
Utilizing Facial Recognition Software to Record Classroom Attendance

by

William E. Miller

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
May 5, 2018

Keywords: Facial Recognition, OpenCV, Attendance

Copyright 2018 by William E. Miller

Approved by

Dr. David Umphress, Chair, COLSA Corporation Cyber Security and Information
Assurance Professor

Dr. James Cross, Professor of Computer Science and Software Engineering
Dr. Dean Hendrix, Associate Professor of Computer Science and Software Engineering

Abstract

Facial recognition software offers many opportunities for educators, especially in regards

to recording classroom attendance. With so much time lost in the classroom each day,

utilizing facial recognition software allows professors to reclaim that lost time, and, therefore,

accomplish more in the classroom. In practice, this technology is relatively new. Within the

past few decades advancements have been made to introduce facial recognition techniques

to the general public. The majority of the research has been initiated by the intelligence

community to track persons of interest. However, these practices have become common

with various businesses and even churches. Corporations, such as Amazon and Microsoft,

have taken this opportunity to provide customers with access to servers and APIs that allow

individuals to incorporate facial recognition software in their own personal lives or for their

businesses. There are also those who have elected to create their own facial recognition

programs by using libraries, such as OpenCV. Combining the latter method with proper

software process procedures has produced a program that is intended to aid professors in

the classroom in regards to recording classroom attendance. Because of the litany of tools

and libraries required to use facial recognition software, operating these programs within a

separate preconfigured virtual environment is likely the best practice. Ubuntu has proven

to be the best choice thus far. Using a process most similar to Scrum, this software was

developed by utilizing multiple iterations in the form of weekly sprints. After detailing the

creation of this software and validating that the solution works as expected, one should

gain insight into the inner workings of facial recognition software. The result should fill the

needs of school faculty and allow for future researchers to further optimize this technology

to enhance its performance and efficiency.

ii

Table of Contents

Abstract . ii

List of Figures . v

1 Problem Description . 1

1.1 Introduction . 1

1.2 Thesis Breakdown . 2

2 Previous Work . 3

2.1 Potential Uses . 3

2.2 History of Facial Recognition . 3

2.3 Related Work . 10

3 Solution . 15

3.1 Library Options . 15

3.2 Cascade Classifiers . 17

3.3 Face Recognition Algorithms . 18

3.4 Design . 23

3.4.1 Functional Requirements . 23

3.4.2 Non-functional Requirements . 23

3.4.3 Initial Use Cases . 23

3.4.4 Software Methodology . 27

3.4.5 Software Architecture . 28

3.4.6 Development Process . 29

3.4.7 Summary . 30

4 Solution Validation . 31

4.1 Face Detection . 31

iii

4.2 Face Recognition . 33

4.3 Final Results . 34

5 Conclusions and Future Efforts . 35

Bibliography . 36

Appendices . 39

.1 createFolder.py . 39

.2 faceDetect.py . 41

.3 faceRecog.py . 46

Acknowledgments . 53

iv

List of Figures

2.1 ”Progress is quantified from the 1993 evaluations to MBE 2010. Improvement is

reported at five key milestones. For each milestone, the false rejection rate (FRR)

at a false acceptance rate (FAR) of 0.001 (1 in 1,000) is given for a representative

state-of-the-art algorithm. For each milestone, the year and evaluation are pro-

vided. Beginning with the FRVT 2002, the evaluations switched to a benchmark

dataset provided by the US Department of State (DoS), which is comparable to

the FERET dataset” [13]. 8

3.1 On-Demand Compute Pricing: AWS vs Azure vs Google Cloud 16

3.2 Sample Eigenfaces provided by OpenCV documentation that demonstrates both

facial features and illumination are encoded [30] 19

3.3 Sample Fisherfaces provided by OpenCV documentation that demonstrates dis-

tinctions between persons but does not account for lighting conditions [30] . . . 20

3.4 Provided by OpenCV documenation, this figure is a comparison of Eigenfaces

and Fisherfaces in regards to face recognition. [30] 21

3.5 Provided by OpenCV documenation, this figure demonstrates the results of the

LBPH algorithm in different lighting conditions. [30] 22

3.6 Use Case Diagram . 24

3.7 Use Case Intro . 24

v

3.8 Use Case 1 . 25

3.9 Use Case 2 . 25

3.10 Use Case 3 . 26

3.11 Use Case 4 . 26

3.12 Use Case 5 . 27

3.13 Gantt Chart showcasing progression of project. 30

4.1 Face Detection (Left) . 32

4.2 Face Detection (Right) . 32

4.3 Face Recognition . 34

vi

Chapter 1

Problem Description

1.1 Introduction

Facial recognition software has become ubiquitous in modern day life. From intelligence

agencies to churches, many have found various uses for this relatively new technology. One

particular faction could also greatly benefit from facial recognition software. This group

would be college professors. Since class time is such a valuable commodity, spending the

first few minutes of each class with the monotonous task of recording attendance can be

wasteful. In fact, one can surmise that those who call roll exhaust four hours of class time

each semester if five minutes are set aside during each class. Therefore, a new method should

be used that avoids this tedious task. By using classroom cameras which are now installed in

most classrooms, a professor only has to feed the lecture video into the software to determine

who was in attendance.

The benefits of this method are not only to save time but also to verify the accuracy of

attendance. The most common method currently used for college courses is a sign-in sheet.

However, students can easily copy their friends’ names with little accountability. Fingerprint

scanners are an option, but this takes too much time as well. With facial recognition software,

however, one can not only take attendance immediately, but a professor can also verify if

the student was physically there. By using the student’s face as a unique identifier, this

technique eliminates fallibility in the process.

There are, of course, many factors to consider when dealing with this option. The

chief issue is ensuring accuracy. The software must be able to return a correct response. A

professor must have confidence in this system. Otherwise, the program will be essentially

useless. Ensuring that the software is operating in an optimal manner is another goal of

1

this project. Any facial recognition technology (FRT) must be able to consistently detect,

recognize, and report the faces that appear in the subject matter. With all of this in mind,

one can then examine any prior work done in this field.

1.2 Thesis Breakdown

This thesis is broken down into five chapters. The first deals with the problem de-

scription. The second chapter will discuss previous work done in the field, as well as the

foundation for this project. Chapter 3 will deal with the solution and the process used to

develop the final result. The fourth chapter validates the solution. Finally, the final chapter

will cover the conclusion and opportunities for future work.

2

Chapter 2

Previous Work

2.1 Potential Uses

There are many variables one must consider when developing and using FRT. For in-

stance, one may wish to use this software to locate subjects other than faces. Depending on

how the software is trained, one can theoretically detect anything they wish from a picture

or video. These programs can be used to identify and extract text from specific frames.

Security personnel might use this technology to identify weapons in a crowd. Border patrol

could search for illegal contraband, such as drugs or even fruit. Need to find a car that was

identified near a crime scene? An intelligence agency could input the appropriate criteria

and scan the footage from city cameras to locate the suspect. The practical applications are

nearly limitless, but the software must be trained to detect these items, so one must first

decide what purpose the application will serve.

2.2 History of Facial Recognition

The genesis of FRT began in 1964 at a research facility in Palo Alto, California. Hired

by an unnamed government intelligence agency to develop software with the ability to locate

individuals in a crowd, Woody Bledsoe and his colleagues, Helen Chan and Charles Bisson,

discovered the difficulties that still plague programmers today. Bledsoe stated,

”This recognition problem is made difficult by the great variability in head ro-

tation and tilt, lighting intensity and angle, facial expression, aging, etc. Some

other attempts at facial recognition by machine have allowed for little or no vari-

ability in these quantities. Yet the method of correlation (or pattern matching)

3

of unprocessed optical data, which is often used by some researchers, is certain

to fail in cases where the variability is great. In particular, the correlation is very

low between two pictures of the same person with two different head rotations”

[1].

