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ABSTRACT 

     

 

The current state of the National Highway System often necessitates that agencies 

interrupt normal traffic operations for maintenance and capacity improvements. With nearly 9 

million lane-miles of public roadway and an economy driven by the automobile, these 

interruptions are inevitable, but the significant safety and mobility impacts associated with 

queueing at freeway work zones are mitigable. The current methodology in the 6th edition of the 

Highway Capacity Manual is a vast improvement over historical work zone capacity guidance, 

but approaches the issue differently than research suggests agencies and practitioners should. 

Namely, a capacity defined by the mean queue discharge rate is deterministic and fails to account 

for the stochastic nature of traffic flow and breakdown. This thesis addressed these core issues by 

calibrating and validating a VISSIM model for a rural freeway work zone lane closure and 

exploring the probability of queue formation as a function of traffic volume, truck percentage, 

and lane closure side. The results were combined to form a capacity analysis tool that may be 

used by agencies and practitioners to make data-driven planning, design, and operations 

decisions at rural freeway work zones. The methodology applied herein may also be extended to 

freeway facilities exhibiting different geometric, traffic, and environmental characteristics. 
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CHAPTER ONE: 

INTRODUCTION 
 

1.1 BACKGROUND 

 

As of 2015, it is estimated that there are 8.8 million lane-miles of public roadway in the United 

States. This constitutes only an 11% increase from the approximate 7.9 million lane-miles in 

1980, whereas the number of vehicle miles traveled (VMT) has increased by 104% during the 

same 35-year period (Federal Highway Administration 2016). The Texas A&M Transportation 

Institute (TTI) recently partnered with INRIX to publish comprehensive nationwide congestion 

data showing the consequences of this trend. In 2014, 160 billion dollars and 3.1 billion gallons 

of fuel were lost to travel delay experienced by road users, who spent an average of 42 additional 

hours in traffic (Schrank et al. 2015). Increased travel and congestion also place an immense 

responsibility on state and local agencies, who have been forced to shift focus to the 

maintenance, rehabilitation, and expansion of the nation’s crumbling infrastructure. During the 

10-year period from 2002 to 2012 alone, the percentage of Federal-aid highways with an 

acceptable pavement ride quality decreased from 87.4% to 80.3% (Federal Highway 

Administration 2015). Thus, it is apparent that both congestion and roadway degradation are 

increasing faster than agencies can respond. 

Accordingly, much of the National Highway System (NHS) is under construction each 

year. A survey of work zone activity during the summers of 2001 and 2002 found this to be the 

case for 20-27% of all public roadway mileage (Federal Highway Administration 2017). Given 

the trends discussed earlier, it would not be surprising if even more of the nation’s highways 
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were under construction during the peak season today. As such, it is concerning that work zones 

are responsible for approximately 24% of non-recurring congestion, a category including 

incidents, weather, and special events that accounts for 40% of all the delay discussed previously 

(Federal Highway Administration 2017). Although most non-recurring congestion is unplanned 

and uncontrollable, agencies can strive to design and operate work zones in a fashion that 

minimizes mobility implications. Of particular concern are freeway work zones, as such facilities 

carry 25.1% of all traffic while accounting for only 1.3% of all lane-miles on the NHS (Federal 

Highway Administration 2016). Fortunately, this disparity makes even small congestion 

mitigation efforts impactful.  

1.2 PROBLEM STATEMENT 

 

Despite compelling evidence supporting careful attention to freeway work zone design 

and operations, agency decision making practices are often not data driven. For example, a 

survey of state Departments of Transportation (DOTs) in 2016 found that traffic control 

strategies at freeway work zones were chosen based on experience alone by 40% of agencies 

(Sisiopiku and Ramadan 2016). Decision variables affecting the choice of daytime versus 

nighttime work have been relatively consistent, as several surveys have cited high daytime 

traffic, safety, traffic control, and road user costs as the most influential scheduling factors 

(Hancher and Taylor 2001; Park et al. 2002; Rebholz et al. 2004). However, data suggests that 

nighttime and off-peak operations will not always optimize safety and mobility. In 2014, 41% of 

all congestion occurred during off-peak hours, so shifting operations to these time periods does 

not always eliminate mobility issues (Schrank et al. 2015). Furthermore, drivers are more likely 

to expect free-flowing conditions during off-peak and overnight hours, so crash risk and severity 

are both increased despite decreased exposure. In 2015, only 15.3% of all crashes occurred 
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between the hours of 9PM and 6AM, but this time period accounted for 32.8% of fatal work 

zone crashes (NHTSA 2015, 2016a). 

Even when off-peak or nighttime operations improve safety and mobility for road users, 

they do so at the expense of decreased worker safety and productivity and increased construction 

costs. Several research efforts have performed sensitivity analyses and developed optimization 

models to strike a balance between these variables (Abdelmohsen and El-Rayes 2016; Jiang and 

Adeli 2003; Tang and Chien 2008). While the results of these studies show that work zone 

design and operations can be optimized to best serve road users and decrease construction costs, 

the results do not provide guidance applicable on a case-by-case basis. Such guidance requires a 

more precise measurement of freeway work zone capacity, queueing, and delay through field 

data or simulation. In any case, there is compelling evidence to support that work zone 

scheduling decisions should be better informed than they often are. 

As will be discussed in the next chapter, the measurement and definition of freeway work 

zone capacity has been a topic of debate for several decades, leaving agencies with little formal 

guidance on predicting the behavior of traffic flow at given volumes for various work zone 

configurations. Recently, however, well-calibrated microsimulation models have shown promise 

as a work zone traffic analysis tool. Although these studies have provided guidance to 

practitioners on developing site-specific microsimulation models, many agencies may not wish 

to invest the time and resources required to carry out such analyses. Consequently, deterministic 

tools are still widely used in making freeway work zone design and operations decisions, even 

though traffic flow and breakdown are stochastic phenomena. This thesis aims to address these 

shortcomings by developing a freeway work zone traffic analysis tool based on probabilistic 

capacity estimates to support agency decision making. 
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Lastly, though urban freeway facilities carry approximately 70% of all interstate traffic in 

the United States, they compose less than half of the total lane mileage for this functional 

classification (Federal Highway Administration 2016). Despite the lack of traffic exposure, rural 

freeway facilities also exhibit a fatality rate 1.7 times higher than their urban counterparts, 

placing increased importance on their design and operation (NHTSA 2016b; NHTSA 2015). 

Therefore, the primary focus of this thesis was on developing guidance for rural freeway work 

zones, although the methodologies herein may be extended to urban facilities as part of future 

research. 

1.3 RESEARCH OBJECTIVES 

 

This thesis is intended to support ongoing research related to a project funded by the 

Southeastern Transportation Research, Innovation, Development, and Education Center 

(STRIDE). The focus of the larger parent project is to complete a series of tasks that will aid 

transportation agencies in the planning, design, and operations of freeway work zones through 

microsimulation and field data collection. One such task involves the quantification of queueing 

and delay as a function of traffic demand and other explanatory variables so that agencies can 

determine the impact of scheduling lane closures by time of day and day of the week. While this 

research was not meant to be comprehensive, the following objectives were sought: 

1. Develop, calibrate, and assess the validity of a microscopic simulation model for a 2-1 

(two-lanes-to-one) rural freeway work zone lane closure 

2. Use microsimulation outputs to construct breakdown probability models for rural freeway 

work zones with varying demand volume, truck percentage, and lane closure side to 

determine the effect of these variables on the likelihood of queue formation 
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3. Provide a framework for the continuation of the parent STRIDE project so that models 

may be developed for other lane closure configurations commonly experienced on rural 

and urban freeway facilities 

Each of the objectives above center around the fundamental idea that demand-based work 

zone planning, design, and operations decisions should be based on stochastic estimates of 

capacity, rather than deterministic pre-breakdown or queue discharge flow rates. As Chapter 

Two will discuss, such an assertion agrees with the state of the art in capacity measurement and 

allows for agencies to make defensible, data-driven decisions, rather than experience-based 

assumptions. Furthermore, it focuses on the prevention of queueing, rather than just queue 

mitigation. While queueing and delay are not unavoidable at every site, they should be 

eliminated when possible and minimized when inevitable. 

1.4 ORGANIZATION OF THIS THESIS 

 

The remainder of this thesis is organized as follows. First, Chapter Two reviews pertinent 

literature related to the measurement and definition of freeway capacity and its extension to work 

zones. Here, the application of breakdown probability models as a stochastic alternative to 

traditionally deterministic methods of defining freeway capacity are discussed in greater detail, 

as such methodology would ultimately be used in later chapters. Finally, case studies of freeway 

work zone simulation are explored. In Chapter Three, collection and screening of field data used 

to inform VISSIM model development, calibration, and validation are outlined. The chapter 

concludes by detailing the partial factorial experiment design utilized to obtain simulated data 

from VISSIM. Next, Chapter Four describes the aggregation and analysis of simulated data 

gathered from VISSIM and its ultimate compilation as a lane closure analysis tool for rural 

freeway work zones. Lastly, Chapter Five provides conclusions from this work and 
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recommendations for future research. Specifically, extension of the research presented herein 

through additional field data collection and expansion of the associated capacity analysis tool is 

proposed.  
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CHAPTER TWO:  

LITERATURE REVIEW 
 

 

2.1 INTRODUCTION 

 

This chapter synthesizes relevant literature on the topic of measuring and predicting freeway 

work zone capacity using field data and simulation. First, historical context will be given 

regarding past and current freeway work zone capacity methodology in the Highway Capacity 

Manual (HCM) and the research that has led to the state of the practice. Second, factors that have 

been found to influence freeway work zone capacity will be discussed to demonstrate where 

further research is necessary. The process by which breakdown probability models may be 

developed to estimate capacity from mathematical distributions will then be explored. Finally, 

case studies will be summarized in which microsimulation models have been created and 

calibrated to measure freeway work zone capacity under various conditions.  

2.2 HISTORICAL MEASUREMENT AND DEFINITION OF FREEWAY CAPACITY 

The 6th edition of the HCM defines capacity as “the maximum sustainable hourly flow rate at 

which persons or vehicles reasonably can be expected to traverse a point or a uniform section of 

a lane or roadway during a given time period under prevailing roadway, environmental, traffic, 

and control conditions” (Transportation Research Board 2016). Although this definition has long 

remained unchanged, debate on the measurement of capacity at freeway facilities began in the 

1960s, when several authors documented a discontinuity between capacity under stable flow and 

that under unstable flow (Drake et al. 1967; Edie 1961). Roess and Prassas synopsize nearly five 



8 

 

decades of research on this topic, during which most researchers agreed the maximum 

throughput of a freeway facility drops after the transition from non-congested to congested 

conditions, but no consensus was drawn on how to define freeway capacity in the presence of 

bottlenecks such as work zones (Roess and Prassas 2016). This point of conflict has more 

commonly been referred to as “the two-capacity phenomenon” and has led to inconsistencies in 

practice, as documented in a more recent study (Yeom et al. 2015). Specifically, Yeom et al. 

argued that if capacity is to be defined as a “sustainable” flow rate, the queue discharge rate after 

breakdown may be a more appropriate measure than pre-breakdown capacity. 

In a similar way, there has been a growing body of research since the mid-1990s that 

suggests freeway capacity cannot be defined as a single value, but rather should be represented 

by a probability distribution (Brilon et al. 2005; Elefteriadou et al. 1995; Lorenz and Elefteriadou 

2001; Minderhoud et al. 1997; Persaud et al. 1998). This concept was backed by Lorenz et al., 

among others, with field data providing evidence that breakdown is not a deterministic event, but 

is stochastic in nature and can vary by several hundred vehicles per hour under identical 

prevailing conditions (Lorenz and Elefteriadou 2001). Thus, if capacity is to be identified by the 

onset of breakdown, both capacity and breakdown should be considered random variables and 

estimated using mathematical distribution functions. 

In the early 2000s, TRB’s Highway Capacity and Quality of Service Committee 

appointed a task force to provide clarity on these issues, and their findings were presented in 

2006 in Yokohoma, Japan (Elefteriadou et al. 2006). Elefteriadou built on these findings and 

summarized the “state of the art in capacity measurement” in her book, An Introduction to 

Traffic Flow Theory (Elefteriadou 2014), where the following conclusions were drawn:  
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1. Breakdown is probabilistic and its occurrence does not necessarily coincide with the 

highest observed flow rate. 

2. Capacity is a random variable and will vary by several hundred vehicles per hour per 

lane, even under identical prevailing conditions. 

3. There are multiple time periods of interest during which flow measurements may be 

taken to define capacity: well in advance of breakdown, just prior to breakdown, and 

during congested conditions after breakdown. 

4. Regardless of whether the pre-breakdown capacity (PBC) or queue discharge rate 

(QDR) is chosen to measure capacity, single values should be estimated from 

distributions obtained over many breakdown events.  

Despite these discoveries, the stochastic nature of freeway work zone capacity has yet to 

be formalized in the core HCM methodology, though Chapter 26 of the 6th edition demonstrates 

such a methodology for recurring bottlenecks (Transportation Research Board 2016). Most 

recently, a few studies have recommended that probabilistic methods be applied to describe work 

zone capacity, but work in this area is limited to date (Heiden and Geistefeldt 2016; Weng and 

Yan 2016; Weng and Yang 2014). As such, measurement of capacity at freeway work zones 

remains ambiguous and practice varies among agencies. Studies conducted by the Indiana and 

Missouri Departments of Transportation suggest that PBC may be appropriate when practitioners 

wish to avoid congestion altogether, while QDR may be more meaningful when congestion is 

expected but queue mitigation is desired (Bham et al. 2011; Jiang 1999). Nonetheless, recent 

studies have finally established a numerical connection between PBC and QDR by synthesizing 

freeway work zone capacity values in literature and from field data (Hu et al. 2012; Yeom et al. 

2015), the results of which will be discussed next. 
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2.3 WORK ZONE CAPACITY IN THE HIGHWAY CAPACITY MANUAL 

Given that freeway work zones often involve lane closures that function as bottlenecks, the 

issues discussed above are paramount in determining capacity at such locations. Both HCM 2000 

and HCM 2010 presented short-term work zone capacity methodology based on studies 

conducted in Texas from 1987 to 1991 (Krammes and Lopez 1994). These studies were limited 

not only in the sense that they contained data from a single state, but that they only considered 

four variables: intensity of work activity, presence of ramps, presence of heavy vehicles, and 

number of open lanes through the work zone. Furthermore, the adjustments for work intensity 

and presence of on-ramps were to be done manually using engineering judgement, with little 

numerical guidance given. For long-term work zones, a table of average values under various 

lane closure configurations in several states was given and practitioners were advised to adjust 

these based on local experience (Chatterjee et al. 2009).  

It wasn’t until the recent publishing of the 6th edition of the HCM that formal, detailed 

guidance was given on determining work zone capacity. Yeom et al. built on a past study 

conducted by several of the co-authors (Hu et al. 2012) to perform an extensive literature search, 

establish a relationship between QDR and PBC, and provide a regression model for estimating 

work zone capacity under various conditions (Yeom et al. 2015). The model currently included 

in the 6th edition of the HCM is given in Figure 2-1 and was created from 90 archival literature 

sources and 12 field-collected datasets. 

Most significant to note is that work zone capacity has now been formally defined in 

terms of the average queue discharge rate occurring after breakdown, rather than by the 

maximum pre-breakdown flow rate. The language in the 6th edition of HCM and that of the 
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authors of the works associated with NCHRP Project 03-107, the basis for the work zone 

capacity methodology update, still note the importance of PBC. In fact, wording within the HCM 

implies that freeway capacity should still be defined by the maximum flow prior to breakdown. 

However, as noted by Yeom et al., QDR is much easier to measure than PBC and provides a 

more practical means of obtaining freeway work zone capacity (Yeom et al. 2015). Thus, it was 

ultimately proposed that freeway work zone capacity be estimated in terms of QDR, then 

converted to PBC if desired by using a default conversion factor of +13.4% or one obtained from 

local data.  

 

 

Figure 2-1: HCM 6th Edition Work Zone Capacity Model (Source: TRB 2016) 

 

2.4 FACTORS AFFECTING FREEWAY WORK ZONE CAPACITY 

Current understanding of freeway work zone capacity is primarily based on field-collected data 

in various states, where the effect of several traffic stream, environmental, roadway, and work 

zone characteristics on throughput have been studied. Weng and Meng performed an extensive 



12 

 

literature search in a 2013 study, where the following factors were found to influence work zone 

capacity in past research (Weng and Meng 2013):  

1. Traffic Stream Characteristics: heavy vehicle percentage, driver composition 

2. Environmental Characteristics: time of day, weather, locale 

3. Roadway Characteristics: roadway functional classification, grade, presence of on-ramps 

4. Work Zone Characteristics: number of open and closed lanes, lane closure side, work 

zone length, work intensity, work zone duration, work zone speed limit 

However, the significance and relative effect of many traffic- and work zone-related factors have 

been debated in the literature, as will be discussed next. 

2.4.1 Traffic Stream Characteristics 

It is well understood that heavy vehicles, which differ in size and performance from passenger 

cars, influence capacity. For this reason, HCM methodologies include passenger car equivalency 

factors (PCEs) to facilitate comparison of estimated capacity values when the percentage of 

trucks in the traffic stream varies. However, the extent to which trucks affect freeway capacity in 

the presence of a work zone lane closure is complex and has been explored by several 

researchers. A study involving multiple reconstruction zones in Ontario, Canada in 2002 focused 

entirely on developing PCEs for congested freeways and noted that the effect of heavy vehicles 

is magnified during queue discharge flow (Al-Kaisy et al. 2002). Consequently, the researchers 

suggested that higher PCE values be applied during such conditions, where the specific factor is 

dependent on terrain. Later, Sarasua et al. used field-measured vehicle headways on freeways in 

South Carolina to calculate PCEs and found an average value of 1.93, which is significantly 

more than the value of 1.5 given in the 2010 HCM for level terrain (Sarasua et al. 2004). In 



13 

 

phase two of the same study, however, the authors found that different PCEs should be used at 

different speeds and that these values do in fact increase during congested conditions (Sarasua et 

al. 2006).  

Heavy vehicles have generally been found to decrease freeway work zone capacity, but 

whether this decrease is significant relative to decreases observed for basic freeway segments has 

been debated. A 2007 report for the Florida Department of Transportation developed 

microsimulation models to estimate freeway work zone capacity given 0%, 10%, and 20% trucks 

and found a strong, negative linear relationship with increasing heavy vehicle percentage 

(Elefteriadou et al. 2007). However, these findings were reported in vehicles per hour per lane 

(vphpl), rather than passenger cars per hour per lane (pcphpl), so the results are not surprising 

nor simply comparable. Additionally, only three truck percentages were modeled, whereas 

including several smaller increments may have provided a more accurate relationship. An earlier 

study conducted for freeway work zones in Indiana found that a decrease in capacity of 

approximately 4 vphpl occurs for each 1% increase in trucks, but that this trend was not 

significantly different than that found for non-work zone segments (Venugopal and Tarko 2001).  

In addition to vehicle composition, the effect of driver population on capacity has been 

heavily studied. Al-Kaisy et al. researched this topic for various freeway work zones in Ontario, 

Canada and found that capacity is highest during peak hours and at long-term construction sites, 

when the traffic stream is composed mostly of commuters or those who are familiar with the 

ongoing work (Al-Kaisy and Hall 2001). The authors suggested a 7% capacity reduction during 

off-peak hours and a 16% reduction on weekends to account for these effects. An earlier study in 

North Carolina agreed with this notion and found that urban work zone sites had higher 

capacities, possibly due to increased driver familiarity (Dixon et al. 1996). Regardless of driver 
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population, research has shown that driving behavior in work zones is different from that outside 

of work zones due to frictional effects found in the changed driving environment (Yeom et al. 

2015, 2016). These effects are particularly important when microsimulation is used to model 

work zone capacity, as will be discussed later. 

2.4.2 Work Zone Characteristics 

Although the temporal, behavioral, and traffic-related factors discussed previously have been 

shown to be significant, the geometric and environmental features of a specific work zone have 

the greatest impact on its capacity. Of these factors, the lane closure configuration has been 

given the most attention in literature and been shown to have the strongest influence. Several 

state-specific field data collection efforts from the mid-1990s through mid-2000s developed 

regression models to estimate work zone capacity and included the number of closed lanes as an 

input variable (Al-Kaisy and Hall 2003; Dixon et al. 1996; Kim and Lovell 2001; Sarasua et al. 

2006, 2004). More recently, however, Yeom et al. have found that the lane closure severity index 

(LCSI) included in the 6th edition of HCM is a more distinguishing method of defining the work 

zone lane closure configuration (Yeom et al. 2015).  

The LCSI is calculated using the inverse of the product of the number of open lanes and 

the ratio of open to closed lanes and allows for the effects of work on the shoulder or median that 

may not include a lane closure to be modeled. Moreover, this method differentiates lane closure 

configurations with the same ratio of open to closed lanes, such as 4-2 and 2-1 closures. Here, 4-

2 and 2-1 lane closures refer to four-lane and two-lane freeway segments reduced to two and one 

open lane(s), respectively. Regardless, past studies agree that the per-lane work zone capacity 

decreases as the number of open and closed lanes decrease and increase, respectively. For 

instance, several authors have documented stark differences in per-lane capacity between 2-1, 3-
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1, and 3-2 lane closures, where a 3-2 closure has the highest capacity and 3-1 the lowest (Sarasua 

et al. 2006; Yeom et al. 2015). 

While the effect of lane closure configuration on work zone capacity is well-documented 

and agreed upon, the influence of lane closure side and length is less clear. Al-Kaisy et al. found 

that right-side lane closures resulted in approximately 6% higher capacities than left-side lane 

closures, but could not explain this phenomenon (Al-Kaisy and Hall 2003). On the contrary, 

Weng and Yan studied the relative effect of several factors on work zone capacity using archival 

literature sources and found that right-side lane closures will decrease capacity by approximately 

2.7% relative to left-side lane closures (Weng and Yan 2016). Others found lane closure side to 

be insignificant, but acknowledged that this variable should be examined in future research 

(Heaslip et al. 2009; Kim and Lovell 2001).  

Likewise, studies on the significance of lane closure length have been largely 

inconclusive. Data from South Carolina and Maryland freeway work zones found this variable to 

be insignificant, but noted that insufficient sample size was an issue (Kim and Lovell 2001; 

Sarasua et al. 2004). Earlier research for North Carolina freeways, however, observed that the 

size of the activity area (i.e., length of the lane closure) is a driving factor in determining the 

magnitude of the drop in throughput under queue discharge flow as compared to pre-breakdown 

conditions (Dixon et al. 1996). This observation is thought to be explained by vehicles 

maintaining larger headways during congested conditions, especially in the presence of trucks, as 

discussed earlier (Al-Kaisy et al. 2002). Length and relative position of the advance warning area 

has been studied by others but without significant results (Elefteriadou et al. 2007; Heaslip et al. 

2009). 
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Finally, work intensity has been shown to have a strong negative effect on work zone 

capacity, but there has been no consistency in how to measure or model this variable. To date, 

this variable has mostly been represented in deterministic equations for estimating capacity 

where the user must specify an adjustment using engineering judgement. Typically, this value 

has been suggested as +/- 10% of the base capacity of the work zone in question (Dixon et al. 

1996; Sarasua et al. 2004). Thus, it is impractical to attempt to measure this variable’s effect in 

most cases, as work intensity is typically described qualitatively as “light”, “moderate”, or 

“heavy”. More recently, Heaslip et al. used the rubbernecking factor in CORSIM to attempt to 

capture the impact of work intensity on capacity more precisely (Heaslip et al. 2009). However, 

field data was not available to calibrate this factor, so the researchers relied on previous literature 

findings that indicated a 7% reduction in capacity when work activity was ongoing (Al-Kaisy 

and Hall 2003). The final model results indicated that rubbernecking factors of 0% and 5.6% 

should be used when work activity is not present and present, respectively.  

