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Cooperative robotics has been the focus of attention of various groups in recent 

years. The idea of using a team of robots instead of a single one to execute a task came 

from the necessity of accomplishing a task that is too difficult or too complex for a single 

robot. In some situations, using a group of simple robots can be more efficient, less 

expensive, and more fault-tolerant than having a single powerful, highly specialized robot 

for each task. Constant, reliable and stable communication amongst the robots and 

between the robots and a base station becomes highly necessary and useful.  

This thesis presents an algorithm for ad-hoc wireless communication among 

mobile, cooperative robots. Software has been developed to enable the robots to 

communicate with each other and with a base station. The network is designed to

accommodate the failure of any node(s), and the replacement or addition of new nodes as 

well.  
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In one operating mode, all communication packets are routed to the base station in 

addition to their intended destination. In this mode, the base station performs real-time 

event logging. This enables researchers to replay an entire scenario step-by-step to 

perform any desired analysis of system operation. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 
 
1.1 Background 
 
 

The field of multi-robot systems is a logical extension of the research on single 

robot platforms. Single robots, however efficient and effective, are restricted in the area 

they can cover at any given time. In the place of a single, expensive, complex robot, 

multiple cooperating robots with lesser capabilities and features can sometimes be made 

to do the same task more efficiently. 

Multi-robot systems also differ from other common distributed systems such as 

computers, databases and networks because of the relative difficulty in modeling the 

environment in which they operate [9]. Cooperative robots generally interact amongst 

themselves, and at the same time there is a constant need for these robots to sense and 

react to the environment in which they are functioning. Hence to have a successful 

cooperative robotics setup, it is essential to have a good understanding of the 

environment in which the robots are going to operate. 

Cooperative Robotics has come a long way since Grey Walter, along with Wiener 

and Shannon, in the mid 1940s analyzed turtle-like robots fitted with light and touch 

sensors; the scientists observed that the uncomplicated robots displayed a “complex 
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social behavior” in responding to each other’s movements [14]. Significant research 

within the field of cooperative robotics started in the 1980s. Initial projects such as 

SWARM [7], ACTRESS [2], and CEBOT [16], however were limited to just simulation 

work. Research in three distinct task domains pushed the field of cooperative robotics 

into the physical implementation arena. These were: 

i) Traffic Control: Traffic control issues inspired researchers to look into 

solutions for collision avoidance and communication protocols in multi robot 

scenarios. 

ii) Cooperative Manipulation: Cooperative manipulation issues encouraged 

researchers to look at distributing task allocation and fault tolerance. 

iii) Foraging: Example foraging applications include search and rescue missions 

and hazardous chemical cleanup. A single robot may be programmed to do 

these tasks. Using multiple, cooperating robots allows us to study the 

improvement in performance achieved over using a single robot. 

Present day research scenarios for cooperative robots include search and rescue, 

remote surveillance, security systems, and landmine detection and removal. 

 

1.2 Statement of Problem 

 

In this thesis we present an algorithm that facilitates the wireless communication 

between mobile, cooperating robots. The algorithm enables the robots to be a part of a 

self-forming network. Initially when they start out, the robots do not have an awareness 

of other robots or the information to gather. Eventually with the help of a beacon from 
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the base station, the robots arrange themselves into a hierarchical network setup with 

varying node depths. Once the network formation is complete, nodes start to collect 

information from the surroundings and start communicating with each other. A copy of 

the message exchanged is also sent to the base station. Since communicating robots may 

be out of direct communication range with the base station, the algorithm makes 

provisions for the messages to multi-hop through fellow robots, back to the base station. 

The base station apart from initiating network formation also performs real-time event 

logging. This can be useful to scientists who may want to observe the sequence of events 

happening in the network. Additionally, during the case of a node failure or during the 

addition of a new node to the existing setup, the network is designed to be flexible to 

accommodate such changes.  

The wireless communication algorithm is implemented on a T-Mote Sky [40] 

platform using Tiny OS [36]; however it can be extended trivially to suit the MicaZ [25] 

or the Mica2 [24] platforms. The above platforms are examples of fundamental units in a 

Wireless Sensor Network. A basic unit of a Wireless Sensor Network (WSN) typically 

consists of two to three sensors, a microcontroller and an extremely low power 

consuming radio transceiver. We have chosen wireless sensor nodes to act as the 

communication module for our cooperating robots because they serve the dual purpose of 

sensing the environment as well as enabling low power communication between other 

participating robots. 

The algorithm is realized in software using the Tiny OS operating system that was 

created specifically for developing applications in the WSN domain. Tiny OS is different 

from other embedded operating systems in that it acts more as a framework to download 
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an application-specific operating system into individual nodes, rather than as a traditional 

kernel-based OS. Tiny OS and WSN are described in more detail in Chapter Three of this 

thesis. 

 

1.3 Outline of Thesis 

 

 The remainder of this thesis is organized as follows. Chapter Two presents an 

overview of the existing literature in the field of cooperative robotics. More specifically it 

delves into the literature that describes the use of sensor fusion and other sensing 

techniques applied to cooperative robotics. Chapter three gives an overview of the Tiny 

OS operating system, and a description of the experimental setup. Chapter four is devoted 

to a description of the ad-hoc and multi-hop routing algorithm (AMH) and the results 

observed. Finally Chapter five presents the conclusion, summary and suggestions for 

future work.   
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CHAPTER TWO 
 

LITERATURE REVIEW 
 
 
 

The field of cooperative robotics has witnessed significant developments over the 

last fifteen years. Research in this field has diversified into several realms extending from 

human-robot interaction to object finding and terrain mapping. Due to its developments 

in various fields, a single, explicit definition does not exist. Of the many definitions that 

exist, the following are found most relevant: 

1) “joint collaborative behavior that is directed toward some goal in which there is a 

common interest or reward.”[4] 

2) “a form of interaction usually based on communication”[22] 

3) “[joining] together for doing something that creates a progressive result such as 

increasing performance or saving time.” [29]; and finally 

4) Given some task specified by a designer, a multi-robot system displays 

cooperative behavior if, due to some underlying mechanism (i.e., the “mechanism 

of cooperation”), there is an increase in the total utility of the system.[9] 

This thesis is devoted to combining the field of WSN and cooperative robotics. 

The initial part of this chapter describes the developments of sensor fusion techniques for 

cooperative robotics. We then proceed to describe some routing techniques that are used 

for communication in WSN and cooperative robotics. These routing techniques were 
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used as an inspiration for the Ad-hoc, Multi-hop (AMH) algorithm described in this 

thesis. We finally conclude the chapter with a description of the Cooperative Robotics 

Research (CRR) at Auburn University and the contribution of this thesis towards the 

same.  

 

2.1 Instances of Cooperative Robotics 

 

Multiple robots working together in coordination with each other has several 

advantages compared to single robot solutions. These include better performance, 

increased fault tolerance, and distributed sensing and actuation. Multiple robots working 

in teams can perform tasks accomplished by a single robot using a simpler design and at a 

quicker pace. In the following paragraphs, we describe various instances of research that 

are being currently undertaken in the field of cooperative robotics 

Carlson et al. [10] have developed a system of four robots that have been built to 

perform search and rescue missions. Robots working in tandem search a given area and 

locate victims. The robots apart from finding the target also build maps using sensors to 

help human search and rescue teams. The robot groups also implements an ad-hoc 

network protocol that enables them to communicate with each other when their existing 

network infrastructure has been damaged or is unavailable in certain areas. The working 

of the robot group was simulated in a real-time environment before being implemented in 

hardware. 

Almeida et al. [1] describes another group of five robots that were built for the 

purpose of taking part in the RoboCup soccer competition. This group of robots is highly 
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sophisticated in design and is capable of achieving a high degree of coordination. This 

coordination is achieved through the use of two webcams functioning as sensors. One 

webcam has an omni-directional vision system and is used for obstacle avoidance and 

ball handling. The other camera is used for monitoring the ball over medium and long 

distances as well as track other players and goal posts. On the software front, a PC based 

node is used as a central controller that facilitates the interconnection between various 

devices on board such as the camera, motors etc. through standard interfaces such as USB, 

Firewire etc. Each robot runs a Linux operating system on the central PC node. 

Chaimowicz et al. [12] propose an architecture for communication among 

cooperating robots. The proposed architecture is suitable for multiple robots performing 

tasks that cannot be accomplished by a single robot. In such cases there is a high level of 

coordination required among the robots to get the task done. The main feature of the 

architecture proposed by Chaimowicz et al. is a role assignment mechanism that enables 

reconfiguration of the participating robots. A robot that serves as the leader of the group 

may become a follower at any time and conversely a follower robot may become a leader 

of the team. In an ideal situation a leader plans the path of the group and broadcasts it to 

its followers who control their trajectory according to the information received and the 

information received from their own sensors. The Chaimowicz et al. architecture with its 

ability to reconfigure robots enables them to be more adaptive and robust. Since the 

robots are capable of exchanging roles, they can adapt themselves better to suit the task at 

hand. 

Simmons et al. [34] address the problem of mapping and exploration of an 

unknown environment using a group of robots. Mapping and exploration is an area where 



 

 8

the advantage realized through multiple robots is compensated by the interference 

occurring among the robots. As a result, two robots might map the same area and this 

leads to a reduction in productivity of the group. The algorithm [34] provides a way to 

coordinate the movement of multiple, heterogeneous robots during their task of mapping 

and exploration. The mapping problem is tackled by allowing each robot to build a local 

map of its area and pass it to a central module. The central module then integrates these 

maps to come up with a global map of the entire area. Once this done, each robot submits 

a “bid” that consists of the cost of each robot to explore a particular area. The central 

module once again determines which robot should explore which area according to the 

“bids” submitted. 

A large, mobile robot team capable of autonomous functioning was designed and 

deployed by Howard et al. [20]. The robots are expected to map the interior of a building, 

deploy a sensor network and use the sensor network to track for any intruders. Eighty 

robots capable of performing mapping, tracking and exploration were built and deployed. 

The robots built were of two types; the first kind of robots is more sophisticated, 

equipped with cameras and powerful CPUs. The second kind of robots (sensor robots) is 

smaller and equipped with simpler cameras and fewer components. The overall mission 

is divided into two phases; during the first phase robots explore and map the building’s 

interior. They also build an occupancy grid map of the building that is used to determine 

the locations for deploying the sensor robots. When the coordinates are determined, the 

sensor robots are assisted by the bigger robots to their location and once there, the sensor 

robots form a distributed sensor network that is used to track intruders. 
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Mobile robots were/are designed to perform both mundane, routine tasks as well 

as work in unstructured environments. In such cases it would be convenient if there were 

robots that can support multiple modalities of sensing, manipulation and locomotion. Rus 

et al. [32] describe a versatile group of robots capable of reconfiguring themselves to suit 

the application and environment. They propose to have hundreds of small modules that 

will automatically reconfigure themselves to suit the terrain and other needs of the given 

task. The process makes use of mobile sensors that help self configuring robots by 

providing them a sense of direction. Small robots pushing furniture may not be able to 

see what is ahead of the object and the mobile sensors act as a guide helping the robots by 

directing their movements.  

