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Abstract

Economic growth is defined as an increase in the production of goods and services over a

specific period of time and is calculated as the percentage change of real gross domestic product

(GDP) from one year to another. Sustained economic growth rate helps a country to raise living

standards. Economies with poor growth usually suffer from issues like higher rates of poverty,

lower life expectancy, and higher infant mortality rates. There are three factors that influence

economic growth - physical capital growth, human capital growth, and technological progress.

In the early growth theories, the source of technological change was not explained and instead

assumed it as a result of chance.

The modern growth theory overcomes this shortcoming. They believe that the techno-

logical advances were not by chance but driven by the firms in hope of profit. Technologi-

cal advancement leads to accumulation of knowledge capital. As knowledge is nonrival and

nonexcludable it is subject to increasing returns. Innovation leads to the introduction of - new

and better - techniques and products. Sustained innovative activity increases consumption and

production that in turn leads to a higher standard of living and economic growth. The two

dimensions of innovation considered in the literature were horizontal (variety expansion) and

vertical (quality improvements).

The first generation models show a positive relationship between economic growth and

population size. This implies that higher population size increases the number of researchers

which in turn leads to an increase in the growth rate. But this result was not supported em-

pirically. To eliminate this prediction the second and third generation models emerge. These

papers show a positive relationship between economic growth and population growth (“weak-

scale effect”). However, even this relationship was not supported empirically.

The recent empirical literature established a non-monotonic relationship between eco-

nomic growth and population growth. Recent theoretical papers proposed several modifica-

tions to align the theory with the empirical finding. A common element of modification is the
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introduction of human capital as a productive input in the R&D sector. This induces substitu-

tion between the quantity and quality of workers, which increases effective labor supply and

enhances economic growth.

The first two chapters of this dissertation extend the latter line of research in two different

ways. In the first chapter, we modify the canonical third generation R&D based model to

incorporate non-linear - human capital spillover and dynastic altruism - subject to congestion

in fertility rate. For strong spillover and congestion effect, economic growth first increases with

population growth and then slows down.

The second chapter emphasizes the role of the assumed demographic structure - that in-

corporates life-cycle and bequest saving motives - is considered. The sign of the weak scale

effect is positive only if parental bequest saving motive is strong.

The third chapter reveals the implications of the demographic structure for patent policy.

There is a large literature on patent policy and economic growth, but it was entirely written for

infinitely lived agents. These papers conclude that growth is maximized with complete patent

protection. This research shows that finite lifetime has immediate implications for patent pol-

icy. We find that both shortening patent length (duration of patent protection) and weaken-

ing patent breadth (lowering price of patented machines) are growth enhancing but shortening

patent length is more effective in spurring growth. This is because the former decreases invest-

ment in old patents.
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Chapter 1

Human-Capital Spillover, Dynastic Altruism, Population

and R&D-based Growth

1.1 Introduction

A recent line of research proposed several modifications to modern growth theory, aimed

to remove the counterfactual “weak scale-effect” that presented in second and third genera-

tion models of R&D-based growth: that is a positive effect of population growth on economic

prosperity. 1 A common element in this literature is the introduction of human capital as pro-

ductive input in the R&D sector. This modification induces substitution between the quantity

and quality of workers, which enables an increase in overall effective labor supply and thereby

enhanced economic growth, even with a constant or declining population of workers.

Within this line of research the assumed process of human capital formation is crucial to

the relation between population growth and economic growth. More specifically, the potential

diluting effect of population growth on the average human capital level was emphasized in the

literature as hindering economic growth; See for example Dalgaard and Kreiner (2001), Strulik

(2005), Bucci (2013), and Chu et al.(2013). In these papers, young agents are assumed to enter

the labor force with zero human capital. However, other related studies abstracted from this

diluting effect entirely, following Lucas(1988) exact formulation, assuming that newborns are

inherited with the same level of human capital as their parents; See for example Tournemaine

and Luangaram (2012) and Bucci (2015).

When discussing his own formulation of human capital accumulation, Lucas (1988) em-

phasized the plausibility of fractional transmission of human capital within dynasties, from

parents to their offspring: “..One needs to assume ... that the initial level each new member

begins with is proportional to (not equal to!) the level already attained by older members of the

1Jones (1999) summarizes the role of population in the first three generations of R&D-based growth models.
Recent summaries of the empirical literature can be found in Strulik et al.(2013) and Bucci (2015).
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family. This is simply one instance of a general fact that I will emphasize ... : that human capi-

tal accumulation is a social activity, involving groups of people in a way that has no counterpart

in the accumulation of physical capital” (p.19).

The present work pursues and elaborates such intermediate approach regarding the diluting

effect of newborns on human capital accumulation. First, we allow for fractional human capital

spillover from parents to their offspring. That is, we consider the entire range between the two

extreme cases presented in the aforementioned literature. This kind of spillover was widely

considered in other strands of the literature on growth and human capital accumulation, without

R&D-based innovations (See for example Becker et al. 1990, Galor and Tsiddon 1997, De-la

Croix and Deopke 2004, and Fioroni 2010), as well as in recent R&D-driven growth models

written in the Overlapping Generations framework; See for example Strulik et al.(2013) and

Prettner (2014).

Second, we consider congestion effects in the transmission of human capital within dynas-

ties. That is, the degree of human capital spillover from parents to their offspring is decreasing

with the number of kids. The intuition that motivates this analysis is the following: parental

human capital spillover is transmitted through direct interaction between parents and their off-

spring in the household, where parenting time is not a pure public good.

This is consistent with the essential notion of trade-off between the quantity and quality

of children, as phrased by Hanushek (1992, p.86): “The trade-off between child quantity and

quality enters essentially because parents’ time and resources must be spread thinner with more

children”.

Our framework is an extended version of Young’s (1998) model of two-sector R&D, that

incorporates population growth and human-capital accumulation. The analysis yields a rich

set of possible relations between population growth and economic growth, including non-

monotonic ones, depending on the assumed type of spillover. The welfare analysis shows

that the rates of human capital accumulation and technological progress in the decentralized

economy may deviate from the efficient ones, in various ways.
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Several theoretical papers have established ambiguous effect of population growth on tech-

nological progress, which depends on the strength of dynastic altruism toward future genera-

tions (Dalgaard and Kreiner 2001, Strulik 2005, Bucci 2013), the (potentially adverse) effect

of specialization on the production complexity (Bucci 2015), and the effect of technological

progress on the stock of human capital - appreciation vs. depreciation (Bucci 2008). In these

studies however, unlike in the present work, the effect of population growth on technological

progress depends on the values of model parameters, and are monotonic given the parameters

set.

Our work is closely related to the recent contribution by Boikos et al.(2013), which studies

the effect of fertility on human capital accumulation, in a model with no R&D-based innovation

and endogenous fertility. In their theoretical analysis the effect of population growth on human

capital accumulation is allowed to be positive, negative, and non-monotonic. Hence,they allow

for “negative dilution” effect of population growth on human capital accumulation, under which

population growth enhances per-capita human-capital accumulation.

The theoretical part of their work shows that the overall effect of fertility on per-capita

human capital accumulation and income growth depends crucially on the sign of the dilution

effect, which is left unspecified (see discussion on p.50 and footnote there). Similar approach

was taken also by Boucekkine and Fabbri (2013) and Marsiglio (2014), who assume unspeci-

fied and quadratic diluting effect, respectively, in models of physical capital accumulation and

endogenous fertility 2.

All these studies were able to establish a hump shape relation between fertility growth

and economic growth, consistent with the empirical findings reported by Boikos et al.(2013),3

and Kelley and Schmidt, (1995)4 In comparison with these studies, our results are derived in a

full fledged R&D-based growth model 5 based on a simple specification of the diluting effect,

which has an intuitive economic interpretation. Namely, the diluting effect here is defined by

2Their focus however is on the implications of different types of dynastic altruism to optimal fertility rates.
3Growth in their model is driven by human capital accumulation, and the empirical analysis focuses, accord-

ingly, on the relation between fertility rates and human capital accumulation, based on a panel data analysis for
ninety-nine countries (both OECD and non-OECD), over the years 1960-2000.

4In an earlier study Boucekkine et al.(2002) derived such relation between fertility and economic growth in an
overlapping generations model of vintage human capital

5In concluding their study Boikos et al.(2013, p.57) propose this as a desirable extension to their analysis.
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fractional human-capital spillover from parent to their offspring, which is subject to congestion

in the number of offspring.

That is, we assume population growth always dilutes per-capita human capital accumu-

lation, but not necessarily in a linear fashion. Yet, we establish non-monotonic polynomial

relation between population growth and economic growth, which varies - from U shape to

Hump shape, depending on the congestion factor in parental human capital spillover.

In another recent relevant paper by Prettner (2014), human capital is formed through pub-

lic education system where higher fertility rate decreases schooling-intensity - i.e. per-student

public spending. Prettner (2014) shows that for economies with developed public education

system - in terms of spending level and teachers’ productivity - there is a non-monotonic rela-

tion between fertility rate and economic growth: for initially low (high) rates increase in fertility

has negative (positive) effect on economic growth. For economies with under-developed public

education system the effect of fertility on population growth is definite-positive. 6 Prettner’s

(2014) results, derived in the overlapping generations framework, are similar to ours in the spe-

cial case of no congestion in parental human-capital spillover, which we derive for infinitely

living agents and decentralized human capital accumulation.

Our specification of human capital formation could yield similar qualitative relations be-

tween population growth and economic growth in models where human capital accumulation

is the sole growth engine, like the one studies by Boikos et al.(2013). 7 Nonetheless, in R&D-

based growth models, like the one studied here, it is the rate of increase in over effective labor

supply that affects innovation rate and economic growth 8, whereas in typical models with hu-

man capital accumulation only economic growth requires an increase in average (per-capita)

human capital level, as in Boikos et al.(2013). Hence, different parameter values will charac-

terize the alternative relations between population growth and economic growth in these two

prototype models.

6In another work written in the OLG framework, Strulik et al.(2013) explain the non-monotonic relation be-
tween population and economic growth within an unified growth model that incorporates endogenous fertility
along with transition from neoclassical technology to R&D-based growth.

7Indeed, our specification of human capital formation is a particular case, with appealing economic interpreta-
tion, of their general formulation

8This is due to the basic scale effect, after labor measured in the number of workers is modified to effective
labor supply accounting for workers productivity (i.e. human capital).
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In the penultimate section of the paper, we introduce non-linear dynastic altruism toward

future generations to study the relationship between economic growth and population growth.

Several works in this literature have emphasized the role of dynastic altruism toward future

generations in determining the effect of population growth on economic prosperity; see, for

example, Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008), and Bucci (2013).9 These

studies show that dynastic altruism stimulates saving and investment in human capital. This

positive effect of altruism on saving is increasing with the fertility rate 10 and may overcome

the negative diluting effect of population growth on human capital accumulation.11 In these

studies, parents’ altruistic utility is linear in the fertility rate (for a given per child consumption

level), and the effect of population growth on technological progress depends on the values of

model parameters - i.e., it is monotonic given the parameter set.