2.5 BREAKDOWN PROBABILITY MODELS 

Past research dedicated to determining which factors influence freeway work zone capacity have 

played a vital role in shaping the methodology found in the HCM and improving the way that 

agencies design and operate their work zones. However, nearly every study to date has taken a 

deterministic approach to estimating freeway work zone capacity, despite recent findings that 

indicate probabilistic methods may be more appropriate. Therefore, defining freeway work zone 

capacity by the maximum achievable flow rate prior to breakdown warrants further investigation. 

Given that instantaneous conditions within a freeway work zone are stochastic, such capacity 

may be best described by breakdown probability models (BPMs). To date, these models have 
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mostly been applied to metered freeway ramp merge junctions, but the methodology presented is 

applicable to any freeway bottleneck. 

2.5.1 Generating Breakdown Probability Models 

It is widely accepted that the development of BPMs requires the use of the product limit method 

(PLM) developed by Kaplan and Meier (Kaplan and Meier 1958). This methodology was first 

developed to describe the statistical properties of the lifetime of mechanical parts or human life, 

but has a similar application in capacity estimation. This relationship is shown in Table 2-1, 

where breakdown can be described as the “failure” or “death” of a highway facility (Brilon et al. 

2005). Earlier, it was mentioned that the maximum flow rate is not always synonymous with the 

breakdown flow rate. This phenomenon leads to incomplete observations referred to as right-

censored data, because the upper end of the mathematical probability distribution is unattainable 

when the highest flow rates do not always result in breakdown. Consequently, the breakdown 

probability distribution appears truncated, but an incomplete empirical distribution can be 

obtained using Equation 2-1 because the PLM is non-parametric. 

𝑺̂(𝒕) = ∏
𝒏𝒋−𝒅𝒋

𝒏𝒋
𝒋:𝒕𝒋<𝒕    

   

𝑆̂(𝑡) = estimated survival function 

 

𝑛𝑗 = number of individuals with  lifetime T ≥ tj 

 

𝑑𝑗 = number of deaths at time tj 

 

(2-1) 
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Table 2-1: Application of PLM to Highway Capacity Analysis (Source: Brilon et al. 2005) 

 Analysis of Lifetime Data Highway Capacity Analysis 

Lifetime Parameter Time, t Volume, q 

Failure Event Death at time t Breakdown at volume q 

Lifetime Variable Lifetime, T Capacity, C 

Censoring 
Lifetime, T, longer than duration of 

experiment 

Capacity, C, greater than traffic 

demand 

Survival Function S(t) = 1 - F(t) S(q) = 1 - F(q) 

Probability Density Function f(t) f(q) 

Cumulative Distribution 

Function 
F(t) F(q) 

 

After using the PLM to obtain an initial probability distribution, it is recommended that 

the best-fit mathematical distribution be estimated to extrapolate the data (Kondyli et al. 2013). 

Studies of California and German freeway work zones found that the Weibull distribution was 

most appropriate after using maximum likelihood estimation to compare several candidate 

distributions (Brilon et al. 2005; Chow et al. 2009). Others have contended, however, that the 

lognormal or shifted lognormal distribution may also be suitable (Jia et al. 2010; Kondyli et al. 

2013; Weng and Yan 2016). It should be noted that the most recent of these three studies was 

conducted for freeway work zones, but generated capacity distributions from archival literature 

rather than sequential field data. Nonetheless, the slight disagreement in the literature and site-

specific variation suggests that several mathematical distributions should be considered. 

Elefteriadou et al. stressed this point in early research related to BPMs, where the authors also 

found that several hundred breakdown events may be necessary to validate such models. For 

example, to estimate the point corresponding to a 50% chance of breakdown with 95% 

confidence, it was determined that a minimum of 384 breakdown events should be observed 

(Elefteriadou et al. 1995). As such, developing BPMs for freeway work zones, even long-term, is 

likely only attainable using simulation. 
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2.5.2 Data Collection and Identification of Breakdown 

Correctly identifying the onset of breakdown and return to uncongested conditions is critical in 

developing meaningful BPMs. This process requires: (1) appropriate placement of data 

collection sensors, (2) proper choice of data observation and aggregation intervals, and (3) the 

combination of speed, occupancy, and volume algorithms to define breakdown and recovery 

periods.  

BPMs have various practical applications, so the placement of data sensors has varied 

somewhat in literature. The bottlenecks in one study of United States and Canadian freeways 

were defined by several closely-spaced ramp merging segments, so the authors placed multiple 

sensors just upstream and downstream of each bottleneck location in order to verify which ramp 

was the cause of each breakdown event (Kondyli et al. 2013). This placement strategy was 

crucial, as literature agrees that the onset of breakdown should be defined by observations made 

close to the bottleneck in question and not influenced by conditions downstream of the data 

collection point (Brilon et al. 2005; Elefteriadou et al. 1995; Jia et al. 2010; Kondyli et al. 2013). 

In the absence of on-ramps or other downstream influencing factors, most agree that the ideal 

sensor is one placed just downstream of the bottleneck in question (Jia et al. 2010; Lorenz and 

Elefteriadou 2001), although a study of German freeways contended that sensors should be 

placed just upstream of the bottleneck to avoid influence of conditions within the bottleneck 

(Brilon et al. 2005).  

The choice of data aggregation periods is also important, as different probability 

distributions can be obtained from the same data when these intervals are changed. Lorenz et al. 

studied this concept for 1-, 5-, and 15-minute aggregation intervals and found that shorter 

intervals result in lower breakdown probability rates for a given flow rate, and vice versa. This 
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phenomenon was explained by the fact that brief fluctuations in flow rates, even to above 2,000 

vphpl, can be absorbed by the traffic stream over brief time periods. However, as the aggregation 

interval increases, an average flow rate of 2,000 vphpl would indicate sustained periods of high 

volume that are more likely to lead to congestion (Lorenz and Elefteriadou 2001). Later work by 

Kondyli et al. argued strongly for the use of 1-minute intervals to capture abrupt oscillations in 

traffic (Kondyli et al. 2013), while others concluded that 5-minute intervals provided the best 

compromise between accounting for brief spikes in volume and smoothing the data (Brilon et al. 

2005; Persaud et al. 1998). Given that data availability and study objectives will vary, it seems 

that any choice is defendable so long as the researcher clearly defines which time interval was 

used.  

While the breakdown mechanism can typically be identified from visual observation of 

the fundamental diagram of traffic flow or speed versus time plots, algorithms have generally 

been used to systematically pinpoint congested conditions. In the literature, these algorithms 

have involved combinations of speed, occupancy, and volume thresholds. Brilon et al. applied a 

constant speed threshold of 70 km/hr (43 mph) and classified all flow measurements that 

coincided with speeds equal to or less than this threshold as congested flow (Brilon et al. 2005). 

However, the study was conducted for German freeways, which the authors noted was a caveat 

of the research, as different speed values would likely apply in other countries. Others found that 

breakdown should be defined by both speed and density to avoid identifying congestion from 

anomalous free flow conditions (Chow et al. 2009; Jia et al. 2010). Jia et al. designated critical 

speed and density thresholds based on conditions where speeds were below 55 mph and densities 

above the level of service D threshold, or 26 passenger cars per mile per lane. 
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Modern studies have shown, however, that speed thresholds sustained over specified time 

periods may be most appropriate. The 6th edition of the HCM defines the onset of breakdown as 

a sudden speed drop at least 25% below the free flow speed (FFS) sustained for at least 15 

minutes (Transportation Research Board 2016). Conversely, the recovery period is defined as a 

return to speeds within 10% of FFS for at least 15 minutes. Work by Elefteriadou et al. applied a 

90 km/hr (56 mph) threshold to Canadian freeways, but required that these speeds be maintained 

for a period of at least five minutes. Similarly, the authors stated that the return of stable traffic 

conditions should be signified by speeds above this value maintained for at least five minutes 

(Elefteriadou et al. 1995).  

Later, several of the co-authors contributed to a study in which selection of these 

thresholds was examined in more detail. The findings suggested that breakdown identification 

algorithms should be based only on speed when sequential speed data is available because this 

method results in less variance among breakdown volumes. Their specific recommendations 

were to use a speed drop threshold of 16 km/hr (10 mph), where the reduced speed is sustained 

for at least five minutes, and a breakdown recovery time period of 10 minutes (Kondyli et al. 

2013). The first of these two requirements prevents false identification of brief drops in speed 

and spikes in traffic flow that are ultimately absorbed, while the second ensures that multiple 

breakdown events are not identified from a single period of congestion. Accordingly, a similar 

set of speed-based breakdown identification algorithms will later be applied in this thesis. 

2.6 FREEWAY WORK ZONE SIMULATION MODELS 

The freeway work zone capacity methodology presented in the 6th edition of the HCM is 

substantially improved from that in previous editions, but is still limited by the fact that it is a 
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macroscopic model and cannot account for complex work zone configurations unique to specific 

sites. Capacities estimated from this model and those from past editions of the HCM are often 

used as input parameters in other deterministic work zone software such as QUEWZ and 

QuickZone to predict queueing, delay, and road user costs associated with various scheduling 

and traffic control strategies. QUEWZ, developed in 1998 by the Texas A&M Transportation 

Institute, and QuickZone, developed in 2001 by FHWA, have been heavily used of late, but have 

been shown by some studies to provide inconsistent and often inaccurate estimates of these 

parameters (Benekohal et al. 2003; Ramezani and Benekohal 2012).  Furthermore, although field 

data collection and empirical capacity measurement are the most accurate means of depicting 

real traffic conditions, these efforts are often costly and difficult to obtain sufficiently large 

sample sizes from. Likewise, it has been shown previously that the development of BPMs for 

freeway work zones is likely not feasible using field data. Fortunately, the emergence of 

microsimulation software such as CORSIM and VISSIM has provided a means to more 

accurately and economically deal with such complexity as computing power has increased in 

recent years.  

2.6.1 Simulation Overview 

 

Simulation is a valuable traffic analysis tool with wide-ranging applications, not just in work 

zones. The discussion to follow is based on principles outlined in Elefteriadou’s An Introduction 

to Traffic Flow Theory and the FHWA Traffic Analysis Toolbox regarding the use of traffic 

analysis tools and simulation models (Dowling et al. 2004; Elefteriadou 2014). 

 At the most basic level, traffic analysis software can be divided into four categories. 

From most generalized to most complex, these are: sketch-planning, macroscopic, mesoscopic, 
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and microscopic. Sketch-planning or analytical tools include software such as QUEWZ-98, 

QuickZone, FREVAL-WZ, or any spreadsheet created to calculate various performance 

measures. These deterministic tools primarily have high-level planning applications and should 

be used in situations where agencies wish to guide work zone design and operations decisions 

while spending the least time or money. However, these advantages are coupled with the 

disadvantage that randomness associated with individual driving behavior and other factors 

within work zones are unaccounted for. Thus, it is not surprising that studies have found these 

tools to be inaccurate in the past (Benekohal et al. 2003; Ramezani and Benekohal 2012). 

Although QUEWZ-98 and QuickZone apply now-outdated HCM methodology to determine 

various performance measures in work zones, FREEVAL-WZ applies the 6th edition 

methodology and can model more complexity than the other two programs (Trask et al. 2015). 

Nonetheless, its effectiveness as an analysis tool has yet to be fully explored.  

 Macroscopic models replicate the movement of platoons of vehicles without analyzing 

individual vehicle movement. These simulation models are based solely on deterministic 

relationships between flow, speed, and density and include software such as the TRANSYT-7F 

package included with the Highway Capacity Software from McTrans. While these models may 

be useful in optimizing flow of the traffic stream and provide slightly more detail than the 

analytical tools mentioned previously, they are still generalized and ignore the stochasticity of 

work zone environments. 

 Mesoscopic simulation models are a hybrid of macroscopic and microscopic models. 

While they still only model platoons of vehicles, these models employ equations to indicate how 

different platoons interact. One such example of mesoscopic software is DYNASMART-P, 

another software package developed by McTrans in 2007 that can model the dynamic evolution 
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of traffic flows as individual drivers make decisions about their best route. Such a tool may be 

useful for regional work zone management, but not as valuable for individual work zones. 

 Finally, microscopic simulation models imitate the movement of every vehicle in the 

network by accounting for how drivers respond to the surrounding roadway environment. Unlike 

the deterministic software discussed earlier, microsimulation tools are stochastic, meaning that 

each model run will produce a unique result. These characteristics make microsimulation the 

most valuable tool available for estimating freeway work zone capacity. Popular commercially 

available microsimulation software used by practitioners include CORSIM and VISSIM, 

developed by FHWA and the PTV Group, respectively. Each of these software packages follow 

three main algorithms to define the randomness of driving behavior: car-following, lane-

changing, and gap acceptance. Recently, several studies have examined the effect of modifying 

these parameters on simulated work zone capacity and provided guidance for practitioners.  

2.6.2 Driving Behavior Parameters  

 

Although microsimulation is a powerful traffic analysis tool, the validity of any developed model 

is dependent on a strong calibration effort. Simulation models must be adjusted so that they can 

replicate field conditions before any hypothetical scenarios can be examined. The authors 

responsible for the work zone capacity methodology update mentioned earlier have already 

published work that supplements the analytical model in the 6th edition of HCM with guidance 

on developing simulation models in VISSIM (Yeom et al. 2016), following suit with several 

other previous studies (Chatterjee et al. 2009; Chitturi and Benekohal 2008; Edara and Chatterjee 

2010; Kan et al. 2014; Lownes and Machemehl 2006). While CORSIM has been applied in past 

freeway work zone capacity studies (Heaslip et al. 2009; Ramadan and Sisiopiku 2016), VISSIM 
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was the chosen analysis tool for this thesis and will be the focus of the literature discussion to 

come. 

The most heavily studied driving behavior parameters are those that pertain to car-

following algorithms. These algorithms estimate the trajectory of a following vehicle given the 

behavior and position of a lead vehicle. Table 2-2 lists the 10 car-following parameters in 

VISSIM, which are based on the Wiedemann 99 car-following model (PTV Group 2017). 

Table 2-2: VISSIM Car-Following Parameters (Adapted from Yeom et al. 2016) 

Parameter Description Default Value 

CC0 standstill distance between two vehicles 4.92 ft 

CC1 desired headway time between lead and trailing vehicles 0.9 s 

CC2 maximum additional distance over desired safety distance 13.12 ft 

CC3 time in seconds to start of the deceleration process -8.0 s 

CC4 negative speed variations during the following process -0.35 ft/s 

CC5 positive speed variations during the following process 0.35 ft/s 

CC6 influence of distance on speed oscillation 11.44 

CC7 oscillation during acceleration 0.82 ft/s2 

CC8 desired acceleration from standstill 11.48 ft/s2 

CC9 desired acceleration at 50 mph 4.92 ft/s2 

 

The first three parameters are all related to determining the safety distance at which vehicles will 

follow each other and have been found to be the most influential in determining capacity. This 

relationship is described by Equation 2-2 (Edara and Chatterjee 2010). 

 

safety distance = 𝐶𝐶0 + 𝐶𝐶1 ∗ 𝑣 + 𝐶𝐶2 

where v = velocity (ft/s) 

(2-2) 

 

Related to this safety distance are two primary lane-changing and gap acceptance 

parameters, the lane-changing distance and safety distance reduction factor (SRF), respectively. 
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Previously known as the “look-back distance”, the lane-changing distance parameter in VISSIM 

specifies the distance upstream of a necessary lane change (e.g. lane closure) that a driver will 

begin to look for opportunities to merge. This is the first of three conditions required for a 

vehicle to change lanes in VISSIM: (1) a desire to change lanes, (2) favorable driving conditions 

in the neighboring lane(s), and (3) gap availability (Edara and Chatterjee 2010). The latter two 

conditions are defined by the safety distance mentioned before and any adjustment to this 

distance defined by the SRF. This factor reduces the safety distance during the lane-changing 

process and essentially specifies the aggressiveness of drivers during such maneuvers. For 

example, if the safety distance is computed as 72 feet and the SRF is 0.6, the required gap would 

be only 43 feet (Edara and Chatterjee 2010).  

In a non-work zone study of congested freeway segments in California, Gomes et al. also 

modified the emergency stop distance and waiting time before diffusion, two parameters that 

help to prevent unusual driving behavior during congested conditions. For example, the authors 

found that the initial model of one freeway merge junction consisted of stopped traffic in the 

rightmost lane with nearly free flowing conditions in the left lane. This phenomenon was 

explained by vehicles getting “stuck” while trying to merge and was corrected by decreasing the 

waiting time before diffusion. However, it was advised that these values be modified with 

caution so that queued vehicles which researchers do not desire to evaporate from the network 

are retained (Gomes et al. 2004). Other studies found that this issue was a result of unbalanced 

lane use upstream, and verified that lane use balance thresholds were satisfied prior to validating 

a particular simulation run (Chatterjee et al. 2009; Yeom et al. 2016). Multiple case studies will 

be examined in the next section that address these topics in more detail.  
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2.6.3 Freeway Work Zone Simulation Case Studies 

 

The following section discusses case studies that have shaped the simulation methodology used 

in this thesis. The focus of recent work zone simulation research has been on the calibration 

effort, as the authors of those studies intended for practitioners to use the results to develop 

localized simulation models. Consequently, two of the studies presented were carried out to 

provide guidance on modifying driving behavior parameters and other elements of the simulation 

environment in VISSIM to replicate field-measured capacities. The third study was conducted 

using CORSIM, but proceeded beyond calibration to investigate the effect of several factors on 

work zone capacity.  

Calibration Case Study #1 

 

In 2010, Edara and Chatterjee used data from Ohio work zones to evaluate default truck 

characteristics in VISSIM and develop regression models for determining driving behavior 

parameters based on the capacity, truck percentage, lane configuration, and upstream lane 

distribution of a given freeway work zone (Edara and Chatterjee 2010). The authors noted that 

the default length of a truck in VISSIM is 33.5 feet, but approximately 65% of truck-miles in the 

United States are driven by Class 9 tractor-trailers 73.5 feet in length (Harwood et al. 2003). As 

such, they recommend that any future studies consider a distribution of truck length based on 

local field data and power and weight specifications that are consistent with such trucks. Figure 

2-2 shows the discrepancy in simulated capacity for a 2-1 lane closure when the default VISSIM 

truck characteristics were used versus adjusted values.  
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Figure 2-2: Sensitivity of Simulated Capacity to VISSIM Truck Characteristics (Source: 

Edara and Chatterjee 2010) 

 

After using pilot simulation runs to guide modification of default truck characteristics, the 

authors performed a sensitivity analysis to determine the effect of select driving behavior 

parameters on simulated capacity. Based on past research (Chatterjee et al. 2009), the car-

following, lane-changing, and gap acceptance variables ultimately examined were CC1, CC2, 

and SRF. Variations in lane-changing distance were not studied, but a value of 2500 feet was 

selected to mimic the expected location of a “___ LANE CLOSED ½ MILE” sign in the field. 

As shown in Figure 2-3, capacity was measured as the QDR just downstream of the bottleneck, 

while data collection points were placed at four locations to verify lane use balance upstream of 

the closure point. A total of 900 scenarios were simulated between 2-1, 3-2, and 3-1 lane closure 

configurations; however, only those which produced reasonable upstream lane balance consistent 

with field data were retained.  
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Figure 2-3: Lane Closure Network Setup for 2-1 Closure (Source: Edara and Chatterjee 

2010) 

 

 The results of the study were three sets of regression equations, one for each lane closure 

configuration, that provide guidance for selecting the values of CC1, CC2, and SRF based on the 

field-measured capacity (Qc), truck percentage (PT), and lane distribution 1000 feet upstream of 

the lane closure (PCL). An example of these for a 2-1 closure is given in Equation 2-3 and is 

intended to provide practitioners with values of driving behavior parameters that are consistent 

with conditions in freeway work zones. It should be noted, however, that other research has 

found that these are not the only driving behavior parameters in VISSIM that affect capacity 

significantly (Chitturi and Benekohal 2008; Gomes et al. 2004; Kan et al. 2014; Lownes and 

Machemehl 2006; Woody 2006). Furthermore, while this guidance may serve as a good starting 

point, the total calibration effort will likely require more fine-tuning after adjusting the 

parameters studied here.  

𝐶𝐶1 = 2.974 − 0.0009 ∗ 𝑄𝐶 + 0.0267 ∗ 𝑃𝑇 + 0.0022 ∗ 𝑃𝐶𝐿 − 0.000029 ∗ 𝑄𝐶 ∗ 𝑃𝑇 

𝐶𝐶2 = 82.39 − 0.0266 ∗ 𝑄𝐶 + 0.208 ∗ 𝑃𝑇 − 0.302 ∗ 𝑃𝐶𝐿 − 0.00009 ∗ 𝑄𝐶 ∗ 𝑃𝑇 

𝑆𝑅𝐹 = 0.656 − 0.0002 ∗ 𝑄𝐶 + 0.0057 ∗ 𝑃𝑇 + 0.0078 ∗ 𝑃𝐶𝐿 − 0.000009 ∗ 𝑄𝐶 ∗ 𝑃𝑇 

 

(2-3) 
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Calibration Case Study #2 

 

A subsequent study conducted in 2016 by Yeom et al. used nationwide field data from their 

NCHRP 03-107 research to perform a sensitivity analysis on a similar set of driving behavior 

parameters (Yeom et al. 2016). However, the authors neglected trucks and instead focused solely 

on the modification of CC0, CC1, CC2, CC4, CC5, CC8, SRF, and lane-changing distance. A 

diagram of their network setup is given in Figure 2-5, where several key items should be noted. 

First, data collection points were placed 1000 feet upstream and 100 feet downstream of the lane 

closure point to allow for lane use balance verification and measurement of QDR, respectively. 

To ensure that the frictional effects within the work zone were accurately modeled, a reduced 

speed area and desired speed decision point were placed at the beginning of the lane closure. The 

former has a “look ahead” function that allows vehicles to begin slowing down prior to reaching 

the speed decision point. Speed distributions within and outside of the work zone were based on 

field data.  

 

Figure 2-4: VISSIM Network Setup for 2-1 Lane Closure (Source: Yeom et al. 2016) 

 

 Given that capacity was to be measured as the average QDR, the network was coded with 

a demand of 2,000 vphpl to ensure that congested conditions would develop. Like the previous 

case study (Edara and Chatterjee 2010), lane use balance verification was critical in retaining 

realistic results; however, the researchers could not find sufficient guidance in the literature on 
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appropriate lane use upstream of a work zone with a lane closure, so they used the thresholds 

given in Table 2-3 based on a late, or “zipper”, merge strategy. 

Table 2-3: Lane Use Balance Thresholds (Source: Yeom et al. 2016) 

Number of Lanes in 

Upstream Segment 
Minimum 

Expected Even 

Ratio 
Maximum 

Unconditional 

Minimum 

2 0.35 0.5 0.65 N/A 

3 0.23 0.33 0.43 0.15 

4 0.18 0.25 0.33 0.05 

 

 A total of 8,478 experiments were planned by varying each of the parameters listed in 

Table 2-2 from 100 to 700 percent of their default values. The complete calibration effort 

included verification of lane use balance and cross-checking of simulated capacity against 

predicted capacity from the model in the 6th edition of the HCM. Only model runs that produced 

results within the thresholds in Table 2-3 and the minimum and maximum values predicted by 

the HCM model were retained. Ultimately, only CC1 and CC2 produced valid results under all 

the tested lane configurations, so it was recommended that the remaining parameters be held at 

their default value apart from lane-changing distance. Regression equations for determining CC1 

while holding CC2 constant are given in Table 2-4, and generic guidance for driving behavior 

parameter settings is given in Table 2-5. 