Das et al. [13] describe another set of heterogeneous group of robots that can be 

used for search and rescue missions. In this case, robots are sent in and are responsible 

for deploying static sensor nodes at various locations inside the building. The sensor 

nodes, once placed, automatically configure themselves into a distributed sensing 

platform that provides applications for its consumers pertaining to monitoring and 

surveillance. Das et al. combine networking and sensing ideas to control the flow of 

information in search and rescue missions in an unknown environment. They importantly 

address the issues of localization for sensors and robots in an unknown environment, the 

process of collecting information from different sensors from different parts of a building 

and integrating it at a central node to obtain a global map of the building, and finally 

using feedback from the static sensor network to control the movement of autonomous 

robots inside a burning building. 
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Fontan et al. [33] address one of the key issues in cooperative robotics; 

interference amongst participating robots. They (Fotan et al.) claim that minimizing 

interference amongst participating robots and increasing the synergy between them is the 

best way to realize adaptive behavior in multiple robot scenarios. The paper proposes a 

multi-robot controller that is inspired by behavior-based approach [23]. Using this 

controller, each robot is assigned a particular region of the terrain that is supposed to be 

cleaned. When one robot malfunctions or breaks down, its territorial area can be resized 

on the fly so as to not affect the productivity of the robot group. 

Finally, Parker et al. summarize the current state of technology in the field of 

autonomous mobile robots in [27]. They describe the state of research in eight topics 

within multi-robot systems: biological inspirations, communication, architectures, 

localization/mapping/exploration, object transport and manipulation, motion coordination, 

reconfigurable robots and learning in multi-agent systems.  

 

2.1.1 Simulation Platforms for Cooperative Robotics 

 

Turnell et al. [37] discuss a simulation tool called SIMBOT to design and 

implement autonomous robots in a cost-efficient manner. The tool allows research groups 

to create an environment containing multiple robots and develop programs to control 

their behavior. The tool has provisions for physical modeling of the scenario and 

simulates other devices such as cameras for producing 3-D views of the environment for 

the users. SIMBOT also provides a host of other components (robot parts and a “brain”) 

to speed up the design implementation in virtual environments. SIMBOT provides an 
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ideal platform to test critical concepts in mobile autonomous robots before being 

implemented in hardware. 

Gerkey et al. [17] describe the use of a software called Player that acts as a 

network interface to sensors and actuators on various robots. Player allows the client to 

access sensors and robots on multiple robots in different parts of a single network. Player 

allows a convenient method to access robot data at the client by providing abstract 

interface to various devices on board. These devices can be programmed to send data 

back to users at regular intervals. Player provides an excellent interface to remotely 

collect and display data from robots and sensors. Stage is a GUI platform that can be 

interfaced with Player to simulate the behavior of multiple robots in a given environment. 

An algorithm for a search and rescue mission, SARA-1 [30], was implemented by Adam 

Ray using Player/ Stage platform. 

 

2.1.2 Communication in Cooperative Robotics 

 

Balch et al. [3] analyze the importance of communication in a cooperative 

robotics setup through a series of experiments performed on both simulated and real 

robots. The performance of the robot system was monitored for three different tasks with 

three different types of communications. The level of communication is progressively 

increased to be more complex and expensive for each task. It was observed that for some 

tasks, communication significantly improves performance while for others; it increased 

the cost of implementation and was found unnecessary. In situations where 
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communication between robots helped improve performance, the simple form of 

communication was found to be as effective as the more complex ones. 

Hustin et al. [21] describe a communication strategy for cooperative robots. This 

strategy includes a new language and a protocol for communication between mobile 

robots. The authors assume that inter-robot communication occurs over a high frequency 

RF channel. The language and protocol proposed are designed to operate in this band and 

provide safe communication between multiple robots. The communication between the 

robots is done using a radio accessed by CSMA technique. The protocol ensures a highly 

reliable communication by using acknowledgement and time-out processes. The language 

described also employs techniques such as macro messages to reduce network congestion. 

Macro messages are used to reduce the size and number of messages. 

 

2.2 Wireless Sensor Networks 

 

In the recent years there has been a tremendous growth in the fields of wireless 

networking, VLSI, and embedded processors. This has led to the emergence of the whole 

new domain of WSN. Tiny sensors may be dispersed into the air, roads, walls, or 

machines creating a digital skin that can perform a variety of functions: monitor 

pedestrian and vehicular traffic, report wildlife habitats, aid rapid emergency responses, 

and track inventory flow in factories [39]. In this section we summarize the literature 

relevant to the applications of WSN. In the next section we describe the current state of 

research in using WSN for mobile, cooperative robots.   
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Estrin et al. [11] discuss habitat monitoring as one of the applications used to 

drive the development in WSN technology. The aim of performing a habitat monitoring 

exercise is to understand the biocomplexity in various environments. To perform the 

biocomplexity mapping, we require sensing systems that are able to configure themselves 

to adapt to the dynamic environment. The sensing system should be able to operate for 

long periods of time with fixed amounts of energy. In other words, there should be an 

inherent technique for energy conservation in these systems. WSN satisfy all these 

requirements and provide an ideal platform to be dispersed in any environment for habitat 

monitoring. 

WSN’s have found applications in patient monitoring and care too. In Bauer et al. 

[6], a patient monitoring and care system with three layer distributed sensor network is 

described. The three layers consist of a leaf node, an intermediate node layer and finally a 

root node present at the central monitoring facility. The most basic layer is the leaf node 

which is a collection of sensors monitoring critical aspects of the patient such as blood 

pressure etc. The intermediate level nodes are represented by more intelligent processors 

also carried by the patients, and are responsible for distributing the available leaf sensors 

according to the criticality that is handed down by the root node at the monitoring facility. 

The intermediate node collects the information from individual node sensors, processes it, 

and sends it to the root node at the hospital/monitoring station. 

Peterson et al. [28] discuss the development of a distributed algorithm to interact 

with a sensor network. The objective of the distributed algorithm is to guide a 

robot/human through a region with the aid of multiple sensors. A sensor network 

deployed in the region initially models the area, adapts to any changes, and guides any 
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moving object incrementally through the area. The authors also propose the use of an 

external device to interact with the sensor network. This device is responsible for 

collecting navigational information from the sensor in the neighborhood, activating and 

deactivating specific areas of the sensor network and detecting events occurring in the 

sensor network. 

 

2.3 Sensing in Cooperative Robotics 

 

Sensing is a fundamental aspect of cooperative robotics. Sensing enables robots to 

have an idea of localization and gives them an opportunity to interact with the 

surrounding environment. Modern day robots usually have different sensor systems with 

different sensing modalities and different characteristics on board. Values from these 

sensors are combined and processed to provide information that is more accurate and 

robust compared to values from a single sensor reading. This is known as sensor fusion, 

and is widely employed in present day cooperative robotics. 

Pereira et al. [27] describe a distributed sensing mechanism for cooperative 

robotics. In this system the robots are allowed to share their information with each other. 

This system is different from [12] where a robot cannot obtain the sensor readings of 

other robots, but receives only processed information based on the sensor readings. In the 

proposed system, any robot in the team may use the data from sensors on any other robot 

to aid localization or to enable the execution of cooperative tasks. For this to happen, 

each robot must send out its readings to all other robots. The other robots, based on a 
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predefined criterion, decide which data is relevant. They then fuse the obtained data with 

their own set of information and execute the given task more efficiently.  

Burhanpurkar describes a real world application for a high-performance sensor 

system for use in mobile robots [8]. Navigation systems and path planning system for 

autonomous robots generally require sensors that are capable of precisely detecting and 

differentiating objects of various sizes and shapes. Such sensors are usually expensive 

and of limited value in the real world. The author proposes a new sensor system 

comprising of a modular ultrasonic array that is capable of delivering a low cost solution 

for achieving high performance in a dynamic, unstructured environment where 

autonomous mobile robots are used. 

Stroupe et al. [35] present a method for fusing noisy and uncertain observations of 

an object made by multiple robots. The fusion of sensory data allows accurate modeling 

of the environment and increases the effective visibility of the robot group. Furthermore 

the authors have proved using their approach that when there are more observers there is 

a more accurate estimation of an object’s location. Along the same lines, Wijk et al. [38] 

have proved that a grid based sensor technique consisting of multiple observers (sensors) 

is most useful for sensor fusion, localization, obstacle avoidance and navigation of 

mobile autonomous robots. 

Batalin et al. [5] have proposed one of the first systems to use sensor networks for 

mobile robot navigation. In this system, a WSN is deployed to map the environment. A 

mobile robot navigates through the area by constantly communicating with the sensor 

nodes using a low power radio onboard. The authors have developed an algorithm for 

computing the closest sensor node based on received signal strengths. A unique aspect of 
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this system is that the robot does not have to be complicated, as the localization and 

mapping are performed by the embedded sensor network. 

 

2.4 Contribution of this Thesis 

   

This thesis proposes a new ad-hoc, multi-hop algorithm (AMH) that can be used 

for inter-robot communication as well as communication between individual robots and a 

base station. In the literature reviewed in the previous sections, although mobile sensors 

were used for guiding robots through unknown environments, they were not mounted on 

the robots and existed separately. In cases where sensors were mounted on the robots 

they were merely used for detecting various parameters for the purpose of fusing data and 

not for communication between them. The wireless sensor node is a unique platform that 

enables sensing and communication to be embedded into a single platform. According to 

the author’s knowledge, this thesis is one of the first to use WSN for both communication 

and sensing in cooperative robotics. 

The AMH algorithm is inspired by the various ad-hoc routing protocols [31] for 

wireless networks. However, the existing wireless routing protocols are not built for 

systems having memory constraints such as the nodes in a WSN. The AMH algorithm is 

a unique algorithm that exploits the characteristics of a WSN by requiring a very small 

overhead for communication. It uses the event-driven feature of Tiny OS that requires a 

node to service a request as soon as it receives it thereby eliminating a large buffer for 

incoming messages.  
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The AMH algorithm was developed specifically for cooperative robots being built 

as part of the CRR group at Auburn University. The key objective of the CRR group is to 

build robots that can perform tasks in a cooperative fashion and use sensor fusion 

techniques for enabling better decision making among the robots. The development of the 

AMH algorithm is a contribution towards this objective. 
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CHAPTER THREE 
 

TINY OS AND WIRELESS SENSOR NETWORKS 
 
 
 

The proposed AMH algorithm has been implemented on a WSN using an 

operating system called Tiny OS (Tiny Microthreading Operating System). Tiny OS is an 

operating system developed specifically for wireless embedded sensor networks. The 

official website of Tiny OS defines Tiny OS as follows: 

 “Tiny OS features a “component-based” architecture that enables rapid innovation 

and implementation while minimizing code size as required by the severe memory 

constraints inherent in sensor networks.” 

The component library of Tiny OS includes network and routing protocols, sensor drivers 

and data acquisition tools.  

This chapter presents an overview of the Tiny OS operating system and also the rationale 

behind using WSN nodes as the communication module for the cooperating robots. 

