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Abstract

In the late 1980’s the intersection problem for maximum packings of Kn with triples

was solved by Hoffman, Lindner, and Quattrocchi. Their combined results showed

that for any n ≡ i (mod 6) such that i ∈ {0, 2, 4, 5} the intersection spectrum is

I(n) = {0, 1, . . . , x}\{x − 1, x − 2, x − 3, x − 5} where x is the size of a maximum

packing. Each result was formed when all leaves are the same. However, in this thesis

we show that if the leaves are not necessarily the same we can eliminate the exceptions

{x− 1, x− 2, x− 3, x− 5} of the given results. We show that the intersection spectrum

for n ≡ i (mod 6) such that i ∈ {4, 5} is I(n) = {0, 1, . . . , x} where x is the size of

a maximum packing and I(n) = {0, 1, . . . , x}\{x − 1} for n ≡ j (mod 6) such that

j ∈ {0, 2} and n 6= 8; I(8) = {0, 1, 2, 3, 4, 5, 8}.
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Chapter 1

Introduction

A Steiner Triple System, more simply a triple system, of order n is a pair (S, T ),

where T is a set of edge-disjoint triangles (or triples) which partition the edge set of

Kn (the complete undirected graph on n vertices) with vertex set S, denoted STS(n).

It is well known that the spectrum for Steiner Triple Systems is precisely the set of all

n ≡ 1 or 3 (mod 6), and that if (S, T ) is a triple system of order n then |T | = n(n−1)
6

[4].

Define I(n) and J(n) as follows:
I(n) = {0, 1, 2, . . . , x = n(n−1)

6
}\{x− 1, x− 2, x− 3, x− 5}, and

J(n) = {k | there exists a pair of triple systems of order n having exactly k triples

in common}.

Here, J(n) is a pair of triple systems of order n with the same leave having ex-

actly k triples in common. A natural question to ask is the following: for which k ∈

{0, 1, 2, . . . , n(n−1)
6
} does there exist a triple system of order n having k triples in com-

mon? The following theorem gives a complete solution of the intersection problem for

triple systems.

Theorem 1.1 (C.C. Lindner, A. Rosa[6]). Let n ≡ 1 or 3 (mod 6). Then J(n) = I(n),

if n 6= 9, and J(9) = I(9)\{5, 8}[5]. �

Now when n 6≡ 1 or 3 (mod 6) there does not exist a triple system and so the in-

tersection problem for maximum packings of Kn with triples is immediate. A packing of

Kn with triples is a pair (S, P ) where P in a collection of edge disjoint triples of Kn with

vertex set S. If P is as large as possible, then (S, P ) is said to be a maximum packing of

Kn with triples.

The set of unused edges is called the leave. The following easy to read table gives
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the leave for a maximum packing of Kn with triples for each n ≡ 0, 1, 2, 3, 4, 5 (mod 6).

n ≡ (mod 6) leave

0

1-factor

1 Steiner Triple System

2

1-factor

3 Steiner Triple System

4

tripole

5

4-cycle

2



Theorem 1.1 gives a complete solution of the intersection problem for Steiner Triple

Systems (n ≡ 1 or 3 (mod 6)). Subsequently, the intersection problem for maximum

packings of Kn with triples was completely solved for n ≡ 0, 2, 4, 5 when the leave is the

SAME in the following two papers [3, 7]. (Best described with a table.)

n ≡ (mod 6) Intersection spectrum

D. Hoffman and C. C. Lindner [3]

0 or 2 I(6) = {0, 4}, I(8) = {0, 2, 8} and for all n ≥ 12, n ≡ 0 or 2 (mod 6),

I(n) = {0, 1, 2, . . . , n(n−2)
6

= x}\{x− 1, x− 2, x− 3, x− 5}

G. Quattrocchi [7]

4 I(4) = {1} and for all n ≥ 10, n ≡ 4 (mod 6),

I(n) = {0, 1, 2, . . . ,
((n

2)−
(n+2)

2 )
3

= x}\{x− 1, x− 2, x− 3, x− 5}

G. Quattrocchi [7]

5 I(5) = 2 and for all n ≥ 11, n ≡ 5 (mod 6),

I(n) = {0, 1, 2, . . . ,
((n

2)−4)
3

= x}\{x− 1, x− 2, x− 3, x− 5}

As mentioned, the leaves in the above table are always the same. The object of this

thesis is the extension of the intersection problem for maximum packings of Kn with

triples when the leaves are isomorphic but not necessarily the same. In particular we

remove most of the exceptions in the above table (best described in another table).
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n ≡ (mod 6) New Intersection Spectrum

