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Abstract 

 

At the forefront of the natural hazard risk assessment sciences is the assessment of 

earthquake risk. Countries such as the United States have been targets of extensive earthquake 

risk assessments to communicate potential damages and loss of life. Few studies, however, have 

gone beyond the estimation of direct earthquake impacts such as damages to buildings by 

integrating estimates the socio-economic characteristics of populations. This research seeks to 

address this missing societal component in earthquake loss modeling using Federal Emergency 

Management Agency Region IV (Alabama, Florida, South Carolina, North Carolina, Mississippi, 

Kentucky, Georgia, and Tennessee) as a case study. Social vulnerability and economic losses are 

modeled respectively by developing a Social Vulnerability Index (SoVI) and by integrating the 

SoVI with probabilistic impact estimates from potential earthquakes within the region. The 

results of this research highlight the areas of management concern in which high earthquake 

losses may be coupled with populations that are unlikely to be able to prepare for, respond to, 

and recover from damaging earthquake events when they occur.   
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 Chapter 1: Introduction 

Earthquakes are a natural phenomenon. There are hardly any early warning systems to 

notify populations of a potential earthquake event, and earthquakes can cause serious damage 

when they impact the areas in which people live. It is within this context that damages to 

infrastructure and livelihoods could result in a disaster where a serious disruption of the 

functioning of a community or society occurs (United Nations Office for Disaster Risk 

Reduction (UNISDR) 2017). Over-populated areas are among the most vulnerable to 

earthquakes and their associated impacts as a result. Highly developed urban areas, for instance, 

are at more risk from earthquakes due to their large number of infrastructure, high population 

densities and a lack of environmentally sustainable development activities in some places. From 

2000 to 2015, earthquakes caused 801,629 deaths worldwide (USGS Earthquake Hazards 

Program 2017). Recent billion dollar loss causing earthquake events include the 2008 Wenchuan 

Earthquake in China (US$ 150 billion), the 2010 Christchurch Earthquake in New Zealand (NZ$ 

40 billion), and the 2010 earthquake in Chile (US$ 30 billion) (Araneda et al. 2010, Sun and Xu 

2010).  

Although often overlooked, the Southeastern part of the U.S. is situated within a 

vulnerable zone to earthquake events. The result is that both the region’s infrastructure and social 

systems are at risk from potential adverse impacts, and there has been considerable seismic 

activity in this area. In the past, there were damaging earthquakes centered in Western North 

Carolina (i.e. Wilkes County experienced an earthquake of 5.1 magnitude in 1861). The Skyland 
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Earthquake in western North Carolina occurred on February 21, 1916 which was 5.5 magnitude 

event where shaking was felt for approximately 200,000 square miles. Mitchell County, Georgia 

experienced a 5.2 magnitude earthquake in 1926 in which shaking was felt over an area of about 

40,000 square miles. This earthquake damaged chimneys, cracked house foundations, broke 

water pipes, and displaced windowpanes. Other damaging regional earthquakes, in 2003 and 

2011 respectively, occurred Richmond (4.5 magnitude) and Mineral (5.8 magnitude), Virginia 

(NCDCCPS 2016). The Richmond earthquake was felt as far south as Raleigh, North Carolina, 

and the Mineral Earthquake was felt throughout most of western North Carolina.  

In addition to moderate earthquakes, two very large earthquakes in 1811 and 1812 

(magnitude 7.3 and 8.3 respectively) have occurred within the region. These were centered in the 

Mississippi Valley. Situated within close proximity to the New Madrid seismic zone, the effects 

of these events were severe and included damage to brick-made structures all over the state. In 

1886, a major earthquake also occurred in Charleston South Carolina (magnitude of 6.7). The 

shaking affected windows, collapsed brick-made structures, and damaged internal contents of 

buildings. Here, approximately seven thousand buildings were damaged by this event, and the 

building materials were found as a major single factor causing the damage. Total damages were 

tallied at US$ 5 million (currency not adjusted to today’s value) (Robinson and Talwani 1983). 

The New Madrid seismic zone is one of the most active faults in the Southeast of the U.S., and 

previous research has found that large earthquakes recur on average 450 years apart (Tuttle et al. 

1999). These histories of events recognized Southeastern U.S. as an earthquake prone zone.  
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1.1 Research Perspective 

Damage estimation and the ability to map potential causalities from earthquake events is 

becoming an increasingly important aspect of earthquake disaster risk reduction. Damage 

estimates from earthquakes include factors such as building materials, replacement cost, floor 

replacement and many other quantifiable losses. There are many earthquake loss estimation 

models to estimate these costs. To better understand risk from earthquakes in the U.S., the 

Federal Emergency Management Agency (FEMA) released the HAZUS-MH hazard and loss 

modeling tool which estimates dollar losses due to natural hazards like floods, hurricanes, 

earthquakes, storm surges and tsunamis. HAZUS-MH is a GIS-based tool which works as an 

extension to the ArcGIS software. HAZUS displays loss information through maps and 

spreadsheets. Data such as the location and intensity of past earthquakes, proximity to faults, slip 

rates, and location and cost of infrastructure drive the analysis of a HAZUS loss estimation. 

The primary component of an earthquake impact model, such as those developed in 

HAZUS, is the measurement of potential ground shaking. HAZUS, for instance, uses several 

quantitative parameters such as peak ground acceleration and spectral acceleration for expressing 

ground shaking in a hazard analysis. A hazard analysis can be accomplished deterministically by 

replicating the ground shaking from a past earthquake. Conversely, a hazard analysis can be 

accomplished probabilistically by simulating thousands of potential earthquakes. A secondary 

component of a hazard analysis is the estimation of losses. Estimated losses are referred to as a 

physical risk assessment (Burton and Silva 2016). In HAZUS, a physical risk assessment can be 



 

4 
 

conducted using three levels of data. The first level is based on default inventory data that 

includes building square footage, building value, occupancy information, and repair cost 

estimations. The second level of analysis utilizes user-supplied data that is often made publicly 

available through city, county, or state data sharing initiatives. Default inventory data is 

improved when high resolution local-level data can be used, resulting in a more robust analysis 

of economic loss. The third level of analysis requires experts such as public workers, planners, 

engineers, information technology specialists, GIS specialists, land recorders and natural 

resources management officials (FEMA 2003). Here, primary source data is collected 

exclusively for a given risk assessment project and could include a building by building 

inventory within a city.  

Losses from earthquakes are not explicitly the result of ground shaking and building 

characteristics, however. Rather, losses are the result of interactions between the hazard, the 

engineered environment (e.g. residential and commercial infrastructure) and social 

characteristics of populations (Burton and Silva 2016). Social characteristics that make people 

more susceptible to hazard events can be explained by the concept of social vulnerability. Social 

vulnerability is defined as characteristics within social systems that create the potential for harm 

or loss (Cutter, Boruff, and Shirley 2003). Social vulnerability results from those social factors 

that make the society susceptible to harm such as lack of access to education, politics, 

technology, culture, religion, population and building density (Cutter, Boruff, and Shirley 2003). 

The social vulnerability of populations is largely ignored in earthquake risk assessments, 

however, even though social is an integral factor determining a community’s earthquake risk. 
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Few studies and tools have been developed to demonstrate where highest losses from 

earthquakes are likely to occur combined with the likelihood of exposed populations to be able to 

prepare for, respond to, and recover from damaging earthquakes when they happen (i.e. a 

population’s social vulnerability). More studies are thus needed that assess earthquake risk in a 

manner that is more holistic and integrtaed. In other words, more studies are needed that 

combine earthquake loss estimation with measures of social vulnerability.  

This research seeks to address the integration of this missing social component in 

earthquake loss modeling in the southeastern United States. This research utilizes all counties 

within FEMA Region IV (Alabama, Florida, South Carolina, North Carolina, Mississippi, 

Kentucky, Georgia, and Tennessee) as a case study. The impacts due to earthquakes on 

communities are expressed in terms of both physical damages (i.e. physical risk) and socio-

economic factors which affect the capacity of populations to absorb and recover from the events 

(Burton and Silva 2016, Carreño, Cardona, and Barbat 2007, Davidson 1997, Khazai et al. 

2015). Physical damages are demonstrated using modelled losses and fatalities, whereas social 

characteristics are modelled using a well-established index, the Social Vulnerability Index 

(SoVI) (Cutter, Boruff, and Shirley 2003). Estimates of potential losses were coupled with the 

quantified measure of social vulnerability in order to assess earthquake risk in a manner that is 

more holistic than describing ground shaking and earthquake losses alone. This is to better 

understand the spatial distribution and drivers of earthquake risk that are a function of not only 

the vulnerability of the built environment, but also the vulnerability of a place’s population that 

that creates a differential potential for loss and recovery. The overall goal of this study is to 
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outline areas of management concern — those areas with the highest risk and social vulnerability.  

Defining these areas spatially and visualizing contributing factors to the region’s risk and social 

vulnerability may help planners and decision makers to develop equitable public policies to 

reduce earthquake risk.  

1.2 Research Questions 

This research seeks to answer the following questions: 

Research Q. 1. Which counties within FEMA Region IV have the highest physical risk 

(i.e. estimated property loss and fatalities) from earthquakes? 

Research Q. 2. Which counties within FEMA Region IV have the highest physical risk 

from earthquakes coupled with a high social vulnerability? 

Research Q. 3. What social vulnerability indicators may be best for predicting adverse 

effects such as losses from earthquakes? 

1.3 Organization 

This thesis is organized as follows. Chapter 1 provides a brief introduction. Chapter 2 

provides a review of background literature. In this section, background literature of social 

vulnerability and earthquake physical impact modeling both are discussed. Chapter 3 describes 

the data sources and methodology. Chapter 4 presents the results after applying the methodology. 

