
Temperature Aware Scheduling in Multicore Systems

by

Vibudh Mishra

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science

Auburn, Alabama
August 4, 2018

Keywords: Scheduling, HotSpot, Quilt, Processor, Multicore

Copyright 2018 by Vibudh Mishra

Approved by

Sanjeev Baskiyar, Chair,
Professor of Computer Science and Software Engineering

Cheryl Seals, Associate Professor of Computer Science and Software Engineering
Dean Hendrix, Associate Professor of Computer Science and Software Engineering

ii

Abstract

Power density in microprocessors is increasing rapidly, which results in higher operating

temperature, and systems are prone to overheating. Dynamic thermal management has been

used to dissipate heat, reduce the operating temperature to avoid thermal emergencies but is not

aware of the application behavior. Several techniques like thread migration, Dynamic Voltage

Scaling (DVS), Dynamic Voltage Frequency Scaling (DVFS), clock gating etc. are used to

resolve the problem of thermal emergencies but are reactive to the increased chip temperature.

In this thesis, we propose a proactive dynamic thermal management method that is based on

grouping of the applications by thermal behavior. In the experiments, offline data is used as the

primary resource for the categorization of running application. The temperature of a core is

predicted by the rate of temperature change at the core proportional to the difference in current

and steady state temperature. We evaluate this method in a multicore system running several

benchmarks. The experiment results show a decrease of 1.2 -1.6C in the average peak

temperature of the CPU with a little performance overhead as compared to Linux standard

scheduler.

iii

Acknowledgements

I would like to take this opportunity to express my sincere gratitude to each and every

one who has been a part of my journey of pursuing my M.S dream. First and foremost I would

thank my advisor Dr. Sanjeev Baskiyar, without his continuous guidance and support this thesis

would have never been possible. His timely inputs, mentoring and immense knowledge

throughout my research has made all efforts fruitful. Dr. Baskiyar helped me out in the most

difficult personal situations and supported me when I needed most.

Furthermore, I would also extend my heartfelt gratitude to Dr. Cheryl Seals and Dr. Dean

Hendrix, for being a part of my advisory committee and giving me valuable advice during the

course of my studies.

I also owe much gratitude to Ms. Carol Lovvorn, Ms. Michelle Wheeles, Ms. Jo Ann

Lauraitis and Ms. Angela Evans for helping me keep my immigration and school paper work in

order. I would like to thank my lab mates Rakshith Venkatesh and Adarsh Jain for their

suggestions and help. Also, my special thanks to my friends Aravind Sridhar, Sameer Shah,

Rahul Potghan, Hiren Adesara, Prashant Dubey, Priyanka Boocha, Mitesh Soni, Radhen

Mathuria, Vikas Yadav, Mradul Sangal, Mahendra Harsha, Shrey Sanadhaya, Shashi Reddy,

Rahul Kumar and Digvijay Gholap at Auburn for being a helping hand and encouraging me

throughout.

iv

I am also deeply indebted to Mrs. Niranjana Nayak, Ms. Heather Sparks and Dr. Sushil

Bhavnani for ensuring that I never miss the warmth and affection of my family here.

I would like to thank my parents Dr. Arun Mishra and Mrs. Seema Mishra, Dr. Anil

Vajpayee and Mrs. Prabha Vajpayee who are my pillars of strength and love. They have always

shown me the right path and given me the freedom to follow my dreams. I would also like to

extend sincere thankfulness to Aashi Mishra, Arvinth Selvaraj and Preeti Shastri who have been

sending me best wishes, affection and emotional support. I dedicate this work to my loving

grandparents, Late. Mr. S.S. Mishra and Late. Chandan Devi Mishra and I seek your blessings

always.

v

Table of Contents

Abstract ii

Acknowledgments . iii

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction . 1

1.1 Motivation and Problem Definition . 2

1.2 Proposed Solution . 3

1.3 Report Organization . 3

2 Background . 5

2.1 Scheduling Basics 5

2.2 First Come, First Served Scheduling . 7

2.3 Shortest-Job-First Scheduling . 8

2.4 Priority Scheduling . 9

2.5 Round Robin Scheduling . 9

2.5.1 Linux Process Scheduling . 10

3 Literature Survey and Review . 12

3.1 Green Strategies in Large Scale Distributed Systems . 12

3.2 Thermal Aware Task Allocation and Scheduling for Embedded Systems 14

vi

3.3 Thermal Aware Scheduling in Multiprocessors (Operating System Level) 16

3.4 Thermal Aware Fully Loaded Process Scheduling . 18

3.5 Other Temperature Aware Scheduling Techniques . 21

4 Research Overview and Methodology . 25

4.1 Research Description . 25

4.2 System Characteristics . 26

4.3 HotSpot and Quilt Tools . 27

4.4 Assumptions . 27

4.5 Grouping of Applications . 29

4.6 Classification of Application at Run Time . 31

4.7 Validation of the Prediction Method . 32

5 Results and Graphs . 34

5.1 Result Graphs . 35

5.2 Applications’ Grouping .40

6 Conclusion and Future Work . 41

6.1 Conclusion . 41

6.2 Future Work . 41

Bibliography . 43

vii

List of Figures

2.1 Gantt chart with Processes in Order . 7

2.2 Shortest Job First Gantt chart . 8

3.1 Percentage of Surprise Reservations in Relation to Total Reservation Number 14

3.2 Thermal Management System Design . 19

3.3 Comparison of both Scheduling Schemes . 20

3.4 Thermal Pattern of an Application . 23

5.1 Temperature Pattern Comparison of 400.perlbench benchmark run 35

5.2 Temperature Pattern Comparison of 401.bzip2 benchmark run. 36

5.3 Temperature Pattern Comparison of 403.gcc benchmark run. 36

5.4 Temperature Pattern Comparison of 429.mcf benchmark run. 37

5.5 Temperature Pattern Comparison of 445.gobmk benchmark run. 37

5.6 Temperature Pattern Comparison of 456.hmmer benchmark run. 38

5.7 Temperature Pattern Comparison of 458.sjeng benchmark run. 38

5.8 Temperature Pattern Comparison of 462.libquantum benchmark run 39

viii

List of Tables

3.1 Temperature Comparison of Power and Thermal Aware Approach 16

4.1 System Environment . 26

4.2 Grouping SPEC 2006 CPU Application Benchmarks . 30

5.1 Application Groups with Temperature Range . 40

ix

List of Abbreviations

DVFS Dynamic Voltage Frequency Scaling

DTM Dynamic Thermal Management

CMP Chip Microprocessor

FIFO First In First Out

FCFS First Come First Serve

RR Round Robin

EARI Energy Aware Reservation Infrastructure

ASP Allocation and Scheduling Procedure

MST Maximum Scheduling Threshold

LSS Linux Standard Scheduler

TAS Temperature Aware Scheduler

1

Chapter 1

Introduction

Temperature awareness is an important aspect in multicore processor systems because the

rising temperature of processing elements such as microprocessors is the issue of major concern.

