

Development of a Hardware and Software Redundant Cube Satellite Flight Computer

by

Steven Richard Peeples

A thesis submitted to the Graduate Faculty of

Auburn University

in partial fulfillment of the

requirements for the Degree of

Master of Science

Auburn, Alabama

August 4, 2018

Keywords: fault-tolerant, flight computer, cube satellite,

robust computing, fault recovery

Copyright 2018 by Steven Peeples

Approved by

Dr. Sanjeev Baskiyar, Chair, Professor of Computer Science & Software Engineering

Dr. Bhattacharya, Assistant Professor of Computer Science & Software Engineering

Dr. Zhou, Assistant Professor of Computer Science & Software Engineering

 ii

Abstract

 Flight computers (FCs) for cube satellites, or cubeSats, have been unreliable in the harsh

environment of space. Radiation single event effects (SEE) and total ionization dose (TID) cause

significant failure in spacecraft. Radiation hardened parts can reduce the probability of failure

but are two orders of magnitude more costly than commercial parts, placing them beyond the

budget of most cubeSat missions. A commonly used alternate method is to use commercial parts

and redundancy. Past work in this area offers robustness but is still vulnerable to system-wide

failure. The proposed system, the Quatara flight computer system, improves upon past work

using three redundant strings of processing elements with majority voting to operate and control

a satellite. Although the system requires FC software, the focus of this work is the hardware

architecture and FPGA algorithms. The Quatara flight computer system is a recoverable,

redundant, single fault-tolerant system with increased robustness for cubeSats to serve low-cost,

big data missions for NASA, Department of Defense (DoD), industry, and universities. It

contains no proprietary components or software, making alterability and updateability relatively

simple.

 iii

Table of Contents

Chapter 1 Introduction ... 1

1.1 Single Event Effects ... 3

1.2 Total Ionizing Dose .. 4

1.3 Field Programmable Gate Arrays ... 4

1.4 Triple Modular Redundancy .. 6

1.5 Related Work.. 7

1.5.1 TREMOR .. 7

1.5.2 RadSat ... 8

1.5.3 Dependable Multiprocessor (DM) .. 9

1.6 Summary .. 9

1.7 Goals... 11

Chapter 2 Architecture... 12

Chapter 3 Hardware ... 18

Chapter 4 Algorithms .. 25

Chapter 5 Testing... 47

5.1 PPS Period .. 47

5.2 Synchronization Accuracy ... 49

 iv

5.3 Interruption of Normal Start Sequence .. 51

5.4 Random String Reset .. 52

5.5 Voting Logic .. 53

Chapter 6 Flight Computer .. 59

Chapter 7 Conclusion .. 62

Chapter 8 Future Work .. 63

Chapter 9 Bibliography ... 64

 v

List of Tables

Table 1 ProASIC3 Compile Report – No TMR.. 21

Table 2 ProASIC3 Compile Report – C-C ... 22

Table 3 ProASIC3 Compile Report – TMR ... 23

Table 4 Propagation Comparison.. 23

Table 5 Period Test Data... 48

Table 6 Synchronization Accuracy Test Data .. 50

Table 7 Maximum Divergence on Reset Test Data .. 53

 vi

List of Figures

Figure 1 Basic Architecture .. 2

Figure 2 FPGA Internal Block Diagram ... 5

Figure 3 TMR Voter ... 7

Figure 4 TREMOR Flight Computer Block Diagram .. 8

Figure 5 RadSat Flight Computer ... 8

Figure 6 DM Payload Processing Architecture .. 9

Figure 7 String Hardware .. 13

Figure 8 FPGA to FPGA Communication .. 14

Figure 9 Data Transfer .. 15

Figure 10 Block Data .. 16

Figure 11 Data Transfer Windows .. 17

Figure 12 Breadboard Prototype ... 18

Figure 13 PCB Prototype .. 19

Figure 14 FPGA Code Block Diagram ... 26

Figure 15 FPGA Code Block Diagram for Synchronization Control ... 27

Figure 16 Synchronization Timing ... 28

Figure 17 Pulse Detector Flow Diagram .. 29

Figure 18 Pseudocode for Pulse Detector Algorithm ... 31

Figure 19 Pseudocode for PID Algorithm .. 32

Figure 20 Sync Flow Diagram .. 34

 vii

Figure 21 Pseudocode for Sync Algorithm ... 36

Figure 22 Primary Behavior Flow Diagram ... 38

Figure 23 Pseudocode for Primary Behavior Sync Algorithm ... 39

Figure 24 Secondary Behavior Flow Diagram ... 41

Figure 25 Pseudocode for Secondary Behavior Sync Algorithm ... 43

Figure 26 Tertiary Behavior Flow Diagram ... 44

Figure 27 Pseudocode for Tertiary Behavior .. 46

Figure 28 PPS Period Measurement ... 47

Figure 29 PPS Synchronization Accuracy .. 49

Figure 30 Synchronization Accuracy Testing... 50

Figure 31 Maximum Divergence on Restart ... 52

Figure 32 Voting Logic Test Setup ... 54

Figure 33 Voting Logic Test Hardware .. 54

Figure 34 Voting Logic Test1 ... 55

Figure 35 Voting Logic Test2 ... 55

Figure 36 Voting Logic Test3 ... 56

Figure 37 Voting Logic Test4 ... 56

Figure 38 Voting Logic Test5 ... 57

Figure 39 Voting Logic Test6 ... 57

Figure 40 FC Software Flow Diagram.. 60

 viii

List of Abbreviations

ALU Arithmetic Logic Unit

CMOS Complementary Metal-Oxide-Semiconductor

COTS Commercial Off The Shelf

DM Dependable Multiprocessor

DoD Department of Defense

FC Flight Computer

FCR Fault Containment Region

FPGA Field Programmable Gate Array

HDL Hardware Description Language

IC Integrated Circuit

LED Light-Emitting Diode

LEO Low Earth Orbit

PCB Printed Circuit Board

PID Proportional Integral Derivative

PPS Pulse Per Second

SEE Singe Event Effects

SEL Single Event Latch

SEU Single Event Upset

SPI Serial Peripheral Interface

 ix

SRAM Static Random Access Memory

TID Total Ionization Dose

TMR Triple Modular Redundancy

TREMOR TRiplE MOdular Redundant Flight Computer

UART Universal Asynchronous Receiver-Transmitter

 1

Chapter 1 Introduction

Cube Satellites are a class of small, low-cost satellites. Due to the size/mass limitations of the

satellites, little redundancy is allowed to increase the robustness and thus the quality of science

returned from missions. Space is an unforgiving wasteland to operate in. Radiation, single event

effects (SEEs), temperature swings, as well as limits on power, heat dissipation and

communication make flight computers react unreliably. Nearly half of all cubeSats launched fail

to function [1]. Two common methods are used to increase robustness: single string radiation

hardened parts or multi-string redundant hardware schemes. The focus of this thesis is the latter.

Radiation hardened parts are expensive and lack the performance of today’s commercial

components [2]. In fact, radiation hardened parts are two orders of magnitude more expensive [3]

[4] than commercial ones and delivery lead time is commonly six months [5] [6] or more.

Commercial electronic components continue to become smaller, faster and more power efficient

than their radiation hardened counterparts. Flying COTS in space is a long-held desire of DoD and

NASA [7]. Even in triples, the cost and size are much smaller than radiation hardened components.