 

3.1 Wireless Sensor Networks 

Each node in a WSN must perform sensing, computation and communication. 

Recent advances in the field of low power electronics and VLSI have been major factors 

in reducing the size of these nodes. Current research is directed towards accommodating 

the capabilities of sensing, computation and communication into a device of 1 cm3 [19]. 
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The advantage of using WSNs lies in their ability to be deployed in the form of 

numerous tiny nodes that can assemble themselves into a self-forming network. Existing

 networks could be incremented by simply adding new nodes and no major reworking or 

configuration is required. A WSN is different from cell phone systems that deny service 

when too many phones operate in a given area. When the number of nodes deployed in a 

particular area is increased, the quality of service obtained from the network maybe 

enhanced. Typical applications of WSN’s include real-time tracking, monitoring of 

environmental conditions and ubiquitous computing environments. 

Another advantage that WSN’s have over other wireless devices is that they do 

not need to communicate with a central tower or a base station; it is sufficient if they are 

able to communicate with neighboring peer nodes. Since WSN nodes adopt a mesh 

topology, data transfer between any two nodes is conducted through messages that may 

multi-hop via several nodes before reaching the destination. Thus no preexisting 

infrastructure is required for maintaining the mesh topology. In other words, WSN are a 

readymade solution for ad-hoc, self forming networks. This feature also results in 

significant cost and time savings during network deployment. 

Cooperating robots need to be able to communicate with each other about the 

environment they are operating in. They must be able to configure themselves into a 

fully-functioning network with minimal help from a central system. Such network 

formation is critical to effective cooperation amidst participating robots. The ad-hoc 

nature of sensor networks makes it a logical choice for cooperative robotics. 

Robots ususally carry on-board multiple sensors to detect the various physical 

parameters around them. There have been research instances where participating robots 
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have been programmed to share their sensor readings with each other to collectively 

create an overall picture at the base station. Wireless sensor nodes, having an innovative 

design that combines sensing, processing and communication on a single device are a 

one-stop solution to create an effective communication system amongst cooperating 

robots. 

 

3.2 Tiny OS 

 

The role of an operating system is to provide a reliable environment for the 

development of applications to suit the system. Tiny OS was developed in the labs of 

University of California at Berkeley, specifically for WSN. Tiny OS is an operating 

system with an extremely small memory footprint and differs from traditional operating 

systems by not supporting memory management or virtual memory. While designing 

operating system for WSN, two main issues, concurrency and modularity, need to be 

addressed. 

 

3.2.1 Concurrency 

 

Processes occurring in a WSN are usually concurrency intensive. That is, there 

are multiple streams of data flowing through a node that is part of a larger network. On 

the one hand, a node may be carrying out its normal data acquisition function; there also 

arises the need to transfer packets or service protocol events that might arise 

asynchronously from the network. Tiny OS introduces a highly event-driven model that 
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is component based and provides a high degree of concurrency while supporting the 

major requirements of small footprint and low power consumption. 

 

3.2.1.1 Event-Driven Execution 

 

In several embedded systems, operating systems handle concurrency-intensive 

processes by allowing multiple threads for multiple operations. Each of these multiple 

threads is allocated its own stack and set of registers. Whenever a thread indicates a 

completion of operation, the registers and state variables are saved during the context 

switch to another operation. This is possible in complex embedded system with 

considerable memory availability; however in the case of WSN’s with severe memory 

constraints this technique is not affordable. 

Tiny OS implements a smart event-driven scheme that uses a single stack to 

support concurrent activities. A central dispatcher component calls specific event 

handlers depending on the event type and state of the system. Handlers that are called 

execute immediately and update the state of the system upon termination. 

 

3.2.2 Modularity 

 

Another important issue relating to WSN is that each system should support a fair 

degree of modularity. Tiny OS is composed of several libraries of components. Each 

component is a well defined object with interfaces and internal concurrency. Components 

generally encapsulate hardware elements on the wireless sensor node such as ADC, 
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timers, radio etc. Components also provide commands to the user and signal events when 

tasks are executed. 

Tiny OS is written using NesC (Network Embedded System C), a dialect of ANSI 

C. Components support a bidirectional command/event interface that is implemented 

using split-phase operations. During a split-phase operation, a higher level component 

issues a command, requesting a service to a lower-level hardware device. The command 

returns immediately to indicate whether the command placed was successful or not. It 

should be noted however that the requested operation might not have been completed by 

now. Once the placed request is executed, the hardware component returns a signal to the 

higher level component signifying the completion of task. Between the two occurrences 

(placing of command and signal completion of task), the node may enter a sleep mode to 

conserve power. Thus such an interleaving of execution enables the power management 

feature of Tiny OS. 
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3.2.3 Tiny OS Components and Message Structure 

 

The Tiny OS components are of three types: hardware abstractions, synthetic 

hardware and high level software components. 

 

Fig. 1: Example displaying various components in Tiny OS. 

Hardware abstraction components are used to map the physical components 

available on a WSN platform. An example is the RFM component shown in Fig. 1. This 

component supports commands to manipulate the I/O pins of the radio transceiver and 

signals an event whenever bits are transmitted or received. 

Synthetic hardware components generally simulate the presence of advanced 

hardware. An example of such a device would be the Radio Byte component in Fig. 1. 

This component is used for performing basic encryption and decryption of data bits that 

flow in or out of the RFM hardware abstraction component. In the perspective of a higher 
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level component, the synthetic hardware component and hardware abstraction component 

are no different from each other as they provide the same interfaces and functionality. 

However it provides the user with much needed flexible components while designing 

algorithms for WSN applications. 

The high level software component is responsible for the control and routing of 

data. An example of this component in Fig. 1 would be the Active Message and Ad-hoc 

routing application module. These modules are responsible for filling data packets and 

sending messages to their appropriate destinations. 

 

3.2.3.1 Message Structure 

 

The communication concept in Tiny OS is the Active Message model used in 

computing systems requiring a high degree of parallelism. In Fig. 1, the application layer 

has to gather information from two sensors, namely light and temperature. Each sensor 

and the network as a whole are allocated separate stacks that are tied up at the application 

level. Messages from each sensor are given a separate handler ID. When a network 

receives a message of a particular handler ID, it invokes the appropriate component. A 

typical message structure is shown in Table 1. Each packet coming out of a mote contains 

several fields of data. Table 1 gives a description of the various fields in the TOS_Msg 

data structure.   
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Byte # Field  Description  
0 - 1  Message Address  One of 3 possible value types:  
  •  Broadcast Address (0xFFFF) – message to all  
   nodes.  
  •  UART Address (0x007e)– message from a  
   node to the gateway serial port. All incoming 

messages will have this address.  
  •  Node Address – the unique ID of a node to 

receive message.  
2  Message Type  Active Message (AM) unique identifier for the type of 

message it is. Typically each application will have its 
own message type. Examples include:  

  • AMTYPE_XUART = 0x00  
  • AMTYPE_MHOP_DEBUG = 0x03  
  • AMTYPE_SURGE_MSG = 0x11  
  • AMTYPE_XSENSOR = 0x32  
  • AMTYPE_XMULTIHOP = 0x33  
  • AMTYPE_MHOP_MSG = 0xFA  
3  Group ID  Unique identified for the group of motes participating in 

the network. The default value is 125 (0x7d). Only  
  motes with the same group ID will talk to each other.  
4  Data Length  The length (l) in bytes of the data payload. This does not 

include the CRC or frame synch bytes.  
5…n-2  Payload data  The actual message content. The data resides at byte 5 

through byte 5 plus the length of the data (lfrom above). 
The data will be specific to the message type. Specific 
message types are discussed in the next section.  

n-1, n  CRC  Two byte code that ensures the integrity of the message. 
The CRC includes the Packet Type plus the entire 
unescaped TinyOS message. A discussion on how the 
CRC is computed is included in the Appendix.  

 
Table 1: Table showing various fields in a TOS_Msg data structure. 
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Fig. 2: A screenshot of the TinyViz software simulating the multi-hop protocol implemented on 90 sensor nodes.
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3.3 TOSSIM  

 

Apart from the different library components, Tiny OS also features a simulator 

that can be used to debug programs before they are downloaded into wireless sensor 

nodes. TOSSIM can be used to examine their code, and to test and analyze algorithms in 

a controlled and repeatable environment.  

 

3.3.1 TinyViz 

 

TinyViz is a Java visualization and actuation environment for TOSSIM. TinyViz 

uses a GUI to represent simulations that are run using TOSSIM. The proposed AMH 

algorithm was simulated using TOSSIM and visualized in TinyViz before it was 

implemented on WSN of T-Mote Sky nodes. A screenshot of the algorithm being 

simulated on a network of 90 nodes is shown in Fig. 2. Node zero represents the base 

station. It can be seen that all the nodes send their information back to the base station 

using multiple hops. The text on the right indicates the depth of each node in the network. 

An elaborate explanation of the algorithm and its results are presented in Chapter Four.    
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CHAPTER FOUR 
 

AD-HOC AND MULTI-HOP ALGORITHM 
 
 
 

The AMH algorithm enables the cooperating robots to communicate with each 

other as well as to communicate with the base station. The algorithm was coded using 

nesC language in a Tiny OS environment. The algorithm was uploaded from the base 

station to seven T-Motes that form the network using the USB port on the base station. 

The AMH algorithm not only provides a direct communication route between two nodes, 

it also enables multi-hop data routing between nodes that are on different tree depths. The 

algorithm also accounts for nodes that are added at a later stage or nodes that have 

become dysfunctional during the operation of the network. 

This chapter is organized as follows. Initially, we describe the scenario of the 

implementation and then proceed to discuss the assumptions and the algorithm itself. 

Finally we conclude the chapter with snapshots and discussion of the results.  

 

4.1 Scenario 

 

The primary objective of the cooperative robotics research program at Auburn 

University is to build robots that can tackle real-world issues such as search and rescue 

missions, foraging (e.g. debris collection) or hazardous material cleanup using robots that
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can “talk” to each other. The communication between the robots needs to adhere to 

certain protocols. As explained in chapter three, WSN’s serve as an excellent platform to 

perform our communication experiments. There are various wireless data routing

protocols that currently exist; however there are no reliable or stable routing protocols for 

WSN’s. WSN’s are different from other wireless devices due to various reasons, but the 

primary reason is the severe memory constraint that makes it impossible to store 

routing/destination tables. WSN, though, are not the only solution for cooperative 

robotics research. Other platforms such as Gumstix/Robotstix [18] are also being 

experimented with. A final comparison between the various solutions needs to be done 

before deciding on a suitable communication platform for the cooperating robots. 

The AMH algorithm was designed with WSN’s specifically in mind. The 

algorithm consists of three phases, which are described in detail in the following sections. 

To give an overview, the first phase is the initialization phase during which the base 

station sends out a beacon to initiate network formation. The second phase is the “parent 

node” allocation phase, during which each node identifies the node to which it will send 

its information. This phase is also used by nodes to identify their “depths” in the network 

tree. The third and final phase is the data collection and forwarding phase. In this phase, 

the nodes sample their ADCs and send information to one another as well as to the base 

station. This phase of the algorithm also deals with the ad-hoc concept of the network. 

