 2 1 9 41.40 9 2.50 29.35 4.27 2.79 0.32 6.86 0.06 99.13 

Coyne et al 1995 2 1 9 41.40 9 2.50 48.38 6.17 4.62 0.55 13.87 0.14 98.96 

Dillaha et al 1989 2 1 9.1 50.05 11 2.00 20.88 5.02 2.51 0.60 18.82 0.30 98.40 

Dillaha et al 1989 2 1 9.1 50.05 11 2.00 38.50 17.46 4.62 2.09 20.63 1.21 94.16 

Dillaha et al 1989 2 1 4.6 25.30 11 4.00 20.88 20.89 2.51 2.51 18.82 2.27 87.95 

Dillaha et al 1989 2 1 4.6 25.30 11 4.00 38.50 48.49 4.62 5.82 20.63 4.66 77.41 

Dillaha et al 1989 2 1 9.1 50.05 16 2.00 19.21 19.21 2.30 2.31 42.78 11.00 74.28 

Dillaha et al 1989 2 1 9.1 50.05 16 2.00 27.59 47.60 3.31 5.71 47.20 29.99 36.47 

Dillaha et al 1989 2 1 4.6 25.30 16 4.00 19.21 17.53 2.30 2.10 42.78 14.36 66.43 

Dillaha et al 1989 2 1 4.6 25.30 16 4.00 27.59 41.04 3.31 4.92 47.20 38.79 17.82 

Barfield et al 1998 2 1 4.57 20.89 9 4.84 50.61 5.94 6.07 0.71 103.00 2.62 97.46 

Barfield et al 1998 2 1 4.57 20.89 9 4.84 77.23 7.85 9.27 0.94 258.00 8.44 96.73 

Barfield et al 1998 2 1 4.57 20.89 9 4.84 76.92 3.92 9.23 0.47 55.70 0.18 99.68 

Barfield et al 1998 2 1 4.57 20.89 9 4.84 75.08 6.00 9.01 0.72 67.40 4.13 93.87 

Barfield et al 1998 2 1 9.14 41.77 9 2.42 26.86 0.23 3.22 0.03 26.60 0.02 99.93 

Barfield et al 1998 2 1 9.14 41.77 9 2.42 58.18 5.14 6.98 0.62 212.00 1.10 99.48 

Barfield et al 1998 2 1 9.14 41.77 9 2.42 35.88 0.00 4.31 0.00 19.60 0.00 100.00 

Barfield et al 1998 2 1 9.14 41.77 9 2.42 3.94 0.10 0.47 0.01 21.50 0.00 100.00 

Barfield et al 1998 2 1 13.72 62.70 9 1.61 73.83 5.19 8.86 0.62 28.40 2.09 92.64 

Barfield et al 1998 2 1 13.72 62.70 9 1.61 96.95 5.88 11.63 0.71 361.00 2.06 99.43 

Barfield et al 1998 2 1 13.72 62.70 9 1.61 5.08 0.00 0.61 0.00 0.98 0.00 100.00 

Barfield et al 1998 2 1 13.72 62.70 9 1.61 41.10 3.98 4.93 0.48 10.30 0.00 99.98 

Arora et al 1996 4 1 20.12 30.58 2 30.00 98.17 38.08 1.96 0.76 - - 84.60 

Arora et al 1996 4 1 20.12 30.58 2 30.00 98.17 75.23 1.96 1.50 - - 75.90 

Arora et al 1996 4 1 20.12 30.58 2 30.00 98.17 27.68 1.96 0.55 - - 90.20 

Arora et al 1996 4 1 20.12 30.58 2 15.00 49.08 15.14 0.98 0.30 - - 91.10 

Arora et al 1996 4 1 20.12 30.58 2 15.00 49.08 22.78 0.98 0.46 - - 83.10 

Arora et al 1996 4 1 20.12 30.58 2 15.00 49.08 29.82 0.98 0.60 - - 88.40 

McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 3.46 2.92 12.10 3.54 70.77 

McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 4.15 3.62 41.47 7.07 82.95 
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McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 4.32 4.24 128.74 38.01 70.47 

McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 3.54 4.60 114.91 31.82 72.31 

Magette et al 1989 1 1 9.2 50.60 3 2.39 63.12 54.05 3.79 3.24 70.83 5.43 92.33 

Magette et al 1989 1 1 9.2 50.60 3 2.39 37.71 42.61 2.26 2.56 9.45 1.87 80.22 

Magette et al 1989 1 1 9.2 50.60 3 2.39 75.83 68.64 2.27 2.06 16.22 3.16 80.54 

Magette et al 1989 1 1 9.2 50.60 3 2.39 58.89 67.50 1.77 2.02 6.62 1.92 71.03 

Magette et al 1989 1 1 9.2 50.60 3 2.39 79.46 88.09 2.38 2.64 13.65 5.21 61.81 

Magette et al 1989 1 1 9.2 50.60 3 2.39 65.74 91.52 1.97 2.75 8.32 2.68 67.83 

Magette et al 1989 1 1 4.6 25.30 3 4.78 63.12 66.57 3.79 3.99 70.83 12.24 82.71 

Magette et al 1989 1 1 4.6 25.30 3 4.78 37.71 43.16 2.26 2.59 9.45 3.64 61.51 

Magette et al 1989 1 1 4.6 25.30 3 4.78 75.83 91.19 2.27 2.74 16.22 4.97 69.38 

Magette et al 1989 1 1 4.6 25.30 3 4.78 58.89 72.66 1.77 2.18 6.62 4.20 36.66 

Magette et al 1989 1 1 4.6 25.30 3 4.78 79.46 105.82 2.38 3.17 13.65 13.14 3.74 

Magette et al 1989 1 1 4.6 25.30 3 4.78 65.74 88.76 1.97 2.66 8.32 4.65 44.07 

W.J White et al 2007 2 3 10 50.00 1.5 32.00 144.00 100.97 13.00 9.12 27.30 8.74 68.00 

W.J White et al 2007 2 3 10 50.00 1.5 32.00 151.00 108.49 13.00 9.34 19.76 4.74 76.00 

W.J White et al 2007 1 3 10 50.00 6 32.00 160.00 111.45 13.00 9.06 25.22 6.31 75.00 

W.J White et al 2007 1 3 10 50.00 6 32.00 173.00 114.21 13.00 8.58 30.03 7.21 76.00 

W.J White et al 2007 1 3 10 50.00 6 32.00 196.00 168.86 13.00 11.20 29.90 14.05 53.00 

W.J White et al 2007 1 3 10 50.00 6 32.00 197.00 150.17 13.00 9.91 25.74 9.78 62.00 

W.J White et al 2007 1 3 10 50.00 11 32.00 200.00 163.43 13.00 10.62 33.80 13.86 59.00 

W.J White et al 2007 1 3 10 50.00 11 32.00 156.00 133.21 13.00 11.10 33.80 9.80 71.00 

W.J White et al 2007 1 3 10 50.00 11 32.00 206.00 176.56 13.00 11.14 30.55 10.08 67.00 

W.J White et al 2007 1 3 10 50.00 11 32.00 188.00 138.73 13.00 9.59 30.55 11.30 63.00 

W.J White et al 2007 1 3 10 50.00 16 32.00 167.00 117.80 13.00 9.17 28.99 1.16 96.00 

W.J White et al 2007 1 3 10 50.00 16 32.00 167.00 140.42 13.00 10.93 34.19 3.42 90.00 

W.J White et al 2007 1 3 10 50.00 16 32.00 176.00 152.36 13.00 11.25 30.29 8.48 72.00 

W.J White et al 2007 1 3 10 50.00 21 32.00 196.00 161.62 13.00 10.72 38.09 7.62 80.00 

W.J White et al 2007 1 3 10 50.00 21 32.00 203.00 172.32 13.00 11.04 22.23 4.89 78.00 

Boyd et al. 2003 4 1 20.1 30.15 2 45.00 139.43 63.30 8.23 3.26 19.50 4.37 77.57 

Boyd et al. 2003 4 1 20.1 30.15 2 15.00 48.91 20.93 2.74 0.92 6.49 0.57 91.27 
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Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 2.14 0.14 0.10 0.01 0.17 0.01 94.83 

Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 4.45 0.10 0.20 0.00 0.23 0.00 97.89 

Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 3.58 2.38 0.16 0.11 0.24 0.06 73.48 

Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 2.14 0.02 0.10 0.00 0.17 0.00 98.16 

Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 4.45 0.19 0.20 0.01 0.23 0.00 98.37 

Melville and Morgan 

2001 
1 1 1 3.00 5 6.00 3.58 0.06 0.16 0.00 0.24 0.00 98.43 

Helmers et al 2005 2 1 13 195.00 1 - - - 111.24 149.67 152.31 26.79 82.41 

Helmers et al 2005 2 1 13 195.00 1 - - - 61.35 109.02 14.60 2.90 80.16 

Helmers et al 2005 2 1 13 195.00 1 - 202.98 263.97 111.72 132.65 18.56 1.65 91.11 

Helmers et al 2005 2 1 13 195.00 1 - - - 189.00 155.10 144.42 26.70 81.51 

Helmers et al 2005 2 1 13 195.00 1 - - - 186.66 156.66 535.05 109.95 79.45 

Helmers et al 2005 2 1 13 195.00 1 - - - 143.81 149.96 355.74 91.13 74.38 

Helmers et al 2005 2 1 13 195.00 1 - - - 268.50 232.16 267.48 70.71 73.56 

Helmers et al 2005 2 1 13 195.00 1 - - - 106.80 87.38 16.25 1.29 92.06 

Helmers et al 2005 2 1 13 195.00 1 - 336.61 325.11 215.84 182.49 50.16 7.32 85.41 

Helmers et al 2005 2 1 13 195.00 1 - 752.32 741.84 155.96 122.70 146.01 10.76 92.63 

Helmers et al 2005 2 1 13 195.00 1 - - - 138.69 78.54 346.91 72.86 79.00 

Helmers et al 2005 2 1 13 195.00 1 - - - 126.86 59.88 161.40 27.38 83.04 

Abu-Zreig et al 2004 2 1 2 2.40 2.3 - 51.32 38.49 2.93 2.19 0.01 0.00 70.10 

Abu-Zreig et al 2004 2 1 2 2.40 2.3 - 35.70 11.78 2.29 0.75 0.01 0.00 83.32 

Abu-Zreig et al 2004 2 1 2 2.40 2.3 - 46.78 40.23 2.76 2.37 0.01 0.00 68.13 

Abu-Zreig et al 2004 2 1 5 6.00 2.3 - 42.89 24.02 2.75 1.54 0.01 0.00 76.36 

Abu-Zreig et al 2004 2 1 5 6.00 2.3 - 51.83 32.65 3.27 2.06 0.01 0.00 83.54 

Abu-Zreig et al 2004 2 1 5 6.00 2.3 - 46.25 27.75 2.96 1.78 0.01 0.00 86.76 

Abu-Zreig et al 2004 2 1 5 6.00 2.3 - 39.90 21.55 4.03 2.18 0.01 0.00 78.43 

Abu-Zreig et al 2004 2 1 10 12.00 2.3 - 44.21 3.98 3.10 0.28 0.01 0.00 97.37 

Abu-Zreig et al 2004 2 1 10 12.00 2.3 - 34.34 12.71 3.13 1.16 0.01 0.00 93.18 
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Abu-Zreig et al 2004 2 1 10 12.00 2.3 - 41.27 16.51 3.43 1.37 0.01 0.00 86.05 