The comparatively small market for radiation parts limits their evolution. The Quatara flight

computer uses three redundant strings of single board computers with a majority voting scheme to

operate and control a satellite. The basic architecture is an “E” configuration. The block diagram

is shown Figure 1.

 2

FC1 FC2 FC3

FPGA1 FPGA2 FPGA3

String 1 String 2 String 3

Figure 1 Basic Architecture

In the proposed scheme, the flight computers each transfer input information to an external

memory (inside the FPGA). Next, the FPGA transmits the data to the other FPGAs as well and

receiving and storing other FPGAs’ transmitted data. The FC is notified that the process is

complete and can access data from all three FCs in the memory. The entire set of data is compared

and voted upon. Erroneous data is discarded and a hardware reboot of that string (the entire

redundant element) is initiated to attempt recovery. A power cycle clears any type of single event

upset (SEU) or single event latchup (SEL) [8]. While it is possible for the FCs to interchange data

directly, FPGAs are used in this system to reduce overhead and to accurately control timing and

synchronization. From the FC’s perspective, once the local data is saved, other FCs’ local data

appears in memory with it a short time later.

The proposed system consists of a redundant FC only. A truly redundant spacecraft would require

backup power, instrumentation, and effectors, e.g. thrusters and reaction wheels, but such is not

possible given the mass and space constraints of cubeSats. Even with non-redundant element

 3

failure and a healthy FC, telemetry may still be able to be sent to ground control about the problem

so workarounds can be initiated. The key is to maintain control of the spacecraft. Graceful

degradation is preferred over total loss.

The state vector is updated and shared continuously so when the primary FC goes down or is forced

to restart, seamless transfer of control can occur to backups. Restarted FCs receive the “live” state

vector and can resume where they left off.

1.1 Single Event Effects

SEEs are anomalies in electronics caused by energetic particles in space radiation [2] [8] [9]. These

effects are typically not seen on the earth’s surface due to our magnetosphere. Various types of

SEE exist, but the most common is SEU and SEL [10]. In an SEU, an energetic particle travels

through a P-N junction in such a way as to cause electron-hole pairs to form resulting in temporary

current flow across the junction. If the flow is high enough it will cause a bit flip, corrupting data

[8] [9]. In an SEL, the particle travels through a NAND gate causing a self-amplifying short circuit

to occur. This causes increased power consumption, heat dissipation, and possibly permanent

damage to the digital circuit [8] [9] [11]. For complementary metal-oxide-semiconductor (CMOS)

integrated circuits (IC)s, which is a common manufacturing technology, SELs are a common cause

of failure and many space systems cannot tolerate even one of them [12]. The most important

attribute of latchup and SEL in particular is that the latched state can only be released by turning

off the device [10] [11] [12]. Statistics have shown that at 380km, which is in the range of low

 4

earth orbit (LEO), SEEs can be expected at a rate of one every 15 minutes on average in a typical

flight computer [9].

1.2 Total Ionizing Dose

The total ionizing dose (TID) is the measure of the cumulative ionizing radiation that electronics

receive over a period of time [13] [10]. In LEO the main source of radiation is from the Van Allen

Radiation belts surrounding the earth [14]. The common unit is krad(Si) which equals 103 rad(Si)

or 10 milligray where the parenthetical represents the material, silicon [10]. Radiation accelerates

the aging of electronic parts and can lead to degradation of electrical performance [15]. At doses

higher than 20 krad switching speed is affected and finally the device fails to function [10].

Redundancy is an effective technique for tolerating total ionizing dose [16].

1.3 Field Programmable Gate Arrays

An FPGA is a general purpose digital device that implements digital logic however the designer

wants [17] [18] [19]. Standard “off-the-shelf” ICs have a fixed, predesigned circuit operation from

the manufacturer; an FPGA does not. Its function is designed by the end user for a particular

application. It can be reconfigured as many times as needed [18]. An FPGA is completely

manufactured but remains design independent. Internal switching matrices are programmed to

connect the logic gates, e.g. AND, OR, NOT, for the desired function [20]. The basic block

diagram of an FPGA is shown in Figure 2.

 5

CLB

IOB PSM

IOBIOB

CLB

PSM

IOB

CLB

PSM

IOB

CLB

PSM

IOB

CLB

IOB PSM

PSM

CLB

PSM

PSM

CLB

PSM

PSM

CLB

PSM

PSM

CLB

IOB PSM

PSM

CLB

PSM

PSM

CLB

PSM

PSM

CLB

PSM

PSM

CLB

IOB IOB

PSM

CLB

IOB

PSM

CLB

IOB

PSM

CLB

IOB

PSM

PSM

CLB

IOB

IOB

PSM

PSM

CLB

IOB

PSM

PSM

CLB

IOBPSM

CLB

IOB

IOB - Input/Output Block

CLB - Configurable Logic Block

PSM - Programmable Switch Matrix

FPGA

Figure 2 FPGA Internal Block Diagram

FPGAs are generally used with an external clock source, making the logic circuits edge-triggered.

This allows predictable timing characteristics. As a result, FPGAs are ideal in instances when tasks

need to occur due to an event or where tasks need to occur on a repeating basis. It is for this reason

that FPGAs were chosen to control timing and synchronization in the Quatara system.

In the most basic sense FPGAs do not contain processors, an arithmetic logic unit (ALU), or

program instructions, i.e., software. A hardware description language (HDL) is used to program

the interconnections between the gates creating a functional logic circuit. FPGAs are thus

hardware, not software [18]. Processors are made of logic elements, however, so one could be

 6

implemented in an FPGA that runs software [17]. This is called a soft-core processor. Since FPGAs

are interconnected logic elements and not processors, they can perform tasks in parallel; i.e.,

several state machines can operate at once. This inherent parallelism is the most important feature

of the FPGA [21].

The classic single core processor runs instructions sequentially. The same processor with an

operating system runs multiple tasks, context switching from one task to another, sharing time on

the processor. This process happens so fast that the tasks appear to occur in parallel, e.g. typing

and listening to music. These systems have indeterminate timing characteristics which are

unsuitable for the proposed system.

A simple analogy best describes the difference between FPGAs and processors. Processors are like

people; they can do almost anything, but they can only do one thing at a time. FPGAs are more

like assembly lines. They can be designed to do a specific set of jobs and can do many different

tasks at the same time independent of one another [18].

1.4 Triple Modular Redundancy

FPGAs are susceptible to SEUs, but there are several methods to mitigate the effects. The most

common methods include power cycling, triple modular redundancy (TMR), redundant devices,

and active configuration memory scrubbing [22]. The first three of these methods are employed

by the Quatara system. In simplest terms, TMR involves triplicating the logic function of the

device and includes a set of voter circuits to determine the majority output for the proper operation.

 7

In majority voting, the best two of three wins the vote and is considered the correct output [11]

[12]. TMR can increase the FPGA resources required three to six times and can affect the

maximum speed [11]. A basic TMR voter is shown in Figure 3.

A

B

C

majority

output

Figure 3 TMR Voter

1.5 Related Work

Although there has been much research on redundant flight computers, it has mostly been focused

on large satellites and launch vehicles. The following will explore prior work on redundant cubeSat

flight computers.

1.5.1 TREMOR

Worcester Polytechnic Institute developed a TRiplE MOdular Redundant Flight Computer

(TREMOR) [9]. This system has discrete FCs and employs a single TMR enhanced FPGA voter.