There are provisions in the algorithm designed to govern the addition or deletion of a new 

node or an existing node respectively. 
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4.2 Assumptions 
 
 

1) One of the nodes (node 0) is always connected to the base station. 

2) The same program is running on all the existing nodes. 

3) There are at least two levels of hierarchy in the network, i.e., there is at least one 

node in the network whose node depth is two. 

4) All information collected by the nodes needs to be received at the base station. 

5) When nodes are either added or deleted, there is always one node that is a single 

hop away from the base station. 

6) The maximum information payload that each message can carry is 36 bytes. 

7) During initial network formation each node is assigned a single, fixed parent. The 

parent may change during subsequent network operation. 

8) Nodes with successive IDs are in direct communication range with each other. 

9) Communicating nodes are at a maximum of 20 meters away from each other. 

10) The base station is passive, i.e., it performs only data collection and does not issue 

any command during network operation. It is however responsible for initiating 

network formation by transmitting a beacon at the beginning. 

11) There is no significant interference at 2.4 GHz from other RF devices. 
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Fig. 3: Flowchart of the AMH algorithm. 
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4.3 Algorithm 

 

The AMH algorithm is written using nesC. A flowchart describing the algorithm 

is shown in Fig. 3. The code implementing the algorithm is listed in Appendix A. The 

AMH algorithm essentially consists of three phases; (i) the initialization phase (ii) the 

network formation phase (iii) data collection and forwarding phase. Fig. 4 shows a 

diagrammatic representation of the experimental setup. 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Experimental Setup. 

 

4.3.1 Initialization Phase 

During this phase the nodes do not have an awareness of their depth in the 

network tree or the parent to which they should send data. The base station sends out a 

beacon advertising its node ID (zero) and tree depth (0). Nodes that can receive this 
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message set their parent to be zero and increment their node depth. A timer on the node at 

the base station is programmed to transmit this beacon for a total of five seconds in 100 

ms intervals. Once the nodes receive the beacon, they re-transmit the beacon to other 

nodes that are out of direct communication range with the base station. 

 

4.3.2 Network Formation Phase 

 

Once the base station has sent the beacon, the first level of nodes identify the base 

station as their parent and retransmit the beacon to other nodes in the network. The 

transmitting nodes replace the existing node ID and tree depth with their own values. 

Receiving nodes set their parents to be the corresponding node from which they received 

the beacon. As soon as the nodes receive this beacon, they send a “Send Parent” signal 

requesting the beacon-transmitting node to be its parent. If the beacon-transmitting node 

does not have any other child, it sends an “Accept Parent” signal back to the child node 

accepting to be its parent and make appropriate adjustments by setting the “Have Child” 

flag. The “Have Child” flag is used to indicate whether a node has a child or not. This 

flag is used because of the following possible situation: when a node re-transmits a 

beacon, it can be heard by more than one node. All the nodes send a “Send Parent” signal 

back to the beacon-transmitting node. To avoid confusion at the beacon-transmitting node, 

the first node to respond becomes the child of the beacon-transmitting node. All other 

offers are rejected by the parent node. 
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Once each node has a parent, they also select a secondary parent. The secondary 

parent can be any node and is used as a backup when parent nodes fail during network 

operation. 

 

4.3.3 Data Collection and Forwarding 

 

Once the nodes assign themselves a parent, they also set a flag “Send Data” to 

indicate the same. As a next step, each node samples the multiple sensors available 

through the ADC onboard. The ADC sampling is an example particular to this case. Once 

a parent is assigned, the nodes are ready for communication and can transmit whatever 

information they like as long as it is made available to the radio in the format described in 

Chapter Three. The communication between the nodes is sent back to the base station 

either directly or through multiple hops. When a node sends a message to another node, a 

transcript is made that is sent to the node’s parent which in turn forwards it directly or 

sequentially to the base station. Whenever a node receives a data packet, it checks for two 

things: (i) whether it is destined destination for the packet and (ii) whether it has come 

from its own child or any other node. If the data packet does not satisfy both the 

conditions, it transfers the data packet to its parent and awaits the next message. A data 

packet is forwarded in this manner until it reaches the base station. 

For every ten packets sent to the parent, each node sends an ACK 

(acknowledgement) signal. The ACK signal is used to check whether a parent node is 

still available or has become dysfunctional. If the parent node does not respond to the 

ACK signal within five seconds, the child node assigns the secondary parent as the 
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primary parent and proceeds to look for a new secondary parent. The interval of the ACK 

signal can be changed through software by altering relevant portions of the code in 

Appendix A. 

When a new node is added, it issues an “I need a parent” signal. Nodes in the 

vicinity respond to this signal with their node ID’s and tree depths. The node with the 

least tree depth is selected as a parent and other nodes are rejected. 

The following section presents various snapshots of the results (captured during 

the operation of the network) as well as a discussion of the user interface options made 

available to users who wish to study the data flow in the system.   

 

4.4 Results and Discussions 
 
 

This section presents the results of the experiments performed with the AMH 

algorithm. A program implementing the algorithm was written in nesC and downloaded 

onto seven T-Mote Sky modules. The experiments were done to demonstrate the ad-hoc 

and multi-hop features of the AMH algorithm. Following is a description of the 

experimental setup. 

Initially three nodes are switched on. These three nodes form the first layer of 

communication modules that are in a direct communication range with the base station. 

Each of these nodes has a tree depth value of one. A wireless sensor node with ID zero is 

connected to a laptop through a USB port throughout the duration of the experiment. In 

this mode of operation, each node sends a message to another node in a cyclic manner. 

Node 1 sends a message to Node 2, Node 2 sends a message to Node 3 and Node 3 
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completes the chain by sending messages back to Node 1. It may be noted however that 

each node is capable of sending messages to any other node in a network. The 

arrangement described above is designed to reduce loss of messages due to interference. 

The second layer in the network tree consists of the next three nodes: Nodes 4, 5 and 6. 

The nodes in the second layer choose a parent from any of the nodes in the first layer. 

The algorithm is designed in such a way that each parent has a different child during the 

initial phases of the experiment. Later in the experiment, the parents may change due to 

various factors such as node failure, failure to acknowledge messages from child, etc. The 

nodes in the second layer have a tree depth value of two. Figure 6 is a screen shot of the 

initial arrangement of the experiment. Each data set has eight fields which are explained 

as follows: 

 

Source: Source refers to the ID of the node. This ID is hardwired onto the mote during 

the downloading of the algorithm from the base station. 

 

Parent: Parent is the ID of the node to which a source node forwards a transcript of its 

communication with any other node. Each node forwards its data transcript to its parent 

until it reaches the base station where it is read through node zero attached to its USB 

port. 

 

Sec_Parent: Secondary Parent is a backup node incase the primary parent fails during 

network operation. As described in chapter four, each node sends an acknowledgement 

signal to its parent after sending ten data packets. If the parent fails to respond to the 
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acknowledgement message, the source node checks to see if the secondary parent node is 

available and if it is indeed available, changes its parent ID to the secondary parent node 

ID. This is done to reduce the time taken by nodes searching for a new parent to send 

their data. If time is not a constraint, this section of code can be done away with to save 

significant program memory space on the nodes. 

 

Tree Depth (Node Depth): This is indicative of the position of each node in the network 

tree. 

 

ID: ID is a measure of the number of messages sent by each node. A message ID is 

increased only if it originates from a node. It cannot be incremented by the parent or 

secondary parent nodes. 

 

Sent Destination: Sent destination refers to the destination of each message originating 

from a source node. 

 

Data: This field can store up to 21 bytes of data to be communicated between various 

nodes. In the present case, each node samples its light sensor and shares the reading with 

other nodes. Since the experiment was carried out in an indoor environment with constant 

light intensity, all the nodes exchange a value of 0x07.  

 

Timex: This field has a provision to store two bytes of time data. In the experiments 

carried out, this field was not used due to the absence of time synchronization feature in 
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the algorithm. Once this is implemented, the timex field can be used to carry the time 

when each message was sent from a particular node.  

To demonstrate the ad-hoc nature of the algorithm, we disrupt the functioning of 

the network by forcing a node to breakdown. It will be shown that the network can 

reconfigure itself to compensate the loss of a node. In Fig. 5 and Fig. 6 we observe that 

Node 6 has assigned its parent to be node three. We force Node 3 to fail and observe in 

Figures 7 - 11 how Node 6 identifies another parent, Node 5. 

 

 

Fig. 5: A graphical representation of the initial setup of the network. 
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Fig. 6: A screenshot of the readings at the base station during the initial phase of the 

network. 
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Fig. 7: A graphical representation of Node 3 breaking down. 

 

Fig. 8: A graphical representation of Node 6 requesting a new parent. 
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Fig. 9: A graphical representation of Node 5 responding to Node 6 with an “I am a Parent” 

signal. 
 

 
 

Fig. 10: A graphical representation of the changed parent of Node 6. 
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Fig. 11: Screenshot displaying the changed parent of node six. The parent was changed 

from Node 3 to Node 5. 
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A demonstration of the ad-hoc nature of the algorithm is not complete without 

proving its ability to add new nodes to the network. To simulate this behavior, we bring 

Node 3 back into the network. Figures 12 -15 show how Node 3 fits seamlessly back into 

the network. As an additional option, the parent that Node 3 chooses also transmits the 

latest ID that it has in its memory to enable continuity in the network. For example, when 

Node 3 re-enters the network, it sends out a signal (“I need a parent” signal) requesting a 

parent. Nodes in the vicinity check their memories to verify if they have received any 

messages from Node 3 before it broke down. If they have received a message from Node 

3, they send the corresponding ID along with an acknowledgement to the “I need a parent 

signal”. Node 3 examines the received information from each node and chooses as its 

parent, the node which sent a message with the most recent ID. In a real world 

application, this can help replacement robots continue from the point where their former 

counterparts broke down.  In case the node is new, it chooses as a parent, the first node 

from which it receives an acknowledgement for the “I need a parent” signal. 
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Fig. 12: A graphical representation of Node 3 re-entering the network. 

 

Fig. 13: A graphical representation of Node 5 responding to Node 3’s request. 
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Fig. 14: A graphical representation of the seamless re-entry of Node 3 into the network.   

1

4 

2

3

5 

6 

ND = 1 
Parent = 0 

ND = 2 
Parent = 1 ND = 1 

Parent = 0 

ND = 3 
Parent = 5 

ND = 2 
Parent = 2 

ND = 3 
Parent = 5 

BS 
ID = 0 



 
 

46 

 

Fig. 15: Screen shot displaying the seamless reentry of Node 3 into the network. 
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4.4.1 User Interface Discussion 

 

The message transcripts sent from the various nodes is displayed on the base 

station using a java program that is described in APPENDIX B. The incoming data is 

both displayed on the screen as well as parsed into a text file. The text file was created to 

record the events happening during the operation of the network. A screenshot of the text 

file is shown in Fig. 16. The text file displays the data fields present in each message. A 

user interface was programmed using perl. After studying the text file, the perl script is 

run and the values of the source node and message ID are entered. The user interface then 

generates a text file that lists the source node and destination node of the particular 

message ID, the number of times the parent of the source node has changed and the time 

at which the change took place. The text file further displays the ID of the messages that 

were sent out of the destination node in response to the message sent by the source node. 