Research shows in order to run an individual 300W server for a year costs $338, and more

significantly, it can emit close to 1,300 kg CO2, without even considering the cooling expenses

[2]. In the latest reports it is concluded that the datacenters in the United States consumes

approximately 2.0% of the total electricity consumption in 2014 and this number has been

estimated to approach double in the coming decade [2, 4]. It is also estimated that the costs to run

the servers will surpass the costs to purchase server hardware. As we know the energy used by a

microprocessor converts into heat, this exponential rise in the heat causes temperature rise which

further causes problems in maintenance, consistency and manufacturing prices. The design of a

microprocessor must remove heat and hence control the temperature of the cores but

unfortunately most of the designs which consumes low-power have become very expensive.

The existing techniques to prevent thermal emergencies in the area of thermal

management in multicore processor systems are reactive to the increased chip temperature. There

are many dynamic thermal management (DTM) techniques like dynamic voltage and frequency

scaling (DVFS) and clock gating that had been used in modern day’s multicore processor

systems. In the dynamic voltage category, the supply voltages are scaled down using the

operating clock and thus the thermal management is achieved. The power consumption from this

2

technique is substantially reduced and at the same time it depends on the hardware components

and configurations to perform all scaling tasks. On the other hand, dynamic frequency

management promises better thermal awareness, as it confirms close to zero electricity usage by

being turned off servers. The above-mentioned hardware based DTM techniques are reactive to

the increased chip temperature and hence the demand of efficient proactive DTM techniques is

prevailing in the thermal management research area. There have been always search for a model,

which can provide thermal fairness and determine which core would be best for migration in a

multicore system environment.

1.1 Motivation and Problem Definition

Dynamic thermal management has been used to dissipate heat, reduce the operating

temperature to prevent thermal difficulties but is not aware of the application performance and

behavior. The temperature difference between different applications in a multicore processor

system can be up to 9C (ranging from 1C to 9C). It is also found that the temperature difference

between on-chip modules can be up to 10-15C [14].

Dynamic thermal management schemes that have been used were broadly classified into

temporal and spatial. Temporal techniques like DVFS and clock gating are reactive and have

high performance overhead. Spatial techniques like thread migration where it is very difficult to

determine the hot and cool threads at runtime because of the different thermal profiles of

different application. In migration process the main overhead comes from task suspension and

resumption [18, 20].

There is a significant difference in the temperature characteristics of different

applications on different cores in the same multicore chip [20]. Therefore, it is very important to

3

study the behavior and thermal profile of different applications. Also, it is critical to use an

efficient scheduling technique which should consider the application’s thermal behavior and

profile.

1.2 Proposed Solution

We have proposed a proactive dynamic thermal management method based on the

classification of the application’s thermal behavior. The application benchmarks classified and

grouped based on the steady state temperature and thermal profile. The future temperature of the

core is predicted by considering the rate of change of temperature at real time where the steady

state temperature of any application is known.

The grouped applications are scheduled using the coolest core algorithm where each

application group has its own user defined threshold temperature. The threshold temperature of

all the application groups is kept below to the average of grouped applications’ steady state

temperature that is calculated offline.

1.3 Report Organization

This report is organized as follows. Chapter 1 discusses the introduction with the problem

statement and proposed solution. Chapter 2 presents a detailed background study of different

scheduling techniques. Chapter 3 presents the literature survey and review where we discussed

different temperature aware scheduling techniques and results. In the Chapter 4 we discussed the

research overview and methodology. Also, in the same chapter we explained the assumptions,

experiment design and validation of the prediction method used in the experiments. In Chapter 5

4

we discussed the graphs and results of all the benchmarks. In Chapter 6 we conclude the report

and discuss about the future work.

5

Chapter 2

Background

In this chapter, we take a look into the various basic terms used in the scheduling of a

process. We start with the basic background about scheduling and different basic scheduling

algorithm. Also, since our research focuses on temperature aware scheduling, we would discuss

few basic scheduling techniques used to schedule tasks. We also emphasize on the different

techniques that has been used at various levels – hardware, operating systems and applications.

2.1 Scheduling Basics

Scheduling is a method used to allocate system resources like memory, processor time

and communication bandwidth to achieve the target with a minimum performance overhead.

Scheduling algorithm is required to achieve multitasking (executing numerous tasks at a time)

and multiplexing (simultaneous multiple flow transmission). The basic terms that are used with

the scheduling process and algorithms are discussed below.

 Turnaround time: The time between the process submission and its complete execution.

 Response time: It is defined as the amount of time scheduler takes when a request is

placed and when the first reaction is made.

 CPU utilization: It defines the busyness of the CPU. Typically, it ranges from 40% to

90% depending on the requests made to the processor.

 6

 Throughput: In the event when CPU is executing different processes that means some

work had been done. The numbers of processes completely executed per time unit is

called throughput. It may range from milliseconds to hours for long processes.

 Waiting time: It is the time spent by the process spent waiting for the resources to receive

the resources required for its execution.

There are different kinds of operating system schedulers. These schedulers are responsible for

making all the decisions from selecting next jobs to be admitted to next processes to execute.

The different types are schedulers are discussed below.

 Long-term scheduler: It is also called as the admission scheduler and is responsible to

select the next job to be considered in the ready queue (main memory). When a process is

requested to execute, the denial and authorization is decided by the long term scheduler.

It is also responsible to control the extent of multiprogramming in the processor. It plays

an important role in real time operations where it makes sure that the real time process

gets sufficient CPU time to complete the execution.

 Medium-term scheduler: In some cases scheduler removes the processes in main memory

and then these processes are moved to secondary memory. It is also called as swapping-in

and swapping-out. The medium-term scheduler is responsible for making decisions on

processes to swap-out based on certain conditions. In case if the process is of low

priority, process which is not active, when a process is page faulting or when the process

requires a lot of space in the main memory.

 Short-term scheduler: It is also known as the CPU scheduler. It decides which processes

are ready in-memory and are ready to be executed after an I/O interrupt, clock interrupt

 7

or a system call. The scheduling decisions by short-term scheduler more frequent and

more as compared to long-term and medium-term scheduler.

 Dispatcher: Dispatcher is the element in CPU scheduling that gives access of the CPU to

a process which is selected by a short-term scheduler [21]. This involves the following

functions-

o Context switching

o Switching to the user mode

o Jumping to the location in the program to restart that program

It should be very fast because it is invoked in every process switch. The time lag between

stopping one process and starting another running is called dispatch latency [21].

 Scheduling Algorithms is responsible for making the decision on the allocation of

processes which are already in the ready queue. In this section we describe different scheduling

algorithms and how they minimize resource starvation.

2.2 First-Come, First-Served Scheduling

In this algorithm CPU is allocated to the process which has requested it first. The

implementation of this algorithm is easily managed by the FIFO (First-In First-Out) queue. The

process enters the ready queue and when the CPU is free it is allocated at the head of the queue.

