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Abstract 
 
 

 
 The development of biomarkers for the identification of infertile heifers has the 

potential to improve the efficiency of cow-calf production. In this study, we utilized 

metabolomic profiling to look for biomarkers in the blood plasma that may be useful in 

identifying infertile heifers at the time of artificial insemination (AI). Angus and Angus-

cross heifers, undergoing a 7 - day estrous synchronization protocol, were utilized for 

analysis. The heifers were housed at three separate Research and Extension Centers 

(Black Belt, Gulf Coast, and Wiregrass) located across the state of Alabama, U.S.A. and 

compared across two breeding seasons (2015 – 2016 and 2016 – 2017). 

 We compiled data on a total of 166 heifers (N = 166) from three locations across 

two breeding seasons for phenotypic parameters including body condition score (BCS), 

weight at time of weaning, reproductive tract score (RTS), and age at AI to determine the 

utility of using “traditional” heifer assessment metrics to predict reproductive outcome. 

These phenotypic parameters proved to not be significantly different (p > 0.05 for BCS, 

RTS, Weight at Weaning, and Age at AI) in heifers undergoing fixed-time artificial 

insemination that became pregnant by AI or those remaining open. These parameters also 

proved to not be significant (except for BCS across locations) when compared across two 

separate breeding seasons, three separate locations, and based on pregnancy outcome. 
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 Heifers were compared to determine if there were metabolomic profile differences 

between heifers housed at two separate Research and Extension Centers [Black Belt (N = 

8) and Wiregrass (N = 8)] across two breeding seasons (2015 – 2016 and 2016 – 2017). 

Analysis revealed six metabolites present at differential levels (T-test; p < 0.05; fold 

change > 2, FDR = 0.05) between Black Belt heifers and Wiregrass heifers. Tocopherol-

alpha, Ornithine, Myristic Acid, P-tolyl Glucuronide, Sulfuric Acid, and Alpha-

ketoglutarate were all found to be differentially expressed by at least 2-fold in Black Belt 

heifer’s blood plasma compared to Wiregrass heifer’s blood plasma.  

 In a second study, a total of N = 20 heifers were analyzed for phenotypic heifer 

assessment, as well as metabolomic profiling, to identify metabolite differences in 

infertile (open) heifer blood plasma compared to fertile (AI) heifer blood plasma. Heifers 

were deemed fertile (AI) if they conceived from the artificial insemination following 

estrous synchronization. Heifers were deemed infertile if they did not maintain a 

conceptus following estrous synchronization, fixed-time AI, and three consecutive estrus 

cycles in the presence of a fertile bull. Phenotypic parameters were determined to not be 

significantly different (p > 0.05 for BCS, RTS, Weight at Weaning, and Age at AI) 

between categorized fertile and infertile heifers. 

 Metabolomics profiles of N = 20 heifers revealed seven metabolites present at 

different levels (T-test; p < 0.05; fold change > 2; FDR = 0.05) between infertile and 

fertile heifers. Tryptophan, Cystine, Histidine, Ornithine, Asparagine, Glutamine, and 

Lysine were all found to be at least 2-fold less in the infertile heifer’s blood plasma 

compared to the fertile heifer’s blood plasma. We further characterized the utility of 

using the levels of these metabolites in the blood plasma to discriminate between fertile 
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and infertile heifers. In order to identify the predictive ability of the significant 

metabolites discovered (P < 0.05; >2-fold change), we calculated the Receiver Operating 

Characteristic (ROC) area under the curve (AUC) value. We tested the models on the 

blood plasma metabolomes of the 20 selected heifers to determine their ability to predict 

pregnancy outcomes. Glutamine and Histidine alone, and in combination, predicted the 

correct pregnancy outcome in 90% of the animals. They did not incorrectly categorize a 

fertile heifer as infertile. 

 Finally, we investigated the potential role that inflammation might play by 

comparing the expression of inflammatory cytokines in the white blood cells of infertile 

heifers to that of fertile heifers. We found significantly higher expression (p < 0.05) of 

the proinflammatory cytokines Tumor Necrosis Factor alpha (TNFα), C-X-C Motif 

Chemokine Ligand 5 (CXCL-5), and Interleukin 6 (IL-6) in infertile heifers when 

compared to fertile heifers. The study presented offers potentially valuable information 

regarding the identification of fertility problems in heifers undergoing AI. 
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CHAPTER I. 

REVIEW OF LITERATURE  

I. Cattle Production 

I.I. The Cattle Industry 

The cattle industry is one of the most profitable and expansive global industries in 

the agricultural field. In 2017, the USDA-NASS (United States Department of 

Agriculture – National Agriculture Statistic Service) reported the global census of cattle 

production at 998.3 million head of cattle across the top eighteen leading production 

countries (USDA-NASS, 2018). The United States was ranked the fourth largest cattle 

industry in the world following India, Brazil, and China. On January 1, 2018, the U.S. 

annual inventory of cattle was observed at 94.4 million head (USDA-NAAS, 2018). Out 

of the 94.4 million head of cattle, 41.4 million head (44%) were heifers and cows that 

calved in the previous breeding season (USDA-NASS, 2018). 

 Cattle production in the southern region of the United States is comprised 

primarily of cow-calf production systems. This region has a longer grazing season with 

less need for supplemental forages. With less supplemental forages needed in the winter, 

the end result is a lower feed cost for all operations involved (McBride et al., 2011). In 

2017, there was a reported 2.05 million farms located throughout the continental U.S. 

(USDA-NASS, 2017). Total land in farms was equivalent to 910 million acres, with the 

average sized farm being 444 acres in size (USDA-NASS, 2017). According to the 

USDA census in 2017, the majority of the beef cow herd in the United
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 States reside in the thirteen southeastern states (Alabama, Arkansas, Florida, Georgia, 

Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, 

Tennessee, Texas, and Virginia) (Scaglia et al., 2016). Out of the 2.05 million farms 

reported in 2017, 40% (811,400) of these farms are located in these thirteen southeastern 

states (Scaglia et al., 2016). In particular, Alabama reported 43,600 farms in 2017 over a 

span of 8,900 acres, with each farm averaging 204 acres in size and 59 head per farm 

(McBride et al., 2011 and USDA-NAAS, 2017). 

I.II. Production Systems 

 In the United States, there are three primary phases of beef cattle production: 

cow-calf, stocker, and feedlot (McBride et al., 2011). Cow-calf is composed of 

maintenance during breeding, gestation, calving, and weaning of calves when they are 6 - 

9 months of age, or 400-700 lbs. respectively. “Stocker” entails backgrounding and 

putting an additional 200 - 400 lbs. of weight to calves over a span of 3 - 8 months 

(McBride et al., 2011). This timeframe and backgrounding is used with the intention of 

increasing animal weight and maturity before putting the calves on a feedlot. “Feedlot” is 

the final step of the production cycle, where the “finishing” of calves occurs. Finishing 

refers to the addition of grains to the diet, and calves will leave the production cycle with 

a processing weight of 1,000 – 1,500 lbs. (McBride et al., 2011). 

 In order for a production system to be successful, the profitability of calves must 

be higher and outweigh any production costs associated with the maintenance of a given 

herd (Funston, 2004).  In 2015, the gross income for cattle and calves in the United States 

totaled $78.8 billion in cash receipts, making cattle production the largest value 

production in agriculture from agricultural commodities (USDA-NASS, 2016). 
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Profitability of a cow-calf production system is dependent upon the percentage of heifers 

and/or cows in the herd that can consistently calve at 12-month intervals. In order to have 

a 12-month calving interval, the cow or heifer must be re-bred within 80 days after the 

birth of her calf (Lowman et al., 1976). Studies show that heifers who become pregnant 

early on in the breeding season and calve in the first three weeks of calving season 

remain in the herd for a greater amount of time compared to heifers who calve at a later 

date (Cushman et al., 2013). Proper development of the herd on cow-calf operations 

ensures low-cost heifer development without sacrificing associated heifer performance 

(Funston et al., 2004).  

 

II. Heifer Development and Selection 

 The development of heifers is one of the most critical components of the beef 

cattle production industry (Grings et al., 2007). Heifers should be managed and 

developed in such a way that they can reach puberty early, conceive in their first breeding 

season, calve without assistance, and breed back early for the subsequent breeding season 

(Funston et al., 2004). In order to have a productive, profitable, and efficient breeding 

herd, nulliparous heifers must become pregnant early in their first breeding season and 

deliver a live calf, while primiparous heifers must become pregnant early during the 

following breeding season (Larson et el., 2016). Proper heifer development for 

reproductive success involves selecting for heifers that have optimal nutrition while 

encompassing ideal maturity and puberty during the pre-breeding period. The condition 

of heifers at breeding can affect calving intervals, conception, percentage of open or non-

pregnant cows, and overall reproductive performance (Larson et al., 2016). 
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II.I. Age 

 In order for a heifer to conceive, she must be pubescent. Age at puberty is 

influenced by the heifer’s breed, plane of nutrition and diet, and season (Herd et al., 

1998). The onset of puberty is primarily induced by the weight of the heifer and her 

reproductive status. The age at which heifers reach puberty is reported between 292 and 

678 days, or 9.5 – 22 months respectively (Larson et al., 2016). In North America, the 

average age for the onset of puberty in Bos taurus heifers ranges from 303 – 429 days, or 

10 – 14 months of age (Larson et al., 2016). Ideally most producers require heifers to 

calve between 23 – 24 months of age, heifers should be bred at the time of the onset of 

puberty (Herd et al., 1998). The age at first calving at or near 2 years (23 – 25 months) is 

optimum for heifer performance, as it maintains the seasonal calving pattern (Wathes et 

al., 2014). In order for a low age at first calving to be maintained, proper management 

and adequate growth is required to ensure an appropriate body weight at conception and 

calving (Wathes et al., 2014).  

II.II. Weight 

 Weight is one of the major factors that will determine the onset of puberty in a 

heifer. In order to produce a successful breeding season, the nutrition program of the herd 

must ensure heifers are meeting their average daily gain requirements from the time of 

weaning to the time of breeding (Larson et al., 2016). Target weight is said to be the 

threshold weight for puberty in heifers (Holm et al., 2015). If a heifer is below target 

weight, her nutrition and growth rate are limiting factors for the onset of puberty (Holm 

et al., 2015). Research shows that the target weight to reach puberty is calculated by 

taking the ratio of the average weight of heifers in the herd divided by the average weight 
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of the multiparous cows in the herd (Patterson et al., 1992). Using this calculation, heifers 

who have been fed a diet to reach 55% to 65% of their mature weight have better 

reproductive performance at time of breeding than those heifers fed to reach a lower 

target weight ratio (Patterson et al., 1992).  

II.III. Body Condition Score 

 Body Condition Scores (BCS) are essentially the visual appraisal of muscle and 

adipose tissues on a given herd of cattle (Swecker et al., 2014). In commercial farms, 

BCS can be practiced regularly with satisfactory scoring in a situation where weighing 

heifers may be impractical (Herd et al., 1998). Changes in body condition, compared to 

changes in weight, give a more reliable understanding of the nutritional status of the cow 

or heifer (Herd et al., 1998). Body condition scoring provides producers a measure of the 

animal’s nutritional reserves, which is much more useful than live weight or body weight 

alone (Herd et al., 1998). Body fat percentage in beef cattle at different stages of the 

production cycle assists with not only reproductive performance, but overall productivity 

of the individual (Herd et al., 1998). Many reproductive failures in a beef heifer can be 

attributed to either improper nutrition, or a sub-par percentage of body fat. Without an 

adequate amount of body fat on a heifer or cow, she will not breed at an acceptable or 

beneficial rate for the producer (Herd et al., 1998). Many Body Condition Scoring 

systems utilize a 9-point scale, with a BCS score of 1 – 3 reflecting extremely thin 

conditions, a BCS of 4 reflecting borderline conditions, a BCS of 5 – 7 reflecting average 

or moderate conditions, and a BCS score of 8 – 9 reflecting extremely obese conditions 

(Herd et al., 1998).  
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 A BCS of 1 – 3 reflects extremely thin conditions. A heifer with a BCS of 1 will 

show easily-visible and pin-sharp bone structures of the shoulder, ribs and back, with 

little evidence of fat deposition or muscling (Lowman et al., 1976). A heifer with a BCS 

of 2 will show little evidence of fat deposition but will have some muscling in their 

hindquarters. The heifer’s spinous process will feel sharp to the touch and is easily seen 

with space between them. A heifer with a BCS of 3 will show the beginning of fat 

coverage over her loin, back, and foreribs. Her backbone will still be slightly visible, and 

spinous process can be identified by touch and sight. The spaces between her spinous 

process will be less pronounced than a heifer with a BCS of 2 (Lowman et al., 1976).  

 A BCS of 4 reflects borderline and unfavorable conditions. Her foreribs are not 

noticeable, and the transverse spinous processes can be identified (by slight pressure 

palpation) and feel rounded instead of sharp. Hindquarter muscling is full (Lowman et al., 

1976). Heifers who average a BCS of 4 or lower during breeding have poor reproductive 

performance in comparison to heifers who have a BCS of 5 or above (Herd et al., 1998).  

 A BCS of 5 – 7 reflects average or moderate conditions. A heifer with a BCS of 5 

will show visibility of the 12th and 13th ribs. Her transverse spinous process can only be 

felt with firm pressure and will feel rounded (not noticeable to the eye). The spaces 

between the spinous processes will not be visible, and only distinguishable by firm 

pressure. Areas near the tail and the head are well filled, but do not show excess 

accumulation (Lowman et al., 1976). A heifer with a BCS of 6 will show fully covered 

ribs, unnoticeable to the eye. She will have full and plump hindquarters, and a noticeable 

“sponginess” to her foreribs, tail, and head. Firm pressure needs to be applied to feel the 

spinous processes (Lowman et al., 1976). A heifer with a BCS of 7 will show non-
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distinguished spaces between the spinous process, and the spinous process can only be 

felt with very firm pressure. There is abundant fat coverage on both sides of the tail and 

neck (Lowman et al., 1976). 

 A BCS of 8 – 9 reflects extremely obese conditions. A heifer with a BCS of 8 will 

show a smooth and blocky appearance, disappearance of visual bone structure, and thick 

fat coverage throughout the body. A heifer with a BCS of 9 shows no visible bone 

structure, tail head buried in fat, and declined or halted mobility due to excess fat 

impairment (Lowman et al., 1976) (Appendix 1). 

 Low body conditions can lead to low pregnancy rates. Herd and Sprott (1998) 

conducted a study involving over 1,000 heifers and compared their BCSs during breeding 

season to resulting pregnancy rates (Herd and Sprott, 1998). Six hundred and nineteen 

heifers in this study had a BCS of 6 or higher, and the resulting pregnancy rate after 150 

days was 95%. Three hundred heifers had a BCS of 5, and the resulting pregnancy rate 

after 150 days was 85%. Four hundred and twenty-two heifers in this study had a BCS of 

4 or less during breeding, and the resulting pregnancy rate after 150 days was 58% (Herd 

et al., 1998). The trial supports the idea that a BCS of less than 5 is not suitable to 

conceive or maintain pregnancy, thus enforcing the importance of nutrition and proper 

body conditioning (Herd and Sprott, 1998).  

II.IV. Reproductive Tract Score 

 Pre-breeding exams on heifers can provide useful information on the up-to-date 

reproductive status of the breeding herd, which can allow producers to have a better 

prediction of the success of their upcoming breeding season (Larson et al., 2016). 

Palpation of the reproductive tract is used to examine all reproductive structures present 
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in the heifer. Evaluation of heifers six weeks before the breeding season gives producers 

more time to identify any potential changes or concerns regarding keeping a heifer in the 

breeding program, or culling due to poor reproductive status.  

 In 1991, Anderson et al. created the reproductive tract score (RTS) scoring 

method that is used throughout the beef cattle industry and is an effective method for 

evaluating heifers (Anderson et al., 1991). Reproductive Tract Scores can be evaluated on 

a scoring system with the ranking of 1 through 5. Uterine horns, uterine tone, ovarian 

structures, and ovarian length (L), height (H), and width (W) are then evaluated and 

scored (Anderson et al., 1991). Listed are the parameters for a RTS of 1 through 5: RTS 

of 1: immature uterine horns with a < 20 mm diameter, no uterine tone, ovary parameters 

= 15 mm L x 10 mm H x 8 mm W, and no palpable follicles on the ovarian structure; 

RTS of 2: 20 – 25 mm uterine horn diameter, no uterine tone, ovary parameters = 18 mm 

L x 12 mm H x 10 mm W, and 8 mm follicles on the ovarian structure; RTS of 3: 20 – 25 

mm uterine horn diameter, slight uterine tone, ovary parameters = 22 mm L x 15 mm H x 

10 mm W, and 8 – 10 mm follicles on the ovarian structure; RTS of 4: 30 mm uterine 

horn diameter, good uterine tone, ovary parameters = 30 mm L x 16 mm H x 12 mm W, 

and > 10 mm follicles + corpus luteum possible on the ovarian structure; and RTS of 5: > 

30 mm uterine horn diameter, good uterine tone, ovary parameters = > 32 mm L x 20 mm 

H x 15 mm W, and corpus luteum present on the ovarian structure (Appendix 2).  

 Studies have shown a  relative relationship between reproductive tract score, 

estrous synchronization response, and synchronized pregnancy rates (LeFever et al., 

1987). For heifers that scored a RTS of 1 or 2, their estrus response was 50% and 79.9%, 

and synchronized pregnancy rates were 0% and 17%, respectively (LeFever et al., 1987). 
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When scored between 12 and 14 months of age, heifers with a RTS of 1 or 2 show poor 

reproductive performance during the breeding season (Hall et al., 2005). Heifers that 

scored a RTS of 3 had a 93.1% estrous response and 62.1% synchronized pregnancy rate. 

Heifers that scored a RTS of 4 and 5 had an estrous response rate of 93.1% and 96.8%, 

respectively. These same heifers had a synchronized pregnancy rate of 62% for a RTS of 

4 and 54% for a RTS of 5 (LeFever et al., 1987). The authors noted that heifers who were 

12 – 14 months of age at RTS, and had a score of 4 or 5, had a higher probability of 

reaching puberty early, responding to estrous synchronization, and increased pregnancy 

rates (LeFever et al., 1987). Overall, reproductive tract scoring is a valid management 

tool for culling or keeping heifers at the beginning of the breeding season (Holm et al., 

2015). Culling that is based off of pre-breeding RTSs enhances the longevity of a 

successful breeding herd and program. 

II.V. Pelvic Measurements  

 Pelvic Area (PA) measurement is recorded at or around one year of age, and it is 

predominately associated with either calving ease or calving difficulty. Pelvic area is an 

important aspect of heifer selection in regard to dystocia, or difficult and obstructed labor 

(Neville et al., 1978). A major cause of dystocia in a cow or heifer is a large calf during 

parturition in comparison to the heifer’s pelvis (Larson et al., 2016). The reported 

correlation between a yearling’s pelvic area compared to a 2-year-old cow’s pelvic area is 

0.7. Measuring a yearling’s pelvic area is therefore a better predictor of pelvic size at the 

time of parturition (Neville et al., 1978). Rather than selecting for a “maximum” pelvic 

size on a yearling heifer, a sliding caliper is used to assess a standard “minimum” pelvic 

size as a culling criterion (130 – 150 cm2 at one year of age) (Neville et al., 1978). Studies 
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indicate that selection for an increased pelvic area results in a larger frame size. Pelvic 

area (PA) is used to eliminate heifers that have a misshapen or unusually small pelvic 

opening (Hall et al., 2005), with its main benefit aiding in the reduction of dystocia.  

