
ALGORITHMS FOR TASK SCHEDULING IN HETEROGENEOUS

COMPUTING ENVIRONMENTS

Except where reference is made to the work of others, the work described in this
dissertation is my own or was done in collaboration with my advisory committee. This

dissertation does not include proprietary or classified information.

Prashanth C. Sai Ranga

Certificate of Approval:

__________________________ __________________________
Homer W. Carlisle Sanjeev Baskiyar, Chair
Associate Professor Associate Professor
Computer Science and Software Computer Science and Software
Engineering Engineering

__________________________ __________________________
Yu Wang Joe F. Pittman
Assistant Professor Interim Dean
Computer Science and Software Graduate School
Engineering

ALGORITHMS FOR TASK SCHEDULING IN HETEROGENEOUS

COMPUTING ENVIRONMENTS

 Prashanth C. Sai Ranga

A Dissertation

Submitted to

the Graduate Faculty of

Auburn University

in Partial Fulfillment of the

Requirements for the

Degree of

Doctor of Philosophy

Auburn, Alabama
 December 15, 2006

 iii

ALGORITHMS FOR TASK SCHEDULING IN HETEROGENEOUS

COMPUTING ENVIRONMENTS

 Prashanth C. Sai Ranga

Permission is granted to Auburn University to make copies of this dissertation at its
discretion, upon request of individuals or institutions and at their expense. The author

reserves all publication rights.

Signature of Author

Date of Graduation

 iv

DISSERTATION ABSTRACT

ALGORITHMS FOR TASK SCHEDULING IN HETEROGENEOUS

COMPUTING ENVIRONMENTS

Prashanth C. Sai Ranga

Doctor of Philosophy, Dec 15,2006
(M.S., University of Texas at Dallas, Dec, 2001)
(B.E., Bangalore University, India, Aug 1998)

136 Typed pages

Directed by Sanjeev Baskiyar

Current heterogeneous meta-computing systems, such as computational clusters

and grids offer a low cost alternative to supercomputers. In addition they are highly

scalable and flexible. They consist of a host of diverse computational devices which

collaborate via a high speed network and may execute high-performance applications.

Many high-performance applications are an aggregate of modules. Efficient scheduling

of such applications on meta-computing systems is critical to meeting deadlines. In this

dissertation, we introduce three new algorithms, the Heterogeneous Critical Node First

(HCNF) algorithm, the Heterogeneous Largest Task First (HLTF) algorithm and the

Earliest Finish Time with Dispatch Time (EFT-DT) algorithm. HCNF is used to schedule

 v

parallel applications of forms represented by directed acyclic graphs onto networks of

workstations to minimize their finish times. We compared the performance of HCNF

with those of the Heterogeneous Earliest Finish Time (HEFT) and Scalable Task

Duplication based Scheduling (STDS) algorithms. In terms of Schedule Length Ratio

(SLR) and speedup, HCNF outperformed HEFT on average by 13% and 18%

respectively. HCNF outperformed STDS in terms of SLR and speedup on an average by

8% and 12% respectively. The HLTF algorithm is used to schedule a set of independent

tasks onto a network of heterogeneous processors to minimize finish time. We compared

the performance of HLTF with that of the Sufferage algorithm. In terms of makespan,

HLTF outperformed Sufferage on average by 4.5 %, with a tenth run-time. The EFT-DT

algorithm schedules a set of independent tasks onto a network of heterogeneous

processors to minimize finish time when considering dispatch times of tasks. We

compared the performance of EFT-DT with that of a First in First out (FIFO) schedule. In

terms of minimizing makespan, on average EFT-DT outperformed FIFO by 30%.

 vi

ACKNOWLEDGMENTS

The author is highly indebted to his advisor, Dr. Sanjeev Baskiyar, for his clear

vision, encouragement, persistent guidance and stimulating technical inputs. His patience,

understanding and support are deeply appreciated. Thanks to Dr. Homer Carlisle and Dr.

Yu Wang, for their review and comments on this research work. Their invaluable time

spent on serving on my graduate committee is sincerely appreciated. Special thanks to

Mr. Victor Beibighauser, Mr. Basil Manly and Mr. Ron Moody of South University,

Montgomery, for their concern, understanding and co-operation. Finally, the author

would like to thank his parents, sister and bother-in-law for their constant support and

encouragement.

 vii

Style manual or journal used: IEEE Transactions on Parallel and Distributed Systems

Computer software used: Microsoft Word, Adobe PDF

 viii

TABLE OF CONTENTS

LIST OF FIGURES x

LIST OF TABLES xiii

CHAPTER 1 INTRODUCTION 1
1.1 Motivation 1
1.2 Cluster Computing 5
1.3 Grid Computing 7
1.4 Task Scheduling in Heterogeneous Computing Environments 10
1.5 NP-Complete Problems 14
1.6 Research Objectives and Outline 15

CHAPTER 2 LITERATURE REVIEW 16
2.1 Scheduling a Parallel Application Represented by a Directed

Acyclic Graph onto a Network of Heterogeneous Processors
to Minimize the Make-Span 16

 2.1.1 Directed Acyclic Graphs 16
 2.1.2 Problem Statement 17
 2.1.3 The Best Imaginary Level Algorithm 19
 2.1.4 The Generalized Dynamic Level Algorithm 21
 2.1.5 The Levelized Min-Time Algorithm 24
 2.1.6 The Heterogeneous Earliest Finish Time Algorithm 26
 2.1.7 The Critical Path on Processor Algorithm 27
 2.1.8 The Fast Critical Path Algorithm 30
 2.1.9 The Fast Load Balancing Algorithm 32
 2.1.10 The Hybrid Re-mapper Algorithm 34
 2.1.11 Performance Comparison 36
 2.2 Scheduling a Parallel Application Represented by a Set of
 Independent Tasks onto a Network of Heterogeneous
 Processors to Minimize the Make-Span 38
 2.2.1 Problem Statement 38
 2.2.2 The Min-Max and the Max-Min Algorithm 38
 2.2.3 The Sufferage Algorithm 40

CHAPTER 3 THE HETEROGENEOUS CRITICAL NODE FIRST
 ALGORITHM 43

 ix

3.1 Motivation 43
 3.2 The HCNF Algorithm 44
 3.3 Running Trace 46
 3.4 Simulation Study 54
 3.4.1 Performance Parameters 54
 3.4.2 Randomly Generated Graphs 55
 3.4.3 Gaussian Elimination Graphs 56
 3.4.4 Benchmark Graphs 57
 3.4.5 Parametric Random Graph Generator 73
 3.5 Conclusion 79

CHAPTER 4 THE HETERGOENEOUS LARGEST TASK FIRST
 ALGORITHM 80
 4.1 Motivation 80
 4.2 The HLTF Algorithm 81
 4.3 Theoretical Non-Equivalence of Sufferage and HLTF 83
 4.4 Simulation Study 87
 4.4.1 Comparison of Make-span 88
 4.4.2 Comparison of Running Times 88

CHAPTER 5 SCHEDULING INDEPENDENT TASKS WITH
 DISPATCH TIMES 95
 5.1 Motivation 95
 5.2 The EFT-DT Algorithm 96
 5.3 Example Run of EFT-DT 97
 5.4 Simulation Study 99

CHAPTER 6 CONCLUSION 113

BIBLIOGRAPHY 116

 x

LIST OF FIGURES

1.1 Architecture of Cluster Computing Systems 6
1.2 Grid Architecture 8
2.1 A sample DAG G1 17
2.2 The BIL algorithm 21
2.3 The GDL algorithm 23
2.4 The LMT algorithm 25
2.5 The HEFT algorithm 27
2.6 The CPOP algorithm 29
2.7 The FCP algorithm 31
2.8 The FLB algorithm 33
2.9 The Hybrid Re-mapper algorithm 35
2.10 The Min-Min algorithm 37
2.11 The Sufferage algorithm 38
3.1 The HCNF algorithm 39
3.2 Sample DAG (G1) 40
3.4 Gantt chart for G1 41
3.5 HCNF running trace-step 1 42
3.6 HCNF running trace-step 2 42
3.7 HCNF running trace-step 3 42
3.8 HCNF running trace-step 4 43
3.9 HCNF running trace-step 5 43
3.10 HCNF running trace-step 6 43
3.11 HCNF running trace-step 7 44
3.12 HCNF running trace-step 8 45
3.13 HCNF running trace-step 9 45
3.14 HCNF running trace-step10 45
3.15 Random graphs-Average SLR vs. number of nodes 46
3.16 Random graphs-Average speedup vs. number of nodes 46
3.17 Random graphs-Average SLR vs. CCR (0.1 to 1) 47
3.18 Random graphs-Average SLR vs. CCR (1 to 5) 48
3.19 Random graphs-Average speedup vs. CCR (0.1 to 1) 48
3.20 Random graphs-Average speedup vs. CCR (1 to 5) 48
3.21 Gaussian Elimination-Average SLR vs. matrix size 49
3.22 Gaussian Elimination-Efficiency vs. no. of processors 50