The idea of the user interface is to track the events happening in the network with the 

help of the message IDs. The use of the interface is explained with the following example. 

Let us assume that we wish to see the effect of Node 4 sending a message to Node 5 at a 

given time (timex field). The message ID corresponding to that time and source node is 

entered in the user interface. The script then parses the text file to generate the messages 

that were sent from Node 5 after the given time. The output file also gives details about 

the parent changes of Node 4 and the time of occurrence of the changes. A screenshot of 

the generated output file is shown in Fig. 17. 
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Fig. 16: A screenshot of the text file of the information recorded at the base station. 
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Fig. 17: A screenshot showing the upper half of the output file. 
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Fig. 18: A screenshot showing the bottom part of the output file. 
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CHAPTER FIVE 
 

CONCLUSIONS  
 
 
 

An ad-hoc, multi-hop algorithm (AMH) for WSN used in cooperative robotics has 

been presented. The AMH algorithm has been shown to work by implementing a self-

forming network using seven wireless sensor nodes. The algorithm is highly flexible and 

scalable to accommodate more than seven nodes in the network. The sensor nodes can 

work both in indoor and outdoor environments although their communication range 

varies depending upon where they are deployed. The algorithm is flexible to 

accommodate any variation during network operation due to a node failure or node 

addition. 

Experiments were conducted in an indoor environment and three features of the 

AMH algorithm were monitored: the ability of individual nodes to communicate with 

each other, the ability of the network to react to any changes such as node failures or 

node accessions and finally the ability to send transcripts of exchanged messages back to 

the base station. 

According to the author’s knowledge, this thesis has presented one of the first 

algorithms for WSN in cooperative robotics. Although WSN have been used in 

cooperative robotics, there have been few instances where they have been used for inter-

robot communication as well as base station monitoring. 
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This thesis has provided a valuable insight into the field of WSN for inter-robotic 

communications and a significant foundation for the CRR group at Auburn University.

 At present there are robots being built, that are capable of using WSN nodes such as T-

Mote Sky, as their communication module. This thesis should hopefully inspire fellow 

CRR team members to have an in-depth look at the WSN domain and tap its ever-

increasing applications in other aspects of cooperative robotics such as localization and 

time synchronization. 

 

5.1 Suggestions for Future Work 

 

• To have hardware demonstration of the robotic network with a group of 5 to 10 

robots.  

• To do an analysis of system overhead related to event logging. 

• Perform a qualitative analysis of the AMH algorithm to optimize communication 

parameters thereby maximizing global network resource utilization. 

• Replace WSN with Gumstix/Robostix as communication module for cooperative 

robotics. Develop a version of the AMH algorithm for the Gumstix/Robostix 

platform and perform a comparison between the two platforms (WSN and 

Robostix) to determine the ideal communication module for cooperative robotics. 
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APPENDIX A 
 

CODE IMPLEMENTATION OF AMH ALGORITHM 
 
 

This appendix presents the code for implementation of the AMH algorithm. This 

code is written in nesC and consists of two parts: the configuration file and the module 

file. As mentioned before Tiny OS has several abstracted components and the 

configuration file is responsible for mapping and bringing together required components. 

The module file is responsible for the actual implementation of the algorithm. The header 

files, configuration and module files must all be present in the same folder for proper 

execution. 

 
Header Files: 
 
Time: 
 
typedef struct TimeMsg { 
  uint16_t source; 
  uint16_t parent; 
  uint16_t sec_parent; 
  uint16_t tree_depth; 
  uint16_t id;  
  uint16_t sent_destination; 
  uint16_t data; 
  uint16_t timex; 
} TimeMsg; 
 
enum { 
     AM_TIMEMSG = 42 
     }; 
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Miscellaneous: 
 
typedef struct DataMsg { 
  uint16_t source; 
  uint16_t destinat; 
  uint16_t data; 
} DataMsg; 
 
typedef struct Beacon { 
  uint16_t sourceaddress; 
  uint16_t dest; 
  uint16_t tree_depth; 
} Beacon; 
 
typedef struct NewMsg { 
  uint16_t source; 
} NewMsg; 
 
typedef struct AckMsg { 
  uint16_t source; 
} AckMsg; 
 
typedef struct ReplyAckMsg { 
  uint16_t source; 
} ReplyAckMsg; 
 
typedef struct ParentMsg { 
  uint16_t source; 
  uint16_t tree_depth; 
} ParentMsg; 
 
typedef struct SecParentMsg { 
  uint16_t source; 
  uint16_t tree_depth; 
} SecParentMsg; 
 
typedef struct SecparentMsg { 
  uint16_t source; 
  uint16_t tree_depth; 
} SecparentMsg; 
 
typedef struct AcceptMsg { 
  uint16_t source; 
} AcceptMsg; 
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typedef struct AcceptSecMsg { 
  uint16_t source; 
} AcceptSecMsg; 
 
enum { 
     AM_DATA = 41, 
     AM_BEACON = 43, 
     AM_NEWMSG = 44, 
     AM_PARENTMSG = 45, 
     AM_SECMSG = 46, 
     AM_ACCEPTMSG = 47, 
     AM_SECONDARYMSG = 48, 
     AM_ASMSG = 49, 
     AM_ACKMSG = 50, 
     AM_REPLYMSG = 51 
     };       
 
Configuration File: 
 
includes Miscellaneous; 
includes Time; 
 
configuration Coop{ 
} 
implementation { 
               components Main, CoopM, TimerC, LedsC, DemoSensorC as Sensor, 
GenericComm as Comm; 
                
Main.StdControl -> CoopM.StdControl; 
Main.StdControl -> Comm; 
Main.StdControl -> TimerC; 
                
CoopM.RouteTimer -> TimerC.Timer[unique("Timer")]; 
CoopM.DelayTimer -> TimerC.Timer[unique("Timer")]; 
CoopM.AckTimer -> TimerC.Timer[unique("Timer")]; 
                
CoopM.ADC -> Sensor; 
 CoopM.ADCControl -> Sensor; 
                            
 CoopM.Leds -> LedsC; 
                
 CoopM.SendBeacon -> Comm.SendMsg[AM_BEACON]; 
 CoopM.ReceiveBeacon -> Comm.ReceiveMsg[AM_BEACON]; 
 CoopM.SendDataPacket -> Comm.SendMsg[AM_DATA]; 
 CoopM.ReceiveDataPacket -> Comm.ReceiveMsg[AM_DATA]; 
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  CoopM.SendTime -> Comm.SendMsg[AM_TIMEMSG]; 
  CoopM.ReceiveTime -> Comm.ReceiveMsg[AM_TIMEMSG]; 
  CoopM.SendIamNew -> Comm.SendMsg[AM_NEWMSG]; 
  CoopM.ReceiveIamNew -> Comm.ReceiveMsg[AM_NEWMSG]; 
  CoopM.SendParent -> Comm.SendMsg[AM_PARENTMSG]; 
  CoopM.ReceiveParent -> Comm.ReceiveMsg[AM_PARENTMSG]; 
  CoopM.SendSecParent -> Comm.SendMsg[AM_SECMSG]; 
  CoopM.ReceiveSecParent -> Comm.ReceiveMsg[AM_SECMSG]; 
  CoopM.SendAcceptParent -> Comm.SendMsg[AM_ACCEPTMSG]; 
  CoopM.ReceiveAcceptParent -> Comm.ReceiveMsg[AM_ACCEPTMSG]; 
  CoopM.SendSecondaryParent -> Comm.SendMsg[AM_SECONDARYMSG]; 
  CoopM.ReceiveSecondaryParent -> Comm.ReceiveMsg[AM_SECONDARYMSG]; 
  CoopM.SendAcceptSecParent -> Comm.SendMsg[AM_ASMSG]; 
  CoopM.ReceiveAcceptSecParent -> Comm.ReceiveMsg[AM_ASMSG]; 
  CoopM.SendAck -> Comm.SendMsg[AM_ACKMSG]; 
  CoopM.ReceiveAck -> Comm.ReceiveMsg[AM_ACKMSG]; 
  CoopM.SendReplyAck -> Comm.SendMsg[AM_REPLYMSG]; 
  CoopM.ReceiveReplyAck -> Comm.ReceiveMsg[AM_REPLYMSG]; 
  } 
 
 
Module File: 
 
includes Miscellaneous; 
includes Time; 
 
module CoopM { 
       provides { 
                interface StdControl; 
      } 
       uses { 
            interface Timer as RouteTimer; 
            interface Timer as DelayTimer; 
            interface Timer as AckTimer; 
            interface Leds; 
            interface ADC; 
            interface StdControl as ADCControl; 
             
            interface SendMsg as SendBeacon; 
            interface ReceiveMsg as ReceiveBeacon; 
            interface SendMsg as SendDataPacket; 
            interface ReceiveMsg as ReceiveDataPacket; 
            interface SendMsg as SendTime; 
            interface ReceiveMsg as ReceiveTime; 
            interface SendMsg as SendIamNew; 
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            interface ReceiveMsg as ReceiveIamNew; 
            interface SendMsg as SendParent; 
            interface ReceiveMsg as ReceiveParent; 
            interface SendMsg as SendSecParent; 
            interface ReceiveMsg as ReceiveSecParent; 
            interface SendMsg as SendAcceptParent; 
            interface ReceiveMsg as ReceiveAcceptParent; 
            interface SendMsg as SendSecondaryParent; 
            interface ReceiveMsg as ReceiveSecondaryParent; 
            interface SendMsg as SendAcceptSecParent; 
            interface ReceiveMsg as ReceiveAcceptSecParent; 
            interface SendMsg as SendAck; 
            interface ReceiveMsg as ReceiveAck; 
            interface SendMsg as SendReplyAck; 
            interface ReceiveMsg as ReceiveReplyAck; 
            } 
} 
implementation{ 
               TOS_Msg Data_Packet; 
               TOS_Msg Time_Packet; 
               TOS_Msg Start_Packet; 
               TOS_Msg New_Packet; 
               TOS_Msg Parent_Packet; 
               TOS_Msg Sec_Packet; 
               TOS_Msg Accept_Packet; 
               TOS_Msg Secondary_Packet;             
               TOS_Msg Ack_Packet; 
               TOS_Msg ReplyAck_Packet; 
                
               uint16_t message_id; 
               uint16_t destination, new_destination; 
               uint16_t parent = 0xFFFF; 
               uint16_t data_sent; 
               uint16_t node_depth; 
               uint16_t pmsg_destination; 
               uint16_t accepted_destination, ack_dest; 
               uint16_t sp_destination; 
               uint16_t accepted_sec_dest, sec_parent = 0; 
               uint16_t parent_depth, sec_parent_depth; 
               uint16_t time_sent = 0; 
               bool child, sec_child, fsd; 
                
static void initialize() { 
  sec_child = TRUE; 
  child = TRUE; 
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  fsd = TRUE; 
} 
     
static void newdest() /* Function declaring destination addresses for each node */ 
{ 
       if (TOS_LOCAL_ADDRESS > 3) 
      { 
                            new_destination = (TOS_LOCAL_ADDRESS - 3); 
      } 
     else  
     { 
          new_destination = TOS_BCAST_ADDR; 
     } 
} 
/* Initializing nodes */                                      
command result_t StdControl.init(){ 
        initialize(); 
        newdest(); 
        call Leds.init(); 
        call Leds.redOn(); 
        return SUCCESS; 
} 
 
command result_t StdControl.start() 
/* A timer is fired at the lapse of 1s triggering the transmission of a beacon from the base 
station*/ 
{ 
        if (TOS_LOCAL_ADDRESS == 0) 
        { 
                              call RouteTimer.start(TIMER_ONE_SHOT,1000); 
                              call Leds.redOff(); 
        } 
        return SUCCESS; 
} 
 
command result_t StdControl.stop() 
{ 
        call RouteTimer.stop(); 
        call DelayTimer.stop(); 
        call AckTimer.stop(); 
        return SUCCESS; 
} 
 