II.VI. Temperament 

 Heifer temperament is described as the reaction characteristics of cattle when they 

are exposed to human handling (Kasimanickam et al., 2014). Cattle that remain calm (not 

stressed) in the chute and during routine handling perform better than cattle who become 

agitated (very stressed). A study conducted by Kasimanickam et al. (2014) compared 

heifer temperament to pregnancy rates after estrous synchronization and fixed-time 

artificial insemination. A total of 967 beef heifers from 8 locations were evaluated for 

temperament on a 2-point scoring system (0 = calm, slow exit; 1 = excitable; fast exit at 

jump/trot/run) and evaluated for pregnancy 70 days after AI. Any heifers that required 

external stimuli to exit the chute were excluded from the study (Kasimanickam et al., 

2014). AI pregnancy status differed by 8.4% when comparing calm heifer pregnancy 

rates (51.9%) to excitable heifer pregnancy rates (60.3%). Calm heifers also displayed a 

higher number of class 1, 2, and 3 follicles (Class 1: n = 5.6; 3 – 5 mm, Class 2: n = 1.4; 

6 – 9 mm, and Class 3: n = 1.2; > 9 mm, respectively) compared with excitable heifers 

with class 1, 2, and 3 follicles (Class 1: n = 4.4; 3 – 5 mm, Class 2: n = 1.2; 6 – 9 mm, 

and Class 3: n = 0.60; > 9 mm, respectively) (Kasimanickam et al., 2014). Authors then 

compared three different designs of cattle handling facilities to heifer pregnancy rates and 

temperament. Facility designs ranged from alleyway with acute bends and turns, long and 

straight alleyway, and semi-circular alleyway. The acute bends and turns alleyway 

pregnancy rate was 53.5%, the long and straight alleyway pregnancy rate was 56.3%, and 
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the semi-circular alleyway pregnancy rate was 67.0%. Between the two most extreme 

handling facility designs (acute bends and turns vs. semi-circular), the pregnancy rate 

difference was 13.5% (Kasimanicham et al., 2014). Overall, heifers who had a more 

excitable temperament had lower AI pregnancy rates (8.4%) and a smaller number of 

follicles compared to heifers who had calmer temperaments. Results from this study 

demonstrate temperament greatly affects reproductive performance following estrous 

synchronization and fixed-time artificial insemination in beef heifers (Kasimanickam et 

al., 2014).   

 Heifer selection for a variety of traits can impact her age at puberty and 

subsequent fertility (Hall et al., 2005). Producers must use a combination of reproductive 

exams, body weights, body conformation, and temperament modules that meet their 

farm’s requirements for efficiency and growth, while also maintaining a high rate of 

reproductive success (Hall et al., 2005).  

 

III. Common Heifer Breeding Management Programs  

III.I. Natural Bull Service 

 Bulls used for natural service should be evaluated to ensure their EPDss (expected 

progeny differences) for parameters such as birthweight and calving ease are consistent 

with the producer’s breeding program goals (Larson et al., 2016). A BSE, or Breeding 

Soundness Exam, is performed prior to the start of the breeding season to evaluate 

structural soundness, semen quality, and the overall health of the bull. Producers should 

observe bull activity at the start of breeding season, ensuring he is searching out females 

in heat, appropriately mounting, and copulating Statistics show if > 80% of heifers are 
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cycling at the beginning of breeding season, an average of 4% – 5% of heifers will be 

natural bred each day (Larson et al., 2016).  

III.II. Estrous Synchronization and Artificial Insemination 

 One of the most widely used and impactful reproductive technologies for cattle is 

estrous synchronization and artificial insemination (Youngs, 2016). The successful 

utilization of both of these technologies facilitates precisely timed control of the 

expression of heifer estrus and artificial insemination (Youngs, 2016). If a properly 

administered and monitored estrous synchronization protocol is performed, 70% – 90% 

of cycling heifers are expected to express estrus and ovulate a viable oocyte within the 

time window predicted by the estrous synchronization system (Wood-Follis et al., 2004 

and Day et al., 2005). AI is traditionally performed following the AM/PM rule, which 

involves inseminating heifers that are observed in estrus in the morning on the same 

evening of the same day, and vice versa (Youngs, 2016). Beef heifers that are bred 

through an appropriately-timed AI program, in relation to ovulation of a fertile oocyte, 

have a 60% – 80% probability of establishing a pregnancy that can be detected < 50 days 

of gestation (Tauck et al., 2007 and Bon Durant, 2007). 

 Estrous synchronization involves exogenous administration of hormones already 

naturally produced in the heifer, such as Prostaglandin F2α, progesterone, and 

gonadotropin-releasing hormone (Youngs, 2016). If heifers are synchronized, artificially 

inseminated, and then bred with a bull, heifers should be held out of the breeding pasture 

with the bull for at least two weeks following the last day of artificial insemination. This 

ensures AI pregnancy rates can be accurately determined in early gestation via ultrasound 

examination or palpation (Tauck et al., 2007). If bred correctly, 60% – 70% of heifers 
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identified in estrus should become pregnant by artificial insemination (Larson et al., 

2016).   

 

IV. Heifer Reproductive Failure  

 Reproductive failure is one of the major factors that affects the profitability of the 

beef cattle production industry (Diskin, 1980). Fertility is defined as a heifer that shows 

the desire to mate, the capacity to conceive, nourish a growing embryo, and successfully 

expel a live calf at 12-month intervals (Abraham, 2017). Heifers can be classified as 

fertile, infertile (reduced fertility or failure to maintain pregnancy), or sterile (absolute 

inability to produce offspring) (Abraham, 2017). In beef cattle, studies show the 

estimated fertilization rate (natural or AI) for oocytes is 90%. However, the estimated 

calving rate from a single service is between 40% – 55%. This suggests an overall 

embryonic and fetal mortality rate (not including fertilization failure) of 35% – 50%, with 

the majority of embryonic losses (70% – 80%) occurring during the first three weeks of 

pregnancy (Diskin et al., 2006).  

 Functional causes of infertility tend to affect individual heifers, but when 

combined, these infertile heifers can make a large impact on the overall herd (Abraham, 

2017). Most functional causes can occur from an endocrinological abnormality, which 

can reflect fertility issues. These abnormalities include, but are not limited to: non-

detected estrous (silent estrous), anestrus, ovulatory defects, persistent corpus lutea, luteal 

deficiencies, cystic ovaries, and repeat breeders (Abraham, 2017). Infertility that results 

in the failure of a cow or heifer to conceive a calf is the single-largest economic loss to 

beef producers (Lamb, 2014). 
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 Poor fertility remains the major reason for culling in the beef cattle industry, 

which reduces the longevity of the herd (Wathes et al., 2014). Longevity is a desirable 

trait, as it relates to total profit of the producer and optimizing economic returns (Wathes 

et al., 2014). Lamb et al. (2016) calculated an average ratio for the economic impact one 

infertile heifer can have on a herd. The average loss due to failure to become pregnant 

during the breeding season is ~$165/heifer (Lamb, 2014). Taking this into consideration, 

the NASS estimated total heifer infertility in the United States exceeding $4.7 billion 

annually (Lamb, 2014).  

 In a logical sense, producers cannot pin-point all infertile heifers that might come 

their way or know the exact reasons why they may be infertile. However, understanding 

the costs and roles associated with heifer infertility may push management practices to 

explore new realms of technology to improve livestock reproductive efficiency (Lamb, 

2014).  

 

V. Metabolomics 

V.I. The Metabolome 

 Metabolomics is a rapidly growing field that has the potential to play a major role 

in improving the diagnosis and treatment of complex issues in health and disease. The 

term “metabolome” was first defined by Oliver et al. in 1998 as the “quantitative 

complement of all of the low-molecular-weight molecules present in cells in a particular 

physiological or developmental state” (Oliver et al., 1998). Essentially, metabolomics 

involves the quantitative measurement of the global set of low-molecular-weight 

metabolites in a biological fluid. It is thought that changes in quantities of individual 
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enzymes can have little to no effect on fluxes of metabolites. However, these individual 

enzymatic changes can have significant effects on the concentrations of multiple stand-

alone metabolites that make up the “metabolome” (Oliver et al., 1998). Metabolomics 

reflects events that are well down-stream of gene expression, and it gives valuable 

information about the metabolism of cells that other “-omics” technologies cannot 

accomplish (Bracewell-Milnes et al., 2017).  

 The field of metabolomics is gaining increased interest and application across 

multiple disciplines, including integrative and systems biology, functional genomics, and 

biomarker discovery (Oliver et al., 1998). The study of metabolomics is a relatively new 

and novel practice in the many “-omics” realms. The field and its sub-fields are 

commonly known among many names, such as metabolomics, metabolic fingerprinting, 

metabolic profiling, metabolite target analysis, metabolite profiling, and metabolic 

footprinting. There has been much skepticism about why exactly metabolomics is a 

useful tool, in comparison to proteomics, genomics, and transcriptomics. An example by 

Goodacre et al. in 2004 explains the simple and precise advantageous reason to use 

metabolomics over other “-omics” studies, and it strives from the stem of evolution. 

Goodacre fabricates a scenario involving a specific biomarker or metabolite, such as 

fructose 1,6-bisphosphatase, from multiple organisms. In order to measure the amount of 

this biomarker, one must know the presumptive DNA and protein sequences from each 

individual organism in order to design correct and suitable oligonucleotides (to capture 

mRNA on a nucleotide array) and effectively identify proteins (via 2-D gel 

electrophoresis and mass spectrometry) (Goodacre et al., 2004). Inversely, the substrate 

and product of fructose 1,6-bisphosphatase are fructose 1,6-bisphosphate and fructose 6-
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phosphate. This substrate and product have the same basic chemical structure throughout, 

regardless of the organism they are extracted from. From this knowledge, one can 

quantify the metabolites in various samples, thus creating a more universal approach that 

can span and adapt to the species barrier (Goodacre et al., 2004).  

 From a conceptual level, the genome gives rise to the transcriptome and the 

transcriptome gives rise to the proteome. The proteome acts on small molecules within an 

organism (both endogenous and exogenous) known as the metabolome. There is evidence 

that feedback interactions exist at all levels, and these levels are sensitive to 

environmental cues, environmental influences, nutrition, disease states, toxicants, etc. 

The physiological status of an organism is ultimately affected by the varying combination 

of feedback interactions throughout the genome, transcriptome, proteome, and 

metabolome.  

 As far as technology is concerned, the increased interest and knowledge of 

metabolomics has arrived at precisely the right time. Generally speaking, metabolomics 

analysis consists of four steps that include sample preparation, data collection, data 

processing, and biological interpretation. MS (Mass Spectrometry) and NMR (Nuclear 

Magnetic Resonance) are two major technologies that are used to gather metabolomics 

data, and they have an inverse relationship involving quantification and specificity 

(Veenstra, 2012). MS has the main advantage of heightened sensitivity, as it can detect 

metabolites from femtomolar (10-15 moles/liter) to attomolar ranges (10-18 moles/liter). 

MS is typically coupled with either GC (gas chromatography) or LC (liquid 

chromatography), as both can define the measurement of hundreds of individual species 

within one single sample. Mass spectrometry, combined with increased metabolomics 
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databases and software systems, is allowing researchers to identify metabolomes of 

whole organisms as a routine practice (Veenstra, 2012). The main weakness of mass 

spectrometry is associated with quantification. Signal intensity measured by a mass 

spectrometer is affected by the type of sample used and the molecular environment the 

sample was established and maintained in. However, the major weaknesses of MS are 

accurately defined as the major strength of NMR spectrometry.  

 Compound peaks in NMR spectrums are directly related to the concentration of 

specific nuclei in a given sample. With this correlation, nuclear magnetic resonance 

makes quantification of compounds in complex mixtures extremely accurate and precise 

(Veenstra, 2012). NMR can detect metabolites with increased abundance by measuring 

their local resonance positioning of nuclei in the NMR spectrum. The samples typically 

used and associated with NMR are liquid-state samples (blood, plasma, serum, urine, 

etc.), tissue samples (tumors), and in-vivo cell lines.  

 Evidence suggests that global metabolomics profiles are useful for the 

identification of diagnostic biomarkers located in easily-accessible biofluids (Dutta et al., 

2012). Alterations in the biofluid, cells, or cell culture environments can induce a 

response to environmental and developmental stimuli. This can ultimately result in 

changes to intermediate pathway metabolites and leads to a change in the accumulation 

of metabolites at the terminal ends of a given pathway (Oliver et al., 1998). Biofluids are 

the most easily obtained sample and can be analyzed with little or no sample preparation 

via NMR (Nuclear Magnetic Resonance) (Oliver et al., 1998). Recent studies have shown 

that measurements of global sets of low molecular weight metabolites are important 
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indicators of various diseased states, reinforcing the idea of metabolomics being an 

effective tool for monitoring disease progression (Dutta et al., 2012).  

V.II. Biomedical Metabolomics  

 While it is known that metabolomics is a relatively new area of study compared to 

proteomics and genomics, it has been making major impact in a wide variety of scientific 

research fields. Since the completion of the human genome, functional genomics has 

been used to identify the links between protein and gene expression profiles in both 

normal and diseased states. Transcriptomics and proteomics have made remarkable 

breakthroughs in the identification of therapeutic targets, disease subtypes, newborn 

screenings, toxicology reports, food safety, and biomarker discovery for disease 

(Veenstra, 2012 and Yang et al., 2007). However, scientists have concluded that these 

technologies alone are falling short regarding the “big picture” of differential cellular 

networks and pathways.  

 Within the last decade, the use of metabolomics has sparked much interest 

involving biomarker discovery for certain types of cancers. Metabolomics can provide 

comprehensive profiling of thousands of metabolites in multiple tumor types (Yan 2018). 

Comprehensive profiling has resulted in the discovery of filtering for differential cancer 

metabolites, evaluating the effects of treatment drugs, revealing underlying mechanisms 

of oncogenes, and the discovery of novel drug targets (Yan 2018). Yang et al. (2007) 

used comparative metabolomics profiling to characterize cancerous vs. normal cells to 

improve the underlying mechanisms of tumorigenesis. By using metabolomics analysis, 

they were able to identify information about both the metabolite pools and metabolite 

fluxes associated with cancer-cell line and normal-cell line metabolic pathways. The use 
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of metabolic profiling is an important aspect of cancer biology due to the compound 

changes in the central metabolism of the host, as well as the metabolism associated with 

the expansion of the tumor itself (Yang et al., 2007). An additional cancer study was 

conducted by Sreekumar et al. (2009) in regard to prostate cancer. The authors used LC-

MS and GC-MS spectrometry on tissue, urine, and plasma samples from patients with 

three types of prostate disease: benign prostate disease, clinically localized prostate 

disease, and metastatic prostate disease. Not only were the authors able to classify, 

distinguish, and identify these three conditions in a blind study by the use of NMR, but 

they were also able to detect Sarcosine. Sarcosine is a tumor-specific metabolite that is 

highly increased in concentration when clinically localized prostate cancer progresses 

towards and develops into metastatic prostate cancer. The significance of Sarcosine 

discovery is how it is detected. The authors discovered that Sarcosine can be detected in 

patients non-invasively through a simple urine sample (Sreekumar et al.,2009). Urinary 

metabolites are downstream products of cellular processes. Because of this, they can 

provide complementary information in relation to plasma and tissue metabolome analysis 

(Zhang et al., 2012). Urinary metabolome analysis provides an affordable, convenient, 

and clinical approach to aid in the introduction of cancer biomarker discovery.  

 Previous work by Suliman et al. (2005) looked at the levels of amino acids in the 

blood plasma of kidney disease patients (with and without inflammation). They 

discovered that the patients with inflammation had significantly lower levels of 

Asparagine, Serine, Glutamine, Glycine, Arginine, Alanine, Histidine, and Threonine 

(Suliman et al., 2005). In another study investigating the plasma amino acid levels of cats 

with chronic gastrointestinal (GI) disease, it was shown that Arginine, Histidine, Lysine, 
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Methionine, Phenylalanine, Taurine, and Tryptophan (along with several non-essential 

amino acids) were lower in cats with chronic GI diseases (Sakai et al., 2018). The authors 

discovered that Histidine and Tryptophan levels were inversely correlated to symptom 

severity, and Histidine could suppress inflammatory cytokine release by their 

macrophages (Sakai et al., 2018). 

 Metabolic diseases are referred to as a disease caused by a disordered metabolism 

(Yan 2018). Metabolic diseases are the direct response of the combination of changes in 

the genetic makeup of an organism and changes associated with environmental cues.  

During a diseased state, the response of an organism’s cells are to modify the 

concentrations of numerous metabolites, with the end goal of maintaining homeostasis 

within the host (Bracewell-Milnes et al., 2017). The metabolites within an organism are 

in constant communication and display dynamic balance with the biofluids that profuse 

within cells. Because of this relationship, the direct result should be reflected in the 

organism’s biofluid composition (Bracewell-Milnes et al., 2017). It is feasible that the 

future of metabolomics will be able to distinguish multiple physiological states, such as 

diseased and non-diseased states, based entirely on the host’s metabolomics fingerprint 

alone (Bracewell-Milnes et al., 2017). 

V.III. Metabolomics in Agriculture 

 Previous studies in humans have shown that differential levels of metabolites has 

been able to detect various difficult-to-diagnose ailments including diabetic kidney 

disease (Kloet et al., 2012), Parkinson’s disease (Bogdanov et al., 2008), myocardial 

ischemia (Sabstine et al., 2005), ovarian cancer (Zhang et al., 2012), and endometriosis 
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(Dutta et al., 2012). However, the use of metabolomics in the agriculture sector has 

remained largely underutilized.  

 Cheng et al. (2014) investigated tilapia and tilapia-associated bacterial infections, 

such as Streptococcus iniae. With a broad host-range impacting over 27 species, S. iniae 

is becoming a challenging bacterial infection that has emerged as the leading fish 

pathogen affecting global aquaculture operations. Current antibiotics and vaccines lack 

practicality and have their own sets of limitations and drawbacks. With the use of 

metabolomics and metabolomic profiling, Cheng et al. used a GC/MS-based 

metabolomic profile of the tilapia liver to compare the differential metabolomes of 

survivor tilapia livers and post-mortem tilapia livers infected with S. iniae. Proceeding 

their study, they identified the metabolite N-acetylglucosamine to be elevated in the 

surviving group compared with the post-mortem group. This metabolite is essential for 

differentiating those tilapias that will survive after exposure to S. iniae and those tilapias 

that will not survive following exposure to S. iniae. The exogenous circulation of N-

acetylglucosamine in tilapia was shown to significantly increase the “survival abilities” 

of those fish exposed to the bacterial infection. In order to test the survival frequency, 

exogenous N-acetylglucosamine was injected into S. iniae infected tilapia. Survival rates 

of those tilapias injected with N-acetylglucosamine ranged from 75% - 85%, compared 

with the 40% survival rate in the control untreated tilapia group. Through the use of 

metabolomics, N-acetylglucosamine (a potential modulator of S. iniae) can elevate the 

survival of tilapia infected with bacterial pathogens via reverse regulation of metabolites 

and proteins. Through these studies, there is potential for functional metabolomics to 

develop treatments for pathologies (Cheng et al., 2014). 
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 Chen et al. (2017) conducted a study in which acute liver failure was induced in 

pigs, and the aim of this study was to identify plasma biomarkers for acute liver failure 

(ALF). They utilized continuous collection of samples, which allowed the evaluation and 

association between varying degrees of liver damage in comparison to increased or 

decreased metabolite levels. In humans, ALF presents itself as multiple organ failure, 

jaundice, and complete deterioration of all liver functions. Liver injury is typically 

assessed by concentrations of hepatic enzymes, albumin, bilirubin, ALT (alanine 

aminotransferase) and prothrombin (Chen et al., 2017). Many of these metabolites are 

present and circulating throughout multiple areas of the body, which decreases their 

overall sensitivity and specificity for evaluating the “standard” concentration level in 

regard to liver assessment. Three upregulated amino acids (Phenylalanine, Tryptophan, 

and Methionine), two upregulated bile acids [Glycoursodeoxycholic acid (GCDCA) and 

Tauroursodeoxycholic acid (TCDCA)], and two downregulated metabolites 

[Lysophosphatidylcholines (LPC) and Phosphatidylcholines (PC)] were identified. 

Amino acids identified as biomarkers for the severity of liver impairment, conjugated bile 

acids identified predictive stages of early stage liver damage, and the LPC/PCs are 

relative for the overall early prognosis of ALF. Chen and his team discovered new 

biomarkers with greater specificity and greater sensitivity in the pig model for the early 

diagnosis and prognosis of acute liver failure in humans (Chen et al., 2017). 