0 or 2 I(6) = {0, 1, 2, 4}, I(8) = {0, 1, 2, 3, 4, 5, 8} and for all n ≥ 12,

n ≡ 0 or 2 (mod 6),

I(n) = {0, 1, 2, . . . , n(n−2)
6

= x}\{x− 1}

4 I(4) = {0, 1} and for all n ≥ 10, n ≡ 4 (mod 6),

I(n) = {0, 1, 2, . . . ,
((n

2)−
(x+2)

2 )
3

}

5 I(5) = {0, 1, 2} and for all n ≥ 11, n ≡ 5 (mod 6),

I(n) = {0, 1, 2, . . . ,
((n

2)−4)
3
}

To be specific we improve I(6) from {0, 4} to {0, 1, 2, 4}; I(8) from {0, 2, 8} to

{0, 1, 2, 3, 4, 5, 8}; and remove the exceptions {x − 2, x − 3, x − 5} for all n ≡ 0 or 2

(mod 6) ≥ 12. We improve I(4) from {1} to {0, 1} and for all n ≡ 4 (mod 6) ≥ 10

remove the exceptions {x− 1, x− 2, x− 3, x− 5}; and finally improve I(5) from {2} to

{0, 1, 2} and for all n ≡ 5 (mod 6) ≥ 11 remove the exceptions {x−1, x−2, x−3, x−5}.
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Chapter 2

Examples for n ≡ 0 or 2 (mod 6)

As stated above, almost all exceptions from previous papers have been removed.

However, in the equivalence classes n ≡ 0 or 2 (mod 6) it is impossible to obtain the

intersection number x− 1 where x is the number of triples in a maximum packing.

2.1 n = 6

In the following maximum packings, the triples are listed in the left column and the

leave is listed in the right column.

S1 =


{ 1, 3, 5} 1, 2
{ 1, 4, 6} 3, 4
{ 2, 3, 6} 5, 6
{ 2, 4, 5}

S2 =


{ 1, 3, 6} 1, 2
{ 1, 4, 5} 3, 4
{ 2, 3, 5} 5, 6
{ 2, 4, 6}

S3 =


{ 1, 2, 4} 1, 3
{ 1, 5, 6} 2, 5
{ 2, 3, 6} 4, 6
{ 3, 4, 5}

S4 =


{ 1, 3, 4} 1, 2
{ 1, 5, 6} 3, 5
{ 2, 3, 6} 4, 6
{ 2, 4, 5}

The intersection numbers {0, 1, 2, 4} can be found by intersecting the following maximum

packings:

• 0: S1 ∩ S2

• 1: S1 ∩ S3

• 2: S1 ∩ S4

• 4: S1 ∩ S1

5



2.2 n = 8

In the following maximum packings, the triples are listed in the left column and the

leave is listed in the right column. We need intersection numbers {3, 5}; 6 is not possible.

S1 =



{ 0, 1, 4} 0, 7
{ 0, 2, 5} 1, 6
{ 0, 3, 6} 2, 4
{ 1, 2, 3} 3, 5
{ 1, 5, 7}
{ 2, 6, 7}
{ 3, 4, 7}
{ 4, 5, 6}

S2 =



{ 0, 1, 4} 0, 7
{ 0, 2, 5} 1, 5
{ 0, 3, 6} 2, 6
{ 1, 2, 3} 3, 4
{ 1, 6, 7}
{ 2, 4, 7}
{ 3, 5, 7}
{ 4, 5, 6}

S3 =



{ 0, 1, 2} 0, 7
{ 0, 3, 4} 1, 5
{ 0, 5, 6} 2, 3
{ 1, 3, 6} 4, 6
{ 1, 4, 7}
{ 2, 4, 5}
{ 2, 6, 7}
{ 3, 5, 7}

S4 =



{ 0, 1, 2} 0, 7
{ 0, 3, 4} 1, 6
{ 0, 5, 6} 2, 4
{ 1, 4, 5} 3, 5
{ 1, 3, 7}
{ 2, 3, 6}
{ 2, 5, 7}
{ 4, 6, 7}

So S1 ∩ S2 gives intersection number 5 and S3 ∩ S4 gives intersection number 3.

