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Abstract 

 

 

 Flight computers (FCs) for cube satellites, or cubeSats, have been unreliable in the harsh 

environment of space. Radiation single event effects (SEE) and total ionization dose (TID) cause 

significant failure in spacecraft. Radiation hardened parts can reduce the probability of failure 

but are two orders of magnitude more costly than commercial parts, placing them beyond the 

budget of most cubeSat missions. A commonly used alternate method is to use commercial parts 

and redundancy. Past work in this area offers robustness but is still vulnerable to system-wide 

failure. The proposed system, the Quatara flight computer system, improves upon past work 

using three redundant strings of processing elements with majority voting to operate and control 

a satellite. Although the system requires FC software, the focus of this work is the hardware 

architecture and FPGA algorithms. The Quatara flight computer system is a recoverable, 

redundant, single fault-tolerant system with increased robustness for cubeSats to serve low-cost, 

big data missions for NASA, Department of Defense (DoD), industry, and universities. It 

contains no proprietary components or software, making alterability and updateability relatively 

simple. 
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Chapter 1 Introduction 
 

 

Cube Satellites are a class of small, low-cost satellites. Due to the size/mass limitations of the 

satellites, little redundancy is allowed to increase the robustness and thus the quality of science 

returned from missions. Space is an unforgiving wasteland to operate in. Radiation, single event 

effects (SEEs), temperature swings, as well as limits on power, heat dissipation and 

communication make flight computers react unreliably. Nearly half of all cubeSats launched fail 

to function [1]. Two common methods are used to increase robustness: single string radiation 

hardened parts or multi-string redundant hardware schemes. The focus of this thesis is the latter. 

Radiation hardened parts are expensive and lack the performance of today’s commercial 

components [2]. In fact, radiation hardened parts are two orders of magnitude more expensive [3] 

[4] than commercial ones and delivery lead time is commonly six months [5] [6] or more. 

Commercial electronic components continue to become smaller, faster and more power efficient 

than their radiation hardened counterparts. Flying COTS in space is a long-held desire of DoD and 

NASA [7]. Even in triples, the cost and size are much smaller than radiation hardened components. 

The comparatively small market for radiation parts limits their evolution. The Quatara flight 

computer uses three redundant strings of single board computers with a majority voting scheme to 

operate and control a satellite. The basic architecture is an “E” configuration. The block diagram 

is shown Figure 1. 
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FC1 FC2 FC3

FPGA1 FPGA2 FPGA3

String 1 String 2 String 3
 

Figure 1 Basic Architecture 

 

In the proposed scheme, the flight computers each transfer input information to an external 

memory (inside the FPGA). Next, the FPGA transmits the data to the other FPGAs as well and 

receiving and storing other FPGAs’ transmitted data. The FC is notified that the process is 

complete and can access data from all three FCs in the memory. The entire set of data is compared 

and voted upon. Erroneous data is discarded and a hardware reboot of that string (the entire 

redundant element) is initiated to attempt recovery. A power cycle clears any type of single event 

upset (SEU) or single event latchup (SEL) [8]. While it is possible for the FCs to interchange data 

directly, FPGAs are used in this system to reduce overhead and to accurately control timing and 

synchronization. From the FC’s perspective, once the local data is saved, other FCs’ local data 

appears in memory with it a short time later.  

 

The proposed system consists of a redundant FC only. A truly redundant spacecraft would require 

backup power, instrumentation, and effectors, e.g. thrusters and reaction wheels, but such is not 

possible given the mass and space constraints of cubeSats. Even with non-redundant element 
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failure and a healthy FC, telemetry may still be able to be sent to ground control about the problem 

so workarounds can be initiated. The key is to maintain control of the spacecraft. Graceful 

degradation is preferred over total loss. 

 

The state vector is updated and shared continuously so when the primary FC goes down or is forced 

to restart, seamless transfer of control can occur to backups. Restarted FCs receive the “live” state 

vector and can resume where they left off.  

 

1.1 Single Event Effects 

 

SEEs are anomalies in electronics caused by energetic particles in space radiation [2] [8] [9]. These 

effects are typically not seen on the earth’s surface due to our magnetosphere. Various types of 

SEE exist, but the most common is SEU and SEL [10]. In an SEU, an energetic particle travels 

through a P-N junction in such a way as to cause electron-hole pairs to form resulting in temporary 

current flow across the junction. If the flow is high enough it will cause a bit flip, corrupting data 

[8] [9]. In an SEL, the particle travels through a NAND gate causing a self-amplifying short circuit 

to occur. This causes increased power consumption, heat dissipation, and possibly permanent 

damage to the digital circuit [8] [9] [11]. For complementary metal-oxide-semiconductor (CMOS) 

integrated circuits (IC)s, which is a common manufacturing technology, SELs are a common cause 

of failure and many space systems cannot tolerate even one of them [12]. The most important 

attribute of latchup and SEL in particular is that the latched state can only be released by turning 

off the device [10] [11] [12]. Statistics have shown that at 380km, which is in the range of low 
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earth orbit (LEO), SEEs can be expected at a rate of one every 15 minutes on average in a typical 

flight computer [9]. 

 

1.2 Total Ionizing Dose 

 

The total ionizing dose (TID) is the measure of the cumulative ionizing radiation that electronics 

receive over a period of time [13] [10]. In LEO the main source of radiation is from the Van Allen 

Radiation belts surrounding the earth [14]. The common unit is krad(Si) which equals 103 rad(Si) 

or 10 milligray where the parenthetical represents the material, silicon [10]. Radiation accelerates 

the aging of electronic parts and can lead to degradation of electrical performance [15]. At doses 

higher than 20 krad switching speed is affected and finally the device fails to function [10]. 

Redundancy is an effective technique for tolerating total ionizing dose [16].  