Table 2-4: Regression Model for CC1 Estimation (Source: Yeom et al. 2016) 

Lane 

Configuration 
LCSI CC2 (ft) CC1 (s) Estimation Regression Model R2 Value 

4 to 3 0.44 39.36 -0.0015*avg. QDR + 3.9346 0.9950 

3 to 2 0.75 26.24 -0.0020*avg. QDR + 5.0041 0.9807 

4 to 2 1 26.24 -0.0019*avg. QDR +4.7155 0.9245 

2 to 1 2 23.62 -0.0023*avg. QDR + 5.3146 0.9913 

3 to 1 3 26.24 -0.0041*avg. QDR + 7.7741 0.9937 

4 to 1 4 39.36 -0.0022*avg. QDR + 4.7177 0.9694 
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Table 2-5: VISSIM Driving Behavior Parameter Guidance (Source: Yeom et al. 2016) 

Parameter VISSIM Default Recommended WZ Setting 

Car Following Parameters 

CC0 (ft) 4.92 Default 

CC1 (s) 0.90 Work Zone Configuration Specific 

CC2 (ft) 13.12 Work Zone Configuration Specific 

CC3 (s) -8.00 Default 

CC4 (ft/s) -0.35 Default 

CC5 (ft/s) 0.35 Default 

CC6 11.44 Default 

CC7 (ft/s2) 0.82 Default 

CC8 (ft/s2) 11.48 Default 

CC9 (ft/s2) 4.92 Default 

Lane-Changing Parameters 

Lane-Changing Distance (ft) 656.20 > 656.20 

Necessary lane change, 1 ft/s2 per distance (ft) 200.00 100.00 

Maximum Deceleration for Cooperative Braking (ft/s2) -9.84 -20.00 

 

CORSIM Case Study 

 

Lastly, a study by Heaslip et al. in 2009 used CORSIM to develop analytical models for 

estimating freeway work zone capacity (Heaslip et al. 2009). The authors felt that the 

methodology found in the 2000 edition of the HCM did not adequately address all factors that 

affect work zone capacity due to the limitations of field measurement and noted that simulation 

is a viable alternative. Their research objectives were: (1) develop analytical models for 2-1, 3-2, 

and 3-1 lane closures using the results of CORSIM simulation runs, (2) calibrate and refine these 

models using field data from a work zone in Jacksonville, Florida, and (3) compare the results to 

the HCM 2000 methodology. 

 In developing the simulation model, the following independent variables were initially 

considered: lane closure configuration, work zone length, lane closure side, work intensity, 
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volume distribution among lanes, distance of first warning sign upstream of the closure, and 

percentage of trucks. Pilot simulation runs revealed that CORSIM results were not sensitive to 

work zone length or lane closure side, so these variables were ultimately eliminated. However, 

the authors did comment that this is a limitation of CORSIM and that past research has indicated 

that these factors may indeed be significant to work zone capacity. As such, they recommended 

that future research re-examine these variables. The dependent variables gathered from each 

simulation run were: speeds by lane, vehicle lane distributions, time headways, and maximum 

throughput under congested conditions.  

 A diagram of the simulated network is given in Figure 2-6. Links (3,4) and (6,7) were 

varied depending on the distance of the first upstream warning sign to the lane closure, where the 

former was adjusted to ensure that the overall length of the network remained the same for all 

simulation runs. Links (2,3) and (4,5) were used to verify headway values upstream of the 

closure and ensure that erratic driving behavior was not occurring. The lane closure itself was 

modeled as an incident because this feature in CORSIM allows for the specification of a 

rubbernecking factor, which the authors used to model work intensity. 

 

Figure 2-5: Diagram of Simulated Network (Source: Heaslip et al. 2009) 

 

 The results of the study yielded three analytical models, one for each of the studied lane 

closure configurations, which the authors found to predict capacity to within 1% of field-

measurements. Using field data from the Jacksonville, Florida site and literature, further 
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adjustments were recommended to account for variation in lighting conditions, weather, and 

driver population, all of which could not be modeled in CORSIM. The analytical models are 

presented in Figure 2-7, but the reader is directed to Heaslip et al. for the full procedure. 

 

Figure 2-6: Analytical Models by Lane Configuration (Source: Heaslip et al. 2009) 

 

 Despite the seemingly promising results, several caveats of the research were presented. 

For example, it was noted that CORSIM constrained the simulation effort due to its lack of 

versatility in accounting for the effects of variables such as work zone length, lane closure side, 

and lane width. Furthermore, this study only used a single 3-2 lane closure in Florida to calibrate 

the simulation model, which brings the results for other lane configurations into question. Thus, 

the authors recommended that future research apply a larger field dataset and that CORSIM 

algorithms be modified to aid in work zone simulation modeling. 

2.7 SUMMARY 

 

 In summary, an expansive literature review was undertaken to assess the state of the 

practice in defining, measuring, and modeling freeway work zone capacity and motivate the 
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objectives of this thesis. On a broad level, it is evident that researchers still cannot agree on the 

most appropriate measure of freeway work zone capacity. While the most recent HCM 

methodology points to QDR as the most reliable and conservative measure of capacity at 

freeway work zones, research and agency practice strongly suggests that breakdown and queue 

formation be considered to drive work zone design and operations decisions. Since variability in 

instantaneous driving behavior and conditions in the work zone environment lead to variations in 

breakdown flow and QDR, there may be advantages to describing each with probability 

distributions rather than a single value.  

 The most accurate model of real traffic conditions comes from field data collection, 

which was the focus of most early freeway work zone capacity studies. However, these efforts 

require substantial time and money, and the extent of observations necessary to provide adequate 

data for constructing breakdown probability models is immense. Fortunately, recent research has 

suggested that simulation models may be a viable alternative to obtaining a large sample of 

capacity data under various work zone configurations. The focus of most of this work has been 

to provide practitioners with guidance in developing and calibrating such simulation models so 

that they may be applied to individual, localized work zones. That said, many agencies may not 

have the time or resources to generate these models, and might prefer to lean on deterministic 

methods, charts, or look-up tables when making work zone scheduling decisions. Therefore, past 

literature has revealed the need for full-scale work zone simulation models that provide data for 

practice-ready application. 
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CHAPTER THREE:  

METHODOLOGY 

 

 

3.1 INTRODUCTION 

 

The methods by which findings from the literature review were used to drive field data collection 

efforts, VISSIM model development, and final experiment design are discussed in this chapter.  

The first section provides an overview of the study work zone near Tuscaloosa, Alabama from 

which sequential speed, length, volume, and headway data were collected, screened, and 

processed. Next, VISSIM network coding and calibration are described in significant detail, as 

the validity of the results depended most strongly on the model development process. Lastly, the 

design of the factorial experiment used to generate breakdown probability models under various 

freeway work zone conditions is presented. 

3.2 SITE OVERVIEW AND DATA COLLECTION PLAN 

 

One of the primary objectives of this thesis was to produce realistic, generalizable results that 

could be transformed into a tool to be used by agencies and practitioners for rural freeways. As 

such, it was critical that simulation model outputs were validated using field-collected data. The 

research team coordinated with the Alabama Department of Transportation (ALDOT) to identify 

potential study work zones and ultimately selected a 2-1 lane closure on Interstate 59/Interstate 

20 (I-59/I-20) just south of Tuscaloosa, Alabama. A map of the site is provided in Figure 3-1 

along with the location of key pieces of temporary traffic control (TTC), as these TTC devices 
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Figure 3-1: Map of Study Work Zone (Traffic Data Source: ALDOT GIS) 
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were influential in coding the final VISSIM model. Specifically, simulated lane-changing 

behavior and vehicle speed distributions were determined in large part by the location of warning 

signage and reduced speed limits throughout the work zone. Note that in the figure, AADT and 

TDHV refer to annual average daily traffic and proportion of trucks in the traffic stream during 

the design hour, respectively. Likewise, K and D represent the proportion of daily traffic 

occurring during the peak hour and in the peak direction, respectively. It should be noted that this 

data was obtained from the nearest ALDOT permanent counting station and may or may not 

reflect exact conditions at the study work zone.  

 Data was collected during the 14-day period from October 3rd, 2016 to October 16th, 2016 

using a total of nine traffic sensors, deployed as shown in Figure 3-2. The NC350 BlueStar 

Portable Traffic Analyzer, manufactured by M.H. Corbin, was the chosen sensor for the study. 

Each sensor had the capability to collect speed, volume, length, and headway data at one-second 

intervals for up to 300,000 vehicles or 21 days, whichever occurred first. The product 

information specifies that each sensor is also accurate to within 4 mph for vehicle speeds, 4 feet 

for vehicle lengths, and 1% for vehicle counts (MH Corbin 2016).  

  

 

 

 

 

Figure 3-2: Traffic Sensor Deployment Scheme (drawing not to scale) 
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 The sensor deployment scheme shown in Figure 3-2 was developed based on findings 

from the literature review suggesting that there are three primary locations at which data should 

be collected: well upstream of the lane closure, between a quarter and half mile upstream of the 

lane closure, and just downstream of the lane closure. It should be noted that the labels given to 

each sensor in Figure 3-2 correspond to the last two or three digits of their respective serial 

numbers, which will be used throughout the remainder of this thesis for brevity. Sensors 96, 97, 

98, 100, 101, and 102 were placed with the intent to collect vehicle speeds in locations not 

influenced by downstream congestion due to the bottleneck; such speeds were ultimately used to 

develop free flow speed distributions in VISSIM for the non-work zone segment of the network. 

Sensors 99 and 103 were placed one half mile upstream of the bottleneck to observe queue 

propagation and dissipation due to breakdown events and to study lane distributions within the 

advance warning area. Lastly, sensor 104 was installed approximately 100 feet downstream of 

the beginning of the full lane closure to build desired speed distributions in VISSIM for the work 

zone segment of the network, identify breakdown events, and measure queue discharge flow 

rates.  

 Despite the relatively high accuracy of the NC350 traffic sensors, there were limitations 

to the data collection effort. Sensor 103 stopped collecting data before the end of the study 

period, the cause of which was determined to be a firmware issue after discussions with M.H. 

Corbin staff. In addition, the research team moved sensor 104 from the right lane to the left lane 

on October 6th, 2016 around 4:30PM because resurfacing operations were scheduled to shift to 

the right lane. Since the traffic switch did not actually occur until 7:00AM on October 8th, 2016, 

the number of available days to observe breakdown events was reduced. Finally, a comparison of 

the 14-day traffic volumes observed at each data collection location revealed significantly lower 
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vehicle counts at sensors 96 and 100, most likely due to their proximity to the on-ramp at Joe 

Mallisham Parkway. Consequently, these records were used exclusively for free flow speed data 

and VISSIM volume inputs were obtained from other upstream sensors.  

3.3 DATA SCREENING AND PROCESSING 

 

Even the most accurate sensors will occasionally produce erroneous measurements, so data 

screening was an especially vital component of this research. A combination of threshold- and 

traffic flow theory-based screening methods as proposed by Turochy and Smith were initially 

explored to identify obvious errors in the sensor data (Turochy and Smith 2000). Quick 

inspection of the dataset revealed that there were numerous vehicle records for which the speed 

or length was measured as zero or as an exceptionally high value. Further discussions with M.H. 

Corbin led to the discovery that the NC350 traffic sensors tend to measure unrealistic vehicle 

speeds and lengths during congestion, when prevailing speeds may be less than the equipment’s 

stated minimum of 5 mph. As a result, the first threshold set was a minimum speed of 5 mph, 

although other speed thresholds would later be considered. 

Regarding traffic flow theory-based methods, the observed values of headway (in seconds, 

from front bumper to front bumper) were often found to be inconsistent with the speed 

differential between successive vehicles. For instance, a headway of 1 second or less was 

frequently measured for two vehicles whose speeds differed by as much as 50 mph, suggesting 

that at least one of these records were erroneous. However, headway-based screening methods 

were ultimately abandoned for two reasons: (1) it was discovered that headway values were all 

rounded down to the nearest second, meaning that a value of 1 second could pertain to any 

headway between 1 and 1.99 seconds; (2) discarding records using other screening methods 

would invalidate the headway value for a given record. Therefore, several threshold- and 
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statistical-based screening methods were applied to the dataset as will be discussed in the 

following sections. 

3.3.1 Vehicle Lengths 

 

The first detailed screening effort that took place pertained to the distribution of vehicle lengths 

at the study work zone. For a VISSIM model to accurately replicate field conditions, it is crucial 

that simulated traffic is composed of the correct percentage of each vehicle class and that such 

vehicles are represented by their true lengths. While it was expected that there would be 

inconsequential variation among sensors with regards to vehicle lengths and that a prevailing 

distribution would be easily identified, this was not the case. Figure 3-3 provides an example of 

this discrepancy for sensors 101 and 102. The figure shows that sensor 101 consistently 

measured longer passenger cars and trucks than sensor 102 and supports the decision to pursue a 

statistical means of developing accurate length distributions. 

 

Figure 3-3: Vehicle Length Distributions for Sensors 101 and 102 
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The disagreement between sensors 101 and 102 was common among other sensors—the 

mean length for passenger cars was as small as 15 feet and as large as 20 feet, while the mean 

length for trucks varied between 63 feet and 82 feet. To address this issue, a multi-step procedure 

was utilized to address sensor error and estimate the true distribution of vehicle lengths: 

1. Common vehicle lengths were identified from literature (AASHTO 2011) to gain an idea 

of how lengths should be distributed for each vehicle class, and extreme values were 

discarded. 

2. The mean frequency of each observed vehicle length among the nine sensors was found 

to generate an average distribution. 

3. The bounds for a normal distribution were approximated for each vehicle class and the 

mean and standard deviation calculated. 

4. Upper and lower bounds for each vehicle class were set at two standard deviations away 

from the mean for each distribution. 

The frequency distribution representing the combination of all nine sensors is given in Figure 

3-4, where the average frequency of each length was calculated by dividing its total number of 

occurrences by nine. The disparity in vehicle length measurements for heavy trucks is 

underscored by the bimodal distribution found between 50 and 100 feet. However, the dotted line 

drawn to approximate a unimodal distribution has a peak between 73 and 75 feet, which is close 

to the 73.5-foot length of a WB-67 interstate semitrailer, a vehicle class composing 65% of all 

truck-miles in the United States (Harwood et al. 2003).  

Of more interest during the screening process, however, was defining upper and lower 

bounds beyond which vehicles would be declassified and not considered in determining overall 
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proportions of each vehicle class in the traffic stream. The results of the process outlined above 

are presented in Table 3-1, where the absolute upper and lower lengths for passenger cars and  

 

 

Figure 3-4: Volume-Weighted Vehicle Length Frequency Distribution 

 

heavy trucks are defined. Single unit trucks will later be accounted for in coding the VISSIM 

model but were not significant to the data screening process. To account for sensor error and 

eliminate the possibility of falsely rejecting accurate values, the upper and lower bound lengths 

were conservatively defined as 99 feet and 5 feet, respectively. All records with values of length 

outside of these bounds were discarded for subsequent analyses not involving raw vehicle 

volumes. For example, when calculating free flow speed distributions, even vehicles with 

reasonable values of speed were not considered if their length was unreasonable. 
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Table 3-1: Vehicle Classification Bounds 

 Mean (ft) Standard Deviation (ft) Lower Bound (ft) Upper Bound (ft) 

Passenger Cars 18.92 6.57 5.79 32.06 

Heavy Trucks 72.57 11.14 50.29 94.85 

 

3.3.2 Vehicle Speeds 

 

The second data screening process that took place was the validation and filtering of vehicle 

speeds to be used in constructing free flow speed distributions. Like the screening of vehicle 

lengths, a multi-step procedure was performed to ensure that only valid speeds were included in 

the non-work zone and work zone desired speed distributions to be coded in VISSIM. 

Specifically, three types of tests were used to eliminate erroneous records or those occurring 

under non-free flow conditions: 

1. Threshold Screening: Given the sensor manufacturer’s specifications and site conditions, 

the upper and lower bound speeds were defined as 99 mph and 5 mph, respectively. 

2. Statistical Screening: Speeds outside of two standard deviations from the mean speed for 

each 5-minute interval were discarded. 

3. Density Screening: Only speed records occurring during intervals with a density of less 

than or equal to 11 passenger cars per mile per lane (pc/mi/ln; equivalent to LOS “A”) 

were considered. While not erroneous, these records were not applicable to modeling free 

flow speeds. 

The number of records eliminated during each screening procedure are summarized in Table 

3-2. The threshold and statistical tests left most of the data intact, eliminating only 14% of the 

records, and would be applied for other portions of VISSIM model development such as the 

construction of time headway distributions. Density screening eliminated an additional 27% of 
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all speed records, primarily from sensors 99, 103, and 104, where queueing was frequently 

observed and traffic flow was constrained even during marginal flow rates due to the presence of 

the lane closure. The speed-flow diagram for sensor 104 revealed a that there were still a few 

unusually low speeds remaining during periods of low flow and density, but these were found to 

minimally affect cumulative distribution curves and were retained. 

Table 3-2: Vehicle Speed Screening Results 

Sensor 

Group 

Raw 

Data 

After Threshold 

Screening 

After Statistical 

Screening 
After Density Screening 

 Records 
Records 

Retained 

Cumulative

% Removed 

Records 

Retained 

Cumulative

% Removed 

Records 

Retained 

Cumulative

% Removed 

96, 100 

(3.5 Miles) 
179,194 163,594 8.7% 155,099 13.4% 149,994 16.3% 

97, 101 

(2.5 Miles) 
187,845 179,339 4.5% 170,747 9.1% 150,632 20% 

98, 102 

(1.5 Miles) 
188,440 170,639 9.4% 162,914 13.5% 120,975 36% 

99, 103 

(0.5 Miles) 
161,573 146,346 9.4% 117,132 27.5% 87,808 46% 

104 (Lane 

Closure) 
163,598 158,767 3.0% 151,773 7.2% 22,118 86% 

Total 880,650 818,685 7.0% 757,665 14.2% 531,527 41% 

 

 Once only valid free flow speeds remained, desired speed distributions could be built and 

later applied in the VISSIM model. Given differences in driving behavior and vehicle 

performance, separate distributions were necessary for heavy trucks and passenger cars. 

However, single unit trucks were assumed to account for a negligible proportion of the traffic 

stream and follow the same speed distribution as passenger cars. Since each sensor was found to 

measure different truck length distributions, the lower bound length defining the cutoff between 

passenger cars/single unit trucks and heavy trucks was calculated independently for each, as 

summarized in Table 3-3. 
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Table 3-3: Vehicle Length Cutoff Values 

Sensor Mean Truck Length (ft) Std. Dev. (ft) Lower Bound Length (ft) 

96 68 7 55 

97 65 9 48 

98 81 9 64 

99 79 9 61 

100 82 9 64 

101 76 8 59 

102 69 8 54 

103 76 7 62 

104 63 7 50 

Weighted Average 73 11 50 

 

Using these thresholds, a total of 18 speed distributions (nine sensors x two vehicle types) 

were constructed with the intent to use the weighted average of the eight upstream sensors for the 

non-work zone segment of the model and utilize the downstream sensor for the work zone 

segment. That said, observation of the lane-specific speeds upstream of the closure taper 

revealed that the mean speed of vehicles traveling in the left lane was much lower than that of 

those traveling in the right lane—a counterintuitive relationship. These findings are highlighted 

in Table 3-4, which shows this to be the case for the sensors 2.5 and 3.5 miles upstream of the 

lane closure. It was hypothesized that the portable changeable message signs shown in Figure 3-

1 may have been responsible for higher-speed traffic merging into the right lane well ahead of 

the closure, but this theory could not be confirmed. As such, free flow speeds at sensors 98, 102, 

99, and 103 were assumed to be most representative of speed behavior upstream of the lane 

closure and were adopted in VISSIM. These distributions are shown in Figure 3-5 and Figure 3-

6. For brevity, the free flow speed distribution for sensor 104 will not be shown here, but will be 

described in section 3.4.  
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Table 3-4: Summary of Lane-Specific Mean Free Flow Speeds 

Location Vehicle Class Sensor Eligible Volume Mean Speed (mph) 

3.5 Miles Upstream 

Passenger Cars 
96 53924 71 

100 54738 81 

Trucks 
96 6523 67 

100 34808 75 

2.5 Miles Upstream 

Passenger Cars 
97 53851 64 

101 54102 72 

Trucks 
97 8705 60 

101 33973 69 

1.5 Miles Upstream 

Passenger Cars 
98 52797 79 

102 36452 63 

Trucks 
98 12715 73 

102 19011 59 

1/2 Mile Upstream 

Passenger Cars 
99 44730 78 

103 19278 72 

Trucks 
99 13605 71 

103 10195 67 

Downstream of 

Taper 

Passenger Cars 104 13505 51 

Trucks 104 8613 48 

 

 

Figure 3-5: Upstream Free Flow Speed Distributions 
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 The figure highlights a significant difference in speed by lane and vehicle type, 

reinforcing the need to include separate desired speed distributions for passenger cars and trucks 

and for the right and left lanes. Though a single, volume-weighted distribution could have been 

applied to both lanes in VISSIM, it was determined that the use of two distinct distributions 

would more accurately distribute fast- and slow-moving vehicles in the model. This conclusion 

was drawn based on the assumption that upstream lane distributions in the field reflected the 

desire of aggressive, fast-moving vehicles to travel in the left lane, while most heavy vehicles 

and slow-moving passenger cars traveled in the right lane.  

3.3.3 Exploration of Field Data 

 

Prior to developing and evaluating the VISSIM model, field data was examined so that 

typical traffic conditions could be characterized and understood. Since this research focused on 

studying the breakdown phenomenon at rural freeway work zones, time intervals just prior to 

and during congestion were of the most interest. Over the course of the data collection period, 12 

major breakdown events were observed using a breakdown identification algorithm that required 

average speeds to be below 35 mph for at least 15 minutes. This algorithm was selected based on 

suggestions from the literature and the definition of breakdown in the HCM, which requires that 

speeds be maintained at least 25% below the free flow speed for at least 15 minutes.  

The declaration of breakdown and recovery from breakdown both occasionally required 

the use of engineering judgement, particularly when prevailing speeds prior to sustained periods 

of congestion hovered near the threshold for several time intervals. A complete summary of 

every breakdown event at 5- and 15-minute aggregation intervals is provided in Appendix A, but 

an abbreviated synopsis is given in Table 3-5 to show the range of variation in PBC, QDR, and 

truck percentage for each congested period. From this point forward, a PCE of 2.0 (the default 
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for level terrain in the 6th edition of the HCM) was used in all volume conversions unless stated 

otherwise. 

