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Current heterogeneous meta-computing systems, such as computational clusters 

and grids offer a low cost alternative to supercomputers. In addition they are highly 

scalable and flexible. They consist of a host of diverse computational devices which 

collaborate via a high speed network and may execute high-performance applications. 

Many high-performance applications are an aggregate of modules. Efficient scheduling 

of such applications on meta-computing systems is critical to meeting deadlines. In this 

dissertation, we introduce three new algorithms, the Heterogeneous Critical Node First 

(HCNF) algorithm, the Heterogeneous Largest Task First (HLTF) algorithm and the 

Earliest Finish Time with Dispatch Time (EFT-DT) algorithm. HCNF is used to schedule 
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parallel applications of forms represented by directed acyclic graphs onto networks of 

workstations to minimize their finish times. We compared the performance of HCNF 

with those of the Heterogeneous Earliest Finish Time (HEFT) and Scalable Task 

Duplication based Scheduling (STDS) algorithms. In terms of Schedule Length Ratio 

(SLR) and speedup, HCNF outperformed HEFT on average by 13% and 18% 

respectively. HCNF outperformed STDS in terms of SLR and speedup on an average by 

8% and 12% respectively. The HLTF algorithm is used to schedule a set of independent 

tasks onto a network of heterogeneous processors to minimize finish time. We compared 

the performance of HLTF with that of the Sufferage algorithm. In terms of makespan, 

HLTF outperformed Sufferage on average by 4.5 %, with a tenth run-time. The EFT-DT 

algorithm schedules a set of independent tasks onto a network of heterogeneous 

processors to minimize finish time when considering dispatch times of tasks. We 

compared the performance of EFT-DT with that of a First in First out (FIFO) schedule. In 

terms of minimizing makespan, on average EFT-DT outperformed FIFO by 30%. 
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CHAPTER 1 
 

INTRODUCTION 
 

This chapter provides an introduction to our research work and discusses a few 

relevant topics. Section 1.1 discusses our research motivation. Section 1.2 describes the 

architecture of cluster computing systems. Section 1.3 describes the architecture of grid 

computing systems. Section 1.4 provides an overview of task scheduling in 

heterogeneous computing systems. Section 1.5 provides an introduction to NP-complete 

problems and Section 1.6 discusses the organization of this dissertation.  

 
 

1.1  Motivation  
 

 Information Technology has revolutionized the way we share and use 

information. The IT revolution has witnessed a myriad number of applications with a 

wide range of objectives which include: small personal computer based applications like 

the calculator program, medium-sized applications like the Microsoft Word, large-sized 

applications like the Computer Aided Design software and very-large sized applications 

like the Weather Forecasting application. Some of these programs can run efficiently on a 

normal personal computer and some may need a more powerful workstation. However, 

there are applications like Weather Forecasting, Earthquake Analysis, Particle Simulation 

and a host of other engineering and scientific applications that require computing 
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capabilities beyond that of personal computers or workstations. They are called “High-

Performance Applications”.  

 How do we run these high-performance applications efficiently, given the fact 

that sequential computers (PCs, workstations) are too slow to handle them? There are 

three ways to improve efficiency [1]: work harder, work smarter or get help. In this 

context, working harder refers to increasing the speed of sequential uni-processor 

computers. In the last two decades, microprocessor speed has on an average doubled once 

in 18 months. Today’s microprocessor chip is faster than the mainframes of yesteryears, 

owing to the phenomenal advances in Very Large Scale Integration (VLSI) technology. 

Even though this trend is expected to continue in the future, microprocessor speed is 

severely limited by the laws of physics and thermodynamics [2]. There is very high 

probability that it will eventually hit a plateau in the near future.  

Working smarter refers to designing efficient algorithms and programming 

environments to deal with high-performance applications. By working smarter, we can 

definitely improve the overall efficiency, but will not be able to overcome the speed 

bottleneck of sequential computers. 

Getting help refers to involving multiple processors to solve the problem. The 

idea of multiple processors working together simultaneously to run an application is 

called “Parallel Processing.” Most of the applications consist of thousands of modules or 

sub-programs that may or may not interact with each other depending on the nature of the 

application. In either case, there are usually a number of modules that are independent of 

one another and could run simultaneously on different processors. The parallel nature of 

many applications is what makes parallel processing very appealing. In other words, if 
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applications were to be one large sequential module, parallel processing would not be 

feasible.  

Parallel processing has captivated researchers for a long time. The initial trend in 

parallel processing was to create tightly coupled multi-processor systems with shared 

memory, running proprietary software. These systems were generally referred to as 

“Supercomputers”. Supercomputers were extremely fast and expensive. In the 1960s 

Seymour Cray created the world’s first commercial supercomputer the CDC 6600.  Other 

companies like IBM, Digital and Texas Instruments created their own proprietary 

versions of supercomputers. The 70s and the 80s witnessed major companies and 

research labs across the word vie with one another to create the world’s fastest super 

computer. Even though the trend continues to this day, parallel processing has slowly 

drifted away from supercomputing for a number of reasons. Supercomputers are 

extremely expensive systems that run on proprietary technology. Since they run on 

proprietary technology, they offer less flexibility with respect to developing software 

solutions to execute high performance applications. Since supercomputers are very 

expensive to lease/purchase and maintain, it is beyond the reach of many organizations to 

deploy them. Also in view of today’s technological growth, it is important for systems to 

be readily scalable. Owing to factors like proprietary hardware and software 

technologies, most of the supercomputers are not readily scalable. To summarize, 

supercomputers have a very high cost/performance factor.  

The very high cost/performance factor made them unattractive to a number of 

organizations. Most organizations (business, academic, military etc) were interested in 

high performance computing but were seeking systems with low cost/performance factor, 
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which could not be offered by supercomputers.  In the meantime, PCs and workstations 

became extremely powerful and significant advances were made in networking 

technologies. Researchers began to explore the possibility of connecting low cost PCs 

with a high-speed network to mimic the functioning of a supercomputer albeit with a low 

cost/performance factor.  

Extensive research has been carried out to create high performance systems by 

connecting PCs/workstations with a high-speed network. Most of the research was 

focused on creating viable parallel programming environments, developing high-speed 

network protocols and devising effective scheduling algorithms. Initially, the 

PCs/workstations had uniform hardware characteristics and thus the systems were termed 

“Homogeneous.”  However due to rapid advances in PC technology, computers and other 

hardware items had to be continuously upgraded and it was no longer the case that all the 

machines had identical hardware characteristics. This led to the notion of “Heterogeneous 

Systems” where individual PCs/workstations in a network could have different hardware 

characteristics. Researchers today focus on creating a high-performance system with a 

low cost/performance factor using a Heterogeneous Network of Workstations (NOWs).  

So, what goes into creating a viable high performance computing system with a 

low cost/performance ratio out of a NOW given the fact that we have powerful 

workstations and very high-speed networks? Firstly, an efficient run-time environment 

must be provided for high-performance applications. Extensive research has been done in 

this area and has led to the creation of efficient technologies like the Message Passing 

Interface (MPI) [2] and the Parallel Virtual Machine (PVM) [2].  Secondly, in order to be 

able to provide a low cost/performance ratio, these systems must optimize the overall 
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execution time (or turnaround time) of high-performance applications. This requires 

efficient scheduling of the sub-tasks of high-performance applications onto the individual 

machines of a NOW. The sub-tasks of a parallel application may either be independent or 

may have precedence constraints. In either case, the problem of scheduling these subtasks 

to optimize the overall execution time of an application is a well-known NP Complete 

problem [3].  

 The focus of our research is to devise efficient scheduling algorithms for 

scheduling parallel applications represented by independent tasks as well as tasks with 

precedence constraints onto heterogeneous computing systems to minimize the overall 

execution time. We strongly believe that efficient task scheduling is the most important 

factor in creating a low-cost high-performance computing system.  We now discuss the 

architectures of two very popular heterogeneous computing systems, the Cluster and the 

Grid.  

 

1.2 Cluster Computing  
 

A cluster is a heterogeneous parallel computing system which consists of several 

stand alone systems that are interconnected to function as an integrated computing 

resource. A cluster generally refers to two of more computers interconnected via a local 

area network. A cluster of computers can appear as a single system to users and 

applications. It provides a low-cost alternative to supercomputers with a relatively 

reasonable performance.  

Figure 1.1 describes the architecture and the main components of a cluster 

computing system [2]. The individual nodes of a cluster could be PCs or high speed 
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workstations connected through a high-speed network.  The network interface hardware 

acts as a communication processor and is responsible for transmitting and receiving 

packets of data between cluster nodes. The cluster communication software provides a 

means for fast and reliable data communication among cluster nodes and to the outside 

world. Clusters often use communication protocols such as “Active Messages” [2] for 

fast communication among their nodes. They usually bypass the operating system and 

remove the critical communication overhead normally involved by providing a direct 

user-level access to the network interface. 

 

 

Figure 1.1 Architecture of Cluster-Computing Systems  

 

The cluster nodes can either work as individual computers or can work 

collectively as an integrated computing resource. The cluster middleware is responsible 

for offering an illusion of a unified system image (Single System Image) and Availability 
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out of a collection of independent but interconnected computers. Parallel programming 

environments offer portable, efficient, and easy-to-use tools for development of 

applications. They include message passing libraries, debuggers, and profilers. Clusters 

also run resource management and scheduling software such as LSF (Load Sharing 

Facility) and CODINE (Computing in Distributed Networked Environments) [2]. The 

individual nodes of a cluster can have different hardware characteristics and new nodes 

can be seamlessly integrated into existing clusters thus making them easily scalable. 

Clusters make use of these hardware and software resources to execute high performance 

applications and typically provide a very low cost/performance ratio.  

 

1.3 Grid Computing  

The massive growth of the Internet in the recent years has encouraged many 

scientists to explore the possibility of harnessing idle CPU clock cycles and other 

unutilized computational resources spread across the Internet. The idea was to harness 

idle CPU cycles and other computational resources and provide a unified computational 

resource to those in need of high-performance computation. This led to the notion of 

“Grid Computing”. 

 The concept of grid computing is similar to that of “Electrical Grids.”  In 

electrical grids, power generation stations in different geographical locations are 

integrated to provide a unified power resource for consumers to plug into on demand. In 

the same fashion, computational grids allow users to plug into a virtual unified resource 

for their computational needs.  
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1.3.1 Architecture of a Grid Computing System  Grid systems are highly complex and 

comprise of a host of integrated hardware and software features  as illustrated in  Figure 

1.2.  The following sub-sections describe the major components of a grid.   

Figure 1.2 Grid Architecture 

1.3.1.1 Interface  

 Grid systems are designed to shield their internal complexities from users. User 

interfaces can come in many forms and can be application specific. Typically grid 

interfaces are similar to web portals. A grid portal provides an interface to launch 

applications which would use its resources and services. Through this interface, users see 

the grid as a virtual computing resource. 
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1.3.1.2 Security 

Security is a critical issue in grid computing. A grid environment should consist 

of mechanisms to provide security, which includes authentication, authorization, data 

encryption etc. Most of the grid implementations include an Open SSL [4] 

implementation. They also provide a single sign-on mechanism, so that once a user is 

authenticated, a proxy certificate is created and used while performing actions within the 

grid.  

1.3.1.3 Broker  

A grid system typically consists of a diverse range of resources spread across the 

internet. When a user desires to launch an application through the portal, depending on 

the application and other parameters provided by the user, the system needs to identify 

and appropriate the resources to use. This task is accomplished by the grid broker system. 

The broker makes use of the services provided by the Grid Information Service (GIS) 

which is also known as the Monitoring and Discovery Service (MDS). It provides 

information about the available resources within the grid and their status. Upon 

identifying available resources, the broker needs to choose the most viable resource based 

on the requirements of the user. Resource brokering is a major research topic in grid 

computing and forms the focus of what is known as “G-Commerce”. 

1.3.1.4 Scheduler 

Applications requiring services of a grid could be one large module or could 

consist of several independent modules with or without data dependencies. Depending on 

the nature of the application, the scheduler must be able to effectively map the 
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application or its components onto the best available resource. Most of the grid 

schedulers use different algorithms to deal with different cases. Grid schedulers have a 

number of algorithms to choose from depending on scheduling parameters and user 

requirements. However, the most common criteria for schedulers is to minimize the 

turnaround time of an application.  

1.3.1.5 Data Management 

Scheduling high performance applications onto grids constantly requires 

movement of data files from one node to another. The grid environment should provide a 

reliable and a secure means for data exchange. The Data Management component of the 

grid system commonly uses the Grid Access to Secondary Storage (GASS) [4] 

component to move data files across the grid. The GASS incorporates the GridFTP, 

which is protocol built over the standard FTP in the TCP/IP protocol suite. The GridFTP 

protocol adds a layer of encryption and other security features on top of the standard FTP 

protocol.  

1.3.1.6 Job Management 

This component includes the core set of services that perform the actual work in a grid 

environment. It provides service to actually launch a job on a particular resource, check 

its status, and retrieve results when it is complete. The component is also responsible for 

ensuring fault tolerance. 
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1.4 Overview of Task Scheduling in Heterogeneous Computing Environments  

There are a number of reasons why scheduling programs or the tasks that 

comprise the programs is important. For users it is important that the programs they wish 

to run are executed as quickly as possible (faster turnaround times). On the other hand the 

owners of computing resources would ideally wish to optimize their machine utilization. 