 

1.3 Field Programmable Gate Arrays 

 

An FPGA is a general purpose digital device that implements digital logic however the designer 

wants [17] [18] [19]. Standard “off-the-shelf” ICs have a fixed, predesigned circuit operation from 

the manufacturer; an FPGA does not. Its function is designed by the end user for a particular 

application. It can be reconfigured as many times as needed [18]. An FPGA is completely 

manufactured but remains design independent. Internal switching matrices are programmed to 

connect the logic gates, e.g. AND, OR, NOT, for the desired function [20]. The basic block 

diagram of an FPGA is shown in Figure 2. 
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Figure 2 FPGA Internal Block Diagram 

 

FPGAs are generally used with an external clock source, making the logic circuits edge-triggered. 

This allows predictable timing characteristics. As a result, FPGAs are ideal in instances when tasks 

need to occur due to an event or where tasks need to occur on a repeating basis. It is for this reason 

that FPGAs were chosen to control timing and synchronization in the Quatara system. 

 

In the most basic sense FPGAs do not contain processors, an arithmetic logic unit (ALU), or 

program instructions, i.e., software. A hardware description language (HDL) is used to program 

the interconnections between the gates creating a functional logic circuit. FPGAs are thus 

hardware, not software [18]. Processors are made of logic elements, however, so one could be 
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implemented in an FPGA that runs software [17]. This is called a soft-core processor. Since FPGAs 

are interconnected logic elements and not processors, they can perform tasks in parallel; i.e., 

several state machines can operate at once. This inherent parallelism is the most important feature 

of the FPGA [21]. 

 

The classic single core processor runs instructions sequentially. The same processor with an 

operating system runs multiple tasks, context switching from one task to another, sharing time on 

the processor. This process happens so fast that the tasks appear to occur in parallel, e.g. typing 

and listening to music. These systems have indeterminate timing characteristics which are 

unsuitable for the proposed system. 

 

A simple analogy best describes the difference between FPGAs and processors. Processors are like 

people; they can do almost anything, but they can only do one thing at a time. FPGAs are more 

like assembly lines. They can be designed to do a specific set of jobs and can do many different 

tasks at the same time independent of one another [18].  

 

1.4 Triple Modular Redundancy 

 

 

FPGAs are susceptible to SEUs, but there are several methods to mitigate the effects. The most 

common methods include power cycling, triple modular redundancy (TMR), redundant devices, 

and active configuration memory scrubbing [22]. The first three of these methods are employed 

by the Quatara system. In simplest terms, TMR involves triplicating the logic function of the 

device and includes a set of voter circuits to determine the majority output for the proper operation. 
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In majority voting, the best two of three wins the vote and is considered the correct output [11] 

[12]. TMR can increase the FPGA resources required three to six times and can affect the 

maximum speed [11]. A basic TMR voter is shown in Figure 3. 

 

A

B

C

majority 

output

 

Figure 3 TMR Voter 

 

 

1.5 Related Work 

 

Although there has been much research on redundant flight computers, it has mostly been focused 

on large satellites and launch vehicles. The following will explore prior work on redundant cubeSat 

flight computers. 

 

1.5.1  TREMOR 

Worcester Polytechnic Institute developed a TRiplE MOdular Redundant Flight Computer 

(TREMOR) [9]. This system has discrete FCs and employs a single TMR enhanced FPGA voter. 

It resets faulty FCs but also saves the states of the healthy FCs, resetting them as well. All FCs 

then resynchronize. The block diagram for the TREMOR Flight computer is shown in Figure 4. 



 8

 

 

Figure 4 TREMOR Flight Computer Block Diagram 

 

1.5.2  RadSat 

RadSat is a FPGA-based Radiation Tolerant SmallSat Computer System. It uses one FPGA to 

implement multiple FCs all on one chip. Three of the processors actively employ majority voting. 

The FPGA is broken up into “tiles”. Each tile contains a soft-core processor. If a fault is detected 

on an active processor, it is replaced with a known good spare allowing majority voting to continue. 

Figure 5 illustrates the RadSat Flight Computer. 

 

 

 

Figure 5 RadSat Flight Computer 
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1.5.3  Dependable Multiprocessor (DM) 

The DM system is a cluster of high performance commercial off-the-shelf (COTS) processors 

connected with a high speed interconnect. It operates under the control of a reliable, possibly 

radiation hardened, system controller. The system controller provides a highly-reliable and SEE-

immune host to support recovery from radiation-induced events in the COTS hardware. A block 

diagram of the DM is shown in Figure 6. 

 

System 
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Processor

COTS 

Processor
………. COTS 

Processor

Mass Data 

Storage

High Speed Interconnect (Ethernet)

Sensor 

I/O
Sensors

Control Bus (power and discretes)
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Interface

 

Figure 6 DM Payload Processing Architecture 

 

 

 

1.6 Summary 

 

The Quatara system uses full hardware redundancy enclosed in FCRs. It maintains control of the 

spacecraft at all times, even when a primary flight computer becomes faulty. A single fault cannot 

affect the whole system; it is contained within the FCRs. These properties provide an increase in 

reliability for cubeSats which will in turn allow higher risk missions to return valuable science 

data. The Quatara system enables low-budget missions to reliably return big budget science. 

 

The TREMOR system restarts all three flight computers after a fault, leaving the spacecraft 

unattended for a short time and making it vulnerable to critical failure or losing valuable science 
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data. The Quatara system improves upon this by keeping healthy flight computers on at all times, 

even during a fault. TREMOR’s single FPGA voter, although made more robust by TMR, is a 

single point of failure. An SEL can affect the entire FPGA IC, faulting the whole system. The 

system is only partially redundant. Quatara uses full hardware redundancy so that no one piece of 

hardware can fault the entire system. The FPGAs are also enhanced with TMR for additional 

robustness. 

 

The RadSat system does not separate the redundant elements with fault containment regions 

(FCRs). Fault tolerant systems are built around the concept of FCRs. Its primary goal is to limit 

the effects of a fault and the propagation of errors region to region [23]. As a result, an SEL can 

affect the entire substrate of the IC, faulting all redundant “healthy” processors. Even if an SEL 

does not affect the healthy processors, the fault can only be corrected by cycling power to the entire 

FPGA, that is, assuming it has not destructively latched. Like the previous example, this leaves 

the spacecraft unattended. The Quatara system improves upon this shortfall by grouping three 

complete sets of redundant hardware within three FCRs; one FCR per set. A single fault will only 

affect a single set of hardware. 