 xi

3.23 Trace Graphs-SLR 51
3.24 Trace Graphs-Speedup 52
3.25 RGBOS SLR (CCR = 0.1) 52
3.26 RGBOS SLR (CCR = 1.0) 53
3.27 RGBOS SLR (CCR = 10.0) 53
3.28 RGBOS Speedup (CCR = 0.1) 54
3.29 RGBOS Speedup (CCR = 1.0) 54
3.30 RGBOS Speedup (CCR = 10.0) 55
3.31 RGPOS SLR (CCR = 0.1) 56
3.32 RGPOS SLR (CCR = 1.0) 56
3.33 RGPOS SLR (CCR = 10.0) 57
3.34 RGPOS Speedup (CCR = 0.1) 57
3.35 RGPOS Speedup (CCR = 1.0) 58
3.36 RGPOS Speedup (CCR = 10.0) 58
3.37 Fast Fourier Transform- SLR vs. CCR 59
3.38 Fast Fourier Transform- Speedup vs. CCR 59
3.39 Cholesky Factorization- Speedup vs. CCR 60
3.40 Gaussian Elimination- Speedup vs. CCR 60
3.41 Laplace Transform- Speedup vs. CCR 61
3.42 LU Decomposition- Speedup vs. CCR 61
3.43 MVA- Speedup vs. CCR 62
3.44 Cholesky- SLR vs CCR 62
3.45 Gaussian Elimination- SLR vs.CCR 63
3.46 Laplace Transform- SLR vs.CCR 63
3.47 LU Decomposition- SLR vs. CCR 64
3.48 MVA- SLR vs. CCR 64
3.49 Parametric random graphs - SLR vs. number of nodes 67
3.50 Parametric random graphs - Speedup vs. number of nodes 67
3.51 Parametric random graphs-SLR vs. CCR (0.1 to 0.9) 68
3.52 Parametric random graphs-SLR vs. CCR (1.0 to 5.0) 68
3.53 Parametric random graphs-Speedup vs. CCR (0.1 to 0.9) 69
3.54 Parametric random graphs-Speedup vs. CCR (1.0 to 5.0) 69
4.1 Running times of the Sufferage Algorithm 70
4.2 HLTF Algorithm 72
4.3 The Sufferage algorithm 74
4.4 Average Makespan of Metatasks std_dev=5 76
4.5 Average Makespan of Metatasks std_dev=10 78
4.6 Average Makespan of Metatasks std_dev=15 80

4.7 Average Makespan of Metatasks std_dev=20 82

4.8 Average Makespan of Metatasks std_dev=25 84

 xii

4.9 Average Makespan of Metatasks std_dev=30 85

4.10 Running Times {n =50,100,200} 87
4.10 Running Times {n =500,1000,2000} 87
4.11 Running Times {n =3000,4000,5000} 90

5.1 The EFT-DT Algorithm 94
5.2 Gantt Chart for the Meta-Task 96
5.3 Average Makespan- std_dev=5, proc_dev=2 98
5.4 Average Makespan- std_dev=10, proc_dev=2 99
5.5 Average Makespan- std_dev=15, proc_dev=2 99
5.6 Average Makespan- std_dev=20, proc_dev=2 100
5.7 Average Makespan- std_dev=25, proc_dev=2 100
5.8 Average Makespan- std_dev=30, proc_dev=2 101
5.9 Average Makespan- std_dev=5, proc_dev=4 101
5.10 Average Makespan- std_dev=10, proc_dev=4 102
5.11 Average Makespan- std_dev=15, proc_dev=4 102
5.12 Average Makespan- std_dev=20, proc_dev=4 103
5.13 Average Makespan- std_dev=25, proc_dev=4 103
5.14 Average Makespan- std_dev=30, proc_dev=4 104
5.15 Average Makespan- std_dev=5, proc_dev=6 104
5.16 Average Makespan- std_dev=10, proc_dev=6 105
5.17 Average Makespan- std_dev=15, proc_dev=6 105
5.18 Average Makespan- std_dev=20, proc_dev=6 106
5.19 Average Makespan- std_dev=25, proc_dev=6 106
5.20 Average Makespan- std_dev=30, proc_dev=6 107

 xiii

LIST OF TABLES

2.1 Table of values for G1 18
2.2 Definition of terms used in BIL 20
2.3 Definition of terms used in GDL 22
2.4 Definition of terms used in LMT 24
2.5 Definition of terms used in HEFT 27
2.6 Definition of terms used in CPOP 28
2.7 Definition of terms used in FCP 30
2.8 Definition of terms used in FLB 32
2.9 Definition of terms used in Hybrid Re-mapper 34
2.10 Performance Comparison 38
2.11 Definition of terms used in Min-Min 40
2.12 Definition of terms used in Sufferage 42
3.1 HCNF-definition of terms 55
3.2 Task execution times of G1 on three different processors 58
3.3 Run-time values for G1 60
3.4 Trace graph details 64
4.1 Definition of Terms used in Sufferage and HLTF 81
4.2 Theoretical Nonequivalence of the Sufferage and the HLTF Algorithms 83
5.1 EFT-DT Algorithm –Defnition of Terms 93
5.2 A sample metatask 95
5.3 Meta-task Dispatch Times 95

 1

CHAPTER 1

INTRODUCTION

This chapter provides an introduction to our research work and discusses a few

relevant topics. Section 1.1 discusses our research motivation. Section 1.2 describes the

architecture of cluster computing systems. Section 1.3 describes the architecture of grid

computing systems. Section 1.4 provides an overview of task scheduling in

heterogeneous computing systems. Section 1.5 provides an introduction to NP-complete

problems and Section 1.6 discusses the organization of this dissertation.

1.1 Motivation

 Information Technology has revolutionized the way we share and use

information. The IT revolution has witnessed a myriad number of applications with a

wide range of objectives which include: small personal computer based applications like

the calculator program, medium-sized applications like the Microsoft Word, large-sized

applications like the Computer Aided Design software and very-large sized applications

like the Weather Forecasting application. Some of these programs can run efficiently on a

normal personal computer and some may need a more powerful workstation. However,

there are applications like Weather Forecasting, Earthquake Analysis, Particle Simulation

and a host of other engineering and scientific applications that require computing

 2

capabilities beyond that of personal computers or workstations. They are called “High-

Performance Applications”.

 How do we run these high-performance applications efficiently, given the fact

that sequential computers (PCs, workstations) are too slow to handle them? There are

three ways to improve efficiency [1]: work harder, work smarter or get help. In this

context, working harder refers to increasing the speed of sequential uni-processor

computers. In the last two decades, microprocessor speed has on an average doubled once

in 18 months. Today’s microprocessor chip is faster than the mainframes of yesteryears,

owing to the phenomenal advances in Very Large Scale Integration (VLSI) technology.

Even though this trend is expected to continue in the future, microprocessor speed is

severely limited by the laws of physics and thermodynamics [2]. There is very high

probability that it will eventually hit a plateau in the near future.

Working smarter refers to designing efficient algorithms and programming

environments to deal with high-performance applications. By working smarter, we can

definitely improve the overall efficiency, but will not be able to overcome the speed

bottleneck of sequential computers.

Getting help refers to involving multiple processors to solve the problem. The

idea of multiple processors working together simultaneously to run an application is

called “Parallel Processing.” Most of the applications consist of thousands of modules or

sub-programs that may or may not interact with each other depending on the nature of the

application. In either case, there are usually a number of modules that are independent of

one another and could run simultaneously on different processors. The parallel nature of

many applications is what makes parallel processing very appealing. In other words, if

 3

applications were to be one large sequential module, parallel processing would not be

feasible.

Parallel processing has captivated researchers for a long time. The initial trend in

parallel processing was to create tightly coupled multi-processor systems with shared

memory, running proprietary software. These systems were generally referred to as

“Supercomputers”. Supercomputers were extremely fast and expensive. In the 1960s

Seymour Cray created the world’s first commercial supercomputer the CDC 6600. Other

companies like IBM, Digital and Texas Instruments created their own proprietary

versions of supercomputers. The 70s and the 80s witnessed major companies and

research labs across the word vie with one another to create the world’s fastest super

computer. Even though the trend continues to this day, parallel processing has slowly

drifted away from supercomputing for a number of reasons. Supercomputers are

extremely expensive systems that run on proprietary technology. Since they run on

proprietary technology, they offer less flexibility with respect to developing software

solutions to execute high performance applications. Since supercomputers are very

expensive to lease/purchase and maintain, it is beyond the reach of many organizations to

deploy them. Also in view of today’s technological growth, it is important for systems to

be readily scalable. Owing to factors like proprietary hardware and software

technologies, most of the supercomputers are not readily scalable. To summarize,

supercomputers have a very high cost/performance factor.