It resets faulty FCs but also saves the states of the healthy FCs, resetting them as well. All FCs

then resynchronize. The block diagram for the TREMOR Flight computer is shown in Figure 4.

 8

Figure 4 TREMOR Flight Computer Block Diagram

1.5.2 RadSat

RadSat is a FPGA-based Radiation Tolerant SmallSat Computer System. It uses one FPGA to

implement multiple FCs all on one chip. Three of the processors actively employ majority voting.

The FPGA is broken up into “tiles”. Each tile contains a soft-core processor. If a fault is detected

on an active processor, it is replaced with a known good spare allowing majority voting to continue.

Figure 5 illustrates the RadSat Flight Computer.

Figure 5 RadSat Flight Computer

 9

1.5.3 Dependable Multiprocessor (DM)

The DM system is a cluster of high performance commercial off-the-shelf (COTS) processors

connected with a high speed interconnect. It operates under the control of a reliable, possibly

radiation hardened, system controller. The system controller provides a highly-reliable and SEE-

immune host to support recovery from radiation-induced events in the COTS hardware. A block

diagram of the DM is shown in Figure 6.

System

Controller

COTS

Processor

COTS

Processor
………. COTS

Processor

Mass Data

Storage

High Speed Interconnect (Ethernet)

Sensor

I/O
Sensors

Control Bus (power and discretes)

Spacecraft

Interface

Figure 6 DM Payload Processing Architecture

1.6 Summary

The Quatara system uses full hardware redundancy enclosed in FCRs. It maintains control of the

spacecraft at all times, even when a primary flight computer becomes faulty. A single fault cannot

affect the whole system; it is contained within the FCRs. These properties provide an increase in

reliability for cubeSats which will in turn allow higher risk missions to return valuable science

data. The Quatara system enables low-budget missions to reliably return big budget science.

The TREMOR system restarts all three flight computers after a fault, leaving the spacecraft

unattended for a short time and making it vulnerable to critical failure or losing valuable science

 10

data. The Quatara system improves upon this by keeping healthy flight computers on at all times,

even during a fault. TREMOR’s single FPGA voter, although made more robust by TMR, is a

single point of failure. An SEL can affect the entire FPGA IC, faulting the whole system. The

system is only partially redundant. Quatara uses full hardware redundancy so that no one piece of

hardware can fault the entire system. The FPGAs are also enhanced with TMR for additional

robustness.

The RadSat system does not separate the redundant elements with fault containment regions

(FCRs). Fault tolerant systems are built around the concept of FCRs. Its primary goal is to limit

the effects of a fault and the propagation of errors region to region [23]. As a result, an SEL can

affect the entire substrate of the IC, faulting all redundant “healthy” processors. Even if an SEL

does not affect the healthy processors, the fault can only be corrected by cycling power to the entire

FPGA, that is, assuming it has not destructively latched. Like the previous example, this leaves

the spacecraft unattended. The Quatara system improves upon this shortfall by grouping three

complete sets of redundant hardware within three FCRs; one FCR per set. A single fault will only

affect a single set of hardware.

The DM system has excellent throughput but requires a radiation tolerant system controller. This

approach works but suffers increased cost and reduced performance compared to that available

from redundant commercial grade parts. The Quatara system does not require any radiation

tolerant parts, thus providing users with a multitude of economical, high performance commercial

parts. The DM system shares data over a single Ethernet connection which is a single point of

failure. A multi-port Ethernet system could be implemented, but the base unit flight computer

 11

would require at least two hardware independent ports. Single board computers ideal for cubeSats

usually only have one port, thereby removing a large portion of design choices. The Quatara

system improves upon this design by providing a dedicated communication bus between each pair

of FPGAs; none are shared. A fault between any two FPGAs will not affect a bus going to the third

FPGA.

1.7 Goals

1) To prove that the proposed architecture is effective against failures caused by SEEs

a. requirements:

i. a working hardware prototype

ii. testing to simulate SEEs

2) To present the architecture and algorithms such that others can improve, build upon, and

scale the system to suit mission parameters.

a. requirements:

i. explicit details about the architecture and hardware used

ii. complete algorithms

iii. flowcharts explaining algorithms

 12

Chapter 2 Architecture

As was shown in Figure 1, the architecture consists of three identical strings. A string contains all

of the things needed to command and control the spacecraft if it were operating alone. It is also an

FCR. The major components of a string/FCR in this architecture are a power manager, FPGA

clock source, FPGA, FC, and bus isolator. The major components for string1 are illustrated in

Figure 7.

 13

The power management block is used monitor current consumption and remove power from the

string in the event of an overload. This is used to detect SELs and attempt to prevent permanent

damage. It also accepts voting logic from other strings which are logical ANDed together to

remove power. This is the method by which healthy strings majority vote erroneous strings out

and initiate restart. Restarting clears SEEs making strings recoverable.

Figure 7 String Hardware

 14

Since the redundancy of the proposed system begins and ends with the flight computer, the IO bus

to the rest of the spacecraft must be shared. A faulty flight computer that is in control of an

instrument has to relinquish control so another can take its place. This is handled with hardware

such that when a faulty FC is voted out, its connection to the bus is automatically broken with a

power reset. This is illustrated as the bus isolator block in Figure 7. When the bus isolator loses

power, its connection to the bus assumes a high impedance. This isolates the FC and completes

the fault containment region.

The FPGA to FPGA data transfer and synchronization signals are illustrated in Figure 8. These

signals are controlled solely by the FPGAs without the FCs’ oversite. This reduces the FCs’

overhead considerably.

Figure 8 FPGA to FPGA Communication

The data transfer sequence is illustrated in Figure 9. It begins with a PPS signal from the FPGA to

the FC signaling that it is time to transfer input data to the FPGA. This is called the primary data

exchange phase. Next is the data interchange phase, where data from each FPGA is exchanged

 15

with the other two FPGAs. In the next phase, the combined data return phase, the combined data

is returned to the FC. Each FC now has every other FC’s data including its own. In the final phase,

the decision phase, each FC compares the data and votes out any erroneous string. The primary

FC in command can then control the spacecraft and gather new input data.

Figure 9 Data Transfer

Timing is important for this system to work, yet it is not guaranteed generally by processors. In

microprocessors, interrupts can be triggered for important events but an interrupt, although

seemingly instantaneous, only raises a flag for the processor’s attention. The microprocessor must

perform context switching to service the interrupt if the priority is high enough. This process takes

time and varies depending on what instruction is in action. Similarly, processors with operating

systems would schedule a high priority task, but the time it takes to service that task will vary and

will not be instantaneous. That is why timing is controlled by FPGAs in this system.

 16

The data block that is transferred is made up of several parts illustrated in Figure 10. The header

region is unused in this iteration but could be used to pass messages between the FC and FPGA.

The FPGA could for instance pass an error code to the FC indicating that there was no data coming

from one of the other FPGAs. The input region is reserved for instrument data and ground

commands from the FC. The output section contains the FCs’ control solution to the input data.

An example would be the reaction wheel speed needed to adjust the spacecraft’s attitude to point

the solar panels at the sun. Since there is only one round of data exchange, the output solution to

the most recent input data has to be included in the next data exchange cycle. Therefore, cycle N

contains input data N and output data N-1. Cycle times can be adjusted to suit the latency needed.