The final chapter discusses all significance of the research and suggestions for the future research 

in this focus. 
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Chapter 2: Background Literature 

2.1 Modeling Potential Earthquake Impacts from a Physical Perspective 

In recent decades, there has been considerable advancements in earthquake impact model 

development. A variety of earthquake prediction models have been developed to predict the 

probable losses from the hazard. To estimate earthquake loss, assessment platforms HAZUS-MH 

(Hazus-MH 2003), the CAPRA Probabilistic Risk Assessment Platform (Anderson 2008), and 

OpenQuake (Silva et al. 2014b) are very popular. All of these platforms follow comprehensive 

methodologies for loss estimation (Erdik et al. 2014). These include the modelling of a basic set 

of components representing hazard, exposure and structural vulnerability. These are briefly 

described below.  

2.1.1 The Earthquake Hazard Component 

Earthquake hazard modelling components are created combining history, geophysical and 

engineering knowledge of earthquakes to provide estimates of future earthquakes and their 

potential threats (Rao et al. 2017). The hazard component represents the earthquake event 

(Burton 2010), and it is often modeled using peak ground acceleration (PGA) and spectral 

acceleration (SA). Peak ground acceleration is the maximum ground acceleration that occurs 

during earthquake shaking at a location. Spectral acceleration (SA) is a unit that describes the 

maximum acceleration of an object in an earthquake. Permanent ground deformations (PGD) 

from earthquake events is another hazard component which was derived to represent 

liquefaction, land sliding and surface fault rupture potential. Essentially, ground motions, 
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earthquake fault rupture, ground displacement, shaking intensity, topography, nature of the 

rocks, and surface soil types are considered earthquake hazard components (HAZUS-MH 2004). 

2.1.2 The Earthquake Exposure Component 

The term exposure indicates those elements that are at-risk from hazards. Generally 

speaking, elements at-risk can be population, the building stock and essential facilities, and 

critical infrastructure. It is within this context that the exposure component describes the 

location, structural attributes, and values of assets that are in harm’s way (Burton 2010). 

Damages are often calculated by accounting for the exposure of different construction types, roof 

types, number of floors, number of square footage, value of structures, and replacement costs. 

These are often utilized as GIS layers in tools such as HAZUS (HAZUS-MH 2003) and 

OpenQuake. Rao et al. (2017) provide an example of an exposure model developed for the state 

of California that was developed to identify the importance of uncertainty in estimating 

California’s earthquake risk. For loss calculations, a residential exposure model was constructed 

at the census tract level for California by accounting for the total number of residential, 

commercial, and industrial structures. Seismic vulnerability models (discussed in the following 

section) for different building classes were created using the exposure database, and two analyses 

were undertaken: 1) a scenario-based analysis and 2) a probabilistic risk assessment. The 

scenario analysis was developed to address the risk associated with a single earthquake, the 

repetition of the 1906 San Francisco earthquake. The probabilistic analysis was used to address 

the risk associated with all possible events that could occur in the state (Rao et al. 2017).  
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2.1.3 The Physical Vulnerability Component 

The physical vulnerability component of earthquake risk modelling represents the link 

between seismic hazard, exposure, and estimated damage (Burton 2010, Davidson, Zhao, and 

Kumar 2003). This component describes potential damage states such “no damage” and 

“collapse” associated with a given earthquake magnitude earthquake. Vulnerability is a potential 

for loss from hazard events (Mileti 1999, Yucel and Arun 2012). To assess physical earthquake 

risk, the vulnerability component is a key element along with the hazard and exposure 

components. Vulnerability models are used to express physical damage and economic losses 

based on an earthquake’s intensity and the amount and type of property exposed (i.e. the 

exposure component) (Ryu and Edward 2015). In an earthquake risk assessment, physical 

vulnerability refers to the probabilistic distribution of loss at a certain intensity level. Physical 

vulnerability is often delineated as functions that can be derived using the losses from past events 

at certain locations. These functions refer to the probability of exceeding limit states such as a 

certain damage threshold (e.g., limited, moderate, extensive, catastrophic) or injury levels 

(Crowley and Silva 2013, Ryu and Edwards 2015).  

2.2 Modeling Potential Earthquake Impacts from a Social Perspective 

2.2.1 Social Vulnerability as a Concept 

Understanding losses and social vulnerability to an earthquake is a key step for 

earthquake hazard mitigation, planning, and risk reduction. In the recent Haiti earthquake (2010), 

for instance, economic losses were too vast for the country to recovery effectively. Total 
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economic losses were more than 120% of the nominal GDP of the country. Moreover, 

approximately 300,000 people were injured (Silva et al. 2014a). Here, the vulnerability of Haiti 

varied and was dependent on a number of factors where a similar shaking intensity throughout 

the affected area likely caused different impacts in different places due to difference in the 

vulnerability of populations (Blaikie et al. 1994). A 1976 earthquake that occurred within 

Guatemala is a prominent example of how an earthquake impact varies with socio-economic 

factors. People living in undeveloped and unplanned housing were the victims of the highest 

residential damage. On the other hand, middle class people that sustained similar damages were 

able to recover their losses more easily. The Guatemala earthquake explicitly identified the 

influences of social components on losses, and it was aptly named the “Class-quake” (Blaikie et 

al. 1994). 

In essence, the “Class-quake” indicated that vulnerability to the earthquake hazard varied 

by social class, and is thus, partially a social factor. In the context of natural hazards and 

disasters, social vulnerability is the potential within social systems for losses or harm due to 

natural hazards. Social vulnerability changes with time and space (Cutter, Boruff, and Shirley 

2003), and three terms are often used to help describe the concept. These are exposure, resistance 

and resilience. Exposure relates to the physical location and environmental characteristics of a 

particular place that makes populations vulnerable, resistance is the protection ability from the 

hazard and resilience means the capability of recovery after a damaging hazard impact or disaster 

(Cutter et al. 2006). As the definition posits, social vulnerability influences negative impacts on 

an individual or group of people due to hazard exposure.  
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In the context of natural hazards and disasters, social vulnerability increases the potential 

for losses due to characteristics within social systems. This loss is mainly the outcome of 

interacting social and biophysical factors (Cutter 1996). Different types of hazards in different 

places cause variation in vulnerability. There are three classes to categorize vulnerability in the 

literature. These are: (a) vulnerability as risk/hazard exposure; (b) vulnerability as social 

response; and (c) vulnerability of places (Cutter 1993). Vulnerability as a pre-existing condition 

(vulnerability as risk/hazard exposure) includes bio-physical vulnerability and refers to the 

distribution of natural hazards and human occupancy in hazard zones. Vulnerability as social 

response includes the social response to hazards. It focuses how various factors of the society 

such as historical, social, and cultural characteristics can play a role in adaptation to hazard 

events. Vulnerability of places is the result of both biophysical risk and the social vulnerability of 

populations. The combination of the two concepts at a particular location is referred to as place-

based vulnerability. Measurements of place-based vulnerability can help to identify which places 

and populations are most vulnerable (Cutter 1996). A number of theoretical frameworks have 

been developed to explain both vulnerability and place-based vulnerability. These are briefly 

outlined below.   

2.2.2 Conceptual Frameworks on Social Vulnerability to Hazards and Disasters  

Vulnerability depends on many factors. The most commonly cited frameworks that are 

used to explain and assess the concept include the Pressure and Release Model (Blaikie et al. 

1994), the Vulnerability/Sustainability Framework (Turner et al. 2003), the Integrated Risk 
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Assessment (Burton and Silva 2016), the Disaster Resilience of Place (DROP) Model (Cutter et 

al. 2008) and the Vulnerability of Place Model (Cutter 1996). These models are important within 

the context of this research because they focus on the coupled human, social, and physical 

conditions of vulnerability.  

2.2.2.1 Disaster Pressure and Release Model (PAR) 

The vulnerability of a community depends not only a natural hazard occurrence, but also 

on the socio-economic processes in a hazard zone. According to Disaster Pressure and Release 

Model (PAR) (Blaikie et al. 1994), pressure increases with the increased vulnerability of the 

community and the effects of the hazard. In this model, human conditions like limited access to 

resources, power, structures and human ideologies are basic reasons behind vulnerability and 

increased pressures. The term “Release”, that is expressed by the reduction of pressure caused by 

hazards and vulnerability, is expressed by factors that reduce vulnerability and risk.  The model 

(Figure 1) describes how vulnerability arises from root causes and then progression continues to 

dynamic pressure to unsafe conditions. The PAR model focuses on social vulnerability only and 

leaves out the impacts of the physical event itself. This is a remarkable disadvantage of this 

model.  According to Cutter et al. (2009), this model is more theory based than useful for 

empirical analysis. (Cutter et al. 2009).   
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Figure 1: The Pressure and Release model (Blaikie et al. 1994) 

2.2.2.2 Vulnerability/Sustainability Framework 

The vulnerability concept of Turner et al. (2003a) shows vulnerability to natural hazards 

and disasters from a global environmental change perspective. This concept measures 

vulnerability at the global level using local vulnerability measures. This model comes from the 

combination of two archetypal models regarding vulnerability. They are the Risk the Hazard 

(RH) and Pressure and Release models (PAR). The Risk Hazard portion of the model reveals 

how hazard impacts, exposure and vulnerability are interrelated (Figure 2). The Pressure and 

Release portion of the model exhibits the progression of vulnerability from root causes to unsafe 

conditions as mentioned in the previous section. The pressure and release portion of the model 



 

14 
 

refers to how vulnerability influences the occurrence of disasters by social vulnerability 

interacting with natural hazards (Figure 3). 