The very high cost/performance factor made them unattractive to a number of

organizations. Most organizations (business, academic, military etc) were interested in

high performance computing but were seeking systems with low cost/performance factor,

 4

which could not be offered by supercomputers. In the meantime, PCs and workstations

became extremely powerful and significant advances were made in networking

technologies. Researchers began to explore the possibility of connecting low cost PCs

with a high-speed network to mimic the functioning of a supercomputer albeit with a low

cost/performance factor.

Extensive research has been carried out to create high performance systems by

connecting PCs/workstations with a high-speed network. Most of the research was

focused on creating viable parallel programming environments, developing high-speed

network protocols and devising effective scheduling algorithms. Initially, the

PCs/workstations had uniform hardware characteristics and thus the systems were termed

“Homogeneous.” However due to rapid advances in PC technology, computers and other

hardware items had to be continuously upgraded and it was no longer the case that all the

machines had identical hardware characteristics. This led to the notion of “Heterogeneous

Systems” where individual PCs/workstations in a network could have different hardware

characteristics. Researchers today focus on creating a high-performance system with a

low cost/performance factor using a Heterogeneous Network of Workstations (NOWs).

So, what goes into creating a viable high performance computing system with a

low cost/performance ratio out of a NOW given the fact that we have powerful

workstations and very high-speed networks? Firstly, an efficient run-time environment

must be provided for high-performance applications. Extensive research has been done in

this area and has led to the creation of efficient technologies like the Message Passing

Interface (MPI) [2] and the Parallel Virtual Machine (PVM) [2]. Secondly, in order to be

able to provide a low cost/performance ratio, these systems must optimize the overall

 5

execution time (or turnaround time) of high-performance applications. This requires

efficient scheduling of the sub-tasks of high-performance applications onto the individual

machines of a NOW. The sub-tasks of a parallel application may either be independent or

may have precedence constraints. In either case, the problem of scheduling these subtasks

to optimize the overall execution time of an application is a well-known NP Complete

problem [3].

 The focus of our research is to devise efficient scheduling algorithms for

scheduling parallel applications represented by independent tasks as well as tasks with

precedence constraints onto heterogeneous computing systems to minimize the overall

execution time. We strongly believe that efficient task scheduling is the most important

factor in creating a low-cost high-performance computing system. We now discuss the

architectures of two very popular heterogeneous computing systems, the Cluster and the

Grid.

1.2 Cluster Computing

A cluster is a heterogeneous parallel computing system which consists of several

stand alone systems that are interconnected to function as an integrated computing

resource. A cluster generally refers to two of more computers interconnected via a local

area network. A cluster of computers can appear as a single system to users and

applications. It provides a low-cost alternative to supercomputers with a relatively

reasonable performance.

Figure 1.1 describes the architecture and the main components of a cluster

computing system [2]. The individual nodes of a cluster could be PCs or high speed

 6

workstations connected through a high-speed network. The network interface hardware

acts as a communication processor and is responsible for transmitting and receiving

packets of data between cluster nodes. The cluster communication software provides a

means for fast and reliable data communication among cluster nodes and to the outside

world. Clusters often use communication protocols such as “Active Messages” [2] for

fast communication among their nodes. They usually bypass the operating system and

remove the critical communication overhead normally involved by providing a direct

user-level access to the network interface.

Figure 1.1 Architecture of Cluster-Computing Systems

The cluster nodes can either work as individual computers or can work

collectively as an integrated computing resource. The cluster middleware is responsible

for offering an illusion of a unified system image (Single System Image) and Availability

 7

out of a collection of independent but interconnected computers. Parallel programming

environments offer portable, efficient, and easy-to-use tools for development of

applications. They include message passing libraries, debuggers, and profilers. Clusters

also run resource management and scheduling software such as LSF (Load Sharing

Facility) and CODINE (Computing in Distributed Networked Environments) [2]. The

individual nodes of a cluster can have different hardware characteristics and new nodes

can be seamlessly integrated into existing clusters thus making them easily scalable.

Clusters make use of these hardware and software resources to execute high performance

applications and typically provide a very low cost/performance ratio.

1.3 Grid Computing

The massive growth of the Internet in the recent years has encouraged many

scientists to explore the possibility of harnessing idle CPU clock cycles and other

unutilized computational resources spread across the Internet. The idea was to harness

idle CPU cycles and other computational resources and provide a unified computational

resource to those in need of high-performance computation. This led to the notion of

“Grid Computing”.

 The concept of grid computing is similar to that of “Electrical Grids.” In

electrical grids, power generation stations in different geographical locations are

integrated to provide a unified power resource for consumers to plug into on demand. In

the same fashion, computational grids allow users to plug into a virtual unified resource

for their computational needs.

 8

1.3.1 Architecture of a Grid Computing System Grid systems are highly complex and

comprise of a host of integrated hardware and software features as illustrated in Figure

1.2. The following sub-sections describe the major components of a grid.

Figure 1.2 Grid Architecture

1.3.1.1 Interface

 Grid systems are designed to shield their internal complexities from users. User

interfaces can come in many forms and can be application specific. Typically grid

interfaces are similar to web portals. A grid portal provides an interface to launch

applications which would use its resources and services. Through this interface, users see

the grid as a virtual computing resource.

 9

1.3.1.2 Security

Security is a critical issue in grid computing. A grid environment should consist

of mechanisms to provide security, which includes authentication, authorization, data

encryption etc. Most of the grid implementations include an Open SSL [4]

implementation. They also provide a single sign-on mechanism, so that once a user is

authenticated, a proxy certificate is created and used while performing actions within the

grid.

1.3.1.3 Broker

A grid system typically consists of a diverse range of resources spread across the

internet. When a user desires to launch an application through the portal, depending on

the application and other parameters provided by the user, the system needs to identify

and appropriate the resources to use. This task is accomplished by the grid broker system.

The broker makes use of the services provided by the Grid Information Service (GIS)

which is also known as the Monitoring and Discovery Service (MDS). It provides

information about the available resources within the grid and their status. Upon

identifying available resources, the broker needs to choose the most viable resource based

on the requirements of the user. Resource brokering is a major research topic in grid

computing and forms the focus of what is known as “G-Commerce”.

1.3.1.4 Scheduler

Applications requiring services of a grid could be one large module or could

consist of several independent modules with or without data dependencies. Depending on

the nature of the application, the scheduler must be able to effectively map the

 10

application or its components onto the best available resource. Most of the grid

schedulers use different algorithms to deal with different cases. Grid schedulers have a

number of algorithms to choose from depending on scheduling parameters and user

requirements. However, the most common criteria for schedulers is to minimize the

turnaround time of an application.

1.3.1.5 Data Management

Scheduling high performance applications onto grids constantly requires

movement of data files from one node to another. The grid environment should provide a

reliable and a secure means for data exchange. The Data Management component of the

grid system commonly uses the Grid Access to Secondary Storage (GASS) [4]

component to move data files across the grid. The GASS incorporates the GridFTP,

which is protocol built over the standard FTP in the TCP/IP protocol suite. The GridFTP

protocol adds a layer of encryption and other security features on top of the standard FTP

protocol.

1.3.1.6 Job Management

This component includes the core set of services that perform the actual work in a grid

environment. It provides service to actually launch a job on a particular resource, check

its status, and retrieve results when it is complete. The component is also responsible for

ensuring fault tolerance.

 11

1.4 Overview of Task Scheduling in Heterogeneous Computing Environments

There are a number of reasons why scheduling programs or the tasks that

comprise the programs is important. For users it is important that the programs they wish

to run are executed as quickly as possible (faster turnaround times). On the other hand the

owners of computing resources would ideally wish to optimize their machine utilization.

These two objectives, faster turnaround times and optimal resource utilization, are not

always complementary. Owners are not usually willing to let a single user utilize all their

resources (especially in grid systems), and users are not usually willing to wait an

arbitrarily long time before they are allowed access to particular resources. Scheduling,

from both points of view, is the process by which both the users and the owners achieve a

satisfactory quality of service.

1.4.1 Scheduling Strategies

There are different approaches to the selection of processors onto which sub-tasks

of a program would be placed for execution. In the static model, each sub-task is assigned

to a processor before the execution of a program commences. In the dynamic scheduling

model, sub-tasks are assigned to different processors in run-time. In the Hybrid

scheduling model, a combination of both static and dynamic scheduling strategies is used.

1.4.1.1 Static Scheduling

In the static model, all sub-tasks of a program are assigned once to a processing

element. An estimate of the cost of computation can be made a priori . Heuristic models

for static task scheduling are discussed in Chapter 2. One of the main benefits of the

 12

static model is that it is easier to implement from a scheduling and mapping point of

view. Since the mapping of tasks is fixed a priori, it is easy to monitor the progress of

computation. Likewise, estimating the cost of jobs is simplified. Processors can give

estimates of the time that will be spent processing the sub-tasks. On completion of the

program they can be instructed to supply the precise time that was spent in processing.

