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Abstract

For integers 1 ≤ m < n and a prime p (we require 2 ≤ m when p = 2), a subset

I(pn, pm) ⊆ {0, . . . , pn−1} is described which contains no pm-term cyclic arithmetic progres-

sion modulo pn, and which is maximal among subsets of {0, . . . , pn − 1} with that property.

Furthermore, we investigate the same setting, but for any such group.
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Chapter 1

Introduction

1.1 Hypergraphs

A (simple) hypergraph is a pair (V,E) = H in which V = V (H) is a non-empty set, the set

of vertices of the hypergraph, and E = E(H) is a set of subsets of V , called hyperedges, or

just edges. Sometimes the elements of E are multisubsets of V – i.e. vertices can be repeated

on edges. Sometimes E is a multiset; i.e. repeated edges are allowed. When neither of these

are allowed, the hypergraph is simple. All of our hypergraphs will be simple, and we require

|e| ≥ 2 for all e ∈ E.

A set S ⊆ V is independent in H = (V,E) if and only if S contains no edge e ∈ E. The

(vertex) independence number of H is α(H) = max{|S| : S ⊆ V and S is independent inH}.

An independent set S ⊆ V such that |S| = α(H) is a maximum independent set in H. An

independent set S ⊆ V is maximal in H if and only if it is not properly contained in any other

independent set in H. The independent domination number of H is i(H) = min{|S| : S ⊆

V and S is a maximal independent set inH}.

The chromatic number of a hypergraphH = (V,E), denoted χ(H), is the smallest number

of colors with which V can be colored so that no e ∈ E is monochromatic. Coloring V is the

same as partitioning V into independent sets, from which we infer the well know inequality

|V | ≤ α(H)χ(H).

The independence number is also related to another chromatic hypergraph parameter: the

anti-rainbow number of H, denoted AR(H), is the maximum number of colors appearing in
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a coloring of V such that no e ∈ E is rainbow; e is rainbow (with reference to the coloring)

if no color appears on two different vertices of e. Given an anti-rainbow coloring of H with

AR(H) colors, form a set of vertices by choosing one representative from each color class.

Since the set obtained is rainbow, it can contain no edges; that is, the set is independent. Thus,

AR(H) ≤ α(H).

1.2 The Van der Waerden hypergraphs

The set of non-negative integers will be denoted N, and the set of integers will be denoted Z.

We will use the following notational distinction: if a, b ∈ Z and t ∈ N \ {0}, a ≡ b mod t

means (as usual) that t|b − a (t divides b − a), but a = b (mod t) means that a is the smallest

non-negative integer satisfying a ≡ b mod t. In other words, b (mod t) stands for the non-

negative remainder obtained by dividing b by t. IfX ⊆ Z,X (mod t) = {x (mod t) : x ∈ X}.

If t ∈ N \ {0}, [t] = {0, . . . , t− 1}. Note that x (mod t) ∈ [t] for all x ∈ Z.

Let t, k ∈ N and suppose that t ≥ k ≥ 3. A k-term arithmetic progression in [t] is a subset

A = {a + sd : 0 ≤ s ≤ k − 1} ⊆ [t], for some integers a ≥ 0 and d > 0. The integer d is the

difference of the arithmetic progression A. Note that for A to be a subset of [t], it is necessary

and sufficient that 0 ≤ a and a+ (k − 1)d ≤ t− 1, given that d > 0.

A k-term cyclic arithmetic progression mod t is a set A (mod t) = {(a + sd) (mod t) :

0 ≤ s ≤ k−1}, for some integers a, d ∈ [t], d > 0, satisfying |A (mod t)| = k. Note that every

such set is automatically a subset of [t]. Unlike the situation with ordinary k-term arithmetic

progressions, the pair (a, d) with reference to which a cyclic arithmetic progression is defined

is not unique (you can always replace a by a′ = (a+ (k − 1)d) (mod t) and d by d′ = t− d),

and it is not automatic that the set defined with respect to a and d will have k distinct elements.

Thus, because k ≥ 3, there are no k-term cyclic arithmetic progressions mod t with d = t/2,

when t is even. If need be we will refer to the smallest d appearing in a presentation of a k-term

cyclic arithmetic progression mod t as the difference of the cyclic arithmetic progression mod

t. We can always arrange for d < t/2.

The Van der Waerden hypergraph W (k, t), for t ≥ k ≥ 3, has vertex set [t] and edge set

E(k, t) = {k-term arithmetic progressions in [t]}. The cyclic Van der Waerden hypergraph
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Wc(k, t) has vertex set [t] and edge set E(k, t) = {k-term cyclic arithmetic progressions mod

t}.