Abu-Zreig et al 2004 2 1 15 18.00 2.3 - 55.70 23.39 4.40 1.85 0.01 0.00 89.07 

Abu-Zreig et al 2004 2 1 15 18.00 2.3 - 53.31 12.26 4.43 1.02 0.01 0.00 97.65 

Abu-Zreig et al 2004 2 1 15 18.00 2.3 - 52.24 33.43 3.97 2.54 0.01 0.00 85.85 

Abu-Zreig et al 2004 2 1 5 6.00 5 - 47.18 26.42 3.68 2.06 0.01 0.00 86.36 

Abu-Zreig et al 2004 2 1 5 6.00 5 - 48.96 20.56 4.70 1.97 0.01 0.00 88.13 

Abu-Zreig et al 2004 2 1 5 6.00 5 - 47.11 28.74 4.24 2.59 0.01 0.00 85.45 

Abu-Zreig et al 2004 2 1 5 6.00 2.3 - 54.44 32.12 4.90 2.89 0.01 0.00 82.47 

Coyne et al 1998 2 1 4.5 20.70 9 4.00 51.52 17.62 3.09 1.06 0.00 0.00 95.00 

Coyne et al 1998 2 1 4.5 20.70 9 4.00 41.40 5.68 2.48 0.34 0.00 0.00 98.00 

Coyne et al 1998 2 1 9 41.40 9 1.50 44.18 9.60 2.65 0.58 0.00 0.00 97.00 

Coyne et al 1998 2 1 9 41.40 9 1.50 47.35 3.58 2.84 0.22 0.00 0.00 99.00 

Lee et al 1989 - 1 4.6 25.30 16 3.98 23.32 33.11 1.38 1.89 23.50 10.40 55.74 

Lee et al 1989 - 1 9.1 50.05 16 2.01 23.32 40.94 1.38 2.21 23.50 6.70 71.49 

Chaubey et al 1994 2 1 3 4.50 3 1.00 3.75 7.50 0.23 0.45 0.01 0.00 69.10 

Chaubey et al 1994 2 1 6 9.00 3 0.50 3.75 11.25 0.23 0.68 0.01 0.00 53.34 

Chaubey et al 1994 2 1 9 13.50 3 0.33 3.75 15.00 0.23 0.90 0.01 0.00 66.24 

Chaubey et al 1994 2 1 15 22.50 3 0.20 3.75 22.50 0.23 1.35 0.01 0.00 62.72 

Chaubey et al 1994 2 1 21 31.50 3 0.14 3.75 30.00 0.23 1.80 0.01 0.00 77.31 

Young et al 1980 2 1 27.43 111.37 4 0.50 53.82 0.00 3.82 0.00 3.58 0.00 100.00 

Young et al 1980 2 1 27.43 111.37 4 0.50 53.82 36.47 3.82 2.59 3.58 2.13 40.70 

Young et al 1980 2 1 21.34 86.64 4 0.64 55.78 23.46 3.96 1.67 13.44 3.97 70.44 

Young et al 1980 2 1 21.34 86.64 4 0.64 55.78 62.55 3.96 4.44 13.44 5.58 58.46 

Young et al 1980 2 1 27.43 111.37 4 0.50 60.18 5.88 4.27 0.42 8.21 2.32 71.73 

Young et al 1980 2 1 27.43 111.37 4 0.50 60.18 56.24 4.27 3.99 8.21 5.75 29.96 

Young et al 1980 2 1 27.43 111.37 4 0.50 60.18 95.54 4.27 6.78 8.21 4.28 47.91 

Young et al 1980 2 1 21.34 86.64 4 0.64 56.96 74.38 4.04 5.28 9.50 7.23 23.91 

Young et al 1980 2 1 21.34 86.64 4 0.64 56.96 107.86 4.04 7.66 9.50 9.18 3.45 

Van Dijk et al 1996 2 1 1 0.50 9.07 100.00 10.50 10.59 0.47 0.48 11.33 6.20 45.29 

Van Dijk et al 1996 2 1 4 2.00 9.07 25.00 10.50 5.14 0.47 0.23 11.33 1.90 83.26 

Van Dijk et al 1996 2 1 5 2.50 9.07 20.00 10.50 13.33 0.53 0.60 10.41 4.14 60.27 
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Van Dijk et al 1996 2 1 10 5.00 9.07 10.00 10.50 4.91 0.53 0.22 10.41 0.82 92.15 

Van Dijk et al 1996 2 1 1 0.50 9.07 100.00 10.50 11.84 0.54 0.53 10.54 4.85 54.04 

Van Dijk et al 1996 2 1 4 2.00 9.07 25.00 10.50 10.16 0.54 0.46 10.54 2.74 73.98 

Van Dijk et al 1996 2 1 5 2.50 4 20.00 10.50 10.40 0.45 0.47 3.96 1.40 64.55 

Van Dijk et al 1996 2 1 10 5.00 4 10.00 10.50 2.80 0.45 0.13 3.96 0.15 96.18 

Van Dijk et al 1996 2 1 5 2.50 4.36 20.00 10.50 9.98 0.49 0.45 6.98 1.62 76.84 

Van Dijk et al 1996 2 1 10 5.00 4.36 10.00 10.50 0.54 0.49 0.02 6.98 0.03 99.58 

Van Dijk et al 1996 2 1 5 2.50 4 20.00 10.50 7.97 0.54 0.36 8.93 1.58 82.35 

Van Dijk et al 1996 2 1 10 5.00 4 10.00 10.50 5.94 0.54 0.27 8.93 0.75 91.62 

Van Dijk et al 1996 2 1 5 2.50 4.36 20.00 10.50 12.90 0.48 0.58 4.33 2.09 51.74 

Van Dijk et al 1996 2 1 10 5.00 4.36 10.00 10.50 2.54 0.48 0.11 4.33 0.10 97.63 

Lim et al 1998 2 1 6.1 14.64 3 2.00 48.80 73.20 2.93 4.39 0.15 0.04 70.07 

Lim et al 1998 2 1 12.2 29.28 3 1.00 48.80 97.60 2.93 5.86 0.15 0.02 89.81 

Lim et al 1998 2 1 18.3 43.92 3 0.67 48.80 122.00 2.93 7.32 0.15 0.00 97.43 

Schmitt et al 1999 2 1 7.5 22.50 6.5 10.80 75.48 42.82 1.89 1.02 18.90 3.99 78.91 

Schmitt et al 1999 2 1 15 45.00 6.5 5.40 75.48 14.24 1.89 0.35 18.90 1.30 93.12 

Schmitt et al 1999 2 1 7.5 22.50 6.5 10.80 75.48 35.68 1.89 0.80 18.90 0.93 95.07 

Schmitt et al 1999 2 1 15 45.00 6.5 5.40 75.48 13.58 1.89 0.34 18.90 0.24 98.73 

Schmitt et al 1999 2 1 7.5 22.50 6.5 10.80 75.48 43.49 1.89 1.21 18.90 3.01 84.08 

Schmitt et al 1999 2 1 15 45.00 6.5 5.40 75.48 27.15 1.89 0.66 18.90 0.84 95.57 

Schmitt et al 1999 2 3 7.5 22.50 6.5 10.80 75.48 42.13 1.89 1.03 18.90 2.16 88.56 

Schmitt et al 1999 2 3 15 45.00 6.5 5.40 75.48 35.70 1.89 0.93 18.90 1.16 93.87 

Chaubey et al 1995 2 1 3.1 4.65 3 1.00 3.88 7.75 0.23 0.47 0.02 0.01 36.77 

Chaubey et al 1995 2 1 6.1 9.15 3 0.51 3.88 11.50 0.23 0.69 0.02 0.01 33.70 

Chaubey et al 1995 2 1 9.2 13.80 3 0.34 3.88 15.38 0.23 0.92 0.02 0.01 16.99 

Chaubey et al 1995 2 1 15.2 22.80 3 0.20 3.88 22.88 0.23 1.37 0.02 0.01 43.73 

Chaubey et al 1995 2 1 21.4 32.10 3 0.14 3.88 30.63 0.23 1.84 0.02 0.01 48.19 

Lee et al 2000 4 1 7.1 29.11 5 3.11 8.15 7.48 0.98 0.90 0.31 0.12 59.94 

Lee et al 2000 4 1 7.1 29.11 5 3.11 43.34 43.10 2.60 2.59 4.38 1.75 60.15 

Lee et al 2000 4 3 16.3 66.83 5 1.36 8.15 2.89 0.98 0.35 0.31 0.03 89.36 

Lee et al 2000 4 3 16.3 66.83 5 1.36 43.34 37.26 2.60 2.24 4.38 0.61 86.07 
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Mickelson  et al. 

2003 
2 1 4.6 6.90 4.6 10.00 21.14 19.47 1.06 0.97 8.13 2.39 70.66 

Mickelson  et al. 