FCs can also perform the decision phase of the data exchange on every other cycle if desired.

Figure 10 Block Data

Figure 11 indicates how the cycle time, represented by “cycle clocks” later in the algorithm section,

is broken up into windows. The windows here relate directly to the phases illustrated in Figure 11.

 17

Initially there is a pulse per second (PPS) signal from the FPGA to the FC indicating that the FC

to FPGA data transfer window is open. The FC can transfer data anytime during that window. The

next window is the FPGA to FPGA data interchange window where the FPGAs exchange the FC’s

data. The final window is the FC final window. A “data ready for FC” flag from the FPGA is sent

to the FC indicating that it can collect the entire set of data.

Figure 11 Data Transfer Windows

 18

Chapter 3 Hardware

Figure 12 is an image of the Quatara system prototype. The upper boards are FPGA development

boards part number A3PE-STARTER-KIT-2. The lower boards are Gumstix EarthSTORM single

board computers inserted in the Gumstix Alcatraz breakout board.

Figure 12 Breadboard Prototype

 19

Figure 13 PCB Prototype

The prototype PCB is shown in Figure 13. While the goal is to achieve PC-104 dimensions (3.55”

X 3.775”), the prototype PCB exceeded that size. Additional hardware was included, e.g.

pushbuttons and headers, to simplify in-depth testing. The next revision can easily meet the size

requirements with the superfluous circuitry removed.

Physical addresses used by the algorithms (discussed later in the algorithm section) are determined

by physical inputs jumpered high or low. Each device has a unique address. The purpose is to

allow a single set of code. Function depends on physical address, not the installed code.

The ProASIC3 flash-based FPGA part number A3P600L-FGG144 was chosen for this

implementation due to its inherent SEU immunity [24], low power draw, and static (flash-based)

configuration property. In fact, this part number uses the same silicon design and process as the

 20

fully radiation hardened equivalent RT3PE600L [25]. This gives radiation hardened part

performance at a commercial part price. If a more robust solution is needed the radiation hardened

part can be used since both parts are functionally identical. The low power draw property of flash-

based FPGAs makes them more desirable for this system than static random access memory

(SRAM)-based FPGAs for power limited cubeSats and especially so since the parts are triplicated.

Also, the reduced SEU vulnerability of flash memory also makes this type FPGA more desirable

for space than SRAM for configuration memory [12]. The resources used by the FPGA to

implement the different TMR options for this system are shown in the following tables.

Table 1 shows the resources without TMR enhancement.

 21

ProASIC3 Compile Report

Resource: Used: Available: Percent Used:

CORE 4685 38400 12.2%

IO (w/ clocks) 31 147 21.09%

Differential IO 0 65 0%

Global (chip and quadrant) 6 18 33.33%

PLL 0 2 0%

RAM/FIFO 4 60 6.67%

Low Static ICC 0 1 0%

FlashRom 0 1 0%

User JTAG 0 1 0%

Table 1 ProASIC3 Compile Report – No TMR

The C-C option uses combinatorial cells with feedback instead of flip-flop or latch primitives for

storage devices [26]. The resource report using the C-C option is shown in Table 2.

 22

ProASIC3 Compile Report

Resource: Used: Available: Percent Used:

CORE 5083 38400 13%

IO (w/ clocks) 31 147 21.09%

Differential IO 0 65 0%

Global (chip and quadrant) 6 18 33.33%

PLL 0 2 0%

RAM/FIFO 4 60 6.67%

Low Static ICC 0 1 0%

FlashRom 0 1 0%

User JTAG 0 1 0%

Table 2 ProASIC3 Compile Report – C-C

The TMR option implements each register with three flip-flops or latches that vote to determine

the state of the register. The resource report is shown in Table 3.

 23

ProASIC3 Compile Report

Resource: Used: Available: Percent Used:

CORE 8708 38400 23%

IO (w/ clocks) 31 147 21.09%

Differential IO 0 65 0%

Global (chip and quadrant) 6 18 33.33%

PLL 0 2 0%

RAM/FIFO 4 60 6.67%

Low Static ICC 0 1 0%

FlashRom 0 1 0%

User JTAG 0 1 0%

Table 3 ProASIC3 Compile Report – TMR

The end to end worst propagation delay for each of the TMR options is presented in Table 4.

ProASIC3 Delay Report

TMR Type: Worst Delay (nS):

None 22.479

C-C 22.479

TMR 24.561

Table 4 Propagation Comparison

One of the major advantages of this system is the separation of hardware redundancy and software.

The FPGA hardware used in this system does not need to be upgraded every time more

 24

performance is needed. Keeping everything but the processor will save extensive resources on a

redesign. The same benefit applies if the processor becomes obsolete.

 25

Chapter 4 Algorithms

The algorithms presented revolve around the designations “primary”, “secondary”, and “tertiary”.

“Primary” has the most authority with the others descending respectively. While the designations

indicate a hierarchical command structure, it is important to note that they are only states that

determine behavior; they are not assigned specifically to specific hardware. By default, FPGA1 is

“primary”, FPGA2 is “secondary”, and FPGA3 is “tertiary,” but any FPGA can be any designation.

This property is important to prevent a system-wide failure if there is a fault with FPGA1 on a cold

start. A cold start is when all FPGAs are powered up for the first time.

A block diagram, Figure 14, is used to describe the functional relationships of the FPGA code.

The diagram includes the descriptions “FPGA1”, “FPGA2”, and “FPGA3” to simplify

explanation, but the code in all three FPGAs is identical.

 26

Figure 14 FPGA Code Block Diagram

The RAM block is the memory storage element for the system. FC block data is stored here. Data

exchange is accomplished by serial peripheral interface (SPI). The window control block controls

the windows in which valid data exchange occurs. Data exchanged outside of valid windows is

considered erroneous and is ignored. The synchronization block is the heart of Quatara providing

timing control for the whole system. Figure 15 pushes into the synchronization control block,

providing more detail of its inner workings.

 27

Figure 15 FPGA Code Block Diagram for Synchronization Control

The pulse detector receives the synchronization signals from the other FPGAs, providing the sync

block with the times and types of signals found. The sync block will adjust the cycle time if needed

to make sure the PPS signals are aligned. The proportional-integral-derivative (PID) block

provides closed loop control of the PPS signal adjustment. The universal asynchronous receiver-

transmitter (UART) block transmits the synchronization byte in the form of serial data. This single

unique byte identifies the transmitter’s identity, i.e., the synchronization behavior assumed. This

type of signaling is more complex than discrete strobes but is more robust. Noise transients could

cause false positive synchronization signals. Only valid bytes are accepted.

Figure 16 indicates the major cycle and how the synchronization timing relates. The PPS is sent

between the FPGA and FC. It triggers the FC to start the data exchange function. The green area

in the center of the figure indicates the window in which valid sync pulses can be sent and received.

 28

The algorithms are designed to keep the sync pulse in the center of the window. The pulses are

sent from FPGA to FPGA identifying their designation, e.g. primary, secondary, or tertiary.

Figure 16 Synchronization Timing

The pulse detector contains two identical modules, one for each of the other FPGAs. Both operate

in parallel. The flow diagram is presented in Figure 17.

 29

Start

Listen for valid sync

pulses (primary,

secondary, tertiary)

from left and right

FPGA and store

Listen for valid sync

pulses from left and

right FPGA and

make sure they

match stored values

Indicate which sync

signals were

detected and the

time they were

detected

Indicate any errors

Clear = 1?