Table 3-5: Summary of Breakdown Events at Study Work Zone 

 
Maximum Pre-

Breakdown Flow Rate 

(pcphpl) 

Breakdown Flow Rate 

(pcphpl) 
Average QDR (pcphpl) 

% 

Trucks 
 

 15-Minute 

Intervals 

5-Minute 

Intervals 

15-Minute 

Intervals 

5-Minute 

Intervals 

15-Minute 

Intervals 

5-Minute 

Intervals 

All 1161 1324 1115 1169 1049 1052 25% 

Left Side 

Closure 
1125 1309 1065 1140 1035 1045 27% 

Right Side 

Closure 
1206 1342 1178 1205 1066 1060 22% 

Minimum 1071 1256 989 802 936 990 16% 

Maximum 1270 1392 1270 1338 1256 1256 32% 

 

The table above was organized so that differences in traffic conditions could be 

highlighted for varying lane closure side, truck percentage, and aggregation interval. Several 

interesting findings were made that would ultimately drive subsequent decisions during model 

development and data analysis. For example, despite the study site having a TDHV of 26%, the 

proportion of heavy trucks in the traffic stream varied between 16% and 32% during the two 

hours prior to each breakdown event and throughout the duration of queue discharge. This can 

partially be explained by the fact that work zones are a source of non-recurring congestion and 

may cause queueing at any point throughout the day, during which truck percentage varies 

greatly. That said, one should still expect the truck percentage for the same hour to vary by a 

relatively large amount from day to day, so this finding was not surprising. Nonetheless, care 

was taken to ensure that an appropriate range of truck percentages were observable in VISSIM, 

even with static inputs for vehicle compositions, so that field conditions could be accurately 

replicated.  
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 Regarding lane closure side, a stark difference in all three measures of throughput was 

observed between the right- and left-side closure. The maximum pre-breakdown flow rate, 

breakdown flow rate, and QDR were 7.2%, 10.6%, and 2.9% higher, respectively, when the right 

lane was closed if measured using 15-minute aggregation intervals. Figures 3-6 and 3-7 give 

another visualization of this trend by showing the approximate flow vs. density curve for each 

lane closure configuration, where the flow rate and density at capacity are both higher for the 

right-side lane closure. The fitted curves shown in the figure were developed based on 

Greenshields’s model, which assumes the relationship between flow and density is parabolic. 

Even though small sample size made it difficult to discern how much of this difference was due 

to chance or exogenous factors, this finding helped reaffirm the decision to include lane closure 

side as a variable of interest in the final experiment.  

 

Figure 3-6: Flow vs. Density Curve (Left-Side Closure) 
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Figure 3-7: Flow vs. Density Curve (Right-Side Closure) 

 

Lastly, it was found that the choice of aggregation interval had a significant effect on 

flow rates measured prior to breakdown, while queue discharge flow rates were relatively 

consistent between the two. This coincides well with findings from the literature review, where 

several authors noted that aggregation intervals smaller than 15 minutes will capture abrupt 

oscillations in traffic volume, which often consist of high flow rates sustained over short periods 

of time. Since traffic flow generally stabilizes in the presence of a queue, it is intuitive that there 

is less variation among 5-minute flow rates in these situations and that such volumes are 

approximately equivalent to their corresponding 15-minute flow rates. When formulating the 

factorial experiment in VISSIM, an aggregation interval needed to be selected, so a dilemma 

arose: from a research perspective, the use of 5-minute aggregation intervals would allow for 

more precision when declaring breakdown events and thus most accurately account for the effect 
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of the studied variables on work zone capacity. However, from a practical standpoint, agencies 

are most likely to have 15-minute volumes on hand, and such flow rates would more 

conservatively estimate breakdown probability distributions. Given the benefits of both options, 

it was decided that 5- and 15-minute aggregation intervals would both be explored and 

compared, as will be discussed in Chapter Four.  

 

3.4 VISSIM MODEL DEVELOPMENT 

 

After screening, processing, and aggregating the field data, the traffic inputs for a base VISSIM 

model could be developed. In addition to the sources cited within the literature review 

previously, microsimulation guidelines from several state DOTs including Florida, Oregon, 

Washington, and Virginia were utilized to help inform coding and calibration decisions 

(Dowling et al. 2004; Florida Department of Transportation 2014; Park and Won 2006; 

Washington State Department of Transportation 2014). Though the guidance provided by past 

work zone simulation case studies and sensitivity analyses provided a starting point from which 

to work, characteristics of the work zone used to calibrate the model in this study required many 

of the software’s default parameters to be adjusted manually. This section will discuss setup of 

basic VISSIM network geometry, selection of volume inputs, fine-tuning of desired speed 

distributions, modification of key truck characteristics, and construction of time headway 

distributions.  

3.4.1 Basic Network Coding 

 

The first step in generating the work zone simulation network was coding basic geometric 

elements such as links, connectors, and their respective lengths and widths. Using the Bing Maps 

interface within VISSIM, it was possible to draw the entire network to scale with a high degree 
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of accuracy. Once drawn, the network was inspected to make sure that link lengths and lane 

widths matched those measured in the field and that other key components such as static routing 

decisions, desired speed decisions, and data collection points were at their ideal locations. It 

should be noted that despite having data from field sensors at 3.5 miles upstream of the lane 

closure, the VISSIM network began 2.5 miles upstream, primarily due to the volume 

measurement error for sensors 96 and 100 mentioned in Section 3.2. A simple drawing of the 

network is provided in Figure 3-8, which was sketched outside of the VISSIM software and does 

not include representation of the horizontal curvature found in the field. 

 

Figure 3-8: Diagram of VISSIM Network (drawing not to scale) 

 As noted previously, the location of TTC devices in the field played a key role in the 

network setup process. Referring to Figure 3-1, the “transition” desired speed decision point 

pictured above was included so that the model could replicate the effects of the drop from a 

speed limit of 70 mph to a speed limit of 60 mph 2000 feet upstream of the lane closure. The 

“___ Lane Closed ½ Mile” sign in the field also motivated the decision to set the lane-changing 

distance upstream of the one-lane connector to 3000 feet, where it was anticipated that drivers 

could first visualize this sign. The last notable component of the diagram is the placement of data 
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collection points at ½ mile upstream and 100 feet downstream of the lane closure. The former 

would be used in the calibration process to verify upstream speeds and queue propagation, while 

the latter would be used to detect breakdown events, measure queue discharge flow rates, and 

gather average vehicle speeds within the work zone during each simulation run. Each of these 

components will be discussed in greater detail in the sections that follow, as extensive thought 

was involved in most model development decisions. 

3.4.2 Volume Inputs and Traffic Stream Composition 

 

The breakdown events summarized in Table 3-5 revealed a high amount of variability in the field 

data, so it was desired to develop a calibrated VISSIM model from a day representing typical 

conditions at the study work zone. After examining the full dataset, it was determined that traffic 

characteristics on October 3rd were the most representative, so volume inputs and relative vehicle 

class proportions were extracted from that day’s data. Figure 3-9 provides a plot of 15-minute 

average speed and flow versus time on October 3rd and shows that a significant breakdown event 

was observed from approximately 1:45PM to 6:30PM. Available microsimulation guidance 

suggests that periods of congestion should be modeled with uncongested time intervals at the 

beginning and end of the study period to produce realistic results, so the model was coded to run 

from 11:45AM to 8:00PM. An additional 15 minutes from 11:45AM to 12:00PM was included 

despite not having field data for these intervals as a warm-up period to allow the model to reach 

equilibrium. Since literature has shown that freeway segments change state from stable flow to 

breakdown in brief time increments (Elefteriadou et al. 1995), 5-minute input volumes were 

coded in VISSIM to capture the same oscillations in traffic demand that were observed in the 

field.  
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Figure 3-9: Speed and Flow vs. Time on October 3rd, 2016 

 

 As discussed earlier, the proportion of each vehicle class in the traffic stream was crucial 

for replicating field conditions, since heavy vehicles perform differently than passenger cars and 

queue length is sensitive to vehicle lengths. To account for sensor error and capture the actual 

percentage of heavy vehicles measured in the field during each time interval, the screening 

thresholds set in Section 3.3.1 were adopted to reduce the full set of raw vehicle records to a set 

of “classified” records from which proportions of vehicle classes would be determined. The 

number of trucks in each time interval were counted using the lower bound lengths of each 

sensor as defined in Table 3-3, then divided by the “classified” volume to calculate a best 

estimate of the truck percentage during each 5-minute interval. Finally, this percentage was 

multiplied by the raw volume of vehicles observed to obtain an adjusted truck volume for use in 

calculating passenger car equivalent flow rates. The same process was applied for 15-minute 
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interval data, as these flow rates would eventually be used as a measure of calibration. The 

results of this process are exemplified in Table 3-6. 

Table 3-6: Example of Adjusted Truck Volumes 

Time 
Raw 

Volume 

Raw Truck 

Volume 

Classified 

Volume 

% 

Trucks 

Adjusted Truck 

Volume 

Adjusted Flow 

Rate (pcphpl) 

1:30:00 PM 75 19 69 28% 21 1148 

1:35:00 PM 65 16 61 26% 17 985 

1:40:00 PM 94 20 90 22% 21 1379 

1:45:00 PM 71 6 68 9% 6 927 

1:50:00 PM 73 14 70 20% 15 1051 

1:55:00 PM 80 22 77 29% 23 1234 

2:00:00 PM 67 13 60 22% 15 978 

2:05:00 PM 61 17 58 29% 18 947 

2:10:00 PM 83 13 80 16% 13 1158 

2:15:00 PM 63 14 63 22% 14 924 

2:20:00 PM 81 23 80 29% 23 1251 

2:25:00 PM 78 12 77 16% 12 1082 

2:30:00 PM 63 8 61 13% 8 855 

 

 The percentage of single unit trucks for each time interval was calculated using a similar 

procedure, where the length bounds for such vehicles were determined from the upper bound 

passenger car lengths and lower bound truck lengths for each individual sensor. The reader may 

refer to Table 3-3 and to Appendix A to see how these values were determined, but in general, 

single unit trucks were classified as vehicles 25-50 feet in length. The relative proportion of each 

vehicle class is given in Table 3-7, along with the static, rounded length assigned to each. It was 

assumed that defining multiple classes of vehicles within passenger cars, trucks, and single unit 

trucks to account for a finer distribution of lengths was not necessary, and those included in the 

table were believed to produce nearly identical results in the model. 
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Table 3-7: Base VISSIM Model Vehicle Composition Input 

Vehicle Class 
Relative Proportion of Traffic Stream  

Right Lane Left Lane Total Length (ft) 

Passenger Cars 54% 71% 62% 16 

Heavy Trucks 37% 12% 26% 74 

Single Unit Trucks 9% 17% 12% 32 

 

3.4.3 Desired Speed Distributions 

 

The desired speed decision points pictured in Figure 3-9 were initially coded to match field-

calculated distributions, such as those shown in Figures 3-5 and 3-6. In fact, the “transition” 

speed decision was omitted at first, and two desired speed distributions were applied—non-work 

zone and work zone. However, pilot simulation runs conducted at low input volumes revealed 

that speeds measured at the downstream data collector were approximately 10-20 mph higher 

than indicated by the field data under free flow conditions. As mentioned earlier, inspection of 

project traffic control reports revealed that there was a 60-mph reduced speed limit in place 

upstream of the closure for the duration of the work, so an additional desired speed decision 

point was added at this location. Since none of the sensors measured speeds between the speed 

limit change and the beginning of the lane closure, a representative speed distribution was built 

with a mean of 62 mph and standard deviation equal to that of upstream conditions. Trial and 

error in VISSIM revealed that these specifications produced speeds closest to those observed in 

the field at the bottleneck. Each of the three distributions were coded in VISSIM using the 10th, 

25th, 35th, 50th, 75th, 85th, and 95th percentile speeds and are presented in Table 3-8. 

 

 



 

58 

 

Table 3-8: VISSIM Desired Speed Distributions 

Speed Distribution Vehicle Class 

Mean 

Speed 

(mph) 
 

Percentile 

10th 25th 35th 50th 75th 85th 95th 

Non-Work Zone (Right Lane) 
Passenger Cars 65 59 65 68 71 76 78 83 

Trucks 60 57 61 63 65 69 70 74 

Non-Work Zone (Left Lane) 
Passenger Cars 79 65 73 76 80 88 91 97 

Trucks 72 62 66 69 72 77 80 86 

Transition (All Lanes) All 62 53 57 60 62 67 68 73 

Work Zone (All Lanes) 
Passenger Cars 51 42 46 48 51 55 59 64 

Trucks 48 42 44 46 47 51 53 55 

 

 The complete free flow speed distributions for every sensor are provided in Appendix A, 

where one will note that the percentile values for the non-work zone distributions do not match 

those for any one sensor. Instead, the desired speed distribution upstream of the work zone was 

calculated from a weighted average of sensors 98, 99, 101, and 102. Additionally, the right-lane 

non-work zone speed distribution percentiles each had to be increased by 5 mph to replicate 

field-measured speeds in VISSIM. Even with such adjustments, it will be seen in a later section 

that the model could not be calibrated to match speeds perfectly, which literature has cited as a 

limitation of VISSIM (Kan et al. 2014). Nonetheless, the distributions above were deemed 

adequate since the results of this study were intended to be generalizable and prevailing speeds 

will vary between work zone sites. 

3.4.4 Modification of Key Truck Characteristics 

 

The components detailed in the previous three sections were combined with default driving 

behavior parameters in VISSIM and the initial performance of the model was evaluated. After 

further research, it was found that the default power, weight, and acceleration distributions for 

heavy trucks in VISSIM are not representative of the U.S. truck fleet, but rather of the lighter and 
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faster trucks found in Europe (Edara and Chatterjee 2010; Harwood et al. 2003; PTV Group 

2017). By modifying truck acceleration capabilities to reflect those of the U.S. fleet, it was found 

that congestion could be modeled at much more reasonable values of other calibration 

parameters, so assigning proper truck characteristics warranted further investigation. 

 First, potential sources of accurate truck weight distributions were explored. Fortunately, 

a past study by Turochy, Timm, and Mai applying weigh-in motion (WIM) data from ALDOT 

infrastructure revealed that there is a WIM station (ID 918) on I-59/I-20 at MP 100.0, just 30 

miles north of the study work zone (Turochy et al. 2015). Data from this station was imported 

into Microsoft Access, where a weight distribution was calculated and exported to VISSIM. The 

power distribution for U.S. trucks was generated by assuming an average value of 328 

horsepower, which matches that provided in NCHRP Report 505 for interstates in the eastern 

United States (Harwood et al. 2003). Table 3-9 compares the default weight and power 

distributions for heavy trucks in VISSIM to those applicable to the southeastern U.S. truck fleet 

and shows only a slight difference between the two. However, since truck power-to-weight ratios 

define maximum truck acceleration in VISSIM, they are critical to accurately modeling scenarios 

with a high percentage of trucks in the traffic stream.  

Table 3-9: Comparison of Truck Power and Weight in VISSIM 

Percentile Weight (lb), Default Weight (lb), Adjusted 
Power (kW), 

Default 

Power (kW), 

Adjusted 

0th 6,174 13,402 150 168 

5th 10,275 29,831 163 171 

25th 26,681 41,890 213 208 

35th 34,883 47,483 238 221 

50th 47,187 57,620 275 256 

75th 67,694 70,203 338 282 

85th 75,896 72,825 363 303 

95th 84,099 76,146 388 387 

100th 88,200 115,819 400 406 
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 Conversely, there is a dramatic difference between the default truck acceleration curve in 

VISSIM and that of typical U.S. interstate semitrailers. Researchers at TTI found this to be the 

case in a 2006 study, but chose not to modify default values in VISSIM due to a lack of recent 

truck performance data (Middleton et al. 2006). A 2016 study of truck standstill acceleration at 

ramp meters in Florida, however, contended that the acceleration capabilities of heavy trucks in 

the U.S. have not improved much over time and provided detailed, updated curves for trucks 

with various weight-to-power ratios (Yang et al. 2016). To further justify the modification of 

these values in VISSIM, the truck acceleration curves in CORSIM were checked and found to 

align with those in the literature, as shown in Figure 3-10. Specifically, the acceleration curves 

for medium-loaded and fully-loaded tractor-trailers is represented by performance indices 5 and 

6 (PI 5 and PI 6), where acceleration values from a standstill are just above 2 ft/s2. 

 

Figure 3-10: CORSIM Vehicle Acceleration Curves (Source: FHWA) 

.  
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In VISSIM, the acceleration curve for trucks starts at 8.2 ft/s2, which is nearly equivalent 

to that used for buses in CORSIM. Therefore, starting acceleration values between 2 and 3 ft/s2, 

followed by a decreasing function similar to that in Figure 3-10, were evaluated in VISSIM 

through trial and error until the most appropriate distribution was settled on. Figure 3-11 

compares the default desired acceleration function in VISSIM with that developed from literature 

review and calibration to illustrate the disparity between the two. 

 

Figure 3-11: VISSIM Default vs. Calibrated Truck Acceleration 

 

 When comparing Figure 3-10 and Figure 3-11, it may be noted that the modified truck 

acceleration curve used in VISSIM is slightly more conservative than that used in CORSIM. 

Review of the VISSIM User’s Manual led to the finding that minimum and maximum 

acceleration values can be set at each speed, where the power-to-weight ratio of the heavy 

vehicle determines the exact value modeled (PTV Group 2017). Therefore, while the graph 
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more closely to the values in Figure 3-10. Furthermore, acceleration curves closer to the default 

in VISSIM were initially tested but determined not to replicate field speeds and flow rates 

without modifying other driving behavior parameters beyond reason. Lastly, the aforementioned 

work by Yang et al. in 2016 yielded a mean and 85th percentile standstill acceleration of 1.93 ft/s2 

and 2.24 ft/s2, respectively, for heavy trucks. Since this was found to be the most recent vehicle 

performance study conducted to date, the values applied in VISSIM were thought to be 

reasonable and accurate.  

3.4.5 Time Headway Distributions 

 

Finally, the parameter found most critical to model development was desired time headway. 

Given that headway is the inverse of traffic flow, it is not surprising that sensitivity analyses 

have typically concluded that the corresponding value of CC1 in VISSIM is the most influential 

in determining modeled throughput. Despite this, literature review of calibration methodology 

showed that many analysts select candidate values of time headway and other driving behavior 

parameters at random, then simply choose the values that best replicate field conditions. While 

this may produce valid data for a specific site and time period, it does not adequately capture the 

randomness of traffic flow and inherent variability that would be observed at a single site over 

time. Dong et al. noted this issue in a 2015 report and proposed that time headway parameters in 

microsimulation models be set based on field distributions if available (Dong et al. 2015). Such 

methodology would eliminate combinations of model parameters that may reproduce field 

conditions only with infeasible values of time headway, while also potentially reducing the time 

required for calibration.  

 The same study measured vehicle class-separated time headway and standstill distance on 

Iowa highways and found that both values depend on vehicle following pairs. Specifically, 



 

63 

 

passenger cars were found to maintain shorter headways in general than heavy vehicles, but also 

maintained longer headways when following tractor-trailers. Several other studies have been 

conducted in the past and drawn similar conclusions, suggesting that traffic flow can be modeled 

more accurately if separate headway distributions are constructed for passenger cars and heavy 

vehicles (Houchin 2015). Despite the validity of these claims, field-calculated headway 

distributions could not be modeled in VISSIM prior to version 9, as the value of CC1 was static. 

Consequently, this thesis is believed to be one of the first work zone simulation studies to apply 

stochastic, vehicle class-specific headway distributions measured from field data. 

 Like the calculation of speed distributions, constructing time headway distributions 

required significant filtering of the data. Unlike for speed data, however, headway calculations 

were only valid if the order of vehicle records was maintained. To ensure that this condition was 

not violated, the data was not sorted or deleted during the entire process. Rather, several 

indicator columns were populated to designate whether a specific following pair was to be 

considered in developing headway distributions. Using traffic flow theory principles and the data 

screening procedure detailed in Section 3.3, three screening tests were created to determine if a 

given headway value was valid: 

1. Speed Screening: Only following pairs where the speed of both vehicles was greater than 

5 mph, less than 100 mph, and within two standard deviations of the average speed for a 

given 5-minute time interval were considered. 

2. Length Screening: Both vehicles in a following pair were required to have lengths 

greater than 5 ft and less than 100 ft. 
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3. Flow Screening: To ensure that a following vehicle’s choice of speed was constrained by 

a leading vehicle, only time intervals with flow rates greater than or equal to 1,000 

pcphpl were examined. 

This procedure was executed only for data from sensor 104, as it was expected that driving 

behavior within the work zone would be different from that upstream due to the changes in 

roadway environment. After applying the three tests listed above, approximately 65,000 vehicle 

following pairs remained and were used to calculate time headway distributions for each vehicle 

class. Initially, however, it was discovered that large headways greater than 6 seconds were 

unusually common at low following speeds. Further investigation led to the hypothesis that 

longer headways were measured for trucks when following passenger cars due to differences in 

vehicle acceleration capabilities. Thus, vehicles with speeds less than 35 mph (the speed 

threshold later used to determine the onset of breakdown) were ultimately excluded from 

headway analysis to eliminate this potential scenario.  

Histograms of time headway for passenger cars and trucks at the study work zone are 

provided in Figures 3-12 and 3-13, where a clear difference may be observed between the two 

distributions. Interpretation of these graphs and the final VISSIM input require understanding of 

two main ideas: (1) the sequential data collected by sensors in this study measured the arrival 

time of vehicles to the nearest whole second, so analysis at finer increments was not possible; (2) 

the CC1 parameter in VISSIM is a portion of the desired safety distance between a lead and 

following vehicle, which is measured from front bumper to rear bumper, rather than front 

bumper to front bumper. As shown in Figure 3-14, this value is also shortened by the value of the 

standstill distance, CC0. That said, it was assumed that the distributions shown in the figures 

would need to be reduced by several tenths of a second to accurately reproduce field conditions.  
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Figure 3-12: Field Headway Distribution (Passenger Cars) 

 

Figure 3-13: Field Headway Distribution (Trucks) 

 

 

Figure 3-14: Desired Safety Distance in VISSIM 
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The last step in developing appropriate headway input for VISSIM was reducing the 

distributions shown in the figures to a set of reasonable values. For example, even at high flow 

rates, a headway of 10 seconds between two vehicles is likely due to circumstances beyond the 

selection of such a distance by drivers. Although literature has suggested typical maximum 

desired headways of 4-6 seconds, the field data was further scrutinized to set this threshold. For 

both passenger cars and trucks, the difference between successive headway intervals was plotted 

to observe the point at which no meaningful change in frequency occurred. These graphs are 

given in Figures 3-15 and 3-16. 

 

Figure 3-15: Change in Headway Frequency (Passenger Cars) 

 

 
Figure 3-16: Change in Headway Frequency (Trucks) 
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 Based on the figures, the maximum desired headway ranges used in VISSIM were 5-6 

seconds and 6-7 seconds for passenger cars and trucks, respectively. In model calibration, each 

point on these distributions was reduced uniformly to consider the portion of desired safety 

distance accounted for by vehicle length and standstill distance. It was determined that doing so 

would change measures of central tendency without changing the variances of the distributions. 

Table 3-10 summarizes the initial headway distributions applied in VISSIM for the CC1 

parameter, while calibrated values will be discussed in the next section. 

Table 3-10: VISSIM Input Desired Headway Distributions 

Headway (s) 
Passenger Cars Trucks 

Frequency Below % Below Frequency Below % Below 

1 577 1% 0 0% 

2 11618 43% 151 2% 

3 9545 76% 1845 27% 

4 3607 89% 2251 57% 

5 1835 96% 1543 77% 

6 1246 100% 993 90% 

7 -- -- 724 100% 

 

3.5 CALIBRATION AND VALIDATION 

 

Even when field geometry, volume, and speed data are carefully entered, simulation models may 

not acceptably replicate field conditions if default vehicle characteristics and driving behavior 

parameters are used. Accordingly, these parameters must be iteratively modified until the model 

is deemed to be reasonably calibrated. After achieving calibration, it is common practice to 

validate a simulation model using independent data from the same site to test its predictive 

abilities. While this process is often the most time-consuming part of developing 

microsimulation models, it is paramount to producing realistic outputs and drawing meaningful 

conclusions. This section describes the procedure used to evaluate the base VISSIM model 
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described in Section 3.4, define and modify significant input parameters, and validate the 

calibrated parameter set against field-collected measures of effectiveness (MOEs).  