2003 
2 1 9.1 13.65 4.6 5.00 16.65 16.54 0.83 0.83 6.33 0.80 87.41 

Hayes et al. 1984 2 1 28.8 86.40 2.86 0.17 698.40 117.72 83.81 14.13 - - 93.30 

Hayes et al. 1984 2 1 33.1 99.30 4.5 0.15 610.20 82.26 73.22 9.87 - - 96.20 

Hayes et al. 1984 2 1 33.1 99.30 4.5 0.15 529.20 39.60 63.50 4.75 - - 98.70 

Hayes et al. 1984 2 1 33.9 101.70 9.8 0.15 651.60 235.80 78.19 28.30 - - 93.20 

Hayes et al. 1984 2 1 33.9 101.70 15 0.15 651.60 291.60 78.19 34.99 - - 87.20 

Altadena Strip - 1 7.925 - 3 - - - 73.17 51.51 3.66 0.88 76.07 

Altadena Strip - 1 7.925 - 3 - - - 151.13 144.70 17.68 3.47 80.36 

Altadena Strip - 1 7.925 - 3 - - - 61.42 63.68 2.76 1.02 63.13 

Altadena Strip - 1 7.925 - 3 - - - 62.38 55.95 3.24 1.57 51.70 

Altadena Strip - 1 7.925 - 3 - - - 49.81 36.64 2.34 0.73 68.70 

Altadena Strip - 1 7.925 - 3 - - - 180.32 168.12 16.59 4.03 75.68 

Altadena Strip - 1 7.925 - 3 - - - 90.05 70.31 4.41 1.48 66.54 

Cerritos - 1 20.12 - 2.1 - - - 115.87 87.61 8.23 5.43 33.97 

Cerritos - 1 20.12 - 2.1 - - - 57.26 51.20 5.90 2.87 51.39 

Cerritos - 1 20.12 - 2.1 - - - 88.41 15.91 10.34 0.80 92.31 

Cerritos - 1 20.12 - 2.1 - - - 100.78 52.73 13.61 2.85 79.07 

Cerritos - 1 20.12 - 2.1 - - - 31.71 8.41 9.99 1.61 83.92 

Cerritos - 1 20.12 - 2.1 - - - 32.73 10.11 4.84 1.55 68.07 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 45.16 19.25 4.52 0.15 96.59 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 60.69 43.45 5.70 0.78 86.29 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 19.01 10.80 1.44 0.30 79.06 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 9.87 6.67 0.38 0.20 46.65 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 25.63 22.77 2.15 0.36 83.08 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 66.57 44.71 2.13 0.89 58.02 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 11.22 11.91 0.36 0.26 27.00 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 12.00 5.96 0.60 0.13 78.15 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 4.24 7.12 0.14 0.11 15.98 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 6.72 5.99 1.41 0.16 88.96 
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San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 10.81 9.22 1.95 0.30 84.83 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 6.02 7.09 0.41 0.10 75.75 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 3.73 2.27 0.28 0.05 83.98 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 4.99 4.81 0.31 0.02 93.78 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 15.88 15.01 0.21 0.20 5.52 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 58.07 9.82 3.89 0.14 96.47 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 9.80 2.07 0.19 0.01 96.67 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 7.75 0.17 1.40 0.00 99.76 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 72.26 19.55 4.19 0.57 86.47 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 10.06 1.26 0.17 0.02 91.15 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 96.95 19.67 0.39 0.24 39.14 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 17.83 5.71 0.86 0.02 97.33 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 11.70 0.95 0.54 0.01 97.53 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 26.30 4.15 0.39 0.03 92.64 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 17.29 2.31 0.73 0.08 89.53 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 20.71 1.87 2.92 0.01 99.74 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 20.29 1.55 1.22 0.00 99.62 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 6.98 1.01 0.36 0.00 99.43 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 17.00 2.38 0.19 0.01 94.91 

San Rafael RVTS 2 3 1 8.3 174.30 50 - - - 1.93 0.35 0.17 0.03 84.83 

Westfield Level 

Spreader 
- 1 44.8 1025.92 1.25 - - - 5.18 2.29 0.88 0.15 83.08 

Westfield Level 

Spreader 
- 1 44.8 1025.92 1.25 - - - 2.85 0.96 0.11 0.01 89.33 

Westfield Level 

Spreader 
- 1 44.8 1025.92 1.25 - - - 3.09 2.01 0.19 0.03 84.85 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.03 0.00 2.20 0.25 88.64 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.07 0.01 6.00 0.45 92.50 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.09 0.01 9.20 0.88 90.49 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.10 0.01 11.80 0.93 92.16 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.24 0.02 36.60 3.60 90.16 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.26 0.02 20.80 2.50 87.98 



188 

 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.34 0.04 21.00 1.90 90.95 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.35 0.04 57.00 5.15 90.96 

Angima et al.2002 2 1 1 2.50 20 8.00 - - 0.14 0.02 28.60 2.35 91.78 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.04 0.00 1.40 0.18 87.50 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.06 0.00 5.20 0.38 92.79 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.06 0.00 5.60 0.68 87.95 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.06 0.01 11.40 1.15 89.91 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.15 0.02 37.40 4.10 89.04 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.16 0.01 17.80 1.05 94.10 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.32 0.03 25.00 1.88 92.50 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.19 0.03 41.80 6.48 84.51 

Angima et al.2002 2 1 1 2.50 40 8.00 - - 0.09 0.01 33.40 2.33 93.04 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 48.06 14.79 1.30 0.40 5.70 0.70 87.72 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 12.98 0.00 0.60 0.00 5.30 0.00 100.00 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 37.64 51.33 2.20 3.00 12.90 8.30 35.66 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 47.90 35.93 2.80 2.10 13.80 3.10 77.54 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 84.59 65.07 1.30 1.00 10.20 3.60 64.71 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 88.09 51.38 1.20 0.70 7.50 2.00 73.33 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 14.85 16.82 1.50 1.70 9.40 3.00 68.09 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 31.10 26.31 1.30 1.10 6.40 2.50 60.94 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 23.92 16.75 1.00 0.70 5.30 0.50 90.57 

Parsons et al. 1994 1 1 4.3 17.20 1 8.60 38.69 12.90 0.90 0.30 18.40 0.70 96.20 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 48.06 18.48 1.30 0.50 5.70 1.00 82.46 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 5.02 1.00 0.50 0.10 2.50 0.40 84.00 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 12.98 6.49 0.60 0.30 5.30 0.00 100.00 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 37.64 39.35 2.20 2.30 12.90 3.40 73.64 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 47.90 51.33 2.80 3.00 13.80 4.30 68.84 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 84.59 52.05 1.30 0.80 10.20 2.40 76.47 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 88.09 36.70 1.20 0.50 7.50 1.00 86.67 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 14.85 13.86 1.50 1.40 9.40 4.70 50.00 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 31.10 23.92 1.30 1.00 6.40 1.70 73.44 
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Parsons et al. 1994 1 1 8.5 34.00 1 4.35 23.92 35.88 1.00 1.50 5.30 0.40 92.45 

Parsons et al. 1994 1 1 8.5 34.00 1 4.35 38.69 0.00 0.90 0.00 18.40 0.00 100.00 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 5.02 4.02 0.50 0.40 2.50 1.00 60.00 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 - - 0.40 0.30 2.40 2.30 4.17 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 28.13 12.98 1.30 0.60 5.30 0.80 84.91 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 - - 0.60 0.30 4.70 1.10 76.60 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 149.65 143.15 2.30 2.20 10.20 8.30 18.63 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 38.69 38.69 0.90 0.90 18.40 1.20 93.48 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 - - 1.20 0.70 13.40 1.60 88.06 

Parsons et al. 1994 1 3 4.3 17.20 1 8.60 - - 0.60 0.40 4.90 0.60 87.76 

Parsons et al. 1994 1 3 4.3 17.20 15 8.60 - - 1.80 1.50 6.50 0.30 95.38 

Parsons et al. 1994 1 3 4.3 17.20 15 8.60 - - 0.80 0.70 14.90 0.80 94.63 

Parsons et al. 1994 1 3 4.3 17.20 15 8.60 - - 2.10 0.60 3.20 0.40 87.50 

Parsons et al. 1994 1 3 8.5 34.00 15 4.35 - - 1.30 0.50 17.30 0.70 95.95 

Parsons et al. 1994 1 3 8.5 34.00 15 4.35 - - 2.60 1.70 3.80 0.90 76.32 

Parsons et al 1991 1 1 4.3 17.20 3.25 8.60 - - 10.36 0.57 0.10 0.03 72.16 

Parsons et al 1991 1 1 8.5 34.00 3.25 4.35 - - 10.36 1.22 0.10 0.03 70.10 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 5.94 2.26 0.36 0.14 0.79 0.07 91.26 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 5.94 5.94 0.36 0.24 1.14 0.18 83.92 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 12.06 66.63 0.72 0.40 1.20 0.24 79.65 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 12.06 9.29 0.72 0.56 1.28 0.39 69.97 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 18.00 14.94 1.08 0.90 3.75 0.78 79.25 

Delectic and Fletcher 

2006 
- 1 5 1.5 7.8 - 18.00 15.30 1.08 0.92 2.93 0.35 88.10 

Lee et al 2003 4 1 7 28.70 5 3.11 - - 0.88 0.48 5.32 0.54 89.86 

Lee et al 2003 4 2 9.1 37.31 5 3.20 - - 0.48 0.28 0.54 0.26 52.41 

Rankins et al 2001 4 1 0.3 1.20 3 73.33 - - 14.26 7.22 25.08 7.27 71.02 

Rankins et al 2001 4 1 0.3 1.20 3 73.33 - - 14.26 6.43 25.08 5.00 80.07 

Rankins et al 2001 4 1 0.3 1.20 3 73.33 - - 14.26 3.39 25.08 5.43 78.35 
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Rankins et al 2001 4 1 0.3 1.20 3 73.33 - - 14.26 7.75 25.08 8.43 66.39 

Mankin et al 2007 2 1 15.3 15.30 4 - - - 0.69 0.06 - - 99.9 

Mankin et al 2007 2 3 9.7 9.70 3.9 - - - 0.68 0.16 - - 99.4 

Mankin et al 2007 2 3 12.3 12.30 3.8 - - - 0.65 0.05 - - 99.8 

Barfield et al 1998 2 1 4.57 20.88 9 4.84 - - 8.40 0.71 - - 96.9 

Barfield et al 1998 2 1 9.14 41.77 9 2.42 - - 3.75 0.16 - - 99.9 

Barfield et al 1998 2 1 13.72 62.70 9 1.61 - - 6.51 0.45 - - 99.7 

McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 32.66 27.67 82.94 28.29 65.9 

McGregor et al 1999 2 1 0.5 2.00 5 43.20 - - 41.30 38.54 546.05 164.42 69.89 

Webber et al. 2010 2 1 4.56 10.40 9.5 5.00 - - 0.42 0.33 0.20 0.08 61.76 

Webber et al. 2010 2 1 2.28 5.20 9.5 10.00 - - 0.42 0.16 0.20 0.02 88.04 

Webber et al. 2010 2 1 4.56 10.40 9.5 5.00 - - 0.83 0.30 0.16 0.05 68.41 

Webber et al. 2010 2 1 2.28 5.20 9.5 10.00 - - 0.83 0.89 0.16 0.14 14.63 

Webber et al. 2009 2 3 23 138.00 5 1.00 - - 3.07 0.18 8.28 0.21 97.46 

Webber et al. 2009 2 1 12 72.00 5 2.00 - - 3.07 0.53 8.28 0.48 94.2 

Webber et al. 2009 2 3 23 138.00 5 1.00 - - 4.38 0.35 14.46 0.56 96.12 

Webber et al. 2009 2 1 12 72.00 5 2.00 - - 4.38 0.93 14.46 1.49 89.68 

Wanyama et al. 2012 4 1 2.5 5.00 10 4.00 - - 0.05 0.03 0.02 0.01 67.16 

Wanyama et al. 2012 4 1 5 10.00 10 2.00 - - 0.05 0.02 0.02 0.01 66.95 

Wanyama et al. 2012 4 1 10 20.00 10 1.00 - - 0.05 0.01 0.02 0.01 61.02 

Wanyama et al. 2012 4 1 2.5 5.00 10 4.00 - - 0.05 0.04 0.02 0.01 61.86 

Wanyama et al. 2012 4 1 5 10.00 10 2.00 - - 0.05 0.03 0.02 0.01 64.41 

Wanyama et al. 2012 4 1 10 20.00 10 1.00 - - 0.05 0.01 0.02 0.01 59.32 

Wanyama et al. 2012 4 1 2.5 5.00 10 4.00 - - 0.05 0.04 0.02 0.01 58.69 

Wanyama et al. 2012 4 1 5 10.00 10 2.00 - - 0.05 0.03 0.02 0.01 59.32 

Wanyama et al. 2012 4 1 10 20.00 10 1.00 - - 0.05 0.01 0.02 0.01 55.93 

Wanyama et al. 2012 4 1 2.5 5.00 10 4.00 - - 0.05 0.05 0.02 0.01 49.15 

Wanyama et al. 2012 4 1 5 10.00 10 2.00 - - 0.05 0.03 0.02 0.01 51.69 

Wanyama et al. 2012 4 1 10 20.00 10 1.00 - - 0.05 0.01 0.02 0.01 50.85 

Hay et al. 2006 1 1 8.3 58.10 17 6.02 - - 29.70 25.20 1.05 0.39 63.33 
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Uusi-Kamppa and 