 

 

 

 

 

 

 

 

 

The finalized vulnerability framework (Figure 4) is a representation of hazard 

vulnerability in human-environmental systems (exposure, sensitivity, resilience). According to 

Cutter et al. (2009), the major disadvantage of this model is that there is no way to identify the 

Figure 2: Risk hazard framework; Chain sequence is from hazard to impacts; 

vulnerability indirectly noted by dotted lines (Turner et al. 2003). 

Figure 3: Pressure and release  framework (common to risk research) with emphasis 

focused on “social” conditions of exposure; vulnerability usually marked very clearly 

(Turner et al. 2003). 
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start point and end point of the vulnerability of a particular location. Moreover, the model is 

better suited for qualitative analysis rather than empirical analysis (Cutter et al. 2009).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Exposure, sensitivity, and resilience components of the vulnerability framework 

(Turner et al. 2003) 
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2.2.2.3 Integrated Risk Assessment Framework 

The integrated Risk Assessment framework was developed to better understand 

earthquake risk as a combination of social and physical risk characteristics. Here, the earthquake 

impact potential of a place is delineated by integrating a seismic hazard assessment, a physical 

risk assessment, and human dimensions of a respective hazard zone (Burton and Silva 2016). 

Burton and Silva (2016) build upon the Vulnerability of Place Model (Cutter 1996) (discussed 

below) for the assessment of integrated risk in Portugal (Figure 5). The GEM OpenQuake-engine 

and Integrated Risk Modelling Toolkit (Burton and Tormene 2018) was utilized to calculate risk 

for the country accounting for: A) seismic hazard potential, B) geographic context in the way of 

population and infrastructure exposure modeling, C) physical risk through calculations of 

potential building loss, D) social fabric by the exploration of social characterizes that drive 

vulnerability, E) social vulnerability using a social vulnerability index, and F) integrated risk by 

mathematically combining a quantified social vulnerability and risk assessment.  In this model, it 

is unknown whether qualitative (survey-based) data can be incorporated into the framework. 

Moreover, more research is needed on how to effectively combine physical risk estimates with 

estimates of social vulnerability in this model.   
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Figure 5: Integrated Risk Assessment Framework (Burton and Silva 2016) 

2.2.2.4 The Vulnerability of Place Model 

In 1996, social vulnerability scientist Susan L. Cutter first proposed the Vulnerability of 

Place Model (VPM) (Figure 6) (Cutter 1996). This model posits that the overall vulnerability of 

a place is based on both the social and biophysical vulnerability of that place. The total 

vulnerability of a place is therefore a function of biophysical and social factors. Cutter, Mitchell, 

and Scott (2000) demonstrated the utility of the combination of social and biophysical factors in 

a GIS to measure the overall place vulnerability of Georgetown County, South Carolina. The 

vulnerability of census blocks in Georgetown County was modelled considering twelve 

environmental and eight social factors. The study found the interaction of two types of 
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vulnerability in a common place. Biophysical vulnerability included hazard frequency and the 

locational impacts of past hazard events. Then to calculate the overall vulnerability of the place, 

a social vulnerability layer (using a calculated index of social vulnerability) was combined with 

the estimate of biophysical vulnerability in a GIS. The study showed that in most cases the areas 

which had high biophysical vulnerability did not intersect with the areas of high social 

vulnerability.  Instead, the total vulnerability of Georgetown County results when medium levels 

of biophysical vulnerability intersected with medium to high levels of social vulnerability 

(Cutter, Mitchell, and Scott 2000). The Georgetown study concepts of vulnerability are essential 

to this thesis. 

 

 

 

 

 

 

Figure 6: Vulnerability of Place Model (Cutter, Boruff, and Shirley 2003) 

 

 

 



 

19 
 

2.2.2.5 Disaster Resilience of Place (DROP) Model 

Cutter et al. 2008 proposed the Disaster Resilience of Place (DROP) Model (Figure 7) 

which describes the concept of natural disaster resilience (Cutter et al. 2008). This model is 

based on three assumptions to represent how social vulnerability and resilience are related. 

Firstly, the model addresses natural hazards specifically, but also may be adapted to other rapid 

onset hazards (i.e. terrorism, technological hazards) or slow onset natural hazards (i.e. drought). 

Secondly, the model focuses on community level resilience. Finally, the main focus of the model 

is social resilience of places. This means the other forms of resilience cannot be isolated from the 

social aspects. Thus, resilience is an inherent or antecedent condition or process according to 

DROP model representation. The starting point of this model is antecedent conditions which are 

a product of processes occurring within societal, natural and built environment. Antecedent 

condition refers to both inherent vulnerability and resilience. This concept represents how the 

inherent process occurs at the local scale and results at the broader scale (Figure 7). Antecedent 

conditions interact with hazard characteristics such as frequency, duration, intensity, magnitude 

etc. This interaction produces hazard effects which might be reduced by implementing proper 

responses. This effects reduction leads to a high recovery. (Cutter et al. 2008). 
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Figure 7: Disaster Resilience of Place (DROP) Model (Cutter et al. 2008) 

2.3 GIS and Quantified Social Vulnerability 

The Federal Emergency Management Agency (2003) focuses on residential building 

vulnerability caused by natural hazards such as floods, hurricanes, storm surges, and 

earthquakes. Social aspects of vulnerability analysis using GIS is often ignored in these 

modelling efforts because social vulnerability is not observable directly (Burton 2010). 

Therefore, physical aspects such as hazard severity have been the focus of the majority of GIS-

based analysis. In many recent researches, however, social vulnerability has been quantified by 

using composite indicators (Cutter, Boruff and Shirly 2003, Burton 2010, Boruff, Emrich, and 

Cutter 2005). Geographic Information Systems (GIS) and geostatistical applications (i.e. GeoDa, 

SPSS) have made social vulnerability analysis robust and meaningful as differential 

vulnerabilities can be demonstrated across space. These software and tools are used to analyze 
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and visualize social vulnerability and to focus on changes in the vulnerability of places due to the 

spatial variability of indicators used in the modelling process (Burton 2010, Chakraborty, Tobin, 

and Montz 2005).  

2.4 Summary 

Vulnerability depends on many factors. The most commonly cited frameworks include 

the Pressure and Release Model (Blaikie et al. 1994), the Vulnerability/Sustainability Framework 

(Turner et al. 2003), the Integrated Risk Assessment (Burton and Silva 2016), the Disaster 

Resilience of Place (DROP) Model (Cutter et al. 2008) and the Vulnerability of Place Model 

(Cutter 1996). These models are important within the context of this research because they focus 

on the interaction between social and physical components of earthquake risk. Within these 

models, natural and societal factors contribute to the vulnerability of populations to hazards and 

their ability to mitigate against them. Some factors increase vulnerability such as lack of access 

to wealth and resources, poverty, and illiteracy, and some factors like access to wealth, 

education, high living standard decrease vulnerability. This research sought to adopt an approach 

for modeling earthquake risk in a manner in which social and physical dimensions are 

quantifiable.  Since the Burton and Silva (2016) framework was developed explicitly for 

earthquake assessments using quantified indicators, it was selected as the theoretical model that 

will guide this research. 
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Chapter 3: Research Design & Methodology 

 

3.1 Study area  

The study area of this research project is FEMA Region IV which encompasses the 

Southeastern U.S. and includes eight states: Alabama, Florida, South Carolina, North Carolina, 

Mississippi, Kentucky, Georgia, and Tennessee (Figure 8). The work was conducted at the U.S. 

Census County level of geography since counties are a main administrative unit in the U.S. for 

the application of major disaster risk reduction policies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 8: Study Region 
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Although much of the land area in FEMA Region IV is far from the New Madrid Seismic 

Zone, there is still considerable seismic activity throughout the region. For instance, two 

devastating earthquakes were observed in this region, respectively in Charleston, South Carolina 

(1886) and Mineral, Virginia (2011) (Biryol et al. 2016).  The New Madrid seismic zone is one 

of the most active faults in the Southeast of the U.S., and previous research has found that 

large earthquakes reoccur on average at 450-year intervals (Tuttle et al. 1999). Another 

devastating earthquake in the Southeast occurred in 1886 in Charleston, South Carolina. Most of 

the buildings in the city were damaged during the event, and the overall amount of loss from that 

seismic hazard was about 24 million dollars (1886 dollar value) (Schmidtlein et al. 2011). Brick 

and stone made buildings were all effected (Figure 9); whereas wooden structures were subjected 

to less damage. Roads were also very badly damaged. The location in proximity to the fault was 

not the main reason behind this devastation. Likely, socio-economic factors were among the 

primary contributing factors to the loss.   

The FEMA Region IV study region contains some of the more vulnerable populations in 

the entire nation. The demographic characteristics of this region (Table 1) help to describe its 

vulnerabilities from a social perspective.  
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Table 1: Demographic characteristics of the region 

State %African 

American 

% Hispanics Per Capita 

Income annually 

% Age 

dependency 

     

AL 26.178 3.657 23020.72 20.142 

FL 15.956 21.500 26547.01 23.047 

GA 30.456 8.239 25184.24 17.742 

KY 7.778 2.806 22554.16 19.832 

MS 37.016 2.537 20036.72 19.929 

NC 21.484 7.862 24801.26 19.570 

SC 27.904 4.755 23486.97 20.197 

TN 16.661 4.256 23756.27 19.875 

 

Table 1 demonstrates that Florida and Georgia enjoy higher incomes than states such as 

Mississippi and Kentucky. This differential income could affect the poorer state’s ability to 

mitigate and respond to an earthquake. The places with more income are likely to have higher 

losses due to a large number of assets in harm’s way. Age dependency is the highest in Florida 

which could lead to the state’s residents being more vulnerable to hazards because older age can 

affect mobility out of harm’s way, income, and the ability to recover. Race is another 

characteristic which describes the vulnerability of populations. The percentage of Hispanics is 
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higher in Florida due to migration from Cuba. Race is also a contributing factor to social 

vulnerability to hazards. A Hispanic or African American resident, for instance, may have 

different education levels (e.g., lower levels of education or poorer access to education), lower 

incomes, a high degree of marginalization, and a lack of language proficiency which will affect 

hazard preparedness, response, and recovery.  

