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Abstract

The focus of this work is to demonstrate the importance of incorporating toroidal rotation

in calculating tokamak-like equilibria with axisymmetry. Specifically, this work will focus

on showing the impact toroidal flow had on the particle density, poloidal magnetic flux, and

toroidal current density. We utilize the analytical form of the thermal pressure, for purely

toroidal flow in the isothermal limit. Modifications to NIMRODs equilibrium solver, NIMEQ,

are made to integrate toroidal flow and to ensure NIMEQ’s solution fields are self-consistent.

The modifications to NIMEQ are benchmarked by the code FLOW created by L. Guazzotto.

Results for a low-β and high-β tokamak like equilibrium are shown. It is found that for both

equilibria the peak particle density significantly shifts and the addition of large rotational inertia

causes the toroidal current to be pushed outward. Shift in the max poloidal magnetic flux is

found to only be significant for the high-β equilibrium, due to toroidal flow’s influence on the

now dominant thermal pressure. It is expected that the addition of poloidal flow will even

further alter equilibrium configurations.
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Chapter 1

Introduction

To date, tokamak devices are the leading candidates for a controlled thermonuclear fusion

reactor. However, most transport models neglect flow in the basic equilibrium. Though it is

commonly known that poloidal flow is often dampened, toroidal flows are often not. In fact,

neutral beam injection, which has become a very common way to heat plasma in tokamaks,

can give rise to toroidal velocities up to the ion sound speed [4]. Such high toroidal flow will

likely cause significant changes to equilibrium configurations due to the large rotational inertia

and sub-super sonic flow transitions [3].

The overarching goal of this thesis is to show the significance of including self-consistent

flow in equilibrium calculations for axisymmetric toroidal plasmas with circular poloidal cross-

sections. This is done by creating a low-β and a high-β tokamak like static equilibrium, where

β is the ratio of thermal and magnetic pressure, and increasing the toroidal Mach number Mφ

while fixing the rest of the equilibrium parameters.

Regardless of whether the equilibrium is static or steady-state, the Grad-Shafranov equa-

tion used must generally be solved numerically [8]. In this thesis we derive the Ideal MHD

Grad-Shafranov Bernoulli system of equations for arbitrary flow and show that, in the case of

isothermal toroidal flow, the thermal pressure and particle density have analytical forms that

reduce the Grad-Shafranov-Bernoulli system of equations to a steady-state form of the static

Grad-Shafranov equation. We show the results of numerically generated equilibria for low and

high β tokamak like configurations. The numerically generated equilibria will be calculated

using the NIMROD (Non-Ideal MHD with Rotation) code’s Ideal MHD equilibrium solver,

NIMEQ [1]. Previously, NIMEQ solved the static Grad-Shafranov equation, but has since been
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modified to incorporate isothermal toroidal flow as a first step to implementing arbitrary flow.

The FLOW code developed by L. Guazzotto, which was made to study fixed boundary equi-

libria with arbitrary flows is used as a benchmark for NIMEQ’s new functionality [3]. Percent

difference is plotted versus toroidal radius to show how well the two codes compare.
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Chapter 2

Theoretical Framework

2.1 General Formulation for Grad-Shafranov-Bernoulli System of Equations

The Ideal MHD equations for arbitrary flow at equilibrium are as follows:

∇ · (ρv) = 0 (2.1)

ρv · ∇v = J×B−∇p (2.2)

∇ ·B = 0 (2.3)

µ0J = ∇×B (2.4)

∇× (v ×B) = 0, (2.5)

where ρ is the mass density, v is the flow velocity, J is the current density, B is the magnetic

field, p is the isotropic thermal pressure, and µ0 is the vacuum magnetic permeability. The

MHD closure relation is defined by the relationship below,

v · ∇
(
p

ργ

)
= 0, (2.6)

where γ is the ratio of heat capacities. We will use the cylindrical coordinates (R,Z,φ), where

R is the major radius, Z is the distance above/below the midplane of the torus, and φ is the

toroidal angle. For toroidal geometry, it is convenient to write the magnetic field in the form

B = Bp + Bφ, where Bp is the poloidal magnetic field and Bφ is the toroidal magnetic field,

which describes the short and long way around the torus, respectively. Following the procedure
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in Appendix A, it can be shown that the magnetic field can be written as

B = ∇ψ ×∇φ+RBφ∇φ, (2.7)

where φ̂ = R∇φ, ψ = ψp/2π, and ψp is the poloidal magnetic flux. Note that (2.7) is indeed

divergence free as is required by (2.3). Moreover, (2.7) outlines a very convenient orthogonal

basis set: ∇ψ,∇ψ ×∇φ, and∇φ.

The derivation for the Grad-Shafranov equation with arbitrary flow is analogous to the

static case, with the notable exception that we must first characterize the flow velocity v. As

outlined in Appendix B, our flow velocity can be determined by first proving that v · ∇ψ = 0,

which implies that the flow velocity does not have a ∇ψ component. Hence, the flow velocity

will take a form analogous to that of the magnetic field. Substitution of v into the continuity

equation (2.1) allows us to find the poloidal flow velocity. Finally inserting this new version of

v into (2.5) gives us the final form for the flow velocity

v =
Φ(ψ)
√
µ0ρ

B +R2Ω(ψ)∇φ, (2.8)

where Φ(ψ) and Ω(ψ) are free functions. Note that Φ(ψ) helps determine the field aligned

component of the flow velocity. Upon inspection of (2.8), we can see that it is never possible

to have a purely poloidal flow, regardless of the choice of Φ(ψ) [3]. This is due to the fact that

the poloidal flow inherently influences vφ, where vφ is given by

vφ =
Φ(ψ)
√
µ0ρ

Bφ +RΩ(ψ). (2.9)

Now that the velocity has been determined, we can place v into our closure relationship

(2.6) to get the more useful relationship

S(ψ) =
p(R,ψ)

ρ(R,ψ)γ
=

p0(ψ)

D(ψ)γ
, (2.10)
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where S(ψ) is the specific entropy for γ = 5
3

and the specific temperature for γ = 1, while

D(ψ) and p0(ψ) are free functions with units of mass density and pressure, respectively. Here,

it is necessary to distinguish between the thermal pressure, mass density, p0(ψ), and D(ψ). In

the static case the thermal pressure and mass density are free functions, but that is not the case

in the presence of flow. Rotational inertia inside the torus also implies an R dependence. We

will address the implications of the closure in greater detail in the next section.