 

The DM system has excellent throughput but requires a radiation tolerant system controller. This 

approach works but suffers increased cost and reduced performance compared to that available 

from redundant commercial grade parts. The Quatara system does not require any radiation 

tolerant parts, thus providing users with a multitude of economical, high performance commercial 

parts. The DM system shares data over a single Ethernet connection which is a single point of 

failure. A multi-port Ethernet system could be implemented, but the base unit flight computer 
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would require at least two hardware independent ports. Single board computers ideal for cubeSats 

usually only have one port, thereby removing a large portion of design choices. The Quatara 

system improves upon this design by providing a dedicated communication bus between each pair 

of FPGAs; none are shared. A fault between any two FPGAs will not affect a bus going to the third 

FPGA. 

 

1.7 Goals 

1) To prove that the proposed architecture is effective against failures caused by SEEs 

a. requirements: 

i. a working hardware prototype 

ii. testing to simulate SEEs 

2) To present the architecture and algorithms such that others can improve, build upon, and 

scale the system to suit mission parameters. 

a. requirements: 

i. explicit details about the architecture and hardware used 

ii. complete algorithms 

iii. flowcharts explaining algorithms 
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Chapter 2 Architecture 

 

As was shown in Figure 1, the architecture consists of three identical strings. A string contains all 

of the things needed to command and control the spacecraft if it were operating alone. It is also an 

FCR. The major components of a string/FCR in this architecture are a power manager, FPGA 

clock source, FPGA, FC, and bus isolator. The major components for string1 are illustrated in 

Figure 7.  
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The power management block is used monitor current consumption and remove power from the 

string in the event of an overload. This is used to detect SELs and attempt to prevent permanent 

damage. It also accepts voting logic from other strings which are logical ANDed together to 

remove power. This is the method by which healthy strings majority vote erroneous strings out 

and initiate restart. Restarting clears SEEs making strings recoverable. 

 

Figure 7 String Hardware 
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Since the redundancy of the proposed system begins and ends with the flight computer, the IO bus 

to the rest of the spacecraft must be shared. A faulty flight computer that is in control of an 

instrument has to relinquish control so another can take its place. This is handled with hardware 

such that when a faulty FC is voted out, its connection to the bus is automatically broken with a 

power reset. This is illustrated as the bus isolator block in Figure 7. When the bus isolator loses 

power, its connection to the bus assumes a high impedance. This isolates the FC and completes 

the fault containment region.  

 

The FPGA to FPGA data transfer and synchronization signals are illustrated in Figure 8. These 

signals are controlled solely by the FPGAs without the FCs’ oversite. This reduces the FCs’ 

overhead considerably. 

 

 

Figure 8 FPGA to FPGA Communication 

 

The data transfer sequence is illustrated in Figure 9. It begins with a PPS signal from the FPGA to 

the FC signaling that it is time to transfer input data to the FPGA. This is called the primary data 

exchange phase. Next is the data interchange phase, where data from each FPGA is exchanged 
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with the other two FPGAs. In the next phase, the combined data return phase, the combined data 

is returned to the FC. Each FC now has every other FC’s data including its own. In the final phase, 

the decision phase, each FC compares the data and votes out any erroneous string. The primary 

FC in command can then control the spacecraft and gather new input data. 

 

 

Figure 9 Data Transfer 

 

Timing is important for this system to work, yet it is not guaranteed generally by processors. In 

microprocessors, interrupts can be triggered for important events but an interrupt, although 

seemingly instantaneous, only raises a flag for the processor’s attention. The microprocessor must 

perform context switching to service the interrupt if the priority is high enough. This process takes 

time and varies depending on what instruction is in action. Similarly, processors with operating 

systems would schedule a high priority task, but the time it takes to service that task will vary and 

will not be instantaneous. That is why timing is controlled by FPGAs in this system. 



 16

 

The data block that is transferred is made up of several parts illustrated in Figure 10. The header 

region is unused in this iteration but could be used to pass messages between the FC and FPGA. 

The FPGA could for instance pass an error code to the FC indicating that there was no data coming 

from one of the other FPGAs. The input region is reserved for instrument data and ground 

commands from the FC. The output section contains the FCs’ control solution to the input data. 

An example would be the reaction wheel speed needed to adjust the spacecraft’s attitude to point 

the solar panels at the sun. Since there is only one round of data exchange, the output solution to 

the most recent input data has to be included in the next data exchange cycle. Therefore, cycle N 

contains input data N and output data N-1. Cycle times can be adjusted to suit the latency needed. 

FCs can also perform the decision phase of the data exchange on every other cycle if desired.  

 

 

Figure 10 Block Data 

 

Figure 11 indicates how the cycle time, represented by “cycle clocks” later in the algorithm section, 

is broken up into windows. The windows here relate directly to the phases illustrated in Figure 11. 
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Initially there is a pulse per second (PPS) signal from the FPGA to the FC indicating that the FC 

to FPGA data transfer window is open. The FC can transfer data anytime during that window. The 

next window is the FPGA to FPGA data interchange window where the FPGAs exchange the FC’s 

data. The final window is the FC final window. A “data ready for FC” flag from the FPGA is sent 

to the FC indicating that it can collect the entire set of data. 

 

 

 

Figure 11 Data Transfer Windows 
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Chapter 3 Hardware  

 

Figure 12 is an image of the Quatara system prototype. The upper boards are FPGA development 

boards part number A3PE-STARTER-KIT-2. The lower boards are Gumstix EarthSTORM single 

board computers inserted in the Gumstix Alcatraz breakout board. 

 

 

 

Figure 12 Breadboard Prototype 
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Figure 13 PCB Prototype 

 

The prototype PCB is shown in Figure 13. While the goal is to achieve PC-104 dimensions (3.55” 

X 3.775”), the prototype PCB exceeded that size. Additional hardware was included, e.g. 

pushbuttons and headers, to simplify in-depth testing. The next revision can easily meet the size 

requirements with the superfluous circuitry removed. 