With the nearly infinite amount of unique faces and situations, discovering a means to

cope with such issues became the primary goal. They soon learned that one could generate

unique information of each image by breaking down the structure of a face into separate

parts. Identifying the length of a nose, the width of a mouth, the height of the forehead,

etc., allowed the researchers to quantify the different features of each face. Doing this

allowed them to search for those measurements in an image even if the subject is not facing

the camera. While this does not necessarily result in perfect accuracy, combining multiple

images or frames can result in a high level of confidence.

However, Bledsoe and his colleagues did not want to be at the mercy of the subject’s

facial orientation. Therefore, they attempted to normalize these faces so that the comparison

between the training data and the faces in their experiments would be similar. Thus, they

had to account for all the directions a head could tilt and rotate. By generically mapping

these movements and angles, the researchers were able to surmise a face’s appearance from

a forward-facing position. This greatly aided the software during practical use.

Peter Hart would continue the work of his predecessors while at Stanford. He strove

to improve the accuracy of this budding new technology. Hart compiled a database that

included over 2,000 unique faces. In his experiments, he was able to prove that his software

could consistently recognize faces better than most humans [1].

During the 1970s, a paper entitled ”Identification of Human Faces” was published by

A. J. Goldstein, L. D. Harmon, and A. B. Lesk. Their research detailed the use of 22

specific features needed to identify faces in a crowd. From lip thickness to hair color, the

researchers studied these markers to determine the best means of recognizing an individual.

They determined that under certain conditions only six or seven features are needed, and

4

only 14 feature-descriptions are required for a population as great as 4,000,000 [2]. However,

much of their model still required manual input and was impractical for most situations.

In the late 1980s, FRT began making significant advances. The Los Angeles County

Sheriff’s Department began compiling a database of mugshots in order to identify criminals

with FRT [3]. The Eigenface technique was developed by L. Sirovich and M. Kirby in order to

recognize the differences in faces and record those variations in a quantifiable manner. They

proved that no more than a 100 values were needed to identify a face in typical conditions

[4]. This research did much to progress facial recognition technology and created a strong

basis for future research.

In 1991, Matthew Turk and Alex Pentland of MIT used the research done by Sirovich and

Kirby to develop a computer system that could detect faces in an image almost immediately

[5]. The ability to use this technology in almost real time was a great improvement upon

previous attempts and also provided a means for the system to learn and recognize new

faces automatically. Two years later, DARPA initiated the FacE REcognition Technology

(FERET) program. By utilizing some of the sharpest minds from universities across the

country, the FERET program first established the current status of FRT and then endeavored

to create working software that could be used in real-life scenarios rather than controlled

environments. Perhaps their greatest accomplishment, however, was the massive collection

of training data they amassed. At the time, the size of their database was unparalleled with

14,126 facial images of 1199 individuals [6]. This database is still used to test new facial

recognition algorithms. With this effort, FERET was able to push facial recognition software

into the public market and encourage businesses to invest in this budding technology.

By the late 1990s, research in this field was being conducted around the world. From

California and Maryland to Germany and the Netherlands, a growing interest was demon-

strated by many due to the various applications facial recognition software possessed [7].

Airports and banks were beginning to utilize this technology, and other industries began to

develop interest as well. In fact, by the turn of the century, this technology was introduced

5

to football as well. At Super Bowl XXXV, facial recognition software underwent an un-

precedented test. Virtually everyone in attendance had their faces analyzed, collected, and

compared to a criminal database. At the time, this was seen as an egregious intrusion of

privacy [8]. Ultimately, the software did not perform well in the crowded stadium, but this

was the first time that most people became aware of law enforcements’ new abilities.

A Minnesota company named Identix developed algorithms in the early 2000s that

enabled its software to use a three dimensional model of a face as training data. This allowed

the computer to identify a great deal of detail in a target’s facial structure. As mentioned

earlier, in the past, programmers were mostly limited to dealing with only a two dimensional

representation which made it extremely difficult for a computer to recognize people who were

not facing the camera or in optimal lighting conditions. With this breakthrough, though, one

could now collect 3D images of subjects’ faces and then compare them to other 3D images

that had been gathered, resulting in highly reliable results. If a 3D image wasn’t available,

however, Identix’s algorithms could still allow for an accurate comparison with a 2D image

[9]. While others had previously attempted to utilize three-dimensional figures, Identix’s

algorithms were by far some of the most efficient and accurate thus far.

Beginning in 2000 and continuing through 2006, the National Institute of Standards

and Technology (NIST) conducted the Face Recognition Vendor Tests (FRVT). Similar to

FERET, these tests were designed to measure the status of FRT throughout the public and

private sectors. Weaknesses were pinpointed throughout each test so that improvements

could be made in these areas. Example findings in 2002 include the following:

”Given reasonable controlled indoor lighting, the current state of the art in face

recognition is 90% verification at a 1% false accept rate.

The use of morphable models, which maps a 2D image onto a 3D grid in an

attempt to overcome lighting and pose variations, can significantly improve non-

frontal face recognition.

6

Watch list performance decreases as a function of gallery size performance using

smaller watch lists is better than performance using larger watch lists.

In face recognition applications, accommodations should be made for demo-

graphic information since characteristics such as age and sex can significantly

affect performance” [10].

The 2006 tests concentrated on ”high resolution still imagery (5 to 6 mega-pixels), 3D

facial scans, multi-sample still facial imagery, and pre-processing algorithms that compensate

for pose and illumination” [11]. This work helped push the boundaries of FRT. Those

involved were able to establish a baseline and draw attention to the failures of the current

state.

Alongside the 2006 FRVT tests, an additional effort was made by the US government to

improve this technology. This initiative was dubbed the Face Recognition Grand Challenge.

From 2004 to 2006, any interested parties were invited to participate in this contest. The

primary goal was ”to improve the performance of face recognition algorithms by an order

of magnitude over the best results in Face Recognition Vendor Test (FRVT) 2002” [12].

Researchers were given ”a six-experiment challenge problem along with a data corpus of

50,000 images. The data consists of 3D scans and high resolution still imagery taken under

controlled and uncontrolled conditions” [12]. The experiments focused on a range of issues

which included different levels of illumination and varying uses of 3D images. Once again,

the goal was to determine the accuracy and efficiency of the proposed algorithms. In the

end, the study concluded that the best algorithms were ”10 times more accurate than the

face recognition algorithms of 2002 and 100 times more accurate than those of 1995” [12].

Even identical twins could be uniquely recognized.

These government sponsored challenges have done a great deal in advancing the state

of the art. In fact, NIST has determined that from 1993 to 2010 the error rate of automatic

face-recognition systems has decreased by a factor of 272 [12].

7

Figure 2.1: ”Progress is quantified from the 1993 evaluations to MBE 2010. Improvement
is reported at five key milestones. For each milestone, the false rejection rate (FRR) at
a false acceptance rate (FAR) of 0.001 (1 in 1,000) is given for a representative state-of-
the-art algorithm. For each milestone, the year and evaluation are provided. Beginning
with the FRVT 2002, the evaluations switched to a benchmark dataset provided by the US
Department of State (DoS), which is comparable to the FERET dataset” [13].

8

Once again, law enforcement continued to push the boundaries of facial recognition. In

2011, Pinellas County Sherriffs Office in Florida assembled a forensic database that pulled

images from Florida’s Department of Highway Safety and Motor Vehicles. By equipping

officers with body cams, taking pictures of suspects, and cross-referencing those images with

the database, officers were able to identify and arrest criminals in a much quicker fashion

[14]. Also in 2011, facial recognition software was used to verify the death of Osama Bin

Laden [14]. Law enforcement organizations throughout California, as well as the FBI, DEA,

DOJ, and U.S. Marshalls, began implementing facial recognition in the field as well. These

agencies began developing networks to share the information they gathered, and by 2014,

the FBI’s Interstate Photo System provided ”law enforcement agencies across the country

the ability to process up to 52 million images associated with criminal identities” [14]. This

desire to pool and disseminate information within government agencies has resulted in a

massive collection of data that continues to grow with each passing year.

