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Abstract

In this dissertation, two systems of deterministic differential equations are introduced to

study the transmission of vector-borne diseases between a host and a vector. The total popu-

lation of the host and the vector are divided into different compartments. The total population

of host is divided into susceptible , exposed, infected, and treated groups. The total population

of vector is divided into susceptible, exposed, and infected. In chapter 2, we introduce a mo-

del to study vertically transmitted vector-borne diseases with nonlinear system of differential

equations. We analyze the model by finding the disease free equilibrium point E0 and deriving

the basic reproductive number R0 by using the next generation matrix method. We study the

local and global stability of E0 and how the stability is related to R0. We study the sensitivity

of R0 using the normalized forward sensitivity index and find the relation to the parameters in

the model. We have numerical simulations to show the result we get from the analysis based on

the dengue virus. In chapter 3, we introduce a model to study optimal control to find the best

way to control viruses. We introduce two optimal controls, the prevention of contact between

host and vector u1 and the treatment of host u2 in the model given in the chapter 2. We consider

a cost functional related to the cost of the prevention and the treatment. We try to minimize

the number of exposed and infected host groups and maximize the number of susceptible and

treated host groups. We show the existence of u1 and u2 by using Carathodory’s existence theo-

rem. We find the explicit formula of u1 and u2 with the status variables and the adjoint variables

from Hamiltonian by using Pontryagin’s maximum principle. We find the numerical values of

u1 and u2 by solving the given status system and the adjoint system derived from Hamiltonian.

We use the forward-backward sweep method and the Runge-Kutta method in 3-dimension to

solve the status system and the adjoint system. In the numerical simulation, we compare the

result between the controlled case and uncontrolled case for each host and vector groups. Also

we see which control among u1 and u2 is more effective to control the virus. In appendices, we

show the Matlab code used in the numerical simulation.
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Chapter 1

Introduction

In this thesis, we study mathematical models for the dynamics of vector-borne diseases, especi-

ally dengue virus. We will provide a brief explanation for vector-borne diseases, mathematical

modeling of vector-borne diseases, dengue virus, vertical transmission of dengue virus, analy-

sis of the model, and optimal control approach to find the best way to control the virus.

Vectors are living organisms that can transmit infectious diseases between humans or from

animals to humans. Many of these vectors are bloodsucking which ingest disease-producing

microorganisms during a blood meal from an infected host (human or animal) and later inject

it into a new host during their subsequent blood meal.

Vector-borne diseases are human illnesses caused by parasites, virus and bacteria that are

transmitted by mosquitoes, sandflies, triatomic bugs, blackflies, ticks, tsetse flies, mites, snails

and lice. Every year there are more than 700,000 deaths from diseases such as malaria, dengue,

schistosomiasis, human African trypanosomiasis, leishmaniasis, Chagas disease, yellow fever,

Japanese encephalitis and onchocerciasis globally. Since 2014, the major vector-born diseases

are dengue, malaria, chikungunya, yellow fever, and Zika.

Changes in agricultural practices due to variation in temperature and rainfall can affect

the transmission of vector-borne diseases. The growth of urban slums, lacking reliable piped

water or adequate solid waste management, can render large populations in towns and cities at

risk of viral diseases spread by mosquitoes. Together, such factors influence the reach of vector

populations and the transmission patterns of disease-causing pathogens. [72]

Dengue fever is a mosquito-borne viral infection and is a severe, flu-like illness that affects

infants, young children and adults [32, 71]. It occasionally develops into Severe dengue which
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is the leading cause of serious illness and death among children. Classical dengue fever is

generally observed in older children and adults and is characterized by sudden onset of fever,

frontal headache, nausea, vomiting, and other symptoms. The actual illness last for 3 to 7 days

is usually benign.

It is transmitted by the Aedes aegypti mosquitoes and the Aedes albopictus mosquitoes.

The Aedes aegypti mosquito lives in urban habitats and breeds mostly in man-made containers.

Unlike other mosquitoes the Aedes aegypti mosquito is a day-time feeder. Therefore the peak

biting periods are early in the morning and in the evening before dark. The Aedes albopictus

mosquito lives mostly in Asia but due to the international trade, it has spread to North America

and more than 25 countries in Europe.

The virus is transmitted to humans through the bites of infected female mosquitoes. In-

fected symptomatic or asymptomatic humans are the main carriers and multipliers of the virus,

serving as a source of the virus for uninfected mosquitoes. An infected mosquito is capable

of transmitting the virus for the rest of its life. Mosquitoes’ spread is due to its tolerance to

temperature below freezing, hibernation, and ability to shelter in microhabitats.

At the present, there is no effective vaccine for the dengue fever. In late 2015 and early

2016, the first dengue vaccine was developed, but its efficacy depended on geographical set-

tings. The main method to control or prevent the transmission of dengue virus is through con-

trolling the environment including the mosquito’s habitats, applying appropriate insecticides,

using personal household protection, and monitoring and surveillance of vectors.

One of the difficulties to understand the dengue virus is how the virus can remain in human

population even through long periods of extremely low incidence. One hypothesis is that the

vertical transmission within the mosquito population allows the virus to persist during these

times. Vertical transmission of dengue virus by mosquitoes was discovered at the end of the

late 1970s. However, it is unclear how widespread it is in nature, and its importance in the

epidemiology of the disease. Vertical transmission of dengue virus has been demonstrated in

the lab for the several different mosquitoes. Numerous studies have provided clear evidence

of vertical transmission of dengue in wild Aedes aegypti and Aedes albopictus mosquitoes.

The laboratory experiments reviewed three ways of measuring vertical transmission. The first
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is the vertical transmission rate (VTR) that is defined as the proportion of infected parents

that produce at least one infected offspring. The second is the filial infection rate (FIR) that

is defined as the proportion of infected progeny produced from infected parents, given that

vertical transmission has occurred. The third is the vertical infection rate (VIR), which is the

VTR multiplied by the FIR [1, 34].

Species vt(%) ft(%) v(%)

Ae aegypti 3.0 0.13 0.039

Ae albopictus 41.2 2.9 .2

Table 1.1: Average Laboratory vertical infection (v), vertical transmis-
sion (vt), and filial infection (ft) rates for Aedes mosquitoes. [16]

Ross first described malaria transmission mathematically and Macdonald updated and

extended Ross’s theory and applied it to the Global Malaria Eradication Programme (GMEP).

During the era of Macdonald, a quantitative theory, consisting of a set of linked concepts,

notation and metrics for understanding and measuring mosquito-borne pathogen transmission

and control were fully developed [61]. A number of factors that contribute to the rising of

vector-borne diseases include (1) the ability of the anthropoids to adapt to new habitats, (2)

development of insecticide and drug-resistant vectors, (3) global and rapid human movement

(by jet airplanes), (4) building widespread irrigation and water-impoundment, (5) civil unrest

and wars which lead to displacement of large masses of people who live for long periods of time

under poor conditions, (6) rapid urbanization which concentrates many host on small area, (7)

change in policies that took away resources for vector-control measures. In addition,the impact

of climate change and global warming is a topic of significant debate. The emergence and

reemergence of vector-borne diseases have promoted interest in their mathematical modeling.

[70]

Mathematical models have become important tools for analyzing the spread and control

of infectious diseases. The model formulation process clarifies assumptions, variables, and

parameters. The models provide conceptual results such as thresholds, basic reproduction
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numbers, contact numbers, and recovered numbers. Also computer simulations are useful ex-

perimental tools for building and testing the theories, assessing quantitative conjectures, deter-

mining sensitivities to changes in parameter values, and estimating key parameters from data.

Mathematical models have been formulated for diseases such as measles, rubella, chickenpox,

whooping cough, diphtheria, smallpox, malaria, onchocerciasis, filariasis, rabies, gonorrhea,

herpes, syphilis, and HIV/AIDS [39].

The basic reproduction rate, R0, is the number of secondary infections produced by one

primary infection in a totally susceptible population. The traditional threshold condition is

expressed in terms of relationship between S0 and ρ. S0 is the initial population of susceptible

individuals and ρ = γ
β

, where β is the transmission rate and γ is the recovery rate. If S0 > ρ

the disease persists and if S0 < ρ the disease dies out. Because R0 = S0

ρ
the condition S0 > ρ

is equivalent to the condition R0 > 1. Similarly, the condition S0 < ρ is equivalent to the

condition R0 < 1. If R0 > 1, then each infectious individual will pass the infection to more

than one susceptible individual. Therefore the disease can be maintained in the population. If

R0 < 1, then the disease will die out in the population because it is not able to reproduce itself

at a sufficient rate. This kind of information has proven that R0 is a useful concept to determine

effective control measures.

R0 ∝
(
infectious

contact

)
·
(
contact

time

)
·
(

time

infectious

)
= τ · c · d

where τ is the transmissibility, i.e., probability of infection given contact between a suscepti-

ble and infected individual, c is the average rate of contact between susceptible and infected

individuals, and d is the duration of infectiousness.

A number of approaches have been used in the development of models analyzing the disea-

ses. These approaches include 1) compartment models, 2) statistical approaches, 3) geographic

approaches, and 4) economic models. Two classic epidemiology models are Epidemic and En-

demic models. Epidemic models are used to describe rapid outbreaks that occur in less than

one year. Endemic model are used for studying diseases over longer periods, during which

there is a renewal of susceptible individuals by births or recovery from temporary immunity.

The most common method in use is the compartment model. For example, there are SI, SIS,
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SEI, SIR, SEIS, SIRS, SEIR, SEIRS, MSEIR, MSEIR, and MSEIRS models. The models consist

of a number of compartment based on the disease status of an individual.

• Passive immune (M): is composed by newborns that are temporarily passively immune

due to antibodies transferred by their mothers.

• Susceptible (S): is the class of individuals who are susceptible to infection. This can in-

clude the passively immune individuals once they lose their immunity or, more commonly,

any newborn infant whose mother has never been infected and therefore has not passed

on any immunity.

• Exposed or Latent (E): compartment refers to the individuals that despite being infected,

do not exhibit obvious signs of infection.

• Infected (I): in this class, the level of pathogen is sufficiently large within the host and

there is potential for transmitting the infection to other susceptible individuals.

• Recovered or Resistant (R): includes all individuals who have been infected but have

recovered.

The process of building a mathematical model begins with a series of assumptions about how

the disease process works and developing a simplified model to describe the process. The

choice of which compartments to include in a model depends on the characteristics of the

particular disease being studied and the purpose of the model. The exposed compartment is

sometimes neglected when the latent period is very short. Additionally, the compartment of

the recovered individuals cannot always be considered since there are diseases where the host

does not become resistant [62]. The general transfer diagram for the MSEIR is given as the

following.
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Figure 1.1: The general transfer diagram for the MSEIR model

The two classical epidemic and endemic SIR model provide an intuitive basis for under-

standing more complex epidemiology modeling results. For the classical SIR Epidemic model

we assume that 1) Constant (closed) population size, N , 2) Constant rates (e.g., transmission,

recovery rates), 3) No demography (i.e., births and deaths), and 4) Well-mixed population,

where any infected individual has a probability of contacting any susceptible individual that is

reasonably well approximated by the average. It is given by the initial value problem
dS

dt
=
−βIS
N

, S(0) = S0 ≥ 0

dI

dt
=
βIS

N
− γI, I(0) = I0 ≥ 0

dR

dt
= γI, R(0) = R0 ≥ 0.

(1.1)

where S(t), I(t), and R(t) are the number of susceptible, infectious, recovered, respectively

and N(t) = S(t) + I(t) + R(t). β is the effective contact rate, γ is the recovery rate. An

epidemic occurs if the number of infected individuals increases, i.e., dI
dt
> 0. Then we have

βIS
N
− γI > 0 from the model (1.1). We assume that S

N
≈ 1 because at the outset of an

epidemic, nearly everyone is susceptible. Substituting S
N

= 1, we have the basic reproduction

number R0 = β
γ
> 1.