This facilitates updating of actual running costs and could be used in making

performance estimates for new programs. The Static Scheduling model has a few

drawbacks. The model is based on an approximate estimation of processor execution

times and inter-processor communication times. The actual execution time of a program

may often vary from the estimated execution time and sometimes may result in a poorly

generate schedule. This model also does not consider node and network failures

1.4.1.2 Dynamic Scheduling

Dynamic scheduling operates on two levels: the local scheduling strategy, and a

load distribution strategy. The load distribution strategy determines how tasks would be

placed on remote machines. It uses an information policy to determine the kind of

information that needs to be collected from each machine, the frequency at which it needs

to be collected and also the frequency at which it needs to be exchanged among different

machines. In a traditional dynamic scheduling model, the sub-tasks of an application are

assigned to processors based on whether they can provide an adequate quality of service.

The meaning of quality of service is dependent on the application. Quality of service

could mean whether an upper bound could be placed on the time a task needs to wait

before it can start its execution; the minimum time under which the task can complete its

 13

execution without interruption and the relative speed of the processor as compared to

other processors in the system. If a processor is assigned too many tasks, it may invoke a

transfer policy to check to see if it needs to transfer tasks to other nodes and if so, to

which ones? The transfer of tasks could be sender initiated or receiver initiated. In the

later case, a processor that is lightly loaded will voluntarily advertise to offer its services

to heavily loaded nodes.

The main advantage of dynamic scheduling over static scheduling is that the

scheduling system need not be aware of the run-time behavior of the application before

execution. Dynamic scheduling is particularly useful in systems where the goal is to

optimize processor utilization as opposed to minimizing the turnaround times. Dynamic

scheduling is also more efficient and fault tolerant when compared to static scheduling.

1.4.1.3 Hybrid Static-Dynamic Scheduling

Static scheduling algorithms are easy to implement and usually have a low

schedule generating cost. However, since static scheduling is based on estimated

execution costs, it may not always produce the best schedules. On the other hand,

dynamic scheduling uses run-time information in the scheduling process and generates

better schedules. But dynamic scheduling suffers from very high running costs and may

be prohibitively expensive while trying to schedule very large applications with tens and

thousands of sub-tasks. Since both the scheduling techniques have their own advantages,

researchers have tried to combine them to create a hybrid scheduling technique. Usually

in hybrid scheduling, the initial schedule is obtained using static scheduling and the sub-

 14

tasks are mapped onto the respective processors. However, after the execution

commences, the processors use run-time information to check and see if the tasks could

be mapped to better processors to yield a better a makespan. The running cost of a hybrid

scheduling algorithm is greater than the static scheduling algorithms, but is significantly

lower than the dynamic only scheduling algorithms.

1.5 NP-complete Problems

 Computational problems can be broadly classified into two categories, tractable

problems and intractable problems [3]. Tractable problems are the ones whose worst case

running time or time complexity is smaller than O(nk), where n is the input size of the

problem and k is a constant. These problems are also known as “Polynomial Time

Problems” since they can be executed in polynomial time. The Intractable problems are

ones that cannot be executed in polynomial time. They take super-polynomial times to

execute.

However, there is a class of problems whose status is unknown to this day. These

problems are known as the “NP-complete problems”. For these problems, no polynomial

time solution has yet been discovered, nor has anyone been able to solve them with a

super-polynomial lower bound [3]. Many computer scientists believe that NP-complete

problems are intractable. This is mainly because there has been no success in devising a

polynomial time solution to any of the existing NP-complete problems so far and if a

polynomial time solution is devised for one NP-complete problem, mathematically a

polynomial time solution can be devised for all NP-complete problems.

 15

 Algorithm designers need to understand the basics and importance of NP-

complete problems. If designers can prove that a problem is NP-complete, then there is a

good chance that the problem is intractable. If a problem is intractable, it would be better

to design an approximation algorithm instead of a perfect algorithm.

 The task scheduling problems that form the focus of this dissertation are well

known NP-complete problems [3]. We devise approximation algorithms or heuristics to

deal with various cases of the task-scheduling problem, which forms the focus of this

research.

1.6 Research Objectives

 In this dissertation, we intend to propose new algorithms for scheduling tasks in

heterogeneous computing systems. In Section 2 we provide a comprehensive literature

review on the existing work in the area of task scheduling in heterogeneous computing

systems. In Section 3, we propose a new algorithm called the Heterogeneous Critical

Node First (HCNF) to schedule a parallel application modeled by a Directed Acyclic

Graph (DAG) onto a network of heterogeneous processing elements. In Section 4, we

propose a new low-complexity algorithm called the Heterogeneous Largest Task First

(HLTF) to schedule independent tasks of a meta-task onto a network of heterogeneous

processors. In Section 5, we propose a new algorithm called the Earliest Finish Time with

Dispatch Time (EFT-DT) to schedule a set of independent tasks of a meta-task onto a

network of heterogeneous processors while also considering the dispatch times. In

Section 6, we provide the concluding remarks and also make suggestions for future

research in this area.

 16

 17

CHAPTER 2

LIERATURE REVIEW

Among the problems related to task scheduling in heterogeneous computing

environments, scheduling a parallel application represented by a directed acyclic graph

(DAG) to minimize the overall execution time (makespan) and scheduling a parallel

application represented by a meta-task (set of independent tasks) to minimize the

makespan are the most important and often researched ones. This section defines the two

problems and surveys related research work.

2.1 Scheduling Parallel Applications Represented by Directed Acyclic Graphs

onto Heterogeneous Computing Systems to Minimize the Makespan

Many parallel applications consist of sub-tasks with precedence constraints and

can be modeled by directed acyclic graphs. This section discusses the problem of

scheduling a parallel application represented by a DAG onto a network of heterogeneous

processors to minimize its makespan and reviews related research work

2.1.1 Directed Acyclic Graphs

A DAG is represented by G={V,E,W,C}. V is the set of n nodes: {n1, n2, n3, n4,…}.

E is the set of directed edges of the form (ni, nj) which represents an edge directed from

 18

node ni to nj . W is the set of node weights of the form wi , where wi denotes the weight of

node ni . C is the set of edge weights of the form ci,j, where ci,j denotes the weight of the

edge (ni, nj). A DAG is a graph without a cycle (A directed path from a node onto itself).

The set of nodes in a DAG which have an edge directed towards a node ni are called its

predecessor nodes and are denoted by PRED(ni). Likewise, the set of nodes which have a

directed edge from a node ni are called its successor nodes and are denoted by SUCC(ni).

Nodes in a DAG that do not have a predecessor are called start nodes and nodes that do

not have a successor are called exit nodes. blevel(ni) is the bottom level of ni and is

length of the longest path from ni to any exit node including the weight of ni. The length

of a path in a DAG is the sum of its node and edge weights. tlevel(ni) is the is the top

level of ni and is the length of the longest path from a start node to node ni excluding the

weight of ni. The longest path in a DAG is called the critical path. A DAG may have

multiple critical paths. A sample DAG is illustrated in Figure 2.1. The node weights are

to the right of each node and the edge weights are to the left of each edge. Table 2.1

provides the table of values for the sample DAG.

2.1.2 Problem Statement

The objective is to schedule a parallel application represented by a DAG onto a

network of heterogeneous processors to minimize its overall execution time. Node-

weights in a DAG represent average execution times of nodes over all the processors in

the target execution system. Edges represent precedence constraints between nodes. An

edge (ni,nj) indicates that node nj cannot start execution until ni completes execution and

 19

receives all the required data from it. Edge-weights represent the time required to transfer

the required data.

Figure 2.1 A sample DAG, G1

Table 2.1 Table of values for G1

 ni

PRED(ni)

SUCC(ni)

tlevel(ni)

blevel(ni)

1 {null} {2,3,4,5,6} 0 108.01
2 {1} {8,9} 31 77.01
3 {1} {7} 25 80
4 {1} {8,9} 22 81.34
5 {1} {9} 24 69
6 {1} {8} 27 63.34
7 {3} {10} 62.33 42.67
8 {2,4,6} {10} 66.67 35.67
9 {2,4,5} {10} 67.67 44.34
10 {7,8,9} {null} 97.34 14.67

 20

The target execution system consists of a finite number of heterogeneous

processors connected with a high speed network. Communication among processors is

assumed to be contention-less. Computation and communication is assumed to take place

simultaneously. Node-execution is assumed to be non-preemptive; meaning nodes once

scheduled on a processor cannot be removed (or preempted) and scheduled on other

processors. If a DAG has multiple start nodes, a dummy start node with a zero node

weight is added. Zero weight communication edges are then added from the dummy start

node to the multiple start nodes. Likewise, if a DAG has multiple exit nodes, a dummy

exit node is added. The make-span of a DAG is the time difference between the

commencement of execution of the start node and the completion of execution of the exit

node. The heterogeneous DAG scheduling problem is NP-complete [28] and can be

formally defined as: To schedule the nodes of a DAG representing a parallel application

onto a network of heterogeneous processors such that all the data precedence constraints

are satisfied and the overall execution time of the DAG is minimized. The following

sections survey existing research related to this problem.