The average waiting time in FCFS algorithm is long as compared to other priority driven

algorithms [21].

P1 P2 P3

0 24 27 30

 8

Figure 2.1: Gantt chart with Processes in Order

As we can see the in the above figure, processes are arriving at time 0 with the length of

the CPU bursts given in seconds. The waiting time for the process P1 is 0 milliseconds, for

process P2 it is 24 milliseconds and for process P3 it is 27 milliseconds. Now if we calculate the

average waiting time of the three processes, it is 17 milliseconds. If the processes arrive in

different order say, P2, P3, P1, the average waiting time is 3 milliseconds. The waiting time

difference is substantial in FCFS policy and it is a non-preemptive algorithm.

2.3 Shortest-Job-First Scheduling

 In this policy the length of the process next CPU burst is associated with the process and

is used to allocate CPU to a particular process. It can also be explained as when CPU is open to

accept process, it is assigned to the one which has smallest next CPU burst. In case if the next

CPU burst is same for two or more processes, then FCFS algorithm is used to prevent a

deadlock.

P4 P1 P3 P2

0 3 9 16 24

Figure 2.2: Shortest Job First Gantt chart

 From the figure [21] which shows the scheduling of different processes according to

shortest job first algorithm. The waiting time of process P1 is 3 milliseconds, process P2 waiting

time is 16 milliseconds, 9 milliseconds for process P3 and 0 milliseconds for process P4. The

average waiting time is 7 milliseconds which is better than FCFS where the waiting time in this

scenario would have been 10.25 milliseconds. This algorithm is proved better than FCFS in

 9

terms of average waiting time. The real difficulty to implement this algorithm is in the prediction

of the processes having next smallest CPU burst. Also, starvation is possible especially when we

have too many small processes running in the system.

2.4 Priority Scheduling

 The priority scheduling is defined as the scheduling technique in which priority is

assigned to each process and the process with the highest priority is scheduled first. In this policy

the processes with equal priority are handled by the FCFS algorithm. In this technique the

priorities can be assigned both internally and externally. Internal priorities depend on certain

factors like, memory requirements, number of open files and time limits. External factors can be

importance of the process, department sponsoring the work and others.

 The priority scheduling can be both preemptive and non-preemptive. In an event when a

process arrives in the ready queue, the priority of the process is weighted and compared to the

other process currently executing. If the priority of the new process is higher than the one

running and the process in the CPU is replaced by the new process, this will be preemptive

priority scheduling. In non-preemptive scheduling the new task had to wait at the head of the

ready queue till the current process is finished.

 Starvation is one of the biggest problem with priority scheduling. In heavy loaded system

with many processes with high priority, most of the processes of lower priority had to wait

indefinitely and hence they are blocked for very long.

 A solution to this indefinite blocking of lower priority processes is called aging. In this

technique the priority of the processes that are waiting for a long time gradually increases with

time.

 10

2.5 Round-Robin Scheduling

 Round-Robin scheduling is a preemptive algorithm. In this scheduling policy a time slice

is defined and it is used for time-sharing systems. The ready queue behaves as a circular queue

where CPU is allocated to each process for a pre-defined interval of time (time-slice). The

implementation of the RR scheduling is done in a FIFO style where any new process is added to

the end of the ready queue [21].

 In RR scheduling, typically there are two cases, first where the time slice for a given

process is larger than required and the process releases the CPU voluntarily to assign it to the

process located at the very first place in the ready queue. In second case, if the time required to

complete for a process is larger than the time-slice, the timer will go off, cause an interrupt to the

operating system and execute context switch to put the process at the tail of the ready queue.

 The performance of a RR scheduling algorithm depends on the size of the time slice or

time quantum. If the time slice is extremely large, then the policy is very similar to FCFS and if

the time slice is very small then RR policy is called processor sharing where it appear like n

processes has its own processor.

 In the software level context switching also plays an important role in the performance

of the RR algorithm. If we have only one process of 13 time units and time slice is 15 time units,

the process finishes in less than one time slice or time quantum. If the time slice is 7 time units,

then the process will take 2 slices and a context switch to complete.

 If the time slice is 1 time unit there is 11 context switches resulting in slowing the overall

execution of the process. It can be concluded that turn-around time also depends on the size of

 11

the time slice. Time slice should always be larger than the context switch time to avoid slow

processing [21].

2.5.1 Linux Process Scheduling

 In Linux based system a priority based scheduling is used. It depends on the ranking of

the processes depending on their need for the processor time. Higher priority tasks are scheduled

before the lower priority tasks and the tasks with same priority are scheduled as per round robin

algorithm. Higher the priority of the task longer the processor time-slice the process will receive.

In Linux scheduling, priority of the tasks are defined by both, user and the system. Initially,

every process has a priority called nice value, which ranges from -20 to 19. With 19 being the

lowest and -20 is the highest priority, default value is always considered as zero. This is also

known as static priority as it cannot be changed by the user [10].

 The process scheduler makes decision based on the dynamic priority. The dynamic

priority is based on the function of static priority and process’s interactivity. The scheduler

computes the priority by either penalizing or giving bonus to process by +5 to -5 range. In this

way the priority of the process is defined and scheduled in a Linux based system.

 12

Chapter 3

Literature Survey and Review

 In this chapter, we take a look into the various research techniques in the areas of

temperature aware scheduling in single and multicore processor systems. Also, since our

research focuses on temperature aware scheduling, we would discuss few reactive as well as

proactive techniques used to schedule tasks with temperature control. We also emphasize on the

different algorithms that has been used at various levels – hardware, operating systems and

applications.

3.1 Green Strategies in Large Scale Distributed Systems

 The green strategies in large scale distributed systems explains the temperature and

power saving problem in electronic devices. For the experiment Orgerie, Lefevre and Gelas [3]

considered a Grid 5000 test bed which has 3400 processors. Here users can reserve the resources

in advance. By analyzing it is concluded that the real percentage of work time is 50.57%. Energy

consumption can be reduced by following methods.

 Unused nodes switched off

 Nodes usage is predicted based on what is required in the near future

 Frequent ON/OFF cycles are avoided by aggregated reservations

 13

 To do this an Energy Aware Reservation Infrastructure (EARI) is implemented using an

ON/OFF algorithm where resources is managed by the scheduler. The functions of the

scheduler are (a) Scheduler gives resource access to users who have made reservations on

scheduler program. (b) Energy parameters from the resources are monitored by energy

senors. (c) Green advices data is sent to users back in order to let users choose the resources.

(d) Infrastructure computes the consumption diagrams of past reservations and sends it back

to the users. (e) This also makes decision over the resources ON/OFF state.

 Energy monitoring is done for the different resources. Nodes at boot time consume 300W

to 400W. The consumption of processor when it is idle takes 190W and quantity of power

required while shutting down is 20W. The power consumed by the disk access application is

10W and consumption due to high performance network communication is 20W-22W. CPU

intensive application consumes power up to 20W-25W.