V.IV. Metabolomics and Male Infertility 

 Infertility is a complex disorder that leaves patients (human and animals alike) 

with significant physiological, medical, and financial complications pre- and post-

diagnosis. There have been countless areas of research conducted world-wide over the 
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last century interested in diagnosing the pathology of unexplained infertility. However, 

infertility still remains the number one reproductive-associated disorder. Metabolomics 

techniques are providing useful information for working with multiple species to 

investigate the causes of unexplained infertility at the molecular and metabolite level 

(Bracewell-Milnes et al., 2017). 

 Male factor infertility contributes to ~ 40% of all human infertility cases. Male 

infertility can be caused by an array of issues, including sperm morphology, motility, and 

sperm count. Semen analyses are an important factor in regard to the diagnosis of male 

factor infertility, but they are not specific enough to identify the root cause of the 

infertility problem and dictate accurate treatment or therapy for the patient. Recent 

studies have identified shifts in male reproductive hormone levels, as well as shifts 

associated with the metabolome of infertile men (Mendiola et al., 2012). DEHP (di-2-

ethylhexyl) is a compound known as a phthalate. Phthalates are man-made compounds 

primarily used in industrial environments. These compounds emit anti-androgenic 

properties related to adverse reproduction and development in males. Properties of 

phthalates have been reported to cause complete disruption of reproductive development 

in male rodents, as well as decreased serum FT (free testosterone) levels post-exposure. 

Mendiola et al. (2012) investigated the relationship of urinary phthalate metabolite 

concentrations in relation to serum reproductive hormone levels in both fertile and fertile 

men. Their results suggest that exposure to phthalates (at normal environmental 

concentrations) is associated with significantly reduced levels of FT (free testosterone) 

and serum estradiol. These exposures highlight the androgenic effects of phthalates. The 

use of metabolomics can assist and aid in the discovery of decreased semen quality, 
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changes in circulating levels of male sex steroids, and reproductive failure from increased 

urinary phthalate concentrations (Mendiola et al., 2012). 

 In addition to phthalates leading to reproductive failure and male factor infertility, 

oligozoospermia places an increased risk on the success rate or decline of male fertility. 

Oligozoospermia is the leading cause of male sub-fertility and infertility, and refers to a 

patient with substantially low sperm concentration in semen compared with the average 

male (Zhang et al., 2014). Relative sperm concentration is a typical clinical diagnosis of 

oligozoospermia but remains inadequate in relation to assessing infertility as a whole. 

Zhang et al. (2014) conducted a LC/TOF-MS metabolomic study to identify differential 

urinary metabolic patterns of infertile men with oligozoospermia, with the goal to 

discover biomarkers indicative of oligozoospermic infertility. The authors discovered 

several biomarkers such as acyl-carnitines (C3:1, C8, and C10:2), aspartic acid, and 

adenine that are associated with energy consumption and anti-oxidant defenses against 

spermatogenesis. Acyl-carnitines from previous studies have been associated with 

decreased sperm concentrations, decreased sperm amplitude of lateral head displacement, 

and diagnostic parameters related to oligozoospermic infertility. Aspartic acid from 

previous studies plays a major role in spermatogenesis by decreasing energy supply and 

hormone metabolisms in infertile men. Through the use of urinary metabolomics 

analysis, oligozoospermic biomarkers can have the potential to reflect responses of 

reduced fertility in the male (Zhang et al., 2014). 

V.V. Metabolomics and Female Infertility 

 Female infertility contributes to ~50% of all infertility cases (American 

Pregnancy Association, 2017). Infertility can be caused from a number of complex issues 
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that range from ovulation disorders, uterine disorders, and hormonal disorders (American 

Pregnancy Association, 2017). The pathology of unexplained infertility remains the 

number-one reported reproductive disorder. Metabolomics techniques are providing 

useful information for working with multiple species to investigate the causes of 

unexplained infertility at the molecular and metabolite level (Bracewell-Milnes et al., 

2017). 

 The follicular fluid in females is defined as the in-vivo micro-environment for a 

developing oocyte. Essentially, the follicular fluid must contain many components 

necessary for oocyte growth, maturation, and survival. The necessary components housed 

in the follicular fluid are metabolites secreted by the oocyte, granulosa cells, and the 

surrounding vasculature (Revelli et al., 2009). There is evidence that suggests the 

metabolic makeup of the follicular fluid itself can differentiate between developmentally 

poor and competent oocytes.  

 Within the agriculture sector, metabolite concentrations in follicular fluid and 

blood were used in attempt to explain differences in fertility between heifers and lactating 

cows (Bender et al., 2010). Within the last three decades, there has been a rapid decline in 

the fertility of dairy cows. Bender et al.(2010) utilized metabolomics to investigate 

metabolic differences between the follicular fluid of the dominant follicle of lactating 

cows and the follicular fluid of the dominant follicle of heifers. Follicular fluid was 

collected over three phases of follicular development: newly selected dominant follicles, 

pre-ovulatory follicles prior to oestrous, and post-LH surge follicles (Bender et al., 2010). 

Twenty-four fatty acids and nine aqueous metabolites were found significantly different 

when comparing cows to heifers. Palmitic Acid and Stearic Acid (saturated fatty acids) 
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were higher in the follicular fluid of cows, and Docosahexaenoic Acid (saturated fatty 

acid) was higher in the follicular fluid of heifers. Bender discovered that if there is a 

higher concentration of saturated fatty acids in cows, oocyte maturation and early embryo 

development will be negatively impacted. Results suggested that the overall follicular 

microenvironment in cows places oocytes at a developmental disadvantage when 

compared with the microenvironment for heifers. This overall conclusion could 

contribute to fertility differences in heifers and cows alike (Bender et al., 2010).  

 Pre-eclampsia, or PE, is the leading complication during pregnancy in women, as 

it presents a risk for both fetal and maternal morbidity and mortality (Austdal et al., 

2014). Affecting approximately three-percent of women worldwide, PE contributes to 

substantial health problems later in life such as chronic hypertension, cardiovascular 

disease, and diabetes mellitus type-2 up to eight-fold (Kuc et al., 2014). PE is typically 

diagnosed early-mid pregnancy (first through second trimester) by clinical symptoms 

such as spontaneous high blood pressure and proteinuria, or increased and abnormal 

amounts of protein in the urine. However, when these parameters are present, PE has 

already progressed in the patient and cannot be prevented or stopped. Currently, there are 

no leads on the actual pathophysiology and complex gene mechanisms related to the 

onset of pre-eclampsia. Kuc et al. in 2014 introduced a novel LC-MS-based 

metabolomics approach with interest in discovering signature patterns of metabolites that 

are significantly altered in patients diagnosed with PE during their first trimester of 

pregnancy, compared with serum of patients undergoing a healthy pregnancy (Kuc et al., 

2014). The authors discovered decreased levels of taurine, asparagine, and glycylglycine 

(amino acids and amino-acid derivatives) in first-trimester patients diagnosed with PE 



 

 27 

compared with healthy non-PE patients. Reduced taurine levels are associated with 

impaired trophoblast invasion, reduced trophoblast-placenta communication, and reduced 

placentation. However, previous studies indicated that taurine, asparagine, and 

glycylglycine supplementation reduced hypertension in rats and reduced peripheral vessel 

resistance. Similarly, Austdal et al. (2014) investigated the serum and urinary 

metabolomics profile of women diagnosed with PE compared with women with a healthy 

pregnancy. They discovered that patients diagnosed with PE have significantly lower 

serum concentrations of histidine (amino acid) compared with healthy pregnant women. 

Significantly higher levels of glycerol (amino acid) were also discovered in the serum of 

PE women compared to healthy pregnant women. Early detection of pre-eclampsia would 

provide clinicians with targeted intervention for patients diagnosed with PE. The use of 

serum and urinary metabolomics profiling during the first trimester of pregnancy could 

create and provide an early-detection assay that has the potential to detect specific 

maternal metabolite serum levels, aiding in the prevention of pre-eclampsia (Kuc et al., 

2014). 

 
VI. Inflammation 

V.I. The Immune System   

 The maternal immune system is plays a critical role in the establishment and 

maintenance of pregnancy and parturition (Prins et al., 2012). The immune system is a 

host defense system composed of a vast network of cells, tissues, and organs that are 

designed to protect a host or an organism against disease. The immune system must 

defend against pathogens in order to maintain a healthy state within the host organism. 

The immune system can typically be classified into two sub-systems: the innate immune 
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system (humoral immunity) and the adaptive immune system (cell-mediated immunity) 

(Parkin, 2001). Throughout evolution, pathogens have rapidly adapted and evolved, 

which have enabled the avoidance of detection and neutralization by the immune system.  

 The bovine innate immune system produces an immediate, or native response, to 

the pathogen affecting the host. The innate immune system functions through a 

combination of natural barriers that defend the heifer, such as skin, neutrophils, 

phagocytes, natural killer cells, and cytokines (BioRad, 2016; Rainard et al., 2006). After 

an initial microbial invasion, macrophages and dendritic cells secrete cytokines to 

increase the total amount of white blood cell production, thus aiding in fighting the 

present infection. 

 Many reproductive failures in females of all species can be immunologically 

determined (Mahdi, 2010). Studies suggest that many cytokines are crucially important 

for reproductive processes and aid in reproductive success. Over-production of 

inflammatory cytokines has been suggested to cause multiple reproductive maladies such 

as fetal growth restriction in response to hypoxia by means of decreased amino-acid 

uptake (Briana et al., 2009).  

V.II. Inflammatory Cytokines in Relation to Infertility 

 The term “fetal allograft” is defined as the unique immunological mechanism at 

which fetal survival is achieved, despite modifications of the host organism’s immune 

response. Placental invasion has been described similarly to that of tumorigenicity, or the 

growth of carcinomas, thus invoking principles and mechanisms similar to tumor 

immunology (Koumantaki et al., 2001).  
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 During pregnancy, the female reproductive system is in constant communication 

with the endocrine system and the immune system. The immune system plays a 

significant role in the processes of folliculogenesis, oogenesis, embryo implantation, 

preparation of the endometrium, and maintaining pregnancy (Ostanin et al., 2007). The 

fluid associated with the female reproductive tract contains cytokines that assist in 

interactions between multiple cell types. Cytokines play a significant role in multiple 

reproductive processes, as reproductive success is dependent upon interactions between 

cytokines and the fetal-maternal interface (Austgulen et al., 2016). 

 Cytokines are immunoregulatory molecules that are responsible for determining 

the nature and severity of immune response in a host organism (Mahdi, 2010). 

Inflammatory cytokines are known by multiple names, such as monokines (cytokines 

made by monocytes), lymphokines (cytokines made by lymphocytes), chemokines 

(cytokines with chemotactic activities), and interleukins (cytokines acting on other 

leukocytes and made by a singular leukocyte) (Zhang et al., 2007). Cytokines can act on 

cells that secrete them (autocrine action), distant cells (endocrine action), or on nearby 

cells (paracrine action). Cytokines can be categorized as pro-inflammatory or anti-

inflammatory. Pro-inflammatory cytokines are produced by active macrophages and are 

typically involved in the up-regulation of inflammatory reactions (Zhang et al., 2007). 

Pro-inflammatory cytokines are predominately active during early and late events of 

gestation (pregnancy establishment and parturition), as both events can be described as 

inflammatory-like events. Inflammation is essentially a defense-mechanism in which 

multiple varieties of WBC (white blood cells) and their cytokines travel to the damaged 

area and act to repair any potential injuries.  
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 Tumor Necrosis Factor alpha (TNFa), also known as cachectin, is a pro-

inflammatory cytokine that is secreted by primarily monocytes and macrophages. Studies 

show that TNFa affects endothelial function in the uterus. Hunt et al. (1996) demonstrate 

the expression of TNFa in embryo and placental tissues, thus re-enforcing its beneficial 

roles in the development of early pregnancy. However, TNFa has also been shown to 

inhibit blastocyst growth in murine pregnancy. Additionally, the administration of TNFa 

in normal pregnant mice results in fetal resorption (Raghupathy, 1999). Higher serum 

levels of TNFa are seen in females who frequently experience reproductive failure 

termed RSA, or recurrent spontaneous abortions (Reid et al., 2001). TNFa in women is 

essential for conception and early pregnancy, but retained and high levels are dangerous 

during gestation. A reasonable explanation for this contradiction comes from Guilbert et 

al. (1996) suggesting that the timing, localization, and regulatory signaling cascades of 

TNFa are responsible for the up and down-regulation of TNFa itself throughout 

conception and maintenance of pregnancy.  

 IL-6, or Interleukin-6, is also a pro-inflammatory cytokine that is secreted from 

cells such as helper T-cells and macrophages (Prins et al., 2012). IL-6 is a stimulating 

factor in response to mediating the innate and adaptive immune response of an individual, 

as well as aiding in acute-phase responses to chronic inflammation. IL-6 has three distinct 

receptor-binding sites. IL-6 is widely expressed in gestational tissues and in the female 

reproductive tract, and it regulates functions for placental development and embryo 

implantation (Prins et al., 2012). Studies show that overall elevated levels of IL-6 result 

in pre-eclampsia, pre-term delivery, and unexplained infertility. Decreased local IL-6 

levels associated with the endometrium suggest a contribution to fetal loss, as recurrent 
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miscarriages are correlated with reduced and insufficient IL-6 expression in the 

endometrium (Prins et al., 2012). Consistent with the reproductive role of IL-6, IL-6 

knockout mice exhibit delayed parturition and elevated fetal absorption (Prins et al., 

2012). Additionally, the IL-6 concentration of plasma and cervical mucous is reported to 

be higher in women experiencing unexplained infertility compared with healthy, fertile 

women. 

 CXCL5, or C-X-C Motif Chemokine Ligand 5 [also known as epithelial-derived 

neutrophil-activating peptide-78 (ENA-78)], is a protein-coded neutrophil-activating 

peptide that is generated in response to stimulation of inflammatory cytokines such as 

TNFa. It is a member of the chemokine family and aids in recruitment of neutrophils, 

promotion of angiogenesis, and connective tissue remodeling. MCP1, or Monocyte 

Chemoattractant Protein-one [also known as CCL-2 (chemokine C-C motif ligand-2)], is 

a part of the chemokine family and aids in the inflammatory response to damaged tissue 

or infection. MCP1 aids in the recruitment of monocytes to sites of inflammation. MCP1 

is pertinent for the pathogenesis of many diseases such as psoriasis, rheumatoid arthritis, 

and Alzheimer’s disorder.  

 CXCL-5 is secreted from white adipose tissue and highly increased during 

obesity. During this secretion, insulin-signaling pathways are inhibited and blocked, thus 

promoting insulin resistance. Zohrabi et al. in 2017 utilized a PCOS, or polycystic 

ovarian syndrome, model to assess the serum levels and contributing concentrations of 

CXCL-5 for PCOS diagnosis (Zohrabi et al., 2017). PCOS affects between 4% - 8% of 

women during their reproductive age and remains a major cause of infertility in women. 

Studies indicated that women diagnosed with PCOS had higher serum concentration of 
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CXCL-5 and higher concentrations of fasting blood sugar (FBS) than those in the control 

group (non-PCOS). Chavey et al. (2009) discovered a positive correlation between serum 

levels of CXCL-5 and body weight; the inhibition of CXCL-5 secretion reduced the risk 

of the individual developing an obesity-related pathogenesis (such as PCOS). The 

presence of CXCL-5 could potentially be used as a biomarker for the inhibition of early-

onset PCOS and associated obesity/metabolic syndromes in women (Zohrabi et al., 

2017). 

 POSTN, or Periostin, is an extracellular protein that is expressed throughout 

multiple areas of the body. It is found most prevalently in the stomach, aorta, lower 

gastrointestinal tract, uterus, and placenta (Freis et al., 2017). During an injury, POSTN 

levels rise due to its role in inflammatory response. In recent years, studies have found 

POSTN playing a role in allergic reactions, skin, bone, heart, kidney, and cancer 

pathways. POSTN has been shown to be essential in metastatic cell maintenance, and 

knockout POSTN studies suggest prevention of metastasis completely. Freis et al. (2017) 

conducted a study investigating the changes in POSTN serum concentrations of women 

suffering from recurrent spontaneous abortions (miscarriage) during their first trimester 

of pregnancy. The relative expression of POSTN between four and six weeks of gestation 

was significantly higher in patients who experienced recurrent spontaneous abortions 

than those with maintaining a healthy pregnancy. This study suggests that increased 

Periostin levels could become a promising biomarker and early-screening method for 

pregnancy outcome assessment or risk of miscarriage during the first trimester (Freis et 

al., 2017). 
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VII. The Impact on Agriculture 

 Reproductive failure and unexplained heifer infertility are major factors that 

negatively impact the profitability of beef cattle production (Diskin, 1980). Heifer 

infertility remains a difficult to diagnose pathology resulting in inefficiencies within the 

cow-calf sector. Functional causes of infertility tend to affect individual heifers, but when 

combined these infertile heifers can make a large impact on the overall herd (Abraham, 

2017). Poor fertility remains the major reason for culling in the beef cattle industry, 

which reduces herd longevity (Wathes et al., 2014). Metabolomics techniques are 

providing research breakthroughs with regards to investigating the causes of unexplained 

infertility at the molecular and metabolite level (Bracewell-Milnes et al., 2017). The 

pathology of unexplained infertility remains the number-one reported reproductive 

disorder in females and males alike. 

 Successful pregnancy establishment in a heifer is associated with multiple factors 

coming into play and working together to establish and maintain a healthy pregnancy. 

These factors can include but are not limited to precise regulation of circulating 

inflammatory cytokines, relative up- or down-regulation of biomarker metabolites needed 

for the maintenance of pregnancy, and efficient heifer selection based upon decisive 

phenotypic parameters. The ability to detect heifers that are unable to produce offspring 

would provide a mechanism to remove them from the breeding herd prior to investing 

valuable time, money, and resources. Utilizing efficient heifer selection, metabolomics 

detection of biomarkers for fertility, and understanding the diagnostic mechanisms of 

cattle innate immunity can lead researchers closer to understanding, diagnosing, and 

treating the phenomenon of unexplained heifer infertility.  
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CHAPTER II.  

PHENOTYPIC HEIFER ASSESSMENT AND ANALYSIS  

 

II.I. ABSTRACT 

 

 Heifer management and development remains one of the most critical components 

of efficient beef production (Grings et al., 2007). Current common management practices 

include utilizing BCS, RTS, Weight, and Age to discriminate reproductively-sound 

heifers from non-reproductively sound heifers. Proper heifer development for 

reproductive success involves selecting heifers that have optimal nutrition, phenotypic 

characteristics, and have reached maturity prior to breeding. The condition of heifers at 

breeding can affect calving intervals and rates, thereby affecting the overall reproductive 

performance (Larson et al., 2016). 

 Angus and Angus-cross heifers, undergoing a 7 - day estrous synchronization 

protocol, were utilized for this study. The heifers were housed at three Research and 

Extension Centers (Black Belt, Gulf Coast, and Wiregrass) located across the state of 

Alabama, U.S.A. and compared across two breeding seasons (2015 – 2016 and 2016 – 

2017). 