2.1.3 The Best Imaginary Level Algorithm

The Best Imaginary Level (BIL) algorithm [22] assigns node-priorities based on

the best imaginary level of each node. At each scheduling step, a free node with the

highest priority is selected and mapped onto a processor based on a criterion. Table 2.2

defines the terms used in BIL and Figure 2.2 lists the algorithm.

 21

BIL(ni, pj) is the best imaginary level of node ni on processor pj. It is the length of

the longest path in the DAG beginning with ni assuming it is mapped onto pj, and is

recursively defined as:

))])((min),([min(max)(,,,)(,, pipijpjinSuccnjiji cpnBILpnBILwpnBIL ik += ≠∈+ .

BIL of a node is adjusted to its basic imaginary make-span (BIM) as follows:

][_)()(,, jAvailableTpnBILpnBIM jiji += .

Table 2.2 Definition of terms used in BIL

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m

wi,j Time required to execute ni on pj

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

)(, ji pnBIL))])((min),([min(max ,,,)(, kililjjknSuccnji cpnBILpnBILw ik += ≠∈+

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

)(, ji pnBIM][_)(, jji pAvaialbleTpnBIL +=

k Number of free nodes at a scheduling step

)(* , ji pnBIM)0,1/max()(,, −×+= mkwpnBIM jiji

 22

If k is the number of free nodes (those nodes whose predecessors have completed

execution) at a scheduling step, the priority of a free node is the kth smallest BIM value. If

the kth smallest BIM value is undefined, the largest finite BIM value becomes its priority.

If two or more nodes have the same priority, ties are broken randomly. At each

scheduling step, the free node with the highest priority is selected for mapping. If k is

greater than the number of processors, node execution times become more important than

the communication overhead. On the contrary, if k is less than the number of available

processors, node execution times become less important. The BIM value for the selected

node is revised to incorporate this factor as follows:

)0,1/max()()(* ,,, −×+= mkwpnBIMpnBIM jijiji .

The processor which provides the highest revised BIM value for the node is selected. If

more than one processor provides the same revised BIM value, the processor that

maximizes the sum of the revised BIM values of all the other nodes is selected. The time

complexity of the algorithm is O(n2 + m log m).

2.1.4 The Generalized Dynamic Level Algorithm

The Generalized Dynamic Level (GDL) Algorithm [28] assigns node-priorities

based on their generalized dynamic levels. A number of factors are incorporated in the

calculation of the generalized dynamic level and are explained next. The definition of

terms used in GDL is listed in Table 2.3 and the algorithm is listed in Figure 2.3.

 23

BIL Algorithm
ReadyTaskList ← Start node
While ReadyTaskList NOT empty
 k ←| ReadyTaskList|// Number of free nodes
 For all ni in ReadyTaskList and pj in P
 Compute BIM(ni , pj)
 End For
 Priority of ni ← kth smallest BIM value, or the largest finite
 BIM value if the kth smallest value is undefined
 nt ← node in ReadyTaskList with the highest priority
 For all pj in P
 Compute BIM*(nt , pj)//Revised BIM
 End For
 pfav ← The processor that provides the highest revised BIM value
 for nt
 Map nt on pfav
 ReadyTaskList ← ReadyTaskList - nt + Free nodes(if any)
End While
End BIL

Figure 2.2 The BIL algorithm

SL(ni) is the static level of a node ni and is the largest sum of the median execution times

of all the nodes from node ni to an exit node along any path in the DAG. DL(ni,pj) =

SL(ni)- EST(ni , pj) + ∆(ni , pj) is the Dynamic Level (DL) of a node ni on processor pj . It

indicates how well the node and the processor are matched for execution. Even though

DL(ni,pj) indicates how well ni and pj are matched, it does not indicate how well the

descendents of ni are matched with pj. D(nj) is the descendent of node ni to which ni

passes the maximum data. F(ni,D(ni),pj)= d(ni ,D(ni))+ min k ≠ j E(D(ni),pk) is defined to

indicate how quickly D(ni) can be completed on a processor other than pj, if node ni is

 24

executed on processor pj .The Descendent Consideration (DC) term is defined as: DC(ni ,

pj) = w*(D(ni)) – min { E(D(ni),pj), F(ni ,D(ni),pj)}

Table 2.3 Definition of terms used in GDL

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m

wi,j Execution time of node ni on pj

ci,j Data transfer time from node ni to nj

w*(ni) Median execution time of ni over all the processors

SL(ni) largest sum of the median execution times of all the nodes
from node ni to an exit node along any path in the DAG

∆(ni , pj) = w*(ni) – wi,j

EST(ni , pj) Earliest start time of ni on pj

DL(ni , pj) = SL(ni)- EST(ni , pj) + ∆(ni , pj)

D(nj) Descendent node of node ni to which ni passes the
maximum data

d(ni ,D(ni)) Time required to transfer data from ni to D(ni)

E(D(ni),pk) Time required to execute D(ni) on processor pk

F(ni ,D(ni),pj) = d(ni ,D(ni))+ min k ≠ j E(D(ni),pk)

DC(ni , pj) = w*(D(ni)) – min { E(D(ni),pj), F(ni ,D(ni),pj)}

C(ni) = DL(ni , ppref) – maxk ≠pref DL(ni ,pk) (pref is the processor
on which node ni obtains the maximum DL)

GDL(ni , pj) = DL(ni , pj)+ DC(ni , pj)+ C(ni)

 25

GDL Algorithm
 For all ni in N
 Compute SL(ni)
 End For
 ReadyTaskList ← Start Node
 While ReadyTaskList is NOT NULL do
 For all ni in ReadyTaskList and pj in P

 Compute DL(ni , pj)
 Compute DC(ni , pj)
 Compute C(ni)
 GDL(ni , pj)← DL(ni , pj)+ DC(ni , pj)+ C(ni)
 End For
 Select the node-processor pair with the maximum GDL
 Update ReadyTaskList
 End While
End GDL

Figure 2.3 The GDL algorithm

The preferred processor of a node is the processor which maximizes its dynamic level

(DL). The cost of not scheduling a node on its preferred processor is defined as follows.

C(nj)= DL(ni , ppref) – maxk ≠j DL(ni ,pk) (ppref is the preferred processor)

The combination of DL, the Descendent Consideration (DC) term and the cost incurred in

not scheduling a node on its preferred processor is used to define the Generalized

Dynamic Level (GDL) of a node as: GDL(ni , pj)= DL(ni , pj)+ DC(ni , pj)+ C(nj).

At each scheduling step, the algorithm selects among the free nodes, the node and the

processor with the maximum GDL. The time complexity is O(n2 + m log m).

 26

2.1.5 The Levelized Min Time Algorithm

In the Levelized Min Time (LMT) algorithm [16], the input DAG is divided into k

levels using the following rules. The levels are numbered 0 to k-1. All the nodes in a level

Table 2.4 Definition of terms used in LMT

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P|

k Number of levels in the DAG

wi,j Time required to execute ni on pj

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

,(inEST)jp Max(][_ jAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈))

),(ji pnEFT =),(, jiji pnESTw +

are independent of each other. Level 0 contains the start nodes and level k-1 contains the

exit nodes. For any level j, where 0 < j < k-1, nodes in level j can have incident edges

from any of the nodes in levels 0 thru j+1. Additionally, there must be at least one node

in level j with an edge incident from a node in level j+1. LMT maps the nodes one level

at a time starting from level 0. If the number of nodes at a given level is more than the

number of processors in the target system, the smallest nodes (based on the average

computation times) are merged until the number of nodes equals the number of

 27

processors. Nodes are then sorted by the descending order of their average computations

times. At each scheduling, the largest node is mapped onto the processor that provides its

minimum finish time. Table 2.4 defines the terms used in LMT and Figure 2.4 lists the

algorithm.