 Resource Managing Algorithm uses R as a tuple (l, n, and t0) where l is the length of

seconds of reservations, n is the required number of resources and t0 is the wished start time. To

support a request it should have n < N, t0 > t where t is the actual time and L > 1. Every past and

the future reservation write down into agenda. PIDLE and POFF is the power consumption when it

is idle and off. EON to EOFF is the energy required to switch between ON and OFF. The algorithm

is defined into two parts described as follows.

 When reservation is submitted, R (l, n0, t0), we estimate different amount of energy

consumption by R if it starts at

i. at t0 (if not possible, t1 is the next possible start time)

ii. Just after the next possible end time of the reservation tend

iii. L seconds before the next possible start time tstart

 14

iv. During the slack period tstack

 Our goal is to aggregate reservation to avoid booting and turning off which consumes

energy and raises temperature. The scheduler makes resource allocation by choosing resources

with smallest power coefficient. Lower the energy consumed bigger will be the power coefficient

and all this information is provided to the user. Also, the resource allocation uses the imminent

reservation where the reservation will start in less than Ts seconds in relation to present time. Ts

is the minimum time which ensures energy saving if we turn off the resource during this time.

Using this algorithm they compared results in Figure 3.1 [3] for surprise reservation which is

reduced substantially by EARI algorithm.

Figure 3.1: Percentage of surprise reservations in relation to total reservation number

3.2 Thermal Aware Task Allocation and Scheduling for Embedded Systems

 In this section we look forward to an idea of task allocation and scheduling algorithm

called as the thermal-aware approach for embedded structures. It is implemented by reducing

peak heat ups in the circuitry and uniform thermal dispersal. W.L Hung et al. [6] proposed that

 15

power, area and performance triangle in VLSI, says that optimization in one is achieved at the

cost of the other two parameters. With the advent of VLSI technology, the miniaturizing of

circuits has led to larger number of circuits to be mounted in one single chip. This hints rising

power consumption, resulting heating up of the chip. High temperatures not only mar the device

operation by affecting the delays in the circuit, electron level failures and leakage currents. This

leads to additional expenses of cooling the chip by supplementary external hardware. The

outcome of all above is the degraded reliability of the system. The power-aware design alone is

inadequate to tackle the temperature glitch and so are various low power designs. The low power

designs do not include spatial and temporal behavior. Though thermal-aware scheme being a

subset of power-aware scheme, it proves to be a better solution as it marks maximal and average

temperature reduction. The allocation and scheduling procedure (ASP) works with the task graph

and architecture with target library as input. It outputs task mapping and scheduling on the final

design. The worst-case power consumption and worst case execution times are saved for

different implemented Processing elements.

 The static and dynamic criticalities are computed. The distance between the present and

last task is called the Static Criticalities (SC). The dynamic criticalities (DC) depend on a number

of factors. The conventional ASP is applicable only in few areas but it ignores the temperature

influence. To take care of this they proposed power/energy aware ASP and thermal-aware ASP.

The thermal-aware accounts for the temperature in the system. The heat generation of an

embedded system depends on various factors like the placement of the section and the power

used up by various components. Computer aided tools are also implemented for sketching heat

generation patterns. The temperature outline is obtained using a simulator named Hotspot. This

tool considers the overall placement of sub circuits and their power and approximates almost

 16

correct temperatures for each unit. The cumulative power used by each PE and overall power is

passed as inputs to the ASP. The outputs from Hotspot are aggregated and DC is worked out.

Using this approach the overall temperature of the embedded systems test bed is substantially

reduced. As we can see from the Table 3.1 [6] below, temperature aware approach to schedule

the tasks is proved to be better than power aware approach. The overall temperature and power is

reduced in the experiment reading of thermal aware architecture technique.

 Power Aware Arch. Temperature Aware Arch.

Benchmarks Total

Pow

Max.

Temp.

Avg.

Temp.

Total

Pow

Max.

Temp.

Avg.

Temp.

Bm1 10.90 85.88 75.5 6.37 65.8 61.5

Bm2 24.09 106.3 97.4 22.37 96.7 93.6

Bm3 25.70 103.5 94.6 24.98 102.5 94.1

 Table 3.1: Temperature Comparison of Power and Thermal Aware Approach

3.3 Thermal Aware Scheduling in Multiprocessors (Operating System Level)

 In this section we take a look into thermal aware scheduling in multicore processor at

operating system level. Current microprocessor suffers decrease in performance due to more

complexity and operating frequency. Due to multiple cores on common chip, results in more heat

dissipation and hence affects the reliability and performance of processor. In this section a

technique is presented to minimize those problems at operating system level. Stavrao and

Transcoso [7] introduced dynamic thermal management in a multicore processor by combining

coolest core and maximum scheduling threshold techniques.

 17

Thermal-Aware Scheduling (TAS) helps in minimizing problems by considering temperature

into process scheduling. In this technique temperature history is used by the operating system to

determine the core on which a new and existing processes run. Dynamic Thermal Management

(DTM) technique is used by most to avoid the workloads when temperature is increased. Lower

temperature helps in cooling solutions when using DTM but high operation temperature can

affect performance and hence reliability becomes the issue as it is based on operating

temperature. In chip multiprocessors architecture per-core cooling capabilities are less efficient

then single chip multiprocessors.

 There can be two states in operating system that it can be idle or busy in executing some

process and hence comes the need of scheduling for multiprocessor operating system. By

implementing thermal aware scheduling at the system level (OS level) helps chip

multiprocessors to avoid the modification of micro architecture. In this experiment Thermal

Scheduling Simulator (TSIC) is used where different numbers of cores are modeled using

different parameters including scheduling algorithm and maximum allowed chip temperature.

Error recorded was less than 1 degree Celsius and thermal model was also validated using

Hotspot simulator. Coolest Core algorithm is used in experiment. Using this algorithm process is

scheduled on coolest available core. Maximum Scheduling threshold (MST) restricts scheduling

on a core if threshold temperature is reached. If threshold is reached process is migrated to other

core.

 Results from the experiment indicates improved performance. First Experiment results

shows inefficiencies increase when thermal awareness is done without scheduling. Algorithms

 18

such as Coolest Core combined with MST heuristic result in decrease of number of migration

and performance loss is reduced with temperature awareness.

3.4 Thermal Aware fully loaded Process Scheduling

 According to the Arrhenius equation, temperature increase of 10C results in 50%

decrease in the reliability of an electronic device. In situations when we use DVFS to reduce the

temperature rise caused due to processes, it may degrade the overall performance of the system.

The technique of process migration provides support in these situations but there is no solution

currently that can solve thermal problems when all cores or threads are active. In this section we

take a look at the solution to this problem proposed by Dong Li et al. which is independent of the

architecture and operates at the user application level without any change in the operating system

kernel. To implement they used AMD 64bit Athlon processor and AMD K8 embedded

temperature sensors. When the temperature of the processor is above the specified value, the

process scheduling algorithm is initiated which resets the process priority to control rising

temperature.