Since every ordinary k-term arithmetic progression in [t] is also a k-term cyclic arith-

metic progression mod t, W (k, t) is a spanning (same vertex set) subhypergraph of Wc(k, t).

Therefore, χ(W (k, t)) ≤ χ(Wc(k, t)), AR(Wc(k, t)) ≤ AR(W (k, t)), and α(Wc(k, t)) ≤

α(W (k, t)).

These hypergraphs are named after Bartel van der Waerden, who in 1927 proved a famous

theorem [8] to the effect that for each fixed k ≥ 3, χ(W (k, t)) → ∞ as t → ∞. By remarks

above, this implies that χ(Wc(k, t)) → ∞ as t → ∞. However, while χ(W (k, t)) is clearly

monotonically non-decreasing as t increases, this is not true of χ(Wc(k, t), at least for k=3 [3].

Our aim here is to exhibit a maximal independent set I(pm, pn) in Wc(p
m, pn), when p is a

prime and 1 ≤ m ≤ n, thus providing a lower bound on α(Wc(p
m, pn)) and an upper bound on

i(Wc(p
m, pn)). We do not have a nice formula for |I(pm, pn)| except when m = 1 and p is an

odd prime, in which case |I(p, pn)| = (p− 1)n; we shall deal with this special case in the next

chapter and then with the general case in the third chapter. The reason for the separation is that

we think that the description of I(pm, pn) and the proof that it is a maximal independent set of

vertices in Wc(p
m, pn) will be much easier to understand after the case m = 1 is understood.

The casem = 1, n = 2, and p is an odd prime was dealt with by Berglund [1], and we must

acknowledge that there was something in his proof that opened the way to our generalization.

Possibly the first attention to the independence number α(W (k, t)) was paid by Erdős and

Turán [2], who did not use hypergraph terminology. Their notation for α(W (k, t)) was rk(t).

As reported in [5], there was a great deal of work done on estimating the numbers rk(t) between

1936 and 1974. The best known of the results on this topic is a consequence of Szemerédi’s

Lemma [6], to which [5] is an introduction. It is a corollary of the lemma that for each k ≥ 3,

rk(t)/t→ 0 as t→∞.

Our contribution here was inspired by Berglund [1]. Frankly, we were unaware of all this

earlier work until very recently. We think that our main result is of a different nature from what

went before, and look forward to seeing if light is thrown by it onto the older discoveries, or on

it by those discoveries.
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Chapter 2

The I(p, pn) case, where p is an odd prime

Lemma 2.1. Suppose m, p, b ∈ N, p is a prime and m > 0. Suppose that d ∈ N satisfies d ≡ 0

mod pb−1 and d 6≡ 0 mod pb. Then

{id (mod pb+m−1) : i ∈ [pm]} = {ipb−1 : i ∈ [pm]}.

Proof. From the hypothesis, it must be that d = kpb−1 for some k 6≡ 0 mod p. Since p

is a prime, gcd(k, pm) = 1, so that {ik (mod pm) : i ∈ [pm]} = [pm]. For i ∈ [pm], let

ri = ik (mod pm) ∈ [pm].

For i ∈ [pm], for some qi ∈ N, ik = ri + qip
m. Therefore, for i ∈ [pm], id = ikpb−1 =

(ri+qip
m)pb−1 = rip

b−1+qip
m+b−1 ≡ rip

b−1 mod pb+m−1. Since ri ∈ [pm], ripb−1 < pb+m−1.

Therefore id (mod pb+m−1) = rip
b−1 = (ik (mod pm))pb−1. Since ik (mod pm) roams all

over [pm] as i roams over [pm], the lemma claim is proved.

Lemma 2.2. If a, b, c ∈ N, b, c > 0, and b|c, then a (mod b) = (a (mod c)) (mod b).

Proof. Suppose a, b, c ∈ N, b, c > 0, and b|c. Let r = a (mod c). Then r is the remainder

of c divided into a. Then 0 ≤ r < c and for some q ∈ Z, a = qc + r. Since b|c, c = bt for

some t ∈ Z. Dividing r = a (mod c) by b, we have r = bx + z for x, z ∈ N with 0 ≤ z < b;

z = r (mod b). We have a = qc+ r = qbt+ bx+ z = (q + x)b+ z. So, by the uniqueness of

the remainder, a (mod b) = z = r (mod b) = (a (mod c)) (mod b).
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For each integer b > 1, it is fundamental that every positive integer a has a unique b-ary

(or, base b) representation,

a =
n∑

j=0

cjb
j,

for some n ∈ N, cn > 0, and cj ∈ [b], for j = 0, . . . , n. Whether or not cn > 0, if c0, . . . cn ∈

[b], then 0 ≤
∑n

i=0 cjb
j ≤ bn+1 − 1.