Jauhiainen 2010 
4 1 10 180.00 15 6.00 - - 150.83 140.77 114.48 63.00 44.97 

Uusi-Kamppa and 

Jauhiainen 2010 
4 1 10 180.00 15 6.00 - - 120.66 139.47 58.32 52.92 9.26 

Uusi-Kamppa and 

Jauhiainen 2010 
4 3 10 180.00 15 6.00 - - 150.83 159.02 114.48 56.70 50.47 

Uusi-Kamppa and 

Jauhiainen 2010 
4 3 10 180.00 15 6.00 - - 128.49 125.13 30.24 30.24 0 

Uusi-Kamppa and 

Jauhiainen 2010 
4 3 10 180.00 15 6.00 - - 120.66 97.76 58.32 50.40 13.58 

Sheridan et al 1999 4 1 8 320.00 3.5 33.33 - - 63.24 27.90 1.60 0.36 77.5 

Sheridan et al 1999 4 1 8 320.00 3.5 33.33 - - 68.82 26.97 2.32 0.48 79.31 

Sheridan et al 1999 4 1 8 320.00 3.5 33.33 - - 76.26 21.39 1.12 0.20 82.14 

Daniels & Gilliam 

1996 
1 1 3 - 4.9 28.00 - - - - - - 59 

Daniels & Gilliam 

1996 
1 1 6 - 4.9 14.00 - - - - - - 61 

Daniels & Gilliam 

1996 
1 1 3 - 2.1 28.67 - - - - - - 45 

Daniels & Gilliam 

1996 
1 1 6 - 2.1 14.33 - - - - - - 57 

Dickey & 

Vanderholm 1981 
- 1 91 1092.0 0.5 1.00 - - 2453.00 413.00 9076.10 411.35 95.5 

Dillaha et al 1988 2 1 4.6 25.30 11 3.98 - - 16.23 21.56 105.68 17.63 83.32 

Dillaha et al 1988 2 1 9.1 50.05 11 2.01 - - 16.23 18.34 105.68 7.54 92.87 

Dillaha et al 1988 2 1 4.6 25.30 16 3.98 - - 14.91 15.71 236.53 70.53 70.18 

Dillaha et al 1988 2 1 9.1 50.05 16 2.01 - - 14.91 22.17 236.53 43.70 81.52 

Edwards et al 1983 - 1 30 135.00 2 - - - 0.36 0.36 3610.00 1800.00 50.14 

Edwards et al 1983 - 1 60 270.00 2 - - - 0.36 0.38 3610.00 988.00 72.63 

Schwer & Clausen 

1989 
2 1 26 275.60 2 - - - 0.01 0.00 235.64 2.48 98.95 

Schellinger & 

Clausen 1992 
4 1 22.9 174.04 2 3.69 - - 1957.95 1397.54 294.82 118.17 59.92 

Duchemin & Hogue 

2009 
2 1 5 25.00 3 6.00 - - 25.52 21.85 137.99 18.12 86.87 
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Duchemin & Hogue 

2009 
2 3 5 25.00 3 6.00 - - 25.52 21.66 137.99 20.39 85.22 

Patty et al 1997 2 1 6 30.00 10 8.33 - - 0.48 0.28 2.04E-05 2.53E-06 87.6 

Patty et al 1997 2 1 12 60.00 10 4.17 - - 0.48 0.22 2.04E-05 0 100 

Patty et al 1997 2 1 18 90.00 10 2.78 - - 0.48 0.03 2.04E-05 0 100 

Patty et al 1997 2 1 6 30.00 7 8.33 - - 0.46 0.07 4.93E-04 5.44E-06 98.9 

Patty et al 1997 2 1 12 60.00 7 4.17 - - 0.46 0.01 4.93E-04 3.70E-06 99.25 

Patty et al 1997 2 1 18 90.00 7 2.78 - - 0.46 0.00 4.93E-04 3.70E-07 99.92 

Patty et al 1997 2 1 6 30.00 15 8.33 - - 0.54 0.07 3.09E-04 2.87E-05 90.71 

Patty et al 1997 2 1 12 60.00 15 4.17 - - 0.54 0.04 3.09E-04 8.21E-06 97.34 

Patty et al 1997 2 1 18 90.00 15 2.78 - - 0.54 0.08 3.09E-04 4.80E-06 98.45 

Tingle et al 1998 4 1 0.5 2.00 3 43.00 - - 1.18 0.20 0.77 0.10 87.49 

Tingle et al 1998 4 1 1 4.00 3 21.00 - - 1.15 0.18 0.76 0.05 93.02 

Tingle et al 1998 4 1 2 8.00 3 10.00 - - 1.10 0.11 0.72 0.04 93.89 

Tingle et al 1998 4 1 3 12.00 3 6.33 - - 1.04 0.15 0.68 0.04 94.85 

Tingle et al 1998 4 1 4 16.00 3 4.50 - - 0.99 0.09 0.65 0.02 97.28 

Le Bissonais et al. 

2004 
2 1 6 12.00 4.4 9.00 - - 3.14 1.28 3.13 0.84 73.18 

Le Bissonais et al. 

2004 
2 1 6 12.00 4.4 9.00 - - 6.11 1.10 9.53 0.22 97.73 
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Table 1B. Entries categorized as ‘event-based’ that were used to construct the sediment reduction model. This included 287 entries 

from 33 studies (includes data from online stormwater BMP database), Missing data for flow rate were reconstructed using Qout = 14.7 

* Vout (R
2 = 0.7; N = 161) and Vin/Vout = Qin/Qout relationships. Factors considered for the model building process were buffer width 

(w), slope (s), sediment load per unit buffer area (Lin/A), inflow rate over unit area (Qin/A), average flow rate (Qav = (Qin + Qout)/2), 

ratio of flow volumes (Vin/Vout or Vr), roughness factor (n), residence time factors (t1 ∝ w
0.6/(q0.4 s0.3), t2 ∝ w/√s, t3 ∝ w0.3/(s0.3 q0.6); q = 

Qav/A), and the square, log and exponential transformations of aforementioned variables. 

        Residence time parameters   

Study 
Width 

(m) 

Slope 

(%) 
Qin/A 

(L/min/m2) 
Qav 

(L/min) 
Vr 

Lin/A 

(kg/m2) 
Lout/A 
(kg/m2) 

t1 t2 t3 
Roughness, 

n 

Sediment 

removal 

(%) 

Lee et al 1999 6.00 3.00 4.44 36.00 1.25 - - 4.82 34.64 2.32 0.01 78.20 

Lee et al 1999 6.00 3.00 4.44 35.50 1.29 - - 4.85 34.64 2.34 0.01 74.80 

Lee et al 1999 3.00 3.00 8.89 38.00 1.11 - - 2.36 17.32 1.12 0.01 69.00 

Lee et al 1999 3.00 3.00 8.89 37.50 1.14 - - 2.37 17.32 1.13 0.01 62.00 

Lee et al 2003 7.00 5.00 1.25 36.37 0.98 0.44 0.13 7.18 31.31 4.43 0.03 70.44 

Lee et al 2003 7.00 5.00 0.42 11.25 1.14 0.18 0.04 11.48 31.31 9.70 0.08 80.25 

Lee et al 2003 7.00 5.00 0.19 4.41 1.52 0.04 0.01 16.69 31.31 18.09 0.21 67.08 

Lee et al 2003 7.00 5.00 1.07 23.19 1.94 16.67 0.92 8.60 31.31 5.99 0.04 94.49 

Lee et al 2003 7.00 5.00 1.25 28.48 1.71 44.57 1.47 7.92 31.31 5.22 0.03 96.71 

Lee et al 2003 7.00 5.00 0.42 9.49 1.71 4.82 0.12 12.29 31.31 10.86 0.10 97.52 

Lee et al 2003 9.10 5.00 0.99 34.61 1.14 0.13 0.11 9.52 40.70 5.96 0.03 16.53 

Lee et al 2003 9.10 5.00 0.28 9.89 1.14 0.04 0.03 15.72 40.70 13.73 0.09 12.56 

Lee et al 2003 9.10 5.00 0.09 2.34 3.05 0.01 0.01 28.00 40.70 35.95 0.39 34.42 

Lee et al 2003 9.10 5.00 0.42 13.68 1.37 0.92 0.55 13.81 40.70 11.06 0.07 40.38 

Lee et al 2003 9.10 5.00 0.57 18.62 1.31 1.47 0.85 12.20 40.70 9.01 0.05 42.42 

Lee et al 2003 9.10 5.00 0.19 4.67 3.05 0.12 0.02 21.22 40.70 22.65 0.20 86.88 

Deng et al 2011 10.00 2.00 4.60 100.59 2.18 4.62 0.15 7.93 70.71 3.54 0.00 96.83 

Deng et al 2011 10.00 2.00 4.60 97.70 2.40 7.94 0.24 8.03 70.71 3.61 0.00 96.92 

Deng et al 2011 10.00 2.00 4.60 104.40 1.95 5.14 0.15 7.82 70.71 3.46 0.00 97.14 

Deng et al 2011 10.00 2.00 7.60 177.55 1.79 4.87 0.51 6.32 70.71 2.43 0.00 89.56 

Deng et al 2011 10.00 2.00 4.60 81.79 5.40 4.34 0.05 8.62 70.71 4.07 0.01 98.75 
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Deng et al 2011 10.00 2.00 4.60 85.34 4.22 4.38 0.06 8.47 70.71 3.95 0.01 98.60 

Deng et al 2011 10.00 2.00 7.60 142.41 4.01 4.46 0.09 6.90 70.71 2.81 0.00 97.92 

Deng et al 2011 10.00 2.00 4.60 83.32 4.82 8.36 0.09 8.56 70.71 4.02 0.01 98.90 

Coyne et al 1995 9.00 9.00 0.71 16.81 8.77 6.86 0.06 11.04 30.00 8.47 0.08 99.13 

Coyne et al 1995 9.00 9.00 1.17 27.28 8.45 13.87 0.14 9.09 30.00 6.13 0.05 98.96 

Dillaha et al 1989 9.10 11.00 0.42 12.95 4.16 18.82 0.30 12.53 27.44 10.73 0.14 98.40 

Dillaha et al 1989 9.10 11.00 0.77 27.98 2.21 20.63 1.21 9.21 27.44 6.42 0.07 94.16 

Dillaha et al 1989 4.60 11.00 0.83 20.89 1.00 18.82 2.27 5.23 13.87 3.94 0.09 87.95 

Dillaha et al 1989 4.60 11.00 1.52 43.49 0.79 20.63 4.66 3.90 13.87 2.42 0.04 77.41 

Dillaha et al 1989 9.10 16.00 0.38 19.21 1.00 42.78 11.00 9.56 22.75 7.28 0.12 74.28 

Dillaha et al 1989 9.10 16.00 0.55 37.60 0.58 47.20 29.99 7.31 22.75 4.65 0.06 36.47 