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9: The post-earthquake damage after 1886, Charleston, South Carolina. Originally    

photographed by J. K. Hillers in 1886. Source: USGS 

3.2 Data and Methods  

The modelling and respective methodology for this thesis consists of three major 

components in which an integrated assessment of earthquake risk was developed for the entirety 

of the study area (Figure 10). The first is a physical risk model to delineate loss potential to 
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buildings from earthquakes in the study area. A social vulnerability index is the second 

component. The third component, an integrated risk index, was the result of the convolution of 

the physical risk estimates and social vulnerability indicators. The combination of these results in 

what is referred to in the literature as an integrated or holistic risk assessment (Carreño et al. 

2007, Burton and Silva 2016). Here, hotspot areas defined where both social and physical 

vulnerabilities are high, and which could require highest priority in hazard mitigation and 

disaster risk reduction approaches and policies. Integrated/holistic risk assessments have been 

conducted for Bogota (Colombia) and Barcelona (Spain) (Carreño et al. 2007) and for mainland 

Portugal (Burton and Silva 2016), to name just a few places.  

 

 

 

 

 

 

 

 

 Figure 10: Integrated Risk Methodology Workflow 
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3.2.1 Modeling Direct Loss  

The starting point for the estimation of the region’s risk from an integrated perspective is 

the modelling of earthquake losses (i.e. physical risk). For the modeling of potential losses, the 

HAZUS risk assessment platform HAZUS-MH-IV (an extension of ArcGIS) was utilized. 

HAZUS provides the ability to calculate average annualized loss statistics for U.S. states, 

counties, and census tracts. HAZUS includes a national building inventory that makes up its 

exposure database that includes: 1) essential facilities (police, fire, emergency operations 

facilities, school, medical facilities); 2) lifelines (utilities and transportation); 3) the general 

building stock (residential, commercial and industrial); and 4) some demographic data (FEMA 

2018). 

In this thesis, property losses to residential and commercial infrastructure and losses of 

life were estimated for each county in FEMA region IV. Due to time constraints, this research 

was conducted using a HAZUS Level 1 analysis that is based on data from national databases 

within the HAZUS platform and includes historic hazard events, demographic data, and 

estimates of the location and costs of the building stock. Here, losses were estimated 

probabilistically utilizing existing seismic source models within HAZUS-MH and a set of ground 

motion prediction equations for the region that were also found in HAZUS-MH. For what 

concerns the physical vulnerability of the exposed building infrastructure, a set of vulnerability 

functions were employed for all building typologies relevant to the study area (e.g. wood, 

masonry, and reinforced concrete). Economic losses were calculated probabilistically as direct 
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losses in the form of average annual loss for a 500-year return period. Direct losses refer to the 

physical or structural impact caused by a disaster such as the destruction of infrastructure from 

ground shaking (Erdik et al. 2011). A probabilistic model was favored over a deterministic 

model because a probabilistic model accounts for all possible magnitudes of events that can 

occur in the region, rather than simulating a single historic event.  Casualties that are as a 

function of structural and non-structural building damage were also calculated. HAZUS provides 

a methodology for calculating casualties that based on the correlation between building damage 

and the number and severity of casualties that could occur in a given area (Jaiswal et al. 2017). 

Only casualties that are a result of direct damages were accounted for in this research.  

3.2.2 Modeling Social Vulnerability 

A number of factors that influence the social vulnerability of populations can be 

measured. This thesis used an indicator-based approach to measure the social vulnerability of 

FEMA Region IV’s counties. An indicator is a quantitative or qualitative measure derived from 

observed facts that simplify and communicate the reality of a complex situation (Burton and 

Silva 2016). A composite indicator is the mathematical combination of individual indicators or 

thematic indicators sets that represent different dimensions of a concept that cannot be fully 

captured by any individual indicator alone.  The Social Vulnerability Index (SoVI) is a 

composite indicator that was developed to model social vulnerability (Cutter, Boruff and Shirley 

2003) within the U.S. This method was adopted for this research due to its ubiquity in the peer 
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reviewed literature and due to the ability of the social vulnerability modeler to better understand 

potential driving factors of social vulnerability.  

The original SoVI utilized 42 variables. These variables refer to the demographic, 

economic and built environment variables which are contributing factors to a community’s 

ability to respond to and recover from a disaster according to the reviewed literatures (Cutter, 

Boruff, and Shirley 2003, Molas et al. 2012, Burton 2010). These variables include measures of: 

1) age characteristics since extremes of age affect movement out of harm’s way and often results 

in financial constraints (Bolin and Stanford 1991, Cutter et al. 2000, Cutter, Boruff and Shirley 

2003, Hewitt 1997, Pulido 2000); 2) socioeconomic status since income and socioeconomic 

status affects the ability of populations to absorb losses and enhance resilience to hazard impacts 

(Blaikie et al. 1994; Hewitt 1997; Cutter et al. 2000; Cutter, Boruff and Shirley 2003); 3) gender 

status because in many countries, including the U.S., woman often have a more difficult time 

during recovery then men, often due to sector-specific employment, lower wages, and family 

care responsibilities (Blaikie et al. 1994, Hewitt 1997, Cutter 1996, Cutter, Boruff and Shirley 

2003); and race and ethnicity due to the potential of language and cultural barriers that affect 

access to post-disaster funding and the location of populations in high hazard areas (Bolin and 

Stanford 1998, Pulido 2000, Cutter, Boruff and Shirley 2003).     

These variables were input into a Principal Components Analysis (PCA), more 

specifically a Factor Analysis (FA) that reduced the original 42 variables into 7 factors used to 

explain the driving characteristics of social vulnerability within the United States. These factors 
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were summed to derive composite social vulnerability scores for each county in the nation. For 

this research, 28 out of the original 42 SoVI variables were used.  This reduction in indicators 

was due to data availability within the current U.S. Census as well as improvements to the SoVI 

indicator selection over time (HVRI 2015). The source of all data to measure social vulnerability 

was the U. S. Census Bureau American Factfinder (U.S. Census Bureau 2017). These variables 

are delineated in Table 2.  

Table 2: SoVI variables 

Median Age Percent of household collecting social 

security benefits 

Percent Black Percent speaking English as a second 

language 

Percent Native American Percent of population without health 

insurance 

Percent Asian and Hawaiian Islanders Percent civilian unemployment 

Percent Hispanic Percent of households earning $200,000 or 

more 

Percent of population under 5 years or 65 and 

over 

Percent living below poverty level 

Median Value of Owner Occupied Housing 

Units 

Percent employment in extractive industries 
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Percent of children living in married couple 

families 

Percent of housing units that are mobile 

homes 

Percent renter  Percent of population with no high school 

diploma or less than 12th grade education 

Percent residents in nursing homes Percent of housing units with no car 

Percent female population Percent females participating in the labor 

force 

Percent female headed households Percent unoccupied housing units 

Per capita number of community hospitals Median Gross Rent 

People per unit Percent Employed in service industry 

Per Capita Income (in dollars)  

 

The SoVI methodology includes standardization of all variables as percentages, per 

capita or density functions. Once this step was accomplished, the data was converted to Z-scores 

and input into a Principal Component Analysis (PCA), more specifically a Factor Analysis (FA). 

An FA is a type of PCA which reduces the total number of variables into a smaller set of 

common factors that explain the driving components of social vulnerability in the study area. 

These reduced factors are uncorrelated and suitable for using in various statistical analysis. In 

this thesis, the number of dimensions in the FA were reduced using the varimax rotation & 

Kaiser Criterion (Cutter, Boruff and Shirley 2003). Following rotation, each factor was 
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categorized and named based on the contribution of its variables to the vulnerability of 

populations. This was accomplished by highlighting variables in which correlations between 

each variable and its respective factor exceeded >=0.500 and <=-0.500. In other words, if 

correlations between a given factor and its variables include high loadings on percent of the 

population in poverty, percent African American populations, and the percent of population 

living in mobile homes, one might name the factor “Race and Socioeconomic Status” and 

determine a positive directionality for the factor. Here, a positive directionality was assigned to 

the factors which increase vulnerability and a negative directionality was assigned to the factors 

which decrease vulnerability by multiplying that factor by -1. All factors were then put into an 

additive model to sum the factors to derive and map a final  SoVI score (Burton 2010, Jackson 

2005). 

Once derived, SoVI scores were mapped as standard deviations from the mean in order to 

highlight areas of potential management concern. Positive deviations from the mean were 

utilized to indicate potentially more vulnerable areas, comparatively, whereas negative 

deviations were used to illustrate less socially vulnerable populations, comparatively. Final 

social vulnerability scores were mapped in addition to each factor score. The mapping of the 

factor scores allowed the spatial representation of potential contributing factors to the social 

vulnerability of populations in the Southeastern United States to be mapped and analyzed.    
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3.2.3 Integrated Risk Model 

The integrated risk model is the result of the convolution of physical risk estimates from 

HAZUS-MH with the social vulnerability model. The goal of the integrated risk assessment 

portion of this thesis is to provide an overview of an end-to-end earthquake risk assessment for 

FEMA Region IV that is integrated and holistic. Carreño et al. (2007), Carreño et al. (2012), and 

Burton and Silva (2016) provide the aggregation method that was adjusted for this work due to 

its mathematical simplicity. In this method, the risk and social vulnerability model outputs are 

made commensurate through MIN-MAX rescaling or conversion or Z-scores. The direct 

potential impact of an earthquake (in a general sense) is denoted as  where is a 

total risk index, is a physical earthquake risk index, and is the composite social 

vulnerability index which might be described as an aggravating coefficient of the estimated loss.  