We now show that the intersection number 6 is impossible. Consider two maximum

packings from K8, namely S ′ and S ′′. Assume in these maximum packings that they

have an intersection number of 6, where S ′ and S ′′ differ in two triples. The following

is an illustration of the two aforementioned triples and the one-factors G1 and G2 of the

maximum packing leaves, where G1 ⊂ S ′ and G2 ⊂ S ′′.
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The two triples that S ′′ contains but S ′ does not are colored black and the one-factors

of each are colored red. Along with the configuration G1 in S ′, we can also examine the

configuration G ⊂ S ′.

In G, there are two possible triples with three edges remaining, which would be

included in the leave above. Without loss of generality, assume that these two triples

are different than those found in G2. If the decomposition of K8\G is six triples with

only one edge remaining that completes the leave then the intersection number x − 2 is

possible.

7



By looking at the graph of K8\G it is clear to see that this decomposition is impossi-

ble to form. The two vertices of odd degree have a blue edge to denote that it will need to

be the last edge placed in the leave, shown in red in G1. Once that edge is labeled as part

of the leave, the remaining graph cannot be decomposed into triples. This contradicts

our assumption that the two triples colored black are the only two triples that S ′ and S ′′

do not have in common. Hence, the intersection number x− 2 is impossible for K8.

2.3 n = 12

We begin by listing the triples in a cyclic triple system of order 13.
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T13 =



{ 0, 1, 4}

{ 1, 2, 5}

{ 2, 3, 6}

{ 3, 4, 7}

{ 4, 5, 8}

{ 5, 6, 9}

{ 6, 7, 10}

{ 7, 8, 11}

{ 8, 9, 12}

{ 9, 10, 0}

{ 10, 11, 1}

{ 11, 12, 2}

{ 12, 0, 3}



{ 0, 2, 7}

{ 1, 3, 8}

{ 2, 4, 9}

{ 3, 5, 10}

{ 4, 6, 11}

{ 5, 7, 12}

{ 6, 8, 0}

{ 7, 9, 1}

{ 8, 10, 2}

{ 9, 11, 3}

{ 10, 12, 4}

{ 11, 0, 5}

{ 12, 1, 6}

First deleting vertex 5, we attain a maximum packing of K12 as shown below. We

need intersection numbers {15, 17, 18}.
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To find intersection number {18}, intersect the table above with the table below,

obtained by simply swapping the orange edges in column two with the orange factors in

the leave.

To find intersection number {17}, intersect the top table with the table below, ob-

tained by simply swapping the blue edges in column two with the blue factors in the

leave.

10



To find intersection number {15}, intersect the first table with the table below,

obtained by simply swapping the orange and blue edges in column two with the orange

and blue edges in the leave.

This gives intersection numbers {15, 17, 18} for K12.
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2.4 n = 14

The intersection numbers needed for K14 are {23, 25, 26}. Below is a one-factorization

of K14 with a K6 in the oval, where the leave is in red.

Because we know that the intersection numbers for K6 are {0, 1, 2, 4} we have inter-

section numbers {25, 26} immediately.
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To find intersection number 23, take the intersection of the two one-factorizations

above. Here, we switch edges {4, 7} and {0, 5} with {0, 7} and {4, 5}. This reduces the

number of triples by two. Now, if we take the intersection of the K6 graphs to be 1 then

this reduces the intersection number by another three triples. Thus, we have reduced the

intersection number by 5 giving us the intersection number 23.

2.5 n = 18

In this case, we need find only intersection numbers {43, 45, 46}. We begin by con-

structing a GDD(18, 2, 3) where each level of six points will have 0, 1, 2, or 4 triples.

To find the triples that cut across each level we simply place a K3,3,3, as shown in

red, into the design.

13



Each of the four K3,3,3 will yield 9 triples. By intersecting two group divisible designs,

GDD(18, 2, 3), where the intersection of each of the four K3,3,3 is equal to 36, we can use

the intersections of two K6 to find the intersection numbers {43, 45, 46}. For convenience,

let R1 be the first row of six vertices, R2 be the second, and R3 be the third. The

intersection number 43 is found by R1 ∩ R1 = 4, R2 ∩ R2 = 2, and R3 ∩ R3 = 1

summed together with the original 36 triples. The intersection number 45 is found by

R1∩R1 = 4, R2∩R2 = 4, and R3∩R3 = 1 summed together with the original 36 triples.