3.5.1 Calibration Methodology 

 

Since the end users of a potential tool developed from this thesis are agencies and practitioners, 

guidance was taken from typical reference material prepared by and for these groups. As 

mentioned in the previous section, these sources included the FHWA Traffic Analysis Toolbox, 

reference manuals from state DOTs, and literature specific to freeway work zones (Dowling et 

al. 2004; Florida Department of Transportation 2014; Park and Won 2006; Washington State 

Department of Transportation 2014). Such methodology involves generating a reasonable 

number of calibration parameter combinations and choosing the set of values that best matches to 

field-collected MOEs. However, the time required for calibration can quickly balloon if 

parameters are not selected carefully and objectives are not well-defined.  

To maximize efficiency, the literature generally suggests that the following steps be 

followed when calibrating microsimulation models:  

1. Define calibration objectives: Select at least two MOEs (e.g. throughput, travel time, 

speed) that may be used to compare simulation outputs to field data. Define an 

acceptable amount of deviation from field data using statistical measures such as root 

mean square normalized error (RMNSE) or mean absolute percentage error (MAPE). 

2. Perform multiple simulation runs with the default parameter set: Verify that the model is 

not adequately calibrated with default parameters.  

3. Select Calibration Parameters: Determine which parameters are most significant to the 

calibration objectives. The number of remaining parameters should be minimized. 
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4. Determine Feasible Range of Values: Use pilot simulation runs to determine the range of 

values that should be explored for each parameter.  

5. Search for Optimal Parameter Set: Iterate with each parameter set, collect MOEs, and 

choose the combination that best reproduces field data. 

6. Fine-Tune: Visually inspect the simulation animation and make minor changes as 

necessary to ensure realistic driving behavior and best match outputs to field conditions. 

The six steps listed above were adhered to throughout calibration to minimize the effort 

necessary to achieve a satisfactory model. Based on the variability observed in the field data, 

sensor error, and past practice in literature, modest calibration objectives were set. Since most 

analyses performed by researchers and practitioners are conducted for facilities with recurring 

sources of congestion, it was expected that calibrating to a non-recurring source of congestion 

such as a work zone would be challenging. Therefore, the objectives summarized in Table 3-11 

were found acceptable for this research. 

Table 3-11: Calibration Objectives 

Measure of Effectiveness Measurement Location Calibration Metric(s) 

15-Minute Average Speed (mph) Lane Closure (Sensor 104) 
RMSNE < 0.20 

MAPE < 20% 

Mean Queue Discharge Rate (pcphpl) Lane Closure (Sensor 104) Within 10% of Field Value 

Queue Propagation and Dissipation 1/2 Mile Upstream (Sensors 99, 103) Qualitative 

 

 The findings from the literature and early experimentation in VISSIM indicated that the 

most significant parameters to replicating the congested conditions observed in the field were 

CC0, CC1, CC2, SRF, lane-changing distance, and desired acceleration for heavy vehicles (the 

reader may refer to Chapter Two for definitions of these parameters). As such, the calibration 

effort focused on modifying these six variables until model performance was acceptable. 
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However, even six changeable parameters were thought to be excessive, so strategies were 

developed to reduce the number of candidate variables and the ranges of their values. First, 

though many have found the CC2 parameter to be influential to modeled throughput, guidance 

from literature and pilot simulation runs suggested that more realistic driving behavior could be 

observed by holding this value at its default of 13.12 feet (Washington State Department of 

Transportation 2014). Second, the SRF is highly dependent on the value of the lane-changing 

distance, which was held constant at 3000 feet, so this value was also held static at its default 

value of 0.60.  

This logic reduced the final set of calibration parameters to CC0, CC1, and desired truck 

acceleration. Though the latter two parameters were initially modified as outlined in Sections 

3.4.4 and 3.4.5, it was expected that additional changes would be necessary before reaching 

calibration. For example, it was noted earlier that the time headways calculated from field data 

would likely need to be reduced since a portion of time headway in VISSIM is accounted for by 

the standstill distance and following variation parameters. For desired truck acceleration, six 

candidate distributions were developed based on literature review and intended to bracket typical 

values with mean standstill acceleration between 2 and 3 ft/s2. Finally, the range for CC0 was 

based on anecdotal experience and field-measured values from a study in Iowa (Dong et al. 

2015; Houchin 2015). Table 3-12 shows the ranges and search increments explored for each 

parameter, where the empirical distribution referenced for CC1 corresponds to the values found 

in Table 3-10.  
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Table 3-12: Calibration Parameter Ranges 

Parameter Default 
Feasible Range 

(Literature) 
Explored Range Increment 

CC0 (ft) 4.92 > 4.92 8 - 16 2 

CC1 (s) 0.9b 0.9 - 4.0b 

Empirical 

distribution reduced 

by 0.1 – 0.7 

0.1 

Desired Truck 

Acceleration (ft/s2)a 8.2 < 8.2 2.0 - 3.0 0.2 

a Mean acceleration from a standing start 
b Static values 

 

3.5.2 Calibration Results 

 

If every possible combination of the three parameters in Table 3-12 was checked, the result 

would be 210 unique cases (five values of CC0 x seven time headway distributions x six desired 

truck acceleration distributions), which would require extensive effort. Fortunately, since each 

parameter is potentially correlated with the others, several extreme scenarios could be 

eliminated. For example, high values of CC0 and low values of desired truck acceleration were 

not necessary for the model to produce congestion like that observed in the field when paired 

with longer time headways. Conversely, if smaller values of CC0 or larger values of desired 

truck acceleration were used, longer time headways could be applied. Initially, five simulation 

runs were conducted for each candidate parameter set to identify a shorter list of combinations 

that should be examined further. Once the list had been narrowed, it was necessary to calculate 

the number of simulation runs required to be statistically confident in model outputs using 

equation 3-1 (Washington State Department of Transportation 2014). 
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𝑁 = (
2∗𝑡

1−
∝
2

,𝑁−1
∗𝑆

𝐶𝐼1−∝%
)

2

          (3-1) 

Where: 

 N = number of required repetitions 

 t1-α/2, N-1 = t-statistic at a confidence level of 1-α and N-1 degrees of freedom 

 s = standard deviation of model outputs 

 CI1-α% = confidence interval for the true mean of a given parameter 

 For the purposes of calibration, the mean QDR was chosen as the determining metric for 

calculating the required number of repetitions. Multiple simulation runs yielded a sample 

standard deviation of 70 pcphpl, so at a 95% confidence level, a minimum of 10 runs was 

required to estimate the mean QDR to within 10% of the field data. Other metrics were not 

examined as carefully because it was hypothesized that traffic flow is too variable to expect a 

high degree of precision and consistency in modeled speeds and queue lengths. Nonetheless, to 

best capture fluctuations in the onset of breakdown between simulation runs, the number of 

repetitions was increased to 20. 

The final parameter set is presented in Table 3-13, and plots of speed vs. time for the 

field data, default VISSIM model, and calibrated VISSIM model are compared in Figure 3-17. 

The slight difference between the calibrated model outputs and field measurements supports the 

theory proposed previously, as it was not possible to match queue duration and speeds more so 

than what is shown in the figure. Particularly, the sharp drop in speed signaling the onset of 

breakdown was consistently observed too soon in the model, suggesting that simulated traffic 

may not be able to absorb brief spikes in volume as real traffic does in the field. That said, 
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observation of speed differentials showed that the greatest discrepancy actually existed later in 

the simulation period. Since traffic flow characteristics well after the occurrence of breakdown 

were not relevant to research objectives, only average speed and QDR data from 12:00PM to 

3:30PM were required to meet calibration objectives. A similar truncated time window would be 

examined for data from October 6th during the validation phase for the purposes of consistency. 

Table 3-13: Calibrated Driving Behavior Parameters 

Parameter Description Default Value Calibrated Value 

Car-Following Parameters 

CC0 desired standstill distance 4.92 ft 10 ft 

CC1 desired time headway 0.9 s 

Empirical 

Distribution with 

0.35 s subtracteda 

CC2 
additional distance over desired safety 

distance 
13.12 ft Default 

CC3 - CC9 -- -- Default 

Lane-Changing Parameters 

Lane-Changing 

Distance 

distance upstream of a required lane change 

that drivers will begin looking for gaps to 

merge 

656.2 ft 3000 ft 

SRF safety distance reduction factor 0.6 Default 

Cooperative Braking check box (yes or no) No Yes 

Maximum Deceleration 

for Cooperative Braking 

maximum accepted deceleration when 

braking cooperatively 
-9.84 ft/s^2 -20 ft/s^2 

Waiting Time Before 

Diffusion 

maximum waiting time before vehicle 

removed from network 
60 s 200 s 

All others -- -- Default 

aSee Table 3-10 for original empirical distribution 
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Figure 3-17: Field, Default VISSIM, and Calibrated VISSIM Speed Profile Comparisons 

 In Table 3-13, the adjusted empirical distribution for time headway involved subtracting 

0.35 seconds from each entry in Table 3-10, resulting in values of 0, 0.65, 1.65, 2.65, 3.65, etc. in 

the final input distribution. Though increments of 0.1 seconds were originally explored, smaller 

increments of 0.05 seconds were necessary during the fine-tuning stage for the final model to 

meet calibration objectives. These objectives are summarized in Table 3-14 and Figure 3-18 for 

15-minute average speeds and mean QDR.  

Despite slight discrepancies in speed profiles, both the RMSNE and MAPE were well 

within calibration objectives for the period from 12:00PM to 3:30PM on October 3rd and 

considered adequate. The mean QDR in VISSIM was only 2% higher than that measured in the 

field, and an overlay of the flow rate histograms shows that the variance of the two distributions 

are somewhat similar. The most notable difference between the field data and simulation outputs 

shown in Figure 3-18 is that the highest and lowest queue discharge flow rates were 
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unobservable in the model. This finding substantiates the claim that the variability of real-world 

driving behavior cannot be fully replicated using microsimulation. 

Table 3-14: Calibration Summary (October 3rd, 2016) 

Time VISSIM Speed (mph) Field Speed (mph) RMSNE MAPE 

12:00:00 PM 47.1 48.0 0.000 2% 

12:15:00 PM 47.5 47.8 0.000 1% 

12:30:00 PM 46.7 50.0 0.004 7% 

12:45:00 PM 41.2 46.8 0.015 12% 

1:00:00 PM 35.2 48.9 0.078 28% 

1:15:00 PM 44.6 49.6 0.010 10% 

1:30:00 PM 33.3 41.9 0.042 21% 

1:45:00 PM 26.9 32.2 0.028 17% 

2:00:00 PM 25.3 23.0 0.010 10% 

2:15:00 PM 25.0 29.8 0.026 16% 

2:30:00 PM 24.2 23.8 0.000 2% 

2:45:00 PM 22.4 22.7 0.000 1% 

3:00:00 PM 25.4 16.9 0.253 50% 

3:15:00 PM 25.8 20.7 0.062 25% 

Total 0.194 14% 

Mean QDR (pcphpl) 

Calibrated VISSIM Model Field Error 

1032 1016 2% 

 

 

Figure 3-18: QDR Distribution Comparison (October 3rd, 2016) 
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3.5.3 Model Validation 

 

While the results from the calibrated model were promising, they only applied to data from 

October 3rd and needed to be validated using input from a different day. Data from October 6th, 

2016 was ultimately selected because congestion was observed during off-peak hours, providing 

a unique set of traffic volume characteristics to be modeled. Field data showed a continuous 

period of congestion beginning at approximately 9:45AM, so VISSIM was coded to run from 

7:45AM to 11:30AM, which included a 15-minute warm-up period and 3.5 hours of independent 

volumes and vehicle compositions. A comparison of the speed profiles generated in VISSIM and 

observed in the field is provided in Figure 3-19. 

 

Figure 3-19: Field and Validated VISSIM Speed Profile Comparisons 

 The graph shows that speeds in VISSIM dropped slightly below those observed in the 

field approximately 45 minutes into the simulation, but generally matched field speeds 
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simulation runs (20) were conducted to achieve statistical confidence in the validation results 

presented in Table 3-15, as the standard deviation of the QDR was nearly identical to that 

observed during the calibration process. Following the table, Figure 3-20 provides another 

overlay of QDR histograms to show that the simulated distribution contains most of the field 

distribution. Like for October 3rd, VISSIM was unable to capture flow rates near the lower and 

upper bounds of the distribution, emphasizing the assertion that simulation models cannot mimic 

the variability of real-world traffic. Nonetheless, the model was deemed successfully validated. 

Table 3-15: Validation Summary (October 6th, 2016) 

Time VISSIM Speed (mph) Field Speed (mph) RMSNE MAPE 

8:00:00 AM 51.7 46.3 0.014 12% 

8:15:00 AM 52.3 47.3 0.011 11% 

8:30:00 AM 47.4 50.1 0.003 5% 

8:45:00 AM 41.0 47.4 0.018 13% 

9:00:00 AM 42.3 47.4 0.012 11% 

9:15:00 AM 41.2 47.0 0.015 12% 

9:30:00 AM 40.0 48.2 0.029 17% 

9:45:00 AM 40.4 35.7 0.018 13% 

10:00:00 AM 21.9 18.5 0.033 18% 

10:15:00 AM 20.9 17.7 0.032 18% 

10:30:00 AM 21.5 21.1 0.000 2% 

10:45:00 AM 21.0 27.4 0.054 23% 

11:00:00 AM 22.5 22.4 0.000 0% 

11:15:00 AM 20.7 22.5 0.006 8% 

Total 0.132 12% 

Mean QDR (pcphpl) 

Validated VISSIM Model Field Error 

1024 1053 3% 
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Figure 3-20: QDR Distribution Comparison (October 6th, 2016) 

 

3.6 EXPERIMENT DESIGN 

 

This concluding section of Chapter Three outlines the design of the VISSIM experiment 

conducted to generate breakdown probability models for rural freeway work zones. Based on 

findings from the literature, it was concluded that the following modellable factors may have a 

significant effect on the probability of breakdown and subsequent queueing at freeway work 

zones: traffic volume, upstream lane distributions, free flow speed, speed variance, truck 
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 Recalling that the primary objective of this thesis is to lay the groundwork for developing 

a complete rural freeway work zone analysis tool for practitioners, the methodology described 

herein and the results of an analysis for 2-1 lane closures may easily be extended to other 

contexts after future field data collection efforts. The following subsections cover the 

characterization of typical traffic conditions on rural freeway facilities and application of these 

conditions to VISSIM input parameters. 

3.6.1 Characterization of Typical Traffic Conditions 

 

Section 3.3.3 underscored the importance of fully exploring field data from the study site before 

setting calibration and validation objectives for the VISSIM model. That discussion centered on 

flow rates immediately prior to breakdown and during congestion, but it was equally vital to the 

experiment design phase to understand the natural rise and fall of volumes and truck percentages 

from hour-to-hour and day-to-day. All key pieces of literature related to studying breakdown at 

freeway facilities emphasized the need to collect field data for up to one year if possible 

(Kondyli et al. 2013; Lorenz and Elefteriadou 2001), during which a myriad of traffic conditions 

may be observed. Since such an extensive data collection period is not feasible for most work 

zones, simulation was utilized to accomplish this task, but necessitated that a diverse set of 

traffic volumes and truck percentages be accounted for. Table 3-16 contains daily and peak hour 

volumes for the two weeks of field data collection conducted as part of this research, and shows 

that conditions vary greatly even over a short period. 
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Table 3-16: Study Work Zone Volume Summary 

Day Total Daily 

Volume (vehicles) 

Peak Hour 

Volume (vehicles) 
K Factor (%) 

Trucks During 

Peak Hour (%) 

Monday, October 3, 2016 7,614b 891 -- 26 

Tuesday, October 4, 2016 12,615 828 6.6 36 

Wednesday, October 5, 2016 13,340 915 6.9 39 

Thursday, October 6, 2016 14,153 922 6.5 30 

Friday, October 7, 2016 16,693 1,244 7.5 19 

Saturday, October 8, 2016 13,762 984 7.2 23 

Sunday, October 9, 2016 13,330 1,105 8.3 16 

Monday, October 10, 2016 12,714 1,000 7.9 13 

Tuesday, October 11, 2016 12,500 968 7.7 37 

Wednesday, October 12, 2016 13,041 866 6.6 36 

Thursday, October 13, 2016 13,703 948 6.9 22 

Friday, October 14, 2016 16,792 1,224 7.3 21 

Saturday, October 15, 2016 13,871 1,030 7.4 21 

Sunday, October 16, 2016 13,717 1,105 8.1 18 

Averages 13,864 1,002 7.3 25 

bTraffic data was collected for only 12 hours on this day 

 

 The table was created using demand volumes from sensors 97 and 101, 2.5 miles 

upstream of the lane closure at the study site, and revealed several interesting trends. First, both 

total and peak hour volumes were substantially higher on the weekends, especially Fridays, 

while truck percentages were greater on weekdays. Second, the values in the table do not 

coincide with those calculated using the AADT, K factor, and D factor given in Figure 3-1 at the 

beginning of this chapter. The nearest permanent counting station maintained by ALDOT had a 

2016 AADT of 27,890 vehicles, K factor of 10%, and D factor of 53%, suggesting that the peak 

directional hourly volume at the study work zone should be more than 1,300 vehicles, even if I-

59/I-20 southbound is not the peak direction. Sensor data contradicted these calculations and 
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showed an average peak hour volume of 1,002 vehicles, which would require a K and D factors 

of approximately 7.3% and 50%, respectively, using an AADT of 27,890 vehicles. Given that 

there was only one minor interchange between the study work zone and counting station in 

question, it is unclear why such large discrepancies were observed. Nonetheless, this finding 

stresses the need for practitioners to verify traffic conditions at work zones of interest. 

Finally, the data show that a site averaging 25% trucks during the peak hour may produce 

as few as 10% or as many as 40% trucks during an individual peak period. Accordingly, this 

window was selected as the minimum that needed to be explored to ensure that VISSIM output 

captured the full range of site conditions that would be observed from several weeks or months 

of data collection. Trial simulation runs were found to produce comparable variance in truck 

percentage by time interval even when a single value was used as input, ultimately motivating 

the use of several static percentages to represent sites with different average truck volumes. 

Likewise, a range of target peak hour volumes would be applied so that fluctuations of up to 

several hundred vehicles per hour between hours of the day and days of the week could be 

accounted for.  

 To best mimic real-world traffic conditions, it would also be necessary to gradually 

increase modeled demand volumes in the same pattern observed in the field. Since this thesis 

asserts that capacity is not a static value, simulated traffic needed to be exposed to lower 

volumes to allow for opportunities for breakdown at flow rates less than the expected average 

capacity. Conversely, the construction of breakdown probability models also required that ample 

uncongested, or censored, flow rates be observed at these lower volumes. Lastly, just as 

microsimulation models are typically coded with initialization periods, a similar extended period 

of steady volume increase would allow the model to reach equilibrium and ensure realistic 
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outputs. To inform volume inputs, demand profiles for each day of data at the study work zone 

were examined and assumed to be representative of other four-lane rural freeways across the 

southeastern United States. Figure 3-21 provides an example of traffic volumes throughout the 

day on October 4th, 2016.  

 

Figure 3-21: Traffic Demand Profile (October 4th, 2016) 

 

 Aside from local maxima and minima, the graph generally shows that volumes increased 

steadily throughout the day, then plateaued for several hours during the afternoon before 

retreating during the evening. Observations from other days yielded similar findings, although 

volumes on Saturday and Sunday typically peaked several hours before those on weekdays. 

While flow rates during the morning and evening hours may be 20-30% below the eventual peak 

hour volume, truck percentages are higher and capacity likely reduced during these time periods. 

These characteristics separate rural freeways from their urban counterparts in that the peak hour 

is not the only period of interest. Therefore, volume input schemes in VISSIM were designed to 

reflect a volume profile similar to that observed at the study site.  

0

100

200

300

400

500

600

700

800

900

1000

6
:0

0
:0

0
 A

M

7
:0

0
:0

0
 A

M

8
:0

0
:0

0
 A

M

9
:0

0
:0

0
 A

M

1
0

:0
0

:0
0

 A
M

1
1

:0
0

:0
0

 A
M

1
2

:0
0

:0
0

 P
M

1
:0

0
:0

0
 P

M

2
:0

0
:0

0
 P

M

3
:0

0
:0

0
 P

M

4
:0

0
:0

0
 P

M

5
:0

0
:0

0
 P

M

6
:0

0
:0

0
 P

M

7
:0

0
:0

0
 P

M

8
:0

0
:0

0
 P

M

9
:0

0
:0

0
 P

M

V
o

lu
m

e
 (

ve
h

/h
r)

Time of Day



 

83 

 

3.6.2 Experiment Input Parameters  

 

Final Case Selection 

The following factors and levels were selected as part of the final experiment design: 

• Truck Percentage: 5%, 10%, 20%, 30%, 40% 

• Demand Volume (vph): 700, 800, 900, 1000, 1100, 1200, 1300, 1400 

• Lane Closure Side: Right, Left 

Values for truck percentage were intended to include those that would realistically be observed at 

rural freeway sites across the United States. For example, it is unlikely that a rural freeway 

facility would carry less than 5% trucks, and if so, volumes would likely be well below capacity. 

Likewise, a truck percentage of greater than 40% would presumably only occur during off-peak 

periods where overall volumes are suppressed. Based on the discussion in the previous 

subsection, it was decided that target peak volumes would be varied between 700 vph and 1400 

vph in 100 vph increments to encompass the full range of volumes observed at the study site and 

those that would be required to cause breakdown events at higher or lower truck percentages. 

Note that all volumes described in this section are given in units of vehicles per hour, as only a 

single lane is open through the simulated work zone. Finally, all combinations of truck 

percentage and input volume were run for both right- and left-side lane closures.  

A full factorial experiment would consist of 80 unique cases, each of which would 

require multiple simulation runs. For practical reasons, the size of the VISSIM experiment was 

minimized by eliminating scenarios where a specific truck percentage and target volume would 

not be necessary to achieve congestion. For example, a volume of 700 vph would be highly 

unlikely to consistently produce congestion with only 5% trucks in the traffic stream. Pilot 
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simulation runs were used to determine these cutoffs and reduce the experiment to 20 unique 

cases per lane closure side, as displayed in Table 3-17. 

Table 3-17: Final Volume and Truck Percentage Inputs 

Input Flow Rates 

(vph) 

Truck Percentages 

5% 10% 20% 30% 40% 

700    


800   
 

900  
  

1000 
   

1100    


1200   
 

1300  
  

1400 
   

 

Traffic Input Schemes 

 It was stated earlier that producing variable volumes and truck percentages during each 

simulation run was significant to the validity of the model results. Since VISSIM operates 

stochastically, even static traffic inputs will generate a wide range of outputs, and this variability 

increases as input time intervals become coarser. In the calibration and validation phase, 5-

minute time intervals were used to achieve consistency in the onset of breakdown and replicate 

exact field conditions. For the development of breakdown probability models, variability in 

breakdown volumes was desired, so 15-minute time intervals were used instead. Indeed, it was 

found that a 15-minute equivalent hourly input flow rate of 1000 vph could produce 15-minute 

flow rates of greater than 1000 vph during undersaturated conditions. Most importantly, 

equivalent flow rates at shorter time intervals (e.g. 1-minute output intervals) were even more 

diverse, allowing for brief spikes in volume that would be typical in the field. Similarly, a single 
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average truck percentage was used for the entire simulation period for all cases to maximize 

fluctuations in traffic stream composition. 