This thesis simplifies Carreño’s aggregation method where a risk matrix was constructed 

to calculate a final integrated risk score. In this matrix, the estimated earthquake losses and the 

SoVI results were normalized based on standard deviations from the mean. Classes that are at the 

negetive end of the scoring spectrum (< 0.0 standard deviations), moderate (>=0.0 to +0.5 

standard deviations), and high end (>+0.5 standard deviation) were assigned values of -1, 0 and 

+1 respectively. An additive model was then created where the scaled social vulnerability scores 

and the physical impact scores were summed to create final values ranging from -2 to +2. The 

combined values were mapped into the five classes (-2, -1, 0, +1, +2). These five classes 

represent places with the lowest social vulnerability and lowest potential loss (i.e. a -1 in social 

( )FRR FT += 1 TR

FR F
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vulnerability and -1 in hazard loss in a value of -2) to the most vulnerable and most exposed 

(+2).  

3.3 Statistical analysis  

In addition to the physical risk, social vulnerability, and integrated risk modelling, a 

series of multivariate regression models were calibrated in an attempt to find a statistical link 

between the estimated losses and social vulnerability. It is important to note, however, that all 

earthquake losses are probabilistic estimations. As such, the regression modelling effort was not 

conducted to make interferences regarding the social vulnerability concept’s association with 

earthquake damages and loss or to make predictions. Rather, the regression models were 

calibrated to test the assumption that some social vulnerability variables might be able to be used 

as proxy variables to delineate potential adverse impacts from earthquakes. Here, Ordinary Least 

Square (OLS) regression models were calibrated where the factors of the SoVI index were input 

as independent variables and predicted damages were input into the model as dependent 

variables using: 

Pi = x0 +x1FAC1i+x2FAC2i+x3FAC3i+x4FAC4i+x5FAC5i+x6FAC6i+x7FAC7i+ℇi…..(1) 

where,  

Pi = damaged building structures per county and FAC1- FAC7 represent the SoVI factors derived 

using the social vulnerability index. To explore the potential contribution of the social 

vulnerability factors to casualties, a second OLS regression model was calibrated using a similar 
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equation where the social factors are the independent variables and casualties is the dependent 

variable.  

3.4 Summary 

The integrated risk modelling approach established for this thesis includes a social 

vulnerability model and a probabilistic damage assessment for earthquakes in the Southeastern 

United States. All variables and parameters were calculated at the county level within the study 

region. In an effort to model how risk from earthquakes varies across space, earthquake risk, 

social vulnerability, and integrated risk models were developed. These were then input into a 

series of spatial and statistical analyses. Figure 11 provides a workflow and an overview of the 

methods conducted for this research.  

 

Figure 11: Flowchart of analysis methodology adapted from Schmidtlein et al. 2011 
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Chapter 4: Results  

The modelling and associated methodology for this thesis consists of three major 

components in order to develop an integrated assessment of earthquake risk. The first is a 

physical risk model to delineate loss potential to buildings from earthquakes for the study area. A 

social vulnerability index is the second component. The social vulnerability index was 

constructed to describe characteristics within social systems that create the potential for loss. The 

third component, an integrated risk index, is the result of the convolution of the physical risk 

estimates and social vulnerability indicators. The combination of these result in what is referred 

to as an Integrated Risk Assessment. The results of each of the component parts is explained in 

detail in the sub-sections below.   

4.1 Modeled Estimated Building Loss 

Earthquakes can produce structural damage and cause complete building loss. The direct 

economic losses (annual average losses) from the HAZUS-MH model for each county range 

from approximately $6,000 to $2,500,000. Figure 12 A-E demonstrates the spatial distribution of 

direct economic losses caused by different building types from earthquakes (i.e. wood, steal, 

concrete, masonry, mobile homes). Figure 12 A is the spatial distribution of direct economic loss 

of wood type buildings. Charleston county (South Carolina) has the highest amount of estimated 

economic loss in dollar value based on this building type. Average annual losses for wood 

buildings is also high in Tennessee (Shelby and Knox counties) and South Carolina (Charleston 

and Berkeley counties).  
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Figure 12 B and 12 C represents estimated building losses for steel and concrete building 

types. The highest potential losses are observed in McCracken (KY) and Knox (TN) counties 

along with Shelby County (TN) and Charleston County (SC). Figures 12 D and 12 E represent 

masonry building types and mobile homes. For masonry, Shelby County (TN), Charleston 

County (SC), Knox County (TN) and Berkeley County (SC) have a high potential for loss. For 

mobile homes, there is high potentiality of loss in Tennessee (Obion, Dyer, Tipton and Shelby 

Counties).   
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Figure 12 (A-E): Spatial distribution of losses for wood, steel, concrete, masonry, and mobile 

home building types  
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4.2 Casualty Modeling 

Figure 13 represents the total casualties due to earthquakes in the study region. High 

casualties were estimated in both western and eastern Tennessee and in eastern South Carolina. 

The highest estimated causalities for an individual county were in Charleston (SC) and Shelby 

County (TN), where damaging earthquake events have been experienced before. In Mississippi, 

central and southern Alabama and Georgia, and in Florida, casualties are negligible. This is 

because these areas are too far from the earthquake fault to experience ground-shaking strong 

enough to cause building collapse and other damage that could injure or kill.  

 

 

 

 

 

 

 

 

 

Figure 13: Potential Casualties from earthquakes within the study region 
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4.3 Social vulnerability in FEMA Region IV 

Potential damages from earthquakes as demonstrated in section 4.1 are not random. 

Rather, there is an association between the study area’s social characteristics and the potential for 

damages at particular places. The social analog to the quantitative physical risk analysis is the 

social vulnerability index. Social vulnerability helps to explain why some communities will 

experience damages and recovery from an earthquake differentially, even though they are subject 

to the same ground-shaking intensity (Burton and Silva 2016). For this research, seven 

composite factors were found following the SoVI methodology (Table 3) (see Appendix – 1 for 

factor loadings). These factors explain 76.1 percent of the variance among counties and are 

ordered in term of their variance explained).  

Table 3: SoVI Factors with Percentage of Variance Explained 

 

SoVI factors Percent variance explained 

(1) Wealth (-) 21.84 

(2) Age dependence (elderly) (+) 14.72 

(3) Race (African American) & poverty (+) 12.91 

(4) Race (Hispanics) (+) 8.74 

(5) Mobile homes (+) 7.97 

(6) Unemployment (+) 5.61 

(7) Service industry employment and native 

Americans (+) 

4.31 
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The first highest factor in term of variance explained pertains to the wealth of the 

counties. The wealth factor is explained by per capita income, percentage of households earning 

greater than $200,000 annually, percent poverty, median gross rents, and median house values. 

The wealth factor explains 21.84 percent of the total variance within the data. Essentially, wealth 

is an important component of social vulnerability because wealth allows those impacted the 

financial means to recover, whereas those in poverty will struggle to recover. Wealth is also an 

important factor due to increased building and critical infrastructure concentrations. The greater 

Atlanta Metropolitan area provides an example of a large and sprawling city, covering two 

counties, where the generation of vast amounts of wealth has resulted in the ever-increasing 

development of the constructed environment. Although wealthy counties may be considered 

vulnerable due to increased assets in harm’s way, there is strong evidence differential access to 

wealth and/or poverty is a major contributing factor to not only the social vulnerability of 

populations (Cutter, Boruff, and Shirley 2003), but even hazard losses (Burton 2010).  

Figure 14 (A) represents the spatial distribution of the mapped component score for the 

wealth factor. The distribution of wealth demonstrates a coastal and urban bias where the highest 

component scores are found along the southern coast and in western portions of Florida.  In 

Georgia, the wealth factor is concentrated in Fulton and Forsyth Counties. When this spatial 

distribution of the wealth factor is compared to the estimated damage patterns, an obvious 

association between wealth based on more assets in harm’s way can be identified.  
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Age dependency is described by the second factor. Age dependency was identified by the 

percent population under five years or over sixty-five years, a high percentage of social security 

benefits recipients, and a high median age of populations. The age dependency factor explains 

14.72 percent of variance. Here, the elderly may have mobility constraints which makes them 

less resilient (Cutter, Boruff and Shirley 2003; Cutter, Mitchell and Scott 2000). Moreover, the 

elderly living on limited retirement income or social security may not have the ability or 

opportunity to perform costly mitigation prior to an event. Figure14 (B) maps the spatial 

distribution of the age dependency factor. High loadings on the age factor are found in Florida 

coastal counties including Sumter, Charlotte, Citrus, Sarasota, Highlands, and Collier. The latter 

may be a direct result of migration of elderly from the colder and costlier portions of the United 

States.   