Now that our flow velocity and closure relationship have been established, all that is left

to find, before we deal with the momentum equation, is the current density. This can be done

by simply substituting our expression for the magnetic field (2.7) into Ampere’s Law, which

yields

J =
1

µ0

∇ (RBφ)×∇φ−∆∗ψ∇φ, (2.11)

where ∆∗ψ = R2∇ · (∇ψ/R2). Note that Jφ is identical to its static form. However, as will

be mentioned in the next chapter, the centrifugal force will play a role in shaping the current

density profile along the midplane.

The final step is to take our flow velocity (2.8), magnetic field (2.7), and current density

(2.11) and plug them into the ∇φ, B, and ∇ψ components of the momentum equation (2.2).

After a significant amount of algebra, as shown in Appendixes B and C, the∇φ and B compo-

nents of the momentum equation bear the following results:

RBφ =
F (ψ) +

√
µ0R

2Φ(ψ)Ω(ψ)

1− Φ(ψ)2/ρ
(2.12)

1

2µ0

(
Φ(ψ)B

ρ

)2

− 1

2
R2Ω(ψ)2 +

(
γ

γ − 1

)
S(ψ)ργ−1 = H(ψ). (2.13)

Equation (2.12) indicates that F (ψ) = RBφ only when there is no poloidal flow, or when

Φ(ψ) = 0. The B component of the momentum equation (2.13) yields a Bernoulli equation

that we can use to solve for the mass density in terms of free functions, ψ, ∇ψ, and R. Note

that there is a singularity at γ = 1, or when our closure (2.10) becomes isothermal. This will

be a key topic in the next section.
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Lastly, we take the ∇ψ component of the momentum equation and regroup its terms such

that the entire RHS of the equation is determined by free functions, constants andR. Following

the procedure in Appendix D, the final form of the Grad-Shafranov equation with arbitrary flow

is given by

1

µ0

∇ ·
[(

1−M2
Ap

)(∇ψ
R2

)]
= − Bφ

µ0R

dF (ψ)

dψ
− v ·B
√
µ0

dΦ(ψ)

dψ
(2.14)

−ρRvφ
dΩ(ψ)

dψ
− ρdH(ψ)

dψ
+

ργ

γ − 1

dS(ψ)

dψ
,

where MAp = Φ(ψ)/
√
ρ is the poloidal Alfvénic Mach number. Equation (2.14) has also been

derived several times throughout the relevant literature [2, 3, 4, 5, 6]. Note that when Ω(ψ) = 0

and Φ(ψ) = 0, (2.14) returns to the static Grad-Shafranov equation.

2.2 Equilibrium with Toroidal Flow in the Isothermal Limit

The general formulation (2.14) requires considerable input in the form of free functions, as

well as a solution for ρ(R,ψ) obtained from the Bernoulli equation (2.13). Since NIMROD’s

equilibrium solver, NIMEQ, assumes a static equilibrium, the LHS (left-hand-side) of the Grad-

Shafranov equation is just ∆∗ψ. Equipping NIMEQ with the ability to calculate equilibria with

arbitrary flow would require modifications to several low and high level functions. Ergo, we

will make two simplifications to (2.14) as a proof of concept for self-consistent flow in NIMEQ.

Firstly, we will only consider the case of purely toroidal flow. Setting Φ(ψ) = 0 and

substituting in the derivative of H(ψ) with respect to ψ reduces (2.13) and (2.14) down to

(
γ

γ − 1

)
S(ψ)ργ−1 − 1

2
R2Ω(ψ)2 = H(ψ) (2.15)

∆∗ψ = −F (ψ)
dF (ψ)

dψ
− µ0R

2

[
ρ

(
R2Ω(ψ)

dΩ(ψ)

dψ
+
dH(ψ)

dψ

)
− ργ

γ − 1

dS(ψ)

dψ

]
. (2.16)

Note that the LHS of (2.16) is now identical to the static case, which means the LHS routines

in NIMEQ will no longer have to be altered. However, we would still need to solve for ρ before
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any RHS (right-hand-side) routines could take place. Fortunately, for purely toroidal flow, we

can solve for the mass density analytically.

We define a nominal mass density D(ψ) = ρ(R0, ψ) where R0 is the major radius at the

geometric center of the torus [2]. Our closure relation (2.10) requires that the pressure and

mass density change together. Hence, as a direct result of our definition for D(ψ), the thermal

pressure at R = R0 must also be a free function, which we will denote as p0(ψ). Since H(ψ) is

free, the Bernoulli equation must be equivalent to H(ψ) regardless of toroidal radius. Setting

H(ψ) at R = R0 and H(ψ) at any arbitrary R equal to each other and solving for ρ(R,ψ) in

terms of the free functions p0(ψ), D(ψ), and Ω(ψ), we get the following expression for the

mass density:

ρ(R,ψ) = D(ψ)

[
1 +

1

2

(
R2 −R2

0

)
Ω(ψ)2

(
γ − 1

γ

)
D(ψ)

p0(ψ)

] 1
γ−1

. (2.17)

By inspection we can see that when Ω(ψ) = 0, the mass density is D(ψ). Through the same

closure argument we previously made to define p0(ψ), the thermal pressure must also equal

p0(ψ) in the absence of toroidal flow. Given this information, it’s helpful to think of D(ψ) and

p0(ψ) as the static mass density and static thermal pressure.