/* Firing of Beacon at base station */ 
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event result_t RouteTimer.fired(){ 
      if (TOS_LOCAL_ADDRESS == 0) 
      { 
                            Beacon *a = (Beacon *) Start_Packet.data; 
                            a -> sourceaddress = TOS_LOCAL_ADDRESS; 
                            a -> dest = 1; 
                            a -> tree_depth = 0; 
                            call SendBeacon.send(TOS_BCAST_ADDR, sizeof(Beacon), 
&Start_Packet); 
                             
      } 
      return SUCCESS; 
} 
 
event result_t SendBeacon.sendDone(TOS_MsgPtr msg, bool success) /* Event 
signalling successful completion of beacon transmission */ 
{ 
      return SUCCESS; 
} 
 
event TOS_MsgPtr ReceiveBeacon.receive(TOS_MsgPtr recv_packet) 
{ 
      Beacon *b = (Beacon *)recv_packet -> data; 
       
      if (b -> dest == TOS_LOCAL_ADDRESS) 
      { 
            call ADC.getData(); /* Request corresponding ADC to sample local sensors */ 
            parent = 0; 
            node_depth = (b -> tree_depth) + 1; 
            child = FALSE; 
            fsd = FALSE; 
            call Leds.redOff(); 
      }     
      else  
      { 
           parent = 0; 
           node_depth = (b -> tree_depth) + 1; 
           child = FALSE; 
           fsd = FALSE; 
      } 
      return recv_packet; 
} 
 
event result_t DelayTimer.fired() 
{ 
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     return call ADC.getData(); 
} 
 
async event result_t ADC.dataReady(uint16_t data) 
{ 
      if (!fsd) 
      { 
      DataMsg *d = (DataMsg *)Data_Packet.data; 
      data_sent = (7-((data>>7) &0x7)); /* Disply MSB values of sensor readings */ 
      if (TOS_LOCAL_ADDRESS == 3) 
      { 
                            destination = 1; 
      } 
      else if (TOS_LOCAL_ADDRESS == 6) 
      { 
           destination = 4; 
      } 
      else  
      { 
           destination = TOS_LOCAL_ADDRESS + 1; 
      } 
      d -> source = TOS_LOCAL_ADDRESS; 
      d -> destinat = destination; 
      d -> data = data_sent; 
      call Leds.yellowOn(); 
      if (TOS_LOCAL_ADDRESS > 3) 
      { 
                            if ((parent != 0xFFFF)&& (sec_parent != 0)) 
      { 
                 call SendDataPacket.send(TOS_BCAST_ADDR, sizeof(DataMsg), 
&Data_Packet); 
      } 
      } 
      else if ((TOS_LOCAL_ADDRESS <= 3) && (parent != 0xFFFF)) 
      { 
           call SendDataPacket.send(TOS_BCAST_ADDR, sizeof(DataMsg), 
&Data_Packet); 
      } 
      } 
      return SUCCESS; 
} 
 
event result_t SendDataPacket.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      if (TOS_LOCAL_ADDRESS != 0) 
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      { 
      TimeMsg *t = (TimeMsg *)Time_Packet.data; 
      t -> source = TOS_LOCAL_ADDRESS; 
      t -> parent = parent; 
      t -> sec_parent = sec_parent; 
      t -> tree_depth = node_depth; 
      t -> id = message_id; 
      t -> sent_destination = destination; 
      t -> data = data_sent; 
      t -> timex = msg -> time; 
      message_id++; 
      time_sent++; 
      call SendTime.send(parent, sizeof(TimeMsg), &Time_Packet); 
      call Leds.greenOn(); 
      } 
      return SUCCESS; 
} 
 
event result_t SendTime.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      AckMsg *ack = (AckMsg *)Ack_Packet.data; 
      ack -> source = TOS_LOCAL_ADDRESS; 
      if ((time_sent >= 0x0008) && (parent != 0)) 
      { 
                    call SendAck.send(parent, sizeof(AckMsg), &Ack_Packet); 
                    call Leds.yellowOff(); 
                    fsd = TRUE; 
                    call AckTimer.start(TIMER_REPEAT, 10000); 
      } 
      return SUCCESS; 
} 
 
event result_t SendAck.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
} 
 
event result_t SendReplyAck.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
} 
 
event TOS_MsgPtr ReceiveAck.receive(TOS_MsgPtr recv_packet) 
{ 
      AckMsg *ackr = (AckMsg *)recv_packet -> data; 
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      ReplyAckMsg *rack = (ReplyAckMsg *)ReplyAck_Packet.data; 
      rack -> source = TOS_LOCAL_ADDRESS; 
      ack_dest = ackr -> source; 
      call SendReplyAck.send(ack_dest, sizeof(ReplyAckMsg), &ReplyAck_Packet); 
      return recv_packet; 
} 
 
event TOS_MsgPtr ReceiveReplyAck.receive(TOS_MsgPtr recv_packet) 
{ 
      ReplyAckMsg *rackr = (ReplyAckMsg *)recv_packet -> data; 
      fsd = FALSE; 
      return recv_packet; 
} 
 
event result_t AckTimer.fired() 
{ 
      SecParentMsg *sp = (SecParentMsg *)Sec_Packet.data; 
      sp -> source = TOS_LOCAL_ADDRESS; 
      if (fsd) 
      { 
              parent = sec_parent; 
              node_depth = (parent_depth + 1); 
              call SendSecParent.send(TOS_BCAST_ADDR, sizeof(SecParentMsg), 
&Sec_Packet); 
       } 
      return SUCCESS; 
}         
 
event TOS_MsgPtr ReceiveDataPacket.receive(TOS_MsgPtr recv_packet) 
{ 
      DataMsg *e = (DataMsg *)recv_packet -> data; 
      DataMsg *d = (DataMsg *)Data_Packet.data; 
      NewMsg *n = (NewMsg *)New_Packet.data; 
      if ((e -> destinat == TOS_LOCAL_ADDRESS) && (TOS_LOCAL_ADDRESS != 
0)) 
      { 
                            call DelayTimer.start(TIMER_REPEAT,6000); 
                            call Leds.redOff(); 
      } 
      else if ((TOS_LOCAL_ADDRESS != 0) && (parent == 0xFFFF)) 
      { 
                           n -> source = TOS_LOCAL_ADDRESS; 
                           call SendIamNew.send(new_destination, sizeof(NewMsg), 
&New_Packet); 
                           call Leds.redOff(); 



 

68 

      } 
      return recv_packet; 
} 
 
event result_t SendIamNew.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
} 
 
event TOS_MsgPtr ReceiveTime.receive(TOS_MsgPtr recv_packet) 
{ 
       
      TimeMsg *t = (TimeMsg *)recv_packet -> data; 
      TimeMsg *u = (TimeMsg *)Time_Packet.data; 
      u -> source = t -> source; 
      u -> parent = t -> parent; 
      u -> sec_parent = t -> sec_parent; 
      u -> tree_depth = t -> tree_depth; 
      u -> id = t -> id; 
      u -> sent_destination = t -> sent_destination; 
      u -> data = t -> data; 
      u -> timex = t -> timex; 
      if (TOS_LOCAL_ADDRESS == 0) 
      { 
                            call Leds.redToggle(); 
                            call SendTime.send(TOS_UART_ADDR, sizeof(TimeMsg), 
&Time_Packet); 
      } 
      else if ((TOS_LOCAL_ADDRESS != 0) && (parent != 0xFFFF)) 
      { 
           call SendTime.send(parent, sizeof(TimeMsg), &Time_Packet); 
      } 
      return recv_packet; 
} 
 
event TOS_MsgPtr ReceiveIamNew.receive(TOS_MsgPtr recv_packet) 
{ 
                 NewMsg *n = (NewMsg *)recv_packet -> data; 
                 ParentMsg *pmsg = (ParentMsg *)Parent_Packet.data; 
                 pmsg -> source = TOS_LOCAL_ADDRESS; 
                 pmsg -> tree_depth = node_depth; 
                 pmsg_destination = n -> source; 
                 fsd = TRUE; 
                 call SendParent.send(pmsg_destination, sizeof(ParentMsg), &Parent_Packet); 
                 return recv_packet; 
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} 
 
event result_t SendParent.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      fsd = FALSE; 
      return SUCCESS; 
} 
 
event TOS_MsgPtr ReceiveParent.receive(TOS_MsgPtr recv_packet) 
{ 
      ParentMsg *pmsgr = (ParentMsg *)recv_packet -> data; 
      SecParentMsg *sp = (SecParentMsg *)Sec_Packet.data; 
      AcceptMsg *am = (AcceptMsg *)Accept_Packet.data; 
      atomic  
      { 
             parent = pmsgr -> source; 
      } 
      atomic 
      { 
            node_depth = (pmsgr -> tree_depth) + 1; 
            parent_depth = pmsgr -> tree_depth; 
      } 
      sp -> source = TOS_LOCAL_ADDRESS; 
      am -> source = TOS_LOCAL_ADDRESS; 
      accepted_destination = pmsgr -> source; 
      call Leds.redOn(); 
      call SendSecParent.send(TOS_BCAST_ADDR, sizeof(SecParentMsg), 
&Sec_Packet); 
      call SendAcceptParent.send(parent, sizeof(AcceptMsg), &Accept_Packet); 
      fsd = TRUE; 
      return recv_packet; 
} 
  
event result_t SendSecParent.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
} 
 
event result_t SendAcceptParent.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
}      
 
event TOS_MsgPtr ReceiveSecParent.receive(TOS_MsgPtr recv_packet) 
{ 
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      if (TOS_LOCAL_ADDRESS != 0) 
      { 
      SecParentMsg *spr = (SecParentMsg *)recv_packet ->data; 
      SecparentMsg *Spm = (SecparentMsg *)Secondary_Packet.data; 
      Spm -> source = TOS_LOCAL_ADDRESS; 
      Spm -> tree_depth = node_depth; 
      sp_destination = spr -> source; 
      call SendSecondaryParent.send(sp_destination, sizeof(SecparentMsg), 
&Secondary_Packet); 
      } 
      return recv_packet; 
} 
 