The classic Endemic SIR model is almost the same as the SIR epidemic model, except that

it has an inflow of newborns into the susceptible class at rate µN and deaths in the classes at
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rates µS, µI , and µR. It is given by the initial value problem
dS

dt
= µN − µS−βIS

N
, S(0) = S0 ≥ 0

dI

dt
=
βIS

N
− γI − µI, I(0) = I0 ≥ 0

dR

dt
= γI − µR, R(0) = R0 ≥ 0.

(1.2)

We find R0 = β
γ+µ

in the similar way from the endemic SIR model.

Since the two models are simple, we find the basic reproduction number, R0 from dI
dt

. For a

complex model, we use the next generation method. The next generation method introduced by

Diekmann (1990) is a general method of deriving R0 in cases encompassing any situation in

which the populations is divided into discrete, disjoint classes. In the next generation method,

R0 is defined as the spectral radius (dominant eigenvalue) of the next generation operator

(matrix). Let us assume that there are n compartments of which m are infected. We define

the vector x̄ = {xi}ni=1 where xi denotes the number of individuals in the ith compartment.

Let Fi(x̄) be the rate of appearance of new infections into compartment i, and let Vi(x̄) =

V −i (x̄) − V +
i (x̄), where V +

i (x̄) is the rate of transfer of individuals into compartment i by all

other means and V −(x̄) is the rate of transfer of individuals out of the ith compartment. The

difference Fi(x̄) − Vi(x̄) gives the rate of change of xi. We assume that Fi and Vi satisfy the

conditions outlined in Van den Driessche [66]. We can form the next generation matrix FV −1

where

F =

[
∂Fi(x0)

∂xj

]
(1.3)

and

V =

[
∂Vi(x0)

∂xj

]
(1.4)

where i, j = 1, . . . ,m and x0 is the disease-free equilibrium. The entries of FV −1 give the

rate at which infected individuals in xj produce new infections in xi, times the average length

of time an individual spends in a single visit to compartment j. [38, 39, 41, 64].

We perform sensitivity analyses on a mathematical model to determine the relative im-

portance of model parameters to disease transmission and prevalence. With the sensitivity, we

can reduce human morbidity and control the disease. There are many methods available for
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conducting sensitivity analysis such as differential analysis, response surface methodology, the

Fourier amplitude sensibility test (FAST) and other variance decomposition, fast probability

integration and sampling-based procedures. Nakul Chitnis [26] have evaluated the sensitivity

indices of the basic reproduction number and the point of endemic equilibrium to the parame-

ters in the model. We defines the normalized forward sensitivity index of a variable, u, that

depends differentiable on a parameter, p, as

γup =
∂u

∂p
× p

u
. (1.5)

These indices allow us to measure the relative change in a state variable when a parameter

changes [63].

Optimal control theory is a powerful mathematical tool to make decision involving a com-

plex system. For example, what percentage of the population should be vaccinated as times

evolves in a given epidemic model to minimize both the number of infected people and the cost

of implementing the vaccination strategy. Optimal control methods have been used to study the

dynamics of diseases including malaria, yellow fever, and dengue.

A typical optimal control problem requires a performance index or cost functional, J(x(·), u(·));

a set of state variable, x(·) ∈ X; and a set of control variable u(·) ∈ U . The main goal con-

sists in finding a piecewise continuous control u(t), t0 ≤ t ≤ tf , and the associated state

variable x(t), to minimize ( or maximize) the given objective functional. There are three

well known equivalent formulations to describe an optimal control problem, which are the

Lagrange, Mayer, and Bolza forms [24, 73].

The principal technique for an optimal control problem is to solve a set of necessary con-

ditions that an optimal control and corresponding state must satisfy. The necessary conditions

were developed by Pontryagin and his co-workers. Pontryagin introduced the idea of adjoint

functions to append the differential equation to the objective functional. Adjoint functions have

a similar purpose as Lagrange multipliers in multivariate calculus which append constraints

to the functions of several variables to be maximized or minimized. We need to find the appro-

priate conditions that the adjoint function should satisfy and derive a characterization of the

optimal control in terms of the optimal state and corresponding adjoint. We find the necessary
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conditions from the Hamiltonian H , which is defined as follows.

H(t, x, u, λ) = f(t, x, u) + λg(t, x, u)

= integrand + adjoint ∗ RHS of the state equations.
(1.6)

We minimize (or maximize) H with respect to u at u∗, and the conditions can be written in

terms of the Hamiltonian
∂H

∂u
= 0 at u∗ ⇒ fu + λgu = 0 (optimality conditin)

λ′ = −∂H
∂λ
⇒ λ′ = −(fx + λgx) (adjoint equation)

λ(t1) = 0 (transversality condition)

(1.7)

There are two different ways to solve the optimal control problems in numerically 1) in-

direct method and 2) direct method. To apply an indirect method, it is necessary to expli-

citly get the adjoint equations, the control equations, and all of the transversality conditions if

they exist. To solve the state and adjoint differential equations, we use the backward-forward

sweep method and Rung-Kutta fourth order method . A direct method has been driven by

the industrial need to solve large-scale optimization problems. This method constructs a se-

quence of points x1, x2, . . . , x
∗ such that the objective function F to be minimized satisfies

F (x1) > F (x2) > · · · > F (x∗) and reformulates the problem as a standard nonlinear op-

timization problem (NLP). There are many well-known software programs that can handle

it [47, 58, 62].

For the future research we consider periodicity and stochastic model. Periodicity and

other oscillatory have been observed in the incidence of many infections diseases, including

measles, mums, rubella, chickenpox, poliomyelitis, diphtheria, pertussis, and influenza. Many

researches show that models with periodic coefficients can explain the periodicity and other

oscillatory. For example, Contact rate vary seasonally for childhood diseases because of ope-

ning and closing of schools. Periodic changes in birth rate of populations are evidence in many

biological works. Vaccinations program is also a source of periodicity. A natural and im-

portant problem associated with periodic epidemic model is to define and compute their basic

reproduction numbers. Bacaër and Guernaoui [6] presented a general definition of the ba-

sic reproductions number in a periodic environment and show that it is a threshold parameter
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for the local stability of the disease-free periodic solution and for the global dynamics under

certain circumstances [55, 68].

Stochastic models are characterized by randomness, and variable states are described by

probability distribution. If the environment is randomly varying and the population systems are

often subject to environment noise, then parameters involved in epidemic models are not ab-

solute constants, and they may fluctuate around some average values. If the initial population

size is small then a stochastic model is more appropriate, since the likelihood that the popula-

tion becomes extinct due to chance must be considered. Based on these factors, people began

to be concerned about stochastic epidemic models. There are different possible approaches

to including random effects in the model. In the future research, we will study the stochastic

model based on our deterministic model [20, 33, 51].

This dissertation includes the analysis and the optimal control of the deterministic verti-

cally transmitted vector-borne disease model. In chapter 2, we introduce a deterministic verti-

cally transmitted vector-borne disease model that uses the SEIR model for the host and the SEI

model for the vector. The basic reproduction number is derived using the next generation met-

hod and the local and global stability of the disease-free equilibrium point is discussed. Also,

the sensitivity for R0 is discussed. In chapter 3, we present the vertically transmitted vector-

borne epidemic model with two controls to derive an optimal prevention of the contact between

vector and host and an optimal treatment for host with the minimal implementation cost. We

introduce an optimal control problem under the given epidemic model and discuss the exis-

tence of the optimal controls and the optimality system to find the optimal controls. In chapter

4, we consider controlling the number of mosquitoes and prevention of human-mosquito itera-

tion. Similar to chapter 3, We introduce an optimal control problem under the given epidemic

model and discuss the existence of the optimal controls and the optimality system to find the

optimal controls. In each chapter, we provide the numerical results supporting the analytical

conclusions.
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Chapter 2

Analysis of Vertically transmitted vector-borne disease model

2.1 Vertically transmitted vector-borne disease Model

In this section, we formulate and analyze the vertically transmitted vector-borne disease model.

We use SEIR type of structure for host and SIR type of structure for vector. The host population

is grouped into four compartments: susceptible host (x1), exposed host (no symptom, x2),

infectious (x3), and treated (x4). The total population of host is N = x1 + x2 + x3 + x4.

The vector population is grouped into three compartments: susceptible vector (y1), infectious

vector (y2). The total population of vector is P = y1 + y2 + y3.

To formulate a model of a disease, we introduce parameters and assume the followings. We

consider that the vertical transmission. That is, a disease is transmitted vertically from mother

to child by blood transfusion, breast feeding, or complications during pregnancy and from

mosquito to mosquito’s eggs when they are infected. In the susceptible host, x1, it is increased

by a result of new recruits and birth from susceptible, exposed, and treated hosts, and treated

hosts. It is decreased as a result of biting from infectious vectors and natural death. In the

exposed host, x2, it is increased by a result of biting from infectious vectors (at a rate of φβy3x1
N

) and birth from infected parents (at a rate of Λζ1x3). it is decreased by a result of natural

death and becoming infectious host after the incubation period. In the infectious host, x3, it is

increased by a result of infectious host from an exposed host after the incubation period. It is

decreased by a result of recovering, death induced by the disease, and natural death. In the

treated host, x4, it is increased by a result of recovering from infectious host. It is decreased

by a result of becoming susceptible host after treated and natural death. In the susceptible
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vector, y1, it is increased by a result of new adult female and maturation from susceptible and

exposed vector. It is decreased by a result of biting the exposed and infectious host and natural

death. In the exposed vector, y2, it is increased by a result of becoming a exposed vector from

biting the exposed (at a rate of φθ2x2
N

) and infectious host (at a rate of φθ1x3
N

) and birth from

infected parents. It is decreased by a result of becoming infectious after the incubation period

and natural death. In the infectious vector, y3, it is increased by a result of becoming infectious

from exposed vector. It is decreased by natural death.

Parameter Description (rates are per day)

µ host death rate (when density is ignored)

ζ1 vertical disease transmission rate (in the host)

ζ2 vertical disease transmission rate (in the vector)

δ0 average number of new adult female mosquitoes

δ1 a factor for density dependent maturation of mosquitoes to adulthood

Λ per capita(person) birth rate of host

r host recovery rate

β the probability that the disease is transmitted from an infected vector to a host

per contact

ρ host recruitment rate (by birth, assumed susceptible)

φ the number of contacts between a host and a vector

α disease-induced host death rate

ψ fading rate of treatment to make hosts susceptible to the disease

γ density independent death rate of vectors

ε incubation rate of the disease in a vector

d incubation rate of the disease in a host

θ1 transmission efficacy of the disease from infectious host to vector

θ2 transmission efficacy of the disease from exposed host to vector

Table 2.1: Parameters and description
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We consider the following transmission between human and vector [11], [12].

Figure 2.1: Compartment between human and vector where Sh = x1,
Eh = x2, Ih = x3, Th = x4, Sv = y1, Ev = y2, and Iv = y3.

Based on the above figure, we can establish a model with the parameters in Table 2.1 as

the following.
dx1

dt
= ρ+ Λ(x1 + x2 + x4) + Λ(1− ζ1)x3 + ψx4 −

βφy3x1

N
− µx1

dx2

dt
=
βφy3x1

N
+ Λζ1x3 − dx2 − µx2

dx3

dt
= dx2 − (r + α + µ)x3

dx4

dt
= rx3 − (ψ + µ)x4

dy1

dt
= δ0 + δ1(y1 + y2) + δ1(1− ζ2)y3 −

φθ1x3y1

N
− φθ2x2y1

N
− γy1

dy2

dt
=
φθ1x3y1

N
+
φθ2x2y1

N
+ δ1ζ2y3 − εy2 − γy2

dy3

dt
= εy2 − γy3

(2.1)

with initial condition xi(0) ≥ 0, i = 1, 2, 3, 4 and yj(0) ≥ 0, j = 1, 2, 3 and t ∈ [0, T ].