N

Y

Figure 17 Pulse Detector Flow Diagram

 30

The pulse detector pseudocode is shown in Figure 18.

//left side

if at any time we get a “reset” signal, zero all registers, state machine back to init state, and

 outputs to zero

afterward, if at any time we get a “clear” signal same except stored “left designation” byte and

 state machine skips init state and goes to wait4pulse state

otherwise transition through states in state machine starting with “init”

state init:

look at the left uart receiver and see if there’s a new byte

if so, see if equal to “primary” “secondary” or “tertiary”

if so, make sure it isn’t the same as the one detected for the right side, discard otherwise

output “primary detected” “secondary detected” or “tertiary detected”, output the time

 detected as “primary time”, “secondary time” or “tertiary time”, and store the received

 byte as “left designation”

go to the “wait for pulse” state

state wait for pulse:

look at the left uart receiver and see if there’s a new byte

if so, see if equal to “primary” “secondary” or “terchiary”

if so, make sure it is the same as the one previously stored, discard otherwise

output “primary detected” “secondary detected” or “terchiary detected”, output the time

 detected as “primary time”, “secondary time” or “tertiary time”

 go to the “wait for clear” state

 31

state wait for clear:

do nothing. Normal operation is to get a “clear” signal and go to the “wait for pulse” state.

//Right side

duplicate of left side

Figure 18 Pseudocode for Pulse Detector Algorithm

The Proportional Integral Derivative (PID) controller used in this system was designed to be fast

and use minimal resources. Although compact, it has programmable K-factor coefficients such

that K = 1/(2n) and n is an integer 0 to 7. It was found that the constants Kp = 0, Ki = 4, and Kd =

4 yielded adequate control for the system tested. Given the modularity of this block, a higher

fidelity control block could be substituted for finer control if needed. Inputs are standard logic

“enable” and integer “error”, outputs are an integer “PID output” and standard logic “output

ready”. Constants are integers Kp, Ki, Kd. The algorithm used is shown is Figure 19.

if reset signal, reset all registers, put state machine in “idle” state, and zero all outputs

otherwise transition through state machine starting with “idle”

state idle:

when enabled, read error input

if the error magnitude is less than the minimum error, go to “no calculation” state

otherwise go to “sub math” state

state sub math:

 32

integral = integral + error //should be integral = integral + error*dt but dt is one here for

 //simplicity

derivative = error - prevError //should be derivative = (error - previous_error)/dt but dt is one

 //here also

store error as previous error

go to shift state

state shift: // the K-factors used here negative powers of two, i.e. K = 3 means 1/(2^3) = 1/8.

//This simplifies the hardware down to a shift register eliminating the need for a dedicated

//multiplication block and the extra time to perform the multiplication

left shift the error Kp times

left shift the integral Ki times

left shift the derivative Kd times

go to “end sum” state

state end sum:

PID output = error + integral + derivative

state no calculation: don't do calculation; only do min upkeep

PID output = 0

store error as previous error

go to “idle” state

Figure 19 Pseudocode for PID Algorithm

 33

The proposed system is asynchronous but is synchronous at the cycle level. Synchronous systems

synchronize at the clock level [23]. The sync algorithm flow diagram and sync pseudocode are

broken up into four separate sections to simplify presentation but exists as one block of code. The

initial synchronization algorithm (part 1 of 4) is shown in Figure 20. It begins with a delay and

assumes one of three behaviors: primary, secondary, or tertiary. For full redundancy capability,

any FPGA can become the primary, secondary, or tertiary, but the normal starting order and the

order used to explain the algorithms is FPGA1 = primary, FPGA2 = secondary, and FPGA3 =

tertiary.

A “park” state transition occurs as a result of certain error checks. In this state it does nothing but

wait. If it’s doing nothing, it isn’t transferring data and the entire string will eventually be voted

out because of a data mismatch. This technique is used to prevent errors from propagating

throughout the system.

 34

Start

Physical

address?

1

Wait 1.5 cycles

2

Wait 2.5 cycles

3

Wait 3.5 cycles

Sync signals

Detected?

Primary = 0

Secondary = 0

Tertiary = 0

Primary = 1

Secondary = 0

Tertiary = 0

Primary = 1

Secondary = 1

Tertiary = 0

State “primary

count” of primary

behavior

State “secondary

sync” of secondary

behavior

State “tertiary

sync” of tertiary

behavior

Cold Start Scenarios

State “primary

sync secondary” of

primary behavior

Primary = 0

Secondary = 1

Tertiary = 1

State “secondary

sync” of secondary

behavior

Primary = 1

Secondary = 0

Tertiary = 1
Restart Scenarios

State “primary

sync tertiary” of

primary behavior

State “primary

sync secondary” of

primary behavior

Unlikely Scenarios
Primary = 0

Secondary = 0

Tertiary = 1

Primary = 0

Secondary = 1

Tertiary = 0

else

Park

Error Scenario

Figure 20 Sync Flow Diagram

 35

The pseudocode for the initial sync block function (part 1 of 4) is shown is Figure 21. Inputs are

integer “cycle clocks”, “start window”, and “decision point”, standard logic “primary detected”,

“secondary detected”, and “tertiary detected”, outputs are byte “primary”, “secondary”, and

“tertiary” and standard logic “pulse per second” and “clear”.

if reset signal, reset all registers, put state machine in “wait4timer” state, and zero all outputs,

“cycle clocks local” = “cycle clocks”

otherwise transition through state machine starting with “wait4timer”

state wait4timer: – wait for timer to complete programmed by physical jumper. FPGA1 timer is

//1.5sec, FPGA2 is 2.5sec, FPGA3 is 3.5sec

when timer done go to “init” state

state init:

//cold start scenarios, i.e. all FPGAs are starting up for the first time

if primary not detected and secondary not detected and tertiary not detected go to “primary

 count” state //nothing detected. assert primary fpga

else if primary detected and secondary not detected and tertiary not detected, go to “secondary

 sync” state //primary detected. assert secondary fpga

else if primary detected and secondary detected and tertiary not detected, go to “tertiary sync”

 state //have primary and secondary. assert tertiary fpga

 36

//restart scenarios – a string has been reset and the fpga is trying to resynchronize. During this

//time the pulse detector block has had at least 1.5 cycles (1.5 sec for the FPGA1 delay case) to

//detect the other two fpga designations. This prevents overlap issues and incorrect fpga

//assertions.

else if primary not detected and secondary detected and tertiary detected, go to “primary sync

 secondary” state //the primary and secondary are already running synchronize with the

 //secondary and take over as the primary once again

else if primary detected and secondary not detected and tertiary detected, go to “secondary

 sync” state //the primary and tertiary are already running. synchronize with the primary

 //and take over and the secondary once again

//unlikely scenarios

else if primary not detected and secondary not detected and tertiary detected, go to “primary

 sync tertiary” state //with 1 fault-tolerance and no cold start, there should be at least two

 //strings running but it is possible to lose two strings

else if primary not detected and secondary detected and tertiary not detected, go to “primary

 sync secondary” state // with 1 fault-tolerance and no cold start, there should be at least

 //two strings running but it is possible to lose two strings

//error scenario

else go to “park” state //this shouldn’t happen and something’s wrong. do nothing, FC will

 //eventually restart

Figure 21 Pseudocode for Sync Algorithm

 37

The primary behavior flow diagram is shown in Figure 22 (part 2 of 4). Although this behavior

has the most authority, it has the simplest function.