 We initially measured a total of 166 heifers (N = 166) for phenotypic parameters 

including Body Condition Score, Weight at time of Weaning, Reproductive Tract Score 
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(RTS), and Age at AI to determine the utility of using the “traditional” heifer assessment 

metrics to predict reproductive outcomes. Across two breeding seasons and three 

locations, a total of 64 heifers were pregnant by AI, 27 heifers were pregnant by bull, and 

28 heifers remained open (infertile). BCS proved to be significantly different (p < 0.05) 

when comparing Black Belt, Wiregrass, and Gulf Coast Research and Extension Centers 

across two combined breeding seasons. However, RTS, Weight at time of Weaning, and 

Age at AI were proven to not be significantly different when compared across the three 

locations and two combined breeding seasons. When the two separate breeding seasons 

(2015 – 2016 and 2016 – 2017) were compared, only BCS was proven to be significantly 

different (p < 0.05) across combined locations. BCS, RTS, Age at AI, and Weight at time 

of Weaning were not significantly different (p > 0.05), when compared based on 

reproductive outcomes, in heifers undergoing fixed-time artificial insemination.  
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II.II. INTRODUCTION 

 

 Heifer infertility remains a difficult to diagnose pathology resulting in 

inefficiencies within the cow-calf sector. The development of replacement heifers 

represents a major economic burden on the cattle industry. The ability to identify heifers 

with high reproductive potential for recruitment into the breeding stock is one of the keys 

to efficient cattle production. Currently, due to a lack of informative biomarkers, 

replacement heifers are selected based on phenotypic and genetic background 

information (Calus et al., 2005 and Liu et al., 2008). Current management practices 

utilize phenotypic methods to attempt to minimize heifers remaining open following the 

breeding season. However, selection efficiency remains limited due to the low heritability 

of reproductive performance and results in the recommendation to select ~25% more 

heifers than required (Kuhn et al., 2006). Analysis of breeding data in the U.S. over two 

breeding seasons found an artificial insemination (AI) conception rate of 40 – 70% in 

first-service heifers (Kuhn et al., 2006).  

 Heifers should be managed and developed in such a way that they can reach 

puberty early, conceive in their first breeding season, calve without assistance, and breed 

back early in the subsequent breeding season (Funston et al., 2004). Several reproductive 

parameters are analyzed prior to each breeding season to determine if the heifer is 

reproductively sound for conception and pregnancy. 
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 We approached this study with the goal to compare phenotypic heifer variations 

[BCS, RTS, Weight at Weaning, and Age at AI] across pregnancy outcomes [fertile (AI) 

and infertile (open)], detect any phenotypic heifer variations across breeding seasons 

(2015 – 2016 and 2016 – 2017), and detect any phenotypic heifer variations across 

locations (Black Belt, Wiregrass, and Gulf Coast Research and Extension Centers). 

 A total of 166 Angus and Angus-cross heifers undergoing a 7-day estrous 

synchronization protocol were utilized for phenotypic assessment and analysis. 

Measurements included phenotypic parameters such BCS, RTS, Weight at Weaning, and 

Age at AI. Across two breeding seasons and three locations, a total of 64 heifers were 

pregnant by AI, 27 heifers were pregnant by bull, and 28 heifers remained open 

(infertile). Phenotypic parameters were compared by One-way ANOVA. Variables of 

condensed breeding seasons (2015 – 2016 and 2016 – 2017) and location were used to 

determine if any discrepancies were present in relation to differences in phenotypic 

parameters. Phenotypic heifer assessment (RTS, BCS, Weight at Weaning, and Age at 

AI) was then cross-compared to determine if pregnancy outcome could be predicted. 

Pregnancy outcome was compared by breeding season and type of pregnancy obtained. 

Heifers that remained open (infertile) following AI and three consecutive estrous cycles 

(in the presence of a fertile bull) were compared to heifers that became pregnant 

immediately following artificial insemination.  
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II.III. MATERIALS AND METHODS 

 

Animal Use     

 All procedures involving animals were approved by the Auburn University 

Institutional Animal Care and Use Committee (IACUC). Heifers utilized for this study (N 

= 166) originated from and were housed at the Black Belt (Marion Junction, AL, U.S.A.), 

Wiregrass (Headland, AL, U.S.A.), and Gulf Coast (Fairhope, AL, U.S.A.) Research and 

Extension Centers of the Alabama Agricultural Experiment Station.  

Reproductive Management 

 Angus and Angus-cross heifers underwent an estrus synchronization and fixed-

time artificial insemination program (TAI) [7-day CO-Synch + CIDR® (Whittier et al., 

2013 )] spanning the two fall breeding seasons of 2015 – 2016 and 2016 – 2017. Briefly, 

at the initiation of the estrus synchronization protocol, all heifers received 100 µg GnRH 

via intramuscular injection (CYSTORELIN®, Merial Animal Health, Duluth, GA, USA), 

and a controlled internal drug release (CIDR®) device containing 1.38 g of progesterone 

was placed intravaginally (EAZI-BREED™ CIDR® Cattle Insert, Zoetis, Kalamazoo, MI, 

USA). Each CIDR® was removed following 7 days, and an intramuscular injection of 25 

mg of dinoprost tromethamine (LUTALYSE®, Zoetis, Kalamazoo, MI, USA) was 

administered at the same time. Heifers were then artificially inseminated with a single 
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straw of semen originating from selected Angus sires 54 ± 2 hrs. following CIDR® 

removal. A second intramuscular injection of 100 µg GnRH was administered at the time 

of artificial insemination (AI). Fourteen days following AI, heifers were exposed to an 

intact sire for three consecutive estrous cycles. Bulls at each research station were all 

proven breeders. All bulls passed a standard BSE (Breeding Soundness Exam) with 

semen quality having < 10% abnormality, and all were cleared for any reproductive 

discrepancies before each breeding season. Bulls were placed at an average density of 1 

bull per 33 heifers for 60 days following artificial insemination. 

Heifer Nutrition Management  

 Heifers at Black Belt were placed on Fescue pasture and had free-choice Ryegrass 

hay available. Heifers at Wiregrass were placed on Bermudagrass pasture and had free-

choice Bermudagrass hay available. Heifers at Gulf Coast were placed on Bahia grass 

pasture and had free-choice Ryegrass hay available. Throughout all locations, all heifers 

received 5 – 7 lbs. of Soyhull + Corn-Gluten supplementation per heifer per day, and 

trace minerals were available ad libitum.  

Phenotypic Observations 

 A total of 166 (N = 166) heifers, split between two breeding seasons (2015 – 2016 

and 2016 – 2017), were used for this study and analyzed for phenotypic conditions by a 

trained veterinarian including body condition score (BCS) (Appendix 1), reproductive 

tract score (RTS) (Appendix 2), Weight at time of Weaning, and Age at AI. BCS was 

determined as previously described (Herd et al., 1998). The BCS scale ranged from 1-9, 

with 1 being emancipated and 9 being obese. Reproductive tract score (RTS) evaluation 

was performed by veterinarians via transrectal palpation. Heifers were assigned a RTS 
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ranging from 1-5 based on uterine size, uterine tone, ovarian size, and ovarian structure, 

as previously described (Cushman et al., 2013). Heifer weight was determined at the time 

of weaning for all animals. The RTS was collected one month prior to AI. Weight was 

determined at time of weaning, age was determined by counting the days between day of 

birth and day of artificial insemination, and BCS was determined at the time of AI. 

Pregnancy Determination 

 Pregnancy was determined at 45 and 65 days post AI via transrectal palpation by 

a trained veterinarian. Heifers were identified as pregnant (AI), pregnant (Bull) or non-

pregnant based on the size of the conceptus.  

Statistics 

 PRISM-6 software was used for all analyses in this study. Statistical analyses 

included one-way ANOVAs with 95% confidence intervals, Tukey’s multiple 

comparison’s tests, and unpaired parametric two-tailed T-tests with 95% confidence 

intervals. Arcsine transformation was performed to analyze multiple pregnancy outcomes 

across breeding seasons. All data are analyzed and presented as mean ± standard 

deviation of the mean. Black bars in figures represents standard error. Significance is 

noted as p < 0.05. 
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II.IV. RESULTS  

 

Pregnancy outcomes did not differ between breeding seasons 

 The proportion of heifers that became pregnant by AI, natural service (Bull) and 

those that remained open were compared between the 2015 - 2016 and 2016 - 2017 

breeding seasons (Figure 1). A total of 166 heifers were compared over two breeding 

seasons (2015 – 2016 and 2016 – 2017) and housed at three locations (Black Belt, 

Wiregrass, and Gulf Coast Research and Extension Centers) for this study. N = 87 heifers 

were analyzed for pregnancy outcomes during the 2015 – 2016 breeding season. N = 79 

heifers were analyzed for pregnancy outcomes during the 2016 – 2017 breeding season.  

 No significant difference (p = 0.946) was determined when comparing AI rates 

from the 2015 – 2016 breeding season (37.87 ± 7.60%) to AI rates from the 2016-2017 

breeding season (37.44 ± 13.39%, Figure 1). Additionally, no significant difference (p = 

0.796) was determined when comparing Bull (natural service) rates from the 2015 – 2016 

breeding season (43.61 ± 17.72%) to Bull (natural service) rates from the 2016-2017 

breeding season (47.53 ± 16.34%, Figure 1). Furthermore, no significant difference (p = 

0.717) was found when comparing Open (infertile) rates 

from the 2015 – 2016 breeding season (18.52 ± 10.35%) to Open (infertile) rates from the 

2016-2017 breeding season (15.02 ± 4.32%, Figure 1).  
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Figure 1. 

 

Graph comparing pregnancy outcomes from the 2015 – 2016 and 2016 – 2017 breeding 

seasons. No significant difference was found between the proportion of heifers becoming 

pregnant by AI (p > 0.05), pregnant by bull (natural service, p > 0.05), or failing to 

become pregnant (open, p > 0.05) when comparing the breeding seasons.  
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Phenotypic Heifer Assessment based upon Location  

 Phenotypic parameters (RTS, BCS, Weight at Weaning, and Age at AI) were 

collected at three locations: Black Belt (BB) N = 62, Wiregrass (WG) N = 50, and Gulf 

Coast (GC) N = 54 Research and Extension Centers.  

Reproductive Tract Scores did not differ between locations  

 Heifer RTSs (N = 166) from two breeding seasons were compared across 

locations. No significant difference (p = 0.332) was found between locations: BB = 4.30 

± 0.70; WG = 4.15 ± 0.91; and GC = 4.478 ± 0.75 (Figure 2). 

Figure 2.  

  

Graph depicting the RTSs of Black Belt (BB), Wiregrass (WG), and Gulf Coast (GC) 

heifers across two breeding seasons (2015 – 2016 and 2016 – 2017). Data are mean ± 

standard deviation of the mean. Different letters represent significant differences (p < 

0.05). No significant difference was found in RTSs between locations (p > 0.05). 
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Body Condition Scores differed depending upon location 

 Heifer BCSs (N = 166) from two breeding seasons were compared across 

locations. A significant difference (p < 0.001) was determined between locations: BB = 

6.00 ± 0.00; WG = 5.83 ± 0.376; and GC = 5.433 ± 0.50 (Figure 3). 

Figure 3. 

  
 

Graph depicting the BCSs of Black Belt (BB), Wiregrass (WG), and Gulf Coast (GC) 

heifers across two combined breeding seasons (2015 – 2016 and 2016 – 2017). Data are 

mean ± standard deviation of the mean. Different letters represent significant differences 

(p < 0.05). A significant difference was found in BCSs between locations (p < 0.05). 
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Weights at Weaning did not differ between locations   

 Heifer Weaning Weights (N = 166) over two breeding seasons were compared 

across locations. No significant difference (p = 0.112) was found among the weaning 

weights at different locations: BB = 692.20 ± 63.15 lbs.; WG = 530.30 ± 78.95 lbs.; and 

GC = 713.90 ± 73.33 lbs. (Figure 4). 

Figure 4. 

  

Graph depicting the Weights at time of Weaning of Black Belt (BB), Wiregrass (WG), 

and Gulf Coast (GC) heifers across two combined breeding seasons (2015 – 2016 and 

2016 – 2017. Data are mean ± standard deviation of the mean. Different letters represent 

significant differences (p < 0.05). No significant difference was found in weight at 

weaning between locations (p > 0.05). 
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Ages at AI did not differ between locations   

 Heifer Ages at AI (Artificial Insemination) (N = 166) were compared over two 

breeding seasons across locations. No significant difference (p = 0.368) was found 

between locations: BB = 420.30 ± 30.47 days of age; WG = 408.0 ± 22.30 days of age; 

and GC = 425.10 ± 21.37 days of age (Figure 5). 

Figure 5. 

  
 

Graph depicting the Ages at AI of Black Belt (BB), Wiregrass (WG), and Gulf Coast 

(GC) heifers across two combined breeding seasons (2015 – 2016 and 2016 – 2017). 

Data are mean ± standard deviation of the mean. Different letters represent significant 

differences (p < 0.05). No significant difference was found in age at AI between locations 

(p > 0.05). 
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Phenotypic Heifer Assessment based upon Breeding Season 

 Phenotypic parameters (RTS, BCS, Weight at Weaning, and Age at AI) were 

determined for (N = 166) heifers across three locations [Black Belt (BB), Wiregrass 

(WG), and Gulf Coast (GC) Research and Extension Centers]. Phenotypic parameters 

were then compared between two separate breeding seasons (2015 – 2016 and 2016 – 

2017). 

Reproductive Tract Score did not differ across breeding seasons 

 Heifer RTSs (N = 166) were compared between two separate breeding seasons 

(2015 – 2016 and 2016 – 2017). There was no significant difference (p = 0.085) between 

RTS from different breeding seasons: 2015 – 2016 = 4.40 ± 0.77 and 2016 – 2017 = 4.20 

± 0.81 (Figure 6). 

Figure 6. 

 

Graph depicting heifer RTSs from three combined locations (BB, WG, and GC) and 

compared across two separate breeding seasons. Data are mean ± standard deviation of 
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the mean (p < 0.05). No significant difference was found between the RTSs of heifers in 

the 2015 – 2016 or the 2016 – 2017 breeding seasons (p > 0.05).  

Body Condition Scores differed between breeding seasons  

 Heifer BCSs (N = 166) were compared across two separate breeding seasons 

(2015 – 2016 and 2016 – 2017). There was a significant difference (p = 0.001) in BCSs 

between breeding seasons: 2015 – 2016 = 5.86 ± 0.35 and 2016 – 2017 = 5.65 ± 0.48 

(Figure 7). 

Figure 7. 

 

Graph depicting heifer BCSs from three combined locations (BB, WG, and GC) and 

compared across two separate breeding seasons Data are mean ± standard deviation of 

the mean (p < 0.05). A significant difference was found between the BCSs of heifers in 

the 2015 – 2016 or the 2016 – 2017 breeding seasons (p < 0.05).  
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Weights at Weaning did not differ between breeding seasons  

 Heifer weaning weights (N = 166) were compared across two separate breeding 

seasons (2015 – 2016 and 2016 – 2017). No significant difference (p = 0.406) was found 

between breeding seasons: 2015 – 2016 = 656.30 ± 124.80 lbs. and 2016 – 2017 = 643.00 

± 84.09 lbs. (Figure 8). 

Figure 8. 

 
 

 
Graph depicting heifer Weights at time of weaning from three locations (BB, WG, and 

GC) and compared across two separate breeding seasons Data are mean ± standard 

deviation of the mean (p < 0.05). No significant difference was found between the 

weaning weight of heifers in the 2015 – 2016 or the 2016 – 2017 breeding seasons (p > 

0.05). 
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Ages at AI did not differ across breeding seasons  

 Heifer Age at AI (artificial insemination) (N = 166) were compared between two 

separate breeding seasons (2015 – 2016 and 2016 – 2017). No significant difference (p = 

0.346) was found in the age at AI between breeding seasons: 2015 – 2016 = 416.4 ± 

29.70 days of age and 2016 – 2017 = 420.10 ± 21.63 days of age. (Figure 9).  

Figure 9. 

 
 

Graph depicting heifer Ages at AI from three combined locations (BB, WG, and GC) and 

compared across two separate breeding seasons. Data are mean ± standard deviation of 

the mean (p < 0.05). No significant difference was found between the age at AI of heifers 

in the 2015 – 2016 or the 2016 – 2017 breeding seasons (p > 0.05). 
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seasons (2015 – 2016 and 2016 – 2017). Heifers becoming pregnant from the AI were 

categorized as fertile and those remaining open following AI and three rounds of natural 

service were categorized as infertile. Because we are looking at the two most extreme 

ends of heifer fertility [(pregnant by AI and open (infertile)], we did not include heifers 

pregnant by bull for these analyses. 

RTS of fertile and infertile heifers did not differ by location 

 Black Belt, Wiregrass, and Gulf Coast heifer RTSs were compared between 

fertile and infertile heifers across two combined breeding seasons (2015 – 2016 and 2016 

– 2017) (Figure 10). There was no significant difference between RTSs at the Black Belt 

Research and Extension Center when comparing fertile with infertile heifers: BB Infertile 

= 4.29 ± 0.61 and BB Fertile (AI) = 4.45 ± 0.60. (p = 0.443, Figure 10-A). Additionally, 

there was no significant difference between RTS at the Wiregrass Research and 

Extension Center when comparing fertile with infertile heifers: WG Infertile = 4.33 ± 

0.71 and WG Fertile (AI) = 4.53 ± 0.64. (p = 0.483, Figure 10-B). Similarly, there was no 

significant difference between RTS at the Gulf Coast Research and Extension Center 

when comparing fertile with infertile heifers: GC Infertile = 4.40 ± 0.55 and GC Fertile 

(AI) = 4.50 ± 0.62. (p = 0.747, Figure 10-C). Finally, there was no significant difference 

overall between the RTS of fertile (4.49 ± 0.61) and infertile (4.32 ± 0.61) heifers (p = 

0.239, Figure 10-D).   
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Figure 10. 

 

Graphs displaying RTSs of infertile or fertile heifers at different locations (A = Blackbelt, 

B = Wiregrass, and C = Gulf Coast, and D = Overall RTS). Data are mean ± standard 

deviation of the mean (p < 0.05). No significant difference between RTSs of fertile and 

infertile heifers was found at the Black Belt, Wiregrass, or Gulf Coast Research and 

Extension Centers (p > 0.05). 
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BCS of fertile and infertile heifers did not differ by location 

 Black Belt, Wiregrass, and Gulf Coast heifer BCS were compared between fertile 

and infertile heifers across two combined breeding seasons (2015 – 2016 and 2016 – 

2017) (Figure 11). There was no significant difference between BCSs at the Black Belt 

Research and Extension Center when comparing fertile with infertile heifers: BB Infertile 

= 6.00 ± 6.00 and BB Fertile (AI) = 6.00 ± 6.00 (p = 0.000, Figure 11-A). Additionally, 

there was no significant difference between BCSs at the Wiregrass Research and 

Extension Center when comparing fertile with infertile heifers: WG Infertile = 5.78 ± 

0.44 and WG Fertile (AI) = 5.93 ± 0.26 (p = 0.285, Figure 11-B). Similarly, there was no 

significant difference between BCSs at the Gulf Coast Research and Extension Center 

when comparing fertile with infertile heifers: GC Infertile = 5.40 ± 0.55 and GC Fertile 

(AI) = 5.37 ± 0.50 (p = 0.902, Figure 11-C). Finally, there was no significant difference 

overall between the BCSs of fertile (5.80 ± 0.41) and infertile (5.82 ± 0.39) heifers (p = 

0.788, Figure 11-D). 
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Figure 11. 

 

Graphs depicting BCSs of infertile or fertile heifers at different locations (A = Black Belt, 

B = Wiregrass, and C = Gulf Coast, D = Overall BCS. Data are mean ± standard 

deviation of the mean (p < 0.05). No significant difference between BCSs of fertile and 

infertile heifers was found at the Black Belt, Wiregrass, or Gulf Coast Research and 

Extension Centers (p > 0.05). 
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Weight at time of weaning between fertile and infertile heifers did not differ by location 

 Black Belt, Wiregrass, and Gulf Coast heifer weaning weights were compared 

between fertile and infertile heifers across two combined breeding seasons (2015 – 2016 

and 2016 – 2017) (Figure 12). There was no significant difference between weaning 

weights at the Black Belt Research and Extension Center when comparing fertile with 

infertile heifers: BB Infertile = 671.10 ± 72.38 lbs. and BB Fertile (AI) = 706.00 ± 59.73 

lbs. (p = 0.099, Figure 12-A). Additionally, there was no significant difference between 

weaning weights at the Wiregrass Research and Extension Center when comparing fertile 

with infertile heifers: WG Infertile = 545.30 ± 44.38 lbs. and WG Fertile (AI) = 523.20 ± 

66.29 lbs. (p = 0.385, Figure 12-B). Similarly, there was no significant difference 

between weaning weights at the Gulf Coast Research and Extension Center when 

comparing fertile with infertile heifers: GC Infertile = 680.00 ± 94.65 lbs. and GC Fertile 

(AI) = 735.20 ± 58.11 lbs. (p = 0.121, Figure 12-C). Finally, there was no significant 

difference overall between the weaning weight of fertile (670.80 ± 103.30 lbs.) and 

infertile (632.40 ± 90.39 lbs.) heifers (p = 0.093). 
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Figure 12. 