To show that {x1, x2, x3, x4, y1, y2} are all bounded in a set, we find a positively invariant

set with the state system (2.1). We use the theorem from J.K. Hale. [37].
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Theorem 2.1 (Differential Inequality). Let ω(t, u) be continuous scalar function on an open

connected set Ω ∈ R2 and such that the initial value problem for the scalar equation

du

dt
= ω(t, u)

has a uniques solution. If u(t) is a solution of the above equation on a ≤ t ≤ b and v(t) is a

solution of

dv

dt
≤ ω(t, v(t))

on a ≤ t ≤ b with v(a) ≤ u(a), then v(t) ≤ u(t) for a ≤ t ≤ b.

Adding the first four equations in (2.1), we have the differential equations of the total

population of host.

dN

dt
= ρ+ ΛN − αx3 − µN ≤ ρ+ ΛN − µN. (2.2)

Let dz
dt

= ρ + Λz − µz. Then it is one-dimensional differential equation with attracting set

[0, N∗], where z∗ = ρ
µ−Λ

is a positive equilibrium point. By the theorem 2.1, the equation

(2.2) implies that N(t) ≤ z(t) for N(0) ≤ z(0). Since z(t) is an autonomous equation and

N∗ is the equilibrium solution, N(t) remains in [0, N∗] for 0 ≤ N(0) ≤ N∗. Furthermore, if

N(0) > N∗, then N(t) approaches N∗.

Similarly, adding the last three equation, yields

dP

dt
= δ0 + δ1P − γP (2.3)

with a positive equilibrium P ∗ = δ0
γ−δ1 and for 0 ≤ P (0) ≤ P ∗, P (t) remains in [0, P ∗].

Let X = (x1, x2, x3, x4) , Y = (y1, y2, y3), and define

Ω = {(X, Y ) ∈ R4
+×R3

+,

4∑
i=1

xi ∈ [0, N∗],
3∑
i=1

y1 ∈ [0, P ∗]} = [0,
ρ

µ− Λ
]×[0,

δ0

γ − δ1

] (2.4)

The set Ω is forward invariant and attractor. Also, for N(0) ≥ N∗ = ρ
µ−Λ

, N(t)→ N∗ = ρ
µ−Λ

and for P (0) ≥ P ∗ = δ0
γ−δ1 , P (t)→ P ∗ = δ0

γ−δ1 .

Theorem 2.2. Ω is positively invariant under system (2.1).
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2.2 Disease free equilibrium point E0 and R0

In this section, we derive a disease free equilibrium point and the basic reproduction number,

R0. The basic reproduction number is defined as the average number of secondary infections

produced when one infected individual is introduced into a host population [50,53]. The basic

reproduction number R0 is often considered as the threshold quantity that determines when an

infection can invade and persist in a new host population [53].

To find the disease free equilibrium point of (2.1) we set x2 = x3 = x4 = 0 and y2 = y3 =

0. Let E0 = (x∗1, 0, 0, 0, y
∗
1, 0, 0) be the disease free equilibrium point. From the state system

(2.1), we obtain the following system.
dx1

dt
= ρ+ Λ(x1)− µx1

dx2

dt
=
dx3

dt
=
dx4

dt
= 0

dy1

dt
= δ0 + δ1(y1)− γy1

dy2

dt
=
dy3

dt
= 0

(2.5)

Then the disease free equilibrium point is E0 = (x∗1, 0, 0, 0, y
∗
1, 0, 0) where x∗1 = ρ

µ−Λ
, y∗1 =

δ0
γ−δ1 , γ > δ1, µ > Λ.

To find the epidemiology thresholdR0, we use the Next-Generation Approach [53,66]. The

key concept is that we need to average the expected number of new infectious over all possible

infected types. Let G be a next generation matrix in which the ijth element of G, gij , is the

expected number of secondary infectious of type i caused by a single infected individual of type

j. That is, each element of the matrix G is a reproduction number, but one where who infects

whom is accounted for. R0 is the average of all the elements of G. [29]

1. We consider equations in the state system (2.1) which correspond to the infected com-

partments which are related to x2, x3, x4, y2, y3 and let y2 = x5 and y3 = x6.

2. We split the right-hand side in the infected compartments in the following way.

dxi
dt

= Fi(x)− Vi(x), i = 2, 3, 4, 5, 6 (2.6)

where
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• Fi(x) is the rate of appearance of new infection compartment i.

• Vi(x) = Vi(x)+ − Vi(x)−, Vi(x)+ is the rate of transfer of individuals into com-

partment i by all other means, and V −i is the rate of transfer of individuals out of

compartment i.

Note that this decomposition may not be unique. Different decompositions may occurred

to different interpretations of each terms and may lead to a different basic reproduction

number. The decomposition should satisfy the following properties.

• if xi ≥ 0, then Fi(x), Vi(x)+, Vi(x)− ≥ 0 for i = 2, 3, 4, 5, 6.

• xi = 0 if and only if Vi(x)− = 0

• Fi(x) = 0 and Vi(x) = 0 for i = 2, 3, 4 and x5, x6 ≥ 0

•
6∑
i=2

Vi(x) ≥ 0 for all xi ≥ 0.

3. Determine the matrices F and V with components.

F =

[
∂Fi(x)

∂xj

] ∣∣∣∣
x=E0

and V =

[
∂Vi(x)

∂xj

] ∣∣∣∣
x=E0

, for i, j = 2, 3, 4, 5, 6 (2.7)

where E0 is DEF.

4. The Next-Generation matrix, K is defined as

K = FV −1 (2.8)

5. The basic reproduction number is defines as

R0 = ρ(FV −1) (2.9)

where ρ(A) denotes the spectral radius of A.

Definition 2.1. The spectral radius of a matrix A is defined as the maximum of the absolute

values of the eigenvalues of A

ρ(A) = sup{|λ| : λ ∈ σ(A)} (2.10)

where σ(A) denotes the set of eigenvalues of A.
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By the next-generation approach, we can find Fi(x) and Vi(x) and let F̃ (x) = (Fi(x)) and

Ṽ (x) = (Vi(x)) for i = 2, 3, 4, 5, 6. Then

F̃ (x) =

(
βφy3x1

N
+ Λζ1x3, 0, 0,

φθ1x3y1

N
+
φθ2x2y1

N
+ δ1ζ2y3, 0

)
Ṽ (x) = (k1x2,−dx2 + k3x3,−rx3 + k2x4, k4y2,−εy2 + γy3)

(2.11)

where k1 = d+ µ, k2 = ψ + µ, k3 = r + α + µ, k4 = ε+ γ.

Next we calculate F and V which are Jacobian matrices of F̃ and Ṽ respectively evaluated at

DFE, E0, with N = ρ
µ−Λ

since x∗1 = N at DFE.

F =



∂F1

dx2

∂F1

dx3

∂F1

dx4

∂F1

dy2

∂F1

dy3

∂F2

dx2
· · · ∂F2

dy3

...
...

... . . . ...

∂F5

dx2
· · · ∂F5

dy3


=



0 Λζ1 0 0 βφ

0 0 0 0 0

0 0 0 0 0

θ2φy1
x1

θ1φy1
x1

0 0 ζ2δ1

0 0 0 0 0



V =



k1 0 0 0 0

−d k3 0 0 0

0 −r k2 0 0

0 0 0 k4 0

0 0 0 −ε γ



(2.12)

Then we see that V is a nonsingular M -matrix and we have V −1.

V −1 =



1
k1

0 0 0 0

d
k1k3

1
k3

0 0 0

dr
k1k2k3

r
k2k3

1
k2

0 0

0 0 0 1
k4

0

0 0 0 ε
γk4

1
γ


(2.13)
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Definition 2.2. Let A be a n× n real Z-matrix. That is, A = (aij) where aij ≤ 0 for all i 6= j,

1 ≤ i, j ≤ n. Then matrix A is also a non-singular M -matrix if it can be expressed in the form

A = sI − B, where B = (bij) with bij ≥ 0 for all 1 ≤ i, j ≤ n, where s > ρ(B), and I is an

identity matrix , and A is a singular M -matrix if s = ρ(P ).

Definition 2.3. A matrix A is called an M -matrix if

• A has Z-pattern, that is, the off-diagonal elements of A are nonpositive.

• The inverse A exists and has nonnegative elements: A−1 ≥ 0.

Lemma 2.1. Let A be a non-singular M -matrix and suppose B and BA−1 are Z-matrices.

Then B is a non-singular M -matrix if and only if BA−1 is a non-singular M -matrix.

Since F is nonnegative matrix, K = FV −1 is also nonnegative matrix. This implies

that the next-generation matrix has its spectral radius as an eigenvalue and there are no other

eigenvalues with lager modulus by the Perron-Frobenius theorem. This largest eigenvalues

gives R0. The basic reproduction number R0 is defined as the spectral radius of

FV −1 =



dζ1Λ
k1k3

ζ1Λ
k3

0 βεφ
k4γ

βφ
γ

0 0 0 0 0

0 0 0 0 0

dy1θ1φ
k1k3x1

+ y1θ2φ
k1x1

y1θ1φ
k3x1

0 δ1εζ2
k4γ

δ1ζ2
γ

0 0 0 0 0


(2.14)

Thus, the spectral radius of FV −1 is

R0 = R0(ζ1, ζ2) = ρ(FV −1) =
1

2

(
ζ1Λd

k1k3

+
ζ2δ1ε

γk4

)
+

√[
1

2
(
ζ1Λd

k1k3

− ζ2δ1ε

γk4

)

]2

+R2
h (2.15)

where Rh = φ
√

βε(θ1d+θ2k3)y∗1
γk1k3k4x∗1

.

2.3 Stability of disease free equilibrium point

In this section, we show that the disease free equilibrium point, E0, is locally asymptotically

stale and also globally asymptotically stable. First, we show the local stability of E0.

To prove the local stability, we use the Hartman-Grobman theorem in Misha Guysinsky

[36].
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Theorem 2.3 (Hartman-Grobman theorem). Let U ⊂ Rn be a neighborhood of 0, f : U → Rn

continuously differentiable with 0 as a hyperbolic fixed point. Then there is a homeomorphism

h of a neighborhood of 0 with h ◦ f = Df0 ◦ h near 0.

The theorem guarantees that the stability of the steady state of the original system is the

same as the stability of the trivial steady state of the linearized system.

Also, we use the linear stability analysis. It is stated as the following theorem.

Theorem 2.4. Given the differentia equations on Rn

x′ = f(x)

Let x0 be an equilibrium point of the above equation and A = Df(x0) be the Jacobian matrix

of f at the equilibrium point x0. If all eigenvalues of A have strictly negative real part, then x0

is locally asymptotically stable.

We can see the local stability of E0 from the theorem in P. van den Driessche [66] and the

following theorems.

Theorem 2.5. The disease-free equilibrium point E0, of system (2.1) is locally asymptotically

stable if R0 < 1 and unstable if R0 > 1, where R0 is defined by (2.15)

Next, we show the global stability of the disease free equilibrium point. To show that, we

use the following theorem in Castillo-Chávez, C [22]. First, the System (2.1) must be written

in the form
dx

dt
= F (x, I)

dI

dt
= G(x, I), G(x, 0) = 0

(2.16)

where x ∈ Rn denotes (its component) the number of uninfected individuals and I ∈ Rn

denotes (its component) the number of infected individuals including exposed, infectious, etc.

The conditions (H1) and (H2) below must be to guarantee local asymptotic stability.

(H1) For dx
dt

= F (x, 0), x∗ is globally asymptotically stable.

(H2) G(x, I) = AI − Ĝ(x, I), G(x, 0) = 0 and Ĝ(x, i) ≥ 0 for (x, I) ∈ Ω.
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where A = DIG(x∗, 0) is M-matrix (the off diagonal elements of A are nonnegative) and Ω

is (2.4) If the state system (2.1) satisfies the above two condition then the following theorem

holds.

Theorem 2.6. The fixed point E0 = (x∗, 0) is globally asymptotically stable equilibrium of the

state system (2.1) provided that R0 < 1 and that assumptions (H1) and (H2) are satisfied.