LMT Algorithm
 Divide the input DAG into k levels (level 0 to level k-1)
 For levels 0 thru k-1 do
 num← number of nodes in the current level
 If num>m
 Merge the smallest nodes in the current level until num=m
 End If
 ReadyTaskList ← Nodes in the current level sorted in the
 descending order of average node weights
 While ReadyTaskList is NOT NULL do
 ni ← First node in the ReadyTaskList
 For all pj in P
 Compute ,(inEST)jp
),(ji pnEFT ←),(, jiji pnESTw +
 End For
 Map node ni on processor pj which provides its least EFT

 Update T_Available[pj]
 Update ReadyTaskList

 End While
 End For
End LMT

 Figure 2.4 The LMT algorithm

2.1.6 The Heterogeneous Earliest Finish Time Algorithm

The Heterogeneous Earliest Finish Time (HEFT) algorithm [30] assigns node -

priorities based on the bottom level (blevel) of each node. The blevel of a node is the

 28

length of the longest path in the DAG from the node to the exit node. The length of a path

in a DAG is the sum of the node and edge weights that constitute the path. At each

scheduling step, a node with the highest priority is assigned to a processor that minimizes

its finish time. The definition of terms used in HEFT in listed in Table 2.5 and the

algorithm is listed in Figure 2.5. As a first step, HEFT traverses the DAG in a top down

fashion and computes the blevels of all the nodes. At each scheduling step, a node with

the highest blevel is selected for mapping. Ties are broken randomly

EST(ni , pj) is the earliest start time of a node ni on a processor pj and is defined

as: ,(inEST)jp = Max(][_ jpAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈)). It is the

maximum of a) the time at which processor pj becomes free or b) The time at which node

ni receives all the required data from its predecessor nodes after the completion of their

exeuction. EFT(ni , pj) is the Earliest Finish Time of a node ni on a processor pj and is

defined as: EFT(ni , pj) = EST(ni , pj) + wi,j. HEFT computes the EFTs of the selected

node on all the processors and selects the processor that provides the minimum EFT. The

time complexity is O(n2 m).

2.1.7 The Critical Path on Processor Algorithm

The critical path is the longest path in a DAG. The length of the critical path gives

the lower bound on the overall execution time of the DAG [30]. Minimizing the length of

the critical path would aid minimizing the overall execution time of a DAG [30]. The

Critical Path on Processor (CPOP) algorithm [30] is a variant of the HEFT algorithm and

is from the same authors [30]. CPOP adopts a different mapping strategy for the critical

path nodes and the non-critical path nodes.

 29

Table 2.5 Definition of terms used in HEFT

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P|

wi,j Time required to execute ni on pj

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

priority(ni) = blevel(ni)

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

,(inEST)jp Max(][_ jAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈))

),(ji pnEFT =),(, jiji pnESTw +

HEFT Algorithm
 For all ni in N
 Compute blevel(ni)
 End For
 ReadyTaskList ← Start Node
 While ReadyTaskList is NOT NULL do
 ni ← node in the ReadyTaskList with the maximum blevel
 For all pj in P
 Compute ,(inEST)jp
),(ji pnEFT ←),(, jiji pnESTw +
 End For
 Map node ni on processor pj which provides its least EFT

 Update T_Available[pj] and ReadyTaskList
 End While
End HEFT

Figure 2.5 The HEFT Algorithm

 30

Table 2.6 Definition of terms used in CPOP

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P|

wi,j Time required to execute ni on pj

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

priority(ni) = tlevel(ni)+ blevel(ni)

CP processor pj ∈ P which minimizes ∑ ∈CPn ji
i

w , //CP is the critical path

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

,(inEST)jp Max(][_ jpAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈))

),(ji pnEFT =),(, jiji pnESTw +

CPOP traverses the DAG in a top down fashion to compute the tlevels and blevels

of all the nodes. It identifies the critical path/s and marks the critical path nodes. The

priority of each node is the sum of its tlevel and blevel . At each scheduling step, a free

task with the highest priority is selected for mapping. Ties (if any) are broken randomly.

A CP processor is defined as the processor that minimizes the overall execution

time of the critical path assuming all the critical path nodes are mapped onto it. If the

selected node is a critical path node, it is mapped onto the CP processor. Else, it is

 31

mapped onto a processor that minimizes its EFT (like the HEFT algorithm). The time

complexity is O(n2 m).

CPOP Algorithm
 For all ni in N
 Compute tlevel(ni) and blevel(ni)
 Identify the critical path/s and mark the critical path nodes
 priority(ni) ← tlevel(ni)+ blevel(ni)
 End For
 ReadyTaskList ← Start Node
 While ReadyTaskList is NOT NULL do
 ni ← node in the ReadyTaskList with the maximum priority
 If ni∈critical path
 Map ni on the CP processor
 Else
 For all pj in P
 Compute ,(inEST)jp
),(ji pnEFT ←),(, jiji pnESTw +
 End For
 Map node ni on processor pj which provides its least EFT
 End If

 Update T_Available[pj]
 Update ReadyTaskList

 End While
End CPOP

 Figure 2.6 The CPOP algorithm

2.1.8 The Fast Critical Path Algorithm

There are three steps involved in a typical static DAG scheduling algorithm:

computation of node priorities, node selection, and processor selection. These steps

contribute to the overall time complexity of the algorithm. The Fast Critical Path (FCP)

 32

algorithm [24] tries to reduce the overall time complexity by reducing the complexity of

the node selection and the processor selection steps.

Table 2.7 Definition of terms used in FCP

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P|

e Number of edges in the DAG

wi,j Time required to execute ni on pj

priority(ni) = blevel(ni)

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

,(inEST)jp Max(][_ jAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈))

),(ji pnEFT =),(, jiji pnESTw +

Node Selection: FCP tries to reduce the complexity of the node selection process by

restricting the size of the ReadyTaskList to m (The number of processors in the target

execution system). Additional free nodes (if any) are stored in a FIFO queue. Node

priorities are based on their blevels. At each scheduling step, a node with the highest

priority is selected for mapping. By restricting the size of the ReadyTaskList to m, the

time complexity of the node selection process would be O(n log m).

 33

Processor Selection: The complexity of the processor selection step is reduced by

restricting the choice to just two processors: the first processor that becomes free and the

enabling processor (The processor which is the last to send a data item to a node). The

authors [24] prove that the EFT of a node is always minimized by one of these two

processors. The time complexity of the processor selection step would be reduced to

O(nlogm+e). Of the two processors, the one which provides the least EFT for the

selected node is chosen. The overall time complexity of FCP is O(nlogm+e).

FCP Algorithm
 For all ni in N
 Compute tlevel(ni)
 priority(ni) ← blevel(ni)
 End For
 ReadyTaskList ← Start Node
 AdditionalTaskList ← NULL //FIFO Queue
 While ReadyTaskList is NOT NULL do
 ni ← node in the ReadyTaskList with the maximum priority
 p1← First processor in P to become free
 P2← Enabling processor of ni
 Compute EST(ni , p1)
 EFT(ni , p1)← EST(ni , p1)+ wi,1
 Compute EST(ni , p2)
 EFT(ni , p1)← EST(ni , p2)+ wi,2
 Map node ni on processor pj which provides its least EFT

 Update T_Available[pj]
 Update ReadyTaskList
 Update AdditionalTaskList (If applicable)

 End While
End FCP

Figure 2.7 The FCP algorithm

 34

2.1.9 The Fast Load Balancing Algorithm

The Fast Load Balancing (FLB) algorithm [24] is a variant of the FCP algorithm.

The node selection complexity is reduced by limiting the number of nodes in the

ReadyTaskList to m (number of processors). Additional free nodes, if any, are added to a

FIFO list. As was discussed in previous section, the earliest start time for a node can be

obtained on either the first processor to become free or a task’s enabling processor. For

each node in the ReadyTaskList, the earliest start time of the node on the first processor to

become free and the node’s enabling processor is calculated. Among the free nodes, the

node with the minimum earliest start time is selected and mapped onto the corresponding

processor. The overall time complexity of FLB is O(nlogm+e).

Table 2.8 Definition of terms used in FLB

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, n=|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, m=|P|

wi,j Time required to execute ni on pj

priority(ni) = blevel(ni)

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

,(inEST)jp Max(][_ jAvailableT , imkmnpredn cpnEFT
im ,)(),(max +∈))

),(ji pnEFT =),(, jiji pnESTw +

 35

FLB Algorithm
 For all ni in N
 Compute tlevel(ni)
 priority(ni) ← tlevel(ni)
 End For
 Readytasklist ← Start Node
 AdditionalTaskList ← NULL // FIFO queue
 While ReadyTaskList is NOT NULL
 For all ni in Readytasklist
 p1← First processor in P to become free
 p2← Enabling processor of ni
 Compute EST(ni , p1)
 Compute EST(ni , p2)
 End For
 Select ni with the least EST and map it onto the
 corresponding processor.
 Update T_Available[pj]

 Update ReadyTaskList
 Update AdditionalTaskList (If applicable)

 End While
End FLB

Figure 2.8 The FLB algorithm

2.1.10 The Hybrid Re-mapper Algorithm

Static scheduling algorithms use estimates of node execution times in the

scheduling process. Estimates can be obtained by techniques such as code profiling and

analytical benchmarking [21]. However, actual node execution times may sometimes

vary largely from the estimated execution times and may result in a bad schedule. To

mitigate this problem, the Hybrid Re-mapper [21] algorithm uses a combination of static

mapping and the actual run-time values of node execution times. It tries to fine tune the

schedule obtained by a static scheduling algorithm by making use of run-time values as

 36

and when they are made available. The inputs to the algorithm are the DAG and the

schedule obtained using a list based static scheduling heuristic. The input DAG is divided

into k levels marked 0 thru k-1, such that nodes in a level do not have precedence

constraints between one another. The start nodes are in level 0 and the exit nodes in level

k-1. Node priorities are based on their blevels. Nodes in level 0 are mapped according to

the static schedule. For levels 1 thru k-1, nodes at a level are considered for re-mapping

as soon as the first node of the previous level starts execution. The node with the highest

priority is re-mapped onto a processor that provides its least partial completion time (pct).