 

Physical addresses used by the algorithms (discussed later in the algorithm section) are determined 

by physical inputs jumpered high or low. Each device has a unique address. The purpose is to 

allow a single set of code. Function depends on physical address, not the installed code. 

 

The ProASIC3 flash-based FPGA part number A3P600L-FGG144 was chosen for this 

implementation due to its inherent SEU immunity [24], low power draw, and static (flash-based) 

configuration property. In fact, this part number uses the same silicon design and process as the 
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fully radiation hardened equivalent RT3PE600L [25]. This gives radiation hardened part 

performance at a commercial part price. If a more robust solution is needed the radiation hardened 

part can be used since both parts are functionally identical. The low power draw property of flash-

based FPGAs makes them more desirable for this system than static random access memory 

(SRAM)-based FPGAs for power limited cubeSats and especially so since the parts are triplicated. 

Also, the reduced SEU vulnerability of flash memory also makes this type FPGA more desirable 

for space than SRAM for configuration memory [12]. The resources used by the FPGA to 

implement the different TMR options for this system are shown in the following tables.  

Table 1 shows the resources without TMR enhancement.  
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ProASIC3 Compile Report 

Resource: Used: Available: Percent Used: 

CORE 4685 38400 12.2% 

IO (w/ clocks) 31 147 21.09% 

Differential IO 0 65 0% 

Global (chip and quadrant) 6 18 33.33% 

PLL 0 2 0% 

RAM/FIFO 4 60 6.67% 

Low Static ICC 0 1 0% 

FlashRom 0 1 0% 

User JTAG 0 1 0% 

 

Table 1 ProASIC3 Compile Report – No TMR 

The C-C option uses combinatorial cells with feedback instead of flip-flop or latch primitives for 

storage devices [26]. The resource report using the C-C option is shown in Table 2. 
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ProASIC3 Compile Report 

Resource: Used: Available: Percent Used: 

CORE 5083 38400 13% 

IO (w/ clocks) 31 147 21.09% 

Differential IO 0 65 0% 

Global (chip and quadrant) 6 18 33.33% 

PLL 0 2 0% 

RAM/FIFO 4 60 6.67% 

Low Static ICC 0 1 0% 

FlashRom 0 1 0% 

User JTAG 0 1 0% 

 

Table 2 ProASIC3 Compile Report – C-C 

 

The TMR option implements each register with three flip-flops or latches that vote to determine 

the state of the register. The resource report is shown in Table 3. 
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ProASIC3 Compile Report 

Resource: Used: Available: Percent Used: 

CORE 8708 38400 23% 

IO (w/ clocks) 31 147 21.09% 

Differential IO 0 65 0% 

Global (chip and quadrant) 6 18 33.33% 

PLL 0 2 0% 

RAM/FIFO 4 60 6.67% 

Low Static ICC 0 1 0% 

FlashRom 0 1 0% 

User JTAG 0 1 0% 

 

Table 3 ProASIC3 Compile Report – TMR 

 

The end to end worst propagation delay for each of the TMR options is presented in Table 4. 

 

 

ProASIC3 Delay Report 

TMR Type: Worst Delay (nS): 

None 22.479 

C-C 22.479 

TMR 24.561 

 

Table 4 Propagation Comparison 

 

One of the major advantages of this system is the separation of hardware redundancy and software. 

The FPGA hardware used in this system does not need to be upgraded every time more 
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performance is needed. Keeping everything but the processor will save extensive resources on a 

redesign. The same benefit applies if the processor becomes obsolete. 
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Chapter 4 Algorithms 

 

The algorithms presented revolve around the designations “primary”, “secondary”, and “tertiary”. 

“Primary” has the most authority with the others descending respectively. While the designations 

indicate a hierarchical command structure, it is important to note that they are only states that 

determine behavior; they are not assigned specifically to specific hardware. By default, FPGA1 is 

“primary”, FPGA2 is “secondary”, and FPGA3 is “tertiary,” but any FPGA can be any designation. 

This property is important to prevent a system-wide failure if there is a fault with FPGA1 on a cold 

start. A cold start is when all FPGAs are powered up for the first time. 

 

A block diagram, Figure 14, is used to describe the functional relationships of the FPGA code. 

The diagram includes the descriptions “FPGA1”, “FPGA2”, and “FPGA3” to simplify 

explanation, but the code in all three FPGAs is identical. 
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Figure 14 FPGA Code Block Diagram 

 

 

The RAM block is the memory storage element for the system. FC block data is stored here. Data 

exchange is accomplished by serial peripheral interface (SPI). The window control block controls 

the windows in which valid data exchange occurs. Data exchanged outside of valid windows is 

considered erroneous and is ignored. The synchronization block is the heart of Quatara providing 

timing control for the whole system. Figure 15 pushes into the synchronization control block, 

providing more detail of its inner workings. 
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Figure 15 FPGA Code Block Diagram for Synchronization Control 

 

The pulse detector receives the synchronization signals from the other FPGAs, providing the sync 

block with the times and types of signals found. The sync block will adjust the cycle time if needed 

to make sure the PPS signals are aligned. The proportional-integral-derivative (PID) block 

provides closed loop control of the PPS signal adjustment. The universal asynchronous receiver-

transmitter (UART) block transmits the synchronization byte in the form of serial data. This single 

unique byte identifies the transmitter’s identity, i.e., the synchronization behavior assumed. This 

type of signaling is more complex than discrete strobes but is more robust. Noise transients could 

cause false positive synchronization signals. Only valid bytes are accepted. 

 

Figure 16 indicates the major cycle and how the synchronization timing relates. The PPS is sent 

between the FPGA and FC. It triggers the FC to start the data exchange function. The green area 

in the center of the figure indicates the window in which valid sync pulses can be sent and received. 
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The algorithms are designed to keep the sync pulse in the center of the window. The pulses are 

sent from FPGA to FPGA identifying their designation, e.g. primary, secondary, or tertiary.  