Proof. First, we define new variables and break the state system (2.1) into subsystems. Let

I = (x2, x3, y2, y3) and x = (x1, x4, y1). Then the state system (2.1) can be written as
dx

dt
= F (x, I)

dI

dt
= G(x, I)

(2.17)

where

F (x, I) =
{
ρ− µx1 −

βx1y3φ

N
+ Λ(x1 + x2 + x4) + (1− ζ1)Λx3 + ψx4, rx3 − x4(µ+ ψ),

δ0 −
θ1x3y1φ

N
− θ2x2y1φ

N
+ γ(−y1) + δ1(y1 + y2) + δ1(1− ζ2)y3

}T
(2.18)

G(x, I) =
{
− dx2 +

βx1y3φ

N
− µx2 + ζ1Λx3, dx2 − x3(α + µ+ r),

θ1x3y1φ

N
+
θ2x2y1φ

N
+ γy2 − y2ε+ δ1ζ2y3, y2ε− γy3

}T (2.19)

where T is transpose. To show (2.17) satisfies the condition (H1), consider the system dx
dt

=

F (x, 0)

dx1

dt
= (x1 + x4)Λ− x1µ+ ρ+ x4ψ

dx4

dt
= −x4(µ+ ψ)

dy1

dt
= −y1γ + δ0 + y1δ1

(2.20)

Then, x∗ = (x∗1, x
∗
4, y
∗
1) = ( ρ

µ−Λ
, 0, δ0

γ−δ1 ). We see x∗ is globally asymptotically stable under the

system (2.20). To see that, we solve the second equation in (2.20) and obtain

x4(t) = e−t(µ+ψ)x4(0) (2.21)

We have that x4(t)→ 0 as t→∞. Similarly from the last equation, we obtain

y1(t) =
δ0

γ − δ1

+ e−t(γ−δ1)y1(0) (2.22)
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Since γ > δ1, we have that y1(t)→ δ0
γ−δ1 as t→∞. By solving the first equation using x4(t),

we obtain

x1(t) =
ρ

µ− Λ
− e−t(µ+ψ)

Λ + ψ
x4(0)− Λ

e−t(µ+ψ)

Λ + ψ
x4(0) + e−t(µ−Λ)x1(0) (2.23)

Since µ > Λ, we have that x1(t)→ ρ
µ−Λ

as t→∞.

We see that the convergence are independent of initial condition. Hence, the convergence

of solutions of (2.20) is global and x∗ is globally asymptotically stable.

Next, we show the system (2.17) satisfies the condition (H2). We see easily thatG(x, 0) =

0. We find A = DIG(x∗, 0) and Ĝ(x, I).

DIG(x, I) =



−d− µ− x1y3βφ
N2 ζ1Λ− x1y3βφ

N2 0 x1βφ
N

d −r − α− µ 0 0

y1θ2φ
N
− x3y1θ1φ

N2 − x2y1θ2φ
N2

y1θ1φ
N
− x3y1θ1φ

N2 − x2y1θ2φ
N2 −γ − ε δ1ζ2

0 0 ε −γ


(2.24)

Then, A = DiG(x∗, 0)

A =



−d− µ ζ1Λ 0 βφ

d −r − α− µ 0 0

δ0θ2(µ−Λ)φ
(γ−δ1)ρ

δ0θ1(µ−Λ)φ
(γ−δ1)ρ

−γ − ε δ1ζ2

0 0 ε −γ


(2.25)

and Let

Ĝ(x, I) =



βy3φ(x2+x3+x4)
N

0

φ(θ2x2+θ1x3)(δ0x1(µ−Λ)+δ0x2(µ−Λ)+δ0(µ−Λ)x3+δ0(µ−Λ)x4+(γ−δ1)ρy1)
ρ(γ−δ1)N

0


(2.26)

Since µ > Λ and γ > δ1, Ĝ(x, I) ≥ 0 for (x, I) ∈ Ω. We obtain G(x, I) = AI − Ĝ(x, I).

Therefore, the disease free equilibrium point E0 is globally asymptotically stable.
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2.4 Sensitivity analysis of R0

In this section we perform sensitivity analysis of the basic reproduction number already obtai-

ned, (2.15), to identify the parameters which are important in contributing variability in the

outcome of the basic reproduction number. There are several methods to perform the sensiti-

vity analysis. We use the fixed point estimation used in Samsuzzoha [63]. Sensitivity analysis

using the fixed point estimations has been applied to determine the relative importance of dif-

ferent parameters responsible for the disease transmission related to the basic reproductions

number. Sensitivity indices for the basic reproduction number change with the change in para-

meters values. The normalized forward sensitivity index ( in Nakul Chitnis [26] ) of a variable

to a parameter is the ratio of the relative change in the variable to the relative change in the

parameter. For example, let u be a variable that depends on p a parameter and δ > 0 be a

small perturbation corresponding to p. We have

δu = u(p+ δ)− u(p) =
u(p+ δ)− u(p)

δ
δ ≈ δ

∂u

∂p
(2.27)

We define the normalized forward sensitivity index , γup as

γup =
δu
u
/
δ

p
=
p

u

∂u

∂p
(2.28)

Definition 2.4. The normalized forward sensitivity index of a variable , u, that depends diffe-

rentiably on a parameter, p, is defined as

γup =
∂u

∂p
× p

u
(2.29)

We evaluate the normalized forward sensitivity index for each parameters in R0 using the

definitiom and the values of parameters in the table 2.2.
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Parameters Values Parameters Values

γ [ 1
17
, 1

10
] Λ (0, µ)

µ [ 1
70(365)

, 1
45(365)

] θ1 [0, 1)

φ ≥ 1 θ2 (0, θ1)

ε [ 1
14
, 1

7
] α (0, 0.001)

r [0, 1
7
] ψ [0, 1)

ζ2 [0, 1) β (0, 1)

d [ 1
14
, 1

3
] ζ1 [0, 1)

δ0 [700, 10000] δ1 [0, 1)

Table 2.2: Parameter estimation for dengue fever in [12, 13]. Rate is
per day.

For the simplicity, we set we set ζ1 = 0 throughout the sensitivity. The sensitivity index

γR0
ζ1
≈ 1.91002 × 10−6. It means that decreasing ( or increasing) ζ1 by 100% decreases ( or

increases) R0 by 1.91002 × 10−5%. Since the formula for sensitivity index of parameters are

complicate, we see the sensitivity index formula for ζ2 as an example.

γR0
ζ2

=
δ1ζ2ε√

ε
(

4βγδ0φ2(γ+ε)(µ−Λ)(dθ1+θ2(α+µ+r))
ρ(γ−δ1)(d+µ)(α+µ+r)

+ δ2
1ζ

2
2ε
) (2.30)

Using the definition 2.4 and the formula for each paramters, we evaluate the normalized

forward sensitivity index of R0.
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Parameter Sensitivity index

γ −2.19232

δ1 1.05291

φ 0.975482

µ 0.780124

δ0 0.487741

β 0.487741

ρ −0.487741

Λ −0.292644

θ1 0.25891

r −0.258659

θ2 0.22883

d −0.22864

ε 0.163923

ζ2 0.0245184

α −0.000181061

Table 2.3: Sensitivity index for parameters in R0. The parameters are
orders from most sensitivity to least.Parameters are : θ1 = 0.0083,
θ2 = 0.00513, µ = 1

70(365)
, Λ = 0.375

70(365)
, ρ = 205, δ0 = 1050, β = 0.2,

r = 1
7
, δ1 = 0.0399, d = 1

10
, ψ = 0.00233, ζ2 = 0.0087, α = 0.0001,

φ = 2, ε = 1
8
, γ = 1

17

The most sensitive parameter is the host recovery rate, γ. Other important parameters

include the factor for density dependent maturation of mosquitos to adulthood, δ1, the number

of contacts between a host and a vector, φ, and the host death rate, µ. Since γR0
γ = −2.19232,

decreasing ( or increasing) γ by 10% increases ( or decreases) R0 by 21.92%. Similarly, as

γR0
δ1

= 1.05291, increasing ( or decreasing) δ1 by 10% increases ( or decreases) R0 by 10.5%.

The least important parameter is the disease-induced host date rate, α.
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2.5 Numerical Simulations

In this section we perform simulation for the state system model (2.1). In this simulation, we

consider initial conditions, x1(0) = 100, x2(0) = 20, x3(0) = 20, x4(0) = 10, y1(0) = 1000,

y2(0) = 20, and y3(0) = 30. These simulations are performed for different γ, δ1, φ, R0. R0 is

the basic reproduction number given by the equation (2.15). The values of parameters, Table

2.4 are considered based on the dengue virus, Table 2.2.

It is clear from Theorem 2.6 and 2.5 that the disease is endemic forR0 > 1. The numerical

simulation shows that the number of exposed and infectious host increase when the number of

the contact between a host and a vector, φ, increases.

Parameters Values Parameters Values

θ1 0.0083 θ2 0.00513

µ 1
70(365)

Λ 0.375
70(365)

ρ 205 δ0 1050

β 0.2 r 1
7

δ1 0.0399 d 1
10

ψ 0.00233 ζ1 0.00001

ζ2 0.0087 α 0.0001

φ 2 ε 1
8

γ 1
17

Table 2.4: Parameter values for a dengue virus. In this case, R0 ≈
0.0838.
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Figure 2.2: Solution for hosts, x1, x2, x3, and x4, with the values of the
parameters in Table 2.4.
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Figure 2.3: Solution for vectors y1, y2, and y3, with the values of the
parameters in Table 2.4.

The disease free equilibrium is stable for R0 < 1 as it is given by Theorem 2.6. Since

R0 ≈ 0.0838 < 1 with the values of the parameters in Table 2.4, we can see in Figure 2.2 and

2.3 that the size of all exposed and infected groups in each population die out.
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Figure 2.4: Solution for Exposed, x2, and Infectious,x3, host for γ =
1
10

, γ = 1
13

, γ = 1
15

, γ = 1
17

with the values of the parameters in
Table 2.4. In each cases, R0 ≈ 0.0328, R0 = 0.0502, R0 = 0.065,
R0 = 0.0838, respectively.

The decreased death rate of vectors, γ, is a factor for the increased size of exposed and

infectious hosts in Figure 2.4. We see that the basic reproduction number R0 is increasing as γ

decreasing, as we studied in the section 2.4.
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Figure 2.5: Solution for Exposed, x2, and Infectious,x3, host for δ1 =
0.04, δ1 = 0.06, δ1 = 0.08 with γ = 1

10
and the values of the parameters

in Table 2.4. In each cases, R0 ≈ 0.0328, R0 ≈ 0.0405, R0 ≈ 0.0571,
respectively.

The decreased maturation of mosquitoes to adulthood, δ1, is a factor for the decreased

size of exposed and infectious hosts in Figure 2.5. We see that the basic reproduction number

R0 is increasing as δ1 increasing, as we studied in the section 2.4.
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Figure 2.6: Solution for Exposed, x2, and Infectious,x3, host for φ = 2,
φ = 3, φ = 4 with δ1 = 0.05, γ = 1

17
, and the values of the parameters

in Table 2.4. In each cases, R0 ≈ 0.1223, R0 ≈ 0.1822, R0 ≈ 0.2421,
respectively.

The increased number of contacts between a host and a vector, φ, is a factor for the

increased size of exposed and infectious hosts in Figure 2.6. We see that the basic reproduction

number R0 is increasing as δ1 increasing, as we studied in the section 2.4.
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Figure 2.7: Solution for Exposed, x2, and Infectious,x3, host for φ =
17, φ = 18, φ = 19 with δ1 = 0.05, γ = 1

17
, and the values of the

parameters in Table 2.4. In each cases, R0 ≈ 1.0209, R0 ≈ 1.0808,
R0 ≈ 1.1407, respectively.

Since R0 > 1 for each φ, the disease free equilibrium point is unstable. In Figures 2.4,

2.5, 2.6, 2.7, we see that the number of exposed and infectious host are changing as γ, δ1, and

φ is changing. However, it does not necessarily result in the spread of the disease among hosts.