Lastly, we can simplify (2.16) and (2.17) even further by considering the isothermal limit,

or the limit as γ → 1. Though at first glance the exponent in (2.17) seems to suggest that a

numerical approach is required to take this limit, an analytical limit exists for this expression.

Additionally, as previously mentioned, thanks to (2.10), the thermal pressure must have the

exact same functional dependence as the mass density. For γ → 1, this is easily seen by

multiplying both sides of (2.17) by S(ψ). The resulting expressions for mass density and

thermal pressure are as follows:

ρ(R,ψ) = D(ψ) exp
(
pω(ψ)

p0(ψ)

(
R2 −R2

0

R2
0

))
(2.18)

p(R,ψ) = p0(ψ) exp
(
pω(ψ)

p0(ψ)

(
R2 −R2

0

R2
0

))
, (2.19)
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where pω(ψ) = 1
2
R2

0D(ψ)Ω(ψ)2 is the nominal rotational pressure. In the isothermal limit,

the thermal pressure and mass density adopt a Gaussian like behavior in R with their static

equivalents as their amplitudes.

By substituting (2.10) and (2.18) into (2.16), eventually the Grad-Shafranov equation re-

duces to the very familiar form

∆∗ψ = −F (ψ)
dF (ψ)

dψ
− µ0R

2∂p(R,ψ)

∂ψ
. (2.20)

Equation (2.20) is also shown from a slightly different approach in [7]. In fact, the isother-

mal Grad-Shafranov equation with toroidal flow is identical save for the presence of a partial

derivative of the thermal pressure and the thermal pressure’s R dependence. This limiting case

is particularly useful for discerning regimes in which toroidal flow will make a significant dif-

ference in the equilibrium configuration. More specifically, toroidal flows comparable to the

sound speed cs will cause a notable shift in the mass density and thermal pressure profiles. The

value of Mφ(ψ) for this particular limiting case is simply just the ratio

Mφ(ψ) =
2pω(ψ)

p0(ψ)
, (2.21)

where Mφ is a nominal toroidal Mach number proportional to the true toroidal Mach number,

which will play an important role in determining how quickly the thermal pressure and mass

density grow and decay.
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Chapter 3

NIMEQ Results

3.1 Overview

In this chapter, we use NIMEQ to calculate equilibrium configurations and compare the static

equilibria with the steady-state equilibria. Additionally, we will use FLOW to act as a bench-

mark for NIMEQ’s new functionality and plot the percent difference between the two codes

using the following equation

% Difference (R) =
|X(R)− Y (R)|

(X(R) + Y (R)) /2
× 100, (3.1)

where X is a parameter from NIMEQ and Y is that same parameter from FLOW as a function

of R. Equilibrium profiles will be expressed as a function of ψ̂, where ψ̂ is 0 at the magnetic

axis and 1 at the edge. In each equilibrium, the F (ψ̂), p0(ψ̂), and D(ψ̂) models are not altered

in anyway when comparing each equilibria’s static and steady-state solution fields. The only

difference come from the assignment of Ω(ψ̂), where Ω(ψ̂) = 0 when there is no flow. In an

effort to establish a meaningful comparison between the high-β and low-β equilibriums, the

peak value for the nominal toroidal Mach number Mφ(0) will be held constant.

It is important to note that (2.21) is the nominal toroidal Mach number, which means that

like p0(ψ̂), D(ψ̂), and Ω(ψ̂) the true toroidal Mach number is only equal to (2.21) at R = R0

and in the trivial case when there is no flow. The relationship between the two Mach numbers

is

Mφ(R, ψ̂) =
(
R

R0

)
Mφ(ψ̂). (3.2)

9



The difference between the peak values for the true and nominal versions can be minimal

or significant depending on the static equilibrium configuration, especially in regards to the

plasma shape. Since we wish to keep the Mach numbers the same between each equilibrium,

we must determine the peak value for Ω(ψ̂) strictly from the nominal Mach number and fix the

aspect ratio. Both equilibria have an aspect ratio R0/a = 2.86 with a = 1m and R0 = 2.86m,

where a is the minor radius of the torus. Unpacking the nominal rotational pressure in (2.21)

and solving for Ω(ψ) gives the equation that will be used to determine the peak toroidal flow:

Ω(ψ̂) =
Mφ(ψ̂)

R0

√√√√p0(ψ̂)

D(ψ̂)
. (3.3)

When calculating static equilibrium configurations, NIMEQ is not using its original rou-

tines to do the calculation. NIMEQ is programmed to take as input whether the equilibrium

calculation should or should not use the isothermal Grad-Shafranov equation with toroidal flow

to find the solution for the poloidal magnetic flux. This is done by changing the switch-like pa-

rameter in the NIMEQ input file to “noflow” or “toroidal”. Setting this parameter to “noflow”

uses the static version of the Grad-Shafranov equation, while setting it to “toroidal” uses (2.20).

To better show agreement between NIMEQ and FLOW, the static equilibrium configurations

are calculated by keeping the switch parameter set to “toroidal”, but letting Ω(ψ̂) = 0.

As a final comment, it should be noted that FLOW always uses equations (2.13) and (2.14)

to calculate each equilibrium configuration. We manually assign Φ(ψ̂) = 0 for all equilibria and

Ω(ψ̂) = 0 for static equilibria. Since FLOW does not use the analytical expressions for thermal

pressure and density for the isothermal limit, the isothermal limit is calculated by manually

entering γ = 1.000001.