Dillaha et al 1989 4.60 16.00 0.76 18.37 1.10 42.78 14.36 4.92 11.50 3.79 0.12 66.43 

Dillaha et al 1989 4.60 16.00 1.09 34.32 0.67 47.20 38.79 3.83 11.50 2.50 0.06 17.82 

Barfield et al 1998 4.57 9.00 2.42 28.28 8.52 103.00 2.62 4.54 15.23 3.03 0.05 97.46 

Barfield et al 1998 4.57 9.00 3.70 42.54 9.84 258.00 8.44 3.86 15.23 2.31 0.03 96.73 

Barfield et al 1998 4.57 9.00 3.68 40.42 19.64 55.70 0.18 3.94 15.23 2.39 0.03 99.68 

Barfield et al 1998 4.57 9.00 3.59 40.54 12.51 67.40 4.13 3.93 15.23 2.38 0.03 93.87 

Barfield et al 1998 9.14 9.00 0.64 13.54 
116.3

5 
26.60 0.02 12.19 30.47 9.89 0.10 99.93 

Barfield et al 1998 9.14 9.00 1.39 31.66 11.32 212.00 1.10 8.68 30.47 5.61 0.04 99.48 

Barfield et al 1998 9.14 9.00 0.86 17.94 - 19.60 0.00 10.89 30.47 8.20 0.08 100.00 

Barfield et al 1998 9.14 9.00 0.09 2.02 40.78 21.50 0.00 26.10 30.47 35.16 0.68 100.00 

Barfield et al 1998 13.72 9.00 1.18 39.51 14.22 28.40 2.09 11.92 45.73 7.27 0.04 92.64 

Barfield et al 1998 13.72 9.00 1.55 51.42 16.48 361.00 2.06 10.73 45.73 6.10 0.03 99.43 

Barfield et al 1998 13.72 9.00 0.08 2.54 - 0.98 0.00 35.75 45.73 45.32 0.54 100.00 

Barfield et al 1998 13.72 9.00 0.66 22.54 10.32 10.30 0.00 14.92 45.73 10.57 0.06 99.98 

Arora et al 1996 20.12 2.00 3.21 68.12 2.58 - - 14.22 142.27 5.88 0.00 84.60 

Arora et al 1996 20.12 2.00 3.21 86.70 1.30 - - 12.91 142.27 5.00 0.00 75.90 

Arora et al 1996 20.12 2.00 3.21 62.92 3.55 - - 14.67 142.27 6.19 0.00 90.20 

Arora et al 1996 20.12 2.00 1.61 32.11 3.24 - - 19.20 142.27 9.70 0.01 91.10 

Arora et al 1996 20.12 2.00 1.61 35.93 2.15 - - 18.36 142.27 9.00 0.01 83.10 
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Arora et al 1996 20.12 2.00 1.61 39.45 1.65 - - 17.69 142.27 8.46 0.01 88.40 

McGregor et al 1999 0.50 5.00 25.38 46.81 1.18 12.10 3.54 0.46 2.24 0.26 0.02 70.77 

McGregor et al 1999 0.50 5.00 30.46 57.08 1.14 41.47 7.07 0.42 2.24 0.23 0.02 82.95 

McGregor et al 1999 0.50 5.00 31.73 62.89 1.02 128.74 38.01 0.41 2.24 0.22 0.01 70.47 

McGregor et al 1999 0.50 5.00 26.02 59.78 0.77 114.91 31.82 0.42 2.24 0.22 0.02 72.31 

Magette et al 1989 9.20 3.00 1.25 58.59 1.17 70.83 5.43 10.23 53.12 6.12 0.02 92.33 

Magette et al 1989 9.20 3.00 0.75 40.16 0.88 9.45 1.87 11.89 53.12 7.87 0.02 80.22 

Magette et al 1989 9.20 3.00 1.50 72.23 1.10 16.22 3.16 9.40 53.12 5.32 0.01 80.54 

Magette et al 1989 9.20 3.00 1.16 63.19 0.87 6.62 1.92 9.92 53.12 5.82 0.02 71.03 

Magette et al 1989 9.20 3.00 1.57 83.77 0.90 13.65 5.21 8.86 53.12 4.82 0.01 61.81 

Magette et al 1989 9.20 3.00 1.30 78.63 0.72 8.32 2.68 9.09 53.12 5.03 0.01 67.83 

Magette et al 1989 4.60 3.00 2.49 64.84 0.95 70.83 12.24 4.91 26.56 2.86 0.02 82.71 

Magette et al 1989 4.60 3.00 1.49 40.44 0.87 9.45 3.64 5.93 26.56 3.92 0.02 61.51 

Magette et al 1989 4.60 3.00 3.00 83.51 0.83 16.22 4.97 4.44 26.56 2.41 0.01 69.38 

Magette et al 1989 4.60 3.00 2.33 65.77 0.81 6.62 4.20 4.88 26.56 2.83 0.01 36.66 

Magette et al 1989 4.60 3.00 3.14 92.64 0.75 13.65 13.14 4.26 26.56 2.25 0.01 3.74 

Magette et al 1989 4.60 3.00 2.60 77.25 0.74 8.32 4.65 4.58 26.56 2.54 0.01 44.07 

W.J White et al 2007 10.00 1.50 2.88 122.48 1.43 27.30 8.74 9.81 81.65 4.81 0.01 68.00 

W.J White et al 2007 10.00 1.50 3.02 129.74 1.39 19.76 4.74 9.58 81.65 4.63 0.01 76.00 

W.J White et al 2007 10.00 6.00 3.20 135.72 1.44 25.22 6.31 6.21 40.83 2.83 0.01 75.00 

W.J White et al 2007 10.00 6.00 3.46 143.60 1.51 30.03 7.21 6.07 40.83 2.72 0.01 76.00 

W.J White et al 2007 10.00 6.00 3.92 182.43 1.16 29.90 14.05 5.52 40.83 2.32 0.01 53.00 

W.J White et al 2007 10.00 6.00 3.94 173.59 1.31 25.74 9.78 5.63 40.83 2.40 0.01 62.00 

W.J White et al 2007 10.00 11.00 4.00 181.72 1.22 33.80 13.86 4.61 30.15 1.90 0.01 59.00 

W.J White et al 2007 10.00 11.00 3.12 144.61 1.17 33.80 9.80 5.05 30.15 2.22 0.01 71.00 

W.J White et al 2007 10.00 11.00 4.12 191.28 1.17 30.55 10.08 4.51 30.15 1.84 0.01 67.00 

W.J White et al 2007 10.00 11.00 3.76 163.36 1.36 30.55 11.30 4.81 30.15 2.04 0.01 63.00 

W.J White et al 2007 10.00 16.00 3.34 142.40 1.42 28.99 1.16 4.54 25.00 1.98 0.01 96.00 

W.J White et al 2007 10.00 16.00 3.34 153.71 1.19 34.19 3.42 4.40 25.00 1.88 0.01 90.00 

W.J White et al 2007 10.00 16.00 3.52 164.18 1.16 30.29 8.48 4.29 25.00 1.80 0.01 72.00 

W.J White et al 2007 10.00 21.00 3.92 178.81 1.21 38.09 7.62 3.82 21.82 1.55 0.01 80.00 
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W.J White et al 2007 10.00 21.00 4.06 187.66 1.18 22.23 4.89 3.75 21.82 1.50 0.01 78.00 

Boyd et al. 2003 20.10 2.00 4.62 101.36 2.52 19.50 4.37 12.05 142.13 4.46 0.00 77.57 

Boyd et al. 2003 20.10 2.00 1.62 34.92 2.97 6.49 0.57 18.45 142.13 9.08 0.01 91.27 

Melville and Morgan 

2001 
1.00 5.00 0.71 1.14 15.81 0.17 0.01 3.62 4.47 5.18 0.59 94.83 

Melville and Morgan 

2001 
1.00 5.00 1.48 2.28 45.75 0.23 0.00 2.74 4.47 3.26 0.30 97.89 

Melville and Morgan 

2001 
1.00 5.00 1.19 2.98 1.50 0.24 0.06 2.46 4.47 2.73 0.23 73.48 

Melville and Morgan 

2001 
1.00 5.00 0.71 1.08 

109.4

3 
0.17 0.00 3.70 4.47 5.37 0.62 98.16 

Melville and Morgan 

2001 
1.00 5.00 1.48 2.32 23.11 0.23 0.00 2.72 4.47 3.22 0.29 98.37 

Melville and Morgan 

2001 
1.00 5.00 1.19 1.82 57.13 0.24 0.00 3.00 4.47 3.79 0.37 98.43 

Helmers et al 2005 13.00 1.00 8.38 1916.25 0.74 152.31 26.79 7.44 130.00 2.38 0.00 82.41 

Helmers et al 2005 13.00 1.00 4.62 1251.28 0.56 14.60 2.90 8.82 130.00 3.16 0.00 80.16 

Helmers et al 2005 13.00 1.00 1.04 233.47 0.84 18.56 1.65 17.26 130.00 9.68 0.01 91.11 

Helmers et al 2005 13.00 1.00 14.24 2527.24 1.22 144.42 26.70 6.66 130.00 1.98 0.00 81.51 

Helmers et al 2005 13.00 1.00 14.06 2521.51 1.19 535.05 109.95 6.66 130.00 1.98 0.00 79.45 

Helmers et al 2005 13.00 1.00 10.83 2157.52 0.96 355.74 91.13 7.09 130.00 2.20 0.00 74.38 

Helmers et al 2005 13.00 1.00 20.23 3677.06 1.16 267.48 70.71 5.73 130.00 1.54 0.00 73.56 

Helmers et al 2005 13.00 1.00 8.05 1426.12 1.22 16.25 1.29 8.37 130.00 2.90 0.00 92.06 

Helmers et al 2005 13.00 1.00 1.73 330.86 1.18 50.16 7.32 15.02 130.00 7.67 0.01 85.41 

Helmers et al 2005 13.00 1.00 3.86 747.08 1.27 146.01 10.76 10.84 130.00 4.46 0.00 92.63 

Helmers et al 2005 13.00 1.00 10.45 1595.45 1.77 346.91 72.86 8.00 130.00 2.69 0.00 79.00 

Helmers et al 2005 13.00 1.00 9.56 1371.48 2.12 161.40 27.38 8.50 130.00 2.97 0.00 83.04 

Abu-Zreig et al 2004 2.00 2.30 21.38 44.90 1.33 0.01 0.00 1.46 13.19 0.63 0.00 70.10 

Abu-Zreig et al 2004 2.00 2.30 14.88 23.74 3.03 0.01 0.00 1.88 13.19 0.96 0.01 83.32 

Abu-Zreig et al 2004 2.00 2.30 19.49 43.51 1.16 0.01 0.00 1.48 13.19 0.64 0.00 68.13 

Abu-Zreig et al 2004 5.00 2.30 7.15 33.45 1.79 0.01 0.00 4.10 32.97 1.91 0.01 76.36 

Abu-Zreig et al 2004 5.00 2.30 8.64 42.24 1.59 0.01 0.00 3.73 32.97 1.64 0.00 83.54 