 

45 
 

 

 

Figure 14: A, B, C, D, E, F & G; Spatial distribution of SoVI factors  

The third factor, identified race (African American) and poverty, is an important 

contributing factor to the social vulnerability of the region. This factor explains 12.91 percent of 

variation among counties. Race contributes to social vulnerability through the lack of access to 

resources, cultural differences, and the social, economic, and political marginalization that is 

often associated with racial disparities (Cutter, Boruff and Shirley 2003, Burton 2010). In factor 

3, poverty, female headed households, and percent African American populations load 

significantly high. Essentially, these variables may contribute to adverse earthquake impacts due 

to the nature of the housing stock where minorities and the poor often reside. Structural 
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maintenance to the home, costly upgrades to conform to building standards, and the adoption of 

mitigation strategies are often out of reach and not possible for low income residents (Burton 

2010). Figure 14 (C) represents spatial distribution of race (African American) and poverty 

factor. High factor scores were found in Mississippi (Tunica and Holmes County) and within the 

black belt of Alabama (Wilcox, Perry, and Macon Counties) where African Americans make up 

a large percentage of the population.  

The fourth most significant factor in terms of variance explained is race (Hispanics). The 

latter explained 8.74 percent of variance within counties. This factor identifies Hispanics as a 

contributing factor to the social vulnerability of the study region. As previously mentioned, 

membership in a racial minority often results in marginalization. This influences disaster impact 

potential, resiliency, and hazard event outcomes (Morrow 1999; Burton 2010). The Race 

(Hispanics) factor was identified by the percent population that is Hispanic, percentage of non-

English speaking populations and the percentage of population without health insurance. Figure 

14 (D) represents spatial distribution of the Race (Hispanics) factor. Here, coastal counties of 

Florida such as Miami-Dade, Hendry, Hardee, Orange, Osceola, and Glades show high factor 

scores. In addition, Duplin and Sampson Counties in North Carolina have high factor scores for 

Hispanics. Other parts of the study area show low to moderate component scores.  
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The fifth major factor in term of variance explained is mobile homes (Figure 14E). 

Mobile homes explained 7.97 percent of variance within counties. This factor was identified by 

the total percentage of population living in mobile homes. Mobile homes are vulnerable due to 

their construction type and these are often occupied by populations earning lower incomes. 

Essentially, this is a contributing factor to vulnerability.  

Factor 6 was identified as representing unemployment (Fig. 14 F) which explains 5.61 

percentage of variation among counties. The percentage of unemployed civilian populations and 

female populations are significant variables in this factor identification. Unemployed populations 

may lack the monetary resources needed to recover, and the potential loss of employment 

following an event exacerbates the number of unemployed workers in a community contributing 
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to a slower recovery (Cutter, Boruff and Shirley 2003). The spatial distribution of the 

unemployment factor appears ubiquitous, yet higher areas of unemployment can be found 

primarily in rural counties that do not contain large metropolitan centers.   

 

 

Finally, factor 7 (service industry employment and Native Americans) explained 4.31 

percent of variation (Fig. 14 G). Some occupations such as service sector occupations may be 

severely impacted by a hazard event. Here, disposable incomes may fade as the need for services 

decline following a damaging event. Native Americans may be socially and economically 

marginalized and require additional support both in pre- and post-disaster periods. The highest 

scores for Factor 7 occur in North Carolina and in Tennessee, just south of Knoxville.       
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4.4 Using Spatial Autocorrelation to Identify Interrelationships Between Damage, 

Casualities, and Social Vulnerability 

Spatial autocorrelation defines how one object or phenomenon across space is similar to 

other objects (Cliff and Ord 1970). Here, the concept was used here to pinpoint counties with 

high loss potential and high social vulnerability, and also to delineate areas in which counties 

with high social vulnerability and high loss potential cluster together to form hot-spots. Moran’s 

I is a metric of association which measures the degree to which spatial autocorrelation occurs 

within a given study area. Randomness or spatial continuity of observed patters can be identified 

by spatial autocorrelation (Waldhör 1996). Moran’s I is a popular and widely used measure of 

spatial autocorrelation which measures the similarity of values in nearby places from a mean 
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value and visualizes a spatially weighted distribution of the autocorrelation between places 

(Moran 1950, Jackson et al. 2010). 

The section describes the patterns that are the result of the analyses of spatial 

autocorrelation (Figure 15- 20). The analysis was conducted using a Local Bivariate Moran’s I to 

associate the two SoVI factors explaining the highest percent variance (i.e. wealth and age) with 

the estimated earthquake losses and casualties. Such an analysis is often described as a Local 

Indicator of Spatial Association (or LISA). Here, bivariate LISA maps were produced where 

results were classified into four groups based on the extent of autocorrelation between the 

physical risk and social variables. Here, positive spatial autocorrelation is used to identify 

clusters representing high physical risk and a high loading on one of the respective social factors 

(high-high) or a low loading on physical risk and a low loading on one of the respective social 

factors (low-low). Conversely, negative spatial autocorrelation identifies relationships where 

high risk exists coupled with low social vulnerability (high-low) and vice versa (low-high).  
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Figure 15 A describes the relationship between the physical risk estimates and the wealth 

factor (Factor 1). Nineteen counties contain a high amount of wealth and also have the highest 

damage potential from earthquakes in the study area. These are primarily urban counties along 

the South Carolina coast and in the greater Atlanta Metropolitan area. These are areas of 

management concern in terms of the enormity of losses that could be sustained. The counties, 

however, contain wealth that could fund mitigation initiatives, pre-impact planning, response, 

and recovery actions if a damaging earthquake were to occur. Figure 15 B describes the 

statistical significance of the relationship between direct damages and wealth. Here, relationships 

between the two variables are very highly significant at p=0.0001. Five hundred forty-nine 

counties demonstrate no statistically significant relationship.   

 

 

 

 

 

 

 

 Figure 15: Direct damage vs wealth (Factor 1) (A. Bivariate LISA cluster map & B. Bivariate 

LISA significance map). 
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Figure 16 A describes the relationship between physical risk and age dependency (Factor 

2) using maps. Plots of these spatial autocorrelations are located in Appendix 2. The results show 

that both high damage potential and a high age dependency occur in only six counties, mainly in 

eastern Tennessee and northeastern South Carolina. Positive spatial relationships between low 

age dependence and low damage potential also exist. These relationships occur in eighty-five 

counties and appear to be randomly distributed. Figure 16 B describes the significance of the 

relationship of direct damage and age dependency. The spatial associations between twenty-two 

counties are significant at p=0.0001. However, a statistical association between the age and 

damage does not exist in 559 counties.   

 

 

 

 

 

 

 

Figure 16: Direct damage vs Age dependency (Factor 2) (A. Bivariate LISA cluster map & B. 

Bivariate LISA significance map). 
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Figure 17 A describes the relationship between the modeled physical risk and SoVI 

scores which is the final composite metric of social vulnerability to define the social 

vulnerability of the study area. Areas of management concern include counties with high 

physical risk and high social vulnerability (6 counties) as well as counties low physical risk and 

high social vulnerability (90 counties). High-High counties occur mainly along the South 

Carolina coast. Low-high counties occur throughout the study area but mainly in Florida. Due to 

their high social vulnerability, these counties should still be seen as a management concern. This 

is primarily because these counties may be more inclined to suffer damages from a low 

magnitude event due to the potential condition and age of the infrastructure. In addition, costly 

mitigation may not be performed in these counties. In areas where the physical risk is negligible, 

such as in Florida, highly socially vulnerable populations may be at considerably high risk to 

other perils such as tropical cyclones and floods where risk is compounded by social 

vulnerabilities within the population (Burton and Silva 2016). Figure 17 B describes the 

significance of the relationship of physical risk and SoVI scores.  
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Figure 17: Direct damage vs SoVI score (A. Bivariate LISA cluster map & B. Bivariate LISA 

significance map). 

Figures 18 A-B and 19 A-B describes the relationship between casualties and the wealth 

factor (Factor 1) and causalities and the age factor (Factor 2), respectively. Casualties and the 

wealth factor tend to cluster in urban areas along the South Carolina coast and in the Atlanta 

area. Conversely, high casualties and high age dependence (Figure 19 A) demonstrate a pattern 

that appears random. Counties with the potential for low casualties and high age dependence, 

however, are found throughout Florida. Figures 18 B and 19 B are representations of the 

statistical significance of the autocorrelation between the variables.   
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Figure 18: Casualties vs Wealth (Factor 1) (A. Bivariate LISA cluster map & B. Bivariate LISA 

significance map). 

 

 

 

 

 

 

Figure 19: Casualties vs Age dependence (Factor 2) (A. Bivariate LISA cluster map & B. 

Bivariate LISA significance map). 
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Finally, figure 20 A-B describes the relationship between casualties and SoVI scores. 

Figure 20 A represents the areas of concern where both casualties and SoVI scores are high. The 

High-High counties are found mainly in South Carolina coast and Atlanta Metropolitan area. 

Figure 20 B represents the statistical significance of the relationship between these two variables.  

 

 

 

 

 

 

 

Figure 20: Casualties vs SoVI (A. Bivariate LISA cluster map & B. Bivariate LISA significance 

map) 
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4.5 Integrated Risk Assessment 

An Integrated Risk Assessment is the integration of the social vulnerability model and the 

physical risk model. This was accomplished to determine areas of risk and social vulnerability 

simultaneously where high losses are likely to occur coupled with populations that may not be 

able to prepare for, respond to, and recover from such losses. The bivariate LISA analysis in 

section 4.4 was dependent on spatial autocorrelation between the physical risk and social 

vulnerability. The integrated assessment accompanies the previous method because it provides a 

straight forward metric to simultaneously measure areas of high risk and social vulnerability 

regardless of the relationships that are occurring in surrounding polygons. It is a comparative 

metric rather than a hot-spot analysis. 