 38

Figure 22 Primary Behavior Flow Diagram

 39

The pseudocode for the primary behavior is shown is Figure 23.

__

//state primary count: Easiest scenario. A free running clock controls outputs; it does not have to

//see what the secondary and tertiary fpgas are doing

counter counts up until it equals “cycle clocks” and resets

if counter = half its max setting output byte “primary”

state primary sync secondary: Here the primary has been reset, the secondary FPGA has taken

//over and the primary is trying to resynchronize with the secondary FPGA before taking back

//over

set counter to half of “cycle clocks”

send “clear” strobe to pulse detector

if secondary detected, go to state “primary count”

state primary sync tertiary: Here the primary has been reset, the tertiary FPGA has taken over

//and the primary is trying to resynchronize with the tertiary FPGA before taking back over

set counter to half its of “cycle clocks”

send “clear” strobe to pulse detector

if tertiary detected, go to state “primary count”

Figure 23 Pseudocode for Primary Behavior Sync Algorithm

 40

Figure 24 shows the flow diagram for the secondary behavior (part 3 of 4). Its code is more

complex due to the fact that it has to adjust its own cycle clocks to stay synchronized to the primary

FPGA.

 41

Figure 24 Secondary Behavior Flow Diagram

 42

Figure 25 shows the pseudocode for the secondary behavior.

state secondary count:

counter counts up and resets when it equals “cycle clocks local”

if counter = zero send out “pulse per second” strobe

if counter is between “start window” and “decision point”, release “clear” output signal

otherwise send “clear” output signal

if counter = half of “cycle clocks local” output byte “secondary”

if counter = “decision point”, go to “secondary decision” state

state secondary decision: we’re at the decision point for the secondary fpga behavior

//this is the ideal scenario where everything is working //fine. The error between the primary and

//secondary fpga sync pulse times are calculated

 counter continues counting as before

 if “primary detected” and “secondary not detected” then //something wrong if secondary

 //detected

 PID error = cycle clocks local / 2 – primary time //sync signal should be half of “cycle

 //clock local”

 go to state “secondary decision 2”

//next is the situation where the primary string has gone off line and we have to take over as

leader

 43

else if “primary not detected” and “secondary not detected” and “tertiary detected”, go to

 “secondary count” state //check for tertiary to eliminate possibility of lost

 //synchronization with other fpgas

else go to “park” state //something is wrong. do nothing until FC resets string

state secondary decision 2:

counter continues counting

if abs(PID error) < max allowed error send to PID block and enable

else go to “park state” //something is wrong. do nothing until FC resets string

when PID block is complete, cycle clocks local = cycle clocks – PID output

go to “secondary count” state

state secondary sync: here the secondary has been reset and needs to synchronize to the primary

//fpga

set counter to half of “cycle clocks local”

send “clear” strobe to pulse detector

if “primary detected”, go to state “primary count”

Figure 25 Pseudocode for Secondary Behavior Sync Algorithm

Figure 26 shows the flow diagram for the tertiary behavior of the sync algorithm (part 4 of 4). Its

operation is nearly identical to the secondary behavior. The difference lies in what happens when

the primary FPGA is lost.

 44

Figure 26 Tertiary Behavior Flow Diagram

 45

The pseudocode for the tertiary behavior of the sync algorithm is shown in Figure 27.

State tertiary count:

counter counts up and resets when it equals “cycle clocks local”

if counter = zero send out “pulse per second” strobe

if counter is between “start window” and “decision point”, release “clear” output signal

otherwise send “clear” output signal

if counter = half of “cycle clocks local” output byte “tertiary”

if counter = “decision point”, go to “tertiary decision” state

state tertiary decision: we’re at the decision point for the tertiary fpga behavior

//This is the ideal scenario where everything is working fine. The error between the primary and

//tertiary fpga sync pulse times are calculated

 counter continues counting as before.

 if “primary detected” and “tertiary not detected” then //something wrong if tertiary detected

 PID error = cycle clocks local / 2 – primary time //sync signal should be half of “cycle

 //clock local”

 go to state “tertiary decision 2”

//next is the situation where the primary string has gone off line and we need to follow secondary

else if “primary not detected” and “secondary detected” and “tertiary not detected” //check for

 //tertiary to eliminate possibility of lost synchronization with other fpgas

PID error = cycle clocks local / 2 – secondary time //sync signal should be half of “cycle

 //clocks local”

 46

 go to state “tertiary decision 2”

else go to “park” state //something is wrong. do nothing until FC resets string

state tertiary decision 2:

counter continues counting

if abs(PID error) < max allowed error, send to PID block and enable

else go to “park state” //something is wrong. do nothing until FC resets string

when PID block is complete, cycle clocks local = cycle clocks – PID output

go to “tertiary count” state

state tertiary sync: set the count to half point where all sync pulses are found

send “clear” strobe to pulse detector

if “primary detected”, go to state “tertiary count”

state park: sit here and do nothing, don’t make things worse, wait for FC to reset string

indicate error

Figure 27 Pseudocode for Tertiary Behavior

 47

Chapter 5 Testing

The following sections detail the tests performed that not only examine the system’s robustness

against SEEs but to also test the faults that would cause system-wide failures in the other systems

discussed previously. The first two tests establish that synchronization, a key for this system to

work, is functioning. The ladder three are designed to test against SEEs and the faults affecting

previous work.

5.1 PPS Period

The FPGA clocks used are identical, and the system could stay synchronized for a while without

any adjustment needed by the algorithms. This test will measure the PPS periods without any

adjustment by the algorithms. The PPS period measurement is shown in Figure 28.

Figure 28 PPS Period Measurement

 48

Test1: Enable FPGA1 only. FPGA1 is “primary”. Measure the max and min period between

FPGA1 PPS signals.

Test2: Enable FPGA2 only. FPGA2 is “primary”. Measure the max and min period between

FPGA2 PPS signals.

Test3: Enable FPGA3 only. FPGA3 is “primary”. Measure the max and min period between

FPGA3 PPS signals.

Results:

 Period (mS)

PPS Source min max mean

FPGA1 999.97 1,000.0 1,000.0

FPGA2 999.97 1,000.0 999.98

FPGA3 999.90 999.97 999.97

Table 5 Period Test Data

Conclusion: The FPGA clock, although an identical part operating in identical systems, has jitter

and causes the PPS signals to quickly diverge due to lack of synchronization.

Although the worst divergence is only 30µS, the effect accumulates every cycle

and becomes significant in 167 cycles. This test proves the need for a

synchronization algorithm.

 49

5.2 Synchronization Accuracy

The degree to which the system can maintain synchronization affects the adjustability of system

cycle time; i.e., shorter cycles can come from tighter synchronization. The accuracy is measured

by the variance shown in Figure 29.

Figure 29 PPS Synchronization Accuracy

Test1: Measure the maximum variance in PPS signals between FPGA1 and FPGA2 during

normal run. Make FPGA1 “primary”.

Test2: Measure the maximum variance in PPS signals between FPGA3 and FPGA2 during

normal run. Make FPGA3 “primary”.

Test3: Measure the maximum variance in PPS signals between FPGA3 and FPGA1 during

normal run. Make FPGA3 “primary”.