Abu-Zreig et al 2004 5.00 2.30 7.71 37.00 1.67 0.01 0.00 3.93 32.97 1.79 0.01 86.76 

Abu-Zreig et al 2004 5.00 2.30 6.65 30.72 1.85 0.01 0.00 4.24 32.97 2.02 0.01 78.43 
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Abu-Zreig et al 2004 10.00 2.30 3.68 24.10 11.11 0.01 0.00 9.34 65.94 4.76 0.01 97.37 

Abu-Zreig et al 2004 10.00 2.30 2.86 23.52 2.70 0.01 0.00 9.43 65.94 4.84 0.01 93.18 

Abu-Zreig et al 2004 10.00 2.30 3.44 28.89 2.50 0.01 0.00 8.69 65.94 4.22 0.01 86.05 

Abu-Zreig et al 2004 15.00 2.30 3.09 39.54 2.38 0.01 0.00 11.49 98.91 5.13 0.01 89.07 

Abu-Zreig et al 2004 15.00 2.30 2.96 32.79 4.35 0.01 0.00 12.39 98.91 5.81 0.01 97.65 

Abu-Zreig et al 2004 15.00 2.30 2.90 42.83 1.56 0.01 0.00 11.13 98.91 4.87 0.00 85.85 

Abu-Zreig et al 2004 5.00 5.00 7.86 36.80 1.79 0.01 0.00 3.12 22.36 1.39 0.01 86.36 

Abu-Zreig et al 2004 5.00 5.00 8.16 34.76 2.38 0.01 0.00 3.20 22.36 1.44 0.01 88.13 

Abu-Zreig et al 2004 5.00 5.00 7.85 37.92 1.64 0.01 0.00 3.09 22.36 1.36 0.01 85.45 

Abu-Zreig et al 2004 5.00 2.30 9.07 43.28 1.69 0.01 0.00 3.70 32.97 1.61 0.00 82.47 

Coyne et al 1998 4.50 9.00 2.49 34.57 2.92 0.00 0.00 4.14 15.00 2.62 0.04 95.00 

Coyne et al 1998 4.50 9.00 2.00 23.54 7.28 0.00 0.00 4.82 15.00 3.38 0.06 98.00 

Coyne et al 1998 9.00 9.00 1.07 26.89 4.60 0.00 0.00 9.15 30.00 6.19 0.05 97.00 

Coyne et al 1998 9.00 9.00 1.14 25.47 13.21 0.00 0.00 9.35 30.00 6.42 0.05 99.00 

Lee et al 1989 4.60 16.00 0.92 28.21 0.73 23.50 10.40 4.15 11.50 2.85 0.08 55.74 

Lee et al 1989 9.10 16.00 0.47 32.13 0.62 23.50 6.70 7.78 22.75 5.17 0.07 71.49 

Chaubey et al 1994 3.00 3.00 0.83 5.63 0.50 0.01 0.00 5.06 17.32 4.00 0.05 69.10 

Chaubey et al 1994 6.00 3.00 0.42 7.50 0.33 0.01 0.00 9.03 34.64 6.60 0.04 53.34 

Chaubey et al 1994 9.00 3.00 0.28 9.38 0.25 0.01 0.00 12.38 51.96 8.54 0.03 66.24 

Chaubey et al 1994 15.00 3.00 0.17 13.13 0.17 0.01 0.00 18.04 86.60 11.37 0.02 62.72 

Chaubey et al 1994 21.00 3.00 0.12 16.88 0.13 0.01 0.00 22.84 121.24 13.46 0.02 77.31 

Young et al 1980 27.43 4.00 0.48 26.91 - 3.58 0.00 33.81 137.15 22.73 0.03 100.00 

Young et al 1980 27.43 4.00 0.48 45.15 1.48 3.58 2.13 27.49 137.15 16.10 0.02 40.70 

Young et al 1980 21.34 4.00 0.64 39.62 2.38 13.44 3.97 22.53 106.70 13.66 0.02 70.44 

Young et al 1980 21.34 4.00 0.64 59.17 0.89 13.44 5.58 19.19 106.70 10.46 0.01 58.46 

Young et al 1980 27.43 4.00 0.54 33.03 10.23 8.21 2.32 31.15 137.15 19.83 0.03 71.73 

Young et al 1980 27.43 4.00 0.54 58.21 1.07 8.21 5.75 24.83 137.15 13.59 0.01 29.96 

Young et al 1980 27.43 4.00 0.54 77.86 0.63 8.21 4.28 22.11 137.15 11.20 0.01 47.91 

Young et al 1980 21.34 4.00 0.66 65.67 0.77 9.50 7.23 18.41 106.70 9.76 0.01 23.91 

Young et al 1980 21.34 4.00 0.66 82.41 0.53 9.50 9.18 16.81 106.70 8.39 0.01 3.45 

Van Dijk et al 1996 1.00 9.07 21.00 10.55 0.99 11.33 6.20 0.61 3.32 0.29 0.01 45.29 
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Van Dijk et al 1996 4.00 9.07 5.25 7.82 2.04 11.33 1.90 2.74 13.28 1.42 0.02 83.26 

Van Dijk et al 1996 5.00 9.07 4.20 11.91 0.88 10.41 4.14 2.89 16.60 1.34 0.01 60.27 

Van Dijk et al 1996 10.00 9.07 2.10 7.70 2.38 10.41 0.82 6.88 33.20 3.59 0.02 92.15 

Van Dijk et al 1996 1.00 9.07 21.00 11.17 1.01 10.54 4.85 0.59 3.32 0.28 0.01 54.04 

Van Dijk et al 1996 4.00 9.07 5.25 10.33 1.18 10.54 2.74 2.45 13.28 1.18 0.02 73.98 

Van Dijk et al 1996 5.00 4.00 4.20 10.45 0.96 3.96 1.40 3.89 25.00 1.93 0.01 64.55 

Van Dijk et al 1996 10.00 4.00 2.10 6.65 3.57 3.96 0.15 9.33 50.00 5.21 0.02 96.18 

Van Dijk et al 1996 5.00 4.36 4.20 10.24 1.09 6.98 1.62 3.83 23.95 1.90 0.01 76.84 

Van Dijk et al 1996 10.00 4.36 2.10 5.52 20.00 6.98 0.03 9.79 47.89 5.73 0.02 99.58 

Van Dijk et al 1996 5.00 4.00 4.20 9.23 1.49 8.93 1.58 4.09 25.00 2.09 0.01 82.35 

Van Dijk et al 1996 10.00 4.00 2.10 8.22 2.00 8.93 0.75 8.57 50.00 4.52 0.01 91.62 

Van Dijk et al 1996 5.00 4.36 4.20 11.70 0.82 4.33 2.09 3.63 23.95 1.74 0.01 51.74 

Van Dijk et al 1996 10.00 4.36 2.10 6.52 4.17 4.33 0.10 9.16 47.89 5.13 0.02 97.63 

Lim et al 1998 6.10 3.00 3.33 61.00 0.67 0.15 0.04 4.79 35.22 2.27 0.01 70.07 

Lim et al 1998 12.20 3.00 1.67 73.20 0.50 0.15 0.02 8.90 70.44 4.02 0.01 89.81 

Lim et al 1998 18.30 3.00 1.11 85.40 0.40 0.15 0.00 12.56 105.66 5.44 0.01 97.43 

Schmitt et al 1999 7.50 6.50 3.35 59.15 1.84 18.90 3.99 5.17 29.42 2.56 0.01 78.91 

Schmitt et al 1999 15.00 6.50 1.68 44.86 5.35 18.90 1.30 11.54 58.84 6.15 0.02 93.12 

Schmitt et al 1999 7.50 6.50 3.35 55.58 2.37 18.90 0.93 5.30 29.42 2.66 0.01 95.07 

Schmitt et al 1999 15.00 6.50 1.68 44.53 5.60 18.90 0.24 11.58 58.84 6.18 0.02 98.73 

Schmitt et al 1999 7.50 6.50 3.35 59.49 1.56 18.90 3.01 5.16 29.42 2.55 0.01 84.08 

Schmitt et al 1999 15.00 6.50 1.68 51.31 2.87 18.90 0.84 10.94 58.84 5.62 0.02 95.57 

Schmitt et al 1999 7.50 6.50 3.35 58.80 1.84 18.90 2.16 5.18 29.42 2.57 0.01 88.56 

Schmitt et al 1999 15.00 6.50 1.68 55.59 2.04 18.90 1.16 10.59 58.84 5.33 0.01 93.87 

Chaubey et al 1995 3.10 3.00 0.83 5.81 0.50 0.02 0.01 5.16 17.90 4.04 0.05 36.77 

Chaubey et al 1995 6.10 3.00 0.42 7.69 0.34 0.02 0.01 9.09 35.22 6.60 0.03 33.70 

Chaubey et al 1995 9.20 3.00 0.28 9.63 0.25 0.02 0.01 12.52 53.12 8.57 0.03 16.99 

Chaubey et al 1995 15.20 3.00 0.17 13.38 0.17 0.02 0.01 18.14 87.76 11.38 0.02 43.73 

Chaubey et al 1995 21.40 3.00 0.12 17.25 0.13 0.02 0.01 23.07 123.55 13.52 0.02 48.19 

Lee et al 2000 7.10 5.00 0.28 7.82 1.09 0.31 0.12 13.47 31.75 12.53 0.12 59.94 

Lee et al 2000 7.10 5.00 1.49 43.22 1.01 4.38 1.75 6.80 31.75 4.01 0.02 60.15 
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Lee et al 2000 16.30 5.00 0.12 5.52 2.83 0.31 0.03 35.55 72.90 36.29 0.17 89.36 

Lee et al 2000 16.30 5.00 0.65 40.30 1.16 4.38 0.61 16.05 72.90 9.64 0.02 86.07 

Mickelson  et al. 2003 4.60 4.60 3.06 20.31 1.09 8.13 2.39 4.09 21.45 2.26 0.02 70.66 

Mickelson  et al. 2003 9.10 4.60 1.22 16.60 1.01 6.33 0.80 8.76 42.43 5.12 0.02 87.41 