 

Graphs displaying weaning weights of infertile and fertile heifers (A = Blackbelt, B = 

Wiregrass, and C = Gulf Coast, D = Overall Weaning Weights). Data are mean ± 

standard deviation of the mean (p < 0.05). No significant difference between weaning 

weights of fertile and infertile heifers was found at the Black Belt, Wiregrass, or Gulf 

Coast Research and Extension Centers (p > 0.05). 
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Age at AI of fertile and infertile heifers did not differ by location 

 Black Belt, Wiregrass, and Gulf Coast heifer Age at AI were compared between 

fertile and infertile heifers across two combined breeding seasons (2015 – 2016 and 2016 

– 2017) (Figure 13). There was no significant difference between ages at AI at the Black 

Belt Research and Extension Center when comparing fertile with infertile heifers: BB 

Infertile = 411.80 ± 38.18 days and BB Fertile (AI) = 421.30 ± 26.65 days (p = 0.345, 

Figure 13-A). Additionally, there was no significant difference between ages at AI at the 

Wiregrass Research and Extension Center when comparing fertile with infertile heifers: 

WG Infertile = 411.20 ± 25.99 days and WG Fertile (AI) = 409.70 ± 22.98 days (p = 

0.880, Figure 13-B). Similarly, there was no significant difference between ages at AI at 

the Gulf Coast Research and Extension Center when comparing fertile with infertile 

heifers: GC Infertile = 437.80 ± 11.34 days. and GC Fertile (AI) = 427.10 ± 19.60 days (p 

= 0.257, Figure 13-C). Finally, there was no significant difference overall between the 

age at AI of fertile (420.30 ± 24.40 days) and infertile (416.30 ± 32.03 days) heifers (p = 

0.512) (Figure 13-D).  
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Figure 13. 
 

 
Graphs displaying Age at the time of AI of fertile and infertile heifers at various locations 

(A = Blackbelt, B = Wiregrass, and C = Gulf Coast, D = Overall Ages at AI). Data are 

mean ± standard deviation of the mean (p < 0.05). No significant difference between ages 

at AI of fertile and infertile heifers was found at the Black Belt, Wiregrass, or Gulf Coast 

Research and Extension Centers (p > 0.05). 
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II.V. DISCUSSION 
 
 

 Replacement heifers are a major economic burden on the beef cattle industry. 

Heifer infertility remains a difficult to diagnose pathology resulting in inefficiencies 

within the cow-calf sector. The ability to detect heifers that are unable to produce 

offspring would allow their removal from the breeding herd prior to investing valuable 

time, money, and resources.  

 We approached this study with the goal to compare and detect traditional heifer 

phenotypic variables (BCS, RTS, Weight at Weaning, and Age at AI) across pregnancy 

outcomes [fertile (AI) and infertile (open)], detect any phenotypic heifer variations across 

breeding seasons (2015 – 2016 and 2016 – 2017), and detect any phenotypic heifer 

variations across locations (Black Belt, Wiregrass, and Gulf Coast Research and 

Extension Centers).The ability to detect phenotypic variations across pregnancy outcome 

can greatly aid a producer in the culling decisions for a breeding herd. Additionally, 

identifying any trends across locations or breeding seasons can ensure the producer has a 

consistent herd without any discrepancies present. 

 Current management practices utilize phenotypic methods to attempt to minimize 

heifers remaining open following the breeding season. One commonly used method is to 

conduct Reproductive Tract Scoring (RTS) prior to the breeding season (Appendix 2). 

The RTS system involves transrectal palpation of the ovaries and uterine horns in order to
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estimate the pubertal status and presence of ovarian cyclicity (Rosenkrans et al., 2003). 

The system classifies heifers based on the size of the reproductive tract and the presence

 of a corpus luteum, resulting in a range of scores from 1 (immature; anestrus) to 5 

(mature; cycling) (Rosenkrans et al., 2003). In a previous study, heifers were then 

grouped based on their RTSs, and then went through AI and natural breeding service 

(Gutierrez et al., 2014). The RTS was shown to minimize the number of heifers 

remaining open following the breeding season from 20.3% in the heifers scored 1 and 2 

to 9.8% in the heifers scored 5 (Gutierrez et al., 2014). In our studies, we did not see a 

statistically significant difference between the RTSs of heifers among different locations 

(Figure 2), during different breeding seasons (Figure 6), or between pregnancy outcomes 

(Figure 10). The most interesting result is that we were unable to detect a difference in 

the RTS of fertile and infertile heifers at any of the locations (Figure 10). This suggests 

that RTS is a useful tool to minimize heifers remaining open following the breeding 

season, but is not able to identify all problem breeders.  

 Body condition score (BCS) is an often-utilized parameter for evaluating the 

reproductive potential of replacement heifers. BCSs range from 1-9 with 1 being 

extremely thin and 9 being extremely obese (Appendix 1). A previous study compared 

Holstein heifers with a BCS below the median to those above the median with regards to 

their rate of conception at first service (Donovan et al., 2003). They did not see a 

significant correlation between BCS and ability to become pregnant at first service 

(Donovan et al., 2003). In our study, we did not see a statistically significant difference 

between the BCSs of heifers when predicting pregnancy outcomes (Figure 11). We did, 

however, see a statistically significant difference between the BCSs of heifers when 
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comparing locations (Figure 3) and breeding seasons (Figure 7). The potential reasoning 

and specifics behind the significant differences in BCSs across location and breeding 

seasons, but not pregnancy outcomes, could be due to the varying management practices 

of the heifers. These results highlight the importance of environment and management 

practices on the BCSs of replacement heifers. They also however support the caveat that 

BCS, while useful in limiting problematic breeders, is not a consistent way of identifying 

reproductive outcomes. It must also be stated that the limited animal numbers and 

variations in BCSs limits the scope of the results.     

 Heifer weight can assist in determining the onset of puberty, thus increasing the 

overall reproductive performance of the heifer. Target weight is said to be the threshold 

weight for puberty in heifers (Holm et al., 2015). If a heifer is below target weight, her 

nutrition and growth rate are limiting factors for the onset of puberty (Holm et al., 2015). 

Research shows that the target weight to reach puberty is calculated by taking the ratio of 

the average weight of heifers in the herd divided by the average weight of the 

multiparous cows in the herd (Patterson et al., 1992). Using this calculation, heifers who 

have been fed a diet to reach 55% to 65% of their mature weight have better reproductive 

performance at time of breeding than those heifers fed to reach a lower target weight ratio 

(Patterson et al., 1992). In our studies, we compared the weaning weight of animals to 

determine if it played a role in reproductive outcomes following heifer development. We 

did not see a statistically significant difference between weights at weaning in heifers 

when comparing pregnancy outcomes (Figure 12), breeding seasons (Figure 8) or 

locations (Figure 4). An item of particular interest during this study was the weaning 

weights of heifers at Wiregrass Research and Extension Center. From the data, one can 
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speculate that there is an ongoing trend of low weaning weights at Wiregrass compared to 

Black Belt of Gulf Coast Research and Extension Centers. Although a significant 

difference was not determined between locations, the low weaning weights of these 

heifers could in fact be attributed to lower heifer birth weights. Lower birth weight could 

be correlated with the nutrition of the heifer’s dam during gestation. Further studies 

would need to be conducted in order to indicate a symbiotic relationship of low birthing 

weights relating to low weaning weights, and the nutritional status and management of 

the dam during gestation. 

 Age is an important factor that comes into play during the process of determining 

the pubescent status of the heifer prior to breeding. Age at puberty is influenced by the 

heifer’s breed, plane of nutrition and diet, and season (Herd et al., 1998). In North 

America, the average age for the onset of puberty in Bos taurus heifers ranges from 303 – 

429 days, or 10 – 14 months of age (Larson et al., 2016). Because most producers require 

heifers to calve between 23 – 24 months of age, heifers should be bred at the time of the 

onset of puberty for optimum breeding performance (Herd et al., 1998). When comparing 

the heifer’s Ages at AI for our studies, we did not see a statistically significant difference 

between the days of age of heifers when comparing pregnancy outcomes (Figure 13), 

breeding seasons (Figure 9), or locations (Figure 5). These results highlight the variation 

in age at which puberty onset occurs in heifers, which makes age not an ideal marker for 

reproductive outcomes. Although increased variations in age could contribute to the 

correlation of successful reproductive outcomes, a larger data set would be needed to aid 

this. 
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 Heifer infertility that results in the failure of a cow or heifer to conceive a calf is 

the single-largest economic loss to beef producers. Phenotypic parameters such as RTS, 

BCS, Age at AI, and Weight at Weaning are all relevant and important pieces of 

information needed to produce a successful and productive breeding herd. Many 

producers establish minimum and maximum requirements, or values, in order to create 

and maintain a relative breeding herd “standard.” However, reproductive failure is still an 

element of concern for the beef cattle industry not only locally, but nationally and 

internationally alike. Functional causes of infertility tend to effect individual heifers, but 

when combined, these infertile heifers can make a large impact on the overall herd 

(Abraham, 2017). This study highlights the limitations in traditional phenotypic 

approaches for identifying productive heifers.  
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CHAPTER III.  

INVESTIGATING PLASMA METABOLOMIC PROFILES AT THE TIME OF 

ARTIFICIAL INSEMINATION, BASED ON PREGNANCY OUTCOME, IN BOS 

TAURUS HEIFERS  

 

III.I. ABSTRACT 

 

 Biomarker development for the identification of infertile heifers has the potential 

to improve the efficiency of cow-calf production. In this study, we utilized metabolomics 

profiling to identify metabolites in the blood plasma that may be useful in identifying 

infertile heifers at the time of artificial insemination (AI). Twenty Angus and Angus-

cross heifers, undergoing a 7-day estrous synchronization protocol, were utilized from 

three locations (Black Belt: N = 8; Wiregrass: N= 8; Gulf Coast: N = 4). Prior to artificial 

insemination, phenotypic parameters including Body Condition Score (BCS), Weight at 

time of Weaning, Reproductive Tract Score (RTS), and Age at time of AI were 

measured. These phenotypic parameters were determined to not be significantly different 

between fertile and infertile heifers. Analysis of the resulting metabolomics profiles 

revealed seven metabolites (Tryptophan, Cystine, Histidine, Ornithine, Asparagine, 

Glutamine, and Lysine) present at significantly different levels (T-test; p < 0.05; Fold 

Change > 2; FDR < 0.05) between infertile and fertile heifers. Additionally, we
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 performed a metabolomics analysis to determine if heifer metabolomes differed by 

location and breeding season. We discovered six metabolites (Tocopherol-alpha, 

Ornithine, Myristic Acid, Sulfuric Acid, Alpha-ketoglutarate, and P-tolyl Glucuronide) 

identified as significantly different (p < 0.05; Fold Change > 2; FDR 0.05) between Black 

Belt and Wiregrass Research and Extension Centers. 

 We further characterized the utility of using the levels of these metabolites in the 

blood plasma to discriminate between fertile and infertile heifers. Based on the ROC-

AUC values for each of the seven significant metabolites based on fertility outcome 

(Tryptophan, Cystine, Histidine, Ornithine, Asparagine, Glutamine, and Lysine), we 

tested their predictive abilities in categorizing fertile and infertile heifers. By testing 

predictive models, metabolites did not categorize any fertile heifer as infertile, and vice 

versa. Finally, we investigated the potential role inflammation may play by comparing 

the expression of inflammatory cytokines in the white blood cells of infertile heifers to 

that of fertile heifers. We found significantly higher expression of the proinflammatory 

cytokines, Tumor Necrosis Factor alpha (TNFα), Interleukin 6 (IL-6), and neutrophil 

activating peptide C-X-C Motif Chemokine 5 (CXCL5) in infertile heifers compared with 

fertile heifers (T-test; p < 0.05; Fold Change > 2). The work in this study offers 

potentially valuable information regarding diagnosis of fertility problems in heifers 

undergoing AI.     
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III.II. INTRODUCTION  

 

 Unexplained infertility remains a significant source of inefficiency within the 

cow-calf production sector. The ability to identify heifers with high reproductive 

potential for recruitment into the breeding stock is one of the keys to efficient cattle 

production. Currently, due to a lack of informative biomarkers, replacement heifers are 

selected based on phenotypic and genetic background information (Calus et al., 2005; Liu 

et al., 2008). However, selection efficiency remains limited due to the low heritability of 

reproductive performance, which results in the recommendation to select ~25% more 

heifers than required (Kuhn et al., 2006). Analysis of breeding data in the U.S. over two 

years found an artificial insemination (AI) conception rate of 40-70%, in first service 

heifers (Kuhn et al., 2006). Overall pregnancy rates in heifers range from 70-90% 

utilizing AI and natural breeding programs (Schatz et al., 2008). Poor fertility accounts 

for the majority of cows culled and remains largely unmanageable due to a lack of 

informative biomarkers for fertility (Wathes et al., 2008). The development of an early 

detection assay utilizing biomarkers will minimize costs associated with over-selecting 

heifers and the resulting cull. 

 Metabolomics, or metabolomics profiling, involves the quantitative measurement 

of the global set of low-molecular-weight metabolites in a biological fluid (Goodacre et 

al., 2004). Metabolite levels can be compared among different phenotypic states and
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 can potentially be used as health indicators. Mass spectrometry-based metabolite 

analysis has been applied in the development of many informative biomarkers to help 

identify hard-to-diagnose disorders (van der Kloet et al., 2012; Günther, 2015; Jafarzadeh 

et al., 2015; Zhou et al., 2007). Recent studies have utilized metabolomics analysis in 

assessing embryo and oocyte quality (Singh et al., 2007; Nagy et al., 2009; Revelli et al., 

2009). Within cattle, metabolomics analysis of follicular fluid has been used to 

potentially explain differences in fertility between heifers and lactating cows (Bender et 

al., 2010). Authors in this study discovered metabolites significantly differed in the blood 

serum between heifers and cows (Bender et al., 2010).  

 Furthermore, inflammation has been shown to perturb the growth and 

steroidogenic potential of the preovulatory follicle and negatively impact conception rates 

in cattle (Price et al., 2013; Lavon et al., 2011; Hertl et al., 2010). In fact, bovine 

granulosa cells express functional Toll-like receptors (TLRs) that respond to 

lipopolysaccharide (LPS) and Pam3CSK4 (PAM) exposure, leading to an upregulation of 

proinflammatory cytokines such as interleukins (Price et al., 2013). Limited knowledge 

remains regarding a potential relationship between inflammatory status and heifer 

infertility.         

 Although metabolomics approaches have been extensively used within the 

biomedical field, there are limited studies in farm animals. In the present study, we have 

conducted comprehensive metabolomics profiling of the blood plasma of heifers at the 

time of artificial insemination (AI). Samples were analyzed via untargeted profiling of 

primary metabolism by automatic linear exchange/cold injection gas chromatography 

time-of-flight mass spectrometry (GC-TOF-MS). Heifers that remained open following 
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AI and three consecutive estrous cycles, in the presence of a fertile bull, were compared 

to heifers that became pregnant following AI. Metabolomics profiling was also analyzed 

by location and breeding season to reveal any metabolome differences of heifers 

participating in the research study. In addition, we analyzed and compared the expression 

levels of proinflammatory cytokines in the white blood cells of heifers with differing 

pregnancy outcomes following AI and natural breeding. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 69 

III.III. MATERIALS AND METHODS 
 

Animal Use     

 All procedures involving animals were approved by the Auburn University 

Institutional Animal Care and Use Committee (IACUC). Heifers utilized for this study 

originated from and were housed at the Black Belt (Marion Junction, AL, U.S.A.), 

Wiregrass (Headland, AL, U.S.A.), and Gulf Coast (Fairhope, AL, U.S.A.) Research and 

Extension Centers of the Alabama Agricultural Experiment Station.  

Reproductive Management 

 Angus and Angus-cross heifers underwent an estrus synchronization and fixed-

time artificial insemination program (TAI) [7-day CO-Synch + CIDR® (Whittier et al., 

2013 )], spanning the two fall breeding seasons of 2015 – 2016 and 2016 – 2017. Briefly, 

at the initiation of the estrus synchronization protocol, all heifers received 100 µg GnRH 

via intramuscular injection (CYSTORELIN®, Merial Animal Health, Duluth, GA, USA), 

and a controlled internal drug release (CIDR®) device containing 1.38 g of progesterone 

was placed intravaginally (EAZI-BREED™ CIDR® Cattle Insert, Zoetis, Kalamazoo, MI, 

USA). Each CIDR® was removed following 7 days, and an intramuscular injection of 25 

mg of dinoprost tromethamine (LUTALYSE®, Zoetis, Kalamazoo, MI, USA) was 

administered at the same time. Heifers were then artificially inseminated with a single 

straw of semen originating from selected Angus sires 54 ± 2 hrs. following CIDR® 

removal. A second intramuscular injection of 100 µg GnRH was administered at the time 
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of artificial insemination (AI). Fourteen days following AI, heifers were exposed to an 

intact sire for three consecutive estrous cycles. Bulls at each research station were all 

proven breeders. All bulls passed a standard BSE (Breeding Soundness Exam) with 

semen quality having < 10% abnormality, and all were cleared for any reproductive 

discrepancies before each breeding season. Bulls were placed at an average density of 1 

bull per 33 heifers for 60 days following artificial insemination. 

Heifer Nutrition Management  

 Heifers at Black Belt were placed on Fescue pasture and had free-choice Ryegrass 

hay available. Heifers at Wiregrass were placed on Bermudagrass pasture and had free-

choice Bermudagrass hay available. Heifers at Gulf Coast were placed on Bahia grass 

pasture and had free-choice Ryegrass hay available. Throughout all locations, all heifers 

received 5 – 7 lbs. of Soyhull + Corn-Gluten supplementation per heifer per day, and 

trace minerals were available ad libitum.  

Phenotypic Observations 

 A total of 166 (N = 166) heifers, split between two breeding seasons (2015 – 2016 

and 2016 – 2017), were used for this study and analyzed for phenotypic conditions by a 

trained veterinarian including body condition score (BCS) (Appendix 1), reproductive 

tract score (RTS) (Appendix 2), Weight at time of Weaning, and Age at AI (artificial 

insemination). BCS was determined as previously described (Herd et al., 1998). The BCS 

scale ranged from 1-9, with 1 being emaciated and 9 being obese. Reproductive tract 

score (RTS) evaluation was performed by veterinarians via transrectal palpation. Heifers 

were assigned a RTS ranging from 1-5 based on uterine size, uterine tone, ovarian size, 

and ovarian structure, as previously described (Cushman et al., 2013). Heifer weight was 
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determined at the time of weaning for all animals. The RTS was collected one month 

prior to AI. Weight was determined at time of weaning, age was determined by counting 

the days between day of birth and day of artificial insemination, and BCS was determined 

at the time of AI. 

Blood Collection and Processing 

 At the time of artificial insemination, 10 mL of blood was collected via jugular 

vein of each heifer using an 18G needle into an EDTA blood collection tube (BD 

Vacutainer). The sample was immediately inverted 10 times, immersed on ice, and 

transported to the Reproductive Biology and Development Laboratory at the Center for 

Advanced Science, Innovation, and Commerce in Auburn, AL. Once in the laboratory, 

the blood tubes were sprayed with 70% ETOH to ensure elimination of contamination 

from the onsite farm location. Samples were centrifuged at 2,000 x g for 15 minutes at 4 

degrees Celsius. Two 500-µl samples of blood plasma were removed and stored at -80 

degrees Celsius for metabolomics data analysis. Samples were stored at -80 degrees 

Celsius until further processing.  