The paper is organized as follows. Section 1.2 presents the detailed model. section 1.3 an-

alyzes the dynamic equilibrium and the effect of population growth on technological progress.

Section 1.4 presents welfare analysis for the model economy. Section 1.5 presents second

modification - dynastic altruism, and Section 1.6 concludes this study.

1.2 The Model

We extend Young’s (1998) two-sector R&D model by adding population growth and hu-

man capital accumulation. Time is discrete, and population grows at exogenous rate n ≥ 0.

Population size in each period is denoted Lt = L0(1 + n)t, where L0 is normalized to one.

In each period, each worker is endowed with one unit of time. To enhance exposition clarity,

the analysis focuses first on exogenous human capital accumulation, and then human capital

accumulation is endogenized through education choice.

9In Bucci (2008) and Bucci (2013), the total effect of population growth on economic prosperity also depends
on the effect of technological progress on human capital accumulation and on the returns to specialization.

10We identify the population growth rate, which is exogenous throughout our analysis, with the fertility rate.
11 If human capital is not purely non-rival, population growth works to decrease per capita human capital, as

the human capital of newborns is lower than the average of existing workers.
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1.2.1 Preferences

Consumer’s lifetime utility is given by

U =
∞∑
t=0

ρt ln(ct) (1.1)

where ρ ∈ (0, 1) is the subjective discount factor, and c is the per-capita instantaneous utility

from consuming N differentiated products, i.e.“varieties”, subject to a CES utility function

ct =

(
Nt∑
i=1

c
1
ε
i,t

)ε

(1a)

with ε = s
s−1

, and s is the elasticity of substitution across all varieties. The consumption level

of each variety ci is defined as ci =qixi, where xi and qi, denote the consumed quantity and

product quality, respectively. The assumed preferences imply the instantaneous demand for

each variety

xdi,t = qs−1
i,t λp

−s
i,t

(
Nt∑
i=1

c
1
ε
i,t+1

)ε

(1b)

where λ is the Lagrange multiplier from the instantaneous utility maximization (i.e. the shadow

value of the given periodic spending level). The logarithmic specification in (1) implies the

standard Euler condition for optimal consumption smoothing, written in terms of aggregate

spending, denoted E

Et+1

Et
= ρ(1 + rt+1) (1.2)

where 1 + rt+1 is the (gross) interest rate earned between periods t and t+1.
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1.2.2 Production and Innovation

We will start by analyzing a model with exogenous rate of human capital accumulation,

subject to the following aggregate growth rate

1 + gh ≡
ht
ht−1

=
(1 + ωn)(1 + g̃h)

1 + n

where ht is the per-capita human capital, and the parameter ω ∈ (0, 1) measures parental

human capital spillover. With constant population, i.e. n=0, per-capita human capital grows

at the rate g̃h. For positive population growth and ω = 1 parental human capital spillover is

complete, and thus population growth has no effect on the per-capita human capital level. For

ω = 0 population growth rate works as a full dilution factor over ht. Our analysis focuses

on the intermediate cases with fractional transmission of human capital from parents to their

offspring. Furthermore, we consider nonlinear spillover, due to congestion in the number of

offspring, that is,ω ≡ ω(n) and ω′(n) < 0. To enhance tractability, we focus on the following

specification

ω(n) = ω0 exp(−µn) (3a)

Where ω0 ∈ (0, 1), and µ ≥ 0 is the congestion factor. With µ = 0 there is no congestion in

human capital spillover. Notice that (3)-(3a) imply that population growth slows down the ac-

cumulation of per-capita human capital, that is δgh
δn

< 0, 12 hence we assume effective diluting.

Aggregate human capital, denoted H, is defined as the product of population size and per-capita

human capital

Ht = Ltht (3b)

Effective labor supply is the sole input for production and innovation, and the wage rate is

normalized to one. One unit of labor produces one unit of consumption good (regardless of its

quality).

12More generally, ∂gh∂n < 0 is negative as long as ω′(n) < 0.
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We follow Young’s (1998) specification of the innovation cost function

f(qi,t+1, q̄t) =


exp(φ

qi,t+1

q̄t
) if qi,t+1 > qi,t

exp(φ) if qi,t+1 < qi,t

(4)

Innovation cost in sector i is increasing with the rate of improving its product quality, over

the highest quality that was already developed in the economy - denoted q̄t. This specification

implies vertical knowledge-spillovers, as the present cost of providing a certain quality today is

decreasing in the highest quality level that was already developed in the past. As innovation is

assumed to be certain, vertical innovation (i.e. quality improvements) implies that the effective

lifetime of each product is one period. Hence, each firm maximizes the profit

Πi,t =
(pi,t+1 − 1)xdi,t+1Lt+1

1 + rt+1

− f(qi,t+1, q̄t) (5)

Maximizing (5) for price pi,t+1 yields the standard optimal monopolistic price p∗ = ε,∀t, i.

The first order for optimal quality choice is derived after plugging the optimal price and the

demand function (1b) into (5)

1

q∗i,t+1

(ε− 1)(s− 1)(λε)−s

(
Nt∑
i=1

c
1
ε
i,t+1

)ε

Lt+1

1 + rt+1

=
φ

q̄t
f(q∗i,t+1, q̄t) (5a)

The asterisk superscript denotes optimally chosen values for the variables in the decentralized

economy. Assuming free entry to the R&D sector implies that in equilibrium the profit in

(5) equals zero. Combining this assumption with the optimality condition (5a) we obtain the

equilibrium rate of quality improvement

∀i : 1 + gq ≡
q∗t+1

q̄t
=
s− 1

φ
(5b)

We assume the cost parameter φ is low enough to guarantee gq > 0 and to make vertical

competition between successive product generations redundant, i.e. p∗ < 1 + gq ⇒ ε < s−1
φ

.
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As the rate of quality improvement is time invariant, so is equilibrium innovation cost

f(qi,t+1, q̄t) = es−1,∀t, i.Notice that under symmetric equilibrium demand for each variety is

xdt = Et
εNt
∀i, and thus the free entry condition can be also written as

(ε− 1) Et+1

εNt+1

f
= (1 + rt+1) (6)

1.3 Equilibrium and Growth Dynamics

1.3.1 Exogenous Human Capital Accumulation

Combining (2) and (6) we have,

Et =
fNt+1

(1− 1
ε
)ρ

(7)

and plugging (7) back into (6) yields the interest rate for the assumed stationary equilibrium

1 + gN
ρ

= (1 + rt+1) (8)

where 1 + gN ≡ Nt+1

Nt
. The aggregate resources-uses constraint for the economy is defined by

the allocation of labor between production and R&D investment

Ht =
Et
ε

+ fNt+1 (9)

Plugging (7) into (9) yields

Ht =
fNt+1

(ε− 1)ρ
+ fNt+1 ⇒ Nt+1 =

Ht

f
(

1
(ε−1)ρ

+ 1
) (10)

Hence, variety expansion rate equals to the exogenous growth rate of effective labor supply

(1 + gN) = (1 + gH), which, following (3)-(3a), implies:

(1 + gN) = (1 + g̃h) [1 + ω (n)n] (10a)

9



Observe that under symmetric equilibrium, equation (1a) can be written as

Ct =

(
Nt∑
i=1

(qi,txi,t)
1
ε

)ε

= N ε
t qtxt = N ε

t qt
Et
εNt

After plugging (7) into Ct, the above expression implies that in the stationary equilibrium per-

capita consumption grows at a constant rate

1 + gc ≡
ct
ct−1

=
Lt−1N

ε−1
t qtNt+1

LtN
ε−1
t−1 qt−1Nt

=
(1 + gq)(1 + gN)ε

1 + n
(11)

Then we substitute (10a) and (3a) into (11) to rewrite

1 + gc =
(1 + gq)(1 + g̃h)

ε [1 + ω0 exp(−µn)n]ε

1 + n
(11a)

Equation (11a) reveals the two opposing effect induced by population growth on per-capita

consumption growth. The positive effect is due to the increase in aggregate human capital

supply, which accelerates variety expansion - according to equation (10). This positive effect

is generated through the spillover parameter and is then amplified by the preference parameter

ε, which is decreasing with the elasticity of substitution across varieties - s. With lower s gains

from faster variety expansion, driven by faster human capital accumulation are higher. The

negative effect of population growth on per-capita consumption growth, which presents in the

denominator of (11a), is the regular pure dilution effect.

Differentiating (11a) for n shows that δgc
δn

is positive (negative) if the following (reverse)

inequality holds

ε (1 + n) (1− µn)− n > exp (µn)

ω0

(11b)

Proposition 1.1. With exogenous human capital accumulation, for sufficiently high ω0 and µ,

the function gc(n) is hump shape. That is for sufficiently strong base spillover and congestion

effect economic growth first accelerates with population growth rate and then slows down.
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Proof. For µ > 0, the right hand side of (11b) is increasing with n. For ε (1− µ) < 1, the

left hand side of (11b) is monotonically decreasing with n, and hence, for sufficiently high n

it is guaranteed that (11b) does not hold, that is ∂gc
∂n

< 0. If ω0 >
1
ε
, condition (11b) holds for

n = 0. Hence under these conditions, ∂gc
∂n

is positive (negative) under sufficiently low (high)

population growth rates

For ε (1− µ) < 1 and ω0 <
1
ε
, the function gc(n) is monotonically decreasing. Under

lower values of µ, for which ε (1− µ) > 1, the left-hand side of (11b) is increasing with n up

to n = ε(1−µ)−1
2εµ

, and then starts decreasing (for high n values). Then, gc(n) still follows a hump

shape for ω0 >
1
ε
. However, for ω0 <

1
ε
, condition (11b) holds only for intermediate values of

n, implying that gc(n) is first decreasing with n - to a local minimum, and then it is increasing

to a local maximum from where it is monotonically decreasing. Hence, within this parameters

set the shape of gc(n) follows a co-sine shape, which combines U shape with Hump shape. As

the value of µ decreases the range of the U shape is expanding.

Proposition 1.2. With exogenous human capital accumulation, for sufficiently low ω0 and µ,

the function gc(n) is U shape. That is for sufficiently weak base spillover and congestion effect

economic growth first slows down with population growth rate and then accelerates.

Proof. For the limit case µ = 0 (11b) is modified to ε + n (ε− 1) > 1
ω0

. The right-hand side

of this condition is increasing with n. For ω0 > 1
ε

the latter inequality does (not) hold for

sufficiently high (low) n, implying that ∂gc
∂n

is negative (positive) for low (high) values of n

For µ = 0 and ω0 >
1
ε

we have ∀n > 0 : ∂(1+gc)
∂n

> 0, that is gc (n) is monotonically

increasing.