 The VISSIM model for each of the 40 cases included as part of the experiment design 

were coded to run for 18,900 seconds—900 seconds of initialization and 18,000 seconds of data 

collection—or a total of 5 hours and 15 minutes. The first two hours of the data collection period 

were used to linearly increase volumes from 65% to 100% of the target peak volume, allowing 

for observation of undersaturated conditions and breakdown events at low flow rates. Then, 

mimicking a field-measured peak hour factor (PHF) of 0.95, 98% to 105% of the target peak 

volume was met for the next two hours of simulation to allow for measurement of queue 

discharge flow rates. Finally, volumes were gradually decreased again for the final hour of 

modeling to allow for potential recovery from breakdown. A visual depiction of this volume 

input strategy is provided in Figure 3-22. 

 

Figure 3-22: Experiment Volume Input Scheme 

 Once raw volumes had been established, upstream input lane distributions needed to be 

set. Though not included as an explanatory variable in determining breakdown probability, the 
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number of passenger cars and trucks in each lane and their designated desired speed distributions 

were considered vital components of an accurate model. To decide how to distribute vehicles 

among lanes, the field data was again referenced and a common theme was discovered. On 

average, approximately 75% of tractor-trailers and 60% of all vehicles traveled in the right lane 

upstream of the work zone. Thus, these proportions were preserved to best replicate typical 

conditions at rural four-lane freeways. Single unit trucks were observed to account for about 

10% of the traffic stream throughout the data collection period at the study work zone, so this 

number was used regardless of the tractor-trailer percentage applied for a given case. Table 3-18 

gives the lane-specific distributions for traffic upstream of the work zone. 

Table 3-18: Upstream Lane Distributions  

 Truck Percentage Proportion in Right Lane Proportion in Left Lane 

Trucks 

5% 6.3% 3.1% 

10% 12.5% 6.3% 

20% 25.0% 12.5% 

30% 37.5% 18.8% 

40% 50.0% 25.0% 

Single Unit Trucks 8.3% 12.5% 

All Traffic 60.0% 40.0% 

 

Required Number of Breakdown Events 

 

 Work by Elefteriadou, Roess, and McShane suggested that the required sample size to 

validate an estimated probability of breakdown to a specified degree of confidence can be 

calculated using the normal approximation to the binomial distribution, provided in Equation 3-2 

(Elefteriadou et al. 1995): 

𝑁 =
𝑧2𝑝(1 − 𝑝)

ℎ2
 

𝑝 = 𝑡𝑟𝑢𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 

 

 

 

(3-2) 
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𝑧 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑛𝑜𝑟𝑚𝑎𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  

ℎ = 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡  

 Since literature has typically recommended that capacity values obtained from the PLM 

be equivalent to a probability of breakdown between 10% and 20%, p was assumed to be 15%. 

The magnitudes of breakdown flow rates were expected to range from 700 vphpl to 1400 vphpl, 

so deviation of approximately 50 vphpl was deemed acceptable, and h was set at 5%. So, to 

estimate the flow rate corresponding to a 15% probability of breakdown with 95% confidence, 

the required number of breakdown events was: 

𝑁 =
1.6452 ∗ 0.15(1 − 0.15)

0.052
= 139 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛 𝑒𝑣𝑒𝑛𝑡𝑠 

 To avoid redundant simulation runs, 50 runs per case was initially determined to be 

sufficient and would be increased as necessary. With five truck percentages modeled at four 

input volumes for each lane closure side, this led to a preliminary total of 2,000 planned 

simulations. After executing the experiment for each of the volume inputs at 5% trucks, a total of 

152 breakdown events were observed at 15-minute aggregation intervals, so the size of the 

experiment was not modified. Completion of the remaining cases yielded an average of 

approximately 150 breakdown events across all aggregation intervals, confirming that statistical 

confidence in the validity of probability estimates could be met as described above.   

3.7 SUMMARY 

 

To summarize, Chapter Three began by outlining the field data collection effort that was 

ultimately used to inform model development. Data collected from a 2-1 freeway lane closure 

near Tuscaloosa, Alabama in October 2016 was screened and analyzed to produce volume 

inputs, vehicle compositions, desired speed distributions, and time headway distributions in 
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VISSIM. Then, the model was calibrated and validated by manually adjusting key driving 

behavior and vehicle performance parameters until simulated speed profiles and queue discharge 

rates replicated field observed values to the specified degree of accuracy. Ultimately, modeled 

speeds and queue discharge rates produced error within acceptable ranges using data from two 

different days, so the model was deemed suitable for analysis. 

 Finally, a partial factorial experiment was designed to study the probability of queue 

formation at rural freeway work zones as a function of traffic volume, truck percentage, and lane 

closure side. The total number of cases was reduced by eliminating combinations of truck 

percentage and demand volume that would not be necessary to capture the full range of traffic 

conditions capable of producing breakdown events. Then, volume input schemes and upstream 

lane distributions were created based on trends observed in the field data. Lastly, the number of 

simulation runs required per case was determined by calculating the number of breakdown 

events required to validate the data point corresponding to a probability of breakdown of 15% on 

a cumulative probability distribution. 
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CHAPTER FOUR: 

ANALYSIS AND RESULTS 

 

 

4.1 INTRODUCTION 

 

The penultimate chapter of this thesis describes how results from the experiment outlined in 

Chapter Three led to a series of breakdown probability models, collectively forming the first 

component of a rural freeway work zone lane closure analysis tool. First, the cleaning and 

aggregation of the simulated dataset will be chronicled, with emphasis on the choice of 

breakdown identification algorithms used to separate undersaturated and oversaturated flow 

records. Next, the iterative process of fitting cumulative Weibull distributions to empirical data 

obtained from simulation runs will be discussed. To facilitate this discussion, Kaplan-Meier 

survival analysis will be explained in more detail than in the literature review, and existing 

methodology in the 6th edition of the HCM will be briefly covered. Finally, the main findings of 

this research will be presented along with the beta version of a practical tool developed as a 

composite of the results. 

4.2 AGGREGATION OF SIMULATED DATA 

 

To allow for the most flexibility in analysis of the results, the number and speed of passenger 

cars and trucks were initially collected from each simulation run in 1-minute aggregation 

intervals. Unfortunately, the simulated sample size was such that 1-minute data was incapable of 

producing breakdown probabilities high enough to generate meaningful cumulative distributions, 

so only 5- and 15-minute data were retained. Since the application of breakdown probability 
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models to rural freeway work zones is unlikely to include scenarios where an agency may make 

decisions based on 1-minute flow rates, let alone that such data would be available, the 

remaining cases were found sufficient. As stated in Chapter Three, the transition from stable 

flow to congestion has been found to occur suddenly, so 5-minute aggregation intervals were 

anticipated to shed more light on the underlying relationship between traffic flow, truck 

percentage, and the probability of queue formation. Conversely, 15-minute intervals were 

expected to be less precise in capturing the breakdown phenomenon but necessary to ensure that 

agencies and practitioners could apply readily available traffic data to the lane closure analysis 

tool developed. 

 Once the simulated data was appropriately aggregated, individual flow records were 

subdivided into one of three categories: breakdown flow rates, uncongested flow rates, and 

queue discharge flow rates. This step was necessary because congested flow rates provided no 

information about the likelihood of breakdown at a given level of demand and could be 

disregarded. On the contrary, stable flow rates up to those immediately preceding breakdown 

were significant because they combined to indicate the sustainability of a given traffic volume. 

The reader is referred to Chapter Two of this thesis or external sources for further discussion on 

the issue of capacity measurement at freeway facilities (Elefteriadou 2014; Lorenz and 

Elefteriadou 2001; Roess and Prassas 2016).  

 Classification of records into the bins mentioned above was accomplished using three 

distinct breakdown identification algorithms, one for each aggregation interval. In all cases, a 35-

mph speed threshold was applied based on the definition of breakdown in the 6th edition of the 

HCM, which specifies “a sudden drop in speed at least 25% below the free flow speed for a 

sustained period of at least 15 minutes” (Transportation Research Board 2016). Since the free 
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flow speed at the lane closure bottleneck was approximately 50 mph, a reduction to at least 37.5 

mph would be required to meet this definition. For simplicity, this value was rounded down to 35 

mph. While the 15-minute period of sustained congestion cited by the HCM was adhered to for 

5-minute data, it was found that too many false breakdown events were identified at 15-minute 

aggregation intervals when such criteria were used. To prevent this occurrence, it was required 

that speeds be maintained below 35 mph for 2 consecutive intervals, or 30 minutes, in the latter 

case. Similarly, recovery from breakdown was signaled by an increase in speeds above 35 mph 

for the same number of consecutive time intervals. Computing time was minimized by utilizing a 

30-line code written in Microsoft Visual Basic, which is included in Appendix B for reference. 

Table 4-1 provides an example of the Excel output generated after executing the breakdown 

identification algorithm for a set of 5-minute simulated data. 

Table 4-1: Example Breakdown Identification 

Simulation Run 
5-Minute Average 

Speed (mph) 

5-Minute Flow 

Rate (vphpl) 

Breakdown Flow 

Rate (1 = Yes) 

Queue Discharge 

Flow Rate (1 = Yes) 

1 51.2 1032 0 0 

1 52.1 936 0 0 

1 46.0 1056 0 0 

1 50.4 912 0 0 

1 44.9 1104 0 0 

1 49.3 996 0 0 

1 47.2 1092 1 0 

1 22.6 1032 0 1 

1 22.0 1116 0 1 

1 20.5 1104 0 1 

1 23.7 1200 0 1 

1 24.2 1140 0 1 

1 21.0 1116 0 1 

1 20.4 1032 0 1 

1 19.7 1056 0 1 

 

 The sample data in the table confirms that the breakdown identification algorithm 

successfully identified the flow rate immediately prior to the sudden drop in speed from 47 mph 
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to 23 mph, then classified all subsequent flow records as congested. If the table were to continue 

vertically, a “1” would be recorded in the last column until average speeds recovered above 35 

mph for at least three consecutive 5-minute intervals (thereby indicating queue clearance and a 

return to uncongested flow) or data from the second simulation run began, whichever occurred 

first. The example shown in Table 4-1 indicates that the breakdown flow rate did not coincide 

with the highest flow rate observed prior to congestion, confirming one of the fundamental 

concepts of traffic flow theory from the literature. Namely, capacity is stochastic and may be 

represented by a wide range of flow rates even under identical prevailing conditions. 

4.3 SURVIVAL ANALYSIS 

 

4.3.1 Methodology 

 

Aggregated, classified simulation data was evaluated using Kaplan-Meier survival analysis, also 

known as the product-limit method. This statistical methodology uses data on the lifetime of 

individuals to determine the approximate probability of reaching a terminal state at a given point 

in time. Here, “individuals” refer to traffic flow records, and the “terminal state” is the onset of 

breakdown. Theoretical aspects of this approach are explained in Chapter Two of this thesis, but 

the focus of this section will be on its practical application to simulated data. Construction of 

breakdown probability models using the product-limit method was accomplished by following 

the steps below, each referencing Table 4-2 (as an example for cases with 10% trucks). 

1. Simulated data was aggregated by time interval and classified by one of three flow 

regimes: breakdown, uncongested, or congested.  

2. After discarding congested flow rates, breakdown and uncongested flow rates were 

summed at each observed volume (Columns A, B, and C). 
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3. Flow rates at all volumes were summed to obtain the total risk set, or number of flow 

rates which had the potential to be followed by a breakdown event (Column D, row 1). 

4. In each subsequent row of the table, the remaining risk set was determined using equation 

4-1 (Column D, rows 2 through end): 

𝑅𝑖𝑠𝑘 𝑆𝑒𝑡𝑖 = 𝑅𝑖𝑠𝑘 𝑆𝑒𝑡𝑖−1 − 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠𝑖−1 − 𝑈𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑𝑖−1 (4-1) 

 

5. Cumulative survival and breakdown probabilities were calculated using equations 4-2, 4-

3, and 4-4 (Columns E, F, and G): 

𝐹𝑎𝑐𝑡𝑜𝑟 =  
𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑠𝑖

𝑅𝑖𝑠𝑘 𝑆𝑒𝑡𝑖
 (4-2) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = (1 − 𝐹𝑎𝑐𝑡𝑜𝑟𝑖) ∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑖−1 (4-3) 

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛𝑖 = 1 −  𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙𝑖 (4-4) 

 

Table 4-2: Survival Analysis Table (10% Trucks, 5-Minute Aggregation Interval, Left-Side 

Lane Closure) 

A B C D E F G 

Volume 

(vphpl) 

# Breakdown 

Flow Rates 

at Volume 

# Uncongested 

Flow Rates at 

Volume 

Risk Set Factor 
Probability 

of Survival 

Probability 

of 

Breakdown 

708 1 47 6584 0.000152 100.0% 0.0% 

780 1 103 6070 0.000165 100.0% 0.0% 

816 1 139 5744 0.000174 100.0% 0.0% 

900 5 160 4718 0.00106 99.8% 0.2% 

912 5 156 4553 0.001098 99.6% 0.4% 

924 6 182 4392 0.001366 99.5% 0.5% 

936 8 212 4204 0.001903 99.3% 0.7% 

-- -- -- -- -- -- -- 

1140 10 92 981 0.010194 92.3% 7.7% 

1152 7 66 879 0.007964 91.6% 8.4% 

1164 5 61 806 0.006203 91.0% 9.0% 

1176 5 39 740 0.006757 90.4% 9.6% 

-- Table abbreviated to allow higher breakdown probabilities to be visible 
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A single empirical breakdown probability distribution was built for each truck percentage 

by combining the data gathered from each corresponding input volume. For example, Table 4-2 

was developed from the simulated data for a left-side lane closure with 10% trucks, aggregated 

into 5-minute time intervals. Since this combination was simulated at input volumes of 1000, 

1100, 1200, and 1300 vph, four sets of flow data were used to complete the table. The 

distribution associated with this table is given in Figure 4-1, and reflects trends observed for data 

aggregated into 15-minute time intervals. 

 

Figure 4-1: Empirical Breakdown Probability Distribution (10% Trucks, 5-Minute 

Aggregation Interval, Left-Side Lane Closure) 

 

 The most evident feature of the figure is the fact that the probability distribution 

terminates at just above 10% on the y-axis. This is common even for distributions built from 

substantially larger datasets. For instance, the methodology provided in the supplemental volume 

of the HCM is demonstrated using over 23,000 flow rate observations, yet the associated 

empirical distribution still truncates around a 40% probability of breakdown (Transportation 
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Research Board 2016). A plot of this dataset was recreated to emphasize this point and is given 

in Figure 4-2. In the figure, β and γ are the scale and shape parameters of the best-fit Weibull 

distribution, respectively. 

 

Figure 4-2: Example Fitted Weibull Distribution (Source: TRB 2016) 

 

 The figure demonstrates the enormous data requirements for developing breakdown 

probability models, but also the quality of fit achieved by assuming a Weibull distribution. Based 

on this observation and findings from past research, it was assumed that the empirical 

distributions in this study could be sufficiently extrapolated using best-fit Weibull distributions.  

There are two caveats associated with Figure 4-2 and the methodology found in the HCM, 

however. First, field-measured volumes were binned into 100 pcphpl increments, reducing the 

number of data points available for curve fitting. Second, breakdown probabilities were 

calculated for each bin by dividing the number of breakdown flow rates by the total number of 

observed flow rates. Since this calculation occurs independently for each bin, the effect of 

previously observed flow rates is unaccounted for. As documented in literature, this leads to an 
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overly conservative (low) estimate of capacity (Asgharzadeh and Kondyli 2018). For these 

reasons, the product-limit method was deemed the more appropriate technique for use in this 

research. Curves like the one shown in Figure 4-1 were constructed for each combination of 

truck percentage and lane closure side, with flow rates aggregated into 5- and 15-minute 

intervals.  

4.3.2 Curve Fitting 

 

Once all survival analysis tables and empirical probability distributions were completed, 

simulated data points were fitted to Weibull distributions to develop complete cumulative 

distribution functions. The Weibull cumulative distribution function is given in equation 4-5, 

where λ is the probability of breakdown, q is the flow rate in vphpl, β is the scale parameter, and 

γ is the shape parameter. Solving this expression for q yields equation 4-6, which was ultimately 

used to calculate goodness of fit statistics.  

𝜆 = 1 − 𝑒
−(

𝑞
𝛽

)𝛾

 
(4-5) 

𝑞 = 𝛽 ∗ √−ln (1 − 𝜆)
𝛾

 (4-6) 

 

To simplify the analysis, basic curve fitting with Excel’s Solver function was applied in 

lieu of maximum likelihood estimation, the methodology typically used in literature. In this case, 

instead of maximizing the log-likelihood value, the MAPE between simulated data points and 

those on the best-fit Weibull curve was minimized. This statistic was calculated using equation 

4-7.  

𝑀𝐴𝑃𝐸 =
1

𝑛
∗ ∑ (

|𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒𝑊𝑒𝑖𝑏𝑢𝑙𝑙,𝑖 − 𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖|

𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑,𝑖
)

𝑛

𝑖=1

 (4-7) 
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Here, the empirical flow rate corresponding to a known probability of breakdown was 

compared to the flow rate calculated for the same probability of breakdown on a cumulative 

Weibull distribution with given shape and scale parameters. This process was iterated by Excel’s 

Solver add-in until the smallest MAPE was achieved, typically at a value of less than 2%. The 

results of these calculations for a simulated work zone with 10% trucks, a left-side lane closure, 

and 5-minute aggregation intervals are shown as an example in Figure 4-3.  

 

Figure 4-3: Curve Fitting Example (10% Trucks, Left-Side Lane Closure, 5-Minute 

Aggregation Intervals) 

 

In the figure, the dashed Weibull distribution diverges from the truncated survival curve 

approximately midway between volumes of 1100 and 1200 vphpl, illustrating a key component 

of the curve fitting process. That is, because the simulated sample size was too small to create 

true cumulative distributions, survival curves typically flattened out near their maximum value. 

To avoid misleading results, data points corresponding to flow rates at or above which 

breakdown was seldom observed were excluded from MAPE calculations. Such points were 
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identified by binning flow rates into 50 vphpl increments, where bins with fewer than 50 

observations were generally excepted from curve fitting. It should be noted that the quality of fit 

for each Weibull distribution was inflated by the number of censored data points present at lower 

flow rates. For example, 6,390 of the 6,584 data points (97%) used to generate Figure 4-3 were 

censored, with 56% of such records occurring at flow rates of less than 1,000 vphpl. Similar 

trends were also observed for data aggregated into 15-minute intervals.  

Tables summarizing the best-fit Weibull distribution parameters for all 20 combinations 

of truck percentage, lane closure side, and aggregation interval (five truck percentages x two lane 

closure sides two aggregation intervals) are provided in Appendix B but omitted here for brevity. 

In the next section, the culmination of the results as a preliminary 2-1 lane closure analysis tool 

for rural freeway work zones will be presented. Supplemental findings will also be discussed, 

including the effect of explanatory variables on breakdown probability and calculation of 

capacity-based passenger car equivalents specific to rural freeway work zones. 

4.4 RESULTS 

 

4.4.1 Effect of Explanatory Variables on Breakdown Probability 

 

Prior to compilation of the results as a single breakdown probability model, the effect of the 

studied independent variables on rural freeway work zone capacity was explored. This step was 

necessary to determine which variables should be provided as user inputs when developing a 

final spreadsheet tool. That said, the number and extent of explanatory variables included here 

are not all those expected to influence rural freeway work zone capacity, and further research 

will be necessary before finalizing the parent project that this thesis supports. Nonetheless, the 
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effect of truck percentage and lane closure side were analyzed to determine the magnitude and 

significance of their influence on the probability of queue formation.  

First, fitted Weibull distributions for left- and right-side lane closures at 5- and 15-minute 

aggregation intervals were plotted on the same set of axes to make any differences apparent. 

These graphs are included in Figures 4-4 and 4-5 for each truck percentage modeled, where the 

solid lines and dashed lines correspond to left-side and right-side lane closures, respectively. The 

plots reveal several interesting trends that appear to be consistent regardless of aggregation 

interval. For example, lane closure side seems to influence modeled throughput for a 2-1 lane 

closure, but this difference is likely not practically significant. In fact, for 30% and 40% trucks, 

the dashed lines plot almost directly on top of the solid lines, indicating no observable difference 

in the probability of queue formation. On the contrary, there is a noticeable rightward shift in the 

breakdown probability distributions for right-side closures when compared to left-side closures 

as truck percentage decreases, particularly for higher probability values. This is potentially 

because relatively faster-moving traffic in the right lane allows for slightly higher flow rates to 

be realized, and these higher flow rates tend to occur with a greater probability of breakdown.  

Even so, this difference is almost negligible until the probability of breakdown exceeds 

50%, which is expected to be higher than any reasonable threshold set by an agency in a risk-

based approach to establishing freeway work zone capacity. For these reasons, lane closure side 

was not included as an influential variable in developing the first version of a lane closure 

analysis tool, but will be considered for other lane closure configurations in the future. 
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Figure 4-4: Breakdown Probability vs. Lane Closure Side (5-Minute Intervals) 

 

 

Figure 4-5: Breakdown Probability vs. Lane Closure Side (15-Minute Intervals) 
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Second, the use of 5-minute aggregation intervals captured much more variability in 

breakdown flow rates than 15-minute aggregation intervals. As stated previously, differences in 

flow rates at 5- and 15-minute time intervals may be attributed to increases in breakdown 

probability as larger flow rates are sustained for longer periods of time. For instance, with 20% 

trucks in the traffic stream and the left lane closed, the flow rate corresponding to a 10% 

probability of breakdown is approximately 1000 vphpl and 950 vphpl when 5- and 15-minute 

intervals are used, respectively. During a single 15-minute period with an equivalent hourly flow 

rate of 1000 vphpl, it is possible that a set of three 5-minute intervals would observe stable flow 

rates of greater than or equal to this value multiple times, thus deflating the overall breakdown 

probability at this flow rate.  

That said, since breakdown typically occurs immediately following brief spikes in 

demand, it would be reasonable to assume that the use of shorter time intervals would define 

breakdown flow rates more accurately. By the same token, the use of larger time intervals may 

create false data points that include vehicle records occurring both prior to and after breakdown. 

Despite this finding, it was anticipated that the distributions created from 15-minute time 

intervals would reflect realistic trends and be applicable in the absence of more precise traffic 

data.  

Lastly, using the same charts, one can infer that there is a strong, negative correlation 

between truck percentage and the probability of breakdown. Given that heavy vehicles are 

typically accounted for with passenger car equivalents due to their substantial impact on 

capacity, this finding is not surprising. However, though the HCM recommends default PCEs 

based on terrain, these were not developed for work zones and literature has debated whether 
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alternative values should be used in such cases. As such, the choice of PCE values is not a trivial 

task, so this burden was eliminated by reporting all flow rates in terms of raw vehicles.  

4.4.2 Calculation of Capacity-Based Passenger Car Equivalents 

 

Considering that capacity values are often reported in units of PCEs, quantification of the effect 

of heavy vehicles was explored further. The findings in this subsection were motivated in part by 

Sarasua and Geistefeldt, who have each published research questioning the use of static PCE 

values regardless of site conditions (Geistefeldt 2009; Sarasua et al. 2006). Specifically, they 

have calculated values ranging from 1.3 to 2.6, varying based on prevailing speeds, terrain, and 

the number of lanes. These two studies were particularly relevant because Sarasua focused on 

determining PCEs for freeway work zones, while Geistefeldt compared stochastic estimates of 

capacity at different truck percentages.   