 The process scheduling algorithm is described in the Linux 2.6 kernel on which the

whole framework is based. In a typical Linux environment process with higher priority is

scheduled before the less priority process and if the priority is same it will be accommodated in

round robin. The process with higher priority receives longer time slice in Linux. All the

processes have an initial priority which called nice value and its values ranges from -20 with

highest priority to +19 of lowest priority. It doesn’t change with the user specification as it is

defined as static priority. The actual or dynamic priority depends on the static priority as well as

task’s interactivity which is defined by the scheduler and computes as a bonus or penalty of -5 to

 19

+5. The thermal management system assigns nice value to each process depending on the

relative resource intensity which allows reduction of the time slice for the higher priority hot

processes when the temperature is high. In this way hot and cold processes are interleaved to

reduce the heat produced due to high intensity processes.

Figure 3.2: Thermal Management System Design

 The thermal management framework shown in the above Figure 3.2 [10] has a process

profile and a control daemon. The process information and reading of temperature sensors is

done by the control daemon. Profiler is used to keep record of resource access counts. The

scheduling algorithm works by initializing the process set as empty and reading the configuration

file to access the threshold temperature and process priority range. The current CPU frequency is

recorded.

 Now the segment ID store is scanned to remove the finished processes and register the

new ones in the process set. The current temperature is accessed through the sensor and

compared if it is greater than the threshold and emergency temperature. In case it is more than

 20

emergency temperature, CPU frequency is set to lower by DVFS. On the other hand if the

temperature is lower than the threshold temperature, the event number of the process is accessed

from the shared memory and its priority is decreased by 5. The advantage of using this algorithm

is, it doesn’t compromise the system throughput if compared with Linux. The finishing time is

within 4% of what achieved by Linux scheduling. The scheduling algorithm allows cold

processes to finish up earlier than Linux scheduling and it is due to higher priority is assigned to

cold processes to prevent the temperature rise. After the cold processes finish, the hot processes

are immediately allocated more time slices and thus it can run faster. This helps to compensate

time which was used by cold processes. By the end of all processes the final temperature is much

lower when process scheduling algorithm is used.

Figure 3.3: Comparison of both Scheduling Schemes

 From the Figure 3.3 [10] it can be concluded that the processor temperature is lower

when they have implemented the process scheduling algorithm than under normal Linux

scheduling.

 21

3.5 Other Temperature Aware Scheduling Techniques

 Most of the current processors manufactured by Intel, AMD, and IBM uses dynamic

voltage scaling in which clock speed is controlled by varying the supply voltage in the processor.

This technique gets the maximum work done and hence is considered even when the objective is

complex. In any case when the objective is complex or simple, the best strategy is always that

makes more work done. D. Rajan and P.S. Yu [14] explains the difference in the decisions

comprising job selection and system operating load. The concerns are with scheduling decisions

with the decision of processing time to the active tasks as compared to the other task scheduling

techniques.

 It is proved that under many scenarios, simple system-throttling rules are sufficient to

guarantee the maximum amount of work done. In this case they considered an alternate strategy,

which is referred as the Zig-Zag operating policy. In this strategy, the scheduler operates

between alternate stages of cooling and heating, in an attempt to increase the amount of work

done while ensuring that the maximum temperature is below the threshold and emergency

temperature.

 B. Shirazi et al. [1] explained capable subdivision and scheduling of parallel programs on

CPU and distributed computer systems which are considered challenging and significant issues

in parallel processing. The parallel programs tasks are portioned into clusters. Once the parallel

programs are portioned into clusters it can be represented as the directed acyclic graph.

 Algorithms use properties of the input directed acyclic graph for determining the

priorities, where it classifies the existing scheduling algorithms into four categories according to

the properties used. These properties are node weights, distances, critical path, and few

 22

combinations of these parameters. Some the algorithms used by implementing this technique are

HNF (Heavy Node First), LC (Linear Clustering), DSC (Dominant Sequence Clustering), CPND

(Critical Path Node Dominant) algorithms. In [20], an attempt has been made to study the nature

of the application executing at the core using different kind of parameters. Wang et al. [20] have

used OCIP (Off-Chip Instruction proportion), Cycle per instruction (CIP) and Off Chip rate

(OCR) to determine the thermal characteristics of the given task and further made use of this

information in the decision making and time-slice scaling implemented on the temperature aware

scheduler.

 In another study [11], Inchoon Yeo el al. presented another way to study the thermal

profile of the application. They have used SPEC 2006 benchmarks to determine the steady state

temperature of the overall multicore processor. By classifying different application into several

categories, grouping is done using k-method. This grouping of different applications using k-

method from steady state temperature helped to put different applications in the same group with

their thermal profiles. The applications in the same group is assumed to have similar thermal

pattern.

 Using this information and application grouping the thermal scheduling algorithm is

designed to migrate the task in the multicore processor environment to the core which will take

maximum time to reach the threshold temperature during the execution of a particular

application, grouped in a specific category. Also, they have used the slope value of the thermal

patterns of the application to determine the group of that application at run time. In this method,

access the current running temperature of the application. The thermal pattern can be divided

into two major regions which are steep and flat region. In the steep region, the temperature of the

running application suite will increase quickly before it reaches flat region where after sometime

 23

the temperature reaches close to the steady state temperature and that region of the pattern

becomes flat because the temperature in this region remains more or less the same in the range of

±5C.

 To show the regions and method to determine the group of the application suite,

following graph can be used.

Figure 3.4: Thermal Pattern of an Application

 As we can see from the Figure 3.4 that the thermal pattern of an application is divided

into two parts, i.e. steep and flat region. Also it clearly shows that the temperature of the

system rises till 250 seconds and after that period of time it tries to achieve a steady state

temperature and maintains its temperature within the range of ±2C. To determine the group of

the application first we have calculated the slope of the groups of SPEC CPU applications which

were grouped based on the steady state temperature. In order to calculate the slope following

equation is used.

Sr = T(r + Δt) – Tr (3.1)

Δt

45
50
55
60
65
70
75
80
85
90
95

100

0 100 200 300 400 500 600 700 800

Te
m

p
er

at
u

re

Time

Temperature Pattern

Steep Region Flat Region

24

In the above equation (3.1), Sr is the slope of the thermal pattern of any application in the

r region. R region can be either steep or flat depending on the value of the slope. T(r + Δt) is the

current temperature, Tr is the previous temperature and Δt is the predefined time interval. Using

this equation group of the running application is determined. In the case of new application the

current temperature of the running application suite is accessed twice in a predefined time

interval. Using above equation to compute the slope value, any given running application can be

matched with the slope value of the group in a particular region. Also, the slope value of all the

four groups is known in both steep and flat regions to match with the running application slope.