These two objectives, faster turnaround times and optimal resource utilization, are not 

always complementary. Owners are not usually willing to let a single user utilize all their 

resources (especially in grid systems), and users are not usually willing to wait an 

arbitrarily long time before they are allowed access to particular resources. Scheduling, 

from both points of view, is the process by which both the users and the owners achieve a 

satisfactory quality of service.  

1.4.1 Scheduling Strategies 

There are different approaches to the selection of processors onto which sub-tasks 

of a program would be placed for execution. In the static model, each sub-task is assigned 

to a processor before the execution of a program commences. In the dynamic scheduling 

model, sub-tasks are assigned to different processors in run-time. In the Hybrid 

scheduling model, a combination of both static and dynamic scheduling strategies is used.   

1.4.1.1 Static Scheduling 

In the static model, all sub-tasks of a program are assigned once to a processing 

element. An estimate of the cost of computation can be made  a priori . Heuristic models 

for static task scheduling are discussed in Chapter 2. One of the main benefits of the 
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static model is that it is easier to implement from a scheduling and mapping point of 

view. Since the mapping of tasks is fixed a priori, it is easy to monitor the progress of 

computation. Likewise, estimating the cost of jobs is simplified. Processors can give 

estimates of the time that will be spent processing the sub-tasks. On completion of the 

program they can be instructed to supply the precise time that was spent in processing. 

This facilitates updating of actual running costs and could be used in making 

performance estimates for new programs. The Static Scheduling model has a few 

drawbacks. The model is based on an approximate estimation of processor execution 

times and inter-processor communication times. The actual execution time of a program 

may often vary from the estimated execution time and sometimes may result in a poorly 

generate schedule. This model also does not consider node and network failures  

1.4.1.2 Dynamic Scheduling 

Dynamic scheduling operates on two levels: the local scheduling strategy, and a 

load distribution strategy.  The load distribution strategy determines how tasks would be 

placed on remote machines. It uses an information policy to determine the kind of 

information that needs to be collected from each machine, the frequency at which it needs 

to be collected and also the frequency at which it needs to be exchanged among different 

machines. In a traditional dynamic scheduling model, the sub-tasks of an application are 

assigned to processors based on whether they can provide an adequate quality of service. 

The meaning of quality of service is dependent on the application. Quality of service 

could mean whether an upper bound could be placed on the time a task needs to wait 

before it can start its execution; the minimum time under which the task can complete its 
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execution without interruption and the relative speed of the processor as compared to 

other processors in the system. If a processor is assigned too many tasks, it may invoke a 

transfer policy to check to see if it needs to transfer tasks to other nodes and if so, to 

which ones? The transfer of tasks could be sender initiated or receiver initiated. In the 

later case, a processor that is lightly loaded will voluntarily advertise to offer its services 

to heavily loaded nodes.  

The main advantage of dynamic scheduling over static scheduling is that the 

scheduling system need not be aware of the run-time behavior of the application before 

execution. Dynamic scheduling is particularly useful in systems where the goal is to 

optimize processor utilization as opposed to minimizing the turnaround times. Dynamic 

scheduling is also more efficient and fault tolerant when compared to static scheduling. 

1.4.1.3 Hybrid Static-Dynamic Scheduling 

Static scheduling algorithms are easy to implement and usually have a low 

schedule generating cost. However, since static scheduling is based on estimated 

execution costs, it may not always produce the best schedules. On the other hand, 

dynamic scheduling uses run-time information in the scheduling process and generates 

better schedules. But dynamic scheduling suffers from very high running costs and may 

be prohibitively expensive while trying to schedule very large applications with tens and 

thousands of sub-tasks. Since both the scheduling techniques have their own advantages, 

researchers have tried to combine them to create a hybrid scheduling technique. Usually 

in hybrid scheduling, the initial schedule is obtained using static scheduling and the sub-
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tasks are mapped onto the respective processors. However, after the execution 

commences, the processors use run-time information to check and see if the tasks could 

be mapped to better processors to yield a better a makespan. The running cost of a hybrid 

scheduling algorithm is greater than the static scheduling algorithms, but is significantly 

lower than the dynamic only scheduling algorithms.  

1.5 NP-complete Problems  

 Computational problems can be broadly classified into two categories, tractable 

problems and intractable problems [3]. Tractable problems are the ones whose worst case 

running time or time complexity is smaller than O(nk), where n is the input size of the 

problem and k is a constant. These problems are also known as “Polynomial Time 

Problems” since they can be executed in polynomial time. The Intractable problems are 

ones that cannot be executed in polynomial time. They take super-polynomial times to 

execute.  

However, there is a class of problems whose status is unknown to this day. These 

problems are known as the “NP-complete problems”. For these problems, no polynomial 

time solution has yet been discovered, nor has anyone been able to solve them with a 

super-polynomial lower bound [3].  Many computer scientists believe that NP-complete 

problems are intractable. This is mainly because there has been no success in devising a 

polynomial time solution to any of the existing NP-complete problems so far and if a 

polynomial time solution is devised for one NP-complete problem, mathematically a 

polynomial time solution can be devised for all NP-complete problems.  
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 Algorithm designers need to understand the basics and importance of NP-

complete problems. If designers can prove that a problem is NP-complete, then there is a 

good chance that the problem is intractable. If a problem is intractable, it would be better 

to design an approximation algorithm instead of a perfect algorithm.  

 The task scheduling problems that form the focus of this dissertation are well 

known NP-complete problems [3]. We devise approximation algorithms or heuristics to 

deal with various cases of the task-scheduling problem, which forms the focus of this 

research.  

 

1.6 Research Objectives  

 In this dissertation, we intend to propose new algorithms for scheduling tasks in 

heterogeneous computing systems. In Section 2 we provide a comprehensive literature 

review on the existing work in the area of task scheduling in heterogeneous computing 

systems. In Section 3, we propose a new algorithm called the Heterogeneous Critical 

Node First (HCNF) to schedule a parallel application modeled by a Directed Acyclic 

Graph (DAG) onto a network of heterogeneous processing elements. In Section 4, we 

propose a new low-complexity algorithm called the Heterogeneous Largest Task First 

(HLTF) to schedule independent tasks of a meta-task onto a network of heterogeneous 

processors. In Section 5, we propose a new algorithm called the Earliest Finish Time with 

Dispatch Time (EFT-DT) to schedule a set of independent tasks of a meta-task onto a 

network of heterogeneous processors while also considering the dispatch times. In 

Section 6, we provide the concluding remarks and also make suggestions for future 

research in this area. 
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CHAPTER 2 

LIERATURE REVIEW 

Among the problems related to task scheduling in heterogeneous computing 

environments, scheduling a parallel application represented by a directed acyclic graph 

(DAG) to minimize the overall execution time (makespan) and scheduling a parallel 

application represented by a meta-task (set of independent tasks) to minimize the 

makespan are the most important and often researched ones. This section defines the two 

problems and surveys related research work.  

 

2.1 Scheduling Parallel Applications Represented by Directed Acyclic Graphs 

onto Heterogeneous Computing Systems to Minimize the Makespan 

Many parallel applications consist of sub-tasks with precedence constraints and 

can be modeled by directed acyclic graphs. This section discusses the problem of 

scheduling a parallel application represented by a DAG onto a network of heterogeneous 

processors to minimize its makespan and reviews related research work 

 

2.1.1  Directed Acyclic Graphs     

A DAG is represented by G={V,E,W,C}. V is the set of n nodes: {n1, n2, n3, n4,…}. 

E is the set of directed edges of the form (ni, nj) which represents an edge directed from 
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node ni  to nj . W is the set of node weights of the form wi , where wi denotes the weight of 

node ni . C is the set of edge weights of the form ci,j, where ci,j denotes the weight of the 

edge (ni, nj). A DAG is a graph without a cycle (A directed path from a node onto itself). 

The set of nodes in a DAG which have an edge directed towards a node ni are called its 

predecessor nodes and are denoted by PRED(ni). Likewise, the set of nodes which have a 

directed edge from a node ni are called its successor nodes and are denoted by SUCC(ni). 

Nodes in a DAG that do not have a predecessor are called start nodes and nodes that do 

not have a successor are called exit nodes. blevel(ni) is the bottom level of ni  and is 

length of the longest path from ni to any exit node including the weight of ni. The length 

of a path in a DAG is the sum of its node and edge weights. tlevel(ni) is the is the top 

level of ni  and is the length of the longest path from a start node to node ni excluding the 

weight of ni.  The longest path in a DAG is called the critical path. A DAG may have 

multiple critical paths.  A sample DAG is illustrated in Figure 2.1. The node weights are 

to the right of each node and the edge weights are to the left of each edge. Table 2.1 

provides the table of values for the sample DAG.   

 

2.1.2 Problem Statement  

The objective is to schedule a parallel application represented by a DAG onto a 

network of heterogeneous processors to minimize its overall execution time. Node-

weights in a DAG represent average execution times of nodes over all the processors in 

the target execution system. Edges represent precedence constraints between nodes. An 

edge (ni,nj) indicates that node nj cannot start execution until ni completes execution and 
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receives all the required data from it. Edge-weights represent the time required to transfer 

the required data.  

 

 
 

Figure 2.1 A sample DAG, G1 
 
 

Table 2.1 Table of values for G1 
 

 
 ni 

 
PRED(ni)

 
SUCC(ni) 

 
tlevel(ni)

 
blevel(ni) 

1 {null} {2,3,4,5,6} 0 108.01 
2 {1} {8,9} 31 77.01 
3 {1} {7} 25 80 
4 {1} {8,9} 22 81.34 
5 {1} {9} 24 69 
6 {1} {8} 27 63.34 
7 {3} {10} 62.33 42.67 
8 {2,4,6} {10} 66.67 35.67 
9 {2,4,5} {10} 67.67 44.34 
10 {7,8,9} {null} 97.34 14.67 
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The target execution system consists of a finite number of heterogeneous 

processors connected with a high speed network. Communication among processors is 

assumed to be contention-less. Computation and communication is assumed to take place 

simultaneously. Node-execution is assumed to be non-preemptive; meaning nodes once 

scheduled on a processor cannot be removed (or preempted) and scheduled on other 

processors. If a DAG has multiple start nodes, a dummy start node with a zero node 

weight is added. Zero weight communication edges are then added from the dummy start 

node to the multiple start nodes. Likewise, if a DAG has multiple exit nodes, a dummy 

exit node is added. The make-span of a DAG is the time difference between the 

commencement of execution of the start node and the completion of execution of the exit 

node. The heterogeneous DAG scheduling problem is NP-complete [28] and can be 

formally defined as: To schedule the nodes of a DAG representing a parallel application 

onto a network of heterogeneous processors such that all the data precedence constraints 

are satisfied and the overall execution time of the DAG is minimized. The following 

sections survey existing research related to this problem. 

 

2.1.3 The Best Imaginary Level Algorithm  

The Best Imaginary Level (BIL) algorithm [22] assigns node-priorities based on 

the best imaginary level of each node. At each scheduling step, a free node with the 

highest priority is selected and mapped onto a processor based on a criterion. Table 2.2 

defines the terms used in BIL and Figure 2.2 lists the algorithm.  
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BIL(ni, pj) is the best imaginary level of node ni on processor pj. It is the length of 

the longest path in the DAG beginning with ni assuming it is mapped onto pj, and is 

recursively defined as:    

))])((min),([min(max)( ,,,)(,, pipijpjinSuccnjiji cpnBILpnBILwpnBIL ik += ≠∈+ . 

BIL of a node is adjusted to its basic imaginary make-span (BIM) as follows:  

][_)()( ,, jAvailableTpnBILpnBIM jiji += . 

 

 

Table 2.2 Definition of terms used in BIL 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m 

wi,j Time required to execute ni  on  pj 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

)( , ji pnBIL  ))])((min),([min(max ,,,)(, kililjjknSuccnji cpnBILpnBILw ik += ≠∈+  

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

)( , ji pnBIM  ][_)( , jji pAvaialbleTpnBIL +=  

k Number of free nodes at a scheduling step 

)(* , ji pnBIM  )0,1/max()( ,, −×+= mkwpnBIM jiji  
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If k is the number of free nodes (those nodes whose predecessors have completed 

execution) at a scheduling step, the priority of a free node is the kth smallest BIM value. If 

the kth smallest BIM value is undefined, the largest finite BIM value becomes its priority. 

If two or more nodes have the same priority, ties are broken randomly. At each 

scheduling step, the free node with the highest priority is selected for mapping. If k is 

greater than the number of processors, node execution times become more important than 

the communication overhead. On the contrary, if k is less than the number of available 

processors, node execution times become less important. The BIM value for the selected 

node is revised to incorporate this factor as follows:  

)0,1/max()()(* ,,, −×+= mkwpnBIMpnBIM jijiji . 

The processor which provides the highest revised BIM value for the node is selected. If 

more than one processor provides the same revised BIM value, the processor that 

maximizes the sum of the revised BIM values of all the other nodes is selected. The time 

complexity of the algorithm is O(n2 + m log m). 