 

 

Figure 16 Synchronization Timing  

 

The pulse detector contains two identical modules, one for each of the other FPGAs. Both operate 

in parallel. The flow diagram is presented in Figure 17. 
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Figure 17 Pulse Detector Flow Diagram 
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The pulse detector pseudocode is shown in Figure 18. 

 

//left side 

if at any time we get a “reset” signal,  zero all registers, state machine back to init state, and 

 outputs to zero 

afterward, if at any time we get a “clear” signal same except stored “left designation” byte and 

 state machine skips init state and goes to wait4pulse state 

otherwise transition through states in state machine starting with “init” 

state init: 

look at the left uart receiver and see if there’s a new byte 

if so, see if equal to “primary” “secondary” or “tertiary” 

if so, make sure it isn’t the same as the one detected for the right side, discard otherwise 

output “primary detected” “secondary detected” or “tertiary detected”, output the time 

 detected as “primary time”, “secondary time” or “tertiary time”, and store the received 

 byte as “left designation” 

go to the “wait for pulse” state 

state wait for pulse: 

look at the left uart receiver and see if there’s a new byte 

if so, see if equal to “primary” “secondary” or “terchiary” 

if so, make sure it is the same as the one previously stored, discard otherwise 

output “primary detected” “secondary detected” or “terchiary detected”, output the time 

 detected as “primary time”, “secondary time” or “tertiary time” 

 go to the “wait for clear” state  
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state wait for clear: 

do nothing. Normal operation is to get a “clear” signal and go to the “wait for pulse” state. 

//Right side 

duplicate of left side  

 

Figure 18 Pseudocode for Pulse Detector Algorithm 

 

The Proportional Integral Derivative (PID) controller used in this system was designed to be fast 

and use minimal resources. Although compact, it has programmable K-factor coefficients such 

that K = 1/(2n) and n is an integer 0 to 7. It was found that the constants Kp = 0, Ki = 4, and Kd = 

4 yielded adequate control for the system tested. Given the modularity of this block, a higher 

fidelity control block could be substituted for finer control if needed. Inputs are standard logic 

“enable” and integer “error”, outputs are an integer “PID output” and standard logic “output 

ready”. Constants are integers Kp, Ki, Kd. The algorithm used is shown is Figure 19. 

 

 

if reset signal, reset all registers, put state machine in “idle” state, and zero all outputs 

otherwise transition through state machine starting with “idle” 

state idle: 

when enabled, read error input 

if the error magnitude is less than the minimum error, go to “no calculation” state 

otherwise go to “sub math” state 

state sub math: 
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integral = integral + error //should be integral = integral + error*dt but dt is one here for 

 //simplicity 

derivative = error - prevError //should be  derivative = (error - previous_error)/dt but dt is one 

 //here also 

store error as previous error 

go to shift state 

state shift: // the K-factors used here negative powers of two, i.e. K = 3 means 1/(2^3) = 1/8. 

//This simplifies the hardware down to a shift register eliminating the need for a dedicated 

//multiplication block and the extra time to perform the multiplication 

left shift the error Kp times 

left shift the integral Ki times 

left shift the derivative Kd times 

go to “end sum” state 

state end sum: 

PID output = error + integral + derivative 

state no calculation: don't do calculation; only do min upkeep 

PID output = 0 

store error as previous error 

go to “idle” state 

 

Figure 19 Pseudocode for PID Algorithm 
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The proposed system is asynchronous but is synchronous at the cycle level. Synchronous systems 

synchronize at the clock level [23]. The sync algorithm flow diagram and sync pseudocode are 

broken up into four separate sections to simplify presentation but exists as one block of code. The 

initial synchronization algorithm (part 1 of 4) is shown in Figure 20. It begins with a delay and 

assumes one of three behaviors: primary, secondary, or tertiary. For full redundancy capability, 

any FPGA can become the primary, secondary, or tertiary, but the normal starting order and the 

order used to explain the algorithms is FPGA1 = primary, FPGA2 = secondary, and FPGA3 = 

tertiary.  

 

A “park” state transition occurs as a result of certain error checks. In this state it does nothing but 

wait. If it’s doing nothing, it isn’t transferring data and the entire string will eventually be voted 

out because of a data mismatch. This technique is used to prevent errors from propagating 

throughout the system.  
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Figure 20 Sync Flow Diagram 
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The pseudocode for the initial sync block function (part 1 of 4) is shown is Figure 21. Inputs are 

integer “cycle clocks”, “start window”, and “decision point”, standard logic “primary detected”, 

“secondary detected”, and “tertiary detected”, outputs are byte “primary”, “secondary”, and 

“tertiary” and standard logic “pulse per second” and “clear”. 

 

 

 

if reset signal, reset all registers, put state machine in “wait4timer” state, and zero all outputs, 

“cycle clocks local” = “cycle clocks” 

otherwise transition through state machine starting with “wait4timer” 

state wait4timer: – wait for timer to complete programmed by physical jumper. FPGA1 timer is 

//1.5sec, FPGA2 is 2.5sec, FPGA3 is 3.5sec 

when timer done go to “init” state 

state init: 

//cold start scenarios, i.e. all FPGAs are starting up for the first time 

if primary not detected and secondary not detected and tertiary not detected go to “primary 

 count” state //nothing detected. assert primary fpga 

else if primary detected and secondary not detected and tertiary not detected, go to “secondary 

 sync” state //primary detected. assert secondary fpga 

else if primary detected and secondary detected and tertiary not detected, go to “tertiary sync” 

 state //have primary and secondary. assert tertiary fpga 
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//restart scenarios – a string has been reset and the fpga is trying to resynchronize. During this 

//time the pulse detector block has had at least 1.5 cycles (1.5 sec for the FPGA1 delay case) to 

//detect the other two fpga designations. This prevents overlap issues and incorrect fpga 

//assertions. 