1.3.2 Endogenous Human Capital Accumulation

We turn now to incorporate endogenous human capital accumulation in the model, subject

to the conventional specification

ht+1 =
(1 + ωn)(ξet + 1− δ)ht

1 + n
(1.3)

∆ht+1 ≡ ht+1 − ht =

[
(1 + ωn)(ξet + 1− δ)ht−1

1 + n
− 1

]
ht (12)
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where e ∈ (0, 1) is the time invested in human capital formation, δ is a depreciation rate, and ξ

captures the productivity of the human capital formation technology13. Equation (12) implies

that 1 + gh ≡ ht+1

ht
= (1+ωn)(ξet+1−δ)

(1+n)
, and following (3b) we obtain

1 + gH ≡
Ht+1

Ht

= (1 + gh) (1 + n) = (1 + ωn) (ξet + 1− δ) (13)

The return on investment in human capital should equal the return on R&D investment defined

in (5)

1 + rt+1 =
(ξet−1 + 1− δ)ht

etht
(14)

Plugging the interest rate (8) into (14) and rearranging yields

∀t : e∗ =
1− δ

1+gN
ρ
− ξ

(15)

and plugging (15) back into (13) yields

1 + gH =
(1 + ωn) (1− δ)

1− ξρ
1+gN

(16)

Modifying the resources-uses constraint (10) for the time invested in human capital formation

yields

(1− e∗)Ht =
fNt+1

(ε− 1) ρ
+ fNt+1 (17)

Plugging the interest rate (8) into (17) and rearranging yields

Nt+1 =
(1− e∗)Ht

f
[

1
(ε−1)ρ

+ 1
] (17a)

Equation (17a) shows that the aggregate human-capital stock and the varieties span share the

same growth rate, as in Section 3. Imposing (1 + gH) = (1 + gN) in (16) and simplifying we

13With constant population and no depreciation equation (13) falls back to Lucas’ (1988) original formulation:
4ht = ξ (et−1)ht−1.
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obtain

1 + gN = (1− δ) (1 + ωn) + ξρ (18)

Hence, following (11)-(11a), per-capita consumption growth rate remains

1 + gc = (1+gq)(1+gh)ε(1+ωn)ε

1+n
which can be written explicitly as 14

1 + gc =
(1 + gq) [(1− δ) (1 + ω0 exp(−µn) · n) + ξρ]ε

1 + n
(19)

Equation (19) shows that the effect of population growth on per-capita consumption growth

under endogenous human capital accumulation is very similar to the one presented in equation

(11a), for exogenous rate of human capital accumulation. Nonetheless, here, the effect of

population growth rate on per-capita consumption growth depends also on the technological

parameters of human capital formation, and the time preference parameter.

Following (19), ∂gc
∂n

is positive (negative) if the following (reverse) inequality holds

ε >
1 + ω0 exp (−µn) · n+ ξρ

(1−δ)

ω0 exp (−µn) · (1− µn) (1 + n)
(19a)

Proposition 1.3. With endogenous human capital accumulation, for µ > 0 and ε > 1
ω0

(
1 + ξρ

(1−δ)

)
,

the relation between population growth and per-capita consumption growth follows a hump

shape.

Proof. Condition (19a) does not hold for n > 1
µ

, as the denominator turns negative, but it

does hold for sufficiently low n if ε > 1
ω0

(
1 + ξρ

(1−δ)

)
. Hence, under these conditions gc(n) is

non-monotonic and follows a hump shape

Proposition 1.4. With endogenous human capital accumulation, for sufficiently low congestion

effect and ε < 1
ω

(
1 + ξρ

(1−δ)

)
, the relation between gc and n follows non-monotonic U shape.

Proof. For the limit case µ = 0, condition (19a) becomes ε >
1+ω0n+ ξρ

(1−δ)
ω0(1+n)

⇒ ε + n (ε− 1) >

1+ ξρ
(1−δ)
ω

. The latter condition holds for sufficiently high n , but it does not hold for sufficiently

low (yet non-negative) n if ω0 <
1+ ξρ

(1−δ)
ε

. Hence, under these conditions ∂gc
∂n

is negative (posi-

tive) for sufficiently low (high) values of n, implying that gc(n) is Ushaped
14Following (3a),(13) ,(16) and (18).
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Having ε >
1+ ξρ

(1−δ)
ω

implies that ∀n > 0 : ∂gc
∂n

> 0 ,that is positive monotonic relation

between population growth and economic growth.

The relation between gc and n established in Proposition 4 is similar to the one presented

in Prettner (2014) for an overlapping generations economy with public education system. In

Prettner’s work, as in the present study, high productivity in human capital formation (inter-

preted there as teachers’ productivity and schooling efficiency) is needed to obtain such non-

monotonic relation. In addition, his result also requires a high level of public spending on

schooling, which is set exogenously, whereas Proposition 4 above is derived for decentralized

investment in education, chosen by the households.

1.4 Welfare Analysis

We turn now to evaluate the welfare performance of our extended version of Young’s

model. In Young’s (1998) original work, growth is driven solely by vertical (quality improv-

ing) innovation. There, the rate of quality improvements is slower than the social optimum (see

p.59 there) because investors do not internalize the vertical knowledge spillover defined in the

innovation process (4). In our extended framework there are additional knowledge spillover

through the process of human capital accumulation, which determines the rate of variety ex-

pansion. These spillover are not internalized either in the decentralized economy, as agents are

choosing investment level according to the private rate of return, according to equation (14).

Therefore, the introduction of human capital accumulation in our model generates a second

source of efficiency distortion.

The social planner that maximizes (1) along the balanced growth path is facing the fol-

lowing objective function

U =
1

1− ρ

(
ln c0 +

ρ ln (1 + gc)

1− ρ

)
(20)

The welfare function (20) should be maximized by allocating labor efficiency over production

and the two investment activities - quality improvements and human capital formation. This

maximization problem is still subject to the resources-uses constraint (17), and also to the
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implied explicit expression for (1 + gc) in (19). Imposing these restrictions on (20) we obtain

the constrained objective function 15

U =
1

1− ρ

 ln
[
Nε

0 q0[(1−e)h0−fN0(1+ωn)(ξe+1−δ)]
εN0

]
+

+
ρ ln

[
1
φ

ln f((1+ωn)(ξe+1−δ))ε

1+n

]
1−ρ

 (20a)

After normalizing all initial values to unity, we derive the first order conditions with respect to

investment in education and quality improvements

∂U

∂e
:

1 + ξf (1 + ωn)

((1− e∗∗)− f (1 + ωn) (ξe∗∗ + 1− δ))
=

ρ

1− ρ

[
ξε

ξe∗∗ + 1− δ

]
(21)

∂U

∂f
:

(1 + ωn) (ξe+ 1− δ)
((1− e)− f ∗∗ (1 + ωn) (ξe+ 1− δ))

=
ρ

1− ρ
1

f ∗∗ ln f ∗∗
(22)

The superscript with double asterisk denotes the solution values for the maximization of (20a).

Combining conditions (21)-(22) yields the efficient investment in quality

ξ (1 + ωn) =
1

f ∗∗ [ε (ln f ∗∗)− 1]
(23)

Note that the efficient investment in quality improvement decreases with the productivity of

human capital formation ξ and the degree of human capital spillover ω, and increases with the

elasticity across varieties, s. By comparison, the decentralized investment in quality implied by

equation(5b) depends only on the preferences parameter s and it does not account for the human

capital formation and spillover parameters. The first optimization condition can be written as

(
1

ρ
− 1

)
ln f ∗∗ + 1 =

ξ (1− e∗∗)
ξe∗∗ + 1− δ

⇒ e∗∗ =
ε ln f − 1− 1−δ

ξ

[(
1
ρ
− 1
)

(ln f) + 1
]

(
1
ρ
− 1
)

ln f + ε ln f
(24)

The efficient investment in education implies the following rate of human capital accumulation

1 + gH =
(1 + ωn) (ε ln f − 1) (ξ + 1− δ)(

1
ρ
− 1
)

(ln f) + ε ln f
=

1 + 1−δ
ξ

f ln f
[(

1
ρ
− 1
)

+ ε
] (24a)

15Here, ω can be any of the specification of human capital spillovers considered in Section 3. Following the
innovation function (4), the quality growth rate is given by ln f

φ .
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Proposition 1.5. The growth rates of human capital accumulation and products’ quality im-

provements may deviate from the efficient one in various ways. Overall efficiency is achieved

iff
1+ 1−δ

ξ

f∗∗ ln f∗∗[( 1
ρ
−1)+ε]

= (1− δ) (1 + ωn) + ξρ

Proof. Comparing (23) with (5a) shows that the market will provide efficient rate of quality

improvements only if, ξ (1 + ωn) = 1
exps−1(s−1)

. Hence, generally, the rate of quality improve-

ments in the decentralized economy can be higher or lower than the efficient one. Comparing

(24a) with (16) implies that the rate of human capital accumulation in the market is efficient

only if
1 + 1−δ

ξ

f ∗∗ ln f ∗∗
[

1
ρ
− 1 + ε

] = (1− δ) (1 + ωn) + ξρ

Clearly, this condition may hold only for a very specific set of parameter

As explained above, in the present model there are externalities in both the vertical and

horizontal dimensions of innovation, due to knowledge externalities in quality improvements

and in the process of human capital which determines the rate of variety expansion.

Both types of spillover are not internalized in the decentralized economy. Hence, the

deviation of the decentralized economy from the efficient performance depend not only on the

overall level of positive externalities but also on their relative strength.

1.5 Dynastic Altruism

In this section, we introduce non-linear parental altruism in the number of offspring to

establish a non-monotonic relationship between economic growth and population growth. We

extend Young’s (1998) two-sector R&D model by incorporating population growth, human

capital accumulation, and dynastic altruism.

1.5.1 Preferences

The consumer’s lifetime utility is given by

U =
∞∑
t=0

ρt(1 + θn)t ln(ct) (25)
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where ρ, θ ∈ (0, 1) are the time preference and degree of altruism, respectively. The current

literature is focused on the linear specification of the altruism factor, implying that θ is scalar;

See, for example, Strulik (2005), Bucci (2008, 2013).16 Here, we let the degree of altruism per

child depend on the number of offspring, that is, on θ ≡ θ(n). Following Barro and Becker

[2, 3], Becker et al.(1990) and Becker (1992), we assume θ(n) = θ0n
−γ; hence, θ (n)n =

θ0n
1−γ , where γ, θ0 ∈ (0, 1). The assumption θ0 < 1 implies that parents’ “selfish” utility

from their own consumption has a higher weight than their altruistic utility from per-child

consumption, which is in line with the latter references. To ensure that (1) has finite values, we

also assume ρ(1 + θn) < 1.