3.2 Low-β Tokamak Like Equilibrium

The first equilibrium configuration we will consider will be an equilibrium similar to that of

a low-β tokamak. The profiles for p0(ψ̂), F (ψ̂), D(ψ̂), and Ω(ψ̂) are given by the following

10



Table 3.1: Coefficient values used for low-β tokamak like equilibrium configurations with and
without toroidal flow. All values are in SI units.

Coefficient Mφ = 0 Mφ = .75

p0 121.59 121.59
p1 91192.5 91192.5
f0 9 9
f1 9.6× 10−2 9.6× 10−2

f2 6× 10−3 6× 10−3

Ω0 10−4 10−4

Ω1 0 159879.96
d0 10−9 10−9

d1 2.13× 10−7 2.13× 10−7

models:

p0(ψ̂) = p0 + p1

(
1− ψ̂

)
(3.4)

F (ψ̂) = f0 + f1

(
1− ψ̂

)
+ f2

(
1− ψ̂

)2
(3.5)

Ω(ψ̂) = Ω0 + Ω1

(
1− ψ̂

)
(3.6)

D(ψ̂) = d0 + d1

(
1− ψ̂

)
, (3.7)

where the nominal values of p0, p1, p2, f0, f1, f2, Ω0, Ω1, d0, and d1 can be found in Table 3.1

and the peak poloidal flux and plasma parameters for each configuration can be found in Table

3.2. Peak values for parameters will be denoted with the subscriptm and values at the magnetic

axis will be denoted with subscript a. The equilibrium is defined by a large toroidal magnetic

field, very low βt, high q∗, and a relatively flat Jφ, where βt is the ratio of thermal pressure to

the toroidal magnetic pressure and q∗ is the kink safety factor given by

q∗ =
a

R0

√
βp
βt
. (3.8)

The parameter βp is the poloidal analog to βt.

The static Jφ profile, as shown by the black line in Figure 3.1’s rightmost plot is not in

fact completely uniform, but has a slight trough and crest to the left and right of the magnetic

11



Table 3.2: Peak poloidal magnetic flux and plasma parameters for the low-β tokamak like
equilibrium. The ψa values are generated by NIMEQ, but the plasma parameters are calculated
during the post-processing stage in FLOW. As of right now, NIMEQ does not have a means to
accurately compute these parameters. These calculations do not affect the equilibrium profiles.

Parameter Mφ = 0 Mφ = .75

ψa .689 .695
q∗ 2.297 2.299
βt 1.16× 10−2 1.17× 10−2

βp 1.14 1.13

axis. However, the toroidal current density can still be treated as effectively uniform since the

deviation from a uniform profile is well within a 1% difference of a completely flat Jφ profile.

The Ω(ψ̂) profile for Mφ = Mφ(Rm, ψ̂m) is constructed by first setting the nominal

toroidal Mach number Mφ(ψ̂) to the desired value at R = R0 in equation (3.3) to find the

peak value of Ω(ψ̂). The value for Ω0 is set very close to zero, but not exactly zero, as a means

of providing minimal flow at the edge. The same is also done for the thermal pressure model’s

edge value in order to prevent cs → 0, which would cause a singularity in Mφ(R, ψ̂). Hence,

it is technically more accurate to say Ω1 = Ωa − Ω0, but effectively Ωa ≈ Ω1. Toroidal flow

models for descending values of Mφ, with the exception of Mφ = 0, are made by fixing Ω0 and

assigning each model’s Ω1 to 2/3, 4/9, and 1/3 of the original model’s Ω1.

The particle density profiles, as expected from our analytical expression for ρ(R,ψ) in

equation (2.19) and our quasi-neutral assumption, do indeed display a notable outward shift. In

2.0 2.5 3.0 3.5
0

1×1019

2×1019

3×1019

4×1019

5×1019

6×1019

R

P
ar
ti
cl
e
D
en
si
ty

(m
^(
-
3)
)

2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

0.5

R

P
o
lo
id
al
M
ag
n
et
ic
F
ie
ld

(T
)

Mϕ=0

Mϕ=.25

Mϕ=.33

Mϕ=.5

Mϕ=.75

2.0 2.5 3.0 3.5
720000

740000

760000

780000

800000

820000

840000

R

T
o
ro
id
al
C
u
rr
en
t
D
en
si
ty

(A
/m
^2

)

Figure 3.1: Midplane profiles for n(R,ψ), Bp, and Jφ plotted as function of toroidal radius for
increasing toroidal Mach number up to Mφ(Rm, ψ̂m) = .75.
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addition to the outward shift, the peak value itself exhibits as small increase. Note that in the

isothermal limit, the closure relation defined by (2.10) requires that the thermal pressure have

the exact same dependency as our particle density. Thus, the same axial and peak value shifts

for increasing Mφ will apply for pressure as well.

On the other hand, the poloidal magnetic field is hardly affected by the increasing presence

of toroidal flow, save for a very small shift of its vertex. For low-β equilibria, this result should

be expected. From (2.12), the absence of poloidal flow means that F (ψ) = RBφ, which

was also true in the static case. Since our Bφ profile is fixed the only way for Bp to deviate

from the static case is if ∇ψ increases/decreases from the static equilibrium. Table 3.2 shows

that increasing the toroidal Mach number at best changes the value of ψa by approximately

.85%, which is roughly the same percent difference βt and βp experience as well. Additionally,

βt ∼ 1% which is a direct result of the dominance of the magnetic pressure. Consequentially,

the RHS of (2.20) will be dominated by the FF ′ term. Since the static and steady-state F (ψ̂)

models are identical, this means that even though the steady-state thermal pressure clearly

deviates from its static form, the FF ′ term will still most likely dominate, barring incredibly

high toroidal flow. Therefore, it is unlikely that ∇ψ will change much at all, which means

neither will the poloidal magnetic field. We should expect that this will not be the case for the

high-β equilibrium in the next section.