 50

Figure 30 Synchronization Accuracy Testing

Results:

primary

FPGA

subordinate

FPGA

variance

(µS)

FPGA1 FPGA2 0.651

FPGA3 FPGA1 0.646

FPGA3 FPGA2 0.636

Table 6 Synchronization Accuracy Test Data

Conclusion: Comparing the data from this test and the PPS period test proves that Quatara is

actively aligning the PPSs and providing synchronization for the redundant

elements. Without the previous test for comparison, it could be argued that the

 51

system is staying in synchronization because all the parts are identical and the

variance between clock pulses is minimal.

5.3 Interruption of Normal Start Sequence

Since a fault can occur any time on any string, fault on a cold start must be tested as well. By

default, FPGA1 is primary, FPGA2 is secondary, and FPGA3 is tertiary. Power will be withheld

from a single FPGA during the startup sequence and will be applied after the other two FPGAs

complete startup.

Test1: FPGA1 power withheld

Results: FPGA2 initialized as primary, FPGA3 initialized as secondary, FPGA1 initialized as

tertiary.

Test2: FPGA2 power withheld

Results: FPGA1 initialized as primary, FPGA3 initialized as secondary, FPGA2 initialized as

tertiary.

Test3: FPGA3 power withheld

Results: FPGA1 initialized as primary, FPGA2 initialized as secondary, FPGA3 initialized as

tertiary.

 52

Conclusion: Interruption of the normal start sequence on a cold start does not cause system

failure. As designed, any FPGA can assume any behavior.

5.4 Random String Reset

A faulty string (one afflicted by an SEU) will be power reset by healthy strings. An SEL will cause

an immediate reset. Resetting strings randomly will simulate these types of failures. This test is

focused on the FPGA’s ability to resynchronize after a power restart. Upon restart, the maximum

divergence between PPS signals will be measured as shown in Figure 31.

Figure 31 Maximum Divergence on Restart

Test1: Wait until all three FPGAs have assumed their behavior. Make FPGA1 primary. Reset

string2 at a random point in its cycle. Measure maximum divergence on restart.

Test2: Wait until all three FPGAs have assumed their behavior. Make FPGA3 primary. Reset

string1 at a random point in its cycle. Measure maximum divergence on restart.

 53

Test3: Wait until all three FPGAs have assumed their behavior. Make FPGA3 primary. Reset

string2 at a random point in its cycle. Measure maximum divergence on restart.

Results: All tests concluded with the faulty string restarting, resynchronizing, and assuming

where it left off. The maximum divergence test data is shown in Table 7.

primary

FPGA

subordinate

FPGA

max divergence

(µS)

FPGA1 FPGA2 4.822

FPGA3 FPGA1 10.217

FPGA3 FPGA2 5.322

Table 7 Maximum Divergence on Reset Test Data

Conclusion: The random string reset test proves that the FPGA synchronization algorithm will

recover and continue normal operation after any SEE resulting in a string reset. It

also proves that the system handles faults that previous work could not.

5.5 Voting Logic

An SEE can cause data corruption or cause a component to stop functioning. Comparing shared

data is key for fault detection. Falsifying data in different parts of the normal data stream necessary

to test the voting logic. A simple counting sequence is computed by each FC and is used to

represent the state vector of the system. The output values are compared. The test setup is shown

in Figure 32. Light-Emitting Diodes (LED)s are used to indicate when an FC casts it’s vote for a

 54

faulty string. The PCB prototype logic ANDs these signals together and sends them to the power

controller, but LEDs are used in this test to simplify troubleshooting. The test hardware is shown

in Figure 33.

330Ω
D1

FC1 GND

330Ω
D2

FC2 GND

330Ω
D3

FC2 GND

330Ω
D4

FC3 GND

330Ω
D5

FC1 GND

330Ω
D6

FC3 GND

String3

Power

String1

Power

String2

Power

Figure 32 Voting Logic Test Setup

Figure 33 Voting Logic Test Hardware

 55

Test1: Open TX line of the SPI interface for FPGA1 as indicated in Figure 34. Open both TX

lines simultaneously. This test simulates bad data from FPGA1 to the other two.

FPGA1

FPGA2 FPGA3

synchronization signals

block data transfer

synchronization signals

block data transfer

synchronization signals

block data transfer

X X

Figure 34 Voting Logic Test1

Test2: Open TX line of the SPI interface for FPGA2 as indicated in Figure 35. Open both TX

lines simultaneously.

FPGA1

FPGA2 FPGA3

synchronization signals

block data transfer

synchronization signals

block data transfer

synchronization signals

block data transfer

X

X

Figure 35 Voting Logic Test2

 56

Test3: Open TX line of the SPI interface for FPGA3 as indicated in Figure 36. Open both TX

lines simultaneously.

FPGA1

FPGA2 FPGA3

synchronization signals

block data transfer

synchronization signals

block data transfer

synchronization signals

block data transfer

X

X

Figure 36 Voting Logic Test3

Test4: Open the TX line of the SPI interface for FC1 and FPGA1 as indicated in Figure 37.

This test simulates bad data from FC1 to FPGA1.

FPGA1 FC1

transfer flags

block data transfer

X

Figure 37 Voting Logic Test4

Test5: Open the TX line of the SPI interface for FC2 and FPGA2 as indicated in Figure 38.

 57

FPGA2 FC2

transfer flags

block data transfer

X

Figure 38 Voting Logic Test5

Test6: Open the TX line of the SPI interface for FC2 and FPGA2 as indicated in

Figure 39.

FPGA3 FC3

transfer flags

block data transfer

X

Figure 39 Voting Logic Test6

Results: All tests resulted in a pair of LEDs being lit for the faulty string.

Conclusion: Each LED is a vote for a faulty string to be reset. The pair logical ANDed together

produce the reset signal needed by the power management block to perform a power

 58

reset on the faulty string. This testing proves that the voting logic detects errors

caused by SEUs in the transferred data block.

 59

Chapter 6 Flight Computer

Although beyond the scope of this thesis, some discussion is required regarding the flight computer

software. Although timing and data transfer tasks are handled by the FPGA, the FC still has to

contribute resources to handle voting and deciding who is in charge.

The FCs have a similar order of dominance scheme as the FPGAs, but the designation is

completely independent. Just because the FPGA in a string is “primary” does not mean the FC in

the same string is “primary”. For clarity, the FCs will use a different designation in order of most

authority: General, Captain, and Private.

The voting system is an exact-match voter scheme [23].

The FC basic software flow diagram is shown in Figure 40. The FC hardware selection and FC

software were completed by Jose Molina-Fratichelli [27].

 60

Start

PPS signal

detected?

N

Y

send individual

block data

data ready

signal

detected?

N

receive combined

block data

Y

analyze data

and vote

perform other tasks, e.g. built-in self-test,

housekeeping, and/or payload interaction

FC in command

get voted out?

highest authority healthy

FC assumes command

Is there a higher

authority healthy FC?

Am I the FC in

command?

use the shared bus to

gather input data and

command output effectors

N

Y

Y

Y

N

N

Figure 40 FC Software Flow Diagram

 61

Requirements levied on computing elements:

1) It is the FC’s responsibility to determine which FC is the General. The General is in

control of the IO bus and thus the spacecraft.

2) If the General is found to be faulty another FC must assume spacecraft control.