Now, for n ∈ N and for a prime p ∈ N, let

I(p, pn) = {
n−1∑
i=0

piai : ai ∈ [p− 1]}.

For each positive integer prime p, the set I(p, pn) is the subset of [pn] consisting of those

integers a such that p − 1 does not appear among the coefficients c0, . . . , cn−1 in a’s unique

p-ary representation, a =
n−1∑
i=0

pici. Therefore I(p, pn) has a one-to-one correspondence with

the set of sequences (c0, . . . , cn−1) ∈ [p − 1]n. Thus, the conclusions of the following lemma

are straightforward to see.

Lemma 2.3. Suppose p is a positive prime, n is a positive integer. Then |I(p, pn)| = (p− 1)n

and max(I(p, pn)) = (p− 2)p
n−1
p−1 .

Lemma 2.4. Suppose that p is a positive prime, m,n ∈ N and 0 < m ≤ n. Then

i. I(p, pm) ⊆ I(p, pn);

ii. I(p, pm) = I(p, pn) (mod pm);

iii. if y ∈ N and y (mod pm) /∈ I(p, pm), then y (mod pn) /∈ I(p, pn)

Proof. i. If x ∈
∑m−1

j=0 cjp
j ∈ I(p, pm), cj ∈ [p−1], j = 0, . . . ,m−1, then x =

∑n−1
j=0 cjp

j ∈

I(p, pn) if cj = 0, m ≤ j ≤ n− 1.

ii. (⊆) Since I(p, pm) ⊆ I(p, pn) and x ∈ I(p, pm) implies that x ≤ pm − 1, it follows

that if x ∈ I(p, pm), then x = x (mod pm) ∈ I(p, pn) (mod pm). Thus, I(p, pm) ⊆

I(p, pn) (mod pm).
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(⊇) If x =
∑n−1

j=0 cjp
j ∈ I(p, pn), cj ∈ [p − 1], j = 0, . . . , n − 1, then x ≡

∑m−1
j=0 cjp

j

mod pm and
∑m−1

j=1 cjp
j < pm−1, so

∑m−1
j=0 cjp

j ∈ I(p, pm). Thus, I(p, pm) ⊇ I(p, pn) (mod pm).

Hence, I(p, pm) = I(p, pn) (mod pm).

iii. Suppose that y ∈ N and y (mod pn) ∈ I(p, pn). Then y (mod pm) = (y (mod pn)) (mod pm) ∈

I(p, pm), by ii and Lemma 2.2. The desired conclusion follows by contraposition.

Theorem 2.5. Let p ∈ N be an odd prime and let n ∈ N. I(p, pn) does not contain any p-term

cyclic arithmetic progression modulo pn.

Proof. Let e ⊆ I(p, pn) be a p-term cyclic arithmetic progression modulo pn. Let d < pn

2
be

the common difference of e. Then e = {a + id (mod pn) : i ∈ [p]}, for some a ∈ [pn]. Let

c0, . . . , cn−1 ∈ [p] such that a =
∑n−1

j=0 cjp
j .

Since 0 < d < pn, pn - d. Let m be the positive integer such that d ≡ 0 mod pm−1 and

d 6≡ 0 mod pm; then m ≤ n.

By Lemma 2.1, with the role of b there played by m here, there exists i ∈ [p] such that

id (mod pm) = (p− 1− cm−1)pm−1.

Then

a+ id ≡
m−1∑
j=0

cjp
j + (p− 1− cm−1)pm−1

=
∑

j<m−1

cjp
j + (p− 1)pm−1 mod pm,

which implies that

(a+ id) (mod pm) =
∑

j<m−1

cjp
j + (p− 1)pm−1 /∈ I(p, pn),

which implies that (a+ id) (mod pn) /∈ I(p, pn), by Lemma 2.4 (iii). Thus, e is not contained

in I(p, pn).
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Corollary 2.6. Let p be an odd prime and n ∈ N with n ≥ 1. Then α(Wc(p, p
n)) ≥ (p− 1)n.