This is shown by the phase portrait for φ = 17 in Figure 2.8.
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Figure 2.8: A phase plane portrait for the Exposed and the Infectious
host,x2 + x3, against the Exposed and the Infectious vector, y2 + y3,
where φ = 17.

From the figure 2.8, we see that an increase in exposed and infected vectors does not

necessarily in the spread of the disease among hosts. Also, we see that the opposite case is not

necessary. So, we can not say about the change of the number of exposed and infected hosts

just looking at the change of the number of exposed and infected vectors.
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Chapter 3

Optimal control for Vertically transmitted vector-borne disease:treament and prevention of
human-mosquito interaction

3.1 A Model for Optimal Control of vertically transmitted vector-borne disease

In this section, we formulate an optimal control model for vertically transmitted vector-borne

disease to drive an optimal prevention of the contact between host and vector and an optimal

treatment for host with the minimal implementation cost. The control functions, u1 and u2,

represent time dependent efforts of prevention and treatment respectively on a time interval

[0, T ]. For the prevention, we can do the followings;

• Aware of the areas that are heavily infested and avoid

• Wear long-sleeved shirts and pants in neutral colors

• Inspect vehicles before entering

• Avoid bushes

• Use insect repellent

For the treatment, we can do the followings;

• Screen patient

• Administer drug intake and patients’ condition
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We will introduce u1 and u2 into the model (2.1). The transmission model of the vertically

transmitted vector-borne disease with the prevention and the treatment controls is given by
dx1

dt
= ρ+ Λ(x1 + x2 + x4) + Λ(1− ζ1)x3 + ψx4 −

βφy3x1(1− u1(t))

N
− µx1

dx2

dt
=
βφy3x1(1− u1(t))

N
+ Λζ1x3 − dx2 − µx2

dx3

dt
= dx2 − (r + α + µ+ r0u2(t))x3

dx4

dt
= (r + r0u2(t))x3 − (ψ + µ)x4

dy1

dt
= δ0 + δ1(y1 + y2) + δ1(1− ζ2)y3 −

φθ1x3y1(1− u1(t))

N
− φθ2x2y1(1− u1(t))

N
− γy1

dy2

dt
=
φθ1x3y1(1− u1(t))

N
+
φθ2x2y1(1− u1(t))

N
+ δ1ζ2y3 − εy2 − γy2

dy3

dt
= εy2 − γy3

(3.1)

with initial condition xi(0) ≥ 0, i = 1, 2, 3, 4 and yj(0) ≥ 0, j = 1, 2, 3 and t ∈ [0, T ].

In the model (3.1), 1−u1(t) describes the failure rate of prevention efforts. The per capita

recovery rate is r0u2(t), where 0 ≤ r0 ≤ 1 is the proportion of effective treatment.

We discuss the boundedness of the host and vector population. From the model (3.1), we have

that by adding the first four equation,

dN

dt
= ρ− αx3 + (Λ− µ)N ≤ ρ+ (Λ− µ)N (3.2)

By the theorem (2.1), N ≤ ρ
µ−Λ

for the initial value N(0) ≤ ρ
µ−Λ

. Similarly, adding the

last three equations, we have

dP

dt
= δ0 − (γ − δ1)P (3.3)

Thus, for the initial value P (0) ≤ δ0
γ−δ1 , we have P ≤ δ0

γ−δ1 .

Let X = (x1, x2, x3, x4) and Y = (y1, y2, y3) and define a set

Ω = {(X, Y )| R4
+ × R3

+, 0 ≤ N ≤ ρ

µ− Λ
, 0 ≤ P ≤ δ0

γ − δ1

} (3.4)

Theorem 3.1. Ω is positively invariant under system (3.1)

Proof. First, we show that the solutions with an initial values in Ω remains nonnegative for all

t ≥ 0. Let C1 = −βφ − µ, C2 = −d − µ, C3 = −γ − α − µ, and C4 = −ψ − µ. Then we
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have the following inequalities

dxi
dt
≥ Cixi for i = 1, 2, 3, 4 (3.5)

Similarly, let D1 = −φθ1−φθ2−γ, D2 = −ε−γ, and D3 = −γ. Then we have the following

inequalities

dyi
dt
≥ Diyi for i = 1, 2, 3 (3.6)

It implies that the solutions with an initial values in Ω remains nonnegative for all t ≥ 0. From

(3.2), (3.3) we have N ≤ ρ
µ−Λ

and δ0
γ−δ1 . Since N =

∑4
i=0 xi and P =

∑3
i=0 yi, Ω is positively

invariant under the system (3.1).

3.2 Optimal Control Problem

We consider an optimal control problem with the objective (cost) functional given by

J(u1, u2) =

∫ T

0

(A1x2(t) + A2x3(t) +B1u
2
1(t) +B2u

2
2(t))dt+ l(x1(T ), x4(T )) (3.7)

where A1 and A2 are positive weight constants of the susceptible and infectious group,

respectively and B1 and B2 are positive weight constants for prevention and treatment efforts,

respectively. We choose a quadratic for the cost on the controls for the technical reason and

that is similar in other literature, that is, B1u
2
1 is the cost of prevention, and B2y

2
2 is the cost

of the treatment effort. l(x1(T ), x4(T )) is the fitness of the susceptible and treated group at

the end of the process as a result of the prevention and the treatment efforts and we want to

maximize while the cost function J is minimized. We seek an optimal control pair (u∗1, u
∗
2) such

that

J(u∗1, u
∗
2) = min{J(u1, u2)|(u1, u2) ∈ Γ} (3.8)

where the control set is

Γ = {(u1, u2)|ui(t) is piecewise continuous on[0, T ], ai ≤ ui(t) ≤ bi, i = 1, 2} (3.9)

where ai and bi , i = 1, 2 are constants in [0, 1]. We discuss the existence of the optimal control

and then the optimal system.
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3.3 Existence of an Optimal Control

In this section, we show that the optimal control exists by using a result from Fleming and

Rishel [33] and Carathodory’s existence theorem [49].

Theorem 3.2 (Carathodory’s existence theorem). Consider the differential equation

y′(t) = f(t, y(t)), y(t0) = y0 (3.10)

with f defined in the rectangular domain R = {(t, y)||t− t0| ≤ a, |y−y0| ≤ b}. If the function

f satisfies the following three conditions

• f(t, y) is continuous in y for each fixed t.

• f(t, y) is measurable in t for each fixed y.

• there is a Lebesgue-integrable function m(t), |t− t0| ≤ a, such that |f(t, y)| ≤ m(t) for

all (t, y) ∈ R.

then, the differential equation has a solution in the extended sense in a neighborhood of the

initial condition.

Theorem 3.3. Consider the objective functional J(u1, u2) given by (3.7) with (u1, u2) ∈ Γ sub-

jected to the system (3.1). There exists (u∗1, u
∗
2) ∈ Γ such that J(u∗1, u

∗
2) = min{J(u1, u2)|(u1, u2) ∈

Γ}.

Proof. By a result from Fleming and Rishel [33], if the following conditions are satisfied, then

there exist (u∗1, u
∗
2) ∈ Γ.

1. The set of controls and corresponding state variables are non-empty.

2. Γ is convex and closed

3. The right hand side of (3.1) is bounded by a linear function in the state and control.

4. The integrand of the equation (3.7) is convex on Γ and is bounded below by c1(|u1|2 +

|u2|2)
β
2 − c2 where c1 > 0, c2 > 0, and β > 1.
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5. The function l is continuous.

Carathodory’s existence theorem for the state system (3.1) with bounded coefficients gives the

first condition. The control set Γ is convex and closed by definition. The right hand side of the

system (3.1) satisfies the third condition as the state solutions are bounded from Theorem 3.1.

The integrand in the objective functional 3.7 is convex. Let L(t, x1, x2, u1, u2) = A1x2(t) +

A2x3(t) +B1u
2
1 +B2u

2
2. We show that

L(t, x1, x2, λu1 + (1− λ)u′1, λu2 + (1− λ)u′2)

≤ λL(t, x1, x2, u1, u2) + (1− λ)L(t, x1, x2, u
′
1, u
′
2)

(3.11)

for λ ∈ [0, 1] and (u1, u2), (u′1, u
′
2) ∈ Γ. By the definition, we have that

L(t, x1, x2, λu1 + (1− λ)u′1, λu2 + (1− λ)u′2)

= A1x2(t) + A2x3(t) +B1(λu1 + (1− λ)u′1)2 +B2(λu2 + (1− λ)u′2)2

(3.12)

and

λL(t, x1, x2, u1, u2) + (1− λ)L(t, x1, x2, u
′
1, u
′
2)

= A1x2(t) + A2x3(t) + λB1u
2
1 + λB2u

2
2 +B1(1− λ)u′21 +B2(1− λ)u′22

(3.13)

Then we get that

A1x2(t) + A2x3(t) +B1(λu1 + (1− λ)u′1)2 +B2(λu2 + (1− λ)u′2)2

≤ A1x2(t) + A2x3(t) + λB1u
2
1 + λB2u

2
2 +B1(1− λ)u′21 +B2(1− λ)u′22

(3.14)

It means that we need to show that

B1(λu1 + (1− λ)u′1)2 +B2(λu2 + (1− λ)u′2)2

≤ λB1u
2
1 + λB2u

2
2 +B1(1− λ)u′21 +B2(1− λ)u′22

= B1(λu2
1(1− λ)u

′2
1 ) +B2(λu2

2 + (1− λ)u
′2
2 )

(3.15)
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We show that (λu1 + (1− λ)u′1)2 ≤ λu2
1 + (1− λ)u′21 .

(λu1 + (1− λ)u′1)2 = λ2u2
1 + 2λ(1− λ)u1u

′
1 + (1− λ)2u′21

= λ(λ− 1 + 1)u2
1 + 2λ(1− λ)u1u1 + (1− λ)(1− λ)u′21

= λu2
1 + λ(λ− 1)u2

1 + 2λ(1− λ)u1u
′
1 + (1− λ)u′21 + λ(λ− 1)u′21

= λu2
1 + (1− λ)u′21 + λ(λ− 1)(u2

1 − 2u1u
′
1 + u′21 )

= λu2
1 + (1− λ)u′21 + λ(λ− 1)(u1 − u′1)2

≤ λu2
1 + (1− λ)u′21

(3.16)

Similarly, we can show that (λu2 + (1 − λ)u′2)2 ≤ λu2
2 + (1 − λ)u′22 . Thus, the integrand in

the objective functional , A1x2(t) + A2x3(t) + B1u
2
1 + B2u

2
2, is convex on Γ. Since the state

variables are bounded, there are c1 > 0 , c2 > 0 and β > 1 satisfying

A1x2(t) + A2x3(t) +B1u
2
1 +B2u

2
2 ≥ c1(|u1|2 + |u2|2)

β
2 − c2

We want to maximize the function l(x1(T ), x4(T )) while the cost functional J is minimized.

If we define the function l as follows,

l(x1(T ), x4(T )) = −Q1x1(T )−Q2x4(T ), Q1 ≥ 0, Q2 ≥ 0 (3.17)

Then the function l is clearly continuous. Finally there exists an optimal control pair (u∗1, u
∗
2)

that minimizes the objective functional J(u1, u2).

3.4 Optimality System

We present the optimality system using a result from Lewis and Syrmos [48] and Pontryagin’s

Maximum Principle. From the theorems in Lenhart and Workman [47] and Clarke [28], the

optimality system can be used to compute candidates for the optimal control pair.

Theorem 3.4. If u∗(t) and x∗(t) are optimal for

minu

∫ t1

t0

f(t, x(t), u(t))dt

subjected to x′(t) = g(t, x(t), u(t))

x(t0) = x(0) and x(t1) free.