The modified Euler condition for optimal consumption smoothing smoothing

Et+1

Et
= ρ(1 + θn)(1 + rt+1) (26)

where (1 + rt+1) is the (gross) interest rate earned between periods t and t+ 1.

1.5.2 Population Growth and Economic Prosperity

The expression for (stationary) per capita consumption growth rate

1 + gc ≡
ct
ct−1

=
Lt−1M

ε−1
t qtMt+1

LtM
ε−1
t−1 qt−1Mt

=
(1 + gq) (1 + gM)ε

1 + n
(27)

Which can be also written as

1 + gc =
(1 + gq) [(1− δ) + ξρ(1 + θ (n)n)]ε

1 + n
(27a)

Plugging the explicit expression for θ (n) into (27a) and then differentiating for n shows that

the sign of ∂gc
∂n

depends on the sign of ε(1−γ)θ0n−γ(1+n)
(1−δ)
ξρ

+1+θ0n1−γ − 1. The latter expression is positive

(negative) if the following (reverse) inequality holds

ε (1− γ)n−γ − [1− ε (1− γ)]n1−γ >
1

θ0

(
1− δ
ξρ

+ 1

)
(28)

16At the two extremes, θ = 0 or θ = 1, preferences are of Millian or Benthamite type, respectively.
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Proposition 1.6. For a sufficiently large γ, the relation between gc and n is hump shaped.

Proof. If γ is large enough to ensure that ε (1− γ) < 1, the left side of (28) is decreasing with

n: starting from plus infinity for n → 0, and becoming negative for n > ε(1−γ)
1−ε(1−γ)

. Hence, for

ε (1− γ) < 1, the sign of ∂gc
∂n

is positive (negative) for low (high) fertility rates, and thus, gc(n)

is hump shaped.

Following (28), with ε (1− γ) ≤ 1 (i.e., γ ≥ 1
s
), the per capita consumption growth rate

is maximized for n = ε(1−γ)
1−ε(1−γ)

. As γ increases (decreases), the range of n for which ∂gc
∂n

> 0

is shrinking (widening). The result presented in proposition 1 summarizes the total impact of

the two contradictory effects of population growth on economic work presented in equation

(27a): the numerator shows the positive effect of population growth on savings and investment

in the presence of altruism, i.e., for any θ (n) > 0. The denominator in (27) shows the standard

diluting effect of population growth on human capital accumulation and, thereby, on economic

growth. However, under the current specification, the positive effect of altruism on growth

depends on the rate of population growth, as ∂θ(n)n
∂n

= ∂θ0n1−γ

∂n
= (1− γ) θ0n

−γ . Hence, for

high (low) levels of n, the positive (negative) effect dominates the overall impact of population

growth on economic growth. This result is similar to the one we presented in Diwakar and

Sorek (2016), albeit through a different mechanism, which is congestion in dynastic spillovers

of human capital.

1.6 Conclusion

In this work we have established a polynomial relation between population growth and

economic growth, building on the notion of human-capital spillover from parents to their

offspring. We have shown that the shape of the non-monotonic relation between population

growth and economic growth can be altered and even inverted in the presence of congestion in

human-capital spillover. Our findings contribute to the recent literature that is aimed to modify

R&D-based model to remove the counterfactual definite positive effect of population growth

on technological progress, and economic growth (“weak scale effect”).
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In particular, this work adds to the few recent studies that established non-monotonic re-

lation between population growth and economic growth. We have shown that under suffi-

cient congestion impact, the effect of population growth on economic growth may follow a

hump shape, that is consistent with the empirical finding of Boikos et al.(2013) and Kelley and

Schmidt (1995). Finally, we have shown that the rates of human capital accumulation and prod-

ucts’ quality improvements in the decentralized economy may deviate in various ways from the

welfare maximizers.

Subsequent research is called to explore the implications of endogenous fertility rates

to the results derived in this work, including the potential for equilibria multiplicity that was

pointed out but not fully explored by Boikos et al.(2013, p.49).
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Chapter 2

Weak Scale Effects in

Overlapping Generations Economy

2.1 Introduction

The second and third generations of R&D-based growth models were criticized for pre-

senting a positive relation between population growth and economic prosperity, i.e. a “weak

scale effect”, which does not fit the empirical findings of an ambiguous, possibly non-monotonic,

relation between these variables. 1 This literature, however, has focused almost exclusively on

the analysis of infinitely lived homogenous agents. We study the implications of this demo-

graphic structure for the presence of the weak scale effects, through a comparative analysis of

the Overlapping Generations (OLG) model of finitely lived agents. 2

The two canonical demographic structures of the macroeconomic workhorse models imply

different incentives for saving. The infinitely lived agents are assumed to share their assets

(patent ownership in the current context) with their offspring. They fully internalize this into

their saving decisions as they maximize the per-capita or aggregate lifetime utility of their

dynasty members. Therefore, in this framework savings involve bequests, but they lack a life-

cycle saving motive as workers’ labor supply does not change with age. 3

1Jones (1999) provides a compact comparative summary of the theoretical literature. Strulik et al. (2013) and
Boikos et al.(2013) summarize the empirical literature.

2Earlier literature already showed that the different demographic structures have immediate implications for tax
policy, convergence patterns, and the feasibility of growth itself. Dalgaard and Jensen (2009, p.1639) summarize
this literature. Sorek (2011), and Diwakar and Sorek (2016c) highlight the implications of the OLG demographic
structure to patent policy.

3The infinitely living agents can be thought equivalently, and more realistically, as finitely living ones with
strong altruism toward their offspring.
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By contrast, in the OLG framework saving is aimed to smooth consumption over a finite

lifetime, which spans from working years to retirement period, and there are no intergenera-

tional bequests. Hence, in this framework saving is motivated purely by life-cycle consider-

ations. Clearly, the exclusive presentation of each saving motive in its corresponding demo-

graphic structure is unrealistically extreme. 4

Our analysis decomposes the implications of the two saving motives for the presence of

weak scale effect. First, we show that in the absence of bequest saving-motive, the sign of the

weak scale effect in the OLG economy depends solely on the degree of intertemporal elasticity

of substitution (IES). Then, we show how when both saving motives are active, the sign of the

weak effect depends also on the relative strength of parents’ utility from bequest vs. utility

from their own consumption during retirement.

Our results contribute to a recent line of modified R&D-based growth model with infinitely

lived agents, which aimed at aligning the role of population growth in R&D-based growth

theory with the empirical evidence. 5

Unlike the present work, these modified models introduce human capital as a productive

input in the R&D sector, thereby forming a tension between a positive effect of population

growth on saving in the presence of dynastic altruism and its negative (diluting) effect on human

capital accumulation.

The present study is also related to the work by Dalgaard and Jensen (2009), hereafter

“DJ”, on the effect of alternative saving motives on the presence of strong scale effects - that

is the effect of population size on economic growth. Their work adds bequest saving-motive to

an otherwise standard OLG model with capital externalities, that is an AK model.

However, our research question differs from DJ’s, as we study the effect of alternative sav-

ing motives on the presence of weak scale effects and our modeling approach differs from DJ’s

4The empirical literature has not yet reached an agreement regarding their relative importance in driving saving
behavior; See De Nardi et al. (2015) for a recent survey.

5 See for example Dalgaard and Kreiner (2001), Strulik (2005), Bucci (2008, 2015), Bucci and Raurich (2016),
and Diwakar and Sorek (2016a,b). Two recent works study this topic within the OLG framework. Prettner
(2014) shows that the sign of the weak scale effect depends on the characteristics of the public education sector.
Strulik et al.(2013) developed a unified growth model that incorporates endogenous fertility and human capital
accumulation, and transition from neoclassical technology to R&D-based growth.
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as we incorporate a full-fledged textbook model of R&D-based growth within the OLG frame-

work. Therefore, our results are not fully comparable with those of DJ’s. Nevertheless, we

reconfirm that the different saving motives implied by the alternative demographic structures

are crucial in determining the role of population in R&D-based growth.

The paper proceeds in a straightforward manner. Section 2.2 presents the detailed model.

Section 2.3 studies the weak-scale effects with life-cycle saving only. Section 2.4 introduces

bequest motive for saving. Lastly, Section 2.5 concludes this study.

2.2 The Model

We take the variety-expansion model presented in the textbook of Barro and Sala-I-Martin

(2004, Chapter 6), hereafter “BS”, and accommodate it to the OLG framework: each consumer

lives for two periods. In the first period, she supplies one unit of labor and in the second period

she retires. Cohort (generation) size is increasing at an exogenous constant rate n, which is also

the growth rate of the labor force and overall population.

2.2.1 Production and Innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated

inputs, to which we refer as “machines”

Yt = AL1−α
t

Mt∫
0

Kα
i,t di , 0 < α < 1 (1)

where A is a productivity factor, Lt and Ki,t are labor input and the utilization level of

machine i in period t, respectively, and Mt measures the number of available machine varieties.

The final good price is normalized to one. Machines are capital goods, and thus they are

formed one period ahead of utilization, and we assume they fully depreciate after one period.

Once invented, the new machine variety is eternally patented. Under symmetric equilibrium,

utilization level for all machines is uniform, i.e. Ki,t = Kt ∀ i, and thus total output is
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Yt = AMtKt
αL1−α

t (1a)

The labor market is perfectly competitive, and therefore the equilibrium wage and aggre-

gate labor income are wt = A(1 − α)MtKt
αL−αt and wtLt = A(1 − α)MtKt

αL1−α
t , respec-

tively. The profit for the final good producer is πi,t = AL1−α
t

Mt∫
0

Kα
i,t di−

Mt∫
i=1

pi,tKi,t di− wtLt,

where pi,t is the price of input i. Profit maximization yields the demand for each machine:

Kd
i,t = A

1
1−αLt

(
α
pi,t

) 1
1−α

, for which the periodic producer-surplus from machine i, denoted

PSi, is 6 PSi,t = [pi,t − (1 + r)]Kd
i,t. This surplus is maximized by the standard monopolistic

price pi,t = 1+rt
α
∀i, t. 7 Plugging this price in Kd

i,t, and then back in (1a), we obtain per-worker

output,yt:

yt ≡
Yt
Lt

= A
1

1−α

(
α2

1 + rt

) α
1−α

Mt (1b)

The innovation technology follows the specification of BS in the analysis of scale effects

(see p.302 in sub-chapter 6.1.7 there): 8

ηt = ηA
1

1−α

(
α2

1 + rt

) α
1−α

Lt (2)

where etat the cost of innovating a new variety (η > 0). This innovation technology implies

that variety expansion (i.e. productivity growth) in this model depends positively on the share

of output devoted to R&D. As we assume machine-varieties are patented forever, patents are

being traded inter-generationally - young buy patents from old. New and old varieties play

equivalent roles in the production, as reflected in their symmetric presentation in (1). Therefore

6Total surplus is the given by per-unit surplus times demand, and per-unit surplus is the selling price minus the
marginal cost of capital, that is δ + r (full depreciation is assumed here).