 Sarasua’s work included data from 35 freeway work zones in South Carolina, where 

headway values from time intervals containing only passenger cars were compared to those from 

intervals with a sizeable proportion of heavy vehicles. Geistefeldt constructed probabilistic 

capacity models for sites with various lane configurations and solved for the PCE value that 

minimized the variance of breakdown flow rates. Since the latter approach was more applicable 

to the experiment methodology used in this thesis, it was adopted here.  

To perform the analysis, two measures of stochastic capacity were considered: (1) the 

flow rate corresponding to a probability of breakdown of 15%, and (2) the flow rate which 

maximized the sustained flow index (SFI). The former of these two was chosen to coincide with 

guidance in the 6th edition of the HCM recommending that a probability of breakdown of 15% be 

used to estimate capacity from BPMs. The latter was developed by Shojaat and Geistefeldt and is 
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a sustainability measure calculated by taking the product of each flow rate and its corresponding 

survival probability. These volumes were calculated using Equations 4-7 and 4-8, and a 

composite standard deviation computed using Equation 4-9 (Transportation Research Board 

2016; Shojaat et al. 2016). 

𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒15% = 𝛽 ∗ √−ln (1 − 0.15)
𝛾

 (4-7) 

𝑆𝐹I𝑀𝑎𝑥 = 𝛽 ∗ (
1

𝛾
)

1
𝛾

= Max (𝐹𝑙𝑜𝑤 𝑅𝑎𝑡𝑒 ∗ (1 − 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝐵𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛)) (4-8) 

𝜎𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =
𝜎15% + 𝜎𝑆𝐹𝐼

2
 (4-9) 

 Both measures of capacity were considered because variability between the fitted 

Weibull distributions increased with probability of breakdown, and the y-value that maximized 

the SFI was typically around 5%. Thus, it was expected that using a 15% probability of 

breakdown alone may overestimate the optimum PCE value. The composite standard deviation 

referenced in Equation 4-9 was calculated by averaging the standard deviation of the flow rates 

at capacity for each truck percentage at both 5- and 15-minute aggregation intervals. Finally, the 

ideal PCE was found by minimizing the composite standard deviation, as shown in Tables 4-3 

and 4-4.  

Table 4-3: PCE Calculation Summary (15-Minute Intervals) 

Truck % 
Flow Rate15% 

(vph) 

Flow Rate at 

SFIMax (vph) 
Flow Rate15% (pcphpl) 

Flow Rate at 

SFIMax (pcphpl) 

5 1190 1130 1291 1225 

10 1120 1053 1309 1231 

20 980 919 1311 1230 

30 870 818 1311 1233 

40 770 726 1290 1217 

Standard Deviation 10.30 6.00 

Composite Standard Deviation 8.15 

Optimum PCE 2.69 
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Table 4-4: PCE Calculation Summary (5-Minute Intervals) 

Truck % 
Flow Rate15% 

(vph) 

Flow Rate at 

SFIMax (vph) 
Flow Rate15% (pcphpl) 

Flow Rate at 

SFIMax (pcphpl) 

5 1290 1216 1386 1307 

10 1210 1144 1390 1314 

20 1040 984 1350 1277 

30 940 887 1360 1283 

40 870 826 1388 1318 

Standard Deviation 16.57 16.70 

Composite Standard Deviation 16.63 

Optimum PCE 2.49 

 

The PCE that minimized variation between equivalent flow rates at capacity were 2.69 

and 2.49 for 15-minute and 5-minute volumes, respectively. These are both substantially higher 

than the default value of 2.0 recommended in the HCM for level terrain, which the study work 

zone site exhibited. This finding suggests that the impact of trucks is much higher at freeway 

work zones than basic freeway segments, and aligns well with findings from the field data used 

to develop the VISSIM model. Recalling the time headway distributions from Chapter Three, the 

mean headway for trucks was 3 seconds, while that for passenger cars was just below 2 seconds, 

a multiplicative difference of 1.5. Given that these headways were often measured during queue 

discharge conditions, it is likely that the acceleration and deceleration characteristics of heavy 

vehicles are primarily to blame. Such an assertion would coincide well with Sarasua’s findings, 

that PCEs increase as average speed decreases, with a maximum value of 2.47 observed at 

speeds less than 15 mph. Likewise, Geistefeldt concluded that fewer and narrower lanes lead to 

larger capacity-based PCEs, conditions that are both reflected in the presence of a 2-1 freeway 

work zone lane closure. 

 Based on these results, a PCE of 2.0 is not recommended for use with the data obtained 

from this study, and analyses involving sites with varying lane configurations, lateral clearance, 

terrain, and work intensity should convert flow rates with caution. Moreover, future study should 
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be considered to develop a set of PCE values applicable to work zones based on prevailing site 

characteristics. Accordingly, the models presented in the next section should be applied as-is in 

units of vehicles per hour.  

4.4.3 Development of a Freeway Work Zone Lane Closure Analysis Tool 

 

The culmination of this thesis was the development of the first component of a full-scale lane 

closure analysis tool for rural freeway work zones. When complete, practitioners will have 

access to a spreadsheet tool that defines work zone capacity based on the probability of queue 

formation, rather than a static pre-breakdown or queue discharge flow rate. The advantages of 

this approach are twofold, as the model accounts for the stochastic nature of capacity while 

giving users the ability to define their tolerance for risk when selecting a volume threshold. Since 

differences in breakdown probability observed between right- and left-side lane closures fell 

within the margin of error of probability estimates, only the left-side models were used in 

developing tools for 5-minute and 15-minute flow rates. It is anticipated that most users will be 

able to obtain 15-minute volume data from AADT values, K factors, D factors, and a peak hour 

factor, but finding 5-minute data may prove more difficult. As a result, only the 15-minute 

product will be presented in the body of this thesis, but a 5-minute model was developed as well 

and will be made available to users.  

 For the final model to be useful to agencies and practitioners, it will need to account for a 

wide range of truck percentages since lane closures may be in place at any hour of the day. 

Accordingly, the experiment was designed to capture the practical range of values that may be 

observed at a rural freeway work zone when overall volumes are high enough that there is a risk 

of queueing. However, even with Weibull distributions for 5%, 10%, 20%, 30%, and 40% 

trucks, one may ask: “What would the capacity of a facility be if there were 25% trucks?” Any 
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number of intermediate truck percentages could be addressed in the previous question, so a 

methodology for developing fully flexible probabilistic capacity distributions was sought after. 

Knowing that any Weibull distribution can be constructed if the scale and shape parameters, β 

and γ, are known, these values were investigated to determine if any noticeable trends occurred 

as the percentage of trucks changed. Table 4-5 contains these parameters for each case at 15-

minute aggregation intervals. 

Table 4-5: Summary of Weibull Shape and Scale Parameters (Left-Side Closure, 15-Minute 

Intervals) 

Truck % Scale Δ Scale Shape Δ Shape 

5 1294.91 -- 26.16 -- 

10 1196.04 98.87 23.15 3.01 

20 1072.78 123.27 19.68 3.47 

30 943.21 129.56 20.90 -1.22 

40 846.36 96.85 20.59 0.32 

Average 1070.66 112.14 22.10 1.39 

 

 The table shows that the scale parameter decreases steadily with increasing truck 

percentage, while the shape parameter is only slightly variable. This is intuitive, as the scale 

parameter associated with a Weibull distribution is always equal to the x-value corresponding to 

a cumulative probability of 63.2%. Thus, as intermediate points determining capacity (such as a 

15% probability of breakdown) decrease, so does the scale parameter. On the contrary, the shape 

parameter determines how steeply or flatly the Weibull curve transitions from probabilities of 

0% to 100%, which was not observed to change much between cases. Ultimately, regression and 

linear interpolation were found most appropriate for estimating the scale and shape parameters, 

respectively.  

 Considering that only five data points were used to estimate the best-fit curve for the 

scale parameter, Excel’s trendline functionality was considered sufficient for this analysis. The 
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data was fit to linear, exponential, polynomial, and logarithmic functions to determine which best 

fit the data and followed realistic trends beyond the upper and lower bounds of the truck 

percentages studied. In the end, the exponential function was found to estimate the known 

Weibull scale parameter most closely while also providing realistic decreasing behavior beyond 

40% trucks. Having said that, extreme values of truck percentage greater than 50% are not 

recommended for use with this tool. Figure 4-6 shows the best-fit exponential curve and equation 

for the Weibull scale parameter at 15-minute aggregation intervals. 

 

Figure 4-6: Regression on Weibull Scale Parameter (15-Minute Intervals) 

 

 Using the equation in Figure 4-6 and linear interpolation between the points in Table 4-5, 

the Weibull scale and shape parameters could be estimated for any input truck percentage. The 

validity of each estimate was verified using two criteria: (1) the estimated scale parameters did 

not differ greatly from that for each known truck percentage; (2) Weibull distributions at 

intermediate truck percentages (i.e. 7.5%, 15%, 25%, 35%, and 45%) plotted as expected 
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easily satisfied, as the scale parameter differed by 1% or less and the curves all plotted virtually 

on top of those calculated using survival analysis. The test results for the second of these two 

criteria are shown in Figure 4-7, where each estimated distribution fell completely between those 

for neighboring truck percentages. Thus, the functions used to approximate these Weibull 

distributions were adopted for the preliminary lane closure analysis tool. A nearly identical 

procedure was followed for 5-minute aggregation intervals and led to similar findings. 

 

Figure 4-7: Composite Breakdown Probability Model Verification (15-Minute Intervals) 

 

 Finally, a beta version of a user interface was developed in Microsoft Excel to 

demonstrate application of the final model by decision makers. It should be noted that the scope 

of this thesis did not include examination of additional factors that would be necessary to 

developing a complete, robust work zone capacity tool. For this reason, the number of input 

parameters is small and adjustments to any capacity estimates would likely be necessary. That 

said, after selecting a truck percentage and desired level of risk, the user could apply 

supplemental multiplicative factors to account for variables such as work type and intensity, 
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terrain, and lateral clearance if desired. For guidance on the selection of these factors, the reader 

should refer to outside sources such as the HCM or material provided by their governing state 

agency. A screenshot from the first version of a capacity analysis spreadsheet tool for 2-1 rural 

freeway work zones is presented in Figure 4-8. 

 

Figure 4-8: Beta Version of Rural Freeway Work Zone Capacity Analysis Tool 

  

The figure provides an example for a 2-1 rural freeway work zone lane closure with an 

average prevailing truck percentage of 18% and a queue risk tolerance of 35%. Volume 

characteristics should ideally be collected at the analysis site during all hours that a lane closure 

may be in place so that accurate 15-minute flow rates and truck percentages are reflected in 

capacity estimates. However, information from nearby permanent counting stations may be used 

with caution to predict values like those above for time periods of interest. In this example, the 

specified input variables yielded a probabilistic capacity of 1,050 vphpl, with a 35% chance of 

queue formation. In the block below, values of 1,000 vphpl and 950 vphpl are recommended 

based on the HCM-specified 15% probability of breakdown and maximum sustained flow index, 
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respectively. The field data collected for this thesis contained several peak periods with an 

average truck percentage near 18% and seemed to verify most closely with guidance from the 

HCM. Nevertheless, this product will allow for flexibility when site conditions and tolerance for 

queue formation vary. 

4.5 SUMMARY 

 

In summary, Chapter Four began by describing the methodology required to clean, aggregate, 

and analyze simulated speed and flow data such that a series of breakdown probability 

distributions could be constructed. The most critical components of this methodology were: (1) 

the definition of breakdown identification algorithms to classify flow records as uncongested or 

congested; (2) the execution of survival analysis to build empirical breakdown probability 

curves; (3) the fitting of Weibull distributions to these truncated curves through an iterative 

optimization process.  

 Next, best-fit Weibull distributions for different truck percentages, lane closure side, and 

time interval were compared to determine the influence of each independent variable on 

breakdown probability. It was concluded that the effect of lane closure side was negligible, but 

truck percentage exhibited a strong, negative correlation with the probability of queue formation. 

To quantify the effect of heavy vehicles, capacity-based PCEs were calculated and found to be 

much higher than the default values recommended in the HCM. Specifically, PCEs of 2.69 and 

2.49 were calculated for flow rates gathered at 15- and 5-minute intervals, respectively. Finally, 

the experiment data was combined to develop a preliminary capacity estimation tool for rural 2-1 

freeway work zone lane closures. While this current tool is skeletal in nature, it provides flexible 

estimates of capacity based on truck percentage and agency-specific risk tolerance. Furthermore, 



 

111 

 

it lays the framework for future efforts incorporating additional input variables such as lane 

closure configuration, terrain, and work intensity. 
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CHAPTER FIVE: 

CONCLUSIONS AND RECOMMENDATIONS 

 

 

5.1 INTRODUCTION 

 

The current state of the National Highway System often necessitates that agencies interrupt 

normal traffic operations for maintenance and capacity improvements. With nearly 9 million 

lane-miles of public roadway and an economy driven by the automobile, these interruptions are 

inevitable, but the significant safety and mobility impacts associated with queueing at freeway 

work zones are mitigable. The current methodology in the 6th edition of the HCM is a vast 

improvement over historical work zone capacity guidance, but approaches the issue differently 

than research suggests agencies and practitioners should. Namely, a capacity defined by the 

mean queue discharge is deterministic and fails to account for the stochastic nature of traffic 

flow and breakdown. Rather, the frequency of rear-end crashes and high speed differentials at 

freeway work zones warrants that the risk of queue formation always be minimized.  

 Rural freeway facilities are particularly important, as they compose more than half of all 

interstate lane-miles in the United States and account for 30% of all interstate vehicle miles of 

travel (Federal Highway Administration 2016). Despite lessened exposure compared to urban 

facilities, rural freeway segments pose an increased safety risk because drivers are less expectant 

of changes to the roadway environment and given increased opportunities to travel at high 

speeds. In 2015, NHTSA findings substantiated this claim by finding that 43% of all fatal 

interstate crashes occurred in rural areas (NHTSA 2016a).  



 

113 

 

This thesis addressed these core issues by developing a methodology for obtaining 

probabilistic capacity estimates at rural freeway work zones using field data and simulation. The 

results of the analyses conducted culminated in a preliminary version of a spreadsheet tool that 

provides users with a suggested volume threshold based on the average site truck percentage and 

desired risk of queue formation. Outputs from this tool are applicable to rural freeways across the 

southeastern United States and provide guidance for agencies who wish to minimize the safety 

and mobility concerns associated with queueing at work zone lane closures. 

5.2 CONCLUSIONS 

 

This research sought to accomplish three main objectives: 

1. Assess the validity of microsimulation outputs as a means to obtain probabilistic 

estimates of capacity at rural freeway work zone lane closures 

2. Develop breakdown probability models for 2-1 lane closures with varying truck 

percentage and lane closure side to determine the effect of these variables on the 

likelihood of queue formation 

3. Provide a framework for the continuation of future research, which will develop models 

for other lane closure configurations commonly experienced on rural and urban freeway 

facilities 

First, field data was collected at a single-lane work zone on I-59/I-20 southbound near 

Tuscaloosa, Alabama for 14 days in October 2016. Site characteristics were determined to be 

typical of rural freeways in the southeastern United States and used to calibrate and validate a 

model in VISSIM. Critical components of model development included the use of time headway 

distributions and modified truck characteristics obtained from field observations and literature. 
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Comparison of simulation outputs to field-collected data matched speed profiles reasonably well 

and yielded differences in mean queue discharge rates of less than 2%. Based on these findings, 

it was determined that microsimulation was an appropriate tool for collecting large samples of 

data for hypothetical freeway work zones.  

Second, a set of generalizable traffic conditions were developed and intended to capture the 

full range of variability in traffic volume and truck percentage that would be observed at rural 

freeway facilities similar to the one studied here. A total of 40 distinct combinations of truck 

percentage, lane closure side, and traffic volumes were converted to VISSIM inputs and 

simulated 50 times each using different random number seeds to obtain a sufficient amount of 

speed and flow data. Kaplan-Meier survival analysis was utilized to estimate empirical 

breakdown probability distributions for each case, which were then fitted to Weibull 

distributions. This approach was an extension of existing methodology found in the literature and 

the 6th edition of the Highway Capacity Manual for metered on ramps and other sources of 

recurring congestion. However, its use for freeway work zones is thought to make a unique 

contribution to the existing body of highway capacity research. 

Comparison of these distributions showed that lane closure side has a minor but practically 

insignificant effect on the probability of queue formation, regardless of truck percentage. 

Conversely, truck percentage has a noteworthy effect on the traffic volume at which queues will 

form. This influence on capacity was quantified by developing freeway work-zone specific 

PCEs, which were found to be substantially higher than those provided as defaults in the 

Highway Capacity Manual.  

Finally, subsets of the fitted Weibull distributions were combined to develop a draft version 

of a work zone capacity analysis tool in Microsoft Excel. The tool will allow a user to specify a 
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site-specific truck percentage and tolerable risk for queue formation, then return a suggested 

volume threshold. The outputs from this tool may be used by agencies and practitioners to make 

defensible lane closure scheduling decisions based on stochastic capacity estimates, rather than 

deterministic values or anecdotal experience alone.  

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH 

 

This thesis approached the issue of work zone capacity measurement in a unique manner by 

producing throughput estimates based on the probability of queue formation, rather than through 

traditional deterministic methods. While the results of this work make a significant contribution 

to the existing body of literature, they only provide a framework for the completion of a larger 

project funded by the Southeastern Transportation Research, Innovation, Development, and 

Education Center (STRIDE). Other phases of this project and future research may build upon the 

findings of this thesis by: 

1. Extending field data collection efforts 

a. Data should be collected at rural freeway work zone sites in different states and 

with various lane closure configurations (e.g. 2-1, 3-2, 3-1), traffic characteristics 

(e.g. upstream lane distributions by vehicle type), and work types (e.g. 

resurfacing, bridge repair, major widening projects). 

b. Video cameras should be used to verify driving behavior near the bottleneck 

location and identify atypical occurrences such as traffic incidents or the 

movement of construction equipment in and out of the work area. 

2. Increasing the number of modeled input variables 

a. Data collection at other sites will allow for additional variables such as lane 

closure configuration, work type and intensity, free flow speed, merge control 
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strategy, and terrain to be modeled and included as user inputs in an expanded 

lane closure analysis tool.  

b. Breakdown probability distributions should be combined with estimated queue 

discharge rates to provide approximations of queue length and delay for agencies 

that will tolerate a queue but wish to minimize its impacts. 

3. Accounting for future changes to vehicle characteristics and travel behavior 

a. The effect of varying levels of market penetration of automated and connected 

passenger cars and trucks should be incorporated in a supplemental model given 

that these technology advancements may soon be realized. 

The methodologies, results, conclusions, and recommendations presented provide promise 

for future study and application of rural freeway work zone safety and mobility best practices. 

The decline of the structural and functional adequacy of the National Highway System suggests 

that work zones will become more prevalent and that careful attention to their design and 

operation is critical. Therefore, agencies and practitioners should make data-driven decisions 

based on the results of this thesis and similar research. 
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Table A-1: Sensor Vehicle Length Frequencies 

Sensor 96 Sensor 97 Sensor 98 Sensor 99 Sensor 100 Sensor 101 Sensor 102 Sensor 103 Sensor 104 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

0 65 0 152 0 248 0 130 0 68 0 206 0 125 0 163 0 171 

1 461 1 469 1 596 1 684 1 481 1 199 1 427 1 260 1 359 

2 541 2 454 2 676 2 900 2 1159 2 288 2 776 2 350 2 605 

3 560 3 483 3 739 3 1065 3 1460 3 300 3 1021 3 427 3 709 

4 393 4 446 4 527 4 792 4 1153 4 282 4 857 4 355 4 630 

5 337 5 421 5 441 5 621 5 760 5 259 5 824 5 352 5 656 

6 353 6 504 6 439 6 542 6 695 6 298 6 766 6 315 6 755 

7 431 7 674 7 461 7 585 7 694 7 358 7 809 7 360 7 1004 

8 605 8 806 8 540 8 615 8 673 8 440 8 724 8 349 8 1364 

9 852 9 1064 9 669 9 623 9 575 9 574 9 858 9 376 9 1920 

10 1099 10 1464 10 813 10 704 10 526 10 719 10 1003 10 444 10 2880 

11 1374 11 1985 11 982 11 824 11 598 11 997 11 1243 11 502 11 4273 

12 1662 12 2807 12 1234 12 1032 12 747 12 1251 12 1609 12 621 12 6434 

13 2054 13 4248 13 1557 13 1374 13 879 13 1584 13 2067 13 963 13 9490 

14 2996 14 5878 14 1992 14 1771 14 1079 14 2083 14 2915 14 1387 14 13056 

15 4325 15 6974 15 2590 15 2404 15 1494 15 3027 15 4109 15 1996 15 14635 

16 5999 16 7367 16 3876 16 3486 16 1965 16 4186 16 4937 16 3134 16 13714 

17 6557 17 6238 17 4768 17 4086 17 2516 17 5179 17 5193 17 3666 17 11154 

18 6675 18 4770 18 6125 18 4953 18 3312 18 5903 18 5137 18 3916 18 8608 

19 6547 19 3442 19 6827 19 5601 19 4332 19 6090 19 4504 19 3855 19 5919 

20 5407 20 2426 20 6720 20 6216 20 4921 20 5872 20 3433 20 3521 20 3749 

21 3589 21 1581 21 6473 21 6239 21 5530 21 5275 21 2359 21 3016 21 2242 

22 2323 22 1128 22 5795 22 5838 22 5744 22 4379 22 1619 22 2399 22 1526 

23 1401 23 939 23 5157 23 5470 23 5504 23 3237 23 1121 23 1819 23 1146 

24 867 24 775 24 3970 24 4703 24 4831 24 2154 24 838 24 1243 24 935 

25 548 25 631 25 3069 25 3722 25 3829 25 1481 25 703 25 860 25 840 

26 373 26 672 26 2104 26 2820 26 2931 26 962 26 601 26 598 26 723 

27 291 27 610 27 1388 27 1916 27 2093 27 742 27 576 27 423 27 705 
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Sensor 96 Sensor 97 Sensor 98 Sensor 99 Sensor 100 Sensor 101 Sensor 102 Sensor 103 Sensor 104 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

28 240 28 616 28 1016 28 1230 28 1505 28 524 28 533 28 341 28 651 

29 195 29 623 29 680 29 863 29 975 29 416 29 559 29 300 29 671 

30 183 30 570 30 563 30 623 30 741 30 406 30 578 30 300 30 708 

31 162 31 559 31 502 31 476 31 572 31 384 31 523 31 300 31 706 

32 172 32 555 32 368 32 395 32 429 32 336 32 514 32 355 32 681 

33 125 33 529 33 328 33 368 33 322 33 347 33 555 33 349 33 644 

34 134 34 522 34 327 34 323 34 288 34 353 34 484 34 323 34 564 

35 134 35 502 35 329 35 287 35 286 35 338 35 506 35 309 35 541 

36 148 36 441 36 269 36 279 36 275 36 302 36 507 36 307 36 542 

37 130 37 439 37 275 37 253 37 267 37 312 37 451 37 257 37 482 

38 121 38 492 38 278 38 244 38 282 38 312 38 428 38 257 38 436 

39 105 39 441 39 227 39 238 39 261 39 311 39 407 39 223 39 398 

40 98 40 393 40 250 40 225 40 288 40 294 40 385 40 210 40 340 

41 109 41 371 41 227 41 181 41 291 41 314 41 389 41 213 41 339 

42 86 42 309 42 203 42 222 42 293 42 276 42 334 42 196 42 322 

43 86 43 303 43 189 43 178 43 242 43 279 43 340 43 175 43 306 

44 70 44 274 44 209 44 196 44 258 44 227 44 276 44 154 44 334 

45 59 45 255 45 206 45 183 45 241 45 253 45 266 45 161 45 306 

46 68 46 221 46 193 46 215 46 228 46 219 46 227 46 135 46 334 

47 49 47 200 47 194 47 154 47 177 47 239 47 253 47 137 47 376 

48 65 48 208 48 145 48 144 48 224 48 237 48 242 48 128 48 403 

49 59 49 168 49 139 49 148 49 189 49 212 49 219 49 136 49 436 

50 81 50 199 50 124 50 128 50 199 50 198 50 264 50 103 50 455 

51 52 51 182 51 129 51 149 51 195 51 205 51 289 51 99 51 569 

52 61 52 202 52 143 52 147 52 187 52 183 52 300 52 90 52 657 

53 75 53 215 53 134 53 148 53 172 53 205 53 283 53 103 53 727 

54 68 54 238 54 134 54 119 54 160 54 200 54 334 54 88 54 879 

55 84 55 235 55 121 55 126 55 136 55 236 55 374 55 106 55 1047 

56 101 56 274 56 137 56 142 56 172 56 265 56 433 56 114 56 1133 
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Sensor 96 Sensor 97 Sensor 98 Sensor 99 Sensor 100 Sensor 101 Sensor 102 Sensor 103 Sensor 104 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