 

2.1.4 The Generalized Dynamic Level Algorithm  

The Generalized Dynamic Level (GDL) Algorithm [28] assigns node-priorities 

based on their generalized dynamic levels. A number of factors are incorporated in the 

calculation of the generalized dynamic level and are explained next. The definition of 

terms used in GDL is listed in Table 2.3 and the algorithm is listed in Figure 2.3. 
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BIL Algorithm  
ReadyTaskList ← Start node 
While ReadyTaskList  NOT empty 
     k ←| ReadyTaskList|// Number of free nodes 
        For all ni in ReadyTaskList and pj in P 
                  Compute BIM(ni , pj) 
        End For  
        Priority of ni ← kth smallest BIM value, or the largest finite 
                                  BIM value if the kth smallest value is undefined 
        nt ← node in ReadyTaskList with the highest priority  
        For all pj in P  
                   Compute BIM*(nt , pj)//Revised BIM 
        End For  
        pfav ← The processor that provides the highest revised BIM value  
                   for nt                 
        Map nt on pfav  
        ReadyTaskList ← ReadyTaskList - nt + Free nodes(if any) 
End While 
End BIL 

     

Figure 2.2 The BIL algorithm 

 

SL(ni) is the static level of a node ni and is the largest sum of the median execution times 

of all the nodes from node ni  to an exit node along any path in the DAG. DL(ni,pj) = 

SL(ni)- EST(ni , pj) + ∆(ni , pj)  is the Dynamic Level (DL) of a node ni on processor pj  . It 

indicates how well the node and the processor are matched for execution. Even though 

DL(ni,pj) indicates how well ni and pj are matched, it does not indicate how well the 

descendents of ni are matched with pj. D(nj) is the descendent of node ni  to which ni  

passes the maximum data. F(ni,D(ni),pj)= d(ni ,D(ni))+ min k ≠ j   E(D(ni),pk) is defined to 

indicate how quickly D(ni) can be completed on a processor other than pj, if node ni is 
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executed on processor  pj .The Descendent Consideration (DC) term is defined as: DC(ni , 

pj) = w*( D(ni)) – min { E(D(ni),pj), F(ni ,D(ni),pj)} 

 

Table 2.3 Definition of terms used in GDL 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m 

wi,j Execution time of node ni  on  pj 

ci,j Data transfer time from node ni to  nj  

w*(ni) Median execution time of ni  over all the processors 

SL(ni) largest sum of the median execution times of all the nodes 
from node ni  to an exit node along any path in the DAG 

∆(ni , pj) =  w*(ni ) – wi,j 

EST(ni , pj)  Earliest start time of ni  on  pj 

DL(ni , pj)  = SL(ni)- EST(ni , pj) + ∆(ni , pj) 

D(nj) Descendent node of node ni  to which ni  passes the 
maximum data 

d(ni ,D(ni)) Time required to transfer data from ni to D(ni) 

E(D(ni),pk) Time required to execute D(ni) on processor  pk 

F(ni ,D(ni),pj) = d(ni ,D(ni))+ min k ≠ j   E(D(ni),pk) 

DC(ni , pj) = w*( D(ni)) – min { E(D(ni),pj), F(ni ,D(ni),pj)} 

C(ni) = DL(ni , ppref) – maxk ≠pref DL(ni ,pk)  (pref  is the processor 
on which node ni obtains the maximum DL) 
 

GDL(ni , pj) = DL(ni , pj)+ DC(ni , pj)+ C(ni) 
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GDL Algorithm  
 For all ni in N  
    Compute SL(ni) 
 End For 
 ReadyTaskList ← Start Node 
 While ReadyTaskList is NOT NULL do 
       For all ni in ReadyTaskList and pj in P 

  Compute DL(ni , pj) 
              Compute DC(ni , pj) 
   Compute C(ni) 
   GDL(ni , pj)← DL(ni , pj)+ DC(ni , pj)+ C(ni) 
       End For 
       Select the node-processor pair with the  maximum GDL 
       Update ReadyTaskList 
   End While  
End GDL 
 

    

Figure 2.3 The GDL algorithm 

 

The preferred processor of a node is the processor which maximizes its dynamic level 

(DL). The cost of not scheduling a node on its preferred processor is defined as follows.  

C(nj)= DL(ni , ppref) – maxk ≠j DL(ni ,pk)  (ppref is the preferred processor)  

The combination of DL, the Descendent Consideration (DC) term and the cost incurred in 

not scheduling a node on its preferred processor is used to define the Generalized 

Dynamic Level (GDL) of a node as:  GDL(ni , pj)= DL(ni , pj)+ DC(ni , pj)+ C(nj). 

At each scheduling step, the algorithm selects among the free nodes, the node and the 

processor with the maximum GDL. The time complexity is O(n2 + m log m). 
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2.1.5 The Levelized Min Time Algorithm 

In the Levelized Min Time (LMT) algorithm [16], the input DAG is divided into k 

levels using the following rules. The levels are numbered 0 to k-1. All the nodes in a level  

 

Table 2.4 Definition of terms used in LMT 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P| 

k Number of levels in the DAG 

wi,j Time required to execute ni  on  pj 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

,( inEST )jp  Max( ][_ jAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )) 

),( ji pnEFT  = ),(, jiji pnESTw +  

   

are independent of each other. Level 0 contains the start nodes and level k-1 contains the 

exit nodes. For any level j, where 0 < j < k-1, nodes in level j can have incident edges 

from any of the nodes in levels 0 thru j+1. Additionally, there must be at least one node 

in level j with an edge incident from a node in level j+1. LMT maps the nodes one level 

at a time starting from level 0. If the number of nodes at a given level is more than the 

number of processors in the target system, the smallest nodes (based on the average 

computation times) are merged until the number of nodes equals the number of 
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processors. Nodes are then sorted by the descending order of their average computations 

times. At each scheduling, the largest node is mapped onto the processor that provides its 

minimum finish time. Table 2.4 defines the terms used in LMT and Figure 2.4 lists the 

algorithm.  

 

 
LMT Algorithm  
   Divide the input DAG into k levels (level 0 to level k-1) 
   For levels 0 thru k-1 do 
          num← number of nodes in the current level  
              If num>m 
                 Merge the smallest nodes in the current level until num=m 
              End If 
             ReadyTaskList ← Nodes in the current level sorted in the 
                                          descending order of average node weights 
             While ReadyTaskList is NOT NULL do 
      ni ← First node in the ReadyTaskList  
      For all pj in P 
            Compute ,( inEST )jp  
            ),( ji pnEFT ← ),(, jiji pnESTw +  
       End For 
       Map node ni on processor pj which provides its least EFT 

      Update T_Available[pj] 
      Update ReadyTaskList 

              End While 
    End For  
End LMT 
 

 

    Figure 2.4 The LMT algorithm   

  

2.1.6 The Heterogeneous Earliest Finish Time Algorithm  

The Heterogeneous Earliest Finish Time (HEFT) algorithm [30] assigns node -

priorities based on the bottom level (blevel) of each node. The blevel of a node is the 
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length of the longest path in the DAG from the node to the exit node. The length of a path 

in a DAG is the sum of the node and edge weights that constitute the path. At each 

scheduling step, a node with the highest priority is assigned to a processor that minimizes 

its finish time. The definition of terms used in HEFT in listed in Table 2.5 and the 

algorithm is listed in Figure 2.5. As a first step, HEFT traverses the DAG in a top down 

fashion and computes the blevels of all the nodes. At each scheduling step, a node with 

the highest blevel is selected for mapping. Ties are broken randomly 

EST(ni , pj) is the earliest start time of a node ni  on a processor pj and is defined 

as: ,( inEST )jp = Max( ][_ jpAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )). It is the 

maximum of a) the time at which processor pj becomes free or b) The time at which node 

ni receives all the required data from its predecessor nodes after the completion of their 

exeuction. EFT(ni , pj) is the Earliest Finish Time of a node ni  on a processor pj and is 

defined as: EFT(ni , pj) = EST(ni , pj) + wi,j. HEFT computes the EFTs of the selected 

node on all the processors and selects the processor that provides the minimum EFT. The 

time complexity is O(n2 m). 

 

2.1.7 The Critical Path on Processor Algorithm  

The critical path is the longest path in a DAG. The length of the critical path gives 

the lower bound on the overall execution time of the DAG [30]. Minimizing the length of 

the critical path would aid minimizing the overall execution time of a DAG [30]. The 

Critical Path on Processor (CPOP) algorithm [30] is a variant of the HEFT algorithm and 

is from the same authors [30]. CPOP adopts a different mapping strategy for the critical 

path nodes and the non-critical path nodes.  
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Table 2.5 Definition of terms used in HEFT  

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P| 

wi,j Time required to execute ni  on  pj 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

priority(ni) = blevel(ni) 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

,( inEST )jp  Max( ][_ jAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )) 

),( ji pnEFT  = ),(, jiji pnESTw +  

 

 
HEFT Algorithm  
   For all ni in N  
      Compute blevel(ni) 
   End For 
   ReadyTaskList ← Start Node 
      While ReadyTaskList is NOT NULL do 
  ni ← node in the ReadyTaskList with the maximum blevel 
      For all pj in P 
            Compute ,( inEST )jp  
            ),( ji pnEFT ← ),(, jiji pnESTw +  
       End For 
       Map node ni on processor pj which provides its least EFT 

      Update T_Available[pj] and ReadyTaskList 
       End While  
End HEFT 
 

 

Figure 2.5 The HEFT Algorithm 
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Table 2.6 Definition of terms used in CPOP 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P| 

wi,j Time required to execute ni  on  pj 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

priority(ni) = tlevel(ni)+ blevel(ni) 

CP processor pj ∈  P which minimizes ∑ ∈CPn ji
i

w , //CP is the critical path 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

,( inEST )jp  Max( ][_ jpAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )) 

),( ji pnEFT  = ),(, jiji pnESTw +  

 

CPOP traverses the DAG in a top down fashion to compute the tlevels and blevels 

of all the nodes. It identifies the critical path/s and marks the critical path nodes. The 

priority of each node is the sum of its tlevel and blevel . At each scheduling step, a free 

task with the highest priority is selected for mapping. Ties (if any) are broken randomly. 

A CP processor is defined as the processor that minimizes the overall execution 

time of the critical path assuming all the critical path nodes are mapped onto it. If the 

selected node is a critical path node, it is mapped onto the CP processor. Else, it is 
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mapped onto a processor that minimizes its EFT (like the HEFT algorithm). The time 

complexity is O(n2 m). 

 

 
CPOP Algorithm  
   For all ni in N  
      Compute tlevel(ni) and blevel(ni) 
      Identify the critical path/s and mark the critical path nodes 
      priority(ni) ← tlevel(ni)+ blevel(ni) 
   End For 
   ReadyTaskList ← Start Node 
      While ReadyTaskList is NOT NULL do 
  ni ← node in the ReadyTaskList with the maximum priority 
                 If ni∈critical path  
                        Map ni on the CP processor  
                 Else  
         For all pj in P 
            Compute ,( inEST )jp  
            ),( ji pnEFT ← ),(, jiji pnESTw +  
          End For 
             Map node ni on processor pj which provides its least EFT
                  End If  

      Update T_Available[pj] 
      Update ReadyTaskList 

       End While  
End CPOP 
 

  

 Figure 2.6 The CPOP algorithm  

 

2.1.8 The Fast Critical Path Algorithm  

There are three steps involved in a typical static DAG scheduling algorithm: 

computation of node priorities, node selection, and processor selection. These steps 

contribute to the overall time complexity of the algorithm. The Fast Critical Path (FCP) 
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algorithm [24] tries to reduce the overall time complexity by reducing the complexity of 

the node selection and the processor selection steps.  

 

Table 2.7 Definition of terms used in FCP 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P| 

e Number of edges in the DAG 

wi,j Time required to execute ni  on  pj 

priority(ni) = blevel(ni) 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

,( inEST )jp  Max( ][_ jAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )) 

),( ji pnEFT  = ),(, jiji pnESTw +  

 

Node Selection: FCP tries to reduce the complexity of the node selection process by 

restricting the size of the ReadyTaskList to m (The number of processors in the target 

execution system). Additional free nodes (if any) are stored in a FIFO queue. Node 

priorities are based on their blevels. At each scheduling step, a node with the highest 

priority is selected for mapping. By restricting the size of the ReadyTaskList to m, the 

time complexity of the node selection process would be O(n log m).  
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Processor Selection: The complexity of the processor selection step is reduced by 

restricting the choice to just two processors: the first processor that becomes free and the 

enabling processor (The processor which is the last to send a data item to a node). The 

authors [24] prove that the EFT of a node is always minimized by one of these two 

processors. The time complexity of the processor selection step would be reduced to 

O(nlogm+e).  Of the two processors, the one which provides the least EFT for the 

selected node is chosen. The overall time complexity of FCP is O(nlogm+e). 

 

 
FCP Algorithm  
   For all ni in N  
      Compute tlevel(ni) 
      priority(ni) ← blevel(ni) 
   End For 
      ReadyTaskList ← Start Node 
      AdditionalTaskList ← NULL //FIFO Queue  
       While ReadyTaskList is NOT NULL do 
  ni ← node in the ReadyTaskList with the maximum priority 
                 p1← First processor in P to become free 
                P2← Enabling processor of  ni       
     Compute EST(ni , p1) 
                EFT(ni , p1)← EST(ni , p1)+ wi,1 
                Compute EST(ni , p2) 
                EFT(ni , p1)← EST(ni , p2)+ wi,2 
     Map node ni on processor pj which provides its least EFT 

    Update T_Available[pj] 
    Update ReadyTaskList  
    Update AdditionalTaskList (If applicable)  

        End While  
End FCP 
 

  

Figure 2.7 The FCP algorithm 
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2.1.9 The Fast Load Balancing Algorithm  
 

The Fast Load Balancing (FLB) algorithm [24] is a variant of the FCP algorithm. 