(3.18)
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,then there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, x∗(t), u∗(t), λ(t)) ≤ H(t, x∗(t), u(t), λ(t)) (3.19)

for all controls u at each time t, where Hamiltonian H is

H = f(t, x(t), u(t)) + λ(t)g(t, x(t), u(t)) (3.20)

and

λ′(t) = −∂H(t, x∗(t), u∗(t), λ(t))

∂x

λ(t1) = 0

(3.21)

Theorem 3.5. Suppose that f(t, x, u) and g(t, x, u) are noth continuously differentiable functi-

ons in their three arguments and concave in u. Suppose u∗ is an optimal control for problem

(3.18), with associated state x∗, and λ a piecewise differentiable function with λ(t) ≥ 0 for all

t. Suppose for all t0 ≤ t ≤ t1

0 = Hu(t, x
∗t(t), u∗(t), λ(t)). (3.22)

Then for all controls u and each t+ 0 ≤ t ≤ t1, we have

H(t, x∗(t), u∗(t), λ(t)) ≤ H(t, x∗(t), u(t), λ(t)) (3.23)

We have introduced an adjoint variable λ, which is similar to a Lagrange multiplier. It

attaches the differential equations information onto the minimization of the objective functional

(3.7). To apply the theory, we follow an outline.

1. Form the Hamiltonian for the problem.

2. Write the adjoint differential equation, termianl boundary condition, and the optimiality

condition. Now there are three unknowns, u∗, x∗, and λ.

3. Try to eliminate u∗ by using the optimality equation HU = 0, i.e., solve for u∗ in terms of

x∗ and λ.

4. Solve the two differential equations for x∗ and λ with two boundary conditions, substitu-

ting u∗ in the differential equations with the expression for the optimal control from the

previous step.
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5. After finding the optimal state and adjoint, solve for the optimal control.

We define a Lagrangian which is the Hamiltonian augmented with penalty terms for the

control constraints. Let Z = (X, Y ) ∈ Ω and U = (u1, u2) ∈ Γ, where X = (x1, x2, x3, x4)

and Y = (y1, y2, y3), where Ω is defined by (3.4) and Γ is defined by (3.9).

H(Z,U,Π) =A1x2(t) + A2x3(t) +B1u
2
1 +B2u

2
2

+ λ1

(
ρ+ Λ(x1 + x2 + x4) + Λ(1− ζ1)x3 + ψx4 −

βφy3x1(1− u1(t))

N
− µx1

)
+ λ2

(
βφy3x1(1− u1(t))

N
+ Λζ1x3 − dx2 − µx2

)
+ λ3 (dx2 − (r + α + µ+ r0u2(t))x3)

+ λ4 ((r + r0u2(t))x3 − (ψ + µ)x4)

+ λ5

(
δ0 + δ1(y1 + y2) + δ1(1− ζ2)y3 −

φθ1x3y1(1− u1(t))

N
− φθ2x2y1(1− u1(t))

N
− γy1

)
+ λ6

(
φθ1x3y1(1− u1(t))

N
+
φθ2x2y1(1− u1(t))

N
+ δ1ζ2y3 − εy2 − γy2

)
+ λ7 (εy2 − γy3)

− ω11(u1 − a1)− ω12(b1 − u1)− ω21(u2 − a2)− ω22(b2 − u2)

(3.24)

where the adjoint variable Π = (λ1, λ2, λ3, λ4, λ5, λ6, λ7) and the penalty multipliers ωij(t) ≥

0 satisfying

ω11(u1(t)− a1) = ω12(t)(b1 − u1(t)) = 0 at optimal control u∗1

and

ω21(u2(t)− a2) = ω22(t)(b2 − u2(t)) = 0 at optimal control u∗2

We can check the concavity condition of H that minimizes the objective functional;

∂2H

∂u2
i

= 2Bi > 0 at u∗i for i = 1, 2. (3.25)
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Theorem 3.6. Given an optimal control pair, (u∗1, u
∗
2),and solutions, x1, x2, x3, x4, y1, y2 and

y3 of the corresponding state system (3.1), there exist adjoint variables Π satisfying

λ̇1 = −
(
λ1

(
Λ− µ+

β(1− u1)x1y3φ

N2
− β(1− u1)y3φ

N

)
+ λ2

(
β(1− u1)y3φ

N
− β(1− u1)x1y3φ

N2

)
+ λ5

(
θ2(1− u1)x2y1φ

N2
+
θ1(1− u1)x3y1φ

N2

)
+ λ6

(
−θ2(1− u1)x2y1φ

N2
− θ1(1− u1)x3y1φ

N2

))
λ̇2 = −

(
A1 + dλ3 + λ2

(
−d− µ− β(1− u1)x1y3φ

N2

)
+ λ1

(
Λ +

β(1− u1)x1y3φ

N2

)
+ λ5

(
θ2(1− u1)x2y1φ

N2
+
θ1(1− u1)x3y1φ

N2
− θ2(1− u1)y1φ

N

)
+ λ6

(
−θ2(1− u1)x2y1φ

N2
− θ1(1− u1)x3y1φ

N2
+
θ2(1− u1)y1φ

N

))
λ̇3 = −

(
A2 + λ3 (−α− µ− r0u2 − r) + λ4 (r0u2 + r) + λ1

(
(1− ζ1)Λ +

β(1− u1)x1y3φ

N2

)
+ λ2

(
ζ1Λ− β(1− u1)x1y3φ

N2

)
+ λ5

(
θ2(1− u1)x2y1φ

N2
+
θ1(1− u1)x3y1φ

N2
− θ1(1− u1)y1φ

N

)
+ λ6

(
−θ2(1− u1)x2y1φ

N2
− θ1(1− u1)x3y1φ

N2
+
θ1(1− u1)y1φ

N

))
λ̇4 = −

(
λ4(−µ− ψ) + λ1

(
Λ +

β(1− u1)x1y3φ

N2
+ ψ

)
− βλ2(1− u1)x1y3φ

N2

+ λ5

(
θ2(1− u1)x2y1φ

N2
+
θ1(1− u1)x3y1φ

N2

)
+ λ6

(
−θ2(1− u1)x2y1φ

N2
− θ1(1− u1)x3y1φ

N2

))
λ̇5 = −

(
λ5

(
−γ + δ1 −

θ2(1− u1)x2φ

N
− θ1(1− u1)x3φ

N

)
+ λ6

(
θ2(1− u1)x2φ

N
+
θ1(1− u1)x3φ

N

))
λ̇6 = −

(
λ6(−γ − ε) + δ1λ5 + λ7ε

)
λ̇7 = −

(
− γλ7 + δ1 (1− ζ2)λ5 + δ1ζ2λ6 −

βλ1(1− u1)x1φ

N
+
βλ2(1− u1)x1φ

N

)
(3.26)

with the terminal conditions,

λ1(T ) =
∂l

∂x1

∣∣∣∣
T

, λ4(T ) =
∂l

∂x4

∣∣∣∣
T

, λi(T ) = 0, for i = 2, 3, 5, 6, 7. (3.27)

Furthermore, u∗1 and u∗2 are represented by

u∗1 = max

(
a1,min

(
b1,

βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

))
u∗2 = max

(
a2,min

(
b2,

(λ3 − λ4) r0x3

2B2

))
(3.28)
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Proof. We differentiate the LagrangianH with respect to states, Z = (x1, x2, x3, x4, y1, y2, y3).

Then the adjoint system can be written as

λ̇1 = − ∂L
∂x1

, λ̇2 = − ∂L
∂x2

, λ̇3 = − ∂L
∂x3

,

λ̇3 = − ∂L
∂x4

, λ̇5 = − ∂L
∂y1

, λ̇6 = − ∂L
∂y2

, λ̇7 = − ∂L
∂y3

The terminal condition of the adjoint equations can be given by

∂l

∂Z
− Π = 0, at t = T.

To obtain the optimality conditions, we differentiate the Lagrangian H with respect to U =

(u1, u2) and set it equal to zero.

∂L

∂u1

= 2B1u1 +
βλ1x1y3φ

N
− βλ2x1y3φ

N
+ λ5

(
θ2x2y1φ

N
+
θ1x3y1φ

N

)
+ λ6

(
−θ2x2y1φ

N
− θ1x3y1φ

N

)
− ω11 + ω12 = 0

∂L

∂u2

= 2B2u2 − λ3r0x3 + λ4r0x3 − ω21 + ω22 = 0

(3.29)

Solving for the optimal control, we obtain

u∗1 =
N (ω11 − ω12) + βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

u∗2 =
(λ3 − λ4) r0x3 + ω21 − ω22

2B2

(3.30)

We consider the following three cases to have an explicit expression for the optimal control.

For the optimal control u∗1,

1. On the set {t|a1 < u∗1(t) < b1}, we have ω11(t) = ω12 = 0. Hence the optimal control

is

u∗1 =
βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

2. On the set {t|u∗1(t) = b1}, we have ω11(t) = 0. Hence

b1 = u∗1 =
N (−ω12) + βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

Since ω12(t) ≥ 0, we have that

βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N
≥ b1
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3. On the set {t|u∗1(t) = a1}, we have ω12(t) = 0. Hence

a1 = u∗1 =
N (ω11) + βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

Since ω11(t) ≥ 0, we have that

βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N
≤ a1

Combining these three cases, the optimal control u∗1 is characterized as

u∗1 = max

(
a1,min

(
b1,

βλ1(−x1)y3φ+ βλ2x1y3φ+ (λ6 − λ5) y1φ (θ2x2 + θ1x3)

2B1N

))
For the optimal control u∗2,

1. On the set {t|a2 < u∗2(t) < b2}, we have ω21(t) = ω22 = 0. Hence the optimal control

is

u∗2 =
(λ3 − λ4) r0x3

2B2

2. On the set {t|u∗2(t) = b2}, we have ω21(t) = 0. Hence

b2 = u∗2 =
(λ3 − λ4) r0x3 − ω22

2B2

Since ω22(t) ≥ 0, we have that

(λ3 − λ4) r0x3

2B2

≥ b2

3. On the set {t|u∗2(t) = a2}, we have ω22(t) = 0. Hence

u∗2 =
(λ3 − λ4) r0x3 + ω21

2B2

Since ω21(t) ≥ 0, we have that

(λ3 − λ4) r0x3

2B2

≥ a2

Combining these three cases, the optimal control u∗2 is characterized as

u∗2 = max

(
a2,min

(
b2,

(λ3 − λ4) r0x3

2B2

))
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3.5 The forward-backward sweep method Algorithm

In this section , we introduce a numerical algorithm to find an optimal control, u∗. We break

the time interval [t0, t1] into pieces with specific points of interest t0 = b1, b2, . . . , bN , bN+1 =

t1. These points will usually be equally spaced. The approximation will be a vector −→u =

(u1, u2, . . . , uN , uN+1) where ui = (u1(bi), u2(bi))
T . There are various methods to solve op-

timal control problem. For example, Rodrigues and Monteiro [62], Wang [69], or Betts [10].

We use the forward-backwardsweep method introduced in Anita and Capasso [3] or Lenhart

and Workman [47]. We consider a control problem.

minuJ(u) =

∫ t1

t0

f(t, x(t), u(t))dt (3.31)

subjected to 
x′(t) = g(t, u(t), x(t)), t ∈ (t0, t1)

x(t0) = x0

(3.32)

and 
λ′(t) = −∂H(t,x∗(t),u∗(t),λ(t))

∂x

λ(t1) = 0

(3.33)

where G(t, u, x) is the integrand of the cost functional. Then the forward-backward sweep

method is

S0: Choose u(0) ∈ Γ. Set k = 0

S1: Compute x(k) the solution to (3.32) corresponding to u = u(k)

S2: Compute λ(k) the solution to (3.33) corresponding to u = u(k)

S3: Compute u(k+1) the solution to the equation

Gu(t, u(t), x(k)(t)) + f ∗u(t, u(t), x(k)(t))λ(k) = 0

S4: (The stopping criterion)

If min(δ‖u(k+1)‖1−‖u(k+1)−u(k)‖1, δ‖x(k+1)‖1−‖x(k+1)−x(k)‖1, δ‖λ(k+1)‖1−‖λ(k+1)−

λ(k)‖1) > 0
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then Stop

else k = k + 1 go to S0.