According to the probabilistic scenario (see Table 4), the Integrated Risk Assessment 

shows there are eight counties identified to be in highest integrated risk category (+2) and no 

county is in lowest category (-2). Nearly half (42.93%) of the counties fall into the medium risk 

category. One hundred and eighty-one counties (24.59%) fall into the high-risk category (+1 

score) and two hundred and thirty-one counties (31.39%) fall into low risk category (-1). 
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Table 4: Number of counties in each risk level for probabilistic scenario.  

Integrated Risk Score Probabilistic scenario Percent (%) of total counties 

Highest (+2) 8 1.09 

High (+1) 181 24.59 

Medium (0) 316 42.93 

Low (-1) 231 31.39 

Lowest (-2) 0 0 

 

 

Figure 21 is a map of the social vulnerability of the region using the SoVI. Counties 

mapped with a red hue represent the most socially vulnerable based on the index construction 

method and the three-class mapping scheme demonstrated here. Highly socially vulnerable 

counties are found throughout Florida, in a multitude of the counties along the southeast coast., 

and along the gulf coast of Mississippi. Other socially vulnerable areas include a swath of 

counties in eastern Tennessee and counties in proximity to the Atlanta Metropolitan areas.  
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Figure 21: Social vulnerability distribution in the study region. 

Figure 22 maps the modeled physical risk within study area. Not surprisingly, the lowest 

levels of physical risk occur in central and southern Florida which is an area furthest removed 

from the New Madrid Fault and its ground shaking potential. The highest levels of physical risk 

are found in the greater Memphis area of Tennessee, north to the Kentucky border.  Charleston 

(Charleston County) and Columbia, South Carolina (Richland and Lexington Counties) also have 

a considerable amount of seismic risk when compared to the rest of the region. The same applies 

to Fulton and Dekalb Counties in Georgia where the sprawling, abundant, and high-density 

infrastructure of Atlanta could be subjected to considerable loss.  
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Figure 22: Total loss distribution (in probabilistic scenario) for FEMA Region IV 

Figure 23 is a representation of the integrated risk of the region. Here, South Carolina 

(Beaufort, Charleston, Georgetown, and Horry Counties) are subjected to the highest physical 

risk coupled with highly socially vulnerable populations, comparably. Counties that encompass 

Knoxville and the Atlanta Metropolitan area also have a high degree of integrated risk. It’s 

important to note that there is no lowest category of integrated risk because there was no county 

in which the calculated social vulnerability and physical scores were the lowest value (-1). As a 

result, the lowest value of -2 for any county could not be achieved. 
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Figure 23: Integrated risk levels for FEMA region IV- Probabilistic earthquake scenario.  

 

4.6 Global Regression Model 

Up until this point, this thesis has concentrated mostly on the spatial description of the 

concepts of physical risk, social vulnerability, and integrated risk. As a supporting and ancillary 

analysis, OLS regression models were calibrated in order to test the assumption that quantifiable 

characteristics of socially vulnerability of populations may be used as proxy variables for 

modeled earthquake loss. This was accomplished first by regressing the SoVI factors against the 

predicted average annual losses, and second, by regressing the SoVI factors against the predicted 
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casualties. Since the SoVI factors are a linear and parametric combination of the original 

variables, it was found that regression’s basic assumptions were not violated.  

The ANOVA results (Table 5) for the SoVI and direct damage model demonstrates a 

statistically significant model outcome overall. Table 6 presents the results where Factors 1, 2, 

and 6 where found to have a statistically significant association with the modeled losses. 

According to the regression beta coefficients which are used to assess the strength of the 

relationship between the dependent and independent variables, the biggest potential predictor of 

damage is the wealth factor. The predictive strength of the model based on its coefficient of 

determination (adjusted R-Square) is extremely low, however. The Adjusted R-Square results 

demonstrate that approximately 94% of the variance in the model is explained by characteristics 

not measured here. The assumption that characteristics of social vulnerability may be used as a 

proxy for earthquake impacts (Direct damage and casualties) was supported by the model. The 

explanatory power of the model is so low, however, that the results are negligible.  
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Table 5: ANOVA Table for Global Regression of SoVI factors and Direct Damage 

 

Table 6: Global Regression of SoVI factors for Direct Damage using Standardized Regression 

Coefficients 

 

 

 

 

 

 

 

 

 

 

 Sum of 

squares 

df Mean square F Sig. 

Regression  48.020 7 6.860 7.259 .000 

Residual  687.980 728 0.945   

Total 736.000 735    

Variable Beta t Sig 

    

Factor 1_Wealth 0.194 5.420 0.000 

Factor 2_ Age 

dependency 

-0.104 -2.907 0.004 

Factor 3_Race Black 

& Poverty 

0.069 1.923 0.055 

Factor 4_Race 

Hispanics 

-0.054 -1.513 0.131 

Factor 5_Mobile 

homes 

-0.062 -1.735 0.083 

Factor 

6_Unemployment 

-0.071 -1.978 0.048 

Factor 7_Service 

Industry Employment 

and Native Americans 

-0.010 -0.281 0.779 

R-square: 0.065, Adjusted R-Square 0.058 
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For the association between casualties and the SoVI factors, a statistically significant 

model was also achieved (see Table 7). In addition, several variables (Factor 1, Factor 2, and 

Factor 5) achieved a statistically significant association with casualties (Table 8). Factor 1 

(wealth) likewise was found to be the biggest predictor of casualties based on the regression’s 

beta coefficients. Here, the results are also negligible, however. The predictive strength of the 

model is extremely low (Adjusted R-Squared = 0.057), leaving the majority of the variance 

unexplained.   

Table 7: ANOVA of Global Regression Parameters with SoVI Factors and Casualties 

 Sum of 

squares 

df Mean square F Sig. 

Regression  48.375 7 6.911 7.316 0.000 

Residual  687.625 728 0.945   

Total 736.000 735    

 

Table 8: Global Regression Parameters with SoVI Factors for Casualty using Standardized 

Regression Coefficients 

Variable Beta T Sig 

Factor 1_Wealth 0.184 5.138 0.000 

Factor 2_ Age 

dependency 

-0.119 -3.308 0.001 
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4.7 Summary 

For the social vulnerability model, seven composite factors were identified as 

contributors to the spatial variation of social vulnerability within the counties of the study region. 

These seven factors were derived by Factor Analysis using the SoVI method. The social 

vulnerability estimates were coupled with probabilistic damage estimates from HAZUS-MH to 

estimate integrated risk. The integrated risk assessment identified areas of management concern 

where counties both demonstrated high social vulnerability and high physical risk scores. These 

include counties along the South Carolina Coast, counties in eastern Tennessee and counties in 

the greater Atlanta Metropolitan area.  

 

Factor 3_Race Black & 

Poverty 

0.064 1.777 0.076 

Factor 4_Race 

Hispanics 

-0.066 -1.835 0.067 

Factor 5_Mobile homes -0.075 -2.081 0.038 

Factor 

6_Unemployment 

-0.061 -1.716 0.087 

Factor 7_Service 

Industry Employment 

and Native Americans 

-0.009 -0.253 0.800 

R-square: 0.066, Adjusted R-Square 0.057 
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Chapter 5: Conclusions and Directions for Further Research 

 

5.1 Conclusions 

Property damages and casualties from earthquakes are an issue of concern for states, 

counties, cities, and individuals within the United States. It is within this context that this thesis 

contributes to current research by identifying locations of physical risk from earthquakes coupled 

with the social vulnerability of populations that will be subjected to the hazard. The objective of 

this research was not only to identify the social factors that contribute to earthquake losses, but 

also to demonstrate procedures on how assess earthquake risk spatially and holistically. The 

procedures and results outlined in this thesis show promise for hazard mitigation, 

communication, planning, disaster risk reduction initiatives, and research. Mapping earthquake 

risk and the contributing factors to it can improve resiliency and loss reduction within the region. 

It is hoped that the successful answers to the research questions outlined in this thesis can 

contribute to future research within the area of earthquake risk assessment.  

5.2 Research Question 1 Summary 

The first research question asked which counties of the study region have high physical 

risk. Here, HAZUS-MH software was utilized to calculate direct damages and casualties from 

earthquakes. It was found that the spatial distribution of losses was not random but based on a 

number of factors such as building type and the location of buildings in large urban centers. Very 

high losses were estimated for Charleston (SC), Berkeley (SC), and Shelby (TN), to name just a 
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few counties. South Carolina and Tennessee have had previous earthquake records. Here, 

earthquake impact modeling was accomplished considering previous earthquakes and these areas 

were found to be higher in vulnerable physically. The results of the earthquake impact modeling 

were found to be aligned with the assumptions of where the majority of high dollar losses might 

occur (i.e. in large and wealthy cities such as Charleston and Atlanta). 

5.3 Research Question 2 Summary 

The second research question asked which counties entertain a high physical risk coupled 

with populations that have a high social vulnerability. The purpose of this question was to 

delineate the spatial distribution of clusters of counties where both physical risk and social 

vulnerability are high. Hotspots were found in some parts of South Carolina, Tennessee and 

Georgia based on the comparative integrated risk levels of each county. While Georgia counties 

in the Atlanta area have a low probability for the occurrence of damaging earthquakes, this area 

was found to be vulnerable due to the large number of assets in harm’s way coupled with social 

factors.  

5.4 Research Question 3 Summary 

The final research question asked which indicators of social vulnerability provide the best 

predictors of the spatial differences in impacts from earthquakes. This question was asked in 

order to see if a proxy variable for estimated losses could be derived from socio-economic data, 

not to make inferences regarding the extent to which social vulnerability increases damages. Two 

linear regression analyses were conducted to test if social vulnerability has a place in physical 
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risk modelling directly. In both models, wealth was identified as the strongest predictor of 

damages, mainly because wealthier counties contain more infrastructure that is exposed to 

potential damage from ground shaking. However, the adjusted R-Squared values were very low. 