Proof. By Theorem 2.5, I(p, pn) is an independent set of Wc(p, p
n). The conclusion follows.

In the next chapter, we will show that the set I(p, pn) is a maximal independent set in

Wc(p, p
n), and in W (p, pn).
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Chapter 3

The General Case, I(pm, pn), where p is a prime and m,n ∈ N with 0 < m ≤ n

Let m,n ∈ N with 0 < m ≤ n. Let p be a prime. Let g : N → [p]∞ be the function that

maps n to its p-ary representation. For i ∈ N, we denote by gi(x) the i-th digit of the p-ary

representation of x ∈ N. Note that if gi(x) = a, then gi+q(p
qx) = a, for all i, a, q, x ∈ N.

Theorem 3.1. Suppose that p is a prime, 1 ≤ m ≤ n, (2 ≤ m if p = 2), and e ⊆ [pn] is a

pm-term cyclic arithmetic progression mod pn. Then e contains a term y ∈ [pn] such that for

some t ∈ {0, . . . , n−m}, gt+j(y) = p− 1, j = 0, . . . ,m− 1.

Proof. Let e = {(a+ id) (mod pn) : i ∈ [pm]} be a pm-term cyclic arithmetic progression mod

pn, where a, d ∈ [pn]. Then d = kpb−1 for some integers 1 ≤ k, b such that b ≤ n and p - k. By

Lemma 2.1,

{id (mod pm+b−1) : i ∈ [pm]} = {jpb−1 : j ∈ [pm]} (*)

Claim: m+ b− 1 ≤ n.

Proof: Suppose m + b − 1 > n. Then, because b − 1 < n, b − 1 + t = n for some

t ∈ {1, . . . ,m−1}. Then pt ∈ [pm], so (a+ptd) (mod pn)) ∈ E. But a+ptd = a+kpb−1+t =

a + kpn ≡ a mod pn, so a = a (mod pn) = (a + ptd) (mod pn), yet 0 < pt ∈ [pm]. This

contradicts the supposition that e = {(a+id) (mod pn)|i ∈ [pm]} is a pm-term cyclic arithmetic

progression mod pn. Therefore m+ b− 1 ≤ n.

Let a = qpb−1 + r, 0 ≤ q, 0 ≤ r < pb−1, and let q = spm + q′, 0 ≤ s, 0 ≤ q′ < pm. Then

pm−1−q′ ∈ [pm]. Therefore, by (∗), for some z ∈ [pm], zd (mod pm+b−1) = (pm−1−q′)pb−1.
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For short, let x = zd (mod pm+b−1). We see that

a+ x = (spm + q′)pb−1 + r + (pm − 1− q′)bb−1

= spm+b−1 + (pm − 1)pb−1 + r

≡ (pm − 1)pb−1 + r mod pm+b−1.

Since x = zd (mod pm+b−1), we have that

a+ zd ≡ a+ x ≡ (pm − 1)pb−1 + r mod pm+b−1.

Then, since (pm − 1)pb−1 + r = pm+b−1 − pb−1 + r < pm+b−1,

(a+ zd) (mod pm+b−1) = (pm − 1)pb−1 + r

= r + (p− 1)(1 + · · ·+ pm−1)pb−1.

Since r < pb−1 and m+ b− 1 ≤ n, the p-ary representation of

y = (a+ zd) (mod pn) ∈ e

will be

y =
∑

0≤j<b−1

gj(r)p
j +

b−1+m−1∑
j=b−1

(p− 1)pj +
∑

m+b−1≤j≤n−1

gj(y)p
j.

Corollary 3.2. With m,n, and p as in Theorem 3.1, the set I(pm, pn) of integers w ∈ [pn], such

that the sequence (g0(w), g1(w), . . . , gn−1(w)) of p-ary coefficients contains no constant block

ofm consecutive entries all equal to p−1, contains no pm−term cyclic arithmetic progression

mod pn; thus I(pm, pn) is an independent set of vertices in the hypergraph Wc(p
m, pn).

Note, the set I(pm, pn) we defined in Corollary 3.2 is the same as the one we defined in

chapter 2, when m = 1.
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Theorem 3.3. Let m,n, p, and I(pm, pn) be as in Corollary 3.2. I(pm, pn) is a maximal inde-

pendent set in Wc(p
m, pn) and W (pm, pn).

Proof. Suppose that u ∈ [pn]\I(pm, pn). Then the sequence (g0(u), g1(u), . . . , gn−1(u)) ∈ [p]n

contains a block of m consecutive p− 1’s. We aim to show that I(pm, pn)∪{u} contains some

pm-term cyclic arithmetic progression mod pn. (In fact, the arithmetic progression that we will

find will be an ordinary pm-term arithmetic progression in [pn].)