In the calculation of partial completion times (see Table 2.9), available run time values (if

any) are recursively used. If run time values are not available, statically obtained values

are used. The algorithm is listed in Figure 2.9. The time complexity is O(n2).

Table 2.9 Definition of terms used in Hybird Re-mapper

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG, |N|=n

P = {p1,p2, p3, p4, p5, p6….}//Set of processors, |P|=m

ei,j Time required to execute ni on pj in real time

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors in real time

)(inpriority =)(inblevel

 ips(ni) Immediate predecessor set of node ni

A[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it in real time

dr(ni)),(max(,)(kijinipsn pnpctc
ij

+∈

pct(ni , pj) = ei,j + max(A[j], dr(ni))

 37

Hybrid Re-Mapper Algorithm
 Divide the input DAG into levels such that nodes in a level are
 independent of each other
 k← number of levels
 Mark the levels starting with 0 and ending with k-1
 //Start nodes are in level 0 and exit nodes are in level k-1

 For all ni in N
 priority(ni) ← blevel(ni)
 End For

 For all ni in level 0
 Map ni using the static schedule
 End For

 For levels 1 thru k-1
 For all nodes in the current level
 ni ← node with the highest priority
 For all pj in P
 dr(ni)=),(max(,)(kijinipsn pnpctc

ij
+∈

 pct(ni , pj) = ei,j + max(A[j], dr(ni))
 End for
 Map ni onto pj that provides its least pct
 End For
 Update A[j]
 End for
End Hybrid Re-mapper

Figure 2.9 The Hybrid Re-mapper algorithm

2.1.11 Performance Comparison

The performance of DAG scheduling algorithms depends on a number of factors

such as the Communication to Computation Ratio (CCR) (the ratio of the sum of the

edge-weights to the sum of the node-weights) of the input DAG, number of nodes,

 38

processor speed variance etc. While running times of an algorithm become significant for

large DAGs, it is desirable to have an algorithm with a good performance-complexity

tradeoff. The most important performance metric used to compare the performance of

DAG scheduling algorithms is the Schedule Length Ratio (SLR). SLR is the ratio of the

overall execution time of the input DAG to the sum of the weights of the critical path

nodes on the fastest processor. Table 2.9 summarizes the relative performance of the

algorithms discussed in the previous sections.

Table 2.10 Comparison of complexity and schedule length ratio of different

algorithms

Algorithm

A

Complexity Schedule Length Ratio, L(A)

BIL O(n2+plogp) L(BIL) < L(GDL) by 20%

STDS O(n2) L(STDS) < L(BIL) for CCRs within 0.2 and 1

FLB O(nlogp+e) L(HEFT) < L(FLB) by 63% when processor speed variance

is high. Otherwise FLB performs equally well.

FCP O(nlogp+e) L(HEFT) < L(FCP) by 32 % with high processor speed

variance. Otherwise identical.

HEFT O(n2m) HEFT better than GDL,LMT by 8, 52% respectively.

 39

2.2 Scheduling a Set of Independent Tasks onto a Network of Heterogeneous

Processors to Minimize the Overall Execution Time

2.2.1 Problem Statement

Independent tasks are tasks without communication or precedence constraints. A

meta-task is a finite set of independent tasks. The overall execution time (make-span) of a

meta-task is the time required to complete the execution of all the tasks in it. The target

execution system consists of a finite number of heterogeneous processors connected with

a high speed network. Tasks in a met-task can have different execution times on different

processors. Communication among processors is assumed to be contention-less.

Computation and communication is assumed to take place simultaneously. Node

execution is assumed to be non-preemptive-nodes once scheduled on a processor cannot

be removed (preempted) and scheduled on other processors. The objective of the

independent task scheduling problem is formally described as follows. To schedule the

independent tasks of a meta-task onto a network of heterogeneous processors such that

the overall execution time of the meta-task is minimized. In the following sections,

existing research work in this area is surveyed.

2.2.2 The Min-Min and Max-Min Algorithms

In the Min-Min algorithm [15], the earliest finish time (EFT) of all the nodes over

all the processors is calculated. The node with the least EFT is selected and scheduled

 40

onto the processor on which the minimum EFT was obtained. The process is repeated

until all the tasks in the meta-task are scheduled. The time complexity is O(s2m), where s

Table 2.11 Definition of terms used in Min-Min

Term Definition

T = {t1,t2, t3, t4, t5, t6….}//Meta-Task

s =|T|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors

m =|P|

wi,j Time required to execute ti on pj

EST(ti , pj) Time at which all the tasks previously assigned to
pj complete execution

EFT(ti , pj) = EST(ti , pj)+ wi,j

Min-Min Algorithm
 While T is NOT NULL do
 For all ti in T and pj in P
 Compute EFT(ti , pj)
 End For
 tmin ← task with the least EFT
 pmin ← processor providing the least EFT
 Map tmin on pmin

 T ← T- tmin
 End While
End Min-Min

Figure 2.11 Min-Min Algorithm

 41

is the number of tasks in the meta-task and m the number of processors in the target

system. The Max-Min algorithm is similar to Min-Max, however; instead of selecting the

task with the least EFT, the task with the highest EFT is selected. Min-Min is detailed in

Figure 2.11 and the definition of terms used in Min-Min is listed in Table 2.11.

2.2.3 The Sufferage Algorithm

Term Definition

T = {t1,t2, t3, t4, t5, t6….}//Meta-Task

s =|T|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors

m =|P|

wi,j Time required to execute ti on pj

EST(ti , pj) Time at which all the tasks previously assigned to pj
complete execution

EFT(ti , pj) = EST(ti , pj)+ wi,j

FT1 Earliest finish time of ti on any processor pj

FT2 Second earliest finish time of ti on any processor pj

Sufferage(ti) FT2 - FT1

Table 2.12 Definition of Terms used in Sufferage

 42

The Sufferage algorithm [15] is based on the idea that a better mapping of tasks

can be obtained by assigning a processor to a task that “suffers” the most in case the task

Suffereage Algorithm
 T1← temporary set of tasks
 T1← NULL
 While T is NOT NULL do
 For all ti in T and pj in P
 Compute EFT(ti , pj)
 ptemp ← processor on which ti has the least EFT
 If a task is already assigned to ptemp then
 tprev ← task already assigned to ptemp

 If Sufferage(ti) > Sufferage(ptemp) then
 Remove tprev from ptemp

 Tentatively assign ti to ptemp

 T← T - ti

 T1← T1+ tprev

 Else
 T1← T1+ ti

 End If
 Else
 Tentatively assign ti to ptemp
 T← T - ti

 End If
 End For
 T ← T + T1

 T1← NULL
End While
End Sufferage

Figure 2.12 The Sufferage Algorithm

is not assigned to the processor. The sufferage of a task ti is defined as the difference

between the earliest finish time of ti and the second earliest finish time. Tasks are

considered for mapping in an arbitrary order. At each scheduling step, the earliest finish

times of a task over all the processors is computed. The processor which provides the

 43

minimum earliest finish time is determined. If a task is already scheduled on it, the

suffreages of the task under consideration and the previously scheduled task are

compared. If the sufferage of the task under consideration is greater, the previously

assigned task is removed and the given task is tentatively assigned to the processor. The

removed task is is re-inserted into the meta-task. However, if the sufferage of the task

already assigned is greater, the given task is reinserted into the meta-task and is

considered for mapping in the next iteration. At the end of the iteration, the tasks which

are tentatively mapped onto the processors are permanently mapped. The steps are

repeated until all the tasks in the meta-task are mapped. The time complexity is O(s2 m).

Table 2.12 provides the definition of terms used in Sufferage and Figure 2.12 lists the

algorithm.

 44

CHAPTER 3

THE HETEROGENEOUS CRITICAL NODE FIRST (HCNF) ALGORITHM

 This chapter presents a new task-duplication based static scheduling heuristic

called the Heterogeneous Critical Node First (HCNF) for the DAG scheduling problem

discussed in section 2.2. The chapter is organized as follows. Section 3.1 discusses the

key concepts related to the heterogeneous DAG scheduling problem that motivated the

development of HCNF. Section 3.2 discusses the algorithm in detail. Section 3.3 provides

the running trace of HCNF. Section 3.4 provides the simulation study and Section 3.5

provides concluding remarks.