else if primary not detected and secondary detected and tertiary detected, go to “primary sync 

 secondary” state //the primary and secondary are already running synchronize with the 

 //secondary and take over as the primary once again 

else if primary detected and secondary not detected and tertiary detected, go to “secondary 

 sync” state //the primary and tertiary are already running. synchronize with the primary 

 //and take over and the secondary once again 

//unlikely scenarios 

else if primary not detected and secondary not detected and tertiary detected, go to “primary 

 sync tertiary” state //with 1 fault-tolerance and no cold start, there should be at least two 

 //strings running but it is possible to lose two strings 

else if primary not detected and secondary detected and tertiary not detected, go to “primary 

 sync secondary” state // with 1 fault-tolerance and no cold start, there should be at least 

 //two strings running but it is possible to lose two strings 

//error scenario 

else go to “park” state //this shouldn’t happen and something’s wrong. do nothing, FC will   

 //eventually restart 

 

Figure 21 Pseudocode for Sync Algorithm 
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The primary behavior flow diagram is shown in Figure 22 (part 2 of 4). Although this behavior 

has the most authority, it has the simplest function. 
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Figure 22 Primary Behavior Flow Diagram 
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The pseudocode for the primary behavior is shown is Figure 23. 

 

______________________________________________________________________________ 

//state primary count: Easiest scenario. A free running clock controls outputs; it does not have to 

//see what the secondary and tertiary fpgas are doing 

counter counts up until it equals “cycle clocks” and resets 

if counter = half its max setting output byte “primary” 

state primary sync secondary: Here the primary has been reset, the secondary FPGA has taken 

//over and the primary is trying to resynchronize with the secondary FPGA before taking  back 

//over 

set counter to half of “cycle clocks” 

send “clear” strobe to pulse detector 

if secondary detected, go to state “primary count” 

state primary sync tertiary: Here the primary has been reset, the tertiary FPGA has taken over 

//and the primary is trying to resynchronize with the tertiary FPGA before taking back over 

set counter to half its of “cycle clocks” 

send “clear” strobe to pulse detector 

if tertiary detected, go to state “primary count” 

 

Figure 23 Pseudocode for Primary Behavior Sync Algorithm 
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Figure 24 shows the flow diagram for the secondary behavior (part 3 of 4). Its code is more 

complex due to the fact that it has to adjust its own cycle clocks to stay synchronized to the primary 

FPGA. 
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Figure 24 Secondary Behavior Flow Diagram 
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Figure 25 shows the pseudocode for the secondary behavior. 

state secondary count:  

counter counts up and resets when it equals “cycle clocks local” 

if counter = zero send out “pulse per second” strobe 

if counter is between “start window” and “decision point”, release “clear” output signal 

otherwise send “clear” output signal 

if counter = half of “cycle clocks local” output byte “secondary” 

if counter = “decision point”, go to “secondary decision” state 

state secondary decision: we’re at the decision point for the secondary fpga behavior   

//this is the ideal scenario where everything is working //fine. The error between the primary and 

//secondary fpga sync pulse times are calculated                         

 counter continues counting as before  

 if “primary detected” and “secondary not detected” then //something wrong if secondary 

 //detected 

 PID error = cycle clocks local / 2 – primary time //sync signal should be half of “cycle  

  //clock local”     

 go to state “secondary decision 2” 

//next is the situation where the primary string has gone off line and we have to take over as 

leader 
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else if “primary not detected” and “secondary not detected” and “tertiary detected”, go to 

 “secondary count” state //check for tertiary to eliminate possibility of lost 

 //synchronization with other fpgas 

else go to “park” state //something is wrong. do nothing until FC resets string 

state secondary decision 2: 

counter continues counting 

if abs(PID error) < max allowed error send to PID block and enable 

else go to “park state” //something is wrong. do nothing until FC resets string  

when PID block is complete, cycle clocks local = cycle clocks – PID output 

go to “secondary count” state 

state secondary sync: here the secondary has been reset and needs to synchronize to the primary 

//fpga 

set counter to half of “cycle clocks local” 

send “clear” strobe to pulse detector 

if “primary detected”, go to state “primary count” 

 

Figure 25 Pseudocode for Secondary Behavior Sync Algorithm 

 

Figure 26 shows the flow diagram for the tertiary behavior of the sync algorithm (part 4 of 4). Its 

operation is nearly identical to the secondary behavior. The difference lies in what happens when 

the primary FPGA is lost. 
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Figure 26 Tertiary Behavior Flow Diagram 
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The pseudocode for the tertiary behavior of the sync algorithm is shown in Figure 27. 

 

 

State tertiary count:  

counter counts up and resets when it equals “cycle clocks local” 

if counter = zero send out “pulse per second” strobe 

if counter is between “start window” and “decision point”, release “clear” output signal 

otherwise send “clear” output signal 

if counter = half of “cycle clocks local” output byte “tertiary” 

if counter = “decision point”, go to “tertiary decision” state 

state tertiary decision: we’re at the decision point for the tertiary fpga behavior 

//This is the ideal scenario where everything is working fine. The error between the primary and 

//tertiary fpga sync pulse times are calculated 

 counter continues counting as before.  

 if “primary detected” and “tertiary not detected” then //something wrong if tertiary detected 

 PID error = cycle clocks local / 2 – primary time //sync signal should be half of “cycle  

  //clock local”     

 go to state “tertiary decision 2” 

//next is the situation where the primary string has gone off line and we need to follow secondary 

else if “primary not detected” and “secondary detected” and “tertiary not detected” //check for 

 //tertiary to eliminate possibility of lost synchronization with other fpgas 

PID error = cycle clocks local / 2 – secondary time //sync signal should be half of “cycle 

 //clocks local”     
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 go to state “tertiary decision 2” 

else go to “park” state //something is wrong. do nothing until FC resets string 

state tertiary decision 2: 

counter continues counting 

if abs(PID error) < max allowed error, send to PID block and enable 

else go to “park state” //something is wrong. do nothing until FC resets string  

when PID block is complete, cycle clocks local = cycle clocks – PID output 

go to “tertiary count” state 

state tertiary sync: set the count to half point where all sync pulses are found 

send “clear” strobe to pulse detector 

if “primary detected”, go to state “tertiary count” 

state park: sit here and do nothing, don’t make things worse, wait for FC to reset string 

indicate error 

 

Figure 27 Pseudocode for Tertiary Behavior 
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Chapter 5 Testing 

 

The following sections detail the tests performed that not only examine the system’s robustness 

against SEEs but to also test the faults that would cause system-wide failures in the other systems 

discussed previously. The first two tests establish that synchronization, a key for this system to 

work, is functioning. The ladder three are designed to test against SEEs and the faults affecting 

previous work. 