The intersection number 46 is found by R1 ∩ R1 = 4, R2 ∩ R2 = 4, and R3 ∩ R3 = 2

summed together with the original 36 triples. Hence, we have found the intersection

numbers {43, 45, 46}.

2.6 n = 20

In this case, we need find only intersection numbers {55, 57, 58}. We begin by con-

structing the following one-factorization:

14



To find the intersection numbers {57, 58} we simply take two one-factorizations to be

the same and take maximum packings of the two K6 graphs below the one-factorizations

to have 1 or 2 triples in common. To find the intersection number {55} we find the

intersection between the one factorization above and the one-factorization below.

15



By taking the intersection of two maximum packings of the K6 graphs below, with

the one-factorizations to have 1 triple in common, we obtain maximum packings of K20

with 14 + 40 + 1 = 55 triples in common.
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Chapter 3

General Construction: n ≡ 0 or 2 (mod 6)

In view of the examples in Chapter 2, we need only look at n ≡ 0 or 2 (mod 6),

n ≥ 24 and construct the intersection numbers {x − 2, x − 3, x − 5}, where x is the

number of triples in a maximum packing of order n ≡ 0 or 2 (mod 6). Let (S, T ) be a

triple system of order 7 (any triple system of order 7 will do), there is only one up to

isomorphism. Now construct a partial triple system (X,P ) of order 11 as follows. X = S ∪ {1, 2, 3, 4}, and

P = T ∪ {{∞, 1, 2}, {∞, 3, 4}, {x, 1, 3}, {x, 2, 4}}, where ∞ and x belong to S

Then (X, P ) is a partial triple system of order 11. Embed (X, P ) in a complete triple sys-

tem (Y, C) of order n ≡ 1 or 3 (mod 6) ≥ 25 [1]. Let C∗ = C\{all triples containing ∞} ≥

24. Then (Y \{∞}, C∗, L) is a maximum packing of order ≡ 0 or 2 (mod 6); where the

leave W = {{x, y} | {∞, x, y} ∈ (Y, C)}.

17



Since I(6) = {0, 1, 2, 4} if we interchange {{1, 3}, {2, 4}} with {{1, 2}, {3, 4}} and

take the S\{∞}s to have one triple in common, we reduce the intersection number by five.

If we take Z twice and use a pair of maximum packings of order 6, since I(6) = {0, 1, 2, 4}

we obtain a pair of maximum packing of order n intersecting in x− 2 and x− 3 triples.

It follows that I(n) = {0, 1, 2, . . . , n(n−2)
6

= x}\{x− 1}. �

18



Chapter 4

n ≡ 4 (mod 6)

4.1 n = 4

Since the leave of K4 is a tripole, a maximum packing on K4 consists of one triple

and one tripole. Hence, the intersection number of two maximum packings on K4 is either

0 or 1.

4.2 n = 10

We need intersection numbers 8, 10, 11, and 12.

Here is a maximum packing
∏

of order 10 where the leave is represented in red font with

the accompanying K4.

19



To find intersection number 12 replace the triple {1, 2, 3} in the K4 with {2, 3, 4}.

So we have reduced the triples by one giving us an intersection number of 12.

To find the intersection number 11, replace the triples {{1, 5, 7}, {4, 6, 7}} and

edges {{1, 4}, {5, 6}} in
∏

with triples {{0, 5, 7}, {1, 4, 7}} and edges{{1, 5}, {4, 6}}.

The resulting maximum packing has two less triples than
∏

. The leave is {{4∗, 2, 3, 6}, {0, 9}, {1, 5},

{7, 8}} where 4∗ is the root in the tripole.

To find intersection number 10, we take the intersection of
∏

with the accompanying

K4 and
∏′ below, using the same K4.

20



To find intersection number 8 we begin with
∏′ and use the below construction to

replace triples {1, 5, 7} and {4, 5, 6} with {5, 6, 7} and {1, 4, 5}. Let’s call this new

construction
∏′′. Then we take the intersection of

∏′′ and
∏

but instead of choosing the

triple {1, 2, 3} in the K4 of the
∏′ we will choose {2, 3, 4}.