By looking at the Jφ profiles, as Mφ increases, it can be seen that the toroidal current is

gradually pushed away from the geometric center of the poloidal cross-section of the torus.

This is indicative of the centrifugal force contribution mentioned back in Chapter 2. Though

the current pushed to the left of the geometric center seems to have its peak flipped, this is

simply showing that the current density profile, whose non-uniformity we dismissed for the

static equilibrium, is exacerbated by the increasing flow speed.
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3.3 High-β Tokamak Like Equilibrium

The last equilibrium we will take a look at is similar to that of a high-β tokamak. The profiles

for p0(ψ̂), F (ψ̂), D(ψ̂), and Ω(ψ̂) are given by the following models:

p0(ψ̂) = p0 + p1

(
1− ψ̂

)
+ p2

(
1− ψ̂

)2
(3.9)

F (ψ̂) = f0 + f1

(
1− ψ̂

)
+ f2

(
1− ψ̂

)2
(3.10)

Ω(ψ̂) = Ω0 + Ω1

(
1− ψ̂

)
(3.11)

D(ψ̂) = d0 + d1

(
1− ψ̂

)
, (3.12)

where the nominal values of p0, p1, p2, f0, f1, f2, Ω0, Ω1, d0, and d1 can be found in Table 3.3

and the peak poloidal flux and plasma parameters for each configuration can be found in Table

3.4. The only change to plasma shape from that of the low-β equilibrium is the transition from

a pressure that was linear in ψ̂ to one that is slightly quadratic in ψ̂ (as can be seen from the p2

value in Table 3.3).

This equilibrium’s defining features are the notably higher βt, βp, and Jφ, a weak toroidal

magnetic field, and a linear Jφ profile corresponding to ν = .29, where ν is the tokamak

expansion parameter defined by ν = βtq
2
∗R0/a. The coefficients for p0(ψ̂) and F (ψ̂) were set

to values that kept ν < 1/2 [8]. For the sake of comparability with the low-β equilibrium, we

Table 3.3: Coefficient values used for high-β tokamak like equilibrium configurations with and
without toroidal flow. All values are in SI units.

Coefficient Mφ = 0 Mφ = .75

p0 101.325 101.325
p1 23026.4 23026.4
p2 −948.19 −948.19
f0 .99 .99
f1 4.65× 10−2 4.65× 10−2

f2 1.43× 10−2 1.43× 10−2

Ω0 10−4 10−4

Ω1 0 78795.51
d0 10−9 10−9

d1 2.13× 10−7 2.13× 10−7
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Table 3.4: Peak poloidal magnetic flux and plasma parameters for the high-β tokamak like
equilibrium.

Parameter Mφ = 0 Mφ = .75

ψa .2733 .2774
q∗ .651 .652
βt .2352 .2359
βp 1.80 1.76

wish to keep our expansion parameter below the point at which we would start seeing a current

reversal. Similar to before, inspection of the the static Jφ profile in Figure 3.2 reveals that it is

not completely linear, but still effectively linear.

The particle density profiles do not display any significant deviation in shape, and only

a slightly larger peak shift. Since D(ψ̂) and Mφ(ψ̂) are the same models used in the low-β

section, any change to the particle density profile would come from the shape of the thermal

pressure. While the pressure is now technically quadratic in ψ̂, it is still much closer to being

linear since p2 << p1. Thus, the shift for the particle density is reminiscent of the shift seen in

the low-β tokamak like equilibrium.

At first glance it may seem as though our prediction for the high-β equilibrium’sBp profile

was wrong, but the difference here is somewhat subtle. Unlike before, the static poloidal field

profile has a distinct bend on the left side of the vertex. The vertex does shift slightly more

noticeably than with the low-β case, what is more interesting is that the steady-state profile

bends the left side of the profile even more. As discussed in the last section, with our constraint
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Figure 3.2: Midplane profiles for n(R,ψ), Bp, and Jφ plotted as function of toroidal radius for
increasing toroidal Mach number up to Mφ(Rm, ψm) = .75.
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on Bφ, Bp relies entirely on ∇ψ. With the pressure term now dominant on the RHS of (2.20),

as seen in Table 3.4, ψa changes by about 1.5% and βp changes by about 2.25%.

Lastly, the Jφ profile in this configuration also shows the current being pushed away from

the center, but in a different manner. More current is being pushed to the outer wall than towards

the inner wall. While this can partly be explained by the non-uniformity of the static Jφ profile,

Jφ’s direct dependence on ∆∗ψ gives a more intuitive explanation. Once again, the dominance

of the pressure term on the RHS is the main difference between this configuration and the last.

In other words, it makes sense that the peak closest to the outer wall appears to take a shape

similar to that of the pressure and density.

3.4 NIMEQ/FLOW Comparison

In this section we compare the equilibrium profiles for the low-β and high-β equilibria calcu-

lated by NIMEQ in the previous two sections with ones calculated by FLOW as a benchmark.

More specifically, we will address the metrics used to determine the quality of the fits gener-

ated by both FLOW and NIMEQ and the percent difference for the particle density, poloidal

magnetic field, and toroidal current density profiles.

Indicated back in the overview of this chapter, FLOW solves the (2.13) and (2.14) system

of equations, while NIMEQ solves equation (2.20). NIMEQ uses a finite element approach

to find a solution for ψ, while FLOW uses a multi-grid approach [1, 3]. For FLOW, each

equilibrium calculation’s merit was determined by increasing the number of iterations and final

grid size until the solution for ψ at the center of the poloidal cross-section no longer varied. The

residual was checked at each iteration of each grid to verify convergence. Similarly, NIMEQ’s

grid resolution and degree for the polynomial basis functions were independently increased

until the solution ceased to deviate. Furthermore, two different tolerances are taken as input in

for NIMEQ. The Grad-Shafranov equation’s finite element representation can be represented

in a form analogous to Ax = b(x), where x = ψ/R2, A is the ∆∗ operator, and b(x) is the RHS

of the Grad-Shafranov equation. NIMEQ uses a modified Picard algorithm and iterates an

equation of the form Axn = b(xn−1), where each iteration requires an inversion of A. The first

tolerance is used to control the accuracy of the inversion of A. The second tolerance is used to
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determine when the nonlinear iterations (the inversion) has converged. The inversion tolerance

and the nonlinear iteration convergence tolerance are set to 10−11 and 10−8, respectively, for all

equilibria.