The node selection complexity is reduced by limiting the number of nodes in the 

ReadyTaskList to m (number of processors). Additional free nodes, if any, are added to a 

FIFO list. As was discussed in previous section, the earliest start time for a node can be 

obtained on either the first processor to become free or a task’s enabling processor. For 

each node in the ReadyTaskList, the earliest start time of the node on the first processor to 

become free and the node’s enabling processor is calculated. Among the free nodes, the 

node with the minimum earliest start time is selected and mapped onto the corresponding 

processor. The overall time complexity of FLB is O(nlogm+e). 

 
Table 2.8 Definition of terms used in FLB 

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P| 

wi,j Time required to execute ni  on  pj 

priority(ni) = blevel(ni) 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

,( inEST )jp  Max( ][_ jAvailableT , imkmnpredn cpnEFT
im ,)( ),(max +∈ )) 

),( ji pnEFT  = ),(, jiji pnESTw +  
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FLB Algorithm  
   For all ni in N  
      Compute tlevel(ni) 
      priority(ni) ← tlevel(ni) 
   End For 
     Readytasklist ← Start Node 
     AdditionalTaskList ← NULL // FIFO queue  
   While ReadyTaskList is NOT NULL 
           For all ni in Readytasklist 
                p1← First processor in P to become free 
                p2← Enabling processor of  ni       
     Compute EST(ni , p1) 
                Compute EST(ni , p2) 
             End For 
     Select ni with the least EST and map it onto the  
                corresponding processor. 
                Update T_Available[pj] 

    Update ReadyTaskList  
    Update AdditionalTaskList (If applicable)  

     End While  
End FLB 
 

  

Figure 2.8 The FLB algorithm 
 

2.1.10 The Hybrid Re-mapper Algorithm  

Static scheduling algorithms use estimates of node execution times in the 

scheduling process. Estimates can be obtained by techniques such as code profiling and 

analytical benchmarking [21].  However, actual node execution times may sometimes 

vary largely from the estimated execution times and may result in a bad schedule. To 

mitigate this problem, the Hybrid Re-mapper [21] algorithm uses a combination of static 

mapping and the actual run-time values of node execution times. It tries to fine tune the 

schedule obtained by a static scheduling algorithm by making use of run-time values as 
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and when they are made available. The inputs to the algorithm are the DAG and the 

schedule obtained using a list based static scheduling heuristic. The input DAG is divided 

into k levels marked 0 thru k-1, such that nodes in a level do not have precedence 

constraints between one another. The start nodes are in level 0 and the exit nodes in level 

k-1.  Node priorities are based on their blevels. Nodes in level 0 are mapped according to 

the static schedule. For levels 1 thru k-1, nodes at a level are considered for re-mapping 

as soon as the first node of the previous level starts execution. The node with the highest 

priority is re-mapped onto a processor that provides its least partial completion time (pct). 

In the calculation of partial completion times (see Table 2.9), available run time values (if 

any) are recursively used. If run time values are not available, statically obtained values 

are used. The algorithm is listed in Figure 2.9. The time complexity is O(n2). 

 
Table 2.9 Definition of terms used in Hybird Re-mapper 

 
Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m 

ei,j Time required to execute ni  on  pj in real time 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors in real time 

)( inpriority  = )( inblevel  

 ips(ni) Immediate predecessor set of node ni 

A[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it in real time 

dr(ni) ),(max( ,)( kijinipsn pnpctc
ij

+∈  

pct(ni , pj) = ei,j + max(A[j], dr(ni)) 
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Hybrid Re-Mapper Algorithm  
   Divide the input DAG into levels such that nodes in a level are        
   independent of each other 
   k← number of levels  
   Mark the levels starting with 0 and ending with k-1  
   //Start nodes are in level 0 and exit nodes are in level k-1  
 
   For all ni in N  
    priority(ni) ← blevel(ni) 
   End For  
 
   For all ni in level 0  
      Map ni  using the static schedule 
   End For 
    
      For levels 1 thru k-1 
            For all nodes  in the current level  
                    ni ← node with the highest priority  
                    For all pj in P 
                    dr(ni)=  ),(max( ,)( kijinipsn pnpctc

ij
+∈  

                     pct(ni , pj)  = ei,j + max(A[j], dr(ni)) 
                    End for  
                    Map ni  onto pj that provides its least pct  
              End For 
              Update A[j] 
        End for  
End Hybrid Re-mapper 
 

 

Figure 2.9 The Hybrid Re-mapper algorithm 

 

2.1.11 Performance Comparison  
 

The performance of DAG scheduling algorithms depends on a number of factors 

such as the Communication to Computation Ratio (CCR) (the ratio of the sum of the 

edge-weights to the sum of the node-weights) of the input DAG, number of nodes, 
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processor speed variance etc. While running times of an algorithm become significant for 

large DAGs, it is desirable to have an algorithm with a good performance-complexity 

tradeoff. The most important performance metric used to compare the performance of 

DAG scheduling algorithms is the Schedule Length Ratio (SLR). SLR is the ratio of the 

overall execution time of the input DAG to the sum of the weights of the critical path 

nodes on the fastest processor.  Table 2.9 summarizes the relative performance of the 

algorithms discussed in the previous sections.  

 
Table 2.10 Comparison of complexity and schedule length ratio of different 

algorithms 
 

 
Algorithm 

A 

Complexity  Schedule Length Ratio, L(A) 

BIL O(n2+plogp) L(BIL) < L(GDL) by 20% 

STDS O(n2) L(STDS) < L(BIL) for CCRs within 0.2 and 1 

FLB O(nlogp+e) L(HEFT) < L(FLB) by 63% when processor speed variance 

is high. Otherwise FLB performs equally well. 

FCP O(nlogp+e) L(HEFT) < L(FCP) by 32 % with high processor speed 

variance. Otherwise identical. 

HEFT O(n2m) HEFT better than GDL,LMT by 8, 52% respectively. 
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2.2 Scheduling a Set of Independent Tasks onto a Network of Heterogeneous 

Processors to Minimize the Overall Execution Time 

 

2.2.1 Problem Statement  

Independent tasks are tasks without communication or precedence constraints. A 

meta-task is a finite set of independent tasks. The overall execution time (make-span) of a 

meta-task is the time required to complete the execution of all the tasks in it. The target 

execution system consists of a finite number of heterogeneous processors connected with 

a high speed network. Tasks in a met-task can have different execution times on different 

processors. Communication among processors is assumed to be contention-less. 

Computation and communication is assumed to take place simultaneously. Node 

execution is assumed to be non-preemptive-nodes once scheduled on a processor cannot 

be removed (preempted) and scheduled on other processors. The objective of the 

independent task scheduling problem is formally described as follows. To schedule the 

independent tasks of a meta-task onto a network of heterogeneous processors such that 

the overall execution time of the meta-task is minimized. In the following sections, 

existing research work in this area is surveyed.  

 

2.2.2 The Min-Min and Max-Min Algorithms  

In the Min-Min algorithm [15], the earliest finish time (EFT) of all the nodes over 

all the processors is calculated. The node with the least EFT is selected and scheduled 
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onto the processor on which the minimum EFT was obtained. The process is repeated 

until all the tasks in the meta-task are scheduled. The time complexity is O(s2m), where s  

 

Table 2.11 Definition of terms used in Min-Min 

 
Term Definition 

T = {t1,t2, t3, t4, t5, t6….}//Meta-Task  

s =|T| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors 

m =|P| 

wi,j Time required to execute ti  on  pj 

EST(ti , pj) Time at which all the tasks previously assigned to 
pj complete execution 

EFT(ti , pj) = EST(ti , pj)+ wi,j 

   
 
 

 
Min-Min Algorithm  
   While T is NOT NULL do  
   For all ti in T and pj in P 
      Compute EFT(ti , pj) 
   End For 
       tmin ← task with the least EFT 
       pmin ← processor providing the least EFT  
       Map tmin on pmin 

          T ←  T- tmin 
    End While 
End Min-Min 
 

 

Figure 2.11 Min-Min Algorithm 
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is the number of tasks in the meta-task and m the number of processors in the target 

system. The Max-Min algorithm is similar to Min-Max, however; instead of selecting the 

task with the least EFT, the task with the highest EFT is selected. Min-Min is detailed in 

Figure 2.11 and the definition of terms used in Min-Min is listed in Table 2.11. 

 

2.2.3 The Sufferage Algorithm 

 

 
Term Definition 

T = {t1,t2, t3, t4, t5, t6….}//Meta-Task  

s =|T| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors 

m =|P| 

wi,j Time required to execute ti  on  pj 

EST(ti , pj) Time at which all the tasks previously assigned to pj 
complete execution 

EFT(ti , pj) = EST(ti , pj)+ wi,j 

FT1 Earliest finish time of ti on any processor pj 

FT2 Second earliest finish time of ti on any processor pj 

Sufferage(ti) FT2 - FT1 

   
Table 2.12 Definition of Terms used in Sufferage  
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The Sufferage algorithm [15] is based on the idea that a better mapping of tasks 

can be obtained by assigning a processor to a task that “suffers” the most in case the task  

 
Suffereage Algorithm  
   T1← temporary set of tasks  
   T1← NULL  
   While T is NOT NULL do  
   For all ti in T and pj in P 
      Compute EFT(ti , pj) 
       ptemp ← processor on which ti has the least EFT  
          If  a task is already assigned to ptemp  then  
              tprev ← task already assigned to ptemp 

                     If  Sufferage(ti) > Sufferage(ptemp) then  
                   Remove tprev from ptemp 

                            Tentatively assign ti to ptemp 

                            T← T -  ti 

                            T1← T1+ tprev 

                     Else  
                    T1← T1+ ti 

                     End If 
           Else  
               Tentatively assign ti to ptemp 
                     T← T -  ti 

                End If  
     End For  
     T ← T + T1 

        T1← NULL 
End While  
End Sufferage  
 

 

Figure 2.12 The Sufferage Algorithm 

 

is not assigned to the processor. The sufferage of a task ti is defined as the difference 

between the earliest finish time of ti and the second earliest finish time. Tasks are 

considered for mapping in an arbitrary order. At each scheduling step, the earliest finish 

times of a task over all the processors is computed. The processor which provides the 



 43

minimum earliest finish time is determined. If a task is already scheduled on it, the 

suffreages of the task under consideration and the previously scheduled task are 

compared. If the sufferage of the task under consideration is greater, the previously 

assigned task is removed and the given task is tentatively assigned to the processor. The 

removed task is is re-inserted into the meta-task. However, if the sufferage of the task 

already assigned is greater, the given task is reinserted into the meta-task and is 

considered for mapping in the next iteration. At the end of the iteration, the tasks which 

are tentatively mapped onto the processors are permanently mapped. The steps are 

repeated until all the tasks in the meta-task are mapped. The time complexity is O(s2 m). 

Table 2.12 provides the definition of terms used in Sufferage and Figure 2.12 lists the 

algorithm.  
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CHAPTER 3 

THE HETEROGENEOUS CRITICAL NODE FIRST (HCNF) ALGORITHM 

 This chapter presents a new task-duplication based static scheduling heuristic 

called the Heterogeneous Critical Node First (HCNF) for the DAG scheduling problem 

discussed in section 2.2. The chapter is organized as follows. Section 3.1 discusses the 

key concepts related to the heterogeneous DAG scheduling problem that motivated the 

development of HCNF. Section 3.2 discusses the algorithm in detail. Section 3.3 provides 

the running trace of HCNF.  Section 3.4 provides the simulation study and Section 3.5 

provides concluding remarks. 

  

3.1 Motivation  

The length of the critical path in a DAG provides a lower bound on its overall 

execution time [30]. Thus, minimizing the execution time of the critical path nodes would 

abet minimizing the overall execution time of a DAG. One way to achieve this would be 

to assign top priority to critical path nodes at each scheduling step.   

A DAG may have one or more free nodes which are ready to be mapped onto the 

processors at each scheduling step. In heterogeneous computing environments, local 

optimization can be obtained at each scheduling step by selecting the largest task among 

the free nodes and mapping it onto the processor that minimizes its finish time.  
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Nodes have to wait until they receive all the required data from their predecessors before 

they could start execution. The predecessor node which is the last to send data to a given 

node is called the favorite predecessor. This process could be potentially expedited by 

duplicating the execution of favorite predecessors in idle processor times. Duplicating 

favorite predecessors can potentially suppress communication times and could lead to 

earlier start times for the nodes.  

 We propose a static scheduling algorithm called the Heterogeneous Critical Node 

First (HCNF) that incorporates the strategies discussed above in the scheduling process. 

At each scheduling step, among the free nodes, HCNF assigns top priority to a critical 

path node and schedules it onto a processor that minimizes its finish time. In the absence 

of a critical path node, HCNF picks the largest node and assigns it onto a processor that 

minimizes its finish time. HCNF also explores the possibility of duplicating favorite 

predecessors in idle processor times to obtain earlier start times. The algorithm is 

explained next.  