 

5.1 PPS Period 

 

The FPGA clocks used are identical, and the system could stay synchronized for a while without 

any adjustment needed by the algorithms. This test will measure the PPS periods without any 

adjustment by the algorithms. The PPS period measurement is shown in Figure 28. 

 

 

Figure 28 PPS Period Measurement 
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Test1: Enable FPGA1 only. FPGA1 is “primary”. Measure the max and min period between 

FPGA1 PPS signals. 

Test2: Enable FPGA2 only. FPGA2 is “primary”. Measure the max and min period between 

FPGA2 PPS signals. 

Test3: Enable FPGA3 only. FPGA3 is “primary”. Measure the max and min period between 

FPGA3 PPS signals. 

 

Results:  

  Period (mS) 

PPS Source min max mean 

FPGA1 999.97 1,000.0 1,000.0 

FPGA2 999.97 1,000.0 999.98 

FPGA3 999.90 999.97 999.97 

 

Table 5 Period Test Data 

 

Conclusion: The FPGA clock, although an identical part operating in identical systems, has jitter 

and causes the PPS signals to quickly diverge due to lack of synchronization. 

Although the worst divergence is only 30µS, the effect accumulates every cycle 

and becomes significant in 167 cycles. This test proves the need for a 

synchronization algorithm. 
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5.2 Synchronization Accuracy 

 

The degree to which the system can maintain synchronization affects the adjustability of system 

cycle time; i.e., shorter cycles can come from tighter synchronization. The accuracy is measured 

by the variance shown in Figure 29. 

 

 

Figure 29 PPS Synchronization Accuracy 

 

 

Test1: Measure the maximum variance in PPS signals between FPGA1 and FPGA2 during 

normal run. Make FPGA1 “primary”. 

Test2: Measure the maximum variance in PPS signals between FPGA3 and FPGA2 during 

normal run. Make FPGA3 “primary”. 

Test3: Measure the maximum variance in PPS signals between FPGA3 and FPGA1 during 

normal run. Make FPGA3 “primary”. 
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Figure 30 Synchronization Accuracy Testing 

 

 

 

Results:  

primary 

FPGA 

subordinate 

FPGA 

variance 

(µS) 

FPGA1 FPGA2 0.651 

FPGA3 FPGA1 0.646 

FPGA3 FPGA2 0.636 

 

Table 6 Synchronization Accuracy Test Data 

 

Conclusion: Comparing the data from this test and the PPS period test proves that Quatara is 

actively aligning the PPSs and providing synchronization for the redundant 

elements. Without the previous test for comparison, it could be argued that the 
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system is staying in synchronization because all the parts are identical and the 

variance between clock pulses is minimal.  

 

5.3 Interruption of Normal Start Sequence 

 

Since a fault can occur any time on any string, fault on a cold start must be tested as well. By 

default, FPGA1 is primary, FPGA2 is secondary, and FPGA3 is tertiary. Power will be withheld 

from a single FPGA during the startup sequence and will be applied after the other two FPGAs 

complete startup. 

 

Test1: FPGA1 power withheld 

Results: FPGA2 initialized as primary, FPGA3 initialized as secondary, FPGA1 initialized as 

tertiary. 

 

Test2: FPGA2 power withheld 

Results: FPGA1 initialized as primary, FPGA3 initialized as secondary, FPGA2 initialized as 

tertiary. 

 

Test3: FPGA3 power withheld 

Results: FPGA1 initialized as primary, FPGA2 initialized as secondary, FPGA3 initialized as 

tertiary. 
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Conclusion: Interruption of the normal start sequence on a cold start does not cause system 

failure. As designed, any FPGA can assume any behavior. 

 

5.4 Random String Reset 

 

A faulty string (one afflicted by an SEU) will be power reset by healthy strings. An SEL will cause 

an immediate reset. Resetting strings randomly will simulate these types of failures. This test is 

focused on the FPGA’s ability to resynchronize after a power restart. Upon restart, the maximum 

divergence between PPS signals will be measured as shown in Figure 31. 

 

 

Figure 31 Maximum Divergence on Restart 

 

 

Test1: Wait until all three FPGAs have assumed their behavior. Make FPGA1 primary. Reset 

string2 at a random point in its cycle. Measure maximum divergence on restart. 

Test2: Wait until all three FPGAs have assumed their behavior. Make FPGA3 primary. Reset 

string1 at a random point in its cycle. Measure maximum divergence on restart. 
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Test3: Wait until all three FPGAs have assumed their behavior. Make FPGA3 primary. Reset 

string2 at a random point in its cycle. Measure maximum divergence on restart. 

 

Results: All tests concluded with the faulty string restarting, resynchronizing, and assuming 

where it left off. The maximum divergence test data is shown in Table 7. 

 

primary 

FPGA 

subordinate 

FPGA 

max divergence 

(µS) 

FPGA1 FPGA2 4.822 

FPGA3 FPGA1 10.217 

FPGA3 FPGA2 5.322 

 

Table 7 Maximum Divergence on Reset Test Data 

 

 

Conclusion: The random string reset test proves that the FPGA synchronization algorithm will 

recover and continue normal operation after any SEE resulting in a string reset. It 

also proves that the system handles faults that previous work could not. 