In our experiments we have used the same assumptions but the classification of applications is

done based on their steady state temperature.

We have done a rigorous survey and had gone through many different techniques and

scheduling algorithms which helps in reducing the power and temperature at different levels i.e.

application, operating systems and hardware. These different research articles has given a lot of

directions for the future work in the field of power and temperature aware scheduling and

computing. These techniques presented in this chapter helps decreasing the temperature of the

cores of the processor as well as total energy consumption. In this way we are still in search of

more feasible and cheaper technique that can be easily applicable. Based upon these studies we

evaluated our temperature aware scheduling algorithm using different CPU intensive benchmark

applications. Also, most of the techniques discussed so far has not considered the behavior of

different applications. In the next chapter we have explained the experiment setup, assumptions,

simulators and algorithm used towards the completion of our experiment and research thesis.

25

Chapter 4

Research Overview and Methodology

In last chapters we have discussed the motivation behind the research and where most of

the techniques discussed so far has not considered the behavior of different applications at the

processor level. In this chapter we have explained the research overview, experiment setup,

assumptions, simulators used and algorithm used towards the completion of our experiment and

research thesis.

4.1 Research Description

In the previous few chapters we have discussed about the different dynamic thermal

management techniques and concluded that most of the techniques are not aware of the type of

application. It is discussed that there are different functional units in applications which affects

the operating temperature and hence the temperature difference between different types of

applications can be up to 9C [11].

In this research project we propose a simple accurate prediction method that is used to

profile the thermal behavior of different applications and then use that data to classify these

applications into different groups. The main contributions of the project is divided into following

parts.

26

 We have classified applications into different groups by their thermal behavior which is

based on the steady state temperature. Steady state temperature is defined as the

temperature reached at the processor level when an application is executed infinitely.

 We have implemented coolest core temperature aware scheduler in the multicore

processor system and we demonstrate that our technique has successfully decreased the

peak and overall temperature of the processor. We have compared our proposed method

with the Linux Standard Scheduler (LSS) and had achieved better results. Also, in order

to implement this technique no additional hardware is required.

4.2 System Characteristics

The system characteristics in which the experiment is performed are listed in the table

below.

Parameters Description

CPU Intel (R) Core (TM) 2 Quad Q6600 2.4 GHz

L2 Cache 4096KB

Memory 2GB

Storage Intel SATA X25-M 80GB SSD

OS Ubuntu 10.10

gcc/g++ v4.4.5

emacs v23.1.1

Table 4.1: System Environment

27

4.3 HotSpot and Quilt Tools

We have used HotSpot v 5.0 simulator and Quilt v1.0 tool for implementing our proactive

temperature aware scheduling method and to design the floor plans for multicore processor

system. HotSpot helps to provide the runtime responses which can be used to implement

thermal aware algorithm that can change the processor’s behavior and hence prevent thermal

emergencies rather than depending on the expensive thermal packaging solutions. We have

used Intel Quad Core Q6600 processor design to implement our proactive temperature aware

method. HotSpot is written in C and it also have a very simple set of interfaces to study

power aware aspects and can be used with other simulators to include more parameters in the

experiment.

Quilt tool allows user to rapidly build floor-plans of integrated circuits providing both

visual aid and input to the HotSpot simulator. It stands for Quick Utility for Integrated circuit

Layout and Temperature modeling. This tool is platform independent and is written in Java.

4.4 Assumptions

We have proposed a method to predict the future temperature at any point of time during

the execution of a specific kind of application. This method depends on two proven

assumptions.

According to the first assumption, the rate of change of temperature during the execution

of any application depends on the difference between current temperature and the steady state

temperature of the application [11] [14]. This assumption gives a heat transfer equation

which can be used to determine the future temperature in a core at any given point of time.

 28

By solving the differential equations considering initial and infinite time, the future

temperature of a core executing any application can be estimated. The heat transfer equation

is derived as follows.

 dT/dt = c × (Tss – T) (4.1)

where c is the processor constant, Tss is the steady state temperature and T is the current

temperature.

 At the initial and infinite time, T(0) = Tinit and T(∞) = Tss (4.2)

Solving these two equations with the differential equation (4.1) is done as follows,

Equation (4.1) can be written as,

dT/dt + bT = cTss (4.3)

the above equation is in the form of dy/dx + P(y) = Q

Now the integrating factor is e ∫ P.dt and the integrating factor in the above equation would be,

I.F = e∫c.dt = ecT

 The complete solution of the equation is computed as follows,

T × I.F = ∫ Q (I.F) dt + C (4.4)

Putting values of equation 4.3 into the complete solution equation (4.4) we get,

T ecT = c Tss × ∫ect dt + C

Solving this further, T ect = Tss ect + C (4.5)

Considering the initial and infinite time and putting those values in equation (4.5) we get,

Tinit = Tss + C

And, C = Tinit – Tss at T(0)

Now putting the value of C in equation (4.5) to get a complete solution we have,

T ect = Tss ect + (Tinit – Tss) (4.6)

29

Rearranging equation (4.6) we get our final desired equation as follows,

T(t) = Tss – (Tss – Tinit) × e-ct (4.7)

Equation (4.7) is the final equation that can be used to predict the future temperature of

the core executing any specific kind of application. It is also used to validate the groupings of the

application discussed in next section.

The second assumption we have considered in this method is the applications in the same

thermal groups have similar thermal patterns. We have also considered and measured the slopes

of the different thermal patterns in steep and flat regions and concluded that the thermal pattern

of the applications belonging to the same groups have similar slopes in the particular region. The

regions of the slopes considered are steep and flat regions.

4.5 Grouping of the Applications

We have done the classification of all the applications by the steady state temperature. In

our experiments we have used SPEC CPU 2006 benchmark applications, as most of the

applications are CPU intensive with almost 100% utilization. We have also calculated by running

several benchmarks that the value of hardware constant b is almost equal to 0.0064 when the

workload is 100%. We run the entire SPEC CPU 2006 benchmark application suite on the

processor to get the steady state temperature of applications, which is required to group them into

different category groups. We accessed the current temperature of the processor cores at runtime

and hence calculated the hardware constant b for each core in the processor.

We measured the steady state temperature of each application to identify the thermal

group. We run SPEC CPU 2006 application suite on HotSpot to calculate the steady state

30

temperature and then calculating the average temperature of the chip microprocessor. The suite is

supposed to run until the temperature doesn’t change further. In this way steady state

temperature for each application suite can be calculated.

The table below shows the different SPEC CPU 2006 application groups with steady

state temperature.