 

3.2 The HCNF Algorithm  

HCNF begins by identifying the critical path/s of the input DAG. Nodes 

belonging to the critical path/s are marked as CP nodes. The algorithm starts the mapping 

process by mapping the start-node onto the processor that provides its fastest execution 

time. If the fastest execution time is obtained on more than one processor, the processor 

with the least average execution time over all nodes is selected. (The average execution 

time over all nodes of a processor is the sum of the execution times of all the nodes in the 

DAG on the processor divided by the number of nodes) Among the immeddiate 
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successors of the start-node, the CP node is inserted at the beginning of the 

ReadyTaskList. The remaining nodes are added to the ReadyTaskList by the decreasing 

order of their node weights. At each scheduling step, the first node of the ReadyTaskList 

is selected for mapping. Table 3.1 defines the terms used in HCNF and Figure 3.1 lists 

the algorithm.  

Table 3.1 HCNF-definition of terms  

Term Definition 

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG 

n =|N| 

P = {p1,p2, p3, p4, p5, p6….}//Set of processors 

m =|P| 

wi,j Time required to execute ni  on  pj 

ci,j Time required to transfer all the requisite data from ni to  nj when 
they are scheduled on different processors 

T_Available[pj] Time at which processor pj completes the execution of all the 
nodes previously assigned to it 

)( inpred  Set of immediate predecessors of task in  

nen Favorite Predecessor (A node which is the last to send data to a 
given node.)  

,(1 inEST )jp  Max( Max( ][_ jpAvailableT , imkmnpredn cpnEFTMax
im ,)( ),( +∈ )) 

,(2 inEST )jp  Max(Max( ][_ jpAvailableT ,EST(nen,pj))+wen,,j 

, imkmnnpredn cpnEFTMax
enim ,)( ),( +−∈ )) 

,( inEST )jp  Min(EST1(ni,pj),EST2(ni,pj)) 

),( ji pnEFT  = ),(, jiji pnESTw +  
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EST2(ni,pj) is the earliest start time of node ni on processor pj assuming that nen  (the 

favorite predecessor of ni) would be duplicated on pj. EST1(ni,pj) is the earliest start time 

of node ni on processor pj without duplicating the favorite predecessor. EFT(ni,pj) is the 

earliest finish time of ni on pj . At each scheduling step, for the selected node ni, 

EFT(ni,pj) over all the processors is computed.  fproc(ni) is the processor on which the 

least EFT is obtained. If EST2(ni,pj) is used in the computation of the least EFT, nen is 

duplicated on fproc(ni), otherwise; nen is not duplicated. ni is mapped onto fproc(ni). ni is 

then removed from the ReadyTaskList and its successors are added to it. The nodes in the 

ReadyTaskList are realigned as follows. The CP node is inserted at the first position. In 

the presence of multiple CP nodes, the CP nodes are sorted by the descending order of 

their node weights and are inserted at the beginning of the ReadyTaskList. All the 

remaining (non-CP) nodes are sorted by the decreasing order of their node weights. The 

first node in the ReadyTaskList is selected for mapping and is scheduled onto a processor 

that provides its least EFT (as discussed earlier). The process is repeated until all the 

nodes in the DAG are scheduled.   

HCNF takes O(n2) to find the critical path, O(np) to calculate the EFTs and  

O(n*logn) to sort the tasks in the descending order using merge-sort. Ignoring the lower-

order terms, the overall time complexity would be O(n2).  

 

3.3 Running trace of HCNF  
 

The working of HCNF is illustrated with a sample DAG G1 shown in Figure 3.2. 

The target execution system consists of three processors: p1, p2 and p3. Node execution- 
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times are listed in Table 3.2. Node weights in Figure 3.2 represent average execution 

times.  Run-time values for each step of HCNF are shown in Table 3.3. The Gantt chart 

for the final schedule is shown in Fig. 3.4 and the Gantt chart for the individual steps are 

shown in Figures 3.5 thru 2.17. HCNF begins by calculating the critical path of G1 ( 

1→2→9→10) and marking the critical path nodes.  

Step 1 (Figure 3.5) The start node (node 1) is mapped onto processor 3 which provides 

its least finish time of 9 seconds.  

Step 2 (Figure 3.6) Among the successors of node 1, the CP node (node 2) is inserted at 

the beginning of the ReadyTaskList and the remaining nodes are inserted in the 

descending order of their weights. Node 2 is selected for mapping and its EFTs over all 

the processors is computed (see Figure 3.3). Both p1 and p3 provide the least finish time 

(27 seconds). However, since the finish time on p1 is obtained by duplicating node 1, p3 is 

chosen. Node 2 is removed and the ReadyTaskList is updated to {3,4,6,5} . 

Step 3 (Figure 3.7) Node 3 is selected for mapping. The minimum EFT is obtained on p1 

by duplicating node 1 on p1.  The successor of node 3 (node 7) becomes free as a result of 

this mapping and the ReadyTaskList is updated to {4,6,5,7} 

Step 4 (Figure 3.7) Node 4 is selected for mapping. The minimum EFT is obtained on p2 

by duplicating node 1 on p2. The ReadyTaskList is updated to {6,5,7} 

Step 5 (Figure 3.8) Node 6 is selected for mapping. The minimum EFT is obtained on p1 

.Node 6 is scheduled on p3 and one of the successor nodes (node 8) becomes free as a 

result of this mapping. The ReadyTaskList is updated to {5,7,8}. 
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Algorithm HCNF 

//Identify the CP nodes of the input DAG 
//Map the Start-Node onto a processor that provides its fastest execution time  
//Among the successors of the Start-Node , add the CP node to the ReadyTaskList 
//Add the remaining successors of the Start-Node in the decreasing order of task sizes  
to the ReadyTaskList 
 

While ReadyTaskList  is NOT NULL do 
tn ←First node in the ReadyTaskList  

For all  pj P∈ do 
                                         EST1(nt , pj) = Max{T_available[pj],k ≠ j EFT(nen , pk)+ ck,j} 
                                             If(EST(nen , pj) ≥  T_available[pj]) then 
                                                 EST2(nt , pj) =  EST(nen , pj)+  wen,,j 
                                                 Else 
                                                 EST2(nt , pj) =  T_available[pj] + wen,,j 

              End if 
                                               If EST1(nt , pj) ≤  EST2(nt , pj) then 
      EST(nt , pj)= EST1(nt , pj) 
    Else 
       EST(nt , pj)= EST2(nt , pj) 
                                                   Tentatively duplicate nen  on Processor  pj 
    End if 

EFT(nt , pj)= EST1(nt , pj)+ wt,,j 
   End For 

                              fproc(nt) ← processor pj that provides minimum EFT for nt 
                              Map nt on fproc(nt) and permanently duplicate any tentatively duplicated    
                              nen node 
                              Add the successors of tn  to the ReadyTaskList  
                              ReadyTaskList← ReadyTaskList -  nt 
                              Realign the ReadyTaskList  such that the CP node is in the first position  
                              and the remaining nodes are sorted in the decreasing order of their weights 

End While 
End HCNF 
 
 

 

Figure 3.1 The HCNF algorithm 

 



 50

 
 

Figure 3.2 Sample DAG (G1) 
 

 

 
Table 3.2 Task execution times of G1 on three different processors  

 

 
ni p1 p2 p3 Average 

Execution 

Time 
1 14 16 9 13 
2 13 19 18 16.67 
3 11 13 19 14.33 
4 13 8 17 14 
5 12 13 10 11.66 
6 13 16 9 12.67 
7 7 15 11 11 
8 5 11 14 10 
9 18 12 20 16.67 
10 21 7 16 14.67 
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Table 3.3 Run-time values for G1  

 
EST1(ni , p1) EST1(ni , p2) EST1(ni , p3) 

EST2(ni , p1) nen EST2(ni , p2) nen EST2(ni , p3) nen 
Iteration ReadyTaskLsit ni 

EFT(ni , p1) EFT(ni , p2) EFT(ni , p3) 

EFT(ni) fproc(ni) 

0 0 0 
0 n/a 0 n/a 0 n/a 

1 
 

1 1 

14 16 9 

9 3 

27 27 9 
14 1 16 1 n/a n/a 

2 2,3,4,6,5 2 

27 35 27 

27 3 

27 27 27 
14 1 16 1 n/a n/a 

3 3,4,6,5 3 

25 29 46 

25 1 

25 18 27 
n/a n/a 16 1 n/a n/a 

4 4,6,5,7 4 

38 24 44 

24 2 

25 24 27 
n/a n/a n/a n/a n/a n/a 

5 6,5,7 6 

38 40 36 

36 3 

25 24 36 
n/a n/a n/a n/a n/a n/a 

6 5,7,8 5 

37 37 46 

37 1 

47 50 50 
50 4 43 5 47 5 

7 9,7,8 9 

65 55 67 

55 2 

37 55 48 
n/a n/a 68 3 55 3 

8 7,8 7 

44 70 49 

44 1 

51 55 51 
57 6 71 6 53 4 

9 8 8 

56 66 65 

56 1 

68 67 68 
77 9 66 8 88 9 

10 10 10 

89 74 86 

74 2 
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Figure 3.4 Gantt chart for G1 
 

Step 6 (Figure 3.9) Node 5 is selected for mapping. The minimum EFT is obtained on p1 

.Node 5 is scheduled on p1 and node 9 becomes free as a result of this mapping. The 

ReadyTaskList is updated to {9,7,8} (since 9 is a CP node, it is inserted at the beginning 

of the list) 

Step 7 (Figure 3.10) Node 9 is selected for mapping. The minimum EFT is obtained on 

p2 by duplicating node 5. The ReadyTaskList is updated to {7,8}. 

Step 8 (Figure 3.11) Node 7 is selected for mapping. The minimum EFT is obtained on 

p1. The ReadyTaskList is updated to {8} 

Step 9 (Figure 3.12) Node 8 is selected for mapping. The minimum EFT is obtained on 

p3. Node 10 becomes free as s result of this mapping and the ReadyTaskList is updated to 

{10}. 

Step 10 (Figure 3.13) Node 10 is selected for mapping. The minimum EFT is obtained on 

p2 by duplicating node 8.  
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Figure 3.5 HCNF running trace-step 1: 
Node 1 is scheduled on processor 3 

 

Figure 3.6 HCNF running trace-step 2: 
Node 2 is scheduled on processor 3 

 

 

 

 
 

 
Figure 3.7 HCNF running trace-step 3: 
Node 3 is scheduled on processor 1 by 

duplicating node 1  
 

 
Figure 3.8 HCNF running trace-step 4: 
Node 4 is scheduled in processor 2 by 

duplicating node 1 
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Figure 3.9 HCNF running trace-step 5: 
Node 6 is scheduled on processor 3 

 
Figure 3.10 HCNF running trace-step 6:  

Node 5 is scheduled on processor 1 
 

  
 

Figure 3.11 HCNF running trace-step 7: 
Node 9 is scheduled on processor 2 by 

duplicating node 5 
 

Figure 3.12  HCNF running trace-step 8: 
Node 7 is scheduled in processor 1 

 

 
 
 
 



 55

  

Figure 3.13 HCNF running trace-step 9: 
Node 8 is scheduled on processor 3 

 

 
Figure 3.14 HCNF running trace –step10 
Node 10 is scheduled on processor 2 by 

duplicating node 8 
 

 

3.4 Simulation Study  

The simulation study consists of two parts. In the first part, the performance of 

HCNF is compared against that of the Heterogeneous Earliest Finish Time (HEFT) [30] 

algorithm. The experimental test suite[18] includes: randomly generated graphs, 

Gaussian elimination graphs, Trace graphs, Benchmark graphs and Application graphs. 

In the second part, a parametric random graph generator is developed to generate a 

diverse range of graphs with specified input parameters. The performance of HCNF is 

compared against that of the HEFT and the Scalable Task Duplication based scheduling 

algorithm (STDS) [25].  

3.4.1 Performance Parameters  

 The three commonly used performance parameters to gauge the performance of 

DAG scheduling algorithms are:  
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Schedule Length Ratio (SLR): The ratio of the overall execution time of a DAG to the 

sum of the weights of its critical-path nodes on the fastest processor.  

Speedup: The ratio of the sequential execution time of the DAG on the fastest processor 

to the parallel execution time.  

Efficiency: The ratio of the speedup to the number of processors in the system. 

 

3.4.2 Randomly Generated Graphs  

The performance of HCNF and HEFT was compared using randomly generated 

graphs of different sizes and CCRs. Each node in the random graph was allowed to have 

up to five children. Node and the edge weights were generated randomly and the edge 

weights were then iteratively adjusted to obtain a given CCR. 