Pregnancy Determination 

 Pregnancy was determined at 45 and 65 days post AI via transrectal palpation by 

a trained veterinarian. Heifers were identified as pregnant (AI), pregnant (Bull) or non-

pregnant (Open) based on the size of the conceptus or lack thereof. In this study, only 

samples from heifers remaining open following AI and natural breeding exposure 

(infertile), and those impregnated through AI (fertile) were analyzed for metabolite 

levels.     
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Heifer selection for metabolomics analysis 

 Twenty heifers (10 AI-pregnant and 10 non-pregnant) were randomly selected for 

metabolomics analysis. Heifers were selected based on their similarities in age, 

phenotypic characteristics, and puberty status. In the 10 AI-pregnant group, two heifers 

were from the Black Belt 2015 – 2016 breeding season, two heifers from the Black Belt 

2016 – 2017 breeding season, two heifers were from the Wiregrass 2015 – 2016 breeding 

season, two heifers were from the Wiregrass 2016 – 2017 breeding season, and two 

heifers were from the Gulf Coast 2016 – 2017 breeding season. Parameters were the 

same for choosing the 10 non-pregnant samples. 

Metabolomics Data Collection 

 Blood plasma samples from 20 animals collected at the time of AI (N = 10 

pregnant by AI and N = 10 non-pregnant) were used to identify metabolites at different 

levels. A further 20 blood plasma samples collected at the time of AI (N = 13 pregnant by 

AI and N = 7 non-pregnant) were used to determine the predictive potential of the 

metabolites found at different levels in the first sample set. Samples (N = 40) had 

metabolomic profiles generated via untargeted profiling of primary metabolism by 

automatic linear exchange/cold injection at the West Coast Metabolomics Center (Davis, 

California, U.S.A.). An Agilent 6890 GC equipped with a Gerstel automatic liner 

exchange system (ALEX) that includes a multipurpose sample (MPS2) dual rail, and a 

Gerstel CIS cold injection system (Gerstel, Muehlheim, Germany) was used to collect 

GC-TOF. Temperature program was as follows: 50°C to 275°C final temperature at a rate 

of 12 °C/s and hold for 3 minutes. Injection volume is 0.5 µl with 10 µl/s injection speed 

on a splitless injector with purge time of 25 seconds.  Liner (Gerstel #011711-010-00) is 
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changed after every 10 samples (using the Maestro1 Gerstel software vs. 1.1.4.18). 

Before and after each injection, the 10-µl injection syringe is washed three times with 10 

µl ethyl acetate. Data were acquired with the following chromatographic parameters: 

column used Rtx-5Sil MS (30 m X 0.25 mm diameter Restek corp.) with a 0.25-µm 95% 

dimethyl/5% diphenylpolysiloxane film; mobile phase Helium with a 1 mL/min flow 

rate; injection volume 0.5 µL [18] . The oven temperature is held constant at 50°C for 1 

min and then ramped at 20°C/min to 330°C at which it is held constant for 5 min. A Leco 

Pegasus IV time of flight mass spectrometer is controlled by the Leco ChromaTOF 

software vs. 2.32 (St. Joseph, MI). The transfer line temperature between gas 

chromatograph and mass spectrometer is set to 280°C. Electron impact ionization at 70V 

is employed with an ion-source temperature of 250°C. Acquisition rate is 17 

spectra/second, with a scan mass range of 85-500 Da. Raw data files were preprocessed 

directly using ChromaTOF vs. 2.32 without smoothing, 3-s peak width baseline 

subtraction just above the noise level, and automatic mass spectral deconvolution and 

peak detection at signal to noise levels of 5:1. Absolute spectra intensities were further 

processed by a filtering algorithm implemented in the metabolomics BinBase database. 

The BinBase algorithm used the following settings: validity of chromatogram (< 10 

peaks with intensity >10^7 counts/s), unbiased retention index marker detection (MS 

similarity > 800, validity of intensity range for high m/z marker ions), retention index 

calculation by 5th-order polynomial regression. Spectra are cut to 5% base peak 

abundance and matched to database entries from most to least abundant spectra using the 

following matching filters: retention index window ± 2,000 units (equivalent to about ±2 

s retention time), validation of unique ions and apex masses (unique ion must be included 
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in apexing masses and present at >3% of base peak abundance), mass spectrum similarity 

must fit criteria dependent on peak purity and signal/noise ratios and a final isomer filter. 

Failed spectra are automatically entered as new database entries if s/n >25, purity < 1.0 

and presence in the biological study design class was >80%. All thresholds reflect 

settings for ChromaTOF v. 2.32. Quantification is reported as peak height using the 

unique ion as default, unless a different quantification ion is manually set in the BinBase 

administration software BinView. A quantification report table is produced for all 

database entries that are positively detected in more than 10% of the samples of a study 

design class (as defined in the miniX database) for unidentified metabolites. The data 

were then prepared as peak heights for the quantification ion at the specific retention 

index. Binned data were normalized and scaled to remove potential bias arising due to 

sample handling and variability. Normalization by sum was performed followed by 

scaling (mean-centering and division by the square root of standard deviation of each 

variable), to give all variables equal weight regardless of their absolute value.   

Univariate Statistical Analysis 

 Univariate analysis was applied to a total of 122 metabolites from 10 fertile 

(Pregnant by AI) and 10 infertile (Open) heifer plasma samples. Data were normalized by 

sum in order to minimize concentration differences. Following normalization, scaling 

(mean-centering and division by the square root of standard deviation of each variable) 

was performed to equally weight each variable regardless of absolute value. T-tests were 

performed with an FDR cutoff of 0.05. Metabolites were considered at significantly 

different levels when P ≤ 0.05 Data are presented as mean ± standard deviation of the 

mean.  
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Multivariate statistical analysis 

 Multivariate analysis was applied to a total of 122 metabolites from 10 fertile and 

10 infetile heifer’s plasma samples. Data were normalized by sum in order to minimize 

concentration differences. Following normalization, scaling (mean-centering and division 

by the square root of standard deviation of each variable) was performed to equally 

weight each variable regardless of absolute value. Partial Least Squares Discriminant 

Analysis (PLS-DA) was then performed using MetaboAnalyst [accessible at 

http://metaboanalyst.com (Sabatine et al., 2005)] using functions from the R and 

Bioconductor packages (Zhang et al., 2012) in order to maximize class discrimination. 

Model robustness was assessed using Receiver operating characteristic – Area Under 

Curve (ROC-AUC) analysis using MetaboAnalyst software. Classification models were 

built based on metabolites showing significant differential levels (p <0.05; FDR > 0.05) 

with at least a 2-fold difference. Twenty blinded samples were used to test the robustness 

of the models to characterize heifers as fertile and infertile. Further validation was 

performed with MetaboAnalyst using permutation tests.       

Metabolic Pathway Analysis 

 Metabolic Pathway Analysis was performed using MetaboAnalyst 3.0. Pathway 

Analysis combined results from Pathway Enrichment Analyses and Pathway Topology 

Analyses to correctly identify relative pathways involved in both fertile and infertile 

samples. Parameters for Metabolic Pathway Analysis included normalization by sum and 

Pareto data scaling (mean-centered and divided by the square root of the standard 

deviation of each variable presented). KEGG-metabolic pathways were utilized to 

determine the course of each individual metabolite. To analyze the effect of 15 
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differential metabolites identified for biological pathways, a Fisher’s Exact Test was 

performed.   

Buffy Coat Isolation 

 Samples were centrifuged in an EDTA blood collection tube at 2,000 ´ g for 15 

minutes at 4 degrees Celsius to separate plasma and buffy coat layers. Following 

centrifugation, a 500-µl band of buffy coat was aseptically pipetted and re-suspended into 

a sterile 15-mL centrifuge tube containing 12 mL ice-cold lysis solution (0.15 mM 

ammonium chloride, 10 µM sodium bicarbonate, and 1.3 µM EDTA). Tubes were 

inverted every two minutes for a total of ten minutes. Tubes were then centrifuged at 250  

´ g for 10 minutes at 4 degrees Celsius in order to form a visible pellet. The supernatant 

was discarded, and pellets were gently re-suspended in a 1.5-mL micro-centrifuge tube 

containing 1-mL wash buffer (PBS with 2% fetal bovine serum). Samples were 

centrifuged in a tabletop centrifuge at 250 x g for 10 minutes at 4 degrees Celsius. The 

supernatant was discarded, and pellets were stored at - 80 degrees Celsius until further 

processing.  

RNA Isolation and cDNA Synthesis 

 Total buffy coat RNA was isolated from the pelleted sample using the illustraTM 

RNAspin Mini RNA Isolation Kit (GE Healthcare, Buckinghamshire, UK) following the 

manufacturer’s instructions. Samples were subjected to DNase treatment for 15 minutes 

at room temperature. The total RNA extracted was then quantified using a Qubit 

Fluorometer (Thermo Fisher Scientific). One µg of isolated RNA was then reverse-



 

 77 

transcribed (RT) into cDNA using qScript cDNA Supermix (Quanta BioSciences Inc., 

Beverly, MA).  

Real-time PCR 

 To account for the variations in RNA concentrations, Cq values from the PCR 

data of the samples were normalized to the Cqs of the reference gene GAPDH using the 

DDCq method. For fertile and infertile samples, four total isolations were used. The 

isolated RNA was then reverse-transcribed (RT) to cDNA using qScript cDNA Supermix 

(Quanta BioSciences Inc., Beverly, MA) according to the manufacturer’s recommended 

protocol. Primers for GAPDH, TNFα, IL-6, CXCL5, POSTN, and MCP1 were validated 

for product specificity and efficiency tested prior to use (Table 4). A Roche LightCycler 

480 Real-time qPCR machine was utilized to compare the expression levels of the target 

transcripts using the delta-delta Cq method (Schmittgen and Livak, 2008). GAPDH was 

used as an internal loading control (Dutta et al., 2012). The qPCR reactions were ran 

using PerfeCTa SYBR Green Supermix (Quanta Biosciences Inc., Beverly, MA) 

according to the manufacturer’s protocol. 

 

 

 

 

 

 

 

 



 

 78 

III.IV. RESULTS  
 
 

Phenotypic Heifer Assessment 

Phenotypic Parameters did not differ based upon Fertility Outcome  

 In order to determine if phenotypic differences could differentiate between fertile 

and infertile heifers, we collected RTS, Weight at Weaning, Age at AI, and BCS on N = 

20 heifers. No significant difference (p = 0.137) was seen in Reproductive Tract Scores 

(RTS) between heifers becoming pregnant by AI (3.90 ± 0.74) or those remaining open 

(4.40 ± 0.71). No significant difference (p = 0.714) was seen in body condition scores 

(BCS) between heifers becoming pregnant by AI (5.60 ± 0.71) and those remaining open 

(5.70 ± 0.48). Furthermore, heifer age at AI was not significantly different (p = 0.237) 

between heifers becoming pregnant by AI (412.70 ± 25.35 days) or those remaining open 

(395.70 ± 35.92 days). Weight (WT) at Weaning was also found to be not significantly 

different (p = 0.732) between heifers becoming pregnant by AI (610.70 ± 88.43 lbs.) or 

those remaining open (596.40 ± 95.57 lbs.) (Figure 14). Data are presented as mean ± 

standard deviation of the mean. 
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Figure 14.

 

 
Phenotypic comparisons between fertile and infertile heifers. Data are mean ± standard 

deviation of the mean (p < 0.05). No significant difference was seen in RTSs, Body 

Condition Scores (BCSs) Age at AI, or Weight at Weaning between fertile and infertile 

heifers (p > 0.05). 
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Metabolome Assessment and Analysis based upon Pregnancy Outcome  

Fifteen metabolites were identified at different levels between fertile and infertile heifers 

 Univariate T-test analysis found 15 differentially expressed metabolite levels 

between the fertile and infertile (N = 20) plasma samples (Table 1). The metabolites 

Tryptophan (p = 0.0042), Cystine (p = 0.0066), Histidine (p = 0.0007), Ornithine (p = 

0.0059), Asparagine (p = 0.0085), Glutamine (p = 0.0117), and Lysine (p = 0.0004) were 

identified as significantly different (p < 0.05, FDR 0.05) between fertile and infertile 

groups following filtering with at least a 2-fold change (Table 1; Figure 15). PLS-DA 

(Partial Least Squares Discriminant Analysis) displayed significant group separation 

between fertile (2 – green) and infertile (1 – red) samples (P = 0.05) (Figure 16). A Heat 

Map depicts the top twenty metabolites at differential levels (as identified via T-test) 

showing a trend of being down regulated in infertile heifers (1 – red) compared with 

fertile heifers (2 – green) (Figure 17).  
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Table 1: Metabolites found at significantly different levels in the infertile heifers when 

compared with the fertile heifers. Tryptophan, Cystine, Histidine, Ornithine, Asparagine, 

Glutamine, and Lysine were identified as significantly different between fertile and 

infertile groups (p < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

              Metabolite  P-Value  Fold Change           log2 (FC)    ROC AUC 
1 Asparagine  0.0085415 0.48387           -1.0473       0.89 
2 Lysine   0.00037698  0.44538           -1.1669       0.89 
3 Ornithine  0.0059493 0.42779           -1.225       0.85 
4 Glutamine  0.011729 0.3577          -1.4832       0.94 
5 Histidine  0.00068495 0.18904          -2.4032       0.91 
6 Cystine   0.0065674 0.14492          -2.7867       0.80 
7 Tryptophan  0.0042144 0.51232          - 0.96488       0.86 
8 Hydrocinnamic acid 0.0043435 0.52634          - 0.92594       0.86 
9 2-aminobutyric acid 0.012595 0.54995          - 0.86262       0.87 
10 Cysteine   0.047278 0.59574          - 0.74725       0.74 
11 Phenylethylamine 0.020158 0.60189          - 0.73242       0.83 
12 Methionine   0.014004 0.6119          - 0.70863       0.87 
13 Kynurenine  0.018156 0.63053            - 0.66535       0.80 
14 N-acetylornithine  0.022932 0.6444          - 0.63397       0.79 
15 Allantoic acid   0.037071 0.66502          - 0.58854       0.75 
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Figure 15. 

 

Relative levels of marker metabolites identified at significantly different levels in infertile 

heifers compared with fertile heifers (p < 0.05; > 2-fold change). 
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Figure 16. 

 

PLS-DA scores plot displaying a significant separation between infertile heifers (red – 1) 

and fertile heifers (green – 2). 
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Figure 17. 

 

Heat map depicting top 20 metabolites at differentially expressed levels. Samples were 

grouped as infertile heifers (red – 1) and fertile heifers (green – 2). 
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Predictive Ability Identified for Significant Metabolites  

 In order to identify the predictive ability of the significant metabolites discovered 

(P < 0.05; >2-fold change), we calculated the Receiver Operating Characteristic (ROC) 

area under the curve (AUC) value. Previous studies indicate that a metabolite with an 

ROC-AUC value of 0.80 or higher has a high predictive ability and success rate of 

correctly categorizing samples compared to a lower ROC-AUC value. The ROC-AUC 

values were 0.86 for Tryptophan, 0.80 for Cystine, 0.91 for Histidine, 0.85 for Ornithine, 

0.89 for Asparagine, 0.93 for Glutamine, and 0.87 for Lysine (Table 2). The seven 

identified metabolites had ROC-AUC values of 0.80 – 0.94, suggesting they can predict 

fertility problems at the time of AI better than chance. We next analyzed the metabolome 

generated from fertile (N = 13) and infertile heifers (N = 7) using the identified 

metabolites individually, and in combination, to determine their accuracy in identifying 

infertile heifers. Metabolites with the highest ROC-AUC value in the logistical regression 

model were Glutamine (0.91), Asparagine (0.89), and Histidine (0.88). We tested the 

models on the blood plasma metabolomes of the 20 selected heifers to determine their 

ability to predict pregnancy outcomes. Glutamine and Histidine alone, and in 

combination, predicted the correct pregnancy outcome in 90% of the animals. They did 

not incorrectly categorize a fertile heifer as infertile (Table 2).  
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Table 2: ROC-AUC analysis of the top seven metabolites found at significantly different 

levels in infertile heifers compared to fertile heifers (AUC (95% CI)). 

 
Metabolite 

Tested 

 
AUC 

 
Sensitivity 

 
Specificity 

 
% Correctly 
Categorized 

% Fertile 
Categorized 
as Infertile 

 
Tryptophan 

 
0.820 (0.625 

- 1.000) 
 

 
0.800 (0.800 - 

1.000) 

 
0.700 (0.416 - 

0.984) 

 
80 

 
10 

 
Cystine 

 
0.720 (0.456 

- 0.984) 
 

 
0.700 (0.700 - 

0.984) 

 
0.800 (0.552 - 

1.000) 

 
70 

 
15 

 
Histidine 

 
0.880 (0.727 

- 1.000) 
 

 
0.700 (0.700 - 

0.984) 

 
1.000 (1.000 - 

1.000) 

 
90 

 
0 

 
Ornithine 

 
0.840 (0.664 

- 1.000) 
 

 
0.800 (0.800 - 

1.000) 

 
0.700 (0.416 - 

0.984) 

 
70 

 
0 

 
Asparagine 

 
0.890 (0.694 

- 1.000) 
 

 
0.900 (0.900 - 

1.000) 

 
0.900 (0.714 - 

1.000) 

 
70 

 
0 

 
Glutamine 

 
0.910 (0.773 

- 1.000) 
 

 
0.800 (0.800 - 

1.000) 

 
1.000 (1.000 - 

1.000) 

 
90 

 
0 

 
Lysine 

 
0.860 (0.659 

- 1.000) 
 

 
0.800 (0.800 - 

1.000) 

 
0.900 (0.714 - 

1.000) 

 
75 

 
0 

 
His, Glut, Asp 

 

 
0.735 (0.465 

- 1.000) 

 
0.800 (0.800 - 

1.000) 

 
0.900 (0.714 - 

1.000) 

 
85 

 
0 

 
His, Glut 

 
0.860 (0.681 

- 1.000) 
 

 
0.900 (0.900 - 

1.000) 

 
0.800 (0.552 - 

1.000) 

 
90 

 
0 
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Pathway Analysis reveals amino acid significance  

 Following the Holm adjustment of p values (FDR < 0.05), aminoacyl-tRNA 

biosynthesis was found to be a significantly perturbed pathway of the fifteen 

differentially expressed metabolites between fertile and infertile heifers. To analyze the 

effect of fifteen differential metabolites identified for biological pathways, a Fisher’s 

Exact Test was performed (Table 3). Expected hits are identified as the percentage of the 

fifteen differentially expressed metabolites that are intermediately involved in a given 

pathway. 
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Table 3: Pathway Analysis for selected significant metabolites. Aminoacyl-tRNA was 

the most significant pathway affected when comparing fertile with infertile heifer 

metabolomes. 