21



More simply,
∏
∩
∏′ = 10 and

∏
∩
∏′′ = 8 with triples from

∏
,
∏′, ∏′′ listed

below.

∏
=



{ 1, 5, 7}

{ 1, 6, 9}

{ 1, 0, 8}

{ 2, 5, 8}

{ 2, 7, 9}

{ 2, 0, 6}

{ 3, 5, 9}

{ 3, 6, 8}

{ 3, 0, 7}

{ 4, 0, 5}

{ 4, 6, 7}

{ 4, 8, 9}

∏′ =



{ 1, 5, 7}

{ 1, 6, 9}

{ 1, 0, 8}

{ 2, 5, 8}

{ 2, 7, 9}

{ 2, 0, 6}

{ 3, 5, 9}

{ 3, 6, 8}

{ 3, 0, 7}

{ 4, 5, 6}

{ 4, 7, 8}

{ 4, 0, 9}

∏′′ =



{ 1, 4, 5}

{ 1, 6, 9}

{ 1, 0, 8}

{ 2, 5, 8}

{ 2, 7, 9}

{ 2, 0, 6}

{ 3, 5, 9}

{ 3, 6, 8}

{ 3, 0, 7}

{ 5, 6, 7}

{ 4, 7, 8}

{ 4, 0, 9}

4.3 n = 16

We need intersection numbers 32, 34, 35, and 36.

Here is a one factorization of a K16 where the leave is represented in red font with an

accompanying K4. As seen in the example of K10, the K4 yields one or zero triples in

common with the original.
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To find the intersection number 36, simply take two 1-factorizations to be the same

and choose the triple from two K4s to be different.

To find the intersection numbers 34 and 35, find the intersection between the 1-

factorization
∏

1 above and the 1-factorization
∏

2 below. By taking the two K4 to have

either 0 or 1 triple in common we find the intersection numbers 34 and 35, respectively.
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To find the intersection number 32, find the intersection between the 1-factorization∏
1 above and the following 1-factorization

∏
3, where the intersection between the two

K4s is zero.

These 1-factorizations have shown all intersection numbers are possible for K16.
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Chapter 5

General Construction: n ≡ 4 (mod 6)

With the three examples in Chapter 4 in hand we can proceed to the main construc-

tion showing that I(6n + 4) = J∗(6n + 4) = {0, 1, 2, . . . ,
((n

2)+
(n+2)

2 )
3

} for all n.

The 6n + 4 Construction: Let 6n + 4 ≥ 22 and let (X, G, B) be a GDD(2n, 2, 3) or

GDD(2n, {2, 4∗}, 3), where {2, 4∗} means there is exactly one group of size 4 and the

rest have size 2. Set S = {∞1, ∞2, ∞3, ∞4} ∪ (X × {1, 2, 3}) and define a maximum

packing, P of K6n+4 as follows:

1. Place an example of order 10 or 16 on {∞1, ∞2, ∞3, ∞4} ∪ (g × {1, 2, 3}) where

g is a block of size 2 if all blocks have size 2; or 4 if g in the unique block of size 4.

2. For all other blocks (which necessarily have size 2) place an example of order 10 on

{∞1, ∞2, ∞3, ∞4}∪ (g × {1, 2, 3}) minus the edges between {∞1, ∞2, ∞3, ∞4}.

25



3. For each triple {a, b, c} ∈ B decompose K3,3,3 into 9 triples with parts a×{1, 2, 3},

b× {1, 2, 3} and c× {1, 2, 3}.

Then (S, P ) is a maximum packing of K6n+4 with triples with leave a 4–cycle. Now take

two copies of (S, P ). We need construct only the intersection numbers x−1, x−2, x−3,

and x − 5 since Quattrocchi has taken care of everything else. But this is easily done

by defining a pair of maximum packings of order 10 or 16 on {∞1, ∞2, ∞3, ∞4} ∪ (g ×

{1, 2, 3}) intersecting in x− 1, x− 2, x− 3, or x− 5 triples, where x = 13 or 37 as the

case may be. This completes the proof. We have the following theorem:

Theorem 5.1. I(6n+4) = J∗(6n+4) for all 6n+4. �
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Chapter 6

n ≡ 5 (mod 6)

In everything that follows J∗(n) = {0, 1, 2, . . . ,
((

n
2

)
− 4
)
/3}. We will need ex-

amples for n = 5, 11, and 17. In each case we will show that I(n) = J∗(n), thereby

removing the exceptions in Quatrocchi’s constructions for n ≡ 5 (mod 6).