Consider all the blocks of at least m consecutive entries in (gi(u))
n−1
i=0 with constant entry

p − 1. Partition each maximal such block into subblocks of length exactly m, with, possibly,

a remainder, or “runt” block of length less than m left over. Let the blocks of m consecutive

indices for the blocks (p− 1, . . . , p− 1) = {p− 1}m thus obtained in the sequence (gi(u))
n−1
i=0

be Z1, . . . , Zq. That is, for some indices j1, . . . , jq, satisfying 0 ≤ j1 < j1 +m ≤ j2 < · · · ≤

jq < jq +m ≤ n, Zi = {ji, . . . , ji +m− 1}, i = 1, . . . , q, and gji+s(u) = p− 1, i = 1, . . . , q,

0 ≤ s ≤ m− 1.

Note that, if Z =
q⋃

i=1

Zi, then [n] \ Z contains no block {t, . . . , t + m − 1} such that

gt+j(u) = p − 1 for all j = 0, . . . ,m − 1. Therefore, if a =
∑

j∈[n]\Z
gj(u)p

j and d =
q∑

i=1

pji

(recall that ji is the smallest index in Zi), then a + sd ∈ I(pm, pn), s = 0, . . . , pm − 2, while

a+(pm−1)d = u. Thus, I(pm, pn)∪{u} contains a pm-term arithmetic progression. Therefore,

I(pm, pn) is a maximal independent set in both W (pm, pn) and in Wc(p
m, pn).

It is easily verified that I(3, 9) = {0, 1, 3, 4} is a maximum independent set in Wc(3, 9),

but {0, 1, 5, 7, 8} is an independent set in W (3, 9), so I(3, 9) is not maximum in W (3, 9). Ob-

viously {0, 1, 5, 7, 8} is not independent in Wc(3, 9), as it contains the 3-term cyclic arithmetic

progression {5, 7, 0}.

Corollary 3.4. With m,n, and p as in Theorem 3.1,

max(i(W (pm, pn)), i(Wc(p
m, pn))) ≤ |I(pm, pn)|

≤ α(Wc(p
m, pn)) ≤ α(W (pm, pn)).
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Determining |I(pm, pn)| is an enumeration problem about words of length n over the al-

phabet [p] = {0, . . . , p−1}. It appears that this problem can be “solved” by giving a generating

function [7]. We leave the investigation of this enumeration problem for the future; but here

are three remarks bearing on the matter.

1. For fixed n, |I(pm, pn)| non-decreases as m increases. Therefore, for 1 ≤ m ≤ n,

(p− 1)n = |I(p, pn)| ≤ |I(pm, pn)| ≤ |I(pn, pn)| = pn − 1 = α(W (pn, pn)).

2. For fixed m ≥ 1, |I(pm, pn)| is non-decreasing as n increases. (This is an easy corollary

of Corollary 3.2.) Therefore, for 1 ≤ m ≤ n,

|I(pm, pn)| ≥ |I(pm, pm)| = pm − 1.

3. By a corollary of Szemerédi’s Lemma, previously mentioned, for eachm ≥ 1, |I(pm, pn)|/pn ≤

α(W (pm, pn))/pn → 0 as n→∞.
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Chapter 4

Van der Waerden hypergraphs for finite abelian groups of order pn, where n ∈ N and p is a
prime

4.1 Definitions

Let k ∈ N and suppose that k ≥ 3. let A be an abelian group. A k-term arithmetic progression

over A is a subset e = {a + sd : 0 ≤ s ≤ k − 1} ⊆ A, for some a, d ∈ A and |e| = k,

and same as before, we say d is the difference of the arithmetic progression. Note A has a

k-term arithmetic progression if and only if A has a element with order at least k. The Van

der Waerden hypergraph over A, W (k,A), has vertex set A and edge set E(k,A) = {k-term

arithmetic progression over A}.

Let H1 = (V1, E1), H2 = (V2, E2) be two hypergraphs. A hypergraph isomorphism

from H1 to H2 is a bijection f : V1 → V2 such that for every e ⊆ V , e ∈ E1 if and only if

f(e) ∈ E2. If such f exists, we sayH1 andH2 are isomorphic. Note for p prime,m,n ∈ N with

n ≥ m ≥ 1, π : Wc(p
m, pn)→ W (pm, Zpn) by π(x) = x is a hypergraph isomorphism, hence

Wc(p
m, pn) and W (pm, Zpn) are isomorphic. In fact, Wc(k, t) and W (k,Zt) are isomorphic for

all 3 ≤ k ≤ t, k, t ∈ N.