3) Every FC must share and collect data when prompted, compare shared data, and vote out

an erroneous FC.

4) FCs must make FPGA triggered synchronization signals the first priority.

5) A FC with a permanent fault must be permanently isolated from the system by the

remaining healthy FCs.

 62

Chapter 7 Conclusion

The Quatara flight computer system is a recoverable, redundant, single fault-tolerant system with

increased robustness for cubeSats to serve low-cost, big data missions for NASA, Department of

Defense (DoD), industry, and universities. SEEs and total ionizing dose radiation make cubeSat

FCs perform unreliably. Past work has used redundant hardware to increase reliability. The

Quatara system further improves the robustness of cubeSats by using FCRs containing a full set

of redundant hardware and readily available commercial parts. FPGAs are employed to remove

overhead from the FCs and to accurately control timing. TMR is used to add additional robustness.

The architecture was illustrated from a high level and broken down into smaller parts and

explained. Similarly, the FPGA algorithms were presented as a top-level block diagram with

components explained. The synchronization block, the heart of the system, was broken into sub-

blocks and their functions explained. Synchronization sub-blocks were further presented as both

flow diagrams and pseudocode. The hardware chosen was also discussed.

Testing was designed to examine how the system reacts to major faults caused by the space

environment and to ensure that the algorithms work as predicted. Not only did the Quatara system

pass testing, it validated the improvements to previous work against system-wide failure as well.

 63

Chapter 8 Future Work

Future work includes fault-tree development, fault-tree testing, and testing the prototype PCB.

During this research exercise, it was determined that adding the voting logic to the FPGAs would

free up additional overhead for the FCs. Fault-tolerance and redundancy would be completely

separate from software development. FC software developers could then focus on mission specific

tasks, simplifying development. From their perspective, development would be centered around

software development for a sole flight computer; the code would just be installed in all three flight

computers. The FPGAs decide who is in control of the bus and who needs to be reset. Adding the

voting logic to the FPGAs is future work.

One type of fault not tested was a Byzantine fault. This is the most difficult type of fault for three

or more channels with cross channel voting [27]. This fault comes from the Byzantine Generals

Problem [28], an abstract scenario where a group of generals is camped with their troops around

an enemy city. Communicating only via messenger the generals must agree on a common battle

plan. One or more generals may be treacherous though, sending false messages to disrupt reaching

agreement. It takes 3m + 1 generals to cope with m traitors. For the proposed system and single

fault-tolerance, m = 1, it would take four redundant strings to correct this fault whereas this system

only has three. However, if message authentication is used, only m + 2 channels are required [27].

Message authentication is future work.

 64

Chapter 9 Bibliography

[1] M. Swartwout, "The First One Hundred CubeSats: A Statistical Look," Journal of

Small Satellites, vol. 2, no. 2, pp. 213-233, 2013.

[2] P. P. Shirvani, "Fault-Tolerant Computing For Radiation Environments," Stanford

University, 2001.

[3] D. Garrison, "email - More Pricing Requests," Envision LLC, 2018.

[4] P. Chambers, "email - Renesas/Intersil Rad Hard Parts Quote," Envision LLC,

2018.

[5] H. Christopher, "email - ProASIC3 Rad Hard Quote," G2 Sales, 2018.

[6] S. Cooke, "email - Price Quote Request," Cobham, 2018.

[7] J. R. J. Sampson, "Dependable Multiprocessor (DM) – High Performance

Computing for CubeSats," Honeywell Aerospace, Clearwater, FL, 2013.

[8] C.-Y. Liu, "A Study Of Flight-Critical Computer System Recovery From Space

Radiation-Induced Error," IEEE, 2001.

[9] R. Angilly, "TREMOR: A Triple Modular Redundant Flight Computer and Fault-

Tolerant Testbed for the WPI PANSAT Nanosatellite," Worchester Polytechnic

Institute.

[10] D. W. Caldwell, "Minimalist Fault-Tolerance Techniques for Mitigating Single-

Event Effects in Non-Radiation Hardened Microcontrollers," University of

California Los Angeles, 1998.

[11] J. M. Johnson, "Synchronization Voter Insertion Algorithms for FPGA Designs

Using Triple Modular Redundancy," Brigham Young University, 2010.

 65

[12] L. S. Parobek, "Research, Development and Testing of a Fault-tolerant FPGA-

Based Sequencer for CubeSat Launching Applications," Calhoun: The Naval

Postgraduate School Archive, Monterey, California, 2013.

[13] S. Sayil, "Space Radiation Effects on Technology and Human Biology,"

Beaumont.

[14] A. J. T. W. A. Kristina Rojdev, "Preliminary Radiation Analysis of the Total

Ionizing Dose," NASA Technical Reports Server, 2015.

[15] K. A. L. C. P. Janet L. Barth, "Radiation Assurance for the Space Environment,"

IEEE, pp. 323-333, 2004.

[16] A. B. W. H. S. P J Botma, "Low Cost Fault Tolerant Techniques for Nano/Pico-

Satellite Applications," IEEE, 2013.

[17] S. Monk, Programming FPGAs: Getting Started with Verilog, McGraw-Hill, 2017.

[18] J. Rajewski, Learning FPGAs: Digital Design for Beginners with Mojo and Lucid

HDL, Sebastopol, CA: O'Reilly Media, Inc., 2017.

[19] Y. Haigang, Z. Jia, S. Jiabin and Y. Le, "Review of Advanced FPGA Architectures

and Technologies," Institute of Electronics, Chinese Academy of Sciences, Beijing,

China, 2014.

[20] D. J. Smith, HDL Chip Design, Madison, AL: Doone Publications, 1996.

[21] R. C. J. Singleterry, J. Sobieszczanski-Sobieski and S. Brown, "Field-

Programmable Gate Array Computer In Structural Analysis: An Initial

Exploration," AIAA.

[22] B. F. Dutton, "Embedded Soft-Core Processor-Based Built-In Self-Test of Field

Programmable Gate Arrays," Auburn University, 2010.

[23] R. W. Butler, "A Primer on Architectural Level Fault Tolerance," Langley

Research Center, Hampton, VA, 2007.

[24] M. F. C. P. H. K. K. L. Melanie Berg, "Taming the Single Event Upset (SEU)

Beast - Approaches and Results for Field Programmable Gate Array (FPGA)

Devices and How to Apply Them," NEPP Electronic Technology Workshop, 2011.

[25] Microsemi, "RT ProASIC3," 31 May 2018. [Online]. Available:

https://www.microsemi.com/product-directory/rad-tolerant-fpgas/1696-rt-proasic3.

 66

[26] Microsemi, "Using Synplify to Design in Microsemi Radiation-Hardened FPGAs,"

Microsemi, 2012.

[27] J. Molina-Fraticelli, S. Peeples and P. Capo-lugo, "2nd Generation QUATARA

Flight Computer Project," NASA, Huntsville, AL, 2014.

[28] B. A. O'Connell, "Achieving Fault Tolerance via Robust Partitioning and N-

Modular Redundancy," MIT, 2007.

[29] R. S. M. P. Leslie Lamport, "The Byzantine Generals Problem," ACM

Transactions on Programming Languages and Systems, vol. 4, no. 3, pp. 382-401,

1982.

[30] J. R. J. Sampson, "Small, Light-Weight, Low-Power, Low-Cost, High Performance

Computing for CubeSats," Clearwater, FL, 2014.