event result_t SendSecondaryParent.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      return SUCCESS; 
} 
 
event TOS_MsgPtr ReceiveAcceptParent.receive(TOS_MsgPtr recv_packet) 
{ 
      if (TOS_LOCAL_ADDRESS != 0) 
      { 
      AcceptMsg *amr = (AcceptMsg *)recv_packet -> data; 
      call Leds.greenOff(); 
      child = TRUE; 
      fsd = FALSE; 
      call ADC.getData(); 
      } 
      return recv_packet; 
} 
 
event TOS_MsgPtr ReceiveSecondaryParent.receive(TOS_MsgPtr recv_packet) 
{ 
      SecParentMsg *Spmr = (SecParentMsg *)recv_packet -> data; 
      AcceptSecMsg *amsp = (AcceptSecMsg *) Accept_Packet.data; 
      atomic 
      { 
            sec_parent = Spmr -> source; 
            sec_parent_depth = Spmr -> tree_depth; 
      } 
      amsp -> source = TOS_LOCAL_ADDRESS; 
      accepted_sec_dest = Spmr -> source; 
      call Leds.greenOn(); 
      if ((sec_parent != 0) && (sec_parent != parent)) 
      { 
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      call SendAcceptSecParent.send(accepted_sec_dest, sizeof(AcceptSecMsg), 
&Accept_Packet); 
      } 
      return recv_packet; 
} 
 
event TOS_MsgPtr ReceiveAcceptSecParent.receive(TOS_MsgPtr recv_packet) 
{ 
      AcceptSecMsg *amr = (AcceptSecMsg *)recv_packet; 
      sec_child = TRUE; 
      return recv_packet; 
}      
 
event result_t SendAcceptSecParent.sendDone(TOS_MsgPtr msg, bool success) 
{ 
      fsd = FALSE; 
      call ADC.getData();    
      return SUCCESS; 
}  
       
} 
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JAVA AND PERL CODES 

 
 

This appendix consists of the Java and Perl code that is used to receive the 

messages from various nodes at the base station and write into a text file which can be 

used later to study the sequence of events occurring in the network. The perl code is used 

to create a user interface that can be used to query the text file about the events that have 

been recorded. 

 
TimeMsg.java: 
 
 

The following java code is responsible for receiving the messages from the nodes 

through the USB port of the base station and displaying them on the screen. 

 
package net.tinyos.Ad_hoc; 
 
public class TimeMsg extends net.tinyos.message.Message { 
 
    /** The default size of this message type in bytes. */ 
    public static final int DEFAULT_MESSAGE_SIZE = 16; 
 
    /** The Active Message type associated with this message. */ 
    public static final int AM_TYPE = 42; 
 
    /** Create a new TimeMsg of size 16. */ 
    public TimeMsg() { 
        super(DEFAULT_MESSAGE_SIZE); 
        amTypeSet(AM_TYPE); 
    } 
    /** Create a new TimeMsg of the given data_length. */
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    public TimeMsg(int data_length) { 
        super(data_length);amTypeSet(AM_TYPE); 
    }    /** 
     * Create a new TimeMsg with the given data_length 
     * and base offset. 
 
     */ 
    public TimeMsg(int data_length, int base_offset) { 
        super(data_length, base_offset); 
        amTypeSet(AM_TYPE); 
    } 
 
    /** 
     * Create a new TimeMsg using the given byte array 
     * as backing store. 
     */ 
    public TimeMsg(byte[] data) { 
        super(data); 
        amTypeSet(AM_TYPE); 
    } 
 
    /** 
     * Create a new TimeMsg using the given byte array 
     * as backing store, with the given base offset. 
     */ 
    public TimeMsg(byte[] data, int base_offset) { 
        super(data, base_offset); 
        amTypeSet(AM_TYPE); 
    } 
 
    /** 
     * Create a new TimeMsg using the given byte array 
     * as backing store, with the given base offset and data length. 
     */ 
    public TimeMsg(byte[] data, int base_offset, int data_length) { 
        super(data, base_offset, data_length); 
        amTypeSet(AM_TYPE); 
    } 
 
    /** 
     * Create a new TimeMsg embedded in the given message 
     * at the given base offset. 
     */ 
    public TimeMsg(net.tinyos.message.Message msg, int base_offset) { 
        super(msg, base_offset, DEFAULT_MESSAGE_SIZE); 
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        amTypeSet(AM_TYPE); 
    } 
 
    /** 
     * Create a new TimeMsg embedded in the given message 
     * at the given base offset and length. 
     */ 
    public TimeMsg(net.tinyos.message.Message msg, int base_offset, int data_length) { 
        super(msg, base_offset, data_length); 
        amTypeSet(AM_TYPE); 
    } 
 
    /** 
    /* Return a String representation of this message. Includes the 
     * message type name and the non-indexed field values. 
     */ 
    public String toString() { 
      String s = "Message <TimeMsg> \n"; 
      try { 
        s += "  [source=0x"+Long.toHexString(get_source())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [parent=0x"+Long.toHexString(get_parent())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [sec_parent=0x"+Long.toHexString(get_sec_parent())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [tree_depth=0x"+Long.toHexString(get_tree_depth())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [id=0x"+Long.toHexString(get_id())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [sent_destination=0x"+Long.toHexString(get_sent_destination())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [data=0x"+Long.toHexString(get_data())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      try { 
        s += "  [timex=0x"+Long.toHexString(get_timex())+"]\n"; 
      } catch (ArrayIndexOutOfBoundsException aioobe) { /* Skip field */ } 
      return s; 
    } 
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    // Message-type-specific access methods appear below. 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: source 
    //   Field type: int, unsigned 
    //   Offset (bits): 0 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'source' is signed (false). 
     */ 
    public static boolean isSigned_source() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'source' is an array (false). 
     */ 
    public static boolean isArray_source() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'source' 
     */ 
    public static int offset_source() { 
        return (0 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'source' 
     */ 
    public static int offsetBits_source() { 
        return 0; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'source' 
     */ 
    public int get_source() { 
        return (int)getUIntElement(offsetBits_source(), 16); 
    } 
 
    /** 
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     * Set the value of the field 'source' 
     */ 
    public void set_source(int value) { 
        setUIntElement(offsetBits_source(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'source' 
     */ 
    public static int size_source() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'source' 
     */ 
    public static int sizeBits_source() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: parent 
    //   Field type: int, unsigned 
    //   Offset (bits): 16 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'parent' is signed (false). 
     */ 
    public static boolean isSigned_parent() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'parent' is an array (false). 
     */ 
    public static boolean isArray_parent() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'parent' 
     */ 
    public static int offset_parent() { 
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        return (16 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'parent' 
     */ 
    public static int offsetBits_parent() { 
        return 16; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'parent' 
     */ 
    public int get_parent() { 
        return (int)getUIntElement(offsetBits_parent(), 16); 
    } 
 
    /** 
     * Set the value of the field 'parent' 
     */ 
    public void set_parent(int value) { 
        setUIntElement(offsetBits_parent(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'parent' 
     */ 
    public static int size_parent() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'parent' 
     */ 
    public static int sizeBits_parent() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: sec_parent 
    //   Field type: int, unsigned 
    //   Offset (bits): 32 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
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    /** 
     * Return whether the field 'sec_parent' is signed (false). 
     */ 
    public static boolean isSigned_sec_parent() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'sec_parent' is an array (false). 
     */ 
    public static boolean isArray_sec_parent() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'sec_parent' 
     */ 
    public static int offset_sec_parent() { 
        return (32 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'sec_parent' 
     */ 
    public static int offsetBits_sec_parent() { 
        return 32; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'sec_parent' 
     */ 
    public int get_sec_parent() { 
        return (int)getUIntElement(offsetBits_sec_parent(), 16); 
    } 
 
    /** 
     * Set the value of the field 'sec_parent' 
     */ 
    public void set_sec_parent(int value) { 
        setUIntElement(offsetBits_sec_parent(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'sec_parent' 
     */ 



 

79 

    public static int size_sec_parent() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'sec_parent' 
     */ 
    public static int sizeBits_sec_parent() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: tree_depth 
    //   Field type: int, unsigned 
    //   Offset (bits): 48 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'tree_depth' is signed (false). 
     */ 
    public static boolean isSigned_tree_depth() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'tree_depth' is an array (false). 
     */ 
    public static boolean isArray_tree_depth() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'tree_depth' 
     */ 
    public static int offset_tree_depth() { 
        return (48 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'tree_depth' 
     */ 
    public static int offsetBits_tree_depth() { 
        return 48; 
    } 
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    /** 
     * Return the value (as a int) of the field 'tree_depth' 
     */ 
    public int get_tree_depth() { 
        return (int)getUIntElement(offsetBits_tree_depth(), 16); 
    } 
 
    /** 
     * Set the value of the field 'tree_depth' 
     */ 
    public void set_tree_depth(int value) { 
        setUIntElement(offsetBits_tree_depth(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'tree_depth' 
     */ 
    public static int size_tree_depth() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'tree_depth' 
     */ 
    public static int sizeBits_tree_depth() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: id 
    //   Field type: int, unsigned 
    //   Offset (bits): 64 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'id' is signed (false). 
     */ 
    public static boolean isSigned_id() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'id' is an array (false). 
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     */ 
    public static boolean isArray_id() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'id' 
     */ 
    public static int offset_id() { 
        return (64 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'id' 
     */ 
    public static int offsetBits_id() { 
        return 64; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'id' 
     */ 
    public int get_id() { 
        return (int)getUIntElement(offsetBits_id(), 16); 
    } 
 
    /** 
     * Set the value of the field 'id' 
     */ 
    public void set_id(int value) { 
        setUIntElement(offsetBits_id(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'id' 
     */ 
    public static int size_id() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'id' 
     */ 
    public static int sizeBits_id() { 
        return 16; 
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    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: sent_destination 
    //   Field type: int, unsigned 
    //   Offset (bits): 80 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'sent_destination' is signed (false). 
     */ 
    public static boolean isSigned_sent_destination() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'sent_destination' is an array (false). 
     */ 
    public static boolean isArray_sent_destination() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'sent_destination' 
     */ 
    public static int offset_sent_destination() { 
        return (80 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'sent_destination' 
     */ 
    public static int offsetBits_sent_destination() { 
        return 80; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'sent_destination' 
     */ 
    public int get_sent_destination() { 
        return (int)getUIntElement(offsetBits_sent_destination(), 16); 
    } 
 
    /** 
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     * Set the value of the field 'sent_destination' 
     */ 
    public void set_sent_destination(int value) { 
        setUIntElement(offsetBits_sent_destination(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'sent_destination' 
     */ 
    public static int size_sent_destination() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'sent_destination' 
     */ 
    public static int sizeBits_sent_destination() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: data 
    //   Field type: int, unsigned 
    //   Offset (bits): 96 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 
    /** 
     * Return whether the field 'data' is signed (false). 
     */ 
    public static boolean isSigned_data() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'data' is an array (false). 
     */ 
    public static boolean isArray_data() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'data' 
     */ 
    public static int offset_data() { 
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        return (96 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'data' 
     */ 
    public static int offsetBits_data() { 
        return 96; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'data' 
     */ 
    public int get_data() { 
        return (int)getUIntElement(offsetBits_data(), 16); 
    } 
 