The advent of social media allowed for a testing ground that would have been unimag-

inable to researchers in previous decades. What was seen as a controversial technology in

2001 at Super Bowl XXXV had now become commonplace for most by the 2010s. Facebook

began implementing facial recognition algorithms in 2010 and while this news was somewhat

controversial at the time, the flourishing new company continued to grow. As a result, ”more

than 350 million photos are uploaded and tagged using face recognition each day” [14]. With

the introduction of Facebook’s DeepFace system in 2015, the accuracy rating improved to

97.25% [15].

In Russia, Artem Kukharenko and Alexander Kabakov have developed an application

that allows users to compare pictures to the ”200 million profile images on a Russian social

media platform” [16]. Dubbed FindFace, this software can be used to identify strangers in

a crowd with a 70% confidence level. Regarding the application of this technology, creator

Kabakov stated, ”If you see someone you like, you can photograph them, find their identity,

and then send them a friend request...It also looks for similar people. So you could just

9

upload a photo of a movie star you like, or your ex, and then find 10 girls who look similar

to her and send them messages” [16].

With the advent of the iPhone X in 2017, the ability to use one’s face as a unique

identifier had many rushing to the stores. In China, users consistently use facial recognition

as a means to conduct financial transactions, not just online but in retail stores as well.

Train passengers in Shanghai will soon not even have to buy tickets but simply walk through

the station [17]. CCTV cameras are being added every day, and by 2020, China will likely

be using over 500 million of these cameras [17]. Thus, the infrastructure necessary for facial

recognition software continues to expand.

FaceFirst has also recently introduced a new model that will provide FRT to virtually

any business that desires it. This Watchlist as a Service (WaaS) will notify the user of anyone

that appears to be a possible threat. This product reinforces the idea that facial recognition

has improved a great deal over recent years and is now available to almost everyone [14].

Though this is only a partial history of the progression of facial recognition software,

it is evident that this new technology will continue to grow in its efficiency and accuracy.

Each day FRT becomes more ubiquitous and the applications grow more varied. Due to its

exponential growth, it will be difficult to predict its degree of pervasiveness in the coming

decades.

2.3 Related Work

The failures of common attendance recording practices have been evident for years.

Much research has been done in this area, and many solutions have been given. However,

very few ideas have used FRT.

In 2009, Mohd Ikhsan Moksin and Norizan Mohd Yasin published a paper that recom-

mended scanning the barcodes found on student identification cards as a means to record

attendance [18]. Similarly, researchers in Malaysia encouraged the use of student ID cards

coupled with Radio Frequency Identification (RFID) technology in 2012 [19]. By scanning

10

each student’s ID card as he or she walks through the door, a system is able to verify the

presence of the student and record the information to a database. However, these methods

can take too much time if the class size is large and can be subject to fraud if a student

scans his fellow classmates’ cards.

In 2015, researchers at Ibaraki University in Japan created a system using a low energy

Bluetooth beacon and the students’ personal Android devices. During class, a ”magic num-

ber” is sent to each student’s smartphone. The phone then replies with the magic number

and student ID, and the small broadcast area forces students to be in the classroom [20].

The primary issue with this proposal is that each student must have carry a compatible

device.

Fingerprint and iris scanners have been suggested as well. Once again, though, these

methods take some time. Also, additional equipment is required for these suggestions. Lastly,

these ideas can be seen as invasive since many people tend to guard their personal informa-

tion, such as fingerprint and iris patterns.

Therefore, many researchers have instead turned to facial recognition for attendance

systems in the last few years. A paper published by Refik Samet and Muhammed Tanriverdi

in 2017 encourages this very option. Together, they developed ”a filtering system based

on Euclidean distances calculated by three face recognition techniques, namely Eigenfaces,

Fisherfaces and Local Binary Pattern, has been developed for face recognition” [21]. By

using separate mobile applications for teachers, students, and parents, every party involved

is able to manage and monitor the attendance process. The data is sent to a cloud-based

server, and RESTful web services were used for communication.

Each application presents different permissions to the user. The teacher application

allows for full administrative access. Typically, the teacher will take a picture of the classroom

during the lecture. The picture will then be sent to the cloud server where facial detection

and recognition will occur. The results are then recorded in a database and also sent to

the teacher immediately through the app. The teacher can also create, edit, and remove

11

student profiles. The uploaded photo in each student profile is used for recognition purposes.

Additionally, attendance results can be requested in an Excel spreadsheet. The student

application also allows the student to edit his or her profile. The student can also view his

or personal attendance records. If the student is recorded as missing, then he or she will be

sent a notification. If this is deemed an error, the student can message the teacher about

the issue. The family application gives the same permissions as the student application but

allows for multiple children to be listed under one parent [21].

As with all facial recognition software, facial detection is needed first before the program

can continue. These researchers chose the Viola-Jones face detection method with Adaboost

training to identify faces in an image. ”In the most basic sense, the desired objects are

firstly found and introduced according to a certain algorithm. Afterwards, they are scanned

to find matches with similar shapes” [21]. Deciding to utilize an appearance-based approach

over a feature-based approach allowed the researchers to reduce the time and computational

power needed to recognize faces. The three most popular appearance-based techniques are

Eigenfaces, Fisherfaces and LBP. While all three algorithms are used, LBP is given preference

if none of the algorithms return matching results.

In the end, this project worked adequately. The average accuracy rating ranged from

69% to 84% depending on the number of recognition processes ran and the amount of pictures

per student profile [21]. Distance from the camera was the greatest challenge as the success

level greatly diminished with the students sitting in the back of the class. Also, when the

picture is being taken, there is a possibility that the student could be blocked from view.

It is recommended that further experiments be done with higher quality cameras and more

powerful mobile devices.

In the paper ”Student Attendance System in Classroom Using Face Recognition Tech-

nique” which was authored by Samuel Lukas, Aditya Rama Mitra, Ririn Ikana Desanti,

and Dion Krisnadi, the researchers attempted to enhance facial recognition ”by combining

Discrete Wavelet Transforms (DWT) and Discrete Cosine Transform (DCT) to extract the

12

features of students face” [22]. DWT allows for efficient image processing by decomposing

pictures into its scaling function and wavelet coefficients. The Discrete Cosine Transforms

(DCT) allows for domain scaling, de-correlation, energy compaction, separability, and sym-

metry [22]. Thus, DCT can efficiently manage data without causing distortion. However, all

images must be the same size since this method does not allow scaling. This effort yielded

an 82% success rate, though recognition process and feature extraction could be improved

[22].

Cao Weifeng and Li Bin authored a paper detailing their work in facial recognition

software. In ”Attendance System Applied in Classroom Based on Face Image,” a main focus

was dealing with skin color [23]. Given the options of RGB, YCbCr, HSV, YIQ, etc., Weifing

and Bin decided to use the YCbCr color space to more easily record an image’s various colors

within a small distinct range. Therefore, within their skin-color model, they converted an

image’s RGB values into a YCbCr space. They then defined a specific threshold which

identified skin versus objects of differing colors. Another point of interest in their research

was morphological processing. This method removes the noise from the image by creating

a binary image from the picture that previously processed using the skin-color model. That

which is identified as skin will be shown as white while everything else will be black. The face

is then distinguished from any other white patches by the size of the target. The potential

face must remain within the set size threshold to be considered a face. The face is then

denoted by a red rectangle. The Principle Component Analysis (PCA) algorithm is then

utilized to extract facial features. The software was tested on students in a laboratory and

amphitheater [23]. The result was a 100% accuracy rating, but the sample size was small

and the tests were few.