SPEC CPU Applications AVG. Temperature Group

400.perlbench 78C 2

401.bzip2 77.4C 2

403.gcc 77.7C 2

429.mcf 81.2C 3

433.milc 73.5C 1

435.gromacs 84.7C 4

445.gobmk 74.5C 1

454.calculix 81C 3

456.hmmer 80.5C 3

458.sjeng 73C 1

462.libquantum 86.5C 4

464.h264ref 75.1C 1

Table 4.2: Grouping SPEC 2006 CPU Application Benchmarks

31

As we can see from the Table 4.2 that all the application suites are categorized into

groups using their steady state temperature. There are four groups and all applications belonging

to the same thermal groups have same thermal patterns. In the next section we discussed about

the thermal patterns and prediction of the application at the runtime and how it would be used to

determine the group of a particular application.

4.6 Classification of Application at Run Time

 In this section we demonstrate the method to predict the temperature of any executing

application suite. To determine the group of any running application we will use the data of the

last section which is calculated offline while creating different groups.

We aimed to maintain the overall temperature of the processor below the threshold and to

achieve it, our model consider the equation (4.7), where the current temperature of an

application can be derived if the offline data about the group and its steady state temperature is

known. Here we rearrange the equation to come up with another equation, which is mentioned as

follows.

Tss = ((T𝑡) - 𝑇𝑖𝑛𝑖𝑡 𝑒-𝑐𝑡)/(1 - 𝑒-𝑐𝑡) (4.8)

Using the above equation (4.8) steady state temperature of an application at runtime can

be calculated. We run the application for a definite amount of time which can be said as t and

then access the temperature of the core in multicore processor. Once we get the values of current

temperature, initial temperature and hardware processor constant c, the steady state temperature

of the running application can be calculated.

32

This predicted steady state temperature can be related to the application groups which are known

and calculated offline. In this way a running application suite can be categorized in the particular

group. The application groups used to categorize the SPEC 2006 benchmarks are shown in the

Table 4.2. Also, to map a running application into a group can be determined by the scheduler

based on the data available offline and matching the steady state temperature of each group.

4.7 Validation of the Prediction Method

In the previous section we determined the group of the running application to predict the

future steady state temperature. This helps to determine the behavior and thermal pattern of the

application. In this section we discuss the correctness of the prediction method and validate the

data calculated.

To achieve the validation of the data and prediction method we run a few of the SPEC

2006 benchmarks and predict its group using the method explained in the previous section. Once

we obtain the predicted steady state temperature we actually match it with the available offline

data which we obtained in runs. The offline run data has steady state temperature based on what

the pre-determined applications’ groups were made. In order to make the validation process

rigorous we tested all the application benchmarks to measure the error in the peak and average

overall temperature before it reaches the steady state temperature. By studying the thermal

patterns we observed the points of maximum diversion and calculated the temperature error

value obtained by prediction method as compared to the offline. We calculated the average

temperature error value of 0.18C.

33

In the next chapter we have discussed the results obtained by running different

application suites using our prediction method and had compared it with the standard Linux

scheduler runs. We have observed and had shown how our method is better as compared to

other traditional methods. The graphs in the next chapter shows the cooler runs of the

application suite and how it has affected the peak as well as overall temperature.

34

Chapter 5

Results and Graphs

The temperature aware scheduling using application behavior is implemented with the

coolest core algorithm. In this chapter we show the different benchmark runs in graphs using our

temperature aware predictive technique in comparison to the Linux standard scheduler. We

compare our results with the one obtained by running the same benchmarks using Linux standard

scheduler. In the experiment we have used Hotspot to run different application benchmarks. We

started by running the benchmarks and getting all the offline data. In this we run SPEC 2006

application suite individually until the temperature doesn’t change further which is known as

steady state temperature. We analyzed the values of steady state temperature obtained offline that

helps to categorize the benchmark applications into groups. As we discussed in the last chapter

section 4.4 and 4.5 the application groups is the part of the prediction model. Also our

experiments are based on the assumptions we discussed in the previous chapter. We used the

heat transfer equations to derive the relation between steady state temperature with the current

temperature of an executing application and initial temperature of the processor. The equation

can be used to group the application during execution. The group of the running application

helps us predict the future steady state temperature. This predicted steady state temperature of

the application can be used in scheduling the application and migrate the task before it reaches

the threshold temperature. The threshold temperature of the group can be defined at the user end.

We defined the threshold temperature of the groups lower than the actual steady state

 35

temperature of the applications’ group. The applications are then scheduled using coolest core

algorithm. In the results we have found that our technique and prediction method reduces the

average peak temperature as compared to the standard Linux scheduler.

5.1 Result Graphs

 In this section we have graphs of the results obtained by running experiments on different

SPEC 2006 benchmarks. All the graphs are compared as per our temperature aware scheduling

with Linux standard scheduler. In the following graphs we have clearly showed how our

technique helps reduce the peak operating temperature at run time. In the graphs, average

temperature of all four cores is considered and it shows how temperature aware scheduler (TAS)

runs cooler as compared to Linux standard scheduler (LSS).

 The graphs also shows the steady state temperature attained by each application suite and

we have categorized each application into groups.

Figure 5.1: Temperature pattern comparison of 400.perlbench benchmark run using TAS and

LSS.

 36

Figure 5.2: Temperature pattern comparison of 401.bzip2 benchmark run using TAS and LSS.

Figure 5.3: Temperature pattern comparison of 403.gcc benchmark run using TAS and LSS.

 37

Figure 5.4: Temperature pattern comparison of 429.mcf benchmark run using TAS and LSS.

Figure 5.5: Temperature pattern comparison of 445.gobmk benchmark run using TAS and LSS.

 38

Figure 5.6: Temperature pattern comparison of 456.hmmer benchmark run using TAS and LSS.

Figure 5.7: Temperature pattern comparison of 458.sjeng benchmark run using TAS and LSS.

 39

Figure 5.8: Temperature pattern comparison of 462.libquantum benchmark run using TAS and

LSS.

 As we can see in the above figures that the peak temperature has been reduced using our

temperature aware scheduling using coolest core as compared to the Linux standard scheduler in

all of the benchmark application suites. We have also observed the thermal temperature patterns

of the different application suites and when steady sate temperature is attained. We have

successfully categorized the applications based on the steady state temperature. The grouping of

the applications is done at the run time and we have validated the data and groups by running

each application offline until we get the steady state temperature.

 In the next section we have discussed about the different groups and application falling in

each of the category and it clearly shows the applications having same thermal groups reach

similar steady state temperature range. We run experiments individually for each application

benchmarks and allowed processor to cool down before initiating another run of the benchmark.

40

5.2 Applications’ Grouping

In this section we define the groups of the applications based on the data, which is

collected during the experiments offline and online. The temperature range for each thermal

group is defined by considering the steady state temperature and nature of the application. We

have also considered other parameters such as thermal pattern, complete execution time, peak

and average temperature, into grouping of the application benchmarks. In the previous chapter

we have described the groups of different applications. In Table 4.2, the groups of the individual

applications are mentioned.

In the table below grouping of the applications made is described on the basis of

temperature range. As per the data collected offline we considered and placed the applications

into different groups. Please see the table below, which describes steady state temperature range

for four different application groups.