7BS abstract from the timing of investment, setting the cost of each machine (in terms of output units) to one
and therefore having the optimal monopolistic price p = 1

α (equations 6.9-6.10 on pp. 291-292 there). In their
continuous time framework this abstraction has no effect on any of the results.

8Equation (2) implies that variety expansion rate, which defines productivity growth in this model, depends
positively on the share of output devoted to R&D. This specification aligns with the empirical regularities sum-
marized in that chapter, which were originally presented by Jones (1995). See chapter 6.1.7 in Barro and Sala-I-
Martin (2004) for a detailed discussion.
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the market value of old varieties equals the cost of inventing a new one - ηt. Hence the return

on patent ownership - over old and new technologies is 1 + rt+1 =
PSi,t+1+ηt+1

ηt
. Plugging the

explicit expressions for the surplus and the innovation cost, we obtain the stationary interest

rate: 9

1 + r = (1 + n)

[
α(1− α)

η
+ 1

]
, ∀t (3)

Hence, population growth works to increase the rate of return on capital, due increased

demand for patented machines. Following (1b), per-capita output growth (which coincides

with per-worker output growth), denoted gy, is determined by the expansion rate of machine-

varieties range, gM :

1 + gy,t+1 ≡
yt+1

yt
= 1 + gM,t+1 (4)

2.2.2 Preferences

Lifetime utility, for an agent born in period t, is derived from consumption over two peri-

ods, and bequest:

u(ct,1, ct,2, bt) =
(ct,1)1−θ

1− θ
+ β

[
(ct,2)1−θ

1− θ
+ κ

( bt
1+n

)1−θ

1− θ

]
(5)

where β ∈ (0, 1) is the subjective discount factor, 1
θ

is the IES, 10 c1, c2 denote consumption

when young and old, respectively, and bt is the total bequest left by a representative parent in

period t (hence bt
1+n

denotes per-child bequest). The parameter κ ≥ 0 measures the weight

placed on utility from the bequest. This specification of the bequest motive for saving, which

resembles a “joy-of-giving” is similar to DJ and is common to the literature written in the OLG

framework (see for example Strulik et al. 2013). It implies that parents care about the per-child

9Any non-stationary interest rate path should satisfy 1 + r
1

1−α
t+1 = (1 + n)α(1−α)+ηη (1 + rt)

α
1−α . Our results

would hold if we assume that patents ownership is transferred from parents to offspring, like in the model with
infinitely living agents. Then, however, the interest rate would be 1 + r = (1+n)α(1−α)

η , which corresponds to the
one presented in BS (adjusted for continuous time).

10 The empirical literature suggests that the IES is lower than one; See Hall (1988), Beaudry and Wincoop
(1996), Engelhardt and Kumar (2009).
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bequest level, which is in line with the Millian type of parental preferences employed by BS.

In the extended working-paper version of this study. 11 we explore also the Benthamite and

“Beckerian” types of parental preferences

2.3 Life-Cycle Saving

In the absence of bequest saving motive, which is the case we analyze first, we have κ = 0

and lifetime utility boils down to the standard form:

U(ct,1, ct,2) =
(ct,1)1−θ

1− θ
+ β

(ct,2)1−θ

1− θ
(5a)

Under (5a) young agents allocate their labor income between consumption and saving,

denoted s. The solution for the standard optimal saving problem is st = wt

1+β
−1
θ (1+r)1−

1
θ

. Hence,

aggregate saving is St = wtLt

1+β
−1
θ (1+r)1−

1
θ

, which after substituting the explicit expressions for wt

becomes

St =
Mt(1− α)LtA

1
1−α

(
α2

1+r

) α
1−α

1 + β
−1
θ (1 + r)1− 1

θ

(6)

The saving from labor income in (6) is allocated to three types of investment: buying

patents over old varieties, inventing new varieties, and forming specialized machines. Hence

aggregate investment in each period, It, satisfies

It = Mt+1

[
ηt + A

1
1−αLt+1

(
α2

1 + r

) 1
1−α
]

(7)

Notice that a higher population growth rate between period t and t + 1, has a direct positive

effect on the demand for each machine variety - due to the increase in L. However, following

(3), a higher population growth rate also increases the interest rate, which thereby increases

machine prices and therefore decreases the demand for each machine variety. By equalizing

(6) and (7), we impose the equilibrium condition It = St to obtain the dynamic equation that

11Available at: http://cla.auburn.edu/econwp/Arc
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governs the variety expansion rate:

1 + gy =
(1− α)LtA

1
1−α

(
α2

1+r

) α
1−α[

ηt + A
1

1−αLt+1

(
α2

1+r

) 1
1−α
] [

1 + β
−1
θ (1 + r)1− 1

θ

] (8)

Plugging (2)and (3) in (8) yields

1 + gy =

(
α(1−α)

η
+ 1
)

(1− α)

(α + η)

[
1 + β

−1
θ

[
(1 + n)

(
α(1−α)

η
+ 1
)]1− 1

θ

] (8a)

Proposition 2.1. With no bequest motive, the sign of the weak scale effect depends on the IES

≡ 1
θ
: for 1

θ
< 1(1

θ
> 1) there is negative (positive) weak scale effect i.e. ∂gy

∂n
< 0(∂gy

∂n
> 0).

Proof. Proof is by inspection of equation (8a).

The counterpart model with infinitely lived agents (presented in BS) yields no relation

between population growth and economic growth regardless of the IES value. 12 In both

models, population growth increases future demand for patented machines, thereby increasing

the equilibrium interest rate. However, for the infinitely lived agents, population growth works

also as a demographic discounting factor which discourages saving, and thus the two effects

cancel out. In the OLG economy, population growth does not generate direct negative effects

on saving and, due to the life-cycle structure of this framework, the effect of the increased

interest rate on saving depends on the IES.

2.4 Bequests

In the presence of bequest saving motive, each young agent maximizes her lifetime utility

(5), subject to the budget constraint: wt + bt−1

1+n
= ct,1 + ct,2+bt

1+r
. Applying this budget constraint

to (5) we write the indirect utility function

u(st, wt, bt−1, bt, r) =
(wt + bt−1

1+n
− st)1−θ

1− θ
+ β

[
[st(1 + r)− bt]1−θ

1− θ
+ κ

(
bt

1+n

)1−θ

1− θ

]
(9)

12The growth equation for this model, defined by the regular Euler condition, are presented in the following
section.
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Differentiating (9) with respect to s and b we obtain the following first order conditions

st =
wt + bt−1

1+n

β
−1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ κ

1
θ

+ 1

bt = st
1 + r

(1+n)
1−θ
θ

κ
1
θ

+ 1

(10)

Optimal saving is still a fraction of the resources available to the young (worker), which

now combine labor income and her inherited bequest. Hence, the operative bequest motive

relaxes the former dependency of saving (and thereby investment and innovation rate) on labor

income. Saving depends now not only on the interest rate and the IES, but also on the bequest

motive parameter κ, through the expression (1 + n)
θ−1
θ κ

1
θ .

The effect of population growth rate on this expression (and thereby on saving) depends

on the IES. Here, the population growth rate works as a depreciation rate that erodes the per-

child bequest level. Hence, its effect is inverse to the effect of the interest rate. This effect has

life-cycle saving properties due to the timing of parents utility from bequest-giving during the

second period of life. The second factor has a positive effect on saving, due to the increased

marginal utility from per-child bequest.

The optimal per-child bequest level is a certain fraction of capital income, st(1 + r). This

fraction is a function of the population growth rate and the bequest motive. As explained above,

the population growth rate erodes the per-child bequest level, and thus works like a decrease in

the interest rate: as the utility from bequest takes place during retirement, the effect of lower

return on the bequest per-child depends on the IES. The effect of the strength of bequest motive,

κ, on per-child optimal bequest is positive.

The first condition in (10) implies that aggregate savings is given by

St =
(1− α)A

1
1−αMtLt

(
α2

1+r

) α
1−α

+Bt−1

β
−1
θ (1+r)

θ−1
θ

1+(1+n)
θ−1
θ κ

1
θ

+ 1

(11)

where Bt−1 = Ltbt−1

1+n
, is aggregate bequests given to workers who were born in period t. Notice

that for κ = 0 the aggregate saving level defined in (11) falls back to the one presented in (6). in
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(6). The second condition in (10) implies that Bt−1 = St−1
1+r

(1+n)
1−θ
θ κ

−1
θ +1

, and the equilibrium

condition St−1 = It−1 requires

Bt−1 =
1 + r

(1 + n)
1−θ
θ κ

−1
θ + 1

Mt

(
ηt−1 + A

1
1−αLt

(
α2

1 + r

) α
1−α
)

(12)

Substituting (12), along with (3), back into (11) and equalizing to (7), i.e. setting St = It,

we obtain

1 + gy =

[
α(1−α)

η
+ 1
] [

(1−α)
α+η

(1 + n)
1−θ
θ + (1+η)

α+η
κ

1
θ

]
β

−1
θ

(
α(1−α)

η
+ 1
) θ−1

θ
+
[
(1 + n)

1−θ
θ κ

1
θ

] (13)

Proposition 2.2. In the presence of bequest saving-motive, the sign of the weak scale effect,

∂gy
∂n

is positive (negative) for θ > 1(θ < 1) and sufficiently strong (weak) bequest motive.

Proof. Differentiating (13) for n reveals that, for θ > 1(θ < 1), ∂gy
∂n

iff

β−1
(

1−α
α+η

)θ [
α(1−α)

η
+ 1
]θ−1

< κ

(
β−1

(
1−α
α+η

)θ [
α(1−α)

η
+ 1
]θ−1

> κ

)
.

For θ = 1, we have ∂gy
∂n

= 0 independent of κ.

In the counterpart model of infinitely lived agents, presented in BS, households maximize

per-capita utility of their dynasty members (following Millian preferences). Hence, aggregate

consumption growth follows the standard Euler equation 13: Ċ
C

= 1
θ
(r − β), and per-capita

consumption follows ċ
c

= 1
θ
(r − β − n) where interest rate is given by 14 r = n + α(1−α)

η
.

Combining the two latter conditions yields the stationary growth rates for per-capita income:

gc,y = 1
θ

[
α(1−α)

η
− β

]
. Hence, in the counterpart economy of infinitely lived homogeneous

agents the IES plays no role in the presence (or sign) of the weak scale effect. Notice that, by

Proposition 2, for θ = 1 the weak scale effect is also muted in our model, for any κ.

In reference to the results obtained by DJ, it is worthwhile noting that under the techno-

logical parameters used in our model, they find a strong scale-effect will prevail for any θ ≤ 1.