Hayes et al. 1984 28.80 2.86 8.08 408.06 5.93 - - 11.72 170.30 3.56 0.00 93.30 

Hayes et al. 1984 33.10 4.50 6.15 346.23 7.42 - - 12.56 156.04 3.93 0.00 96.20 

Hayes et al. 1984 33.10 4.50 5.33 284.40 13.36 - - 13.59 156.04 4.48 0.00 98.70 

Hayes et al. 1984 33.90 9.80 6.41 443.70 2.76 - - 9.22 108.29 2.63 0.00 93.20 

Hayes et al. 1984 33.90 15.00 6.41 471.60 2.23 - - 7.92 87.53 2.19 0.00 87.20 

Altadena Strip 7.92 3.00 - 915.71 1.42 3.66 0.88 - 45.75 - - 76.07 

Altadena Strip 7.92 3.00 - 2172.69 1.04 17.68 3.47 - 45.75 - - 80.36 

Altadena Strip 7.92 3.00 - 918.83 0.96 2.76 1.02 - 45.75 - - 63.13 

Altadena Strip 7.92 3.00 - 869.12 1.11 3.24 1.57 - 45.75 - - 51.70 

Altadena Strip 7.92 3.00 - 634.94 1.36 2.34 0.73 - 45.75 - - 68.70 

Altadena Strip 7.92 3.00 - 2559.11 1.07 16.59 4.03 - 45.75 - - 75.68 

Altadena Strip 7.92 3.00 - 1177.75 1.28 4.41 1.48 - 45.75 - - 66.54 

Cerritos 20.12 2.10 - 1494.49 1.32 8.23 5.43 - 138.82 - - 33.97 

Cerritos 20.12 2.10 - 796.54 1.12 5.90 2.87 - 138.82 - - 51.39 

Cerritos 20.12 2.10 - 766.17 5.56 10.34 0.80 - 138.82 - - 92.31 

Cerritos 20.12 2.10 - 1127.42 1.91 13.61 2.85 - 138.82 - - 79.07 

Cerritos 20.12 2.10 - 294.70 3.77 9.99 1.61 - 138.82 - - 83.92 

Cerritos 20.12 2.10 - 314.66 3.24 4.84 1.55 - 138.82 - - 68.07 

San Rafael RVTS 2 8.30 50.00 3.81 473.07 2.35 4.52 0.15 2.94 11.74 1.31 0.03 96.59 

San Rafael RVTS 2 8.30 50.00 5.11 764.83 1.40 5.70 0.78 2.43 11.74 0.95 0.02 86.29 

San Rafael RVTS 2 8.30 50.00 1.60 218.92 1.76 1.44 0.30 4.00 11.74 2.19 0.07 79.06 

San Rafael RVTS 2 8.30 50.00 0.83 121.53 1.48 0.38 0.20 5.06 11.74 3.24 0.12 46.65 

San Rafael RVTS 2 8.30 50.00 2.16 355.44 1.13 2.15 0.36 3.30 11.74 1.59 0.04 83.08 

San Rafael RVTS 2 8.30 50.00 5.61 817.28 1.49 2.13 0.89 2.36 11.74 0.91 0.02 58.02 

San Rafael RVTS 2 8.30 50.00 0.95 169.83 0.94 0.36 0.26 4.43 11.74 2.60 0.09 27.00 

San Rafael RVTS 2 8.30 50.00 1.01 131.86 2.01 0.60 0.13 4.90 11.74 3.07 0.11 78.15 

San Rafael RVTS 2 8.30 50.00 0.36 83.45 0.60 0.14 0.11 5.88 11.74 4.17 0.18 15.98 
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San Rafael RVTS 2 8.30 50.00 0.57 93.30 1.12 1.41 0.16 5.63 11.74 3.87 0.16 88.96 

San Rafael RVTS 2 8.30 50.00 0.91 147.10 1.17 1.95 0.30 4.69 11.74 2.86 0.10 84.83 

San Rafael RVTS 2 8.30 50.00 0.51 96.23 0.85 0.41 0.10 5.56 11.74 3.79 0.15 75.75 

San Rafael RVTS 2 8.30 50.00 0.31 44.07 1.64 0.28 0.05 7.60 11.74 6.38 0.34 83.98 

San Rafael RVTS 2 8.30 50.00 0.42 72.01 1.04 0.31 0.02 6.24 11.74 4.60 0.21 93.78 

San Rafael RVTS 2 8.30 50.00 1.34 226.87 1.06 0.21 0.20 3.94 11.74 2.14 0.07 5.52 

San Rafael RVTS 2 8.30 50.00 4.89 498.62 5.91 3.89 0.14 2.88 11.74 1.27 0.03 96.47 

San Rafael RVTS 2 8.30 50.00 0.83 87.15 4.74 0.19 0.01 5.78 11.74 4.05 0.17 96.67 

San Rafael RVTS 2 8.30 50.00 0.65 58.21 44.55 1.40 0.00 6.80 11.74 5.30 0.26 99.76 

San Rafael RVTS 2 8.30 50.00 6.09 674.28 3.70 4.19 0.57 2.55 11.74 1.04 0.02 86.47 

San Rafael RVTS 2 8.30 50.00 0.85 83.18 7.97 0.17 0.02 5.89 11.74 4.18 0.18 91.15 

San Rafael RVTS 2 8.30 50.00 8.17 856.52 4.93 0.39 0.24 2.32 11.74 0.88 0.02 39.14 

San Rafael RVTS 2 8.30 50.00 1.50 172.87 3.12 0.86 0.02 4.40 11.74 2.57 0.09 97.33 

San Rafael RVTS 2 8.30 50.00 0.99 92.88 12.33 0.54 0.01 5.64 11.74 3.88 0.16 97.53 

San Rafael RVTS 2 8.30 50.00 2.22 223.60 6.34 0.39 0.03 3.97 11.74 2.16 0.07 92.64 

San Rafael RVTS 2 8.30 50.00 1.46 143.93 7.50 0.73 0.08 4.73 11.74 2.90 0.10 89.53 

San Rafael RVTS 2 8.30 50.00 1.75 165.80 11.09 2.92 0.01 4.47 11.74 2.64 0.09 99.74 

San Rafael RVTS 2 8.30 50.00 1.71 160.44 13.07 1.22 0.00 4.53 11.74 2.70 0.09 99.62 

San Rafael RVTS 2 8.30 50.00 0.59 58.72 6.88 0.36 0.00 6.77 11.74 5.27 0.25 99.43 

San Rafael RVTS 2 8.30 50.00 1.43 142.28 7.15 0.19 0.01 4.75 11.74 2.92 0.10 94.91 

San Rafael RVTS 2 8.30 50.00 0.16 16.75 5.48 0.17 0.03 11.19 11.74 12.16 0.89 84.83 

Westfield Level 

Spreader 
44.80 1.25 0.07 54.85 2.26 0.88 0.15 117.62 400.70 

107.8

3 
0.05 83.08 

Westfield Level 

Spreader 
44.80 1.25 0.04 28.00 2.96 0.11 0.01 153.92 400.70 

168.8

3 
0.09 89.33 

Westfield Level 

Spreader 
44.80 1.25 0.04 37.40 1.54 0.19 0.03 137.09 400.70 

139.2

0 
0.07 84.85 

Angima et al.2002 1.00 20.00 0.19 0.26 9.85 2.20 0.25 4.01 2.24 7.75 4.32 88.64 

Angima et al.2002 1.00 20.00 0.42 0.57 13.71 6.00 0.45 2.93 2.24 4.60 1.97 92.50 

Angima et al.2002 1.00 20.00 0.55 0.74 13.93 9.20 0.88 2.64 2.24 3.85 1.51 90.49 

Angima et al.2002 1.00 20.00 0.56 0.77 10.67 11.80 0.93 2.59 2.24 3.75 1.45 92.16 

Angima et al.2002 1.00 20.00 1.40 1.93 9.62 36.60 3.60 1.80 2.24 2.03 0.58 90.16 
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Angima et al.2002 1.00 20.00 1.55 2.12 11.00 20.80 2.50 1.73 2.24 1.91 0.53 87.98 

Angima et al.2002 1.00 20.00 1.99 2.78 8.40 21.00 1.90 1.55 2.24 1.59 0.40 90.95 

Angima et al.2002 1.00 20.00 2.06 2.83 10.00 57.00 5.15 1.54 2.24 1.58 0.40 90.96 

Angima et al.2002 1.00 20.00 0.81 1.14 8.24 28.60 2.35 2.22 2.24 2.89 0.98 91.78 

Angima et al.2002 1.00 40.00 0.21 0.28 16.00 1.40 0.18 3.16 1.58 5.83 5.63 87.50 

Angima et al.2002 1.00 40.00 0.38 0.50 13.47 5.20 0.38 2.50 1.58 3.94 3.13 92.79 

Angima et al.2002 1.00 40.00 0.34 0.46 13.65 5.60 0.68 2.60 1.58 4.21 3.46 87.95 

Angima et al.2002 1.00 40.00 0.38 0.52 10.24 11.40 1.15 2.48 1.58 3.89 3.07 89.91 

Angima et al.2002 1.00 40.00 0.89 1.24 9.35 37.40 4.10 1.75 1.58 2.17 1.28 89.04 

Angima et al.2002 1.00 40.00 0.92 1.25 11.14 17.80 1.05 1.74 1.58 2.16 1.27 94.10 

Angima et al.2002 1.00 40.00 1.88 2.58 10.41 25.00 1.88 1.30 1.58 1.33 0.61 92.50 

Angima et al.2002 1.00 40.00 1.10 1.57 7.45 41.80 6.48 1.59 1.58 1.85 1.01 84.51 

Angima et al.2002 1.00 40.00 0.55 0.76 9.64 33.40 2.33 2.12 1.58 3.00 2.08 93.04 

Parsons et al. 1994 4.30 1.00 2.79 31.42 3.25 5.70 0.70 7.51 43.00 5.05 0.01 87.72 

Parsons et al. 1994 4.30 1.00 0.75 6.49 - 5.30 0.00 14.11 43.00 14.45 0.06 100.00 

Parsons et al. 1994 4.30 1.00 2.19 44.48 0.73 12.90 8.30 6.53 43.00 4.01 0.01 35.66 

Parsons et al. 1994 4.30 1.00 2.79 41.92 1.33 13.80 3.10 6.69 43.00 4.17 0.01 77.54 

Parsons et al. 1994 4.30 1.00 4.92 74.83 1.30 10.20 3.60 5.31 43.00 2.83 0.01 64.71 

Parsons et al. 1994 4.30 1.00 5.12 69.73 1.71 7.50 2.00 5.46 43.00 2.97 0.01 73.33 

Parsons et al. 1994 4.30 1.00 0.86 15.83 0.88 9.40 3.00 9.87 43.00 7.98 0.03 68.09 

Parsons et al. 1994 4.30 1.00 1.81 28.71 1.18 6.40 2.50 7.78 43.00 5.36 0.01 60.94 

Parsons et al. 1994 4.30 1.00 1.39 20.33 1.43 5.30 0.50 8.93 43.00 6.75 0.02 90.57 

Parsons et al. 1994 4.30 1.00 2.25 25.79 3.00 18.40 0.70 8.12 43.00 5.76 0.02 96.20 

Parsons et al. 1994 8.50 1.00 1.41 33.27 2.60 5.70 1.00 14.50 85.00 9.61 0.01 82.46 

Parsons et al. 1994 8.50 1.00 0.15 3.01 5.00 2.50 0.40 37.90 85.00 47.66 0.13 84.00 

Parsons et al. 1994 8.50 1.00 0.38 9.74 2.00 5.30 0.00 23.71 85.00 21.80 0.04 100.00 

Parsons et al. 1994 8.50 1.00 1.11 38.49 0.96 12.90 3.40 13.68 85.00 8.72 0.01 73.64 

Parsons et al. 1994 8.50 1.00 1.41 49.62 0.93 13.80 4.30 12.36 85.00 7.36 0.01 68.84 

Parsons et al. 1994 8.50 1.00 2.49 68.32 1.63 10.20 2.40 10.88 85.00 5.95 0.01 76.47 

Parsons et al. 1994 8.50 1.00 2.59 62.39 2.40 7.50 1.00 11.28 85.00 6.32 0.01 86.67 