Here, ‖ · ‖1 refers to the l1 norm for vectors, i.e.,

‖u− oldu‖ =
N+1∑
i=1

|ui − oldui|. (3.34)

Many types of convergence tests exist for S5. We use the stopping criterion explained in Lenhart

and Workman [47]. It requires the relative errors to be small,
‖u− oldu‖1

‖u‖1

≤ δ

‖x− oldx‖1

‖x‖1

≤ δ

‖λ− oldλ‖1

‖λ‖1

≤ δ

(3.35)

where δ is the accepted tolerance. To allow the zero for the controls, multiply both sides by

‖u‖1 in (3.35) to remove it from the denominator. Then we have

δ‖u‖1 − ‖u− oldu‖ ≥ 0

or

δ
N+1∑
i=1

|ui| −
N+1∑
i=1

|ui − oldui| ≥ 0. (3.36)

In the same reason, we have

δ‖x‖1 − ‖x− oldx‖ ≥ 0

δ‖λ‖1 − ‖λ− oldλ‖ ≥ 0

This method has two restrictions as explained in Lenhart and Workman [47], 1) the Lipschitz

constants for the state, adjoint, and control is small enough and 2) the time interval is small.

Because of these restrictions, we choose the parameters and t1 very carefully. The convergence

and stability of the forward-backward sweep algorithm can be found in Mcasey [54].

3.6 The Runge-Kutta method in 3-dimension

In this section, we introduce a numerical method required to solve in S1 and S2 in the previous

section. To solve the state (3.1) , the Runge-Kutta method is applied and we consider a modified

Runge-Kutta to solve the adjoint (3.26). We solve the state (2.1) forward in time and the adjoint
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(3.26) backward in time. We consider 4th order Runge-Kutter methods. Let x′(t) = f(t, x(t)).

Then the 4th order Runge-Kutta method is

xn+1 = xn +
h

6
(k1 + 2k2 + 2k3 + k4) for n = 0, 1, 2, 3, . . . .

where

k1 = f(tn, xn)

k2 = f(tn +
h

2
, xn +

k1

2
h)

k3 = f(tn +
h

2
, xn +

k2

2
h)

k4 = f(tn + h, xn + hk3)

(3.37)

To find k2 in (3.37), xn is replaced with xn + k1
2
h and tn is replaced with tn + h

2
. So, to

calculate a control, u, we should consider un + h
2
k2. However, there is no explicit dependence

on t in the differential equation for u. So this value is not assigned by our vector. There are

many ways to approximate this value. For example, an interpolating polynomial or spline of

u could be generated. In most of the literature, it usually suffices to approximate it as the

following

un(1− cn) + un+1cn (3.38)

where n is the current iteration and 0 < cn < 1. This is weighted average, where the weight

shifts each iteration towards the current iteration. In our numerical experiment, we use the

average

un + un+1

2
. (3.39)

We consider the 4th order Runge-Kutta for 3 inputs, so we can solve the states forward in

time,

k1 = f(tn, xn, un)

k2 = f(tn +
h

2
, xn +

h

2
k1,

1

2
(un + un+1))

k3 = f(tn +
h

2
, xn +

h

2
k2,

1

2
(un + un+1))

k4 = f(tn + h, xn + hk3, un+1)

(3.40)
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To solve the adjoints backward in time,

l = N + 2− n

k1 = f(tl, λl, xl, ul)

k2 = f(tl −
h

2
k1,

1

2
(xl + xl−1),

1

2
(ul + ul−1))

k3 = f(tl −
h

2
k2,

1

2
(xl + xl−1),

1

2
(ul + ul−1))

k4 = f(tl − h, λl − hk3, xl−1, ul−1)

λl−1 = λl −
h

6
(k1 + 2k2 + 3k3 + k4)

(3.41)

where h is the step size between time, t, N is the total number of time steps, n = 1, 2, 3 . . . , N ,

and l = N + 1, N, . . . , 2.

The error for the 4th order Runge-Kutta method is O(h4). The stability and accuracy of

the 4th order Runge-Kutta method is found in Butcher [17, 18].

3.7 Numerical Results

In this section, we perform a simulation for the state system (3.1), the adjoint system (3.26),

and the optimal control (3.30). The model considered in the experiment is tested with data

taken from the dengue virus. The optimality system is a two-point boundary problem because

of the initial condition Z(0) of the state system (3.1) and the terminal condition Π(0) (3.26).

First, we make an initial guess for the control functions. Second, we solve the initial valued

state system forward in time. Then, using the same guess for the control functions, we solve the

adjoint system with the terminal conditions backeard in time. The controls are updated in each

iteration using the optimality conditions (3.30). To focus on the controls, we choose weight

constant values A1 = A2 = 1, B1 = B2 = 50, and Q1 = Q2 = 0.1 in the objective functional

(3.7) and the Hamitonian (3.24).

We consider the initial conditions x1(0) = 100, x2(0) = 20, x3(0) = 20, x4(0) = 10, y1(0) =

1000, y2(0) = 20 and y3(0) = 30. For the boundary of prevention and treatment efficiency we

choose a1 = a2 = 0 and b1 = b2 = 1.
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Parameter Value Parameter Value

ε 1
12

δ0 1050

γ 1
15

r 1
7

β 0.2 r0 0.04

ζ2 0.67 δ1 0.0399

θ1 0.0082 d 1
10

θ2 0.0289 ψ 0.0014

µ 1.01
70∗365

ζ1 0

Λ 0.379
70∗365

α 0.0238

ρ 205 φ 3

Table 3.1: Parameter values are estimated based on a dengue virus.

Figure 3.1: Comparison between Controlled(left) and Uncontrol-
led(right) for susceptible host
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Figure 3.2: Comparison between Controlled(left) and Uncontrol-
led(right) for exposed host

Figure 3.3: Comparison between Controlled(left) and Uncontrol-
led(right) for infected host
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Figure 3.4: Comparison between Controlled(left) and Uncontrol-
led(right) for treated host

Figure 3.5: Comparison between Controlled(left) and Uncontrol-
led(right) for susceptible vector
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Figure 3.6: Comparison between Controlled(left) and Uncontrol-
led(right) for exposed vector

Figure 3.7: Comparison between Controlled(left) and Uncontrol-
led(right) for infected vector
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Figure 3.8: Optimal Control u1(left) and u2(right)

From 3.3 and 3.4, we see that the number of exposed and infected host are reduced in

very short time compare to the result without controls. Also, From 3.6 and 3.7, we see that the

number of exposed and infected vector are reduced in vary short time compare to the result

without controls. We see that from the figures 3.1 - 3.7, the result with the optimal controls, u1

and u2 are better than the result without the optimal control.

From 3.8, we see that the effectiveness of the prevention is higher than the effectiveness of

the treatment. So, we see the numerical result with only with the prevention u1.

52



Chapter 4

Summary

In this dissertation we studied a vertically transmitted deterministic vector-borne disease model

and the optimal control of the deterministic model. The deterministic model is a compartment

model. We consider SEIR model for the host and SEI model for the host. We divide the total

host population into susceptible, exposed, infectious, and treated groups. Similarly, the total

vector population is divided into susceptible, exposed, and infectious groups. By studying which

elements affect the transmission between a host and a vector and how the disease is transmitted

from one compartment to another, we develop a system of nonlinear differential equations that

describes the epidemiology of vector-borne disease.

In chapter 2, we analyzed the vertically transmitted deterministic vector-borne disease

model. We find the disease free equilibrium point E0 by setting the number of exposed, infecti-

ous, and treated groups is equal to zero. Then, we calculated the basic reproduction number

( or the epidemiology threshold) R0 using the Next-Generation Approach which is finding the

spectral radius of the next-generation matrix. We proved that if R0 < 1, the disease free equi-

librium points is locally and globally asymptotically stable and the disease is extinguished. If

R0 > 1, then the disease free equilibrium point is unstable. We also studied the sensitivity

of R0. We studied that which parameter make the value of R0 change most and least using

the normalized forward sensitivity index γup with a variable u that depends differentiably on a

parameter p. We found that the change of host recovery rate γ, a factor for density dependent

maturation of mosquitoes to adulthood δ1, and the number of contacts between a host and a

vector α affect the value of R0 most and the change of disease-induced host death rate α and

vertical disease transmission rate in the vector ζ2 least. We do the numerical experiment for the
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different value of parameters to explain the analytic results. We had the numerical experiments

for R0 < 1 and R0 > 1 and we see that for R0 < 1, the disease die out and for R0 > 1, the

disease persist.

In chapter 3, we studied the optimal control for the vertically transmitted deterministic

vector-borne disease model. We consider the two optimal control functions ,The prevention u1

and the treatment u2, which are piecewise continuous on a certain time interval. We introduce

these two controls into the deterministic model in chapter 2, which u1 is related to susceptible,

exposed host groups, susceptible, and exposed vector groups and u2 is related to infectious and

treated host groups. We find u1 and u2 by minimizing the cost J(u1, u2) which minimizes the

number of exposed and infected host groups and the cost for the prevention and the treatment

and maximizes the number of susceptible and treatment host groups at the final time step. We

shoe the existence of the optimal control functions using Carathodory’s existence theorem. We

calculate the optimal controls by finding the optimal system. We formulate Hamiltonian to

find the optimal system with the deterministic model, the integrand of the cost functional with

the adjoint variables which is similar to a Lagrange multiplier using Pontry-yagins Maximum

Principle. We find the explicit formula for u1 and u2 in terms of the status variables and the

adjoint variables. For the numerical simulation, we use the forward-backward sweep method

since the status system which is the deterministic model with the optimal controls has the ini-

tial condition and the system of adjoint variables has the final condition. We solve the status

system and the adjoint system using the Runge-Kutta method in 3-dimensions. In the numerical

simulation, we focus on the effectiveness of the controls u1 and u2. We choose the parameters

based on the dengue virus. We compared the result between when we control the disease and

the case when we don’t. We see that when the controls are included, the disease die out faster

than the result without the controls and we archive more the number of susceptible and treated

host groups faster than without controls. We also see the effectiveness of each controls. The

effectiveness of the prevention is higher than the treatment.

In the future, we will study for the periodic model and the stochastic model of the deter-

ministic model in chapter 2. The transmission of a disease is affected by the season and the

temperature which is periodic. We expect that we can get the better result which fits the result
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from the real life. Also, we can study the transmission in the small number of host and vector

by considering the stochastic model.
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Appendices

.1 Matlab Code

Matlab code for the numerical simulation of the optimal control. main.m

1 clc

2 clear

3

4 epsilon = 1/12;

5 gamma = 1/15;

6 beta = 0.2;

7 theta1 = 0.0082;

8 theta2 = 0.0289;

9 mu = 1.01/(70*365);

10 Lambda = 0.379/(70*365);

11 rho = 205;

12 delta0 = 1050;

13 r= 1/7;

14 r0 = 0.04;

15 delta1 = 0.0399;

16 d = 1/10;

17 psi = 0.0014;

18 zeta1 = 0;

19 zeta2 = 0.67;

20 alpha = 0.0238;
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21 phi = 3;

22 A1 = 1;

23 A2 = 1;

24 B1 = 50;

25 B2 = 50;

26 T = 365; %final time

27 N = 200;

28 x0 = [100; 20; 20; 10; 1000; 20; 30]; %initial value of x

29 u0 = [0; 0]; %initial value of u

30 lambdafinal =[−0.1;0;0;−0.1;0;0;0]; %final values of lambda

31 t = linspace(0,T,N+1);

32 h = T/N;

33 x = zeros(7,N+1); %initialize x

34 u = zeros(2,N+1); %initialize u

35 lambda = zeros(7,N+1); %initialize x

36 x (:,1) = x0; %assign the x0

37 u (:,1) = u0; %assign the u0

38 lambda(:,N+1) = lambdafinal; %assign the lambdafinal

39

40 %R0

41 %1/2*(zeta1 * Lambda*d/(k1*k2) + zeta2 * delta1*epsilon/(gamma*k4))...