4.2 Abelian group of order pn where n ∈ N and p is a prime

Theorem 4.1. Fundamental theorem of finite abelian groups Let A be a non trivial finite abelian

group. There exists unique integers m1|m2| . . . |mt such that

A ∼=
t⊕

i=1

Zmi
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.

This theorem is a classic result and its proof can be found in [4]. Also, by the fundamental

theorem of finite abelian groups, to study finite abelian groups of order pn, p prime, all we have

to do is to study the direct sums of the cyclic groups of order pr, Zpr , for some r ∈ N.

For an abelian groupA and d ∈ A, we use o(d) denote the order of d inA. Letm1,m2, . . . ,mn

be positive integers. Let A =
n⊕

i=1

Zmi
. Let πi : A → Zmi

be the canonical projection, for

1 ≤ i ≤ n. Let d ∈ A. Let oi(d) = o(πi(d)) in Zmi
.

Lemma 4.2. Let l the least common multiple of o1(d), o2(d), . . . , on(d). Then o(d) = l.

Proof. On one hand, lπi(d) = 0 for every 1 ≤ i ≤ n, so ld = 0, hence o(d)|l. On the other

hand, oi(d)|o(d) for every 1 ≤ i ≤ n, since o(d)πi(d) = 0 for every 1 ≤ i ≤ n, so l|d. Hence,

l = o(d).

Theorem 4.3. Let p be a prime. Let r1 ≤ r2 · · · ≤ rn be positive integers. Let A =
n⊕

i=1

Zpri .

For k ∈ N with k ≥ 3, if e is a k-term arithmetic progression over A, then πi(e) is a k-term

arithmetic progression over Zpri for some 1 ≤ i ≤ n.

Proof. Let k ∈ N such that k ≥ 3 and suppose e is a k-term arithmetic progression over A.

Let d be a common difference of e. Then o(d) ≥ k. Now, by lemma 4.2, l = o(d) ≥ k,

where l is the least common multiple of o1(d), o2(d), . . . , on(d). Since oi(d)|pri , for every

1 ≤ i ≤ n, oi(d) = pqi for some qi ≤ ri for every 1 ≤ i ≤ n. Let 1 ≤ i ≤ n such that

qi = max
1≤j≤n

qj . Then the least common multiple of o1(d), o2(d), . . . , on(d) is pqi , which means,

oi(d) = pqi = l = o(d) ≥ k. Now we claim that πi(e) is a k-term arithmetic progression over

A. Indeed, since order of oi(d) ≥ k and e = {a+ jd : 0 ≤ j ≤ k − 1} for some a ∈ A, so

πi(e) = πi({a+ jd : 0 ≤ j ≤ k − 1})

= {πi(a+ jd) : 0 ≤ j ≤ k − 1}

= {πi(a) + πi(jd) : 0 ≤ j ≤ k − 1}

= {πi(a) + jπi(d) : 0 ≤ j ≤ k − 1},

which is a k-term arithmetic progression in Zpri .

13



Note the converse of Theorem 4.3 is false. Indeed, let A = Z3 ⊕ Z9. Then e =

{(0, 1), (0, 2), (1, 3)} is not a 3-term arithmetic progression over A; however, π2(e) = {1, 2, 3}

is a 3-term arithmetic progression over Z9. However, by Theorem 4.3, we do have some corol-

laries on the independent sets of the hypergraph W (k,A).

Corollary 4.4. Let p be a prime. Let r1 ≤ r2 · · · ≤ rn be positive integers. Let A =
n⊕

i=1

Zpri .

Let I ⊆ A. If πi(I) is independent in W (k, Zpi) for every 1 ≤ i ≤ n. Then I is independent in

W (k,A).

Corollary 4.5. Let p be a prime. Let r1 ≤ r2 · · · ≤ rn be positive integers. Let A =
n⊕

i=1

Zpri .

Let π : Z→ Zpi be the canonical epimorphism, that is π(x) = x. Let

I(pm,Zpq) =


Zpq if m > q

π(I(pm, pq)) if m ≤ q.

Let m ∈ N. Then I =
n⊕

i=1

I(pm,Zpq) is an independent set in the hypergraph I(pm, A) and

α(W (pm, A) ≥ |I|.

14
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