From the preceding work, one can take note of the successes and failures to enhance one’s

own facial recognition software. The features and structure of Refik Samet and Muhammed

Tanriverdi’s create a solid foundation. The paper by Samuel Lukas, Aditya Rama Mitra,

Ririn Ikana Desanti, and Dion Krisnadi provides a better understanding of the challenges

13

one may face and how to best improve image processing. Finally, Cao Weifeng and Li Bin’s

paper demonstrates multiple methods of facial detection and how to best combine these

approaches.

14

Chapter 3

Solution

3.1 Library Options

When developing FRT, there are several options currently available in regards to li-

braries. Depending on one’s goals, objectives, and budget, one may choose a proprietary

route or an open source path. Some of the most popular avenues lie with Amazon Rekogni-

tion, Microsoft Azure, and OpenCV.

Amazon Rekognition provides an easy to use application programming interface (API)

that provides a programmer many tools and functions to build the desired product. Since

Rekognition is compatible with other Amazon Web Services (AWS), one can use Amazon

S3 to store a large quantity of information. AWS Lambda is also available to grant the user

the ability to run event-driven applications with little trouble. This option also allows for

one to utilize Amazon Kinesis Video Streams. This presents a means to analyze live video,

such as classroom lectures. The Rekognition API allows for facial recognition, as well as

object, activity, or even text detection. The ability to perceive unsafe content and track

suspicious individuals is also available. This API can allow software to distinguish emotions

or verify identities. Since this service is constantly being trained by millions of new images,

the accuracy and efficiency of Amazon Rekognition continues to improve. It is also highly

scalable. However, this service does cost money and the proprietary software prevents one

from editing the underlying code [24].

Microsoft Azure is a cloud computing service which provides a plethora of tools, libraries,

languages, and frameworks. Topping out at over 600 unique services, this option creates

a nearly endless supply of opportunities for designing and implementing applications. The

Azure Face API possesses nearly all the capabilities of Amazon Rekognition and is compatible

15

Figure 3.1: On-Demand Compute Pricing: AWS vs Azure vs Google Cloud

with all of Azure’s database management, storage, and software services. Obviously like

AWS, though, Microsoft Azure is neither free nor open source [25].

The final option discussed is the open source library Open Source Computer Vision

(OpenCV). Launched in 1999 by Intel, this project has been consistently active for the last

two decades. The objectives of this enterprise are stated as follows:

• ”Advance vision research by providing not only open but also optimized code for basic

vision infrastructure. No more reinventing the wheel.

• Disseminate vision knowledge by providing a common infrastructure that developers

could build on, so that code would be more readily readable and transferable.

• Advance vision-based commercial applications by making portable, performance-optimized

code available for free with a license that did not require code to be open or free itself”

[27].

16

Originally written in C and updated to a primary C++ interface, OpenCV also allows

for Python, Java, and MATLAB bindings as well. From facial recognition and image seg-

mentation to motion tracking and augmented reality, OpenCV provides a range of tools to

develop such applications. This library also runs on every major operating system. Since it

is open source, the transparency of the code and the freedom from monthly payments is of

great benefit. However, since OpenCV does not automatically come with the host of features

that a cloud computing service like Azure or AWS does, one must be careful to install every

language, integrated development environment (IDE), library, etc., needed to accomplish the

proposed task.

Though Azure and AWS offer a myriad of benefits to the user, it was decided that

the open source option was optimal for this project since it is free, and the scope of the

assignment is relatively small. To escape the compatibility issues that could be caused if

the program is used on an unprepared system, it was decided that this project would run in

a Linux environment via a virtual machine using VMWare, the distro being Ubuntu Linux

Desktop 16.04 LTS 64-bit. Python was selected as the primary programming language

with the version number being 3.5. The dlib library (version 19.9) is installed to aid in

image processing and machine learning among other things. The machine learning library

TensorFlow (1.5) is included as well. Keras 2 is included to simplify the interface. Adam

Geitgey’s face recognition Python API is utilized also. PyCharm Community Edition is

the IDE of choice, and finally, OpenCV 3.2 is used as well. All of this is included in a

pre-configured virtual machine to be transferred as a .tar available to all interested parties.

3.2 Cascade Classifiers

Paul Viola and Michael Jones in their paper, ”Rapid Object Detection using a Boosted

Cascade of Simple Features” described a method that could be used to detect specific objects

in an image [28]. The ViolaJones object detection framework has since become a popular

17

option for face detection. Using Haar-like features which utilizes the intensity of surround-

ing pixels, this strategy once trained can be used to identify features, such as eyes, noses,

cheeks, etc. However, this process will take a relatively long time, so the concept of Cascade

of Classifiers was introduced. By categorizing features into general and specific stages, a

program can first run a general group of feature searches on a given area. If this technique

does not detect a potential face initially, then there is no reason to continue the process, and

the program will continue on to the next area. This is a much quicker approach, instead of

closely analyzing each individual pixel. Therefore, Haar-cascade detection is the method of

choice for this project.

3.3 Face Recognition Algorithms

Once the language, libraries, and operating system have been decided, the algorithms

must then be considered. Three specific algorithms are automatically included with the

OpenCV library. They are Eigenfaces, Fisherface, and Local Binary Patterns Histograms

(LBPH). Each one possesses its own strengths and weaknesses, so it is important to first

analyze these algorithms and understand how they work.

As mentioned previously, in 1987, Sirovich and Kirby sought a means of encoding a

face image into as few values as possible to minimize overhead [4]. Using principal compo-

nent analysis (PCA), ”a mathematical procedure that uses an orthogonal transformation to

convert a set of observations of possibly correlated variables into a set of values of linearly

uncorrelated variables” [29], allowed them to accomplish their goal. By breaking down a

series of face images into different values based on the subject’s features, these resulting

Eigenpictures could be used as templates to compare with new photos. These ”building

blocks” could then be used to describe a new face based on shared characteristics of the

base images. This concept works off the principle that most faces share similarities. By

combining those similar traits from multiple templates, the original face can be restored.

From this idea, M. Turk and A. Pentland and introduced the Eigenface method in 1991

18

Figure 3.2: Sample Eigenfaces provided by OpenCV documentation that demonstrates both
facial features and illumination are encoded [30]

specifically for facial recognition [5]. Their goal was to make the basic concept even more

efficient, so they created a means ”to extract the eigenvectors based on matrices sized by

the number of images rather than the number of pixels” [5]. However, while this method

performs well when reducing overhead, it suffers when the training set is limited, and the

image size variance is great.

While the Eigenfaces strategy deals with examining the similarities between faces, the

Fisherfaces method concentrates on the differences. This scheme makes it easier to dif-

ferentiate between people. Using the work done by Turk and Pentland as a foundation,

Belhumeur, Hespanha and Kriegman further developed their ideas and introduced the Fish-

erfaces method in their paper ”Eigenfaces vs. Fisherfaces: Recognition Using Class Specific

Linear Projection” (1997) [31]. Researcher Naotoshi Seo describes the procedure by stating,

”The Fisherface method is an enhancement of the Eigenface method that it uses (British

statistician Ronald) Fishers Linear Discriminant Analysis (FLDA or LDA) for the dimension-

ality reduction. The LDA maximizes the ratio of between-class scatter to that of within-class

scatter, therefore, it works better than PCA for purpose of discrimination. The Fisherface is

19

Figure 3.3: Sample Fisherfaces provided by OpenCV documentation that demonstrates dis-
tinctions between persons but does not account for lighting conditions [30]

especially useful when facial images have large variations in illumination and facial expres-

sion” [32]. While this technique could be seen as an improvement by some, the Fisherfaces

method still has some weaknesses. The algorithm can be wasteful and costly while also

needing a large data set like its predecessor.

The remaining approach is the Local Binary Patterns Histograms (LBPH) method.

This algorithm was introduced in 1994 by T. Ojala, M. Pietikinen, and D. Harwood [33].