The SLR and speedup of HCNF and HEFT was compared using graphs of 

different sizes. For each graph size shown in Figures 3.15 and 3.16, readings were 

averaged using 10 random graphs of the same size with CCRs ranging from 0.5 to 1.5. 

and out_degree = {1,2,5,100}. The average SLR of HCNF was better than HEFT by 

12.3% and the speedup was better than HEFT by 7.9 %.  
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Figure 3.15 Average SLR vs. number of nodes 

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90 100

Number of Nodes

S
pe

ed
up

HEFT HCNF

 

Figure 3.16 Average speedup vs. number of nodes 
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3.4.3 Gaussian Elimination Graphs   

 The SLR and Efficiency of HEFT and HCNF were compared using DAGs 

representing the Gaussian Elimination algorithm. Figure 3.17 gives the SLR for matrix 

sizes ranging from 5 to 15. HCNF outperformed HEFT by an average of 25.7%. Figure 

3.18 gives the efficiency for different number of processors, with the matrix size fixed at 

50. HCNF outperformed HEFT by an average of 22.6%. The efficiency of HCNF 

increased with the number of processors because of increased speedup facilitated by 

enhanced task duplication (in the presence of a lager number of processors).  
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Figure 3.17 Average SLR vs. matrix size 

 

3.4.4 Benchmark Graphs  

  DAG scheduling algorithms are commonly compared using randomly generated 

graphs. However, to facilitate a fair and an unbiased comparison of algorithms from 
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different authors, some researchers [21] have proposed using benchmark graphs. In the 

following sections we compare the performance of HCNF using the “benchmark graph 

test suite” [21]. The benchmark test suite consists of: Trace graphs, Graphs with optimal  

solution generated by the branch and bound technique, Graphs with predetermined 

optimal solutions and Application graphs 

 

3.4.4.1 Trace Graphs  

 These graphs are obtained from the referenced articles listed in Table 3.4.The 

SLR and speedup of HEFT and HCNF was compared using these graphs. Figures 3.19 

and 3.20 show the results. HCNF outperformed HEFT in SLR and speedup by an average 

of 29.5% and 38.4% respectively 
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Figure 3.18 Efficiency vs. no. of processors 
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.3.4.4.2 Random Graphs with Optimal Solutions (RGBOS)  

 DAGs in this set are small sized, with the maximum node size being 32. Their 

optimal solution can be obtained using the branch and bound technique. The set consists 

of three subsets of graphs with different CCRs (0.1, 1.0, 10.0), and number of nodes vary 

from 10 to 32, in increments of 2. Figures 3.21 thru 3.26 show the results. HNCF 

outperformed HEFT in SLR and speedup by 32.5% and 24.6% respectively.  

 

3.4.4.3 Random Graphs with Pre-Determined Optimal Schedules (RGPOS) 

 The graphs in this set are reverse engineered [23]. A schedule for a set of 

multiprocessors is generated and then the node and the edge weights are generated 

randomly, but, consistent with the generated schedule. The graphs comprise of three sets 

with CCR values 0.1,1.0 and 10.0. Within each set, the number of nodes vary from 50 to 

500 in increments of 50.  Figures 3.27 thru 3.32 show the results. HCNF outperformed 

HEFT in SLR and speedup by 21.1% and 16.9% respectively.  

 

Table 3.4 Trace graph details 

Graph Tag Trace Graph # of Nodes Article Reference 
D1 Ahmed-Kwok 13 [22] 
D2 Yang-1 7 [13]  
D3 Colin-Chretienne 9 [25] 
D4 McCreary 9 [12]  
D5 Kruatrachue 11 [16] 
D6 Yang-2 7 [19] 
D7 Ranka 11 [22] 
D8 Shirazi 11 [23] 
D9 Wu-Gajski 18 [25] 
D10 Al-Maasarani 16 [33] 
D11 AL-Mouhamed 17 [32] 
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Figure 3.19 Trace Graphs-SLR 
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Figure 3.20 Trace Graphs-Speedup 
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Figure 3.21 RGBOS SLR (CCR = 0.1) 
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Figure 3.22 RGBOS SLR (CCR = 1.0)  
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Figure 3.23 RGBOS SLR (CCR = 10.0)  
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Figure 3.24 RGBOS Speedup (CCR = 0.1)  
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Figure 3.25 RGBOS Speedup (CCR = 1.0) 
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Figure 3.26 RGBOS Speedup (CCR = 10.0) 
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Figure 3.27 RGPOS SLR (CCR = 0.1) 
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Figure 3.28 RGPOS SLR (CCR = 1.0) 
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Figure 3.29 RGPOS SLR (CCR = 10.0) 
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Figure 3.30 RGPOS Speedup (CCR = 0.1) 
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Figure 3.31 RGPOS Speedup (CCR = 1.0)  
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Figure 3.32 RGPOS Speedup (CCR = 10.0) 
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3.4.4.5 Application Graphs 

 These graphs represent a few numerical parallel application programs. This set 

contains of over 320 graphs in six categories: Cholesky factorization, LU decomposition, 

Gaussian elimination, FFT, Laplace transforms and Mean Value Analysis (MVA). The 

number of nodes ranges from 100 to 300. Figures 3.33 to 3.44 show the results of the 

simulation. On an average, HCNF outperformed HEFT in SLR and Speedup by 27.5% 

and 22.7% respectively 
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Figure 3.33 Fast Fourier Transform SLR vs. CCR 
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Figure 3.34 Fast Fourier Transform Speedup vs. CCR 
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Figure 3.35 Cholesky Factorization Speedup vs. CCR 
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Figure 3.36 Gaussian Elimination Speedup vs. CCR 
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Figure 3.37 Laplace Transform Speedup vs. CCR 
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Figure 3.38 LU Decomposition Speedup vs. CCR 
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Figure 3.39 MVA Speedup vs. CCR 
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Figure 3.40 Cholesky SLR vs CCR 
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Figure 3.41 Gaussian Elimination SLR vs.CCR 
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Figure 3.42 Laplace Transform SLR vs.CCR 
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Figure 3.43 LU Decomposition SLR vs. CCR 
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Figure 3.44 MVA SLR vs. CCR 
 

 
 
 
 
 
 
 
3.4.5 Performance Comparison using a Parametric Random Graph Generator  
 

 The performance of DAG scheduling algorithms varies largely with the type of 

the input DAG. In order to conduct a fair comparison, we need to evaluate the 

performance using a comprehensive set of randomly generated DAGs, exhibiting a wide 

range of parameters. In our simulation study, a parametric random graph generator was 

developed to generate diverse DAG types based on the following input parameters. 

• n : Number of nodes in the DAG 
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• CCR (Communication to Computation Ratio): Ratio of the sum of the edge 

weights to the sum of the node weights in a DAG. 

• out_degree: Maximum number of children a node in the DAG can have.  

• α (The shape parameter of a DAG) : The height of a DAG is randomly generated 

from a uniform distribution with mean equal to α × n  . The width of a DAG is 

randomly generated from a uniform distribution with mean equal to n ÷ α  

• β (Range percentage of computation costs on processors): If the average 

computation cost of a node over all the processors is avg_comp , the computation 

cost ni on any processor pj  is randomly selected from the range-  

      avg_comp×(1- β/2 ) ≤  avg_comp ≤  avg_comp×(1+ β/2) 

 

Input parameters were assigned the following values in our simulation study.   

• n = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}  
 

• CCR = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 
5.0}  

 
• α = {0.5, 1.0, 2.0}  

 
• out_degree = {1, 2, 5, 100}  

 
• β = {0.1, 0.5, 0.75, 1.0} 

 
 

These combinations yield 8640 different DAG types. For each DAG type, 25 different 

random graphs were generated with the same parameters but with different edge and 

node weights.  Thus a sum total of 216,000 random DAGs were used in the study.  The 
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number of processors was fixed at 10. The processor speeds were randomly selected 

based on the β value. 

 Figure 3.45 provides the SLR of HCNF, HEFT and the STDS algorithms for graphs with 

different Node sizes. Each data point is averaged over 864 distinct readings. The average 

SLR improvement of HEFT over STDS is 6%, and over HEFT is 10% approximately.  

Figure 3.46 gives the average speedup versus number of nodes. Each data point is 

averaged over 864 different readings. The Average improvement in the speedup of the 

HCNF over STDS is 9%, and over HEFT is 14%. Figure 3.47 provides the average SLR 

values for CCR values ranging from 0.1 to 1.0 in steps of 0.1. Each data point is averaged 

over 480 different readings. The average improvement of HCNF over HEFT is 11% and 

over HEFT is 4 %. Figure 3.48 provides the average SLR values for CCR values ranging 

from 1.0 to 5.0 in steps of 0.5. Each data point is averaged over 480 different readings. 

The average improvement of HCNF over STDS is 7% and over HEFT is 11%. For higher 

CCRs the STDS algorithm performs better than the HEFT algorithm since there is more 

scope for task duplication. Figure 3.49 provides the average Speedup values for CCR 

values ranging from 0.1 to 1.0 in steps of 0.1. Each data point is averaged over 480 

different readings. The average improvement of HCNF over HEFT is 18% and over 

HEFT is 9%. Figure 3.50 provides the average SLR values for CCR values ranging from 

1.0 to 5.0 in steps of 0.5. Each data point is averaged over 480 different readings. The 

average improvement of HCNF over STDS is 9% and over HEFT is 5%. 
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Figure 3.45 Parametric random graphs - SLR vs. number of nodes 
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Figure 3.46 Parametric random graphs - Speedup vs. number of nodes 
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Figure 3.47 Parametric random graphs-SLR vs. CCR (0.1 to 0.9) 
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Figure 3.48 Parametric random graphs-SLR vs. CCR (1.0 to 5.0) 

 
 



 79

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCR

S
pe

ed
up

HEFT STDS HCNF

 
 

Figure 3.49 Parametric random graphs-Speedup vs. CCR (0.1 to 0.9) 

 
 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

S
pe

ed
up

HEFT STDS HCNF

 
 

Figure 3.50 Parametric random graphs-Speedup vs. CCR (1.0 to 5.0) 
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3.5 Conclusion  

 A new task-duplication based static scheduling algorithm called the 

Heterogeneous Critical Node First (HCNF) for scheduling DAGs onto a network of 

heterogeneous processors was proposed. The performance of HCNF, HEFT and STDS 

was compared using randomly generated graphs, benchmark graphs and parametric 

graphs. HCNF clearly outperformed both HEFT and STDS with respect to speedup and 

SLR.  The superior performance of HCNF can be attributed to the low-cost task 

duplication strategy that facilitates earlier start times for many nodes which otherwise 

have to wait for all the data items to arrive from their favorite predecessors. HCNF can be 

improved by exploring the possibility of duplicating the second and the third favorite 

predecessors (if any) to further expedite the start times of nodes. The feasibility of such 

an approach needs to be investigated.  
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CHAPTER 4 

THE HETEROGENEOUS LARGEST TASK FIRST (HLTF) ALGORITHM 

 This chapter presents a new low-complexity algorithm called the Heterogeneous 

Largest Task First (HLTF) for scheduling independent tasks of a meta-task onto a 

network of heterogeneous processors to minimize the overall execution time. The 

problem was formally defined in section 2.8. This chapter is organized as follows. 

Section 4.2 discusses the motivation behind the development of HLTF. Section 4.2 

describes the algorithm in detail. Section 4.3 provides the running trace of HLTF.  

Section 4.4 discusses the theoretical non-equivalence of HLTF and the Sufferage 

algorithm [23] and section 4.5 provides the simulation study.  

 
 
4.1 Motivation  
 

A meta-task is a set of independent tasks without any precedence constraints. 

Scheduling a meta-task onto a set of heterogeneous processors to minimize the overall 

execution time is a NP-complete problem. Among the scheduling algorithms discussed in 

the literature review, the Sufferage has the best performance in terms of minimizing the 

makespan [23]. The time complexity of Sufferage is O(s2* m), where s is the size of the 

meta-task and m  the number of processors. 
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Meta-computing systems such as clusters and grids need to schedule tens of 

thousands of tasks on a regular basis. A meta-task could contain over a 1000 independent 

tasks in practical scenarios [23]. Figure 4.1 summarizes the running times of Sufferage. 

Sufferage takes more than 100 seconds to schedule a meta-task of 1000 tasks. The 

running time increases with the size of the meta-task. The algorithm takes more than 

3000 seconds to schedule a meta-task of 5000 tasks. This can be mainly attributed to the 

high time complexity O(s2* m) of the Sufferage algorithm . The high running times of 

Sufferage could be a major bottleneck in the scheduling process and could negatively 

impact the overall performance of a meta-computing system. 

To counter this problem, we propose a new low-complexity algorithm called the 

Heterogeneous Largest Task First (HLTF) to map a meta-task onto a set of heterogeneous 

processors with an objective to minimize its makespan. Simulation results in chapter 4.5 

reveal that in terms of minimizing the makespan, HLTF is at par with Sufferage. 

However, with respect to running times, HLTF with a lower time complexity of O(s(log s 

+ m)), significantly outperforms Sufferage.  

 

  4.2 The Heterogeneous Largest Task First (HLTF) Algorithm  

 HLTF adapts a simple approach to reduce the overall time complexity of the 

scheduling process. We first recap the working of the Sufferage algorithm and then 

explain the working of HLTF. Table 4.1 provides the definition of terms used in HLTF 

and the Sufferage algorithms.  
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Figure 4.1 Running times of the Sufferage Algorithm  

 

The Sufferage Algorithm  

The algorithm is listed in Figure 4.1. At each scheduling step, the Sufferage 

algorithm picks an arbitrary task from the meta-task set and computes its Earliest 

Completion Time (ECT), favorite processor (fproc) and Sufferage values. If the task’s 

favorite processor has no task previously assigned to it, the current task is tentatively 

assigned to it. However, if the task’s favorite processor has a task already assigned to it, 

the Sufferages of the current task and the task already assigned are compared. If the 

Sufferage of the current task is higher, the previously assigned task is removed and the 

current task is assigned to it. The task that is removed is reinserted into the meta-task. 