6.1 n = 5

Define three maximum packings of order 5 (X, P1), (X, P2), and (X, P3) as follows:

1. X = {1, 2, 3, 4, 5}, P1 = {{1, 2, 3}, {1, 4, 5}} with leave (2, 4, 3, 5);

2. X = {1, 2, 3, 4, 5}, P2 = {{1, 4, 5}, {2, 3, 4}} with leave (1, 2, 5, 3);

3. X = {1, 2, 3, 4, 5}, P3 = {{1, 2, 4}, {1, 5, 3}} with leave (2, 3, 4, 5).


Then |P1 ∩ P3| = 0, |P1 ∩ P2| = 1, and |P1 ∩ P1| = 2. It follows that I(5) = J∗(5) =

{0, 1, 2}.

6.2 n = 11

Let (X,F ) be a 1-factorization of K6 with vertex set X and (Y, P1) and (Y, P2) any

two maximum packings of K5 with triples in Example 6.1. Define a pair of maximum

packings C1 and C2 of K11 with triples with vertex set X ∪ Y as follows:
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1. {i, x, y} ∈ C1 and C2 for each i ∈ {0, 1, 2, 3, 4} and {x, y} ∈ Fi,

2. P1 ⊆ C1 and P2 ⊆ C2. The leave in each case are the leaves in P1 and P2.



By permuting the columns of F and using the examples in 6.1 independently we obtain

the intersection numbers 0, 1, 2, . . . , 9, 10, 11, 15, 16, 17. So it remains to obtain the

intersection numbers 12, 13, 14. Let Z1 and Z2 be the following two mutually balanced

configurations consisting of a 4–cycle and 3–triples.

Z1 =


(1, 2, 3, 4)

{2, 8, 10}
{3, 5, 10}
{4, 5, 8}

Z2 =


(1, 4, 8, 2)

{3, 4, 5}
{2, 3, 10}
{5, 8, 10}

None of the triples in Z1 and Z2 belong to P1 or P2. So removing Z1 from C1 and replacing

it with Z2 reduces the number of type (1) triples by 3. Taking P1 and P2 to have 0, 1, or

2 triples in common gives intersection numbers 12, 13, and 14.

6.3 n = 17

Let Q = {1, 2, 3, 4, 5} and let (Q, ◦1) and (Q, ◦2) be two quasigroups such that

1 ◦1 1 = 1 ◦2 1 = 1. Set S = {∞1, ∞2} ∪ ({1, 2, 3, 4, 5} × {1, 2, 3}) and define PBDs
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(S, B1) and (S, B2) of order 17 as follows:

1. f1 = f2 = {∞1, ∞2, 11, 12, 13} ∈ B1 ∩ B2. We can define copies of Example 6.1

independently on f1 and f2 so that | f1 ∩ f2 | ∈ {0, 1, 2}.
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2. For each i, j ∈ {1, 2, 3, 4, 5}, let {i1, j2, (i◦1j, 3)} ∈ B1 and {i2, j2, (i◦2j, 3)} ∈

B2. (Note that {11, 12, 13} ∈ B1 ∩B2.) Since the intersection numbers for quasi-

groups of order 5 are {0, 1, 2, . . . , 25}\{24, 23, 22, 20}[2] and since in each of the

quasigroups (Q, ◦1) and (Q, ◦2) 1 ◦1 1 = 1 ◦2 1 = 1 and the triple {11, 21, 31} ∈

f1 ∩ f2 the type (2) intersection numbers are {0, 1, 2, . . . , 17, 18, 20, 24}.

3. For each i ∈ {1, 2, 3} set X(i) = {∞1, ∞2} ∪ {{1, 2, 3, 4, 5} × {i}} and define

a triple system (X(i), T (i)) where {∞1, ∞2, 1i} ∈ T (i). Since the intersection

numbers for triple systems of order 7 are 0, 1, 3, 7; the intersection numbers for

T (i)\{∞1, ∞2, 1i} and T (j)\{∞1, ∞2, 1j} for each i and j are 0, 2, and 6.