While the prior algorithms use entire datasets to develop a mathematical representation

of an image, the LBPH technique examines each new image, develops a description, and

compares the image with the every other image separately. This strategy divides a picture

20

Figure 3.4: Provided by OpenCV documenation, this figure is a comparison of Eigenfaces
and Fisherfaces in regards to face recognition. [30]

21

Figure 3.5: Provided by OpenCV documenation, this figure demonstrates the results of the
LBPH algorithm in different lighting conditions. [30]

into cells and defines each pixel binarily based on the intensity of the center pixel in the cell.

These patterns characterize each image and allows for simple recognition if the patterns of

two images share similarities within a given threshold. Once again, though, no algorithm is

perfect and a dataset of at least 10 photos per person is recommended to increase confidence

in recognition.

There are many variables to consider when developing FRT. Lighting, for instance, can

cause a great deal of deviation, even among pictures of the same person. The primary issue

for this project is the lack of photos given per student. By using each student’s student

ID picture, the project is limited to one sample image per person. Studies have been done

regarding this ”one sample per person” problem. In ”Face Recognition from a Single Image

per Person: A Survey,” Xiaoyang Tan, Songcan Chen, Zhi-Hua Zhou, and Fuyan Zhang

suggest that extra information can be derived using other biometrics, such as voice patterns

or fingerprints [34]. However, if this is not possible, they conclude that no algorithm currently

22

exists that can solve the ”one sample per person” problem completely. Therefore, the goal

should be expanding the current dataset if possible, and, perhaps, using these algorithms in

tandem.

3.4 Design

3.4.1 Functional Requirements

• Provided pictures should be coupled with students’ names to create specific training

sets for each image.

• Detect each face in lecture video.

• Recognize faces based on training set.

• Confidence levels should be assigned to each recognition.

• If the confidence level is over 90%, face image should be cropped and saved to that

student’s training set.

• Results should be written to a .csv file.

3.4.2 Non-functional Requirements

• Reliability: The software should consistently return the correct recognition (90% suc-

cess rate).

• Speed: The results should be returned within a reasonable amount of time (10 minutes).

• Scalability: New students should be able to be added with little difficulty.

3.4.3 Initial Use Cases

23

Figure 3.6: Use Case Diagram

Figure 3.7: Use Case Intro

24

Figure 3.8: Use Case 1

Figure 3.9: Use Case 2

25

Figure 3.10: Use Case 3

Figure 3.11: Use Case 4

26

Figure 3.12: Use Case 5

3.4.4 Software Methodology

The intended primary actor of this software is the professor. The professor will first

upload a collection of photos that feature each student. A .csv file with the corresponding

image file name should be included as well. The program will create a group of folders,

one for each student. The professor will then provide a lecture video or image. When the

program is ran, facial detection will commence. The software will then attempt to match the

detected faces with the images stored in the training sets. The recognition portion will note

the confidence levels and include the results in a .csv file. If the confidence level is above

90%, the student will be considered present, and the student’s image will be cropped and

stored in that student’s folder for future use, thus providing training for each execution.

27

3.4.5 Software Architecture

For the first use, a script named ”createFolders.py” has been provided to organize the

training images based on each student’s name. Using a .csv file that gives the relative path

name in one column and the student name in the other, this program will either gather all

the images into one folder or create a unique folder for each student based on the needs of

the user. Creating folders for each student allows for a location to save future images for

that person.

The primary program ”faceRecog.py” can then be ran to accomplish the goal of face

recognition. The Python file will first import all the necessary packages, such as cv2, os,

numpy, and the face recognition api developed by Adam Geitgey [35]. The ”faceDetect.py”

script will also be imported as well. faceRecog.py will then parse through each image file in

the designated path and assign the paths and corresponding names to separate arrays. The

software will then loop through each file, load the image into the program, encode the picture

with a 128 value description, and assign those figures to a two-dimensional array. This array’s

dimensions will be the number of students by the 128 values. An if-else statement is included

that allows for this array to be stored in an .npy file, so these calculations do not need to

be made again. This .npy file only needs to be loaded into the program when the user uses

this software again which saves valuable time.

FaceRecog.py will then call faceDetect.py. Within faceDetect.py, four different cas-

cade classifiers may be used to detect those in the sample video. Those cascade classifier

are the following: haarcascadeFrontalfaceAlt.xml, haarcascadeFrontalfaceAlt2.xml, haar-

cascadeFrontalfaceDefault.xml, and haarcascadeProfileFace.xml. These files can be found

within the Opencv repository on Github [36]. These were found to be the most reliable

for the given scenarios. Only one is necessary, but all four can be used simultaneously to

increase accuracy. The face recognition api also offers a face location method as well.

FaceDetect.py will open the lecture video and begin sending each frame through the

loop. If necessary, the program can be altered to only process every ith frame to improve

28

speed. The cascade classifier will then be ran against the given image to detect the location of

a face in the picture. A four digit array will be returned describing the border around which

the face was found. The face location will be saved in an array, and then facial detection will

resume typically until the number of captured frames is equal to the number of total frames

in the video. Similar to the student roll, the face location array can be saved to another

.npy file if the user wishes to run another instance using the same video. The face locations

array is then returned and passed to the faceRecog.py file.

Within the faceRecog.py file, the lecture video is then opened and encoded in the same

manner as the original student images. The unknown face’s 128 value descriptor is then

compared to each face encoding from the student roll once the program ensures that it is

within the proper parameters. If the program locates a face that is very similar to a currently

known face, then a value of ”True” will be returned for that element within the array. The

tolerance can altered as well to allow for stricter or more lenient conditions. If the face

hasn’t been recognized previously, then the name will be included in a list of students who

are considered ”present.” This will continue until every face location has been examined.

A window will also be opened that reveals which faces are being detected and recog-

nized. Additionally, each new recognized face will be cropped, and saved to the student’s

personal folder. This will create more data to allow for easier recognition of a student during

the next iteration. This data can then be fed into the aforementioned facial recognition

algorithms, such as Eigenfaces, Fisherfaces, and LBPH. By using training programs, such as

Anirban Kar’s face recognition software from codacus.com, one can continue to improve the

performance of the attendance recording process [38]. Finally, the list of recognized faces

will be stored for the user in a text file with easy readability.

3.4.6 Development Process

Using a process most similar to Scrum, each week was given an objective to pursue. On

weeks where an objective was unable to be completed, the goal was reevaluated and adjusted

29

Figure 3.13: Gantt Chart showcasing progression of project.

at the beginning of the next week. The following roughly describes the process undergone

to accomplish this project.

3.4.7 Summary

After determining the necessary libraries, algorithms, and design, the coding began.

Many challenges, such as the ”one sample per person” problem were presented. However,

each problem was met with a solution. The following chapter showcases the results of this

project.

30

Chapter 4

Solution Validation

4.1 Face Detection

Detecting faces in a crowd can be a difficult task, but since the software is intended

for classroom use, it can be tailored for the appropriate audience. By setting reasonable

tolerances, most faces can be detected immediately as in the figures below. However, if a

camera pans over the classroom, the detection rate increases tremendously.

Using haarcascadeFrontalfaceAlt.xml allows solid detection results in a group environ-

ment. Typically, 85% of faces are detected. The greatest difficulty is dealing with those

students on the front row. Due to the angle of the camera and the tendency of students to

look down at their notes, it can be difficult to obtain a detection if both eyes are not visible.

However, when coupled with additional cascade classifiers, the detection rate can increase to

95% depending on the lecture video and the position of each student’s face. However, more

false positives will likely also be introduced.