13Equation (6.22) on p.295 there, in which the parameter ρ the time preference parameter (denoted here as β).
14Equation (6.35) on p. 302 there.
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However, if θ < 1 is sufficiently larger (smaller) than one, strong scale effect in their model

will prevail only if κ is sufficiently large (small). 15

2.5 Conclusion

This study highlights the implications of alternative demographic structures, and the sav-

ing motives they imply, to the presence of weak scale effect on R&D-based growth models.

To this end, we have placed a basic variety-expansion textbook model (without human capital

accumulation) in the overlapping-generations demographic framework, and showed how the

interaction between the two alternative saving motives - life-cycle consumption smoothing and

parental bequests - determine the sign of the weak scale effect. In particular, for the empirically

valid degree of the IES, positive(negative) weak scale effect presents in the OLG economy only

if parental-bequest saving motive is sufficiently strong (weak).

15See Theorem 1 and Corollary 2 (on pp. 1642 and 1643 respectively) there, for σ = 1 (by their notation), which
is the elasticity of substitution between labor and capital in our model.
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Chapter 3

Patents and Growth in OLG Economy

with Physical Capital

3.1 Introduction

There is a relatively large literature on the role of patent policy in modern growth theory

and the implications of patent strength to R&D-based growth and welfare. The current liter-

ature, however, is almost exclusively written about models with infinitely lived agents. This

paper utilizes an overlapping generations model to highlight some unique implications of finite

lifetimes to patent policy.

In an economy of finitely lived agents, the limited longevity sets a barrier to growth by

inducing integenerational trade in productive assets. This point was emphasized by Jones and

Manuelli (1992) in a model of physical capital accumulation, and by Chou and Shy (1993) in

an endogenous growth model of variety expansion with no physical capital. Both studies em-

ployed the canonical Overlapping Generations (OLG) model pioneered by Samuelson (1958)

and Diamond (1965), where saving and investment are constrained by labor income. 1

Jones and Manuelli (1992) showed that perpetual growth cannot prevail in the neoclassical

OLG economy 2 due to the limited ability of the young to purchase capital held by the old. One

of the remedies they consider to support sustained growth in such economy is direct income

transfers from old to young. Chou and Shy (1993) emphasized that inter-generational trade

in old patent slows down growth as investment in old patents crowds out innovative (R&D)

investment in new varieties. They showed that due to this crowding-out effect, which is not

present in infinitely-lived agent economy, shortening patent length enhances growth.

To the best of our knowledge, Sorek (2011) is the only other work to study the growth

implications of patents in the OLG framework. However, this work focuses on the effect of
1More generally, in economies with finitely lived agents the accumulation of assets is limited by the agent’s

consumption horizon (longevity).
2In other words, the perpetual accumulation of physical capital per-capita.

30



patents’ breadth and length on quality growth (i.e. vertical innovation), where differentiated

consumption goods are only produced with labor (i.e. there is no physical capital as in Chou

and Shy 1993). In Sorek’s (2011) setup, the effect of patent policy on growth depends crucially

on the elasticity of inter-temporal substitution, through the effect of the interest rate on life-

cycle saving in the OLG model. This effect plays no role in the current analysis (proof is

available upon request).

The present work studies an OLG economy that incorporates both variety expansion and

physical capital accumulation, to highlight a unique mechanism through which loosening patents’

strength spurs growth. Our analysis places the variety-expansion model proposed by Rivera-

Batiz and Romer (1991),3 into the canonical OLG demographic framework of Samuelson

(1958) and Diomaond (1965). Previous works on Rivera-Batiz and Romerı́s (1991) model

economy with infinitely lived agents concluded that growth is maximized with complete patent

protection, that is,infinite patent length and complete patent breadth; See Kwan and Lai (2003),

Cysne and Turchick (2012), and Zeng et al. (2014). 4,5

In order to isolate the main effect under study from the aforementioned crowding-out effect

6, we first show that under infinite patent length growth is maximized with incomplete patent

breadth. The mechanism at work behind this result involves the trade-off between the static and

dynamic effects faced by the patents policy maker. Weakening patent breadth protection works

to lower the price of patented machines (by weakening sellers’ market power), which in turn

increases demand for machines. With more machines being utilized, output and labor income

are higher, thus increasing aggregate saving and investment. This is the positive static effect of

3Barro and Sala-i-Martin (2004) and Aghion and Howitt (2008) adopted this framework as the textbook model
of variety expansion; See chapters 6 and 8, respectively.

4These studies differ only in their modelling approach of patent policy. The first two model patent policy
through constant imitation rate, which can be also interpreted as stochastic patent duration, as will be explained in
Section 4. The last study models patent policy along two (more natural) dimensions: deterministic patent duration
and price regulation which is, technically, equivalent to our modeling approach of patent breadth. All these works
assume the differentiated inputs are intermediate goods that are formed are formed in the same period they are
being used, whereas we consider the differentiated inputs as investment goods (i.e. physical capital) that are
formed one period ahead of utilization. Nonetheless, for the infinitely lived agents this assumption does not effect
the implications of patent breadth for growth.

5In another related work, Iwaisako and Futagami (2013) study the implications of patent policy for growth in a
model of infinitely lived agents with physical capital. However, the role of physical capital is completely different
than in the present analysis. They use homogenous (raw) physical capital, along with labor, as an input in the
production of differentiated consumption goods - to which patent policy applies.

6The weakening of breadth protection over all patents evenly (as considered here), does not reduce the crowd-
ing out effect induced by intergenerational trade in old patents.
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loosening patent breadth protection on growth. 7 However, higher demand for machines shifts

investment away from patents and innovation toward physical capital. This is the negative

dynamic effect of weakening patent breadth protection on growth.

We show that the growth maximizing patent breadth depends negatively on the deprecia-

tion rate of capital due to the effect of the latter on machines’ price. The lower the depreciation

rate, the lower the price of physical capital and, therefore, the higher is the demand for phys-

ical capital. With initial lower machine prices, there is less potential for growth enhancement

through further price decrease induced by loosening patent protection.

The effect of patent policy on growth we are highlighting here is not present in the coun-

terpart model of infinitely living agents, where saving is not bounded by labor income. With

infinitely lived agents, the growth rate is determined by the standard Euler condition, 8 and thus

the effect of patent protection strength on growth works solely through its positive impact on

the returns to innovation and, thereby, the interest rate.

Next, we show that, for any positive depreciation rate on physical capital, shortening patent

length is more effective in spurring growth than loosening patent breadth protection. Shorten-

ing patent length triggers the mechanism presented above while mitigating the crowding out

effect as in Chou and Shy (1993).9 Shortening patent length induces the same effect as loosen-

ing patent breadth protection by lowering the average price of machine varieties. The expiration

of patent over a certain specialized machine results in competition among imitators of this spe-

cific variety, which brings its price down to marginal cost. Shorter patent length increases the

fraction of competitive machine-industries, thus lowering average machines’ price. Compared

with Chou and Shy (1993) and Sorek (2011), who found that one-period patent length yields

higher growth then infinite patents protection in OLG economy with no physical capital, we

also find that one period patent length never maximizes growth in our model economy.

7Since the old are the patent owners, this effect of weakening patent breadth protection is similar to income
transfers from the old to the young considered by Jones and Manuelli (1992). Similarly, Uhlig and Yanagawa
(1996) showed that reliance on capital-income taxation can also enhance growth.

8The familiar Euler condition is given by ċ
c = 1

θ (r − ρ), where c is per-capita consumption, θ is the inter-
temporal elasticity of substitution, ρ is the time preference parameter and r is the interest rate. See for example
equations (3),(14) and (15), in Zeng et al. (2014).

9This crowding-out reduction could be also achieved by weakening patent breadth protection gradually along
patents’ lifetime. Either way the market value of an old patent will decrease, freeing investment resources for
R&D activity.
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Our welfare analysis shows that enhancing growth by loosening patent breadth protection

is preferred by all generations if time preference and the degree of substitution across machine

varieties are sufficiently low. This result concurs with Chou and Shy’s (1993) analysis of the

welfare implications of patent length in their OLG model economy. 10

Finally, in the last section of the analysis, we present an implication of our main finding

for patent policy and economic development. We show that when labor productivity increases

relative to innovation cost, due to human capital accumulation, the growth maximizing patent

strength corresponds to labor productivity. Hence, as the economy develops, the growth max-

imizing patent strength is increasing as well. This result provides a normative case for the

documented positive correlation between the strength of intellectual property rights (IPR) and

economic development worldwide (See Eicher and Newiak 2013, and Chu et al. 2014).

Chu et al. (2014) presented the first analysis of stage-dependent optimal IPR, based on a

tradeoff between imitation from foreign direct investment (FDI) and reliance on domestic inno-

vation. Our last result provides a complementary case for growth enhancing stage-dependent

IPR policy for a closed economy (which is independent of the imitation motive). In an ear-

lier analysis of the topic, Diwakar and Sorek (2016) provide evidence that major developing

economies strongly restrict (physical) capital inflows.

The paper proceeds in a straightforward manner. Section 3.2 presents the model. Section

3.3 studies the implications of alternative patent policies to growth and welfare. Lastly, Section

3.4 concludes.

3.2 The Model

Our model uses the variety expansion model with lab-equipment innovation technology

and differentiated capital goods proposed by Rivera-Batiz and Romer (1991) together with Di-

amond’s (1965) canonical OLG demographic structure. Each period two overlapping genera-

tions of measure L; the “young” and the “old”, are economically active. Each agent is endowed

with one unit of labor to be supplied inelastically when young. Old agents retire and consume

their saving.

10See Propositions 3-4 on page 310 there.
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The benchmark model presented in this section assumes full patent protection - i.e. infinite

patent duration and complete patent breadth protection, implying that in any period innovators

can charge the unconstrained monopolistic price for their patented machines. We study the

implications of incomplete patent protection in Section 3.3.

3.2.1 Production and Innovation

The final good Y is produced by perfectly competitive firms with labor and differentiated

capital goods, to which we refer also as “specialized machines”.

Yt = AL1−α
t

Mt∫
0

Kα
i,t di (1)

where 0 < α < 1 A is a productivity factor, L is the constant labor supply, Ki,t is the

utilization level of machine-variety i in period t, respectively, and Mt measures the number of

available machine varieties. 11 Machines are subject to the depreciation rate δ ∈ (0, 1) per

usage-period, and the price of the final good is normalized to one. Under symmetric equilib-

rium, utilization level for all machines is the same, i.e. Ki,t = Kt∀i , and thus total output

is

Yt = AMtKt
αL1−α

t (1a)

The representative (perfectly-competitive) firm in the final-good production sector em-

ploys specialized machines at the rental price pi and labor at the market wage w, in order to

maximize the profit function

πi,t = AL1−α
t

Mt∫
0

Kα
i,t di−

Mt∫
i=1

pi,tKi,t di− wtLt (2)

The labor market is perfectly competitive and the equilibrium wage and aggregate labor

income are wt = A(1− α)MtKt
αL−αt and wtLt = A(1− α)MtKt

αL1−α
t , respectively.ctively.