 
 

 
 

Total 

 
 

Expected 

 
 

Hits 

 
 

Raw p-value 

 
 

-log(p) 

Holm 
Adjusted  
p-value 

 
 
Aminoacyl-tRNA 
Biosynthesis 
 

 
64 

 
0.69015 

 
7 

 
1.51E-06 

 
13.401 

 
0.00012259 

 
Cysteine and Methionine  
Metabolism 
 

 
28 

 
0.30194 

 
3 

 
0.00283 

 
5.8676 

 
0.22637 

 
Nitrogen Metabolism 
 

 
9 

 
0.097052 

 
2 

 
0.003743 

 
5.588 

 
0.29566 

 
Arginine and Proline 
Metabolism 
 

 
44 

 
0.47448 

 
3 

 
0.010304 

 
4.5752 

 
0.80373 

 
Alanine, Aspartate, and 
Glutamate Metabolism 
 

 
23 

 
0.24802 

 
2 

 
0.024103 

 
3.7254 

 
1 

 
Glutathione Metabolism 
 

 
26 

 
0.28037 

 
2 

 
0.030389 

 
3.4937 

 
1 

 
D-Glutamine and D-
Glutamate Metabolism 
 

 
5 

 
0.053918 

 
1 

 
0.052842 

 
2.9404 

 
1 

 
Biotin Metabolism 
 

 
5 

 
0.053918 

 
1 

 
0.052842 

 
2.9404 

 
1 

 
Tryptophan Metabolism 
 

 
41 

 
0.44213 

 
2 

 
0.069861 

 
2.6612 

 
1 

 
Taurine and Hypotaurine 
Metabolism 
 

 
7 

 
0.075485 

 
1 

 
0.07324 

 
2.614 

 
1 

 
Thiamine Metabolism 
 

 
7 

 
0.075485 

 
1 

 
0.07324 

 
2.614 

 
1 

 
Phenylalanine 
Metabolism 
 

 
9 

 
0.097052 

 
1 

 
0.093227 

 
2.3727 

 
1 

 
Histidine Metabolism 
 

 
14 

 
0.15097 

 
1 

 
0.14145 

 
1.9558 

 
1 

 
Pantothenate and CoA 
Biosynthesis 
 

 
15 

 
0.16175 

 
1 

 
0.1508 

 
1.8918 

 
1 

 
Purine Metabolism 
 

 
68 

 
0.73329 

 
2 

 
0.16435 

 
1.8057 

 
1 

 
Glycine, Serine and 
Threonine Metabolism 

 
32 

 
0.34508 

 
1 

 
0.29594 

 
1.2176 

 
1 
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Inflammatory cytokines identified as significantly different  

 In order to investigate the possibility that infertile heifers could have 

asymptomatic inflammation, we isolated the mRNA from white blood cells and 

compared the transcript level of inflammatory cytokines with that of fertile (N = 20) 

heifers (Table 4). The transcript level of the inflammatory response regulator, Tumor 

Necrosis Factor-alpha (TNFα), was found to be significantly higher (p = 0.003) in 

infertile heifers (9.62 ± 3.43-fold) when compared to fertile heifers (1.223 ± 0.76-fold) 

(Figure 18). Similarly, transcripts for the pro-inflammatory cytokine Interleukin 6 (IL-6) 

were found to be significantly higher in the infertile heifers (p = 0.010; 1.61 ± 0.26-fold) 

when compared with fertile heifers (0.89 ± 0.30-fold) (Figure 18). We also found the 

neutrophil activating peptide C-X-C Motif Chemokine 5 (CXCL5) to be significantly 

higher in the infertile heifers (p = 0.040, 1.53 ± 0.27-fold) when compared with the fertile 

heifers (1.04 ± 0.07-fold (Figure 18). Conversely, we did not see a significant difference 

in the expression of the interleukin-induced Periostin (POSTN) gene when we compared 

infertile (p = 0.775; 0.72 ± 0.44-fold) with fertile heifers (0.81 ± 0.32-fold) (Figure 18). 

Moreover, we did not see a difference in the expression of the pro-inflammatory 

chemokine Monocyte Chemoattractant Protein 1 (MCP1) when we compared the infertile 

(P = 0.371; 1.48 ± 0.89-fold) with the fertile heifers (1.04 ± 0.21-fold) (Figure 18).  
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Table 4: Primer Sequences used for identification of inflammatory cytokine expression.  

 
Primer 

Sequence 
(5à 3’) 

NCBI 
Accession 
Number 

Efficiency 
(%) 

Product 
Length 

(BP) 
 

TNFα 
 

 
F: TCAAGCCTCAAGTAACAAGCC 
 
R: GTTGTCTTCCAGCTTCACACC 
 

 
NM_173966.3 

 
93 

 
123 

 
IL-6 

 

 
F: TGAGTGTGAAAGCAGCAAGGA 
 
R: TCGCCTGATTGAACCCAGAT 
 

 
NM_173923.2 

 
100 

 
100 

 
CXCL5 

 

 
F: AAAGTTGCCCAGTTCTTCAG 
 
R: CAAGCATAGATTCCCTCTTCC 
 

 
BC142108.1 

 
95 

 
146 

 
POSTN 

 

 
F: TGTGTTATATGAATGCTGCCCT 
 
R: ATCCCTTTCCTTCAATCTCCTC 
 

 
AY445072.2 

 
91 

 
169 

 

 
MCP1 

 

 
F: CTCAGCCAGATGCAATTAACTC 
 
R: AAATCACAGCCTCTTTAGGAC 
 

 
NM_174006.2 

 
91 

 
128 

 

 
GAPDH 

 

 
F: CGTAACTTCTGTGCTGTGCC 
 
R: ATTGATGGCGACGATGTCCA 
 

 
NM_001034034.2 

 
107 

 
 

 
136 
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Figure 18. 

 
 

Comparison of transcript levels of inflammatory cytokines in the white blood cells from 

fertile and infertile heifers. Data are mean ± standard deviation of the mean (p < 0.05). 
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Metabolome Assessment based upon Location  

 Metabolomics profiling over two breeding seasons was analyzed on samples 

collected at two locations on a total of sixteen heifers (N = 16, Black Belt Research and 

Extension Center N = 8 and Wiregrass Research and Extension Center N = 8).  

Six Metabolites were identified as differentially expressed  

 Six metabolites were present at significantly different levels between the Black 

Belt Research and Extension Center heifers compared with the Wiregrass Research and 

Extension Center heifers (Table 5). The metabolites Tocopherol-alpha (p = 0.0008), 

Ornithine (p = 0.0227), Myristic Acid (p = 0.0355), Sulfuric Acid (p = 0.0026), Alpha-

ketoglutarate (p = 0.0002), and P-tolyl Glucuronide (p = 0.0145) were identified as 

significantly different (p < 0.05, FDR 0.05) between Black Belt and Wiregrass following 

filtering with at least a 2-fold change (Table 5; Figure 19). PLS-DA (Partial Least 

Squares Discriminant Analysis) displayed overlapping and group separation between 

Wiregrass (green) and Black Belt (red) heifer metabolome analysis (p = 0.05 by 

Permutation Test) (Figure 20). A Heat Map depicts the top twenty-five metabolites at 

differential levels (as identified via T-test) showing a trend of being down-regulated in 

Wiregrass heifers (green) compared with Black Belt heifers (red) during a combined 

breeding season metabolome analysis (Figure 21). 
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Table 5: Metabolites found at significantly different levels in heifers at Black Belt 

Research and Extension Center compared to heifers at Wiregrass Research and Extension 

Center during a combined breeding season analysis (2015 – 2016 and 2016 – 2017). 

 
Metabolite P-Value Fold Change log2 (FC) 

    
1     Ornithine 0.0227 2.2575 1.1747 
2     Tocopherol-alpha 0.0008 2.6644 1.4138 
3     Myristic Acid 0.0355 2.2513 1.1708 
4     P-tolyl Glucuronide 0.0145 2.2098 1.1439 
5     Sulfuric Acid 0.0026 0.4614 -1.1159 
6     Alpha-ketoglutarate 0.0002 2.0124 1.0089 
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Figure 19. 

 

Relative levels of marker metabolites identified at significantly different levels in Black 

Belt heifers compared with Wiregrass heifers during a combined breeding season 

metabolome analysis. Tocopherol-alpha, Ornithine, Myristic Acid, Sulfuric Acid, Alpha-

ketoglutarate, and P-tolyl Glucuronide were identified as significantly different between 

Black Belt and Wiregrass heifers (2-fold; p < 0.05).  
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Figure 20. 

 
 

PLS-DA scores plot displaying group separation between Wiregrass (green) and Black 

Belt (red) heifer metabolome analysis. 
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Figure 21. 

 
 

 
 
 
 
Heat Map depicting differential levels of metabolites showing a trend of being down 

regulated in Wiregrass heifers (green) compared to Black Belt heifers (red) during a 

combined breeding season metabolome analysis.  
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III.V. DISCUSSION  

 

 Replacement heifers are a major economic burden on the beef cattle industry. 

Heifer infertility remains a difficult-to-diagnose pathology resulting in inefficiencies 

within the cow-calf sector. The ability to detect heifers that are unable to produce 

offspring would provide a mechanism to remove them from the breeding herd prior to 

investing valuable time, money, and resources. Therefore, biomarkers able to detect 

heifers with fertility problems would be highly utilized by cow-calf producers to 

minimize the costs associated with heifer production and development.  

 Previous studies have shown that differential levels of metabolites has been able 

to detect various difficult-to-diagnose ailments including diabetic kidney disease (Kloet 

et al., 2012) Parkinson’s disease (Bogdanov et al., 2008), myocardial ischemia (Sabatine 

et al., 2005), ovarian cancer (Zhang et al., 2012), and endometriosis (Dutta et al., 2012). 

Moreover, within the agriculture sector, metabolite concentrations in follicular fluid and 

blood were used to potentially explain differences in fertility between heifers and 

lactating cows (Bender et al., 2010). We approached this study to detect metabolite 

differences in the blood plasma of heifers managed at multiple research stations across 

the state of Alabama, U.S.A. Current management practices utilize phenotypic methods 

to attempt to minimize heifers remaining open following the breeding season. Therefore, 

we compared common phenotypic parameters between the heifers included in our 

metabolomic analysis.  
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We did not see a statistically significant difference between the RTSs of heifers 

remaining open or those becoming pregnant by AI ( Figure 14). Similarly, no significant 

difference was seen in body condition scores (BCSs) between heifers becoming pregnant 

by AI and those remaining open (Figure 14). Furthermore, heifer age at AI was not 

significantly different between heifers becoming pregnant by AI or those remaining open 

(Figure 14). Weight (WT) at weaning was also found to be not significantly different 

between heifers becoming pregnant by AI or those remaining open (Figure 14). 

Collectively, these data highlight the limitations of phenotypic parameters to identify 

infertile heifers at the time of AI. Heifer infertility that results in the failure of a cow or 

heifer to conceive a calf is the single largest economic loss to beef producers. Phenotypic 

parameters such as RTS, BCS, age at AI, and weight at weaning are all relevant and 

important pieces of information needed to produce a successful and productive breeding 

herd. Many producers establish minimum and maximum requirements, or values, in order 

to create and maintain a relative breeding herd “standard”. However, reproductive failure 

is still an element of concern for the beef cattle industry not only locally, but nationally 

and internationally alike. Functional causes of infertility tend to affect individual heifers, 

but when combined, these infertile heifers can make a large impact on the overall herd 

(Abraham, 2017). The utilization of biomarkers that are able to detect heifers with 

fertility problems could be highly adopted by cow-calf producers to minimize the costs 

associated with heifer production and development. The inability to detect infertile 

heifers using traditional phenotypic methods highlights the importance of identifying 

biomarkers using innovative new approaches including metabolomics.  
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 In order to detect biomarkers for fertility assessment in replacement heifers, we 

utilized metabolomic analysis of the blood plasma of heifers becoming pregnant at first 

service through AI (fertile) and those failing to become pregnant following AI and three 

natural breeding cycles (infertile). The present two-year study identified seven 

metabolites that had a greater than 2-fold difference between the two groups. The seven 

identified metabolites had ROC-AUC values ranging from 0.80 – 0.94, suggesting they 

can predict fertility problems at the time of AI better than chance (Table 1; Figure 15). 

We then used each of the identified metabolites individually, and in combination, to 

develop a logistic regression model to predict pregnancy outcomes in a blind study. We 

found the percentage of animals correctly categorized ranged from 70% using 

Asparagine, Ornithine, or Cysteine to 90% using Glutamine or Histidine. Interestingly, 

utilizing Histidine in combination with Glutamine did not improve the detection of 

infertile heifers, with the accuracy remaining at 90%. An element of this study that was 

particularly problematic was the labelling of “fertile” heifers as “infertile”. This would 

run the risk of potentially removing valuable heifers from the herd as a result of a false 

fertility diagnosis. In all cases of false identification, we observed infertile heifers being 

categorized as fertile (Table 2). Using Histidine or Glutamine individually, and in 

combination, did not result in any fertile heifers being identified as infertile. 

 Pathway analysis revealed a significant effect on the aminoacyl-tRNA 

biosynthesis pathway (Table 3). This is not surprising, as of the fifteen metabolites shown 

to be at differential levels in the infertile heifer’s blood plasma, seven were amino acids 

(Table 1; Table 3). The seven amino acids were all present at a lower level in the infertile 

heifers than the fertile heifers. Previous work looking at the levels of amino acids in the 
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blood plasma of kidney disease patients (with and without inflammation) found those 

with inflammation had significantly lower levels of Asparagine, Serine, Glutamine, 

Glycine, Arginine, Alanine, Histidine, and Threonine (Suliman et al., 2005). In another 

study investigating the plasma amino acid levels of cats with chronic gastrointestinal (GI) 

disease, it was shown that Arginine, Histidine, Lysine, Methionine, Phenylalanine, 

Taurine, and Tryptophan (along with several non-essential amino acids) were lower in 

cats with chronic GI diseases (Sakai et al., 2018). They also found Histidine and 

Tryptophan levels to be inversely correlated to symptom severity, and Histidine could 

suppress inflammatory cytokine release by their macrophages (Sakai et al., 2018).  

 In our study, we found significantly lower levels of Asparagine, Lysine , 

Glutamine, Histidine, Tryptophan, Cysteine, and Ornithine. The decreased level of 

Histidine found in the infertile heifer’s blood plasma was of particular interest due to its 

well-described antioxidant and anti-inflammatory functions (Sakai et al., 2018; Yu et al., 

2015). Studies have shown that the presence of low plasma Histidine is associated with 

inflammation (Watanabe et al., 2008). Furthermore, studies in humans have shown 

supplementation with histidine interestingly suppressed inflammatory cytokines such as 

TNFα and IL-6 (Feng et al., 2013). An additional study investigated the effect of 

Histidine supplementation on other metabolites in the blood. Inversely, the authors 

discovered that supplementation of Histidine increased Glutamine, Aspartate, Glycine, 

Choline, and Trimethylamine-N-oxide in humans (Du et al., 2017). In comparison to our 

study, we observed decreased Glutamine and Histidine in the infertile heifers (Figure 15).  

 Because of the high amount of significant amino acids related to inflammation in 

our metabolomics analysis, we therefore investigated the expression of various 



 

 101 

inflammatory cytokines in the white blood cells from the fertile and infertile heifers. In 

order to investigate the possibility that infertile heifers could have asymptomatic 

inflammation, we isolated the mRNA from white blood cells and compared the transcript 

level of inflammatory cytokines (Figure 18) to fertile heifers.  We observed a significant 

upregulation in the transcripts for the inflammatory cytokines TNFα, IL-6, and CXCL5, 

suggesting a potential relationship between the fertility and the inflammatory status in 

heifers (Figure 18). The specifics of this relationship remains to be studied. 

The metabolome, or the metabolomics profile, of an organism can vary by 

location, species, life stage, and environment. Because of varying metabolomics profiles, 

we therefore became interested in how heifer metabolomes (as a whole) differed based 

upon location. Metabolomics profiling and analysis was performed on heifer blood 

plasma samples from two separate locations across Alabama, U.S.A. All locations in our 

study carefully documented and reported heifer nutrition, and all heifers fell under the 

same broad-spectrum management programs. 

 The metabolomics profiles of blood plasma from eight heifers housed at the Black 

Belt Research and Extension Center and eight heifers housed at the Wiregrass Research 

and Extension Center across two breeding seasons were analyzed. The present two-year 

location study identified six metabolites that had at least a 2-fold difference between 

heifers housed at the two locations (Table 5; Figure 19). Five of the six metabolites were 

all present at a lower level in the Wiregrass heifers when compared to the Black Belt 

heifers. The only metabolite that was upregulated in Wiregrass heifers when compared to 

Black Belt heifers was Sulfuric Acid. This could be due to the low amount of sulfur in the 

soil of Black Belt Research and Extension Center. Interestingly, only one of the 
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metabolites detected at different levels (Ornithine) overlapped with those identified as 

correlated to pregnancy outcome. Differences in the metabolomes of heifers across 

multiple locations can be due to management practices, type of feed, feed intake, and 

overall environmental influence. This data highlights the sensitivity of metabolomic 

analysis to detect differences in animals under different environmental conditions. The 

implications of these metabolites being at different levels and possible effects on 

reproductive outcomes remain to be determined.    
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CHAPTER IV. 

CONCLUSION AND IMPLICATIONS  

 

 In conclusion, we utilized metabolomics to investigate the differential levels of 

metabolites in the blood plasma of fertile and infertile heifers, as well as compare the 

metabolomes of heifers from various locations across the state of Alabama. Traditional 

phenotypic heifer selection parameters such as RTS, BCS, age, and weight were 

compared across locations, breeding seasons, and pregnancy outcomes. We identified 

seven metabolites with significant differential levels ( > 2-fold) between fertile and 

infertile heifers, and six metabolites with significant differential levels from separate 

locations. The predictive ability of the metabolites was assessed and used to predict the 

correct pregnancy outcomes at the time of AI. Furthermore, a relationship between the 

inflammatory status of the animals and pregnancy outcome was identified. 

 As discovered in this study, there is confirmed differential levels of selected 

metabolites from both infertile and fertile heifers at the time of artificial insemination. 

The question that remains is if these metabolites (or metabolomics profiles) differ at 

various stages of a heifer’s life cycle. The current focus of ongoing research is to 

establish a metabolomics profile from the weaning date of heifers through the date of 

artificial insemination. If the opportunity presents itself, would it be possible that 

metabolomics profiles stay consistent at multiple time points throughout a heifer’s life? 
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Does the metabolomics profile change at the onset of puberty, or does the metabolomics 

profile change from the onset of stress? Is it possible to pin-point specific up-regulated or 

down-regulated metabolites in heifers that could identify her potential infertility, before 

she even hits puberty? Multiple questions remain unanswered in regard to exactly how 

the metabolome of replacement heifers changes, or lack thereof.  

 Reproductive failure and unexplained heifer infertility are the major factors that 

affect the profitability of beef cattle production industries (Diskin, 1980). Heifer 

infertility remains a difficult to diagnose pathology resulting in inefficiencies within the 

cow-calf sector. If a producer has the correct set of tools and resources available, it is 

possible that a single blood test from each heifer could determine the predictive fertility 

of his or her herd for the upcoming breeding season. With the use of metabolomics, and 

further research into studies like the one we have presented, the beef cattle industry could 

have the potential to detect infertility in phenotypically sound heifers. Heifer infertility 

that results in the failure of a cow or heifer to conceive a calf is the single-largest 

economic loss to beef producers. With the development of biomarkers for the 

identification of infertile heifers, there is outstanding potential to improve the world-wide 

efficiency of cow-calf production. 

 
 
 
 
 
 
 
 
 
 
 



 

 105 

Literature Cited: 
 
 

Abraham F. An Overview on Functional Causes of Infertility in Cows. J Fertilization 
 Vitro - Ivf-Worldwide Reproductive Medicine Genetics Stem Cell Biology 2017; 
 05. 
 
American Pregnancy Association. Female Infertility: Causes, Treatment and Prevention; 
 2017. http://americanpregnancy.org/infertility/female-infertility/. Accessed May 
 10, 2018. 
 
Anderson, K.J., D.G. Lefever, J.S., Brinks, and K.G. Odde. 1991. The use of reproductive 
 tract scoring in beef heifers. Agri-Practice. 12(4):19.  
 
Austdal M et al.  Metabolomic biomarkers in serum and urine in women with 
 preeclampsia.  PLoS One 2014; 9(3):e91923. 
 
Austgulen R et al. (2016) Circulating levels of cytokines and cytokine receptors in 
 normal human pregnancy, Scandinavian Journal of Rheumatology; 27sup107. 
 
Bender K, Walsh S, Evans AC, Fair T, Brennan L. Metabolite concentrations in follicular 
 fluid may explain differences in fertility between heifers and lactating cows. 
 Reproduction  2010; 139:1047–1055. 
 
Bio-Rad Laboratories, Inc. Innate Immune Responses in Cattle LIT.IIR. 2016 Bio-Rad 
 Laboratories, Inc., Endeavour House, Kidlington. 
 
Bogdanov M, Matson  WR, Wang  L, Matson T, Saunders-Pullman R, Bressman SS, 
 Flint Beal M. Metabolomic profiling to develop blood biomarkers for Parkinson’s 
 disease. Brain  2008; 131: 389-396. 
 
Bon Durant RH. Selected diseases and conditions associated with bovine conceptus loss 
 in the first trimester. Theriogenology 2007;68:461–73.  
 