31

Figure 4.1: Face Detection (Left)

Figure 4.2: Face Detection (Right)

32

4.2 Face Recognition

Though this software can correctly identify nearly half of those present on average,

these results prevent this software from being initially reliable. The tolerance level can be

lowered to enhance accuracy and prevent false positives, but if the initial sample image is

too dissimilar from the current student’s appearance due to age, facial hair, glasses, etc., the

software will have difficulty recognizing the student. Additionally, determining a confidence

level is also not possible since a sizable amount of data is needed to compare against a sample

image. The best process for using FRT is likely to have each student submit a collection of

recent photos at the beginning of the semester. These images can then be used to train an

algorithm, such as LBPH. Thus, the best use for this software is likely to collect new data

upon recognition of students’ faces assuming that the initial photo is somewhat similar.

Another area of improvement is the speed of the program. For a video containing nearly

7000 frames or roughly four minutes of video, the detection and recognition process can take

over thirty minutes to complete. To speed up the process, one can choose to skip a designated

amount of frames. However, this will affect the overall accuracy of the software. The face

locations and face encodings can also be saved for future use if the user needs to run the

software again on the same video.

Implementing the face recognition feature can be tricky. Once again, since only one

image is initially provided for each student, recognizing a student in the beginning can be

difficult if the student fails to directly look towards the camera. This creates scenarios that

result in drastic inconsistencies and varying results. Since most of the current work only deals

with searching for specific faces in limited space, there is very little information regarding

the use of FRT in this scope. This project is intended to be used on a large scale across

multiple classes. Thus, accuracy tends to diminish as convenience grows. This further proves

the concept of ”no free lunch.” If one wishes to maintain complete precision and accuracy,

using training programs, such as the one mentioned previously, is the best option. However,

20 to 30 samples must be collected for each individual, and the software must be trained

33

Figure 4.3: Face Recognition

manually for each student in the class. This is nearly impossible for large classes, so the best

option is the continued improvement of this facial recognition feature.

4.3 Final Results

Many variables have to be considered when conducting facial detection and recognition.

The use of facial detection technology continues to advance at a great rate. However, with

only one sample per person, facial recognition can be extremely difficult and demands many

tests before it can be used effectively.

34

Chapter 5

Conclusions and Future Efforts

The role of facial recognition technology (FRT) will continue to grow in society as

advancements are made. Through the many applications provided by FRT, the general pub-

lic, as well as government entities, will continue to benefit from these new opportunities.

Through this paper, it is clear that this technology will become exponentially more sophisti-

cated within the coming decade. The widespread use of FRT by individuals further supports

this point.

However, there is still a lot of progress that must be made before the general public

can fully experience the same benefits that large companies and intelligence agencies use.

Due to deficiencies in the Opencv library and accompanying APIs, the ability to match a

great number of known faces to an equally large crowd can still be a challenge, especially

when one considers the ”one sample per person” problem. This does not prevent one from

using FRT, but it does require more manual input from the user. To better facilitate the

use of this software in an academic environment, functions and methods that provide more

accurate comparisons should be developed. Other methods of optimization need to also be

considered in regards to how an image is encoded and how each frame is handled since the

majority of time lost is during these events. With that being said, this an exciting time for

facial recognition research, and many improvements will likely be made within the coming

years.

35

Bibliography

[1] Norman, J. (2018). Woodrow Bledsoe Originates of Automated Facial Recognition
(1964 1966) : HistoryofInformation.com. [online] Historyofinformation.com. Avail-
able at: http://www.historyofinformation.com/expanded.php?id=2495 [Accessed 9 Jan.
2018].

[2] J. Goldstein, L. D. Harmon, and A. B. Lesk, Identification of human faces, Proceeding
IEEE, May 1971 vol. 59, no. 5, pp. 748-760 [Accessed 9 Jan. 2018].

[3] Manikpuri, M. (2018). Biometric Security Systems for Beginner. 1st ed. Educreation
Publishing, pp.6-7.

[4] Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the characterization
of human faces. Journal of the Optical Society of America A, 4(3), p.519.

[5] Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition. Journal of Cognitive
Neuroscience, 3(1), pp.71-86.

[6] NIST. (2011). Face Recognition Technology (FERET). [online] Available at:
https://www.nist.gov/programs-projects/face-recognition-technology-feret [Accessed
14 Jan. 2018].

[7] ”Mugspot Can Find A Face In The Crowd – Face-Recognition Software Prepares To Go
To Work In The Streets”. ScienceDaily. 12 November 1997. [Accessed 14 Jan. 2018].

[8] Rogers, K. (2016). That Time the Super Bowl Secretly Used Facial Recognition Software
on Fans. Motherboard. [Accessed 20 Jan. 2018].

[9] Griffin, P. (2005). Understanding The Face Image Format Standards. [ebook] pp.25-26.
Available at: https://www.nist.gov/sites/default/files/documents/2016/12/12/griffin-
face-std-m1.pdf [Accessed 20 Jan. 2018].

[10] P. J. Phillips, P. Grother, R. J. Micheals, D. M. Blackburn, E.Tabassi, and J. M.
Bone, ”Face Recognition Vendor Test 2002 Overview and Summary,” March 2003
¡http://www.frvt.org¿.

[11] Phillips, J. (2010). Face Recognition Vendor Test (FRVT) 2006. [online] NIST. Avail-
able at: https://www.nist.gov/itl/iad/image-group/face-recognition-vendor-test-frvt-
2006 [Accessed 22 Jan. 2018].

36

[12] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer and W. Worek, ”Preliminary Face
Recognition Grand Challenge Results,” 7th International Conference on Automatic Face
and Gesture Recognition (FGR06), Southampton, 2006, pp. 15-24.

[13] Phillips, P. (2011). Improving Face Recognition Technology. Computer, 44(3), pp.84-86.
[Accessed 2 Feb. 2018].

[14] West, J. (2017). History of Face Recognition - Facial recognition software. [online] Face-
First Face Recognition Software. Available at: https://www.facefirst.com/blog/brief-
history-of-face-recognition-software/ [Accessed 4 Feb. 2018].

[15] Chowdhry, A. (2014). Facebook’s DeepFace Software Can Match Faces With 97.25%
Accuracy. [online] Forbes.com. [Accessed 4 Feb. 2018].

[16] Walker, S. (2016). Face recognition app taking Russia by storm may
bring end to public anonymity. [online] the Guardian. Available at:
https://www.theguardian.com/technology/2016/may/17/findface-face-recognition-
app-end-public-anonymity-vkontakte [Accessed 6 Feb. 2018].

[17] McElroy, G. (2017). 10 Fascinating Facts About Facial Recognition Technology - List-
verse. [online] Listverse. Available at: https://listverse.com/2017/12/18/10-fascinating-
facts-about-facial-recognition-technology/ [Accessed 5 Feb. 2018].

[18] M. I. Moksin and N. M. Yasin, ”The Implementation of Wireless Student Attendance
System in an Examination Procedure,” 2009 International Association of Computer
Science and Information Technology - Spring Conference, Singapore, 2009, pp. 174-177.

[19] Kassim, Murizah and Mazlan, Hasbullah Zaini and Norliza and Salleh, Muhammad
Khidhir. (2012). Web-based student attendance system using RFID technology. 213-
218.

[20] Noguchi, Shota & Niibori, Michitoshi & Zhou, Erjing & Kamada, Masaru. (2015). Stu-
dent Attendance Management System with Bluetooth Low Energy Beacon and Android
Devices.

[21] R. Samet and M. Tanriverdi, ”Face Recognition-Based Mobile Automatic Classroom At-
tendance Management System,” 2017 International Conference on Cyberworlds (CW),
Chester, 2017, pp. 253-256.

[22] S. Lukas, A. R. Mitra, R. I. Desanti and D. Krisnadi, ”Student attendance system in
classroom using face recognition technique,” 2016 International Conference on Informa-
tion and Communication Technology Convergence (ICTC), Jeju, 2016, pp. 1032-1035.

[23] Weifong, C. and Bin, L. (2015). Attendance System Applied in Classroom Based on
Face Image. Nanjing, China: Nanjing Institute of Technology.