The intersection numbers in (1), (2), and (3) are independent of each other and so the

intersection numbers for (S, B1) and (S, B2) consists of x+ y + z, where x =| f1 ∩ f2 |∈

{0, 1, 2}, y ∈ {0, 1, 2, . . . , 17, 18, 20, 24}, and z ∈ {0, 2, 6} + {0, 2, 6} + {0, 2, 6}. A

straightforward computation shows that x + y + z ∈ {0, 1, 2, . . . , 44}\{41}. So all that

remains is to show that 41 ∈ J∗(17) = {0, 1, 2, . . . , 44} (no exceptions). Take (S, B1)

and (S, B2) to be the same. Define T (1) in B1 to be

T (1) =



∞1 ∞2 11

11 21 31

11 41 51

∞1 21 51

∞1 31 41

∞2 21 41

∞2 31 51

We can assume in f1 that the leave is the 4 – cycle (∞1, ∞2, 11, 12). Then the configu-

ration
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Z1 =



(∞1, ∞2, 11, 12)

{ 21, 31, 11 }

{ 31, 41, ∞1 }

{ 21, 41, ∞2 }

belongs to B1. If we replace Z1 in B1 with

Z2 =



(∞1, 12, 11, 31)

{ ∞1, ∞2, 41 }

{ ∞2, 11, 21 }

{ 21, 31, 41 }

we reduce the intersection number between B1 and B2 from 44 to 41.
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Chapter 7

General Construction: n ≡ 5 (mod 6)

With the three examples in Section 6 in hand we can proceed to the main construc-

tion showing that I(6n + 5) = J∗(6n + 5) = {0, 1, 2, . . . ,
((n

2)−4)
3
} for all n.

The 6n + 5 Construction: Let 6n + 5 ≥ 23 and let (X, G, B) be a GDD(2n, 2, 3)

or GDD(2n, {2, 4∗}, 3), where {2, 4∗} means there is exactly one group of size 4 and

the rest have size 2. Set S = {∞1, ∞2, ∞3, ∞4, ∞5} ∪ (X × {1, 2, 3}) and define a

maximum packing, P of K6n+5 as follows:

1. Place an example of order 11 or 17 on {∞1, ∞2, ∞3, ∞4, ∞5} ∪ (g × {1, 2, 3})

where g is a block of size 2 or 4 as the case may be.

2. For all other blocks (which necessarily have size 2) place a copy of Example 6.2 or 6.3

on {∞1, ∞2, ∞3, ∞4, ∞5}∪(g×{1, 2, 3}) minus the block {∞1, ∞2, ∞3, ∞4, ∞5}

of size 5.

3. For each triple {a, b, c} ∈ B decompose K3,3,3 into 9 triples with parts a×{1, 2, 3},

b× {1, 2, 3} and c× {1, 2, 3}.
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Then (S, P ) is a maximum packing of K6n+5 with triples with leave a 4–cycle. Now take

two copies of (S, P ). We need construct only the intersection numbers x−1, x−2, x−3,

and x− 5 since Quattrocchi has taken care of everything else. But this is easily done by

defining a pair of maximum packings of order 11 or 17 on {∞1, ∞2, ∞3, ∞4, ∞5}∪ (g ×

{1, 2, 3}) intersecting in x− 1, x− 2, x− 3, or x− 5 triples, where x = 17 or 44 as the

case may be. This completes the proof. We have the following theorem:

Theorem 7.1. I(6n + 5) = J∗(6n + 5) for all 6n + 5. �
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Chapter 8

Concluding Remarks

We summarize the results in this thesis with the following table (a reprint from

Chapter 1).

Theorem 8.1. The following table gives a complete solution of the intersection problem

for maximum packings of Kn with triples for n ≡ 0, 2, 4, 5:

n ≡ (mod 6) New Intersection Spectrum

0 or 2 I(6) = {0, 1, 2, 4}, I(8) = {0, 1, 2, 3, 4, 5, 8} and for all n ≡ 0 or 2 ≥ 12,

I(n) = {0, 1, 2, . . . , n(n−2)
6

= x}\{x− 1}

4 I(4) = {0, 1} and for all n ≡ 4 (mod 6) ≥ 10,

I(n) = {0, 1, 2, . . . ,
((n

2)−
(x+2)

2 )
3

}

5 I(5) = {0, 1, 2} and for all n ≡ (mod 6) ≥ 11,

I(n) = {0, 1, 2, . . . ,
((n

2)−4)
3
}

�
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