Since, the two codes solve nearly identical equations for the limiting case of Ω(ψ) = 0

and Φ(ψ) = 0, the percent difference plots for this regime will provide a useful baseline for

estimating the differences in the solution fields between the two codes. The toroidal magnetic

field and poloidal current density profiles will be ignored since their static and steady-state

forms are identical for purely toroidal flow. Since the grid points between codes are different,

an interpolation is made of each equilibria’s midplane profiles for each code. To mitigate

interpolation error as much as possible, both FLOW and NIMEQ were given grid sizes with

257 data points. The percent difference for the low-β tokamak like equilibria are shown in

Figure 3.3. One of the most immediate observations that can be seen in every plot in Figure

3.3 is the rapid oscillation in percent difference near the edges. This can be easily explained

by noting the way NIMEQ handles open flux regions. NIMEQ somewhat crudely sets ψ̂ = 1

anywhere outside the the last closed flux surface [1]. Adjustments were made in FLOW’s input

file to match this, but FLOW will always require that the dimensions of the grid go slightly

beyond this region [3]. In other words, FLOW will still assume some R dependence slightly

past the closed flux region. However, in the static regime, it can be seen that the percent error

drops dramatically once you move away from the edge.

The middle plots of Figure 3.3 show the percent difference for the poloidal magnetic field.

While we noted earlier that the poloidal magnetic field deviates only slightly from the static

equilibrium for low-β, it is still important to include since we will want to compare it with the

percent error for the high-β equilibria. Additionally, the large spike in percent error that occurs

even in the static limit is easier to understand in the low-β case. This spike is caused by the

difference in the way each code assigns the value for the magnetic axis. FLOW assigns the

magnetic axis by taking the radial grid point that contains the highest value of ψ. While for

a sufficient number of grid points this is more than satisfactory, an interpolation between the

adjacent grid points is a slightly more accurate way to find the exact point where the magnetic

axis should be. As we saw in Figure 3.1, the poloidal field has a fairly steep slope on both sides
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Figure 3.3: Percent difference plots for n(R,ψ), Bp, and Jφ low-β equilibrium midplane pro-
files for the static case (top row) and the steady-state case with Mφ = .75 (bottom row).

of its vertex. Even a small shift in the location of this vertex can lead to Bp in one code being

almost twice the value of Bp in the other, hence the delta function like percent error about the

magnetic axis. The width of the spike increases for flow since the percent difference for ψ will

unsurprisingly marginally increase since the equations being solved are not identical.

For the moment we will hold off assessing the validity of the Jφ profiles. First we will look

at the corresponding plots for the high-β equilibria as seen in Figure 3.4. Note that the plots

all seem to have identical dependency on R, which is a good indication that the same metrics

were used for all equilibria. The particle density and poloidal magnetic field plots’ behavior is

almost identical to their exhibited behavior in Figure 3.3.

The primary difference between FLOW and NIMEQ for both low-β and high-β lies in the

calculation of the Jφ profile. Though the percent difference is reasonable, it is still substantially

higher than it is for the other two profiles. As stated in the last section, the main difference

comes from the increased influence of the pressure term in (2.20). While both codes determine

Jφ from the RHS of their respective Grad-Shafranov equation, the Grad-Shafranov equation
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Figure 3.4: Percent difference plots for n(R,ψ), Bp, and Jφ high-β equilibrium midplane
profiles for the static case (top row) and the steady-state case with Mφ = .75 (bottom row).

itself is not the same. FLOW must first solve for ρ using (2.17) in the isothermal limit. Noted

back in the overview of this chapter, a value very close to one is used in order to prevent a

singularity while solving for the density in equation (2.15). While NIMEQ uses the same value

of γ, it is important to note that by using the analytical form of the thermal pressure (2.19),

the only place where γ is used in calculating solution fields is when it calculates S(ψ), which

would never be able to cause a singularity. Additionally, the RHS of (2.20) has substantially

fewer calculations that need to be made.

The plots in Figure 3.5 help to visualize this disparity. From these plots it is clear that the

percent difference increases radially away from the center of the poloidal cross-section, with the

greatest percent difference occurring at the maxima and minima of the profiles. Additionally,

the agreement between NIMEQ and FLOW improves considerably towards the edge (barring

the aforementioned open region difference). The percent difference even increases for the high-

β equilibrium, as it should if the RHS is indeed to be the cause.
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Figure 3.5: Comparison of FLOW and NIMEQ Jφ profiles for Mφ = .75.

FLOW

NIMEQ

2.0 2.5 3.0 3.5
720000

740000

760000

780000

800000

820000

840000

860000

R

T
o
ro
id
al
C
u
rr
en
t
D
en
si
ty

(A
/m
^2

)
Low-β Tokamak Like Steady-State Equilibrium

FLOW

NIMEQ

2.0 2.5 3.0 3.5

200000

250000

300000

350000

400000

R

T
o
ro
id
al
C
u
rr
en
t
D
en
si
ty

(A
/m
^2

)

High-β Tokamak Like Steady-State Equilibrium

3.5 Conclusion

The effects of isothermal toroidal rotation have been shown to be significant in low and high βt

like tokamak configurations, with the most noteworthy addition to the static model being the

rotational inertia pushing the toroidal current to the edge. The high-β tokamak like equilibria

deviates more drastically from the static regime than the low-β like tokamak equilibria did.