Parsons et al. 1994 8.50 1.00 0.44 14.35 1.07 9.40 4.70 20.30 85.00 16.84 0.03 50.00 
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Parsons et al. 1994 8.50 1.00 0.91 27.51 1.30 6.40 1.70 15.65 85.00 10.91 0.02 73.44 

Parsons et al. 1994 8.50 1.00 0.70 29.90 0.67 5.30 0.40 15.13 85.00 10.32 0.01 92.45 

Parsons et al. 1994 8.50 1.00 1.14 19.35 - 18.40 0.00 18.01 85.00 13.80 0.02 100.00 

Parsons et al. 1994 4.30 1.00 0.29 4.52 1.25 2.50 1.00 16.30 43.00 18.40 0.09 60.00 

Parsons et al. 1994 4.30 1.00 0.34 5.14 1.33 2.40 2.30 15.48 43.00 16.88 0.08 4.17 

Parsons et al. 1994 4.30 1.00 1.64 20.55 2.17 5.30 0.80 8.90 43.00 6.70 0.02 84.91 

Parsons et al. 1994 4.30 1.00 0.51 6.61 2.00 4.70 1.10 14.00 43.00 14.28 0.06 76.60 

Parsons et al. 1994 4.30 1.00 8.70 146.40 1.05 10.20 8.30 4.06 43.00 1.81 0.00 18.63 

Parsons et al. 1994 4.30 1.00 2.25 38.69 1.00 18.40 1.20 6.91 43.00 4.40 0.01 93.48 

Parsons et al. 1994 4.30 1.00 1.02 13.95 1.71 13.40 1.60 10.39 43.00 8.68 0.03 88.06 

Parsons et al. 1994 4.30 1.00 0.51 7.34 1.50 4.90 0.60 13.43 43.00 13.31 0.05 87.76 

Parsons et al. 1994 4.30 15.00 1.54 24.24 1.20 6.50 0.30 3.70 11.10 2.44 0.06 95.38 

Parsons et al. 1994 4.30 15.00 0.68 11.02 1.14 14.90 0.80 5.07 11.10 4.12 0.14 94.63 

Parsons et al. 1994 4.30 15.00 1.79 19.83 3.50 3.20 0.40 4.00 11.10 2.78 0.08 87.50 

Parsons et al. 1994 8.50 15.00 0.56 13.22 2.60 17.30 0.70 9.31 21.95 7.21 0.12 95.95 

Parsons et al. 1994 8.50 15.00 1.12 31.58 1.53 3.80 0.90 6.57 21.95 4.04 0.05 76.32 

Parsons et al 1991 4.30 3.25 8.85 80.26 18.25 0.10 0.03 3.62 23.85 1.83 0.01 72.16 

Parsons et al 1991 8.50 3.25 4.48 85.08 8.46 0.10 0.03 6.99 47.15 3.47 0.01 70.10 

Delectic and Fletcher 

2006 5.00 7.80 3.96 4.10 2.63 0.53 0.05 3.78 17.90 2.05 0.02 91.26 

Delectic and Fletcher 

2006 5.00 7.80 3.96 4.96 1.49 0.76 0.12 3.50 17.90 1.80 0.02 83.92 

Delectic and Fletcher 

2006 5.00 7.80 8.04 9.35 1.82 0.80 0.16 2.72 17.90 1.18 0.01 79.65 

Delectic and Fletcher 

2006 5.00 7.80 8.04 10.67 1.30 0.85 0.26 2.58 17.90 1.08 0.01 69.97 

Delectic and Fletcher 

2006 5.00 7.80 12.00 16.47 1.20 2.50 0.52 2.17 17.90 0.81 0.01 79.25 

Delectic and Fletcher 

2006 5.00 7.80 12.00 16.65 1.18 1.95 0.23 2.16 17.90 0.80 0.01 88.10 
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Chapter 6 

Conclusion 

Wetlands and riparian areas provide several crucial ecosystem functions such as hydrology and 

water quality regulation on the landscape. However, agriculture and urban development has 

propagated globally at the expense of wetlands, streams and riparian ecosystems, largely altering 

their flows, nutrient retention, species composition and other biotic and abiotic characteristics, 

which have detrimental impacts on the many ecosystem services that we rely on. Studies show 

that smaller wetlands afford larger nutrient removal, and that for the same wetland size the 

removal of small wetlands corresponded to a greater loss in wetlands nutrient removal potential 

(Cheng and Basu 2017). While smaller systems display a disproportionately large role in nutrient 

cycling, they are also the most vulnerable to human alteration owing to their small size. 

To better direct restoration and management efforts of small wetland systems and their 

riparian zones, there needs to be an improved understanding of their functioning across 

landscape positions. This study is aimed at furthering knowledge regarding small slope wetlands 

occurring in headwater areas in the Gulf coastal plain region, as well as providing decision 

makers with tools to model hydrology and water quality to aid in restoration of small wetlands 

and riparian areas.   

In Chapter 1, the overall premise of the study and its motivation are presented. Here, I 

outlined two main objectives. These objectives and their findings are summarized in the 

following paragraphs.    
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Objective 1: Evaluate the influence of increasing land use/land cover change on the 

functional capacity of headwater slope wetlands in Baldwin County, AL  

Three chapters were dedicated to this objective. Here I addressed gaps in knowledge about 

headwater slope wetlands in Baldwin County, AL; these are groundwater fed wetlands and exist 

above and alongside 1st order streams in the region. Despite their numerous occurrence in the 

Alabama-Mississippi coastal plain, they have been sparsely studied in the region.  

In Chapter 2, I investigated trends in field data collected from four headwater slope wetlands to 

make observations regarding their function in context of watershed land use and proximity to the 

coast. I found that: 

 Hydrological flashiness increased with rising imperviousness in the watershed; the flashiest 

flows were observed in the BM wetland located in the most urbanized watershed while the 

most damped flows were observed in the OF wetland located in least urbanized watershed. 

 Baseflow contributions in the study wetlands increased with proximity to the coast. 

Consequently, the wetland in the most urbanized watershed (BM wetland) exhibited surface 

flow dominated hydrology compared with the other wetlands near the coast which were 

strongly baseflow dominated. This could result from a multitude of factors such as (1) 

decreasing wetland elevation towards the coast, (2) groundwater discharge near the coast 

from upland areas, and (3) decreasing urban cover in the study watersheds towards the coast.  

 One study wetland, NF, located proximate to the coast demonstrated large flows with very 

high runoff ratios, which were too large to have originated entirely within the extent of the 

delineated surficial watershed. We concluded that this excess flow was either a result of (1) a 

ground watershed that was much more extensive than the surficial watershed, an issue 



205 

 

commonly encountered in low topographical relief coastal plain areas, and (2) increased 

percolation from an upstream residential impoundment.  

 Despite the presence of watershed alterations, headwater slope wetlands in this study showed 

considerable DIN load reductions.  

 This capacity for nutrient retention may be overwhelmed as Baldwin County continues to 

urbanize. Currently most agriculture and urbanization in Baldwin County is contained to the 

south of I-10 along the coast which has caused fragmentation of stream networks with 

narrowing of riparian areas when compared with networks to the north of I-10. This study 

affirms the worthiness of headwater slope wetlands to be managed and restored to enhance 

their ecosystem functions.  

Chapter 3 is a methods study focused on watershed flows draining into the inlet of the NF 

wetland. Here, I addressed the challenge of calibrating flows draining a small watershed fed by a 

ground watershed much larger than the surficial watershed. Although groundwater models can 

be used for this purpose, their complexity and large data requirements make their application a 

challenge with limited data. As an alternative, I suggested tweaks to the SWAT model, a 

popularly used watershed scale model in which watershed (surficial) precipitation is the major 

driver of the water budget to accommodate extra flows originating from a potentially larger 

ground watershed. The approaches I used were: 

 Calibrated surface flow and baseflow components separately in which baseflow calibration 

involved a manual magnification of the baseflow  

 Reversed the default positive value of SWAT parameter, RCHRGE_DP (which controls flow 

to the deep aquifer) to a negative value which returns water lost to the deep aquifer to the 

baseflow thus adding more water to streamflow 
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 Used ANN models to improve upon deficiencies observed in flow calibrated from the above 

approach 

In Chapter 4, I addressed the usefulness of conducting sensitivity analyses as a way to prioritize 

data collection to only those that make a meaningful change to modelled outputs. This would be 

beneficial to data collection efforts in small wetlands such as headwater slope wetlands where 

data are usually sparse, due to limited financial and manpower resources, which in turn makes 

modeling them a challenge. Since nitrate pollution is a serious concern in coastal watersheds, I 

performed a sensitivity analysis using wetland model WetQual, to ask if Nitrate-N export from 

headwater slope wetlands required detailed data on Organic-N and Ammonia-N data inputs. In 

this study I found: 

 Nitrate-N predictions in headwater slope wetlands were insensitive to Organic-N, Ammonia-

N and DO in the inflows, and consequently their lack of data thereof would not impact 

WetQual predictions of Nitrate-N. This could be attributed to the fact that headwater slope 

wetlands tend to be open gaining systems and consequently have low residence times, when 

considering the main advection flow through stream channel, which may not afford enough 

time for N transformations to take place. 

 Detailing Nitrate-N inputs through multiple sources maybe more important than Organic-N 

and Ammonia-N in predicting Nitrate-N export using WetQual in headwater slope wetlands. 

Objective 2: Develop a data-based regression tool for describing sediment removal by 

vegetated buffers  

In Chapter 5, I focused on sediment removal by vegetated buffers. Here I compiled a database of 

sediment removal by vegetated buffers from literature and an online database to improve upon 
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existing regression relationships through a secondary analysis with the aim of improving water 

quality prediction from riparian buffers.  Data such as physical buffer characteristics were related 

to observed sediment removal and I found that: 

 An exponential regression model including volume ratio, square of residence time and width 

best described sediment removal by vegetated buffers. 

 On applying three other existing regression models from literature to the database I compiled, 

only the model described by White and Arnold (2009) was statistically significant 

presumably because of the inclusion of runoff reduction in their study. This points towards 

the importance of considering flow in buffer design. 

Future directions 

While this study contributes to knowledge relevant to greater understanding of headwater slope 

wetland and riparian zone function, it was also limited by the lack of proper long term data 

which needs to be addressed in future research. Below I outline some directions for future studies 

to glean more about wetland and riparian zone function such as: 

 Monitor hydrology and water quality across a larger range of headwater slope wetlands to 

investigate if trends resulting from this study hold. 

 Monitor subsurface flows and zones of upwelling in these slope wetlands and investigate the 

diversity of nutrient uptake/removal across the wetland area. 

 Investigate and describe the influence of quality, quantity, species composition of the riparian 

zone in sediment and nutrient removal in context of surface and subsurface flow paths into 

the wetland. 

 Quantify flows and water quality amelioration potential to the north and south of I-10 to get a 

clear picture of impacts across a range of land use alterations. 
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 Investigate more wetlands such as NF that exhibit disproportionately high runoff ratios and 

the physio-topographical zones they occur to improve upon hydrology calibration 

approaches. 

 Armed with information from above, quantify cumulative impact of headwater slope wetland 

impact on watershed scale on an incremental basis. 
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