[24] Amazon Web Services, Inc. (2018). Amazon Rekognition Video and Image - AWS.
[online] Available at: https://aws.amazon.com/rekognition/ [Accessed 20 Feb. 2018].

37

[25] SteveMSFT, Roth, A. and Hu, X. (2018). Face API Service overview - Microsoft Cogni-
tive Services. [online] Docs.microsoft.com. Available at: https://docs.microsoft.com/en-
us/azure/cognitive-services/face/overview [Accessed 20 Feb. 2018].

[26] Weins, K. (2016). AWS vs Azure vs Google Cloud Pricing: Compute In-
stances. [online] Rightscale.com. Available at: https://www.rightscale.com/blog/cloud-
cost-analysis/aws-vs-azure-vs-google-cloud-pricing-compute-instances [Accessed 20 Feb.
2018].

[27] Bradski, Gary; Kaehler, Adrian (2008). Learning OpenCV: Computer vision with the
OpenCV library. O’Reilly Media, Inc. p. 6.

[28] Jones, M. and Viola, P. (2001). Rapid object detection using a boosted
cascade of simple features. [online] Citeseer.ist.psu.edu. Available at:
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.6807 [Accessed 24 Feb.
2018].

[29] Jain, P. and Shandliya, V. (2013). A survey paper on comparative study between Prin-
cipal Component Analysis (PCA) and Exploratory Factor Analysis (EFA). [online] Re-
searchpublications.org. Available at: http://researchpublications.org/IJCSA/NCAICN-
13/240.pdf [Accessed 2 Mar. 2018].

[30] Docs.opencv.org. (2018). Face Recognition with OpenCV OpenCV 2.4.13.6 documen-
tation. [Accessed 7 Mar. 2018].

[31] Belhumeur, P., Hespanha, J. and Kriegman, D. (1997). Eigenfaces vs. Fisherfaces: recog-
nition using class specific linear projection. ACM Digital Library.

[32] Seo, N. (2006). Project: Eigenfaces and Fisherfaces -. [online] Note.sonots.com. Avail-
able at: http://note.sonots.com/SciSoftware/FaceRecognition.html [Accessed 9 Mar.
2018].

[33] Ojala, T., Pietikinen, M. and Harwood, D. (1994). A comparative study of texture
measures with classification based on featured distributions. Science Direct.

[34] Tan, X., Chen, S., Zhou, Z. and Zhang, F. (2006). Face recognition from a single image
per person: A survey. ACM Digital Library.

[35] GitHub. (2018). ageitgey/face recognition. [online] Available at:
https://github.com/ageitgey/face recognition [Accessed 29 Mar. 2018].

[36] GitHub. (2018). opencv/opencv. [online] Available at:
https://github.com/opencv/opencv/tree/master/data/haarcascades [Accessed 29
Mar. 2018].

[37] Anon, (n.d.). Computer vision: OpenCV realtime face detection in Python — Amori
in corso. [online] Available at: https://www.lucaamore.com/?p=638

[38] GitHub. (2018). thecodacus/Face-Recognition. [online] Available at:
https://github.com/thecodacus/Face-Recognition [Accessed 1 Apr. 2018].

38

Appendices

.1 createFolder.py

This program takes a group of student images and

places them in a separate folder for each student,

creating a unique training set to reference

#

The path should exactly match the path given in a

class roll file. Similarly, the class roll file should

formatted in a csv file with the first column including the

relative image path name and the second column should contain

the student’s corresponding name.

#

If the file is not in .jpg format, please alter line 51 to include

appropriate format.

import glob, os, csv, shutil

#from shutil import copyfile

IDs = {}

fileNames = {}

folders = []

Parse through csv file for student names

39

with open(’C:\Users\WillM\Desktop\Facial Recognition\Roll.csv’,’r+’) as csvfile:

timeReader = csv.reader(csvfile, delimiter=’,’)

for row in timeReader:

print(row)

csvFileName = row[0]

if "/" in row[0]:

folders.append(csvFileName.split("/")[0])

fileNames[csvFileName] = row[1]

inputPath= "/home/facerec/Desktop/Facial Recognition/Input"

outputPath = "/home/facerec/Desktop/Facial Recognition/OutputAll"

Assign names and copy files to output folder

folderSet = set(folders)

for folder in folderSet:

print("Searching folder name: " + folder)

folderToSearch = os.path.join(inputPath, folder)

if os.path.isdir(folderToSearch):

for oldName in os.listdir(folderToSearch):

Ignore files in path which aren’t in the csv file

oldNameCSV = folder + "/" + oldName

print("Old Name: " + oldNameCSV)

if oldNameCSV in fileNames:

print("New Name: " + fileNames[oldNameCSV])

print()

try:

newFileName = fileNames[oldNameCSV]

40

if "/" in newFileName:

newFileName = newFileName.split("/")[1]

shutil.copyfile(os.path.join(folderToSearch, oldName), os.path.join(outputPath, newFileName + ’.jpg’))

except:

print(’File ’ + oldName + ’ could not be renamed to ’ + IDs[oldName] + ’!’)

Create folder for each student

for file_path in glob.glob(os.path.join(outputPath, ’*.*’)):

new_dir = file_path.rsplit(’.’, 1)[0]

try:

os.mkdir(os.path.join(outputPath, new_dir))

except:

print(file_path)

print("Already exists!")

print()

Target directory already exists.

pass

shutil.move(file_path, os.path.join(new_dir, os.path.basename(file_path)))

.2 faceDetect.py

import cv2

import numpy as np

class FaceDetect:

41

def faceDetect(self):

List of recommended classifiers

faceCascade = cv2.CascadeClassifier(’haarcascade_frontalface_alt.xml’)

faceCascade2 = cv2.CascadeClassifier(’haarcascade_frontalface_alt2.xml’)

faceCascade3 = cv2.CascadeClassifier(’haarcascade_frontalface_default.xml’)

faceCascade4 = cv2.CascadeClassifier(’haarcascade_profileface.xml’)

face_locations = []

i = 0

Video opened

cap = cv2.VideoCapture("sampleBetaShort.mp4")

while not cap.isOpened():

cap = cv2.VideoCapture("sampleBetaShort.mp4")

cv2.waitKey(1000)

print("Wait for the header")

Face Detection Loop

Multiple Classifiers can be used if necessary

pos_frame = cap.get(cv2.CAP_PROP_POS_FRAMES)

if (True == True):

while True:

flag, frame = cap.read()

if (flag and (i%10 == 0 or i == 0)):

if flag:

The frame is ready and already captured

cv2.imshow(’video’, frame)

pos_frame = cap.get(cv2.CAP_PROP_POS_FRAMES)

42

print(str(pos_frame) + " frames")

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

gray = frame

faces = face_recognition.face_locations(gray)

face_locations.append(faces)

faces = faceCascade.detectMultiScale(

gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),

flags=cv2.CASCADE_SCALE_IMAGE

)

face_locations.append(faces)

if not faces:

print("Face #: ", k)

k=k+1

print("1", faces)

i=i+1

faces2 = faceCascade2.detectMultiScale(

43

gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),

flags=cv2.CASCADE_SCALE_IMAGE

)

#

face_locations.append(faces2)

print("2", faces2)

#

faces3 = faceCascade3.detectMultiScale(

gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),

flags=cv2.CASCADE_SCALE_IMAGE

)

#

face_locations.append(faces3)

print("3", faces3)

#

#

faces4 = faceCascade4.detectMultiScale(

gray,

scaleFactor=1.1,

minNeighbors=5,

minSize=(30, 30),

44

flags=cv2.CASCADE_SCALE_IMAGE

)

#

face_locations.append(faces4)

print("4", faces4)

if not flag:

The next frame is not ready, so we try to read it again

cap.set(cv2.CAP_PROP_POS_FRAMES, pos_frame - 1)

print("frame is not ready")

It is better to wait for a while for the next frame to be ready

cv2.waitKey(1000)