42 %+sqrt((1/2 *(zeta1*Lambda*d/(k1*k3)−zeta2*delta1*epsilon/(gamma*k4)))ˆ2...

43 %+phiˆ2 * (beta*epsilon*(theta1*d+theta2*k3)*(delta0/(gamma−delta1)))/(gamma*

k1*k3*k4*(rho/(mu−Lambda))))

44

45 parameters=[epsilon,gamma,beta,theta1,theta2,mu,Lambda,rho,delta0,r, r0, ...

46 delta1, d, psi , zeta1, zeta2,alpha,phi,A1,A2,B1,B2];

47
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48 k = 1;%counter of the iteration

49 delta = 0.001; %error bound

50 test = −1; %error

51 while ( test<0 && k<1000)

52 oldx = x;

53 oldu = u;

54 oldlambda = lambda;

55

56 %forward Runge−Kutta 4th with 3 input algorithm for state

57 for i = 1:N

58 k1(1:7,1) = state(t( i ) ,x (:, i ) ,u (:, i ) ,parameters);

59 k2(1:7,1) = state(t( i )+h/2,x(:,i)+h*k1/2,(u(:,i)+u(:,i+1))/2,parameters);

60 k3(1:7,1) = state(t( i )+h/2,x(:,i)+h*k2/2,(u(:,i)+u(:,i+1))/2,parameters);

61 k4(1:7,1) = state(t( i )+h,x(:, i )+h*k3,u(:,i+1),parameters);

62 x (:, i+1) = x(:,i)+ (h/6) * (k1+2*k2+2*k3+k4);

63 end

64

65 %backward Runge−Kutta 4th with 3 input algorithm for adjoint

66 for i = 1:N

67 j = N+2−i;

68 k1(1:7,1) = adjoint(t(j) , lambda(:,j) , x (:, j) ,u (:, j) ,parameters);

69 k2(1:7,1) = adjoint(t(j)−h/2, lambda(:,j)−h*k1/2,(x(:,j)+x(:,j−1))/2 ...

70 ,(u (:, j)+u(:,j−1))/2,parameters);

71 k3(1:7,1) = adjoint(t(j)−h/2,lambda(:,j)−h*k2/2,(x(:,j)+x(:,j−1))/2 ...

72 ,(u (:, j)+u(:,j−1))/2,parameters);

73 k4(1:7,1) = adjoint(t(j)−h/2, lambda(:,j)−h*k3/2,x(:,j−1),u(:,j−1),

parameters);

74 lambda(:,j−1) = lambda(:,j) − (h/6) *(k1+2*k2+2*k3+k4);
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75 end

76

77 %Find controls

78 for i = 1:N+1

79 u(1, i ) = max(0,min(1,(beta*lambda(1,i)*(−x(1,i))*x(7,i)*phi...

80 +beta*lambda(2,i)*x(1,i)*x(7,i)*phi ...

81 +(lambda(6,i)−lambda(5,i))*x(5,i)*phi*(theta2*x(2,i) ...

82 +theta1*x(3,i)))/(2*B1*(x(1,i)+x(2,i)+x(3,i)+x(4,i))))) ;

83 u(2, i ) = max(0,min(1,(lambda(3,i)−lambda(4,i))*r0*x(3,i)/(2*B2)));

84 end

85

86 %updates Control

87 c = 0.8;

88 u = (1−c)*u + c*oldu;

89 % for i=1:N+1

90 % if (u(1, i ) > oldu(1,i))

91 % u(1, i ) = (1 − c) + oldu(1,i)*c;

92 % else

93 % u(1, i ) = oldu(1,i)*c;

94 % end

95 % if (u(2, i ) > oldu(2,i))

96 % u(2, i ) = (1 − c) + oldu(2,i)*c;

97 % else

98 % u(2, i ) = oldu(2,i)*c;

99 % end

100 % end

101

102 %error bewteen old and new
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103 tempu = min(delta*sum(abs(u),2)−sum(abs(oldu−u),2));

104 tempx = min(delta*sum(abs(x),2)−sum(abs(oldx−x),2));

105 templambda = min(delta*sum(abs(lambda),2)−sum(abs(oldlambda−lambda),2));

106 test = min(tempu,min(tempx,templambda))

107

108 %The cost

109 %trapz(A1*oldx(2,:)+A2*oldx(3,:)+B1*oldu(1,:).ˆ2+B2*oldu(2,:).ˆ2)...

110 % −0.1*oldx(1,N+1)− 0.1*oldx(4,N+1)

111 %trapz(A1*x(2,:)+A2*x(3,:)+B1*u(1,:).ˆ2+B2*u(2,:).ˆ2) ...

112 % −0.1*x(1,N+1)−0.1*x(4,N+1)

113

114 k=k+1;

115 end

116

117

118 plot(t ,x (3,:) , t ,x (7,:) )

119 title (' infectious')

120 legend('host','vector')
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The Matlab code for the system of the status (state.m).

1 function dxdt = state(t,x,u,parameters)

2 parameters = num2cell(parameters);

3 [epsilon,gamma,beta,theta1,theta2,mu,Lambda,rho,delta0,r, r0,

...

4 delta1, d, psi, zeta1, zeta2,alpha,phi,A1,A2,B1,B2] = deal(

parameters{:});

5

6 dxdt = zeros(7,1);

7 dxdt(1) = rho + Lambda*(x(1)+x(2)+x(4)) + Lambda*(1-zeta1)*x

(3)+psi*x(4)...

8 -beta * phi*x(7)*x(1)*(1-u(1))/(x(1)+x(2)+x(3)+x(4)) - mu *

x(1);

9 dxdt(2) = beta*phi*x(7)*x(1)*(1-u(1))/(x(1)+x(2)+x(3)+x(4)) +

Lambda*zeta1*x(3)-d*x(2)-mu*x(2);

10 dxdt(3) = d*x(2) - (r + alpha + mu+r0*u(2))*x(3);

11 dxdt(4) = (r+r0*u(2))* x(3)- (psi + mu)*x(4);

12 dxdt(5) = delta0 + delta1*(x(5)+x(6)) + delta1*(1-zeta2)*x(7)

...

13 - phi*theta1*x(3)*x(5)*(1-u(1))/(x(1)+x(2)+x(3)+x(4)) ...

14 - phi*theta2*x(2)*x(5)*(1-u(1))/(x(1)+x(2)+x(3)+x(4)) -

gamma*x(5);

15 dxdt(6) = phi*theta1*x(3)*x(5)*(1-u(1))/(x(1)+x(2)+x(3)+x(4))

...

16 + phi*theta2*x(2)*x(5)*(1-u(1))/(x(1)+x(2)+x(3)+x(4))...

17 + delta1*zeta2*x(7)-epsilon*x(6)-gamma*x(6);

18 dxdt(7) = epsilon*x(6)-gamma*x(7);
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The Matlab code for the system of the adjoint (adjoint.m).

1 function dlambdadt = adjoint(t,lambda,x,u,parameters)

2 parameters = num2cell(parameters);

3 [epsilon,gamma,beta,theta1,theta2,mu,Lambda,rho,delta0,r, r0,

...

4 delta1, d, psi, zeta1, zeta2,alpha,phi,A1,A2,B1,B2] = deal(

parameters{:});

5

6 dlambdadt = zeros(7,1);

7 dlambdadt(1) = -(lambda(1)*(Lambda-mu+beta*(1-u(1))*x(1)*x(7)*

phi/(x(1)+x(2)+x(3)+x(4))ˆ2 ...

8 -beta*(1-u(1))*x(7)*phi/(x(1)+x(2)+x(3)+x(4))) ...

9 +lambda(2)*(beta*(1-u(1))*x(7)*phi/(x(1)+x(2)+x(3)+x(4))

...

10 -beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2)...

11 +lambda(5)*(theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+x

(4))ˆ2 ...

12 +theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2)

...

13 +lambda(6)*(-theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+

x(4))ˆ2 ...

14 -theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2))

;

15 dlambdadt(2) = -(A1+d*lambda(3) ...

16 +lambda(2)*(-d-mu-beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+x(2)+x

(3)+x(4))ˆ2) ...

17 +lambda(1)*(Lambda+beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+x(2)+x

(3)+x(4))ˆ2) ...
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18 +lambda(5)*(theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+x

(4))ˆ2 ...

19 +theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2

...

20 -theta2*(1-u(1))*x(5)*phi/(x(1)+x(2)+x(3)+x(4))) ...

21 +lambda(6)*(-theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+

x(4))ˆ2 ...

22 -theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2

...

23 +theta2*(1-u(1))*x(5)*phi/(x(1)+x(2)+x(3)+x(4))));

24 dlambdadt(3) = -(A2+lambda(3)*(-alpha-mu-r0*u(2)-r)+lambda(4)

*(r0*u(2)+r)...

25 +lambda(1)*((1-zeta1)*Lambda+beta*(1-u(1))*x(1)*x(7)*phi/(x

(1)+x(2)+x(3)+x(4))ˆ2)...

26 +lambda(2)*(zeta1*Lambda-beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+

x(2)+x(3)+x(4))ˆ2)...

27 +lambda(5)*(theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+x

(4))ˆ2 ...

28 +theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2

...

29 -theta1*(1-u(1))*x(5)*phi/(x(1)+x(2)+x(3)+x(4)))...

30 +lambda(6)*(-theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+

x(4))ˆ2 ...

31 -theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2

...

32 +theta1*(1-u(1))*x(5)*phi/(x(1)+x(2)+x(3)+x(4))));

33 dlambdadt(4) = -(lambda(4)*(-mu-psi)+...
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34 lambda(1)*(Lambda+beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+x(2)+x

(3)+x(4))ˆ2+psi)...

35 -lambda(2)*(beta*(1-u(1))*x(1)*x(7)*phi/(x(1)+x(2)+x(3)+x

(4))ˆ2) ...

36 +lambda(5)*(theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+x

(4))ˆ2 ...

37 +theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2)

...

38 +lambda(6)*(-theta2*(1-u(1))*x(2)*x(5)*phi/(x(1)+x(2)+x(3)+

x(4))ˆ2)...

39 -theta1*(1-u(1))*x(3)*x(5)*phi/(x(1)+x(2)+x(3)+x(4))ˆ2);

40 dlambdadt(5) = -(lambda(5)*(-gamma+delta1-theta2*(1-u(1))*x(2)

*phi/(x(1)+x(2)+x(3)+x(4)) ...

41 -theta1*(1-u(1))*x(3)*phi/(x(1)+x(2)+x(3)+x(4))) ...

42 +lambda(6)*(theta2*(1-u(1))*x(2)*phi/(x(1)+x(2)+x(3)+x(4))

...

43 +theta1*(1-u(1))*x(3)*phi/(x(1)+x(2)+x(3)+x(4))));

44 dlambdadt(6) = -(lambda(6)*(-gamma-epsilon)+delta1*lambda(5)+

lambda(7)*epsilon);

45 dlambdadt(7) = -(-gamma*lambda(7) +delta1*(1-zeta2)*lambda(5)+

delta1*zeta2*lambda(6)...

46 -beta*lambda(1)*(1-u(1))*x(1)*phi/(x(1)+x(2)+x(3)+x(4))...

47 +beta*lambda(2)*(1-u(1))*x(1)*phi/(x(1)+x(2)+x(3)+x(4)));

71


	Abstract
	Acknowledgments
	Introduction
	Analysis of Vertically transmitted vector-borne disease model
	Vertically transmitted vector-borne disease Model
	Disease free equilibrium point E0 and R0
	Stability of disease free equilibrium point
	Sensitivity analysis of R0
	Numerical Simulations

	Optimal control for Vertically transmitted vector-borne disease:treament and prevention of human-mosquito interaction
	A Model for Optimal Control of vertically transmitted vector-borne disease
	Optimal Control Problem
	Existence of an Optimal Control
	Optimality System
	The forward-backward sweep method Algorithm
	The Runge-Kutta method in 3-dimension
	Numerical Results

	Summary
	References
	Appendices
	Matlab Code