 

 106 

Bracewell-Milnes et al. Metabolomics as a tool to identify biomarkers to predict and 
 improve outcomes in reproductive medicine: a systematic review. Hum Reprod 
 Update 2017; 23:723–736. 
 
Briana DD, Malamitsi-Puchner A: Intrauter- ine growth restriction and adult disease: the 
 role of adipocytokines. Eur JEndocrinol 2009; 160:337–347.
 
Calus MPL, Windig JJ, Veerkamp RF. Associations Among Descriptors of Herd 
 Management and Phenotypic and Genetic Levels of Health and Fertility. J Dairy 
 Sci 2005; 88:2178–2189.  
 
Chavey C et al. CXCL5 is an adipose tissue derived factor that links obesity to insulin 
 resistance. Cell Metab 2009; 9: 339-349.  
 
Chen E et al. Dynamic changes of plasma metabolites in pigs with GalN-induced acute 
 liver failure using GC–MS and UPLC–MS. Biomed Pharmacother 2017; 93:480–
 489. 
 
Cheng Z, Ma Y, Li H, Peng X. N-acetylglucosamine enhances survival ability of tilapias 
 infected by streptococcus iniae. Fish and Shellfish Immunology 2014;40(2): 524-
 530. 
 
Cushman, R.A., L.K. Kill, R.N. Funston, E.M. Mousel and G.A. Perry. 2013. Heifer 
 calving date positively influences calf weaning weights through six parturitions. J. 
 Anim. Sci. 91:4486-  4491 
 
Day ML, Grum DE. Breeding strategies to optimize reproductive efficiency in beef 
 herds. Vet Clin North Am Food Anim Pract 2005;21:367–81.  
 
Diskin, Sreenan. Fertilization and embryonic mortality rates in beef heifers after artificial 
 insemination. J Reprod Fertil 1980; 59:463–468 
 
Diskin MG,  Murphy  JJ,  Sreenan  JM  (2006)  Embryo survival in dairy cows managed 
 under pastoral conditions. Ani Reprod Sci 96: 297-311. 
 
Donovan GA, Bennett  FL, Springer FS. Factors associated with first service conception 
 in artificially inseminated nulliparous Holstein heifers. Theriogenology 2003; 
 60(1):67-75. 
 



 

 107 

Du S et al.. Effects of Histidine Supplementation on Global Serum and Urine 1H NMR-
 based Metabolomics and Serum Amino Acid Profiles in Obese Women from 
 a Randomized Controlled Study. J Proteome Res 2017; 16(6): 2221-2230. 
 
Dutta M, Joshi  M, Srivastava  S, Lodh I, Chakravarty B, Chaudhury K. A metabonomics 
 approach as a means for identification of potential biomarkers for early diagnosis 
 of endometriosis. Molecular Biosyst 2012; 8(12): 3281-3287. 
 
Feng RN et al. Histidine supplementation improves insulin resistance through suppressed 
 inflammation in obese women with the metabolic syndrome: a randomised 
 controlled trial. Diabetologia 2013; 56(5): 985-994. 
 
Freis A. Serum periostin levels in early in pregnancy are significantly altered in women 
 with miscarriage. Reproductive Biology and Endocrinology 2017; 15. 
 
Funston, Deutscher. Comparison of target breeding weight and breeding date for 
 replacement beef heifers and effects on subsequent reproduction and calf 
 performance. J Anim Sci 2004; 82:3094. 
 
Goodacre, R., Vaidyanathan,  S., Dunn, W.B., Harrigan, G.G. & Kell, D.B. 
 Metabolomics  by numbers: acquiring and understanding global metabolite data. 
 Trends Biotechnol. 22(5), 245-252 (2004) 
 
Grings, Geary, Short, MacNeil. Beef heifer development within three calving systems. J 
 Anim Sci 2007; 85:2048. 
 
Guilbert LJ: There is a bias against type 1 (inflammatory) cytokine expression and func- 
 tion in pregnancy. J Reprod Immunol 1996; 32:105–110.  
 
Günther, U.L. Metabolomics Biomarkers for Breast Cancer. Pathobiology. 82, 153–65 
 (2015) 
 
Gutierrez K et al.Effect of reproductive tract scoring on reproductive efficiency in beef 
 heifers bred by timed insemination and natural service versus only natural service. 
 Theriogenology 2014; 81(7): 918-924. 
 
Hall, John B. 2005. Reproductive Evaluation of Heifers. Proceedings, Applied 
 Reproductive  Strategies in Beef Cattle. Virginia Tech, Blacksburg, VA. 
 http://www.sites.ext.vt.edu/newsletter-archive/livestock/aps-98_07/aps-935.html   
 



 

 108 

Herd, D. and L.R. Sprott. 1998. Body Condition, Nutrition and Reproduction of Beef 
 Cows. Texas  Agricultural Extension Services. B-1526.  
 
Hertl JA, Gröhn YT, Leach JD, et al. Effects of clinical mastitis caused by Gram-
 positive and Gram-negative bacteria and other organisms on the probability of 
 conception in New York State Holstein dairy cows. J Dairy Sci . 2010;93:1551–
 1560. 
 
Holm DE, Nielen, Jorritsma, Irons PC, Thompson PN. Evaluation of pre-breeding 
 reproductive tract scoring as a predictor of long term reproductive performance in 
 beef heifers. Prev Vet  Med 2015; 118:56–63. 
 
Holm DE, Thompson PN, Irons PC. The value of reproductive tract scoring as a predictor 
 of fertility and production outcomes in beef heifers. J Anim Sci 2009: 87:1934-
 1940. 
 
Hunt JS, Chen HL, Miller L: Tumor necrosis factors: pivotal components of pregnancy? 
 Biol Reprod 1996;54:554–562.  
 
Jafarzadeh N et al. Metabolomics fingerprinting of seminal plasma from unexplained 
 infertile men:  a need  for novel diagnostic biomarkers. Mol Reprod Dev 2015; 
 82:150. 
 
Kasimanickam, Schroeder, Assay, Kasimanickam, Moore, Gay, Whittier.  Influence of 
 Temperament Score and Handling Facility on Stress, Reproductive Hormone 
 Concentrations, and Fixed Time AI Pregnancy Rates in Beef Heifers. Reprod 
 Domest Anim 2014; 49:775–782. 
 
Kloet, V.F.M. et al. Discovery of early-stage biomarkers for diabetic kidney disease 
 using ms-based metabolomics (FinnDiane study). Metabolomics. 8(1), 109-119 
 (2012) 
 
Koumantaki Y. Detection of interleukin-6, interleukin-8, and interleukin-11 in plasma 
 from women with spontaneous abortion. European Journal of Obstetrics & 
 Gynecology and Reproductive Biology 2001; 98:66–71 
 
Kuc S et al. Metabolomics profiling for identification of novel markers in early prediction 
 of preeclampsia. PLoS One 2014; 9(5):e98540. 
 



 

 109 

Kuhn,  M.T., Hutchison,  J.L. & Wiggans, G.R. Characterization of Holstein heifer 
 fertility in the United States. J Dairy Sci. 89(12), 4907-4920 (2006) 
 
Lamb GC. What Is the Impact of Infertility in Beef Cattle? IFAS Extension - University 
 of Florida 2014. http://edis.ifas.ufl.edu/an208  
 
Larson RL, White BJ, Laflin S. Beef Heifer Development. Vet Clin North Am Food 
 Anim Pract. 2016;32(2):285–302 
 
Lavon Y et al. Subclinical, chronic intramammary infection lowers steroid concentrations 
 and gene expression in bovine preovulatory follicles. Dom An Endocrinol . 
 2011;40:98–109. 
 
LeFever, D.G. and K.G. Odde. 1987. Predicting reproductive performance in beef heifers 
 by reproductive tract evaluation before breeding. CSU Beef Research  Report. 
 pp. 13-15.  
 
Liu, Jaitner, Reinhardt, Pasman, Rensing, Reents. Genetic Evaluation of Fertility Traits 
 of Dairy Cattle Using a Multiple-Trait Animal Model. J Dairy Sci 2008; 91:4333–
 4343. 
 
Lowman, B. G., N. A. Scott, and S. H. Somerville. 1976. “Condition Scoring of Cattle,” 
 East of Scotland College of Agr. Bull. 6.  
 
Mahdi, B. Role of some cytokines on reproduction. Middle East Fertility Society Journal 
 2011; 16:220 – 223. 
 
Mendiola J, et al. Urinary concentrations of di(2-ethylhexyl) phthalate metabolites and 
 serum reproductive hormones: pooled analysis of fertile and infertile men. J 
 Androl 2012; 33:488–98. 
 
McBride W, Mathews K. The Diverse Structure and Organization of U.S. Beef Cow-Calf 
 Farms. Ssrn Electron J 2011. 
 
Nagy ZP et al. Metabolomic assessment of oocyte viability. Reprod Biomed Online 2009; 
 18(2): 219-225. 
 
Neville WE, Mullinix BG, Smith JB, et al. Growth patterns for pelvic dimensions and of
 their body measurements of beef females. J Anim Sci 1978;47:1080–8.  
 



 

 110 

Oliver, S.G. et al. (1998) Systematic functional analysis of the yeast genome. Trends 
 Biotechnol. 16, 373–378  
 
Ostanin, et al. Role of cytokines in the regulation of reproductive function. B Exp Biol 
 Med+ 2007; 143:75–79 
 
Parkin J. An overview of the immune system. The Lancet 2001; 357:1721-1812  

Patterson DJ, Perry RC, Kiracofe GH, et al. Management considerations in heifer 
 development and puberty. J Anim Sci 1992;70:4018–35. 

Price JC, Bromfield JJ, Sheldon IM.Pathogen-associated molecular patterns initiate 
 inflammation  and perturb the endocrine function of bovine granulosa cells from 
 ovarian dominant follicles via TLR2 and TLR4 pathways. Endocrinology. 2013 
 Sep;154(9):3377-86. doi: 10.1210/en.2013-1102. Epub 2013 Jul 3. 
 
Prins JR. Interleukin-6 in pregnancy and gestational disorders. Journal of Reproductive 
 Immunology 2012; 95:1–14. 
 
Rainard et al. Innate immunity of the bovine mammary gland. Vet. Res. (2006) 
 37(3):369-400. http://www.ncbi.nlm.nih.gov/pubmed/16611554  
 
Raghupathy R (ed): Th1 and Th2 Cytokine Profiles in Successful and Unsuccessful 
 Pregnancy. New Delhi, Narosa Publishing, 1999, pp 149–158.  
 
Reid JG, et al. The carriage of pro-inflamma- tory cytokine gene polymorphisms in 
 recurrent pregnancy loss. Am J Reprod Immunol 2001;45:35–40.  
 
Revelli A et al. Follicular fluid content and oocyte quality: from single biochemical 
 markers to metabolomics. Reprod Biol Endocrinol 2009; 7:40. 
 
Rosenkrans, K.S., & Hardin, D.K. Repeatability and accuracy of reproductive tract 
 scoring to determine pubertal status in beef heifers. Theriogenology.  59(5-6), 
 1087-92 (2003) 
 
Sabatine MS et al. Metabolomic identification of novel biomarkers of myocardial 
 ischemia. Circulation 2005; 112(25): 3868-3875. 
 
 
 



 

 111 

Sakai  K, Maeda  S, Yonezawa  T, Matsuki N. Decreased plasma amino acid 
 concentrations in cats  with chronic gastrointestinal diseases and their possible 
 contribution in the inflammatory response. Vet Immunol Immunopathol  2018; 
 195: 1-6. 
 
Scaglia G, Beck P, Lalman D, Rouquette FM. Invited Review: Issues affecting research 
 and extension programs on cow-calf and stocker cattle production in the 
 Southeast region of the United States. American Society of Animal Science 
 Southern Section, February 7, 2016, San Antonio, Texas. The Professional 
 Animal Scientist 2017; 33:310 – 319. 
 
Schatz, T.J. & Hearnden M.N. Heifer fertility on commercial cattle properties in the 
 Northern Territory. Australian Journal of Experimental Agriculture. 48, 940-944 
 (2008) 
 
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) 
 method. Nat Protoc 2008; 3(6): 1101-1108. 
 
Singh R, Sinclair KD. Metabolomics: approaches to assessing oocyte and embryo quality. 
 Theriogenology 2007; 68 Suppl 1:S56–62. 
 
Sreekumar A et al. Metabolomic profiles delineate potential role for sarcosine in prostate 
 cancer progression. Nature 2009, 457:910-914  
 
Suliman ME et al. Inflammation contributes to low plasma amino acid concentrations in 
 patients with chronic kidney disease. American J Clin Nutr 2005; 82(2): 342-349. 
 
Swecker W. Bovine Reproduction. Wiley; 29, 276 – 282 (2014). 

Tauck SA, Wilkinson JRC, Olsen JR, et al. Comparison of controlled internal drug 
 release device  and melengesterol acetate as progestin sources in an estrous 
 synchronization protocol for  beef heifers. Theriogenology 2007;68:162–7.  

USDA-NASS (National Agricultural Statistics Service). 2018. Cattle. Accessed Apr. 
 2018,  http://usda.mannlib.cornell.edu/usda/nass/Catt/2010s/2018/Catt-01-31-
 2018.pdf  

USDA-NASS (National Agricultural Statistics Service). 2017. Farm and Land in Farms 
 2017 Summary – February 2018. Accessed Apr. 2018. 
 http://usda.mannlib.cornell.edu/usda/current/FarmLandIn/FarmLandIn-02-16-
 2018.pdf  



 

 112 

USDA-NASS (National Agricultural Statistics Service). 2016. Overview of the United 
 States  Cattle Industry. Accessed Apr. 2018. 
 http://usda.mannlib.cornell.edu/usda/current/USCatSup/USCatSup-06-24-
 2016.pdf  

van der Kloet et al. Discovery of early-stage  biomarkers for diabetic kidney disease using 
 ms-based metabolomics (FinnDiane study). Metabolomics 2012; 8:109–119. 
 
Veenstra T. Metabolomics: the final frontier? Genome Medicine 2012; 4:1–3. 
 
Watanabe M et al. Consequences of low plasma histidine in chronic kidney disease 
 patients: associations with inflammation, oxidative stress, and mortality. Am J 
 Clin Nutr 2008; 87(6): 1860-1866. 
 
Wathes, D.C. et al. Factors influencing heifer survival and fertility on commercial dairy 
 farms.  Animal. 2(8), 1135-1143 (2008) 
 
Wathes, Pollott, Johnson, Richardson, Cooke. Heifer fertility and carry over 
 consequences  for life time production in dairy and beef cattle. Animal 2014; 
 8:91–104. 
 
Whittier WD, Currin  JF, Schramm  H, Holland S, Kasimanickam RK. Fertility in Angus 
 cross beef cows following 5-day CO-Synch+ CIDR or 7-day CO-Synch+ CIDR 
 estrus synchronization and timed artificial insemination. Theriogenology 2013; 
 80(9): 963-969. 
 
Wood-Follis SL, Kojima FN, Lucy MC, et al. Estrus synchronization in beef heifers with 
 progestin-based protocols I. Differences in response based on pubertal status at 
 the initiation of treatment. Theriogenology 2004;62:1518–28.  
 
Xia J, Sinelnikov  IV, Han  B, Wishart DS. MetaboAnalyst 3.0—making metabolomics 
 more meaningful. Nucleic Acids Research 2015; 43(W1): W251-257. 
 
Xia J, Psychogios  N, Young N, Wishart DS. MetaboAnalyst: a web server for 
 metabolomic data analysis and interpretation. Nucleic Acids Research 2009; 37: 
 W652-660. 
Yan M, Xu G. Current and future perspectives of functional metabolomics in disease 
 studies–A Review. Anal Chim Acta 2018. 
 



 

 113 

Yang C, Richardson A, Smith J, Osterman A. Comparative metabolomics of breast 
 cancer. Pac Symposium Biocomput Pac Symposium Biocomput 2007:181–92. 
 
Youngs C. Modern Reproductive Technologies to Improve Cattle Production. Ceiba 2
 016; 54:31–40. 
 
Yu B et al. Association of rare loss-of-function alleles in HAL, serum histidine levels and 
 incident coronary heart disease. Circ Cadiovasc Genet 2015; 8(2): 351-355. 
 
Zhang J.M. et al. Cytokines, Inflammation, and Pain. International Anesthesiology 
 Clinics. 2007; 45(2): 27 0 37. 
 
Zhang T et al. Identification of potential biomarkers for ovarian cancer by urinary 
 metabolomic profiling. Journal of Proteome Research 2012; 12(1): 505-512. 
 
Zhang J, et al. Urinary metabolome identifies signatures of oligozoospermic infertile 
 men. Andrology 2014; 102(1):44-53 
 
Zhou X et al. A potential tool for diagnosis of male infertility: Plasma metabolomics 
 based  on GC–MS. Talanta 2016; 147: 82-89. 
 
Zohrabi M, Rahmani E. CXC Ligand 5 cytokine serum level in women with polycystic 
 ovary syndrome and normal body mass index: A case-control study. International 
 Journal of Reproductive BioMedicine 2017; 15:619–624. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 114 

Appendix 1: Body Condition Score Scoring System. Data adapted from Anderson et al., 
1991. 

 
 

BCS 
 

Overall 
Condition 

 

 
Bone  

Structure 

 
Fat  

Deposition 

 
 
1  

 
 

Extremely thin 

 
Easily – visible; 

Pin – sharp structures 
of shoulder, ribs and 

back 
 

 
Little deposition or muscling 

 
2 

 
Extremely thin 

 
Sharp spinous process 
with spaces between 

 

 
Little deposition; some 

muscling in hind-quarters 

 
 
3 

 
 

Extremely thin 
 

 
Slightly-visible 

backbone and easily-
identified spinous 

process 
 

 
 

Minimal fat coverage on 
loin, back, and foreribs  

 
 
4 

 
 

Borderline and 
Unfavorable 

 

 
Foreribs not noticeable; 

Transverse spinous 
process identified by 

palpation 
  

 
 

Hindquarter muscling 
 is full 

 
 
5 
 

 
 

Average or 
Moderate  

 

 
Show visibility of the 

12th and 13th ribs; 
Transverse spinous 

process felt with firm 
pressure  

 

 
Areas near tail and head are 

well filled; 
Do not show excess 

accumulation 

 
6 

 
Average or 
Moderate  

 

 
Show fully covered 
ribs, unnoticeable to 

the eye 

 
Full and plump hindquarters; 
Noticeable “sponginess” to 

foreribs, tail, and head 
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7 

 
Average or 
Moderate  

 

 
Non-distinguished 
spaces between the 

spinous process 
 

 
Abundant fat coverage on 
both sides of tail and neck 

 
 
8 
 

 
 

Extremely obese 

 
Smooth and blocky 

appearance, 
Disappearance of 

visual bone structure 
 

 
Thick fat coverage 

throughout the body 
 

 
 
9 
 

 
 

Extremely obese 

 
Shows no visible 
 bone structure 

 

 
Tail head buried in fat; 

Declined or halted mobility 
due to excess fat impairment 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 116 

Appendix 2: Reproductive Tract Score Scoring System. Data adapted from Lowman et 
al., 1976. 
 
 

 
RTS 

 
Uterine Horns 

(diameter, mm) 
 

 
Ovarian 
Length  
(mm) 

 

 
Ovarian 
Height 
(mm) 

 
Ovarian 

Width (mm) 

 
Ovarian 

Structures 

 
 

1 

 
Immature 
< 20 mm 

No uterine tone 
 

 
 

15 

 
 

10 

 
 

8 

 
No 

palpable 
follicles 

 
2 

 
20 – 25 mm 

No uterine tone  
 

 
18 

 
12 

 
10 

 
8 mm 

follicles 

 
3 
 

 
20 – 25 mm 

Slight uterine 
tone 

 

 
22 

 
15 

 
10 

 
8 – 10 mm 

follicles 

 
4 
 

 
30 mm 

Good uterine 
tone 

 

 
 

30 

 
 

16 

 
 

12 

 
> 10 mm 
follicles 

CL 
possible 

 
 

5 
 

 
> 30 mm 

 
> 32 

 
20 

 
15 

 
CL present 

 