Termination Conditions

Save Face Locations if necessary

if cv2.waitKey(10) == 27:

cap.release()

cv2.destroyAllWindows()

print("Final Face Locations: ", face_locations)

return face_locations

if cap.get(cv2.CAP_PROP_POS_FRAMES) == cap.get(cv2.CAP_PROP_FRAME_COUNT):

If the number of captured frames is equal to the total number of frames,

we stop

cap.release()

cv2.destroyAllWindows()

iprint("Final Face Locations: ", face_locations)

open(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\locations.npy’, ’w’).close()

45

np.save(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\locations.npy’, face_locations)

return face_locations

i += 1

Load Face Locations if needed

else:

face_locations = np.load(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\locations.npy’)

print("Face Locations: ", face_locations)

return face_locations

.3 faceRecog.py

import cv2

import os

import numpy as np

import face_recognition as face_recognition

from faceDetect import FaceDetect

Text file containing those in attendance

attendance = open(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\present.txt’, ’w’)

Recover image paths

roll = []

rollNames = []

for path, subdirs, files in os.walk(r’C:\Users\WillM\Desktop\Facial Recognition\OutputAll’):

for name in files:

roll.append(os.path.join(path, name))

rollNames.append(name.replace(".jpg", ""))

46

samplePictureArray = []

samplePictureNameArray = []

rollLength = len(roll)

samplePictureEncodingArray = np.empty((0, 128))

Encode Picture from Student Roll

if (True == True):

for i in range(0, rollLength):

print(rollLength, i)

try:

samplePicture = face_recognition.load_image_file(roll[i])

samplePictureEncoding = face_recognition.face_encodings(samplePicture)[0]

samplePictureEncodingArray = np.append(samplePictureEncodingArray, [samplePictureEncoding], axis=0)

print(samplePictureEncodingArray.shape)

samplePictureNameArray.append(rollNames[i])

print(samplePictureNameArray)

except IndexError as s:

print("Corrupt Image: ", rollNames[i], i)

except OSError as e:

print("Could not recognize image: ", rollNames[i], i)

pass

47

np.save(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\save.npy’, samplePictureEncodingArray)

np.save(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\name.npy’, samplePictureNameArray)

else:

samplePictureEncodingArray = np.load(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\save.npy’)

samplePictureNameArray = np.load(r’C:\Users\WillM\Desktop\Facial Recognition\savedImages\name.npy’)

print(samplePictureEncodingArray.shape)

Initialize some variables

face_encodings = []

face_names = []

process_this_frame = True

fd = FaceDetect()

face_locations = fd.faceDetect()

i = 0

Video File

video_capture = cv2.VideoCapture(’sampleBetaShort.mp4’)

length = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT))

frameLength = video_capture.get(cv2.CAP_PROP_FRAME_COUNT)

frameLength = int(frameLength)

while True:

Grab a single frame of video

ret, frame = video_capture.read()

48

Resize frame of video to 1/4 size for faster face recognition processing

small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

small_frame = frame

gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

Only process every other frame of video to save time

if process_this_frame:

Find all the faces and face encodings in the current frame of video

face_encodings = []

print(face_locations[i])

if len(face_locations[i]) == 2:

print("Length of Face Locations: ", len(face_locations[i]))

face1 = np.array_split(face_locations[i], 2)

print("Splitting Face Locations")

face_encodings = face_recognition.face_encodings(small_frame, face1[1], 1)

else:

face_encodings = face_recognition.face_encodings(small_frame, face_locations[i], 1)

print(’face location: ’, face_locations[i])

print(’face encoding length: ’, len(face_encodings))

if not face_encodings:

face_encodings = [0] * 128

print(i, "Creating an array of zeros", face_encodings)

print("Length of FaceEncoding: ", len(face_encodings))

49

print(’face encoding2: ’, face_encodings)

if np.count_nonzero([face_encodings]) < 100:

print(i, "Ignore array of zeros: ", np.count_nonzero([face_encodings]))

print("Length of FaceEncoding: ", len(face_encodings))

else:

print("Shape of SampleArray: ", samplePictureEncodingArray.shape)

print("Length of FaceEncoding: ", len(face_encodings))

matches = face_recognition.compare_faces(samplePictureEncodingArray, face_encodings, tolerance=.55)

print(i, "Matches: ", matches)

If there is a new match, write new name to array

if True in matches:

match_index = matches.index(True)

print("Match Index: ", match_index)

name = samplePictureNameArray[match_index]

if samplePictureNameArray[match_index] not in face_names:

face_names.append(name)

attendance.write(name)

attendance.write(’\n’)

print("Match Found")

If there is a new match, write new face to student’s output folder

for (top, right, bottom, left) in face_locations[i]:

cropped = frame[top:bottom, left:right]

cv2.imwrite(r’C:\Users\WillM\Desktop\Facial Recognition\Output’ + "\\" + str(name) + "\\" + str(name) + ’(’ + str(i) + ’)’ + ".jpg", cropped)

print("Added new picture to student’s folder. ")

50

print(i, "names", face_names)

if i == frameLength-1:

break

process_this_frame = not process_this_frame

i = i + 1

if(i%10 == 0):

process_this_frame = True

else:

process_this_frame = False

for (top, right, bottom, left), name in zip(face_locations[i], face_names[-1:]):

Draw a box around the face

cv2.rectangle(small_frame, (left, top), (right, bottom), (0, 0, 255), 2)

Draw a label with a name below the face

cv2.rectangle(small_frame, (left, bottom - 35), (right, bottom), (0, 0, 255), 2)

font = cv2.FONT_HERSHEY_DUPLEX

cv2.putText(small_frame, name, (left + 6, bottom - 6), font, .5, (255, 255, 255), 1)

Display the resulting image

cv2.imshow(’Video’, small_frame)

Hit ’q’ on the keyboard to quit!

51

if cv2.waitKey(1) & 0xFF == ord(’q’):

break

Release handle to the webcam

video_capture.release()

cv2.destroyAllWindows()

attendance.close()

print("Ending Search: ")

print("Students in Attendance: ", face_names)

52

Acknowledgments

I would first like to thank my thesis advisor Dr. David Umphress of the CSSE Depart-

ment at Auburn University. He has been an encouragement and a guide to me throughout

my time at Auburn. I have been provided many different opportunities while at Auburn,

largely due to his direction and guidance. He has been both patient and kind to me while

he endured my barrage of questions and concerns over the last few semesters. For that, I

am extremely grateful.

I would also like to thank Dr. James Cross and Dr. Dean Hendrix from the CSSE

Department at Auburn University for agreeing to be part of my committee. I appreciate

them sacrificing their time and aiding me throughout my studies at Auburn. Without their

participation, I would be unable to accomplish my goals.

I would also like to acknowledge Austin Wofford, Justin Belcher, and Anthony Crumley

for their patience and helpfulness. Even though I bombarded them with questions constantly,

they continued to support me throughout my studies.

Finally, I am profoundly grateful to my parents, brothers, grandparents, and other

family members for providing me with unfailing support and continuous encouragement

throughout my years of study. This accomplishment would not have been possible without

them. Thank you.

53

William Miller

wem0019@auburn.edu

Education

• Pursuing M.S. in Computer Science, Auburn University, 2018

• B.S. Computer Information Systems, Shorter University, 2016.

Employment

• City of Rome, IT Intern, 2016

• Summer Classics, IT Technician, 2016.

Publications

• Developing Utilizing Facial Recognition Software to Record Classroom Attendance,

Auburn University, 2018

• Americas Mythology, Shorter University, 2016

Awards

• CyberCorps Scholarship for Service Recipient, 2017

• Honors Academy, Sigma Beta Delta, Shorter University, 2016

• Robert H. Ledbetter Sophomore Achievement Award, 2015

• Gulf South Conference Student-Athlete Honor Roll, 2014 & 2015

• Alfred Shorter Scholarship Recipient, 2013