 

5.5 Voting Logic 

 

An SEE can cause data corruption or cause a component to stop functioning. Comparing shared 

data is key for fault detection. Falsifying data in different parts of the normal data stream necessary 

to test the voting logic. A simple counting sequence is computed by each FC and is used to 

represent the state vector of the system. The output values are compared. The test setup is shown 

in Figure 32. Light-Emitting Diodes (LED)s are used to indicate when an FC casts it’s vote for a 
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faulty string. The PCB prototype logic ANDs these signals together and sends them to the power 

controller, but LEDs are used in this test to simplify troubleshooting. The test hardware is shown 

in Figure 33. 
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Figure 32 Voting Logic Test Setup 

 

 

 

 

Figure 33 Voting Logic Test Hardware  
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Test1: Open TX line of the SPI interface for FPGA1 as indicated in Figure 34. Open both TX 

lines simultaneously. This test simulates bad data from FPGA1 to the other two. 

 

FPGA1

FPGA2 FPGA3
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block data transfer
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Figure 34 Voting Logic Test1 

 

 

Test2: Open TX line of the SPI interface for FPGA2 as indicated in Figure 35. Open both TX 

lines simultaneously.  
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Figure 35 Voting Logic Test2 

 

 

 



 56

Test3: Open TX line of the SPI interface for FPGA3 as indicated in Figure 36. Open both TX 

lines simultaneously.  
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Figure 36 Voting Logic Test3 

 

 

 

Test4: Open the TX line of the SPI interface for FC1 and FPGA1 as indicated in Figure 37. 

This test simulates bad data from FC1 to FPGA1. 

FPGA1 FC1
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block data transfer

X
 

Figure 37 Voting Logic Test4 

 

 

Test5: Open the TX line of the SPI interface for FC2 and FPGA2 as indicated in Figure 38. 
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Figure 38 Voting Logic Test5 

 

 

 

Test6: Open the TX line of the SPI interface for FC2 and FPGA2 as indicated in  

Figure 39. 

FPGA3 FC3

transfer flags

block data transfer

X
 

 

Figure 39 Voting Logic Test6 

 

 

 

Results: All tests resulted in a pair of LEDs being lit for the faulty string.  

 

Conclusion: Each LED is a vote for a faulty string to be reset. The pair logical ANDed together 

produce the reset signal needed by the power management block to perform a power 
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reset on the faulty string. This testing proves that the voting logic detects errors 

caused by SEUs in the transferred data block.   
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Chapter 6 Flight Computer 

 

Although beyond the scope of this thesis, some discussion is required regarding the flight computer 

software. Although timing and data transfer tasks are handled by the FPGA, the FC still has to 

contribute resources to handle voting and deciding who is in charge.  

 

The FCs have a similar order of dominance scheme as the FPGAs, but the designation is 

completely independent. Just because the FPGA in a string is “primary” does not mean the FC in 

the same string is “primary”. For clarity, the FCs will use a different designation in order of most 

authority: General, Captain, and Private.  

 

The voting system is an exact-match voter scheme [23]. 

 

The FC basic software flow diagram is shown in Figure 40. The FC hardware selection and FC 

software were completed by Jose Molina-Fratichelli [27]. 
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Figure 40 FC Software Flow Diagram 



 61

Requirements levied on computing elements: 

 

1) It is the FC’s responsibility to determine which FC is the General. The General is in 

control of the IO bus and thus the spacecraft.  

2) If the General is found to be faulty another FC must assume spacecraft control. 

3) Every FC must share and collect data when prompted, compare shared data, and vote out 

an erroneous FC. 

4) FCs must make FPGA triggered synchronization signals the first priority. 

5) A FC with a permanent fault must be permanently isolated from the system by the 

remaining healthy FCs. 
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Chapter 7  Conclusion 

 

The Quatara flight computer system is a recoverable, redundant, single fault-tolerant system with 

increased robustness for cubeSats to serve low-cost, big data missions for NASA, Department of 

Defense (DoD), industry, and universities. SEEs and total ionizing dose radiation make cubeSat 

FCs perform unreliably. Past work has used redundant hardware to increase reliability. The 

Quatara system further improves the robustness of cubeSats by using FCRs containing a full set 

of redundant hardware and readily available commercial parts. FPGAs are employed to remove 

overhead from the FCs and to accurately control timing. TMR is used to add additional robustness.  

 

The architecture was illustrated from a high level and broken down into smaller parts and 

explained. Similarly, the FPGA algorithms were presented as a top-level block diagram with 

components explained. The synchronization block, the heart of the system, was broken into sub-

blocks and their functions explained. Synchronization sub-blocks were further presented as both 

flow diagrams and pseudocode. The hardware chosen was also discussed. 

 

Testing was designed to examine how the system reacts to major faults caused by the space 

environment and to ensure that the algorithms work as predicted. Not only did the Quatara system 

pass testing, it validated the improvements to previous work against system-wide failure as well. 
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Chapter 8  Future Work 

 

Future work includes fault-tree development, fault-tree testing, and testing the prototype PCB. 

 

During this research exercise, it was determined that adding the voting logic to the FPGAs would 

free up additional overhead for the FCs. Fault-tolerance and redundancy would be completely 

separate from software development. FC software developers could then focus on mission specific 

tasks, simplifying development. From their perspective, development would be centered around 

software development for a sole flight computer; the code would just be installed in all three flight 

computers. The FPGAs decide who is in control of the bus and who needs to be reset. Adding the 

voting logic to the FPGAs is future work.  

 

One type of fault not tested was a Byzantine fault. This is the most difficult type of fault for three 

or more channels with cross channel voting [27]. This fault comes from the Byzantine Generals 

Problem [28], an abstract scenario where a group of generals is camped with their troops around 

an enemy city. Communicating only via messenger the generals must agree on a common battle 

plan. One or more generals may be treacherous though, sending false messages to disrupt reaching 

agreement. It takes 3m + 1 generals to cope with m traitors. For the proposed system and single 

fault-tolerance, m = 1, it would take four redundant strings to correct this fault whereas this system 

only has three. However, if message authentication is used, only m + 2 channels are required [27]. 

Message authentication is future work. 
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