This result has been shown to be due to the larger pressure term on the RHS of the isothermal

Grad-Shafranov equation with toroidal flow. These results are in good agreement with the code

FLOW and the integration of flow into NIMEQ equilibrium calculations appears to have been

successful.

With this special case implemented in NIMEQ, the next steps in developing this new

functionality are to include purely toroidal flow and arbitrary flow options. For the purely

toroidal flow Grad-Shafranov equation (2.16), this would mean adding a couple of terms to the

RHS and residual integration routines in NIMEQ, as well a short routine used the calculate ρ at

each iteration using (2.17). On the other hand, adding poloidal flow to NIMEQ would be a more

challenging endeavor since (2.14) would need to be rearrange so that the LHS is ∆∗ψ, which

will introduce a ∇ψ/R2 term on the RHS. A routine/module would also need to be developed

to solve the Bernoulli equation for the density. In addition to flow speeds comparable to the

sound speed, when creating equilibria with poloidal flow, you must also pay attention to flow

speeds comparable to the poloidal Alfvénic Mach number, as seen by the LHS of (2.14). The
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addition of poloidal flow to the models used in this work, would likely alter the solution fields

of low and high β tokamak like equilibria even further.
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Appendix A

Finding the Poloidal Magnetic Field

The poloidal magnetic field is found by utilizing the the vector potential A, where B = ∇×A.
Note that the divergence of this magnetic field is already zero. We can relate the vector potential
to the poloidal magnetic flux by using Stokes’s Theorem, which yields

ψp =
∫
Sp

B · dSp =
∮
A · dlp, (A.1)

where Sp and lp are the poloidal surface and the poloidal arc length. Thus, the poloidal flux is
just ψp = 2πRAφ. Generally, we want to work instead with ψ = ψp/2π = RAφ to minimize
the number of coefficients carried throughout the derivation.

Taking the divergence of B in the case of axisymmetry, and substituting in our new ex-
pression for ψ, we get the following expressions for the R and Z components of the magnetic
field:

BR = − 1

R

∂ψ

∂Z
R̂ (A.2)

BZ =
1

R

∂ψ

∂R
Ẑ. (A.3)

Note that the sum of these is Bp and looks very similar to∇ψ, which is given by

∇ψ =
∂ψ

∂R
R̂ +

∂ψ

∂Z
Ẑ. (A.4)

In fact, taking∇ψ× φ̂, noting that φ̂ = R∇φ, and comparing this to the sum of (A.2) and (A.3)
gives us the expression we were looking for:

Bp = ∇ψ ×∇φ. (A.5)
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Appendix B

Finding Velocity for Compressible Flow

To determine our expression for v, we will use equations (2.1) and (2.5) which have been
rewritten below:

∇ · (ρv) = 0 (B.1)

∇× (v ×B) = 0. (B.2)

First we need to determine which basis vectors it can be written in terms of. Now that (B.2)
implies that v×B = ∇α, where α is an arbitrary scalar. This implies that B ⊥ ∇α. The only
way this is possible is if ∇α ‖ ∇ψ. Since v ⊥ ∇α, this means that our flow velocity does not
have a ∇ψ component. Ergo, we can write v as

v = C∇ψ ×∇φ+Rvφ∇φ, (B.3)

where C is an arbitrary function (not necessarily a constant).
Substituting (B.3) into (B.2) and simplifying leads to the relationship

(∇ψ ×∇φ) · ∇ (ρC) = 0, (B.4)

which means ∇ (ρC) ⊥ Bp. Due to axisymmetry, it is impossible for ∇ (ρC) to be collinear
with ∇φ, therefore it must be collinear with ∇ψ. Therefore, we define a new function Φ(ψ)

such that C = Φ(ψ)√
µ0ρ

. Finally, we substitute the newly updated v into (B.2) to get

∇
[

1

R

(
vφ −

Φ(ψ)
√
µ0ρ

)]
×∇ψ = 0. (B.5)

Equation (B.5) once again tells us that the term in the brackets must be another free function
that we will call Ω(ψ). Rearranging and solving for vφ yields

vφ =
Φ(ψ)
√
µ0ρ

Bφ +RΩ(ψ). (B.6)

Now all that needs to be done is to recombine the two components to get our final expression
for the flow velocity:

v =
Φ(ψ)
√
µ0ρ

B +R2Ω(ψ)∇φ. (B.7)
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Appendix C

The∇φ Component of the Momentum Equation

The∇φ component of the momentum equation is given by

∇φ · (ρv · ∇v) = ∇φ · (J×B) . (C.1)

Upon substituting J and B into (C.1), our expression reduces to

∇φ · [v × (∇× v)] =
1

µ0ρR2
(∇ (RBφ)× (∇φ · ∇ψ)) . (C.2)

First start by simplifying the LHS of (C.2) by plugging in our expression for v and putting the
resulting expression in terms of∇ψ×∇φ dotted with a scalar gradient. Doing so results in the
LHS’s expression being

∇φ · [v × (∇× v)] = − Φ(ψ)
√
µ0ρR2

(∇ψ ×∇φ) · ∇
(

Φ(ψ)
√
µ0ρ

RBφ +R2Ω(ψ)

)
. (C.3)

Now that both sides of (C.2) can be expressed in terms of our basis vectors and scalar quantities,
inserting (C.3) into (C.2) yields the desired expression:

(∇ψ ×∇φ) · ∇
(

Φ(ψ)2

ρ
RBφ +

√
µ0R

2Φ(ψ)Ω(ψ)−RBφ

)
= 0. (C.4)