The process is repeated until all the tasks of the Meta-Task set are scheduled.  

The HLTF Algorithm  

 The calculation of Sufferages at each scheduling step, re-inserting the tasks into 

the meta-task list and repeating all the steps each time a task is reinserted into the list 
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leads to the high complexity O(s2* m) of the Sufferage Algorithm. The HLTF algorithm 

listed in Figure 4.3 drastically reduces the time complexity of the Sufferage Algorithm by 

adopting the following approach. Instead of tentatively mapping tasks to processors,  

HLTF algorithm sorts all tasks in the meta-task set in the non-decreasing order of their 

sizes before the start of the mapping process. At each scheduling step HLTF picks the 

largest task in the list and maps it onto a processor that provides its earliest completion 

time. This seemingly simple approach leads to a very substantial decrease in running time 

without compromising the performance.  Simulation results are reported in Section 4.5. 

The HLTF algorithm takes O(s*log s) to perform merge sort, O(s* m) to compute the 

completion times of the tasks on all the processors and O(s * m) to compute the earliest 

completion time of each task.  The overall time complexity is O(s* log s+ s*m+ s) or 

O(s(log s)+m)). 

 

4.3 Theoretical nonequivalence of Sufferage and HLTF algorithms  
 
 At each scheduling step, the Sufferage algorithm maps the task with the 

maximum Sufferage to a machine that provides its earliest finish time. The HLTF 

algorithm, at each scheduling step, maps the largest task among the candidate tasks to a 

machine that provide its earliest finish time. Intuitively, the Sufferage and the HLTF 

algorithms seem to be equivalent.This is because we tend to assume that the largest task 

will always have the maximum Sufferage i.e for any two tasks ti and tj  in the meta-task 

set (t1, t2, t3,…tn-1, tn) where ti > tj  and i < j ,  Sufferage(ti) > Sufferage(tj). However, this 

is not the case always and is proved in Theorem 1. 
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Table 4.1 Definition of Terms used in Sufferage and HLTF 

Term Definition 

T Meta-task set of size s 

M Set of processors available for scheduling 

m Number of processors 

T_available(pj) Time at which processor pj  can start execution of a new task. 

Wk,j Running time of task tk  on processor pj. 

CT(tk, pj) T_available(pj)+ Wk,j // Execution completion time of task tk  on 

processor pj. 

ECT(tk) Min kЄT & jЄM{ CT(tk, pj) }//Earliest Completion time of task tk 

Proc(tk) The processor on which ECT(tk) can be obtained 

Sufferage(tk)   ECT(tk)-Second best CT(tk) 

 
 
 

 
HLTF Algorithm  
Sort T using merge sort in non-decreasing order 
While T ≠ Φ do  

                 Pick the largest task  tk  in T. 
                       For all j Є M       
                              Compute CT(tk, pj)                                
                       End For 

Compute ECT(tk)                                
T=T- {tk} 

            Schedule tk on Proc(tk) 
End While 
End HLTF 

 
 
    Figure 4.2 HLTF Algorithm 
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Sufferage Algorithm  
While T ≠ Φ do 
Pick a task tk Є T    in an arbitrary order. 
For all j Є M 

            Compute CT(tk, pj)                                                                  
End For 
Compute ECT(tk)                                                                  
Sufferage(tk)= ECT(tk)-Second best CT(tk)                                          
                  If Proc(tk) has a task ts  already assigned to it                      
                     If Sufferage(tk)> Sufferage(ts)                                   
                        Remove ts  from Proc(tk) and schedule tk on Proc(tk)   
                        T=T+ {ts}                   
                        T=T- {tk}  
                      End If                  
                   Else 
                         Schedule tk on Proc(tk) 
                         T=T- {tk} 
                   End If 
End While 
End Sufferage  

 
 

Figure 4.3 The Sufferage algorithm 
 
 

 

Thoerem 1 : For any two tasks ti and tj  in the meta-task set (t1, t2, t3,…tn-1, tn) where ti > tj  

and i < j ,  Sufferage(ti) is not always greater than Sufferage(tj) 

  

Case 1 :  Let  mx and  my  be the processors on which tasks ti and tj obtain their best ect 

and the next best ect’s repectively. Let px and py where px > py , be the speeds of 

processors mx and  my  in MIPS. 

Sufferage(ti)=( ti/ py+T_Available(py)) – ( ti/ px + T_Available(px)) 

Sufferage(tj)= ( tj/ py+T_Available(py)) – ( tj/ px + T_Available(px)) 

To prove  

Sufferage(ti)> Sufferage(tj) 
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or,  ( ti/ py+T_Available(py)) – ( ti/ px + T_Available(px) ) > ( tj/ py+T_Available(py)) – ( tj/ 

px + T_Available(px) ) 

or,  ti/ py+T_Available(py) –  ti/ px - T_Available(px)  >  tj/ py+T_Available(py) –  tj/ px - 

T_Available(px) 

 or,   ti/ py- tj/ py>  ti/ px- tj/ px     OR 

(ti- tj)/ py > (ti- tj)/ px               

Which is true since ti > tj , (ti- tj) > 0  and  px > py   

 

Case 2 :  Let  mx and  my  be the processors on which tasks ti and tj obtain their best ect 

and the next best ect’s repectively. Let px and py where px < py , be the speeds of 

processors mx and  my  in MIPS. 

Sufferage(ti)=( ti/ py+T_Available(py)) – ( ti/ px + T_Available(px)) 

Sufferage(tj)= ( tj/ py+T_Available(py)) – ( tj/ px + T_Available(px)) 

To prove  

Sufferage(ti)> Sufferage(tj) 

or,  ( ti/ py+T_Available(py)) – ( ti/ px + T_Available(px) ) > ( tj/ py+T_Available(py)) – ( tj/ 

px + T_Available(px) ) 

or,  ti/ py+T_Available(py) –  ti/ px - T_Available(px)  >  tj/ py+T_Available(py) –  tj/ px - 

T_Available(px) 

 or,   ti/ py- tj/ py>  ti/ px- tj/ px     OR 

(ti- tj)/ py > (ti- tj)/ px               

Which is NOT  true since ti > tj , (ti- tj) > 0  and  px < py  

 Therefore for any two tasks ti and tj  in the meta-task set (t1, t2, t3,…tn-1, tn) where ti > tj  

and i < j ,  Sufferage(ti) > Sufferage(tj) is not always true. 

 

As an example, in Table 4.2 observe that in the third iteration, T3 is the largest task in the 

Metatask set and the HLTF algorithm picks T3 and schedules it onto its favorite 

processor p1. However, notice that the Sufferage of T3 (14.25) is less than the sufferage 

of T2 (16.91), despite T3 being larger than T2. Also, observe that the fproc1 of all the 
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tasks is processor 1, the fproc2 of all the tasks is processor 3 and the speed of processor 1 

(4 MIPS) is less than that of processor 3 (5 MIPS). This scenario illustrates case 2 of 

Theorem 1 and provides a practical example of the difference between the Sufferage and 

the HLTF algorithms 

 

4.4 Simulation and Results 

 

 Simulations were conducted on a 440 MHz Sun Ultra 5 machine running on a 

Solaris 8 Operating System. We compared the relative performance of HLTF and 

Sufferage w.r.t makespan and running costs. We developed a simulator with the 

following input parameters.  

 

n : Number of tasks in the metatask. 

p: Number of processors in the distributed system. 

std_dev: Standard deviation of the metatask 

size_min :Minimum task size in MIPS. 

size_max: Maximum task size in MIPS. 

m: Number of metatasks. 

 

The maximum number of the processors used in our simulations was 20.  
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4.4.1 Comparison of Makespan 

 The makespan of various metatasks using HLTF and sufferage was measured 

using the following input parameters. 

n ={50,100,200,300,400,500,750,1000} 

P ={5,10,15,20} 

std_dev={5,10,15,20,25,30} 

size_min ={10} 

size_max ={ 100} 

m ={1} 

The results are shown in Figures 3 to 6. Each data point is an average different readings 

on 4 different processors. The performance of HLTF was slightly better than that of 

Sufferage. An important observation was that we did not come across a metatask for 

which the performance of Sufferage was better than that of HLTF.  The Average 

improvement of HLTF over Sufferage was 0.48%.  

 

 

4.4.2 Comparison of Running Costs 

 

The running times of Sufferage and HLTF were measured using different 

metatask sizes. The results are shown in Figures 4.10 to 4.12. Each data point is an 

average of 25 different readings. The running cost of the Sufferage Algorithm 

exponentially increases as the size of the met-task increases. For meta-task sizes > 1000, 

the HLTF provides a very significant reduction in the running costs. 
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Table 4.2 Example showing nonequivalence of the Sufferage and the HLTF Algorithms:  

 

Sufferage 

Meta-Task={t1,t2,t3,t4,t5,t6} 
Task Sizes t1=157, t2=111, t3=143, t4=128, t5=111, t6=149 (MI) 

Processor Speeds p1=4, p2=5, p3=6 (MIPS) 

HLTF 

Meta-Task={t1,t6,t3,t4,t2,t5}// Sorted in 

the non decreasing order using merge sort 

First Iteration 

task Eft1 fproc1 eft2 fproc2 Sufferage 

T1 26.17 3 31.4 2 5.23 

T2 18.5 3 22.2 2 3.7 

T3 23.83 3 28.6 2 4.77 

T4 21.33 3 25.6 2 4.27 

T5 18.5 3 22.2 2 3.76 

T6 24.83 3 29.8 2 4.97 

Schedule t1 on processor 3       Meta-Task={t2,t3,t4,t5,t6} 

t_avail[1]=0,  t_avail[2]=0,  t_avail[3]=26.16 

First Iteration 

Largest task = t1 

Schedule task t1 on processor p3 

t_avail[1]=0, t_avail[2]=0, t_avail[3]=26.16 
Meta-Task={t6,t3,t4,t2,t5} 

Second Iteration 

task Eft1 fproc1 eft2 fproc2 Sufferage 

T2 22.2 2 27.75 1 5.55 

T3 28.6 2 35.75 1 7.15 

T4 25.6 2 32 1 6.4 

T5 22.2 2 27.75 1 5.55 

T6 29.8 2 37.25 1 7.45 

Schedule t6 on processor 2        Meta-Task={t2,t3,t4,t5} 

t_avail[1]=0,  t_avail[2]=29.8 ,  t_avail[3]=26.16 

Second Iteration 

Largest task =  t6 

Schedule task t6 on processor p2 

t_avail[1]=0, t_avail[2]=29.8, 

t_avail[3]=26.16 
Meta-Task={t3,t4,t2,t5} 

Third Iteration 

task Eft1 fproc1 eft2 fproc2 sufferage 

T2 27.75 1 44.67 3 16.92 

T3 35.75 1 50 3 14.25 

T4 32.0 1 47.5 3 15.5 

T5 27.75 1 44.67 3 16.92 

Schedule t2 on processor 1     Meta-Task={t3,t4,t5} 

t_avail[1]=27.75,  t_avail[2]=29.8 ,  t_avail[3]=26.16 

 

Third Iteration 

Largest task =  t3 

Schedule task t3 on processor p1 

t_avail[1]=35.75, t_avail[2]=29.8, 

t_avail[3]=26.16 
Meta-Task={t4,t2,t5} 
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                              Figure 4.4 Average Makespan of Metatasks, std_dev=5 
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  Figure 4.5 Average Makespan of Metatasks, std_dev=10 
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Figure 4.6 Average Makespan of Metatasks, std_dev =15 
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Figure 4.7 Average Makespan of Metatasks, std_dev=20 
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Figure 4.8 Average Makespan of Metatasks std_dev=25 
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Figure 4.9 Average Makespan of Metatasks, std_dev=30 
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Figure 4.10 Running Times {n =50,100,200} 
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Figure 4.11 Running Times {n =500,1000,2000} 
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Figure 4.10 Running Times {n =3000,4000,5000} 
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CHAPTER 5 
 

SCHEDULING INDEPENDENT TASKS WITH DISPATCH TIMES 
 
 

In this section we introduce a novel heuristic to schedule independent tasks of a 

meta-task onto a network of heterogeneous processors to minimize the makespan of the 

meta-task. This section is organized as follows. In Section 5.1 we provide the motivation 

towards solving this problem. In Section 5.2 we introduce the Earliest Finish Time with 

Dispatch Time (EFT-DT) algorithm. In Section 5.3 we provide a practical example of the 

algorithm’s working. In Section 5.4 we discuss simulation results. 

 

5.1 Motivation 

 In meta-computing systems such as the grid, a centralized scheduler may make all 

scheduling decisions with respect to independent tasks. The scheduler makes a 

scheduling decision and maps tasks onto processors. In reality, the mapping of tasks onto 

processors requires time to dispatch the task from the scheduler onto a processor. In the 

previous works [20] [21][23] related to scheduling independent tasks of a meta-task onto 

a network of heterogeneous processors, the dispatch times of the tasks have not been 

considered in making scheduling decisions. The Sufferage, Min-Min and the Min-Max 

[23] algorithms assume a zero dispatch time in their scheduling model. We believe that in 

practical scenarios a zero dispatch time is not feasible and may lead to unrealistic 

schedules. In this section we introduce a novel heuristic to schedule independent tasks of 
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a meta-task onto a network of heterogeneous processors considering the dispatch times of 

tasks.  