    /** 
     * Set the value of the field 'data' 
     */ 
    public void set_data(int value) { 
        setUIntElement(offsetBits_data(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'data' 
     */ 
    public static int size_data() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'data' 
     */ 
    public static int sizeBits_data() { 
        return 16; 
    } 
 
    ///////////////////////////////////////////////////////// 
    // Accessor methods for field: timex 
    //   Field type: int, unsigned 
    //   Offset (bits): 112 
    //   Size (bits): 16 
    ///////////////////////////////////////////////////////// 
 



 

85 

    /** 
     * Return whether the field 'timex' is signed (false). 
     */ 
    public static boolean isSigned_timex() { 
        return false; 
    } 
 
    /** 
     * Return whether the field 'timex' is an array (false). 
     */ 
    public static boolean isArray_timex() { 
        return false; 
    } 
 
    /** 
     * Return the offset (in bytes) of the field 'timex' 
     */ 
    public static int offset_timex() { 
        return (112 / 8); 
    } 
 
    /** 
     * Return the offset (in bits) of the field 'timex' 
     */ 
    public static int offsetBits_timex() { 
        return 112; 
    } 
 
    /** 
     * Return the value (as a int) of the field 'timex' 
     */ 
    public int get_timex() { 
        return (int)getUIntElement(offsetBits_timex(), 16); 
    } 
 
    /** 
     * Set the value of the field 'timex' 
     */ 
    public void set_timex(int value) { 
        setUIntElement(offsetBits_timex(), 16, value); 
    } 
 
    /** 
     * Return the size, in bytes, of the field 'timex' 
     */ 
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    public static int size_timex() { 
        return (16 / 8); 
    } 
 
    /** 
     * Return the size, in bits, of the field 'timex' 
     */ 
    public static int sizeBits_timex() { 
        return 16; 
    } 
 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
TimeMsgIF.java 
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The following code is used to write the messages received at the base station into 

a text file, log.txt. 

 
package net.tinyos.Ad_hoc; 
 
import java.io.*; 
import net.tinyos.message.*; 
import net.tinyos.packet.*; 
 
 
public class TimeMsgIF implements MessageListener { 
//int a,a_1,a_2,a_3,a_4,a_5,a_6,a_7 = 0; 
//int s,s_1,s_2,s_3,s_4,s_5,s_6,s_7 = 0; 
//int packets_lost; 
int message_id = 0; 
private static final String LOG_FILENAME = "log.txt"; 
 
PrintWriter log_os; 
 
 public TimeMsgIF( )  { 
  
 try{ 
   //create a file for logging data to. 
   FileOutputStream f = new FileOutputStream("log.txt"); 
   log_os = new PrintWriter(f); 
 } catch (Exception e) { 
   e.printStackTrace(); 
 } 
 
 
   // This connects to the SerialForwarder running on the local node. 
 MoteIF moteif = new MoteIF((net.tinyos.util.Messenger)null); 
 
 // Listen for messages of type MultihopMsg (generated by the 'mig' 
 // step above). 
 moteif.registerListener(new TimeMsg(), this); 
 } 
 
 
 
 
Parse.pl 
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The following perl code is responsible for creating the interface that is used to 

query the text file containing the messages. 

 
#***********************************************************************
********** 
# PARSE LOG FILE FOR FOLLOWING FIELDS 
#STRUCTURE ON FILE               EXTRACTED  
#TimeMsg:Message <TimeMsg>  
#  [source=0x3]                  - SOURCE 
#  [parent=0x0]                  - PARENT 
#  [sec_parent=0x0] 
#  [tree_depth=0x1] 
#  [id=0xa]                      - ID 
#  [sent_destination=0x1] 
#  [data=0x7] 
#  [timex=0xc5]                  - TIMEX 
 
#***********************************************************************
********** 
# INITIALIZATIONS  
#***********************************************************************
********** 
# PATH VARIABLE FOR SCRIPT  
my $file_name = "C:\\Program Files\\UCB\\cygwin\\opt\\tinyos-
1.x\\tools\\java\\net\\tinyos\\Ad_hoc\\log.txt"; 
 
# VARIABLES  
my $Msg_counter,$src,$dest; 
my %src_list; 
 
my $TimeMsg_counter,$source, $parent, $id, $timex; 
my $destination; 
my %id_list, %timex_list, %source_parents,%parent_change_track; 
 
my $prev_parent = -1; 
my $curr_parent = -1; 
my $parent_change = 0; 
my $error = 0; 
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#***********************************************************************
********** 
# PRE_READ TO POPULATE OPTIONS 
#***********************************************************************
********** 
open(PRE_READ,$file_name) || die("Could not open file!"); 
while(<PRE_READ>) 
{ 
  chomp; 
 my @field = split /\t/; 
 my $field1 = $field[0]; 
  
 # EXTRACT MESSAGE ID 
 if($field1 =~ /TimeMsg\w*/) 
 { my @msg_id_arr = split(" ", $field1); 
   $Msg_counter = $msg_id_arr[0]; 
 } 
  
 # EXTRACT SOURCE 
 elsif($field1 =~ /source\=\d+/) 
 { $src = substr($',1, 1); } 
 
 # EXTRACT DESTINATION 
 elsif($field1 =~ /sent_destination\=\d+/) 
 { $dest = substr($',1, 1);  
   if(exists ($src_list{$src}))  
   { if($src_list{$src} ne $dest) {print "PROBLEM MSG:$Msg_counter SRC:$src 
$OLD_DEST:$src_list{$src} DEST:$dest\n ";} } 
  else  
  { $src_list{$src}=$dest; } 
 } 
} 
close (PRE_READ); 
#foreach my $key (sort keys %src_list) { print "$key--$src_list{$key}\n"; } 
 
 
#***********************************************************************
********** 
# GET USER INPUT 
#***********************************************************************
********** 
# INPUT SOURCE 
system(cls); 
print "\nSELECT THE SOURCE FROM THE LIST ("; 
foreach my $key (sort keys %src_list) { print "$key,"; } 
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print "):"; 
my $source_input = <STDIN>; 
chomp($source_input); 
 
# INPUT MESSAGE ID 
print "Enter Starting Message ID < $Msg_counter:"; 
my $msg_id = <STDIN>; 
chomp($msg_id); 
 
# VALIDATE INPUTS 
if($msg_id>$Msg_counter || not(exists($src_list{$source_input}))) 
{ $error = 1; 
 print "\n\n\nINVALID ENTRY !!! \n";} 
 
 
#***********************************************************************
********** 
# ACTUAL PROGRAM 
#***********************************************************************
********** 
$destination = $src_list{$source_input}; 
 
open(DAT,$file_name) || die("Could not open file!"); 
while(<DAT>) 
{ 
  chomp; 
 my @field = split /\t/; 
 $field1 = $field[0]; 
 # EXTRACT MESSAGE ID 
 if($field1 =~ /TimeMsg\w*/) 
 {   
   my @msg_id_arr = split(" ", $field1); 
   $TimeMsg_counter = $msg_id_arr[0]; 
 } 
  
 # EXTRACT SOURCE 
 elsif($field1 =~ /source\=\d+/) 
 { $source = substr($',1, 1); } 
 
 # EXTRACT PARENT 
 elsif($field1 =~ /sec_parent\=\d+/) 
 { } 
 elsif($field1 =~ /parent\=\d+/) 
 { 
    $curr_parent = substr($',1, 1); 
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    if ($source eq $source_input && $TimeMsg_counter >= $msg_id)  
    {  
   if ($prev_parent eq "-1") {$prev_parent = $curr_parent} 
   else  
   { 
    if($curr_parent eq $prev_parent) {} 
    else  
    { 
     $parent_change++; 
     #print "Message ID: $TimeMsg_counter -> Parent 
Changed from $prev_parent to $curr_parent \n"; 
    
 $parent_change_track{$TimeMsg_counter}{"CURRENT_PARENT"} = 
$curr_parent;  
    
 $parent_change_track{$TimeMsg_counter}{"PREVIOUS_PARENT"} = 
$prev_parent;  
 
     $prev_parent = $curr_parent; 
    } 
   } 
  } 
  } 
 
  # EXTRACT ID 
 elsif($field1 =~ /id\w*/) 
 { 
    my $var = $'; 
    chop($var); 
    my @fsields = split(/x/,$var); 
    $id = $fsields[1]; 
  
  
    if ($source eq $destination && $TimeMsg_counter >= $msg_id )  
      { $id_list{$TimeMsg_counter} = $id; } 
  } 
 
 # EXTRACT TIMEX INFORMATION 
 elsif($field1 =~ /timex\w*/) 
 { 
    my $var = $'; 
    chop($var); 
    my @fsields = split(/x/,$var); 
    $timex = $fsields[1]; 
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      if ($source eq $destination && $TimeMsg_counter >= $msg_id)  
      { $timex_list{$TimeMsg_counter} = $timex; }     
  } 
  else {} 
  
} 
close (DAT); 
 
#***********************************************************************
********** 
# PRINTS OUTPUT DATA TO A FILE 
#***********************************************************************
********** 
open(OUT,"+>"."Output.txt") || die("Could not open file!"); 
 
# PRINT RUN INFORMATION 
print OUT "RESULTS LOG \n"; 
{ 
 use Time::localtime; 
 my $tm = localtime; 
 my $year = $tm->year+1900;my $month = ($tm->mon)+1;my $day = $tm->mday; 
 print OUT "Date: $month-$day-$year\n"; 
} 
print OUT "Input File: $file_name\n"; 
 
# PRINT FINAL EXTRACTED DATA 
print OUT 
"\n*********************************************************************
*********"; 
print OUT 
"\n*********************************************************************
*********"; 
if ($error ne 1) 
{ 
 print OUT "\n\n SOURCE      : $source_input"; 
 print OUT "\n\n DESTINATION : $destination"; 
 print OUT "\n\n CHANGE IN PARENTS\n"; 
 foreach my $key (sort keys %parent_change_track)  
 { my $curr = $parent_change_track{$key}{"CURRENT_PARENT"}; 
  my $prev = $parent_change_track{$key}{"PREVIOUS_PARENT"}; 
  print OUT " MSG ID:$key -> Parent Changed from $prev to $curr \n";  
 } 
 print OUT "\n Total Number of Parent Changes: $parent_change"; 
 print OUT "\n\n IDs AND TIMEX FOR DESTINATION\n"; 



 

93 

 foreach my $key (sort keys %id_list) { print OUT " MSG ID:$key 
ID:$id_list{$key} TIMEX:$timex_list{$key} \n"; } 
 print "\n\n.... Completed" 
} 
 
# ERROR HANDLING 
else  
{  
 print OUT "\n\nWrong inputs were entered\n\n"; 
} 
print OUT 
"\n*********************************************************************
*********"; 
print OUT 
"\n*********************************************************************
*********"; 
 
close (OUT); 
 
 
 