It’s arguable that that the results of the regression analysis are negligible, and future studies 

intending to use social vulnerability characteristics as a proxy for estimated loss should be 

approached with extreme caution.  

5.5 Research Opportunities 

This section refers to the problems that came up while working on this thesis. A number 

of areas of opportunities roused which constitute the need for future research. The first is the 

study region itself. If the study area were California, for instance, the results would likely be 

different. The second area of research opportunity results from issues of scale. This research was 

conducted at the county level which is a very large areal unit. Thus, results at one scale of 

geography could be quite different from the results derived at other spatial resolutions. The third 

area of opportunity is the variable selection. This thesis adopted the SoVI method because it is 

well established and replicable, but there are more variables out there that could have been 

explored, even qualitative ones. Perhaps with different variables, the regression results would 

have been improved. Finally, the regression models were failed to explain more than 6% of the 

variation in the models. Having real earthquake losses at the county level would have been 

helpful. While there are a number of caveats, it is important to address these areas of opportunity 

because they provide a wide-open opportunity for future research. 



 

69 
 

5.6 Research Contributions 

In the fields of natural hazards and disasters and disaster risk reduction, researchers and 

practitioners alike recognize that risk assessments, regardless of the hazard, all-to-often overlook 

characteristics within social systems that could aggravate earthquake loss. The successful 

completion of this thesis resulted in several outcomes which are notable. First, this research has 

provided a mechanism in which social indicators are used in earthquake impact modeling for a 

very large study region where the earthquake hazard is often overlooked. Secondly, 

understanding how social indicators contribute to earthquake impact allows researchers to 

identify why differential impacts exist within built environment. Finally, the integration of social 

vulnerability with impact prediction provides a comparative metric and benchmarking tool for 

decision making and planning.  
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Appendix-1 

 

SoVI variable names and corresponding codes 

 

Variable Names Codes Variable Name Codes 

Median Age  MEDAGE 

 

Percent female 

population 

QFEMALE 

 

Percent Black QBLACK 

 

Percent female 

headed households 

QFHH 

 

Percent Native 

American 

QNATAM 

 

Percent households 

receiving social 

security benefits 

QSSBEN 

 

Percent Asian and 

Hawaiian Islanders 

QASIAN 

 

People per unit PPUNIT 

 

Percent Hispanic QHISP 

 

Per Capita Income 

(in dollars) 

PERCAP 

 

Percent of 

population under 5 

years or 65 and over 

QAGEDEP 

 

Percent 

employment in 

extractive 

industries 

QEXTRCT 

 

Median Value of 

Owner Occupied 

Housing Units 

MDHSEVAL 

 

Percent of housing 

units that are 

mobile homes 

QMOHO 

 

Percent of children 

living in married 

couple families 

QFAM 

 

Percent of 

population with no 

high school 

diploma or less 

QED12LES 
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than 12th grade 

education 

Percent renter QRENTERS 

 

Percent of housing 

units with no car 

QNOAUTO 

 

Percent residents in 

nursing homes 

QNRRES 

 

Percent females 

participating in the 

labor force 

QFEMLBR 

 

Percent speaking 

English as a second 

language 

QESL 

 

Percent unoccupied 

housing units 

QUNOCCHU 

 

Percent of 

population without 

health insurance 

QNOHLTH 

 

Median Gross Rent MDGRENT 

 

Percent civilian 

unemployment 

QCVLUN 

 

Percent Employed 

in service industry 

QSERV 

 

Percent of 

households earning 

$200,000 or more 

QRICH200K 

 

  

Percent living 

below poverty level 

QPOVTY 

 

  

 

 

 

 

 



 

79 
 

SPSS Table of factor analysis output showing %variance explained  

 

 

 

 

 

 

 

 

Total Variance Explained 

Compon
ent 

Initial Eigenvalues 
Extraction Sums of Squared 

Loadings 
Rotation Sums of Squared 

Loadings 

Total 
% of 

Variance 
Cumulati

ve % Total 
% of 

Variance 
Cumulati

ve % Total 
% of 

Variance 
Cumulati

ve % 

1 8.200 29.287 29.287 8.200 29.287 29.287 6.115 21.840 21.840 

2 4.448 15.886 45.173 4.448 15.886 45.173 4.122 14.722 36.562 

3 2.751 9.824 54.997 2.751 9.824 54.997 3.615 12.912 49.474 

4 2.267 8.098 63.095 2.267 8.098 63.095 2.447 8.738 58.212 

5 1.348 4.815 67.909 1.348 4.815 67.909 2.232 7.972 66.183 

6 1.236 4.413 72.323 1.236 4.413 72.323 1.570 5.606 71.789 

7 1.057 3.775 76.097 1.057 3.775 76.097 1.206 4.309 76.097 

8 0.936 3.343 79.440             

9 0.866 3.092 82.532             

10 0.675 2.409 84.942             

11 0.599 2.138 87.080             

12 0.586 2.094 89.174             

13 0.505 1.802 90.976             

14 0.406 1.449 92.425             

15 0.348 1.244 93.668             

16 0.307 1.098 94.766             

17 0.277 0.991 95.757             

18 0.231 0.826 96.583             

19 0.184 0.657 97.240             

20 0.157 0.560 97.799             

21 0.131 0.467 98.267             

22 0.118 0.420 98.686             

23 0.094 0.337 99.023             

24 0.078 0.278 99.301             

25 0.069 0.248 99.549             

26 0.059 0.210 99.759             

27 0.038 0.136 99.895             

28 0.029 0.105 100.000             

Extraction Method: Principal Component Analysis. 
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SPSS PCA output of rotated component matrix with variables >=0.500 and <= -0.500 

highlighted in yellow 

Rotated Component Matrixa 

  

Component 

1 2 3 4 5 6 7 

Zscore(QN
OHLTH) 

-0.211 0.090 0.280 0.672 0.264 0.036 0.225 

Zscore(QF
AM) 

0.128 -0.001 -0.905 -0.054 -0.005 0.066 -0.077 

Zscore(MD
GRENT) 

0.844 -0.070 -0.037 0.266 -0.184 0.045 0.069 

Zscore(QA
SIAN) 

0.699 -0.301 0.123 0.235 -0.085 -0.065 -0.014 

Zscore(QBL
ACK) 

-0.050 -0.106 0.897 -0.019 0.122 -0.008 -0.076 

Zscore(QHI
SP) 

0.252 -0.069 -0.062 0.910 -0.075 0.042 -0.007 

Zscore(QN
ATAM) 

-0.119 -0.059 -0.047 0.064 -0.011 -0.054 0.755 

Zscore(QA
GEDEP) 

-0.142 0.877 -0.090 0.066 -0.093 -0.196 -0.061 

Zscore(ME
DAGE) 

-0.069 0.859 -0.262 -0.114 0.013 0.011 -0.163 

Zscore(QF
EMALE) 

0.071 0.120 0.159 -0.092 -0.172 -0.900 -0.003 

Zscore(QF
HH) 

-0.237 -0.224 0.884 0.028 0.026 -0.038 0.005 

Zscore(QN
RRES) 

-0.396 0.200 0.062 -0.155 0.043 -0.128 -0.154 

Zscore(QM
OHO) 

-0.283 0.041 0.053 0.030 0.874 0.081 -0.037 

Zscore(PP
UNIT) 

-0.043 -0.741 -0.020 0.032 -0.143 0.471 -0.201 

Zscore(QE
SL) 

0.406 -0.084 -0.032 0.859 -0.112 0.013 0.009 

Zscore(QP
OVTY) 

-0.640 0.006 0.569 0.023 0.217 0.053 0.059 

Zscore(QR
ENTERS) 

0.126 -0.567 0.477 0.172 -0.274 -0.178 0.096 

Zscore(QS
SBEN) 

-0.394 0.813 0.038 -0.027 -0.010 0.164 -0.056 

Zscore(QRI
CH200K) 

0.808 -0.082 -0.079 0.075 -0.055 -0.066 -0.155 

Zscore(PE
RCAP) 

0.878 0.014 -0.263 -0.004 -0.192 -0.159 -0.088 

Zscore(QE
D12LES) 

-0.730 0.202 0.140 0.193 0.193 0.136 -0.023 

Zscore(QU
NOCCHU) 

0.080 0.710 0.043 0.083 0.337 0.156 0.307 

Zscore(QN
OAUTO) 

-0.475 0.266 0.434 -0.090 0.154 0.169 -0.174 
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Zscore(QC
VLUN) 

-0.468 0.398 0.278 -0.058 0.126 0.516 0.055 

Zscore(QE
XTRCT) 

-0.479 0.042 0.017 0.328 0.435 0.066 -0.169 

Zscore(QS
ERV) 

0.439 0.148 0.138 0.031 -0.240 0.119 0.516 

Zscore(QF
EMLBR) 

-0.293 0.179 0.150 -0.108 0.805 0.106 -0.044 

Zscore(MD
HSEVAL) 

0.889 0.096 -0.201 0.178 -0.129 0.005 0.030 

 Wealth (-) 

Age 
dependen
ce 
(elderly)(+
) 

Race 
(African 
American) 
& poverty 
(+) 

Race 
(Hispanics
) (+) 

Mobile 
homes (+) 

Unemploy
ment (+) 

Service 
industry 
employme
nt and 
Native 
Americans 
(+) 
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Appendix-2 

 

 

Moran’s I scatter plot 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Direct damage vs wealth Direct damage vs age dependency  

Direct damage vs SoVI score 
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Casualty vs SoVI 

 

Casualty vs age dependency  

 

Casualty vs wealth 