11The elasticity of substitution between different varieties is 1
α .
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The profit maximization with respect to each machine variety yields the familiar demand func-

tion: Kd
i,t = A

1
1−αLt

(
α
pi,t

) 1
1−α

. Assuming symmetric equilibrium prices and plugging the latter

expression back into (1a) we obtain

Yt = A
1

1−α

(
α

pt

) α
1−α

MtL (2a)

Innovation technology follows lab-equipment specification, and the cost of a new blue

print is η output units.

3.2.2 Preferences

Lifetime utility of the representative agent born in period t is derived from consumption

(denoted by c) over two periods, based on the logarithmic instantaneous-utility specification 12

Ut = ln c1,t + ρ ln c2,t (3)

where ρ is the subjective discount factor. Young agents allocate their labor income between

consumption and saving (denoted by s). The solution for the standard optimal saving problem

is st = wt
1+ρ−1 . Hence, aggregate saving is St = wtL

1+ρ−1 , which after substituting the explicit

expression for wt becomes

St =
(1− α)A

1
1−αMtL

(
α
p

) α
1−α

1 + ρ−1
(4)

3.2.3 Equilibrium and Growth

The patent owners of each machine variety borrow raw physical capital from savers/lenders

at the rate (δ+rt), where rt is the net interest. They then transform each unit of raw capital into

one specialized machine, at no cost, and the specialized machines are then rented to final output

producers at the price p. Hence, given the demand for each machine as previously specified,

the per-period surplus from each patented machine, denoted PS, is: PSi,t = [pi,t−(δ+rt)]K
d
i,t.

12It is well known that under the assumed demographic structure, the logarithmic instantaneous utility implies
that the saving (and investment) level is independent of the interest rate. We have also considered the implications
of the general CEIS preference form. The proof is available upon request.
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This surplus is maximized by the standard monopolistic price pi,t = δ+rt
α

. Under infinite

patent duration, all new and old varieties are priced equally and, therefore, share the same

utilization level. As long as innovation takes place, the market value of old varieties equals the

cost of inventing a new one, η. The gross rate of return on investment in patents is given by

1 + rt = PS+η
η

. Notice that the numerator in the interest expression contains η because each

and every period all patents held by old agents are sold to the young agents.

Plugging the explicit term for the surplus into the interest rate expression yields an implicit

expression for the equilibrium interest:

∀t : 1 + r =
[pi,t − (δ + rt)]K

d
i,t + η

η
=

(δ + r)
−α
1−α ( 1

α
− 1)A

1
1−αLα

2
1−α + η

η
(5)

Equation (5) also defines the no-arbitrage condition that equalizes the net rate of return on

investment in patents and investment in physical capital.

Lemma 3.1. There exists a unique stationary interest rate, r∗, which solves (5).

Proof. The left hand side of (2) is increasing linearly in r , from one (for r = 0) to infinity. The

right hand side of (5) is decreasing in r from δ
−α
1−α ( 1

α
−1)A

1
1−αLα

2
1−α+η

η
> 1 (for r=0) to one (for

r→ ∞). Hence, by the Intermediate Value theorem, there exists a positive stationary interest

rate r∗ that solves (5).

As the right hand side of (5) is decreasing with the depreciation rate, so does the equilib-

rium interest rate, that is ∂r∗

∂δ
< 0. For the case δ = 0, equation (5) yields an explicit solution

for the stationary equilibrium rate:

r =

[(
1

α
− 1

)
L

η

]1−α

Aα2, for δ = 0,∀t. (5a)

Under the equilibrium interest rate, aggregate saving is allocated over investment in old

and young patents and in physical capital, where the investment in physical capital is set to

meet the demand for specialized machines

It = Mt+1

[
η + A

1
1−αL

(
α2

r + δ

) 1
1−α
]

(6)
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Equation (5) implies that machines prices are stationary: ∀t, i : pi,t = δ+r∗

α
. Hence,

Following (2), the output growth rate, denoted gY,t+1 ≡ Yt+1

Yt
− 1, which coincides with per-

capita output growth 13, is equal to the rate of machine-varieties expansion, i.e. gY,t+1 ≡
Yt+1

Yt
− 1 = gM,t+1 ≡ Mt+1

Mt
− 1. Imposing the equilibrium condition S = I, we equalize (4) and

(6), to derive the stationary rate of variety expansion which defines the output growth rate:

1 + gy =

1−α
1+ρ−1

(
α2

r+δ

) α
1−α

η̂ +
(
α2

r+δ

) 1
1−α

(7)

where η̂ = η

A
1

1−αL
. For sufficiently low η̂ the growth rate defined in (7) is positive, and we

will generally assume that this the case. To see that, notice that as η̂ approaches zero, the right

hand side in (7) approaches 1−α
1+ρ−1

r+δ
α2 . However, by (5), as η̂ approaches zero, the interest rate

r approaches infinity, and thus lim
η̂→0

1−α
1+ρ−1

r+δ
α2 approaches infinity as well.

3.3 Patents

We now explore the implications of patent policy to growth and welfare. The growth

implications of patent breadth protection under infinite patent length are studied first. We

then demonstrate the greater effectiveness of finite patent length in spurring economic growth.

Lastly, we examine welfare and the issue of stage-dependent patent policy.

3.3.1 Patent Breadth and Growth

We model patent breadth protection with the parameter λ, which limits the ability of patent

holders to charge the unconstrained monopolistic price: p(λ) = λp∗ = δ+rt
α

where λ ∈ [α, 1],

and thus p(λ) ∈ [δ + rt,
δ+rt
α

]. One can think of p(λ) as the maximal price a patent holder

can set and still deter competition by imitators. Weaker breadth protection lowers the cost of

imitation, thereby imposing a lower deterrence price on patent holders. 14 When λ = 1, patent

breadth protection is complete and patent holders can charge the unconstrained monopolistic

13As both total population and the labor force are constant.
14Similar modeling approach for patent breadth protection was used (among others) by Goh and Olivier (2002),

Iwaisako and Futagami (2013), and Chu et al. (2016).
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price p = δ+rt
α

. With zero protection λ = α, patent holders lose their market power completely

and sell at marginal cost. Note that as patent breadth protection is weakened, machines’ price is

reduced and demand for each machine-variety is increasing. Under this patent breadth policy,

the equilibrium interest rate in equation (5) modifies to

∀t : 1 + r =
(δ + r)

−α
1−α (λ

α
− 1)A

1
1−αL

(
α2

λ

) 1
1−α

+ η

η
(8)

For δ = 0,∀t : r =

[(
λ

α
− 1

)
L

η

]1−α

A

(
α2

λ

)
(8a)

Lemma 3.2. The stationary equilibrium interest rate r∗ is increasing with patent breadth pro-

tection, i.e. ∂r∗

∂λ
> 0

Proof. Differentiating the right hand side for λ yields a positive derivative for any λ < 1 .

Hence, the value of r∗, which solves (8), is increasing with patent breadth protection λ.

Lemma 3.2 implies that loosening patent breadth protection decreases machines’ price,

p(λ) = λ(δ+r∗)
α

, through capping the monopolistic markup and by decreasing the marginal cost

(of capital) on which this mark up builds. Thus, loosening patent breadth protection increases

the demand for each machine variety. This increase in demand for machines has positive effect

on aggregate saving (4), for a given variety span:

St =
(1− α)A

1
1−αMtL

(
α
p(λ)

) α
1−α

1 + ρ−1

This is the positive static effect of loosening patent breadth protection on aggregate sav-

ing (for a given variety span Mt) and, thereby, innovation and growth. However, for a given

level of saving, the increased demand for machines works to shift investment toward physical

capital and away from patents. This is the dynamic negative effect of loosening patent breadth

38



protection on innovation and growth. From equation (6) we have:

It = Mt+1

[
η + A

1
1−αL

(
α

p(λ)

) 1
1−α
]

Plugging p(λ) = λ(δ+r∗)
α

in the above saving and investment expressions and imposing the

aggregate constraint S =I we obtain,

1 + gy =
1− α

1 + ρ−1

ψ
α

1−α

η̂ + ψ
1

1−α
(9)

where η̂ = η

A
1

1−αL
, and ψ ≡ α2

λ(δ+r∗)
. Finally, we denote the growth maximizing policy by λ∗∗.

Proposition 3.1. For any positive depreciation rate, the growth-maximizing patent breadth is

positive but incomplete, and is decreasing with depreciation rate. That is ∀δ > 0 : α < λ∗∗ < 1

and ∂λ∗∗

∂δ
< 0.

Proof. Differentiating (9) for reveals that the growth rate is increasing with ψ , if α
1−α η̂ > ψ

1
1−α ,

that is α
1−α η̂ >

[
α2

λ(δ+r∗)

] 1
1−α

. Hence, under this condition the growth rate is decreasing in λ.

Plugging the interest rate in (8a), i.e. for δ = 0, in the latter condition yields equality for λ = 1,

implying that this condition holds any δ > 0 (evaluated at λ = 1). Hence, λ∗∗ < 1. For λ = α,

equation (8) yields r∗ = 0 , ∀δ. Then, setting r∗ = 0 in (9) yields negative growth rate, gy < 0,

∀δ. Hence, α < λ∗∗ < 1. Because the interest rate is increasing with δ, the degree of patent

breadth protection that maximizes growth, to satisfy
[

α2

λ∗∗(δ+r∗∗)

] 1
1−α

= α
1−α η̂, is decreasing

with the depreciation rate, i.e. ∂λ∗∗

∂δ
< 0.

Proposition 3.2. The maximal growth rate that can be achieved with incomplete patent breadth

protection is unique: 1 + g∗∗y = αα(1−α)2−α

(1+ρ−1)η̂1−α

Proof. By setting ψ = ψ∗∗ ≡
(

α
1−α η̂

)1−α in the growth equation (9).

3.3.2 Patent Length and Growth

We turn to study the implications of patent length for growth, under complete patent

breadth protection. We study stochastic patent length, assuming that each period a fraction
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1−π of the existing patents expire, where π ∈ (0, 1). 15,16 However, all new patents are certain

to grant patent for one period (which will expire with probability 1 − π in the second period).