The nice thing about (C.4) is that all RBφ terms are conveniently located inside the scalar
gradient (so RBφ will be able to be solved for in very much the same way as in the static case,
but with additional terms. Equation (C.4) implies that the scalar gradient must be collinear
with ∇ψ and thusly the scalar inside the gradient must be a free function of ψ, which we will
call F (ψ) for the sake of comparison with the static regime. Solving for RBφ we get the final
expression:

RBφ =
F (ψ) +

√
µ0R

2Φ(ψ)Ω(ψ)

1− Φ(ψ)2/ρ
. (C.5)
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Appendix D

The B Component of the Momentum Equation

The field alligned component of the momentum equation is given by

B · (ρv ×∇v) + B · ∇p = 0. (D.1)

It is easiest to take this one term at a time and try and put the expression for each term in the
form of a dot product of a scalar gradient and∇ψ ×∇φ. Doing so for both terms gives us:

B · (ρv ×∇v) = (∇ψ ×∇φ) · ρ∇
[
v2

2
−
(

Φ(ψ)Ω(ψ)
√
µ0ρ

RBφ +R2Ω(ψ)2

)]
(D.2)

B · ∇p =

(
γ

γ − 1

)
(∇ψ ×∇φ) · ρ∇

(
ργ−1S(ψ)

)
. (D.3)

The v2/2 is unexpanded mainly for the sake of compactness, but this term is also helpful in
spotting the Bernoulli equation that comes out of this component of the momentum equation.
Additionally, the thermal pressure has been expressed in terms of the density and S(ψ).

Recombining (C.1) and (C.2) results in another expression that requires the creation of a
free function, which is

(∇ψ ×∇φ) · ρ∇
[
v2

2
−
(

Φ(ψ)Ω(ψ)
√
µ0ρ

RBφ +R2Ω(ψ)2 +

(
γ

γ − 1

)
ργ−1S(ψ)

)]
. (D.4)

The term inside the hard brackets is a Bernoulli equation which we will set equal to the free
function H(ψ). Therefore, our Bernoulli equation can be simplified to the form:

1

2µ0

(
Φ(ψ)B

ρ

)2

− 1

2
R2Ω(ψ)2 +

(
γ

γ − 1

)
ργ−1S(ψ) = H(ψ). (D.5)
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Appendix E

The∇ψ Component of the Momentum Equation

The∇ψ component of the momentum equation is given by:

∇ψ · (ρv · ∇v) = ∇ψ · (J×B)−∇ψ · ∇p. (E.1)

We will take each term in (E.1) one at a time. Note that the LHS of (E.1) can be rewritten as

∇ψ · (ρv · ∇v) = ρ∇ψ ·
[
∇
(
v2

2
− v × (∇× v)

)]
. (E.2)

We leave (E.2) in this unexpanded form due to the redundancy of the v× (∇× v) term on the
RHS. This expression would have been found back in the derivation for the ∇φ component of
the momentum equation in Appendix C. The other two terms on the RHS of (E.2) become:

∇ψ · (J×B) =
1

µ0R2

[(
2

R

∂ψ

∂R
−∇2ψ

)
|∇ψ|2 −∇ψ · ∇

(
R2B2

φ

2

)]
(E.3)

∇ψ · ∇p = ργ
dS(ψ)

dψ
|∇ψ|2 + γργ−1S(ψ)∇ψ · ∇ρ. (E.4)

Now that all of the terms for (E.1) have been assembled, the time has come to finally derive
the Grad-Shafranov equation for arbitrary flow. However, before doing so, two mathematical
tricks should be noted, as they are crucial to the rest of the derivation. The first one is the
simplest: ∇ψ · ∇F (ψ) = F ′(ψ) |∇ψ|2, where the prime indicates a derivative with respect to
ψ. It is worth noting that this trick works for the other free functions as well. The second trick
is to write any v2/2 terms in terms of H(ψ). This results in the useful substitution

v2

2
= H(ψ) +

Φ(ψ)Ω(ψ)
√
µ0ρ

RBφ +R2Ω(ψ)2 −
(

γ

γ − 1

)
ργ−1S(ψ). (E.5)

Using the aforementioned tricks, grouping all of the terms together on one side, and di-
viding out the common factor of |∇ψ|2, we find that the ∇ψ component of the momentum
equation reduces to

ρ
dH(ψ)

dψ
− ργ−1

γ − 1

dS(ψ)

dψ
+

1

µ0

∇ ·
[(

1− Φ(ψ)2

ρ

)
∇ψ
R2

]
+

Φ(ψ)

µ0ρ

dΦ(ψ)

dψ

|∇ψ|2

R2
(E.6)
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+
Φ(ψ)
√
µ0

RBφ
dΩ(ψ)

dψ
+ ρR2Ω(ψ)

dΩ(ψ)

dψ
+

(
Bφ

µ0R

)
dF (ψ)

dψ
+

Φ(ψ)

µ0ρ

dΦ(ψ)

dψ
B2
φ

+
Ω(ψ)
√
µ0

RBφ
dΦ(ψ)

dψ
= 0.

There is one last trick that is needed to get our Grad-Shafranov equation. Once all of the terms
in (E.6) have been grouped by common free function derivative (i.e. group all of the Φ′(ψ) and
Ω′(ψ) terms), the final thing to notice is that the expression in front of the Φ′(ψ) term is just
v ·B. Hence, the Grad-Shafranov equation for arbitrary flow is given by

1

µ0
∇ ·

[(
1−M2

Ap

)(∇ψ
R2

)]
=

Bφ

µ0R

dF (ψ)

dψ
− v ·B
√
µ0

dΦ(ψ)

dψ
− ρRvφ

dΩ(ψ)

dψ
(E.7)

−ρdH(ψ)

dψ
+

ργ

γ − 1

dS(ψ)

sψ
,

where MAp = Φ(ψ)/
√
ρ is the poloidal Alfvénic Mach number.
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