57 111 57 293 57 111 57 141 57 190 57 275 57 489 57 104 57 1318 

58 146 58 316 58 121 58 171 58 188 58 312 58 524 58 105 58 1601 

59 141 59 354 59 115 59 177 59 162 59 332 59 621 59 131 59 1834 

60 155 60 371 60 138 60 153 60 193 60 379 60 710 60 141 60 2109 

61 160 61 441 61 156 61 162 61 166 61 432 61 760 61 166 61 2469 

62 197 62 483 62 133 62 171 62 217 62 434 62 866 62 177 62 2752 

63 204 63 550 63 170 63 192 63 219 63 516 63 991 63 194 63 2832 

64 216 64 560 64 170 64 214 64 262 64 623 64 1153 64 246 64 2906 

65 262 65 575 65 183 65 250 65 314 65 603 65 1302 65 271 65 2701 

66 250 66 559 66 191 66 223 66 302 66 732 66 1567 66 284 66 2341 

67 276 67 444 67 206 67 258 67 380 67 800 67 1628 67 344 67 2213 

68 345 68 427 68 281 68 271 68 427 68 907 68 1767 68 365 68 1980 

69 430 69 359 69 259 69 314 69 489 69 1050 69 1876 69 450 69 1597 

70 432 70 324 70 295 70 337 70 530 70 1168 70 1864 70 463 70 1387 

71 438 71 289 71 304 71 371 71 588 71 1320 71 1760 71 568 71 1165 

72 454 72 267 72 352 72 405 72 618 72 1432 72 1472 72 594 72 980 

73 435 73 222 73 370 73 471 73 705 73 1704 73 1212 73 700 73 768 

74 371 74 208 74 440 74 513 74 788 74 1819 74 1035 74 795 74 589 

75 299 75 162 75 497 75 571 75 900 75 1972 75 781 75 836 75 541 

76 254 76 151 76 517 76 624 76 929 76 2083 76 601 76 956 76 439 

77 205 77 133 77 579 77 736 77 1127 77 2281 77 567 77 1100 77 334 

78 184 78 154 78 635 78 759 78 1286 78 2328 78 408 78 1121 78 288 

79 121 79 121 79 685 79 876 79 1482 79 2315 79 384 79 1178 79 229 

80 122 80 124 80 746 80 923 80 1655 80 2130 80 306 80 1182 80 188 

81 73 81 115 81 819 81 1045 81 1875 81 2097 81 276 81 994 81 151 

82 68 82 87 82 915 82 1106 82 2095 82 1814 82 224 82 830 82 128 

83 55 83 94 83 928 83 1121 83 2112 83 1571 83 202 83 699 83 83 

84 41 84 82 84 925 84 1033 84 2268 84 1372 84 189 84 570 84 78 

85 40 85 86 85 881 85 1068 85 2168 85 1058 85 162 85 446 85 73 
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Sensor 96 Sensor 97 Sensor 98 Sensor 99 Sensor 100 Sensor 101 Sensor 102 Sensor 103 Sensor 104 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

Length 

(ft) 
Freq. 

86 27 86 71 86 874 86 905 86 2188 86 914 86 158 86 331 86 53 

87 26 87 70 87 770 87 869 87 2010 87 709 87 153 87 289 87 53 

88 26 88 44 88 671 88 757 88 1754 88 590 88 142 88 209 88 44 

89 19 89 50 89 653 89 618 89 1563 89 456 89 142 89 174 89 33 

90 10 90 52 90 515 90 550 90 1293 90 388 90 106 90 141 90 40 

91 11 91 51 91 476 91 423 91 1048 91 293 91 106 91 111 91 26 

92 16 92 48 92 365 92 322 92 880 92 222 92 96 92 85 92 21 

93 17 93 52 93 302 93 290 93 725 93 159 93 86 93 73 93 28 

94 16 94 37 94 279 94 194 94 590 94 148 94 62 94 50 94 31 

95 21 95 37 95 210 95 188 95 494 95 117 95 83 95 50 95 18 

96 7 96 32 96 178 96 170 96 405 96 95 96 62 96 33 96 23 

97 11 97 23 97 128 97 112 97 316 97 81 97 48 97 34 97 25 

98 12 98 33 98 111 98 99 98 267 98 69 98 34 98 35 98 32 

99 12 99 24 99 108 99 70 99 244 99 61 99 37 99 18 99 16 
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Table A-2: Vehicle Length Summary (Passenger Cars) 

Sensor Mean Std. Dev. 
Lower Bound 

Length (ft) 

Upper Bound 

Length (ft) 

96 17.28 4.1 9.08 25.48 

97 16.97 5.62 5.72 28.21 

98 20.07 5.45 9.16 30.97 

99 20.69 5.65 9.39 31.99 

100 21.75 4.76 12.24 31.27 

101 18.84 4.57 9.71 27.98 

102 17.81 5.57 6.67 28.95 

103 18.63 4.5 9.63 27.63 

104 15.5 3.8 7.91 23.1 

Weighted Average 18.92 6.57 5.79 32.06 

 

 

Table A-3: Vehicle Length Summary (Tractor-Trailers) 

Sensor Mean Std. Dev. 
Lower Bound 

Length (ft) 

Upper Bound 

Length (ft) 

96 68.3 6.7 54.9 81.8 

97 65.1 8.6 47.9 82.2 

98 81.1 8.7 63.8 98.5 

99 79.5 9.3 61.0 98.0 

100 82.0 8.9 64.2 99.7 

101 75.8 8.4 58.9 92.7 

102 68.9 7.7 53.5 84.2 

103 76.4 7.1 62.1 90.6 

104 63.3 6.8 49.7 76.9 

Weighted Average 72.6 11.1 50.3 94.9 
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Table A-4: Free Flow Speed Distribution (3.5 Miles Upstream) 

Cars 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

96 (LL) 56733 71 63 67 69 70 74 77 83 

100 (RL) 55187 81 69 76 79 82 88 91 96 

Weighted Avg. -- 75.9 66.0 71.4 73.9 75.9 80.9 83.9 89.4 

Trucks 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

96 (LL) 6855 66 61 64 65 66 69 71 74 

100 (RL) 37718 75 67 71 72 75 79 81 85 

Weighted Avg. -- 73.6 66.1 69.9 70.9 73.6 77.5 79.5 83.3 

 

Table A-5: Free Flow Speed Distribution (2.5 Miles Upstream) 

Cars 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

97 (LL) 59774 64 55 59 61 63 68 71 75 

101 (RL) 60503 72 60 66 69 73 78 81 88 

Weighted Avg. -- 68.0 57.5 62.5 65.0 68.0 73.0 76.0 81.5 

Trucks 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

97 (LL) 9686 60 53 56 58 60 63 65 70 

101 (RL) 39700 68 60 64 66 68 73 75 78 

Weighted Avg. -- 66.4 58.6 62.4 64.4 66.4 71.0 73.0 76.4 

 

Table A-6: Free Flow Speed Distribution (1.5 Miles Upstream) 

Cars 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

98 (LL) 61271 79 66 73 77 81 87 90 96 

102 (RL) 48794 63 53 58 61 64 68 70 75 

Weighted Avg. -- 71.9 60.2 66.4 69.9 73.5 78.6 81.1 86.7 

Trucks 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

98 (LL) 16804 74 64 68 71 74 79 82 87 

102 (RL) 27445 59 51 55 57 59 63 64 67 

Weighted Avg. -- 64.7 55.9 59.9 62.3 64.7 69.1 70.8 74.6 
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Table A-7: Free Flow Speed Distribution (1/2 Mile Upstream) 

Cars 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

99 (LL) 54365 79 63 72 75 79 88 92 97 

103 (RL) 13711 72 59 67 69 73 80 82 87 

Weighted Avg. -- 77.6 62.2 71.0 73.8 77.8 86.4 90.0 95.0 

Trucks 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

99 (LL) 18915 71 60 65 68 71 76 79 85 

103 (RL) 5160 66 57 63 65 67 71 73 78 

Weighted Avg. -- 69.9 59.4 64.6 67.4 70.1 74.9 77.7 83.5 

 

Table A-8: Free Flow Speed Distribution (Bottleneck) 

Cars 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

104 11481 51 42 46 48 51 55 59 64 

Trucks 

Sensor Free Flow Volume 
Speed Percentile (mph) 

Mean 10th 25th 35th 50th 75th 85th 95th 

104 7433 48 42 44 46 47 51 53 55 

 

 

Table A-9: Field Volumes and VISSIM Input (October 3rd, 2016) 

Time of Day Total Volume (vph) 
Total Truck 

Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

12:00 PM 648 145 336 312 

12:05 PM 900 314 120 780 

12:10 PM 888 118 456 432 

12:15 PM 756 215 456 300 

12:20 PM 696 222 312 384 

12:25 PM 780 110 480 300 

12:30 PM 828 166 492 336 

12:35 PM 732 202 432 300 

12:40 PM 708 288 348 360 

12:45 PM 948 144 480 468 

12:50 PM 816 273 384 432 

12:55 PM 960 237 504 456 

1:00 PM 900 175 348 552 

1:05 PM 960 256 408 552 
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Time of Day Total Volume (vph) 
Total Truck 

Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

1:10 PM 732 122 492 240 

1:15 PM 672 253 348 324 

1:20 PM 792 153 468 324 

1:25 PM 924 208 588 336 

1:30 PM 852 293 492 360 

1:35 PM 948 155 564 384 

1:40 PM 1008 248 552 456 

1:45 PM 876 206 552 324 

1:50 PM 840 223 528 312 

1:55 PM 888 289 540 348 

2:00 PM 888 310 480 408 

2:05 PM 984 193 636 348 

2:10 PM 840 276 516 324 

2:15 PM 828 269 516 312 

2:20 PM 828 209 576 252 

2:25 PM 912 241 492 420 

2:30 PM 960 193 600 360 

2:35 PM 780 201 480 300 

2:40 PM 888 194 588 300 

2:45 PM 1008 194 696 312 

2:50 PM 756 271 420 336 

2:55 PM 660 101 420 240 

3:00 PM 888 232 492 396 

3:05 PM 696 279 444 252 

3:10 PM 984 255 504 480 

3:15 PM 804 208 540 264 

3:20 PM 888 268 504 384 

3:25 PM 768 255 444 324 

3:30 PM 960 175 600 360 

3:35 PM 876 282 504 372 

3:40 PM 756 208 504 252 

3:45 PM 780 170 480 300 

3:50 PM 828 160 576 252 

3:55 PM 768 233 504 264 

4:00 PM 660 211 456 204 

4:05 PM 888 246 576 312 

4:10 PM 804 343 420 384 

4:15 PM 1092 169 648 444 

4:20 PM 816 305 552 264 

4:25 PM 804 206 456 348 

4:30 PM 804 251 456 348 

4:35 PM 876 207 480 396 
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Time of Day Total Volume (vph) 
Total Truck 

Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

4:40 PM 876 160 480 396 

4:45 PM 816 226 420 396 

4:50 PM 756 139 492 264 

4:55 PM 840 222 492 348 

5:00 PM 744 282 504 240 

5:05 PM 708 193 456 252 

5:10 PM 780 200 420 360 

5:15 PM 804 210 468 336 

5:20 PM 780 181 456 324 

5:25 PM 732 241 456 276 

5:30 PM 852 240 516 336 

5:35 PM 900 245 504 396 

5:40 PM 648 192 396 252 

5:45 PM 852 232 528 324 

5:50 PM 744 280 372 372 

5:55 PM 660 158 432 228 

6:00 PM 684 250 348 336 

6:05 PM 708 142 444 264 

6:10 PM 540 255 300 240 

6:15 PM 684 174 420 264 

6:20 PM 708 201 420 288 

6:25 PM 588 237 408 180 

6:30 PM 648 171 444 204 

6:35 PM 804 242 480 324 

6:40 PM 552 214 324 228 

6:45 PM 528 146 372 156 

6:50 PM 456 142 324 132 

6:55 PM 744 230 456 288 

7:00 PM 492 276 336 156 

7:05 PM 756 103 432 324 

7:10 PM 444 176 276 168 

7:15 PM 576 193 384 192 

7:20 PM 528 230 324 204 

7:25 PM 504 163 324 180 

7:30 PM 492 174 336 156 

7:35 PM 612 249 324 288 

7:40 PM 636 126 444 192 

7:45 PM 468 143 216 252 

7:50 PM 612 108 336 276 

7:55 PM 420 118 240 180 

Average Truck % 27% 

Maximum Volume (vph) 1092 
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Table A-10: Field Volumes and Average Speeds at Bottleneck (October 3rd, 2016) 

Time of Day Field Volume (vph) Field Average Speed (mph) 

12:00 PM 716 48.0 

12:15 PM 720 47.8 

12:30 PM 684 50.0 

12:45 PM 820 46.8 

1:00 PM 872 48.9 

1:15 PM 740 49.6 

1:30 PM 936 41.9 

1:45 PM 896 32.2 

2:00 PM 844 23.0 

2:15 PM 888 29.8 

2:30 PM 856 23.8 

2:45 PM 968 22.7 

3:00 PM 752 16.9 

3:15 PM 816 20.7 

3:30 PM 812 15.7 

3:45 PM 868 16.6 

4:00 PM 876 19.3 

4:15 PM 844 22.2 

4:30 PM 844 19.4 

4:45 PM 844 18.2 

5:00 PM 780 17.2 

5:15 PM 768 18.0 

5:30 PM 780 18.4 

5:45 PM 852 27.3 

6:00 PM 1028 30.8 

6:15 PM 900 25.9 

6:30 PM 644 50.1 

6:45 PM 552 51.0 

7:00 PM 592 48.0 

7:15 PM 496 49.2 

7:30 PM 548 47.8 

7:45 PM 540 47.3 

Breakdown Flow Rate (vphpl) 936 

Average QDR (vphpl) 853 
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Table A-11: Field Volumes and VISSIM Input (October 6th, 2016) 

Time of 

Day 
Total Volume (vph) Total Truck Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

8:00 AM 672 180 396 156 

8:05 AM 744 228 372 240 

8:10 AM 648 204 432 288 

8:15 AM 756 240 384 276 

8:20 AM 696 216 372 324 

8:25 AM 720 216 480 276 

8:30 AM 636 204 528 264 

8:35 AM 720 288 564 288 

8:40 AM 660 216 492 300 

8:45 AM 756 216 480 360 

8:50 AM 588 216 420 216 

8:55 AM 744 168 468 312 

9:00 AM 648 240 504 264 

9:05 AM 648 156 540 276 

9:10 AM 816 216 516 336 

9:15 AM 792 264 492 264 

9:20 AM 828 204 516 264 

9:25 AM 744 204 468 252 

9:30 AM 708 252 540 228 

9:35 AM 708 288 492 288 

9:40 AM 1008 300 576 540 

9:45 AM 840 264 576 336 

9:50 AM 816 276 456 276 

9:55 AM 1092 300 408 576 

10:00 AM 720 240 660 228 

10:05 AM 756 264 504 240 

10:10 AM 768 240 528 300 

10:15 AM 960 348 504 420 

10:20 AM 708 204 528 216 

10:25 AM 972 360 480 396 

10:30 AM 960 312 468 384 

10:35 AM 912 204 516 456 

10:40 AM 684 288 444 276 

10:45 AM 1080 312 504 420 

10:50 AM 888 324 504 384 

10:55 AM 876 192 504 348 

11:00 AM 960 240 540 456 

11:05 AM 864 228 516 336 

11:10 AM 828 300 528 348 

11:15 AM 816 336 552 348 

11:20 AM 804 312 456 288 
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Time of 

Day 
Total Volume (vph) Total Truck Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

11:25 AM 708 288 432 264 

11:30 AM 780 228 552 276 

11:35 AM 708 288 468 204 

11:40 AM 960 264 588 456 

11:45 AM 948 216 504 408 

11:50 AM 912 324 636 396 

11:55 AM 900 372 492 372 

12:00 PM 852 300 492 300 

12:05 PM 840 180 576 384 

12:10 PM 804 228 516 372 

12:15 PM 816 276 432 264 

12:20 PM 912 252 600 444 

12:25 PM 1008 336 516 420 

12:30 PM 852 252 540 348 

12:35 PM 1164 384 684 528 

12:40 PM 792 216 540 300 

12:45 PM 792 252 516 300 

12:50 PM 936 288 516 360 

12:55 PM 768 180 504 252 

1:00 PM 732 228 444 300 

1:05 PM 804 300 456 204 

1:10 PM 900 216 492 384 

1:15 PM 768 384 384 228 

1:20 PM 948 288 480 264 

1:25 PM 1008 276 612 468 

1:30 PM 828 312 588 312 

1:35 PM 804 264 480 288 

1:40 PM 720 264 504 216 

1:45 PM 756 264 468 312 

1:50 PM 828 276 564 372 

1:55 PM 828 228 468 336 

2:00 PM 612 204 396 228 

2:05 PM 876 312 492 396 

2:10 PM 840 300 468 228 

2:15 PM 768 180 324 180 

2:20 PM 996 276 600 516 

2:25 PM 864 204 504 360 

2:30 PM 1068 276 684 600 

2:35 PM 984 240 588 420 

2:40 PM 792 228 492 324 

2:45 PM 720 264 636 324 

2:50 PM 732 348 456 240 
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Time of 

Day 
Total Volume (vph) Total Truck Volume (vph) 

VISSIM Input (vph) 

Right Lane Left Lane 

2:55 PM 792 228 480 324 

3:00 PM 552 72 444 228 

3:05 PM 720 288 264 120 

3:10 PM 816 204 504 312 

3:15 PM 1056 312 504 372 

3:20 PM 1068 276 564 480 

3:25 PM 816 300 504 324 

3:30 PM 1044 300 600 408 

3:35 PM 948 228 648 492 

3:40 PM 732 276 300 252 

3:45 PM 900 228 336 456 

3:50 PM 768 84 384 504 

3:55 PM 1092 264 564 588 

Average Truck % 31% 

Maximum Volume (vph) 1164 

 

 

Table A-12: Field Volumes and Average Speeds at Bottleneck (October 6th, 2016) 

Time of Day Field Volume (vph) Field Average Speed (mph) 

8:00 AM 576 46.3 

8:15 AM 724 47.3 

8:30 AM 728 50.1 

8:45 AM 768 47.4 

9:00 AM 804 47.4 

9:15 AM 772 47.0 

9:30 AM 768 48.2 

9:45 AM 912 35.7 

10:00 AM 804 18.5 

10:15 AM 760 17.7 

10:30 AM 844 21.1 

10:45 AM 968 27.4 

11:00 AM 1008 22.4 

11:15 AM 1012 22.5 

11:30 AM 964 30.0 

11:45 AM 828 19.1 

12:00 PM 912 21.0 

12:15 PM 900 24.1 

12:30 PM 892 21.3 

12:45 PM 844 22.3 
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Time of Day Field Volume (vph) Field Average Speed (mph) 

1:00 PM 780 19.1 

1:15 PM 952 26.5 

1:30 PM 924 28.5 

1:45 PM 844 18.3 

2:00 PM 820 22.6 

2:15 PM 888 20.5 

2:30 PM 752 20.5 

2:45 PM 896 21.7 

3:00 PM 828 19.0 

3:15 PM 780 16.2 

3:30 PM 748 19.2 

3:45 PM 964 25.1 

4:00 PM 752 20.4 

4:15 PM 820 19.4 

Breakdown Flow Rate (vphpl) 912 

Mean QDR (vphpl) 865 
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Table A-13: Detailed Summary of Breakdown Events 

Breakdown Event 

Lane 

Closure 

Side 

Maximum Pre-Breakdown Flow 

Rate (pcphpl) 
Breakdown Flow Rate (pcphpl) Average QDR (pcphpl) 

% Trucks 15-Minute 

Aggregation 

Interval 

5-Minute 

Aggregation 

Interval 

15-Minute 

Aggregation 

Interval 

5-Minute 

Aggregation 

Interval 

15-Minute 

Aggregation 

Interval 

5-Minute 

Aggregation 

Interval 

October 3, 2016 Left 1170 1379 1170 1234 1016 1012 20% 

October 4, 2016 Left 1086 1265 1069 1069 1012 1023 30% 

October 5, 2016 Left 1150 1308 989 802 936 992 32% 

October 5, 2016 (2) Left 1150 1256 1057 1256 1160 1151 30% 

October 6, 2016 Left 1071 1338 1039 1338 1053 1049 24% 

October 10, 2016 Right 1167 1298 1133 1089 993 991 18% 

October 12, 2016 Right 1196 1392 1119 1152 1005 1005 29% 

October 13, 2016 Right 1270 1295 1270 1295 1011 990 27% 

October 14, 2016 (2) Right 1189 1382 1189 1284 1256 1256 16% 

Averages 

All 1161 1324 1115 1169 1049 1052 25% 

Left-Side 

Closure 
1125 1309 1065 1140 1035 1045 27% 

Right-Side 

Closure 
1206 1342 1178 1205 1066 1060 22% 

Minimum 1071 1256 989 802 936 990 16% 

Maximum 1270 1392 1270 1338 1256 1256 32% 

(2) Multiple breakdown events observed on date       

PCE of 2.0 used to convert all flow rates       
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APPENDIX B: 

BREAKDOWN IDENTIFICATION ALGORITHMS AND WEIBULL 

 DISTRIBUTION PARAMETERS 
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Figure A-1: VBA Code (1-Minute Breakdown Identification) 
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Figure A-2: VBA Code (5-Minute Breakdown Identification) 
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Figure A-3: VBA Code (15-Minute Breakdown Identification) 
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Figure A-4: VBA Code with Comments (15-Minute Breakdown Identification) 
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Table A-14: Best-Fit Weibull Distribution Parameter Summary 

Aggregation 

Interval 

Lane Closure 

Side 

Truck 

% 

Scale Parameter 

(β) 

Shape Parameter 

(γ) 

5-Minutes 

Left-Side 

5 1472.35 14.71 

10 1349.28 15.00 

20 1224.62 11.43 

30 1103.39 11.31 

40 1010.66 12.17 

Right-Side 

5 1536.41 12.80 

10 1417.98 12.99 

20 1279.82 11.20 

30 1125.96 11.38 

40 1039.70 10.73 

15-Minutes 

Left-Side 

5 1294.91 26.16 

10 1196.04 23.15 

20 1072.78 19.68 

30 943.21 20.90 

40 846.36 20.59 

Right-Side 

5 1346.61 17.21 

10 1227.27 19.70 

20 1101.01 16.58 

30 952.26 19.55 

40 866.41 21.77 

 