This means that the actual lifetime of a patent, denoted T, is the value ofE(T ) = 1+ π
1−π for all

new and old patented technologies. Under this specification, the stationary fraction of patented

industries, µ, is

µ =
g

1 + g − π
⇒ 1− µ =

1− π
1 + g − π

(10)

Applying (10) to (2a) we write the modified output equation:

Yt = A
1

1−αLMt

[
g

1 + g − π

(
α2

δ + rt

) α
1−α

+
1− π

1 + g − π

(
α

δ + rt

) α
1−α
]

(11)

Aggregate saving is still a constant fraction of total output: St = (1−α)
1+ρ−1Yt, and the modified

investment equation is

It = Mt+1

[
g

1 + g − π
η +

g

1 + g − π
A

1
1−αL

(
α2

δ + rt+1

) 1
1−α

+
1− π

1 + g − π
A

1
1−αL

(
α

δ + rt+1

) 1
1−α
]

(12)

Imposing It = St yields the following implicit equation for the stationary-growth rate:

1 + g =

(1−α)
1+ρ−1

(
α2

δ+r

) α
1−α
(

1 + 1−π
g
α

−α
1−α

)
η̂ +

(
α2

δ+r

) 1
1−α
(

1 + 1−π
g
α

−1
1−α

) (13)

This equation has only one positive root, and for π = 1 it coincides with (7). The interest

rate under the current patent policy is given by

∀t : 1 + r =
(δ + r)

−α
1−α ( 1

α
− 1)α

2
1−α + πη̂

η̂
(14)

15This formulation has two practical advantages. First, it is a continuous policy instrument although time in this
model is discrete. Second, it greatly enhances tractability.

16This modelling approach follows Helpman (1993), Kwan and Lai (2003), and Rubens and Turchick (2012).
Their original interpretation was that a fraction π of the patented technologies are being imitated due to a lack of
patent protection enforcement.
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The stationary equilibrium interest rate that satisfies (14), r∗, is increasing with the stochas-

tic patent length π, and for π = 1 it coincides with (8).

Remark 3.1. Setting π = (1 − δ) in (14) yields δ + r∗ =
(

1−α
αη̂

)1−α
α2. Thus, by Proposition

2 we have: ψ(π = 1− δ, λ = 1) = ψ∗∗(π = 1, λ∗∗) ≡
(

α
1−α η̂

)1−α.

Applying the implicit function theorem to (13) we obtain the following expression for dg
dπ

:

1−α
1+ρ−1ψ

α
1−α

[
α

1−αψ
−1|∂ψ

∂π
|
(

1 + 1−π
g
α

−α
1−α

)
− C

]
− (1 + g)ψ

1
1−α

[
1

1−αψ
−1|∂ψ

∂π
|
(

1 + 1−π
g
α−

1
1−α

)
− C

]
B +

[
(1−α)
1+ρ−1ψ

α
1−αα

−α
1−α (1−π

g2
)
]
− (1 + g)

[
ψ

1
1−αα

−1
1−α (1−π

g2
)
]

(15)

Where B is the denominator in the right hand side of (13) and C = α
− 1

1−α

g
. Based on the

above remark and equation (15), we obtain the following proposition.

Proposition 3.3. For any positive depreciation rate, finite patent length can yield higher growth

than incomplete patent breadth protection.

Proof. Substituting ψ = ψ∗∗ into (13) yields the growth rate obtained in Proposition 2. That is

for π = 1− δ and λ = 1: 1 + g∗∗y = 1−α
1+ρ−1

αα(1−α)2−α

η̂1−α
. Then, substituting ψ = ψ∗∗ and g = g∗∗y

into (15) reveals that, for any positive depreciation rate, both the numerator and denominator are

negative, and for zero depreciation rate the numerator also equals zero (while the denominator

remains negative). That is ∀δ > 0 : dg
dπ
|π=1−δ > 0, and for δ = 0 : dg

dπ
|π=1−δ = 0. Hence, for

any positive depreciation rate, growth under finite patent length can be enhanced beyond the

maximal rate defined in Proposition 2, by marginal increase in expected patent length. That

is, π∗∗ < 1 − δ, and thus E(T ∗∗) > 1 + 1−δ
δ

. For zero depreciation physical capital growth is

maximized with infinite patent length.

3.3.3 Patents and Welfare

This section will briefly explore the welfare implications of loosening patent protection.

To maintain tractability we focus on patent breadth protection. We follow Chou and Shy (1993)

in comparing the lifetime utility of all living generations under alternative stationary patent
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policies. Substituting the explicit expressions for c1 and c2, implied by the saving equations in

Subsection 3.2.2, into the lifetime utility function (3) yields the indirect lifetime utility of the

representative consumer who was born in period t:

Ut = ln

(1− α)MtA
1

1−α

(
α
p

) α
1−α

1 + ρ

+ ρ ln

ρ(1− α)MtA
1

1−α

(
α
p

) α
1−α

1 + ρ
(1 + r∗)

 (16)

Equation (16) implies that Ut = Ut−1 + (1 + ρ) ln(1 + g), and thus

Ut = U0 + t(1 + ρ) ln(1 + g) (16a)

where U0 is given by evaluating (16) for M0. By Propositions 1, for any positive depreciation

rate, the stationary growth rate g is maximized with incomplete breadth protection. Hence, by

(16), a sufficient condition for incomplete breadth protection to increase the lifetime utility of

all generations who are born in the present and future periods, is having ∂U0

∂λ
|λ=1 < 0. The

derivative ∂U0

∂λ
depends has the following expression:

[
ρ

1 + r
− α

1− α
1 + ρ

(1 + r∗)

]
∂r

∂λ
− α

1− α
(1 + ρ)

λ
(16b)

However, Lemma 3.2 implies ∂r∗

∂λ
> 0. Hence, having a negative term in the brackets of

(16b) is sufficient condition to assure ∂U0

∂λ
< 0. This sufficient condition holds if ρ

1+ρ
< α

1−α . 17

This result is summarized in our next proposition.

Proposition 3.4. Incomplete patent breadth protection benefits all generations if time prefer-

ence and the degree of substitution across varieties are sufficiently low, such that ρ
1+ρ

< α
1−α ⇔

1
α
< 1

p
+ 2.

Proposition 4, which relies on comparison between two alternative stationary policies con-

curs with the results obtained in the welfare analysis of Chou and Shy (1993). However, the

direct transitional impact of loosening patent breadth policy at a certain period will not yield

17Recall that the elasticity of substitution across varieties is 1
α
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Pareto improvement even if the above proposition holds. At period zero, the amount of avail-

able machines is already pre-determined, and thus, decreasing their price can not increase their

utilization level.

Hence, the positive effect on aggregate saving will not prevail, and only the negative effect

on second-period consumption (due to lower interest rate) will be at work. Therefore, in this

case transfers from the next young generation (to be born in period one) to the current young

generation will be required to maintain Pareto improvement. However, the complete analysis

of this issue falls beyond the scope of the current study.

3.3.4 Stage-Dependent Patent Policy

Proposition 2 implies that the growth maximizing patent policy depends on the value of

η̂ ≡ η

A
1

1−αL
. This term can be interpreted as innovation-cost per effective labor supply, denote

H ≡ A
1

1−αL 18. However, the value of these parameters may be associated with the economy’s

development stage. Labor productivity is typically increasing along the course of economic

development through the accumulation of human capital. Similarly, the literature on R&D

driven growth has considered alternative endogenous dynamics of the innovation cost due to

inter-temporal knowledge spillover. This works to decrease per-variety invention cost and the

stepping on toes (“fishing out”) effect (which works to increase invention cost as R&D efforts

increase), and distance from the frontier. 19

Proposition 3.2 suggests that the growth-maximizing patent protection is decreasing with

η̂. In this subsection, we attempt to formalize this result. Adding the time subscript to the

relevant parameters, we re-write the output and growth equation

Yt = MtHt

[
α

pt(λt)

] α
1−α

(17)

18If A
1

1−α is interpreted as labor augmented productivity factor we can write (1) as: Y =MKα
(
A

1
1−αL

)1−α
19See Jones (1995) and Segerstrom (1998). Jones (1999) provides a compact summary of the topic.
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1 + gM,t+1 =
(1− α)

1 + ρ−1

Ht

[
α

pt(λt)

] α
1−α

η +Ht+1

[
α

pt+1(λt+1)

] 1
1−α

(17a)

where pt(λt) = λt(δ+r−t)
α

, as before, and the interest rate follows the modified no-arbitrage

condition

1 + r∗t+1 =
(δ + r∗t+1)

−α
1−α (λt+1

α
− 1)λ

−1
1−α
t+1 α

2
1−α + η̂t+1

η̂t+1

(17b)

Equation (17) implies the following growth rate of per-capita output.

1 + gy,t+1 = (1 + gM,t+1)(1 + gH,t+1)(1 + gp(λ),t+1)
α

1−α (18)

Combining equations (18) with (17a) yields

1 + gy,t+1 =
(1− α)

1 + ρ−1

ψ
α

1−α
t+1

η̂t+1 + ψ
α

1−α
t+1

(18a)

Notice that the growth equation (18a) depends only on the patent policy expected to prevail

in period t+1.

Proposition 3.5. The growth-maximizing policy, ψ∗∗t ≡
(

α
1−α η̂t

)1−α, implies that patent breadth

is decreasing with η̂t+1.

Proof. Proposition 3.1 implies that this growth rate is maximized with

ψ∗∗t+1 ≡
(

α
1−α η̂t+1

)1−α. Rewriting the interest rate expression (17b) we obtain:(
r∗t+1

δ+r∗t+1

α
λt+1−α η̂t+1

)1−α
= α2

λt+1(δ+r∗t+1)
. Hence, the growth-maximizing condition is satisfied

with r∗t+1

δ+r∗t+1
= λt+1−α

1−α . Clearly, for δ = 0 growth is maximized by the stationary policy of

complete breadth protection. However, for any δ > 0, as η̂t+1 is decreasing (increasing), the

left hand side of the latter condition is also increasing. Then, in order to restore the equal-

ity patent breadth protection should also increase (decrease). Then, by strengthening patent
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breadth protection, the right hand side is increasing while the left hand side is increasing at a

lower rate.

3.4 Conclusion

This work proposes a contribution to the literature on patent policy and economic growth

by exploring the implications of patent policy in an OLG framework with physical capital.

We have highlighted a novel mechanism through which weakening patent protection can en-

hance growth, which is unique to the OLG demographic structure of finitely lived agents. This

mechanism involves a trade-off between the effect of patent strength on aggregate saving and

investment and the allocation of total investment between patent ownership and physical capi-

tal. This positive effect can be induced by either shortening patent length or loosening patent

breadth protection. However, shortening patent length also mitigates the crowding out effect of

trade in old patents on R&D investment. Hence, shortening patent length can be more effective

at generating growth than loosening patent breadth protection. These effects are not present in

similar models with infinitely lived agents. Consequently, growth in these models is maximized

with eternal patent life and complete patent breadth protection.

Finally, we have also presented an important implication of the main mechanism under

study to patent policy and economic development. A stage-dependent patent policy for which

patent strength is increasing over the course of economic development may be growth maximiz-

ing. This result provides a normative case for the often observed positive correlation between

patent strength and economic development around the world.
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