SPEC CPU2006 Applications

(Grouping for 100% Workload)

Steady State Temperature Range

(Celsius)

Group - 1 72 - 75

Group - 2 75.1 - 78

Group - 3 78.1 - 82

Group – 4 82 - Above

Table 5.1: Application Groups with Temperature Range

41

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this research we have tried to achieve the goal of reducing the overall and peak

temperature in a processor and also avoid thermal emergencies during the execution of

application. This research shows considerable improvements can be achieved when we consider

the nature and behavior of the applications. Our experiments and results show how the

temperature characteristics of different applications differ on the same multicore chip.

We categorized the same kind of applications in the same group according to their steady

state temperature. Also, we have used the coolest core algorithm to schedule the tasks during

run-time and the prediction method uses the offline data to categorize the new application and

predict its group by accessing the operating temperature of the application in a pre-defined time

frame. In the conclusion, our results show that the peak temperature of different applications has

been reduced in the temperature range from 1.0 - 1.6C. The overall temperature of the four cores

is reduced by 1.4C on an average for the SPEC 2006 application benchmarks. We have validated

the prediction method using the offline runs of the benchmarks.

6.2 Future Work

Some of the future work on this research can be as follows:

42

 This prediction method can be applied to different application suite benchmarks and real

time applications.

 We have used the coolest core algorithm to schedule the tasks but there is a good scope of

implementing other temperature aware scheduling algorithms with this prediction

method.

 In coming years, applications and workload will play major role in the design and

development of dynamic thermal management systems and this prediction method can be

implemented to different floor plans with 8/16/32 cores.

 43

Bibliography

[1] Gyung-Leen Park, B. Shirazi, J. Marquis and Hyunseung Choo, “Decisive Path

Scheduling: A new list of Scheduling method”, in International Conference on

Parallel Processing, 1997, pp. 472–480.

[2] D. Wang, “Meeting Green Computing Challenges”, in International symposium on

High Density packaging and Microsystem Integration, 2007, pp. 1–4.

[3] A.C. Orgerie, L. Lefevre and J.P. Gelas, “Save watts in your Grid: Green Strategies for

Energy Aware Framework in Large Scale Distributed Systems” in 14th IEEE

conference on Parallel & Distributed Systems, 2008, pp. 171-178.

[4] R. Harmon, H. Demirkan, N. Auseklis and M. Reinoso, “From Green Computing to

Sustainable IT: Developing a Sustainable Service Orientation”, in 43rd International

Conference on System Sciences (HICSS), pp. 1–10.

[5] Truong Vinh, Truong Duy, Y. Sato and Y. Inoguchi, “Performance Evaluation of a

Green Scheduling Algorithm for Energy Savings in Cloud Computing” in IEEE

International Symposium on Parallel & Distributed Processing, 2010, pp. 1–8.

[6] W.L. Hung, Y. Xie, N.Vijaykrishnan, M. Kandemir and M.J. Irwin, “Thermal-Aware

Task Allocation and Scheduling for Embedded Systems” in vol.2. of Design of

Automation and Test in Europe, 2005, pp.898-898.

[7] K. Stavrou and P. Trancoso, “Thermal-Aware Scheduling: A solution for Future Chip

Multiprocessors Thermal Problems” in 9th EUROMICRO Conference on Digital

System Design: Architectures, Methods and Tools, 2006, pp. 123–126.

[8] D.Niyato, S.Chaisiri and Lee Bu Sung, “Optimal Power Management for Server Farm

to Support Green Computing” in 9th IEEE/ACM International Symposium on Cluster

Computing and the Grid, 2009, pp. 84–91.

[9] J. Williams and L. Curtis, “Green: The new computing coat of arms” in IT

Professional, Vol.10, Issue.1, 2008, pp.12-16.

[10] Dong Li, Hung-Ching Chang, H.K. Pyla and K.W. Cameron, “System Level, Thermal

Aware, Fully Loaded Process Scheduling” in International Symposium on Parallel &

Distributed Processing, 2008, pp.1-7.

44

[11] Inchoon Yeo and Eun Jung Kim, “Thermal Aware Scheduler Based in Thermal
Behavior Grouping in Multicore Systems” in Europe Conference and Exhibition on
Design, Automation and Test, 2009, pp- 946-951.

[12] G. von Laszewski, J. Dayal, Xi He, A.J. Younge and T.R. Furlani, “Towards Thermal
Aware Workload Scheduling in a Data Center” in 10th International Symposium on
Pervasive Systems, Algorithms and Networks, 2009, pp- 116-122.

[13] Lizhe Wang, G. von Laszewski, J. Dayal and Fugang Wang, “Towards Energy Aware
Scheduling for Precedence Constrained Parallel Tasks in a Cluster with DVFS” in 10th
IEEE/ACM International Conference on Cluster, Cloud and Grid Computing, 2010,
pp-368-377.

[14] D. Rajan and P.S. Yu, “Temperature Aware Scheduling: When is System-Throttling
Good Enough?” in 9th International Conference on Web-Age Information
Management, 2008, pp-397-404.

[15] Donghwa Shin, Jihun Kim, Jinghang Choi, Sung Woo Chung and Eui- Young Chung,
“Energy-Optimal Dynamic Thermal Management for Green Computing” in

IEEE/ACM Conference on Computer-Aided Design, 2009, pp-652-657.

[16] J. Baliga, R.W.A. Ayre, K. Hinton, R.S. Tucker, “Green Cloud Computing: Balancing
Energy in Processing, Storage and Transport” in Proceedings of IEEE, Vol.PP,

Issue.99, 2010, pp-1-19.

[17] Kyungsu Kang, Jungsoo Kim, Sungjoo Yoo and Chong-Min Kyung, “Temperature-

Aware Integrated DVFS and Power Gating for Executing Tasks with Runtime
Distribution” in IEEE Transactions, Vol.29, Issue.9, 2010, pp-1381-1394.

[18] K. Skradon, M.R. Stan, Wei Huang, S. Velusamy, K. Sankaranarayanan and D. Tarjan,
“Temperature Aware Computer Systems: Opportunities and Challenges” in Micro
IEEE, Vol.23, Issue.6, 2003, pp-52-61.

[19] K. Skadron, M.Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and D. Tarjan,

“Temperature-Aware Microarchitecture: Modeling and Implementation,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 1, no. 1, 2004.

[20] Jun Li and Zhongfei Wang, “An Application-Oriented Temperature Aware Scheduler
in Linux Kernel” in 2nd IEEE Conference on Applied Robotics for the Power Industry,
2012, pp-965-970.

[21] Abraham Silberschatz, Peter B. Galvin, Greg Gagne, “Operating System Concepts, 8th
Edition”, 2008, Chapter 5.

	TAS_Thesis - Copy.pdf
	Front Page Thesis
	Abstract Page
	Thesis_Word_v1

	Chapter 5
	Chapter 5
	Chapter 5
	Chapter 5
	Chapter 5
	TAS_Thesis - Copy