 

5.2 The Earliest Finish Time with Dispatch Time (EFT-DT) Algorithm 

 In the EFT-DT algorithm, the priority of a task is defined as the sum of its mean  

execution time over all the processors and the standard deviation of its execution time 

over all the processors. At each scheduling step, EFT-DT picks the task with the highest  

Table 5.1 EFT-DT Algorithm –Defnition of Terms 

 

 

Term Definition 

T Meta-task set of size s 

M Set of processors available for scheduling 

m Number of processors 

meank Mean execution time of task tk over all the processors  

stdk Standard deviation of the execution times of task tk over all the 
processors 

T_available(pj) Time at which processor pj  can start execution of a new task. 

Wk,j Running time of task tk  on processor pj. 

Dkj Time required to dispatch task tk from the scheduler to processor pj 

CT(tk, pj) = Max{T_available(pj),Dkj } + Wk,j // Execution completion time of 
task tk  on processor pj. 
 

ECT(tk) = Min kЄT & jЄM{ CT(tk, pj) }//Earliest Completion time of task tk 
 

Proc(tk) The processor on which ECT(tk) is obtained 
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 priority and schedules it onto a processor that provides its earliest completion time.   

    

 
 

EFT-DT Algorithm  
For all  tk Є T    
priority(tk)← meank + stdk                                                      
End For 
While T ≠ Φ do 
Pick a task tk Є T    with the highest priority 
      For all j Є M 

                   CT(tk, pj) ← Max{T_available(pj), Dkj}+  Wk,j            
      End For 
           ECT(tk) ←  Min kЄT & jЄM{ CT(tk, pj) }  
           Compute Proc(tk)   
           Assign  tk to Proc(tk)                                               
           T_available(Proc(tk))← ECT(tk) 
           T=T- {tk} 
End While 
End EFT-DT 

 
 

Figure 5.1 The EFT-DT Algorithm 
 

 
The completion time of task on a processor is defined as  

CT(tk, pj) ← Max{T_available(pj), Dkj}+  Wk,j  

to account for the dispatch times. EFT-DT later calculates the processor on which the 

least completion time is obtained and schedules the task onto it.  EFT-DT takes O(s) to 

compute the priorities of all the tasks and O(s × m) to calculate the earliest completion 

times of the tasks. Thus the overall complexity is O(s × m). 
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5.3 Example Run of EFT-DT    

 We now show the working of EFT-DT with a sample meta-task shown in   Figure 

5.2. Task priorities are computed as follows {8,2,10,1,3,9,4,7,5,6}.  

Step1: Schedule task 8 on processor P2 

Step 2: Schedule task 2 on processor P3 

 

Table 5.2 A sample metatask 

Task P1 P2 P3 
1 15 13 15 
2 16 20 16 
3 17 16 11 
4 20 13 10 
5 11 11 12 
6 14 14 12 
7 15 11 15 
8 20 17 13 
9 19 10 16 

10 18 19 18 
 
 

Table 5.3 Meta-task Dispatch Times 
 

Task P1 P2 P3 
1 6 6 7 
2 9 8 5 
3 7 8 9 
4 6 9 10 
5 8 7 7 
6 10 7 6 
7 9 7 7 
8 6 10 10 
9 10 9 5 

10 9 8 10 
 
 
Step 3: Schedule task 10 on processor P1 
 
Step 4: Schedule task 1 on processor P2 
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Step 5: Schedule task 3 on processor P1 
 
Step 6: Schedule task 9 on processor P3 
 
Step 7: Schedule task 4 on processor P3 
 
Step 8: Schedule task 7 on processor P2 
 
Step 9: Schedule task 5 on processor P2 
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Figure 5.2 Gantt Chart for the Meta-Task  
 
 
 

 Step 10 : Schedule task 6 on processor P3  

The Gantt chart for the meta-task is provide in Figure 5.3 

 

5.4 Simulation Study 

We developed a simulator with the following input parameters to compare the 

performance of EFT-DT and the FIFO approach.  

n:  Meta-task size 
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size_max: Maximum size of a task within a meta-task  

dis_max: Maximum dispatch time of each task  

std_dev: Standard deviation of the meta-task  

proc_dev: Standard deviation of the processor speeds 

num_proc: Number of processors used. 

The input parameters were set with the following values in our simulation study. 

n:  {1000,2000,5000,7500,10000} 

size_max: ={100} 

dis_max: {50} 

std_dev: {5,10,15,20,25,30}  

proc_dev: {2,4,6} 

num_proc: {5,10,15,20}  

 
Table 5.4 Parameter Values 

 
Parameter Minimum Maximum Standard 

Deviation 
Task Size 10 100 5-30 

Dispatch Times 10 50 X 

Proc Speeds 1 10 2,4,6 

No of tasks 1000 10000 X 

No of Processors 5 20 X 

 
 
 
Each data point in the graphs that follow is an average of 4 different readings obtained 

using different number of processors. Figure 5.3 compares the makespan of EFT-DT and 
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FIFO for std_dev=5 and proc_dev=2. The average improvement of EFT-DT is 28%. 

Figure 5.4 provides the comparison for std_dev=10 and proc_dev=2. The average 

improvement of EFT-DT is 29%. Figure 5.5 provides the comparison for std_dev=15 and 

proc_dev=2. The average improvement of EFT-DT is 28%. Figure 5.6 provides the 

comparison for std_dev=20 and proc_dev=2.The average improvement of EFT-DT is 

30%. Figure 5.7 provides the comparison for std_dev=25 and proc_dev=2. The average 

improvement of EFT-DT is 29%. Figure 5.8 provides the comparison for std_dev=30 and 

proc_dev=2. The average improvement of EFT-DT was 30%. Figure 5.9 provides the 

comparison for std_dev=5 and proc_dev=4. The average improvement of EFT-DT was 

29%. Figure 5.10 provides the comparison for std_dev=10 and proc_dev=4. The average 

improvement of EFT-DT was 28%. Figure 5.11 provides the comparison for std_dev=15 

and proc_dev=4. The average improvement of EFT-DT was 31%. Figure 5.12 provides 

the comparison for std_dev=20 and proc_dev=4. The average improvement of EFT-DT 

was 31%. Figure 5.13 provides the comparison for std_dev=25 and proc_dev=4. The 

average improvement of EFT-DT is 30%. Figure 5.14 provides the comparison for 

std_dev=30 and proc_dev=4. The average improvement of EFT-DT is 29%. Figure 5.15 

provides the comparison for std_dev=5 and proc_dev=6. The average improvement of 

EFT-DT is 30%. Figure 5.16 provides the comparison for std_dev=10 and proc_dev=6. 

The average improvement of EFT-DT is 29%. Figure 5.17 provides the comparison for 

std_dev=15 and proc_dev=6. The average improvement of EFT-DT is 32%. Figure 5.18 

provides the comparison for std_dev=20 and proc_dev=6. The average improvement of 

EFT-DT is 28%. Figure 5.19 provides the comparison for std_dev=25 and 

proc_dev=6.The average improvement of EFT-DT is 32%. Figure 5.20 provides the 
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comparison for std_dev =30 and proc_dev=6.The average improvement of EFT-DT is 

30%. From all these average improvements, the overall average improvement of EFT-DT 

over FIFO is 29% 

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

 
 
 

Figure 5.3 Average Makespan- std_dev=5, proc_dev=2 
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Figure 5.4 Average Makespan- std_dev=10, proc_dev=2 
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Figure 5.5 Average Makespan- std_dev=15, proc_dev=2 
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Figure 5.6 Average Makespan- std_dev=20, proc_dev=2 
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Figure 5.7 Average Makespan- std_dev=25, proc_dev=2 
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Figure 5.8 Average Makespan- std_dev=30, proc_dev=2 
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Figure 5.9 Average Makespan- std_dev=5, proc_dev=4 
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Figure 5.10 Average Makespan- std_dev=10, proc_dev=4 
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Figure 5.11 Average Makespan- std_dev=15, proc_dev=4 
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Figure 5.12 Average Makespan- std_dev=20, proc_dev=4 
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Figure 5.13 Average Makespan- std_dev=25, proc_dev=4 
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Figure 5.14 Average Makespan- std_dev=30, proc_dev=4 
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Figure 5.15 Average Makespan- std_dev=5, proc_dev=6 
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Figure 5.16 Average Makespan- std_dev=10, proc_dev=6 
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Figure 5.17 Average Makespan- std_dev=15, proc_dev=6 
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Figure 5.18 Average Makespan- std_dev=20, proc_dev=6 
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Figure 5.19 Average Makespan- std_dev=25, proc_dev=6 
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Figure 5.20 Average Makespan- std_dev=30, proc_dev=6 
 
 
 
 



 112

Percentage Improvement over FIFO

0

5

10

15

20

25

30

5 10 15 20 25 30

std_dev

P
er

ce
nt

ag
e

 

Figure 5.21 Percentage improvement of EFT-DT over FIFO for various std_dev 
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Figure 5.22 Percentage improvement of EFT-DT over FIFO for various proc_dev 
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Figure 5.23 Percentage improvement of EFT-DT over FIFO for various metatask sizes 
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CHAPTER 6 
 

CONCLUSION 
 

In this dissertation, we presented three new algorithms: the Heterogeneous Critical Node 

First (HCNF) algorithm; the Heterogeneous Largest Task First (HLTF) algorithm and the 

Earliest Finish Time with Dispatch Time (EFT-DT) algorithm. These algorithms were 

compared against existing algorithms through extensive simulation. The simulation 

results were presented in the earlier chapters. In this chapter, we would like to summarize 

the simulation results briefly and provide concluding remarks. 

With respect to the HCNF algorithm, the experimental test suite consisted of 

application graphs, trace graphs, RGBOS, RGPOS graphs etc. HCNF was compared 

against HEFT using these graphs and was later compared using both HEFT and STDS 

using the parametric random graph generator. We now summarize the experimental 

results. 

 The SLR and speedup of HCNF and HEFT was compared using graphs of 

different sizes. The average SLR of HCNF was better than HEFT by 12.3% and the 

speedup was better than HEFT by 7.9 %. The SLR and Efficiency of HEFT and HCNF 

were compared using DAGs representing the Gaussian Elimination algorithm. HCNF 

outperformed HEFT by an average of 25.7% with respect to SLR. With respect to 

efficiency, HCNF outperformed HEFT by an average of 22.6%. The SLR and speedup of 
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HEFT and HCNF was compared using trace graphs. HCNF outperformed HEFT in SLR 

and speedup by an average of 29.5% and 38.4% respectively. The SLR and speedup of 

HEFT and HCNF was compared using RGBOS graphs whose optimal schedule can be 

obtained using branch and bound technique. HNCF outperformed HEFT in SLR and 

speedup by 32.5% and 24.6% respectively. The SLR and speedup of HEFT and HCNF 

was compared using the RGPOS graphs. HCNF outperformed HEFT in SLR and speedup 

by 21.1% and 16.9% respectively. The SLR and speedup of HEFT and HCNF was 

compared using application graphs.These graphs represent a few numerical parallel 

application programs. This set contains of over 320 graphs in six categories: Cholesky 

factorization, LU decomposition, Gaussian elimination, FFT, Laplace transforms and 

Mean Value Analysis (MVA). The number of nodes ranges from 100 to 300. On an 

average, HCNF outperformed HEFT in SLR and Speedup by 27.5% and 22.7% 

respectively. The SLR of HCNF, HEFT and the STDS algorithms was compared using 

the parametric random graph generator. The average SLR improvement of HEFT over 

STDS is 6%, and over HEFT is 10% approximately. The speedup of HCNF, HEFT and 

the STDS algorithms was compared using a parametric random graph generator. The 

Average improvement in the speedup of the HCNF over STDS is 9%, and over HEFT is 

14%. The average SLR values for CCR values ranging from 0.1 to 1.0 in steps of 0.1 was 

compared using the parametric random graph generator. The average improvement of 

HCNF over HEFT is 11% and over HEFT is 4 %. The average SLR values for CCR 

values ranging from 1.0 to 5.0 in steps of 0.5 was compared using the parametric random 

graph generator. The average improvement of HCNF over STDS is 7% and over HEFT is 

11%. The superior performance of HNCF can be attributed to the low-cost task 
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duplication strategy that facilitates earlier start times for many nodes which otherwise 

have to wait for all the data items to arrive from their favorite predecessors. HCNF can be 

improved by exploring the possibility of duplicating the second and the third favorite 

predecessors (if any) to further expedite the start times nodes. The feasibility of such an 

approach needs to be investigated. 

The average makespan of HLTF and the Sufferage algorithms was compared 

using different metatask sizes and different std_dev.  The average improvement of HLTF 

over Sufferage was 4.13%.  

The running times of HLTF and Sufferage were compared using metatasks of 

different sizes. For metatask sizes greater than 1000, HLTF shows an improvement of 

over a 1000%. The superior performance of HLTF in terms of running times can be 

attributed to the low complexity sorting technique that is used by the algorithm. 

Experiments were conducted to compare the makespan of EFT-DT and FIFO. The 

overall average improvement of EFT-DT over FIFO is 30%. The superior performance of 

EFT-DT over FIFO can be attributed to the dispatch times and task execution times 

occurring in parallel. 
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