3.1 Motivation

The length of the critical path in a DAG provides a lower bound on its overall

execution time [30]. Thus, minimizing the execution time of the critical path nodes would

abet minimizing the overall execution time of a DAG. One way to achieve this would be

to assign top priority to critical path nodes at each scheduling step.

A DAG may have one or more free nodes which are ready to be mapped onto the

processors at each scheduling step. In heterogeneous computing environments, local

optimization can be obtained at each scheduling step by selecting the largest task among

the free nodes and mapping it onto the processor that minimizes its finish time.

 45

Nodes have to wait until they receive all the required data from their predecessors before

they could start execution. The predecessor node which is the last to send data to a given

node is called the favorite predecessor. This process could be potentially expedited by

duplicating the execution of favorite predecessors in idle processor times. Duplicating

favorite predecessors can potentially suppress communication times and could lead to

earlier start times for the nodes.

 We propose a static scheduling algorithm called the Heterogeneous Critical Node

First (HCNF) that incorporates the strategies discussed above in the scheduling process.

At each scheduling step, among the free nodes, HCNF assigns top priority to a critical

path node and schedules it onto a processor that minimizes its finish time. In the absence

of a critical path node, HCNF picks the largest node and assigns it onto a processor that

minimizes its finish time. HCNF also explores the possibility of duplicating favorite

predecessors in idle processor times to obtain earlier start times. The algorithm is

explained next.

3.2 The HCNF Algorithm

HCNF begins by identifying the critical path/s of the input DAG. Nodes

belonging to the critical path/s are marked as CP nodes. The algorithm starts the mapping

process by mapping the start-node onto the processor that provides its fastest execution

time. If the fastest execution time is obtained on more than one processor, the processor

with the least average execution time over all nodes is selected. (The average execution

time over all nodes of a processor is the sum of the execution times of all the nodes in the

DAG on the processor divided by the number of nodes) Among the immeddiate

 46

successors of the start-node, the CP node is inserted at the beginning of the

ReadyTaskList. The remaining nodes are added to the ReadyTaskList by the decreasing

order of their node weights. At each scheduling step, the first node of the ReadyTaskList

is selected for mapping. Table 3.1 defines the terms used in HCNF and Figure 3.1 lists

the algorithm.

Table 3.1 HCNF-definition of terms

Term Definition

N = {n1, n2, n3, n4, n5, n6….}//Set of nodes in the DAG

n =|N|

P = {p1,p2, p3, p4, p5, p6….}//Set of processors

m =|P|

wi,j Time required to execute ni on pj

ci,j Time required to transfer all the requisite data from ni to nj when
they are scheduled on different processors

T_Available[pj] Time at which processor pj completes the execution of all the
nodes previously assigned to it

)(inpred Set of immediate predecessors of task in

nen Favorite Predecessor (A node which is the last to send data to a
given node.)

,(1 inEST)jp Max(Max(][_ jpAvailableT , imkmnpredn cpnEFTMax
im ,)(),(+∈))

,(2 inEST)jp Max(Max(][_ jpAvailableT ,EST(nen,pj))+wen,,j

, imkmnnpredn cpnEFTMax
enim ,)(),(+−∈))

,(inEST)jp Min(EST1(ni,pj),EST2(ni,pj))

),(ji pnEFT =),(, jiji pnESTw +

 47

EST2(ni,pj) is the earliest start time of node ni on processor pj assuming that nen (the

favorite predecessor of ni) would be duplicated on pj. EST1(ni,pj) is the earliest start time

of node ni on processor pj without duplicating the favorite predecessor. EFT(ni,pj) is the

earliest finish time of ni on pj . At each scheduling step, for the selected node ni,

EFT(ni,pj) over all the processors is computed. fproc(ni) is the processor on which the

least EFT is obtained. If EST2(ni,pj) is used in the computation of the least EFT, nen is

duplicated on fproc(ni), otherwise; nen is not duplicated. ni is mapped onto fproc(ni). ni is

then removed from the ReadyTaskList and its successors are added to it. The nodes in the

ReadyTaskList are realigned as follows. The CP node is inserted at the first position. In

the presence of multiple CP nodes, the CP nodes are sorted by the descending order of

their node weights and are inserted at the beginning of the ReadyTaskList. All the

remaining (non-CP) nodes are sorted by the decreasing order of their node weights. The

first node in the ReadyTaskList is selected for mapping and is scheduled onto a processor

that provides its least EFT (as discussed earlier). The process is repeated until all the

nodes in the DAG are scheduled.

HCNF takes O(n2) to find the critical path, O(np) to calculate the EFTs and

O(n*logn) to sort the tasks in the descending order using merge-sort. Ignoring the lower-

order terms, the overall time complexity would be O(n2).

3.3 Running trace of HCNF

The working of HCNF is illustrated with a sample DAG G1 shown in Figure 3.2.

The target execution system consists of three processors: p1, p2 and p3. Node execution-

 48

times are listed in Table 3.2. Node weights in Figure 3.2 represent average execution

times. Run-time values for each step of HCNF are shown in Table 3.3. The Gantt chart

for the final schedule is shown in Fig. 3.4 and the Gantt chart for the individual steps are

shown in Figures 3.5 thru 2.17. HCNF begins by calculating the critical path of G1 (

1→2→9→10) and marking the critical path nodes.

Step 1 (Figure 3.5) The start node (node 1) is mapped onto processor 3 which provides

its least finish time of 9 seconds.

Step 2 (Figure 3.6) Among the successors of node 1, the CP node (node 2) is inserted at

the beginning of the ReadyTaskList and the remaining nodes are inserted in the

descending order of their weights. Node 2 is selected for mapping and its EFTs over all

the processors is computed (see Figure 3.3). Both p1 and p3 provide the least finish time

(27 seconds). However, since the finish time on p1 is obtained by duplicating node 1, p3 is

chosen. Node 2 is removed and the ReadyTaskList is updated to {3,4,6,5} .

Step 3 (Figure 3.7) Node 3 is selected for mapping. The minimum EFT is obtained on p1

by duplicating node 1 on p1. The successor of node 3 (node 7) becomes free as a result of

this mapping and the ReadyTaskList is updated to {4,6,5,7}

Step 4 (Figure 3.7) Node 4 is selected for mapping. The minimum EFT is obtained on p2

by duplicating node 1 on p2. The ReadyTaskList is updated to {6,5,7}

Step 5 (Figure 3.8) Node 6 is selected for mapping. The minimum EFT is obtained on p1

.Node 6 is scheduled on p3 and one of the successor nodes (node 8) becomes free as a

result of this mapping. The ReadyTaskList is updated to {5,7,8}.

 49

Algorithm HCNF

//Identify the CP nodes of the input DAG
//Map the Start-Node onto a processor that provides its fastest execution time
//Among the successors of the Start-Node , add the CP node to the ReadyTaskList
//Add the remaining successors of the Start-Node in the decreasing order of task sizes
to the ReadyTaskList

While ReadyTaskList is NOT NULL do
tn ←First node in the ReadyTaskList

For all pj P∈ do
 EST1(nt , pj) = Max{T_available[pj],k ≠ j EFT(nen , pk)+ ck,j}
 If(EST(nen , pj) ≥ T_available[pj]) then
 EST2(nt , pj) = EST(nen , pj)+ wen,,j
 Else
 EST2(nt , pj) = T_available[pj] + wen,,j

 End if
 If EST1(nt , pj) ≤ EST2(nt , pj) then
 EST(nt , pj)= EST1(nt , pj)
 Else
 EST(nt , pj)= EST2(nt , pj)
 Tentatively duplicate nen on Processor pj
 End if

EFT(nt , pj)= EST1(nt , pj)+ wt,,j
 End For

 fproc(nt) ← processor pj that provides minimum EFT for nt
 Map nt on fproc(nt) and permanently duplicate any tentatively duplicated
 nen node
 Add the successors of tn to the ReadyTaskList
 ReadyTaskList← ReadyTaskList - nt
 Realign the ReadyTaskList such that the CP node is in the first position
 and the remaining nodes are sorted in the decreasing order of their weights

End While
End HCNF

Figure 3.1 The HCNF algorithm

 50

Figure 3.2 Sample DAG (G1)

Table 3.2 Task execution times of G1 on three different processors

ni p1 p2 p3 Average

Execution

Time
1 14 16 9 13
2 13 19 18 16.67
3 11 13 19 14.33
4 13 8 17 14
5 12 13 10 11.66
6 13 16 9 12.67
7 7 15 11 11
8 5 11 14 10
9 18 12 20 16.67
10 21 7 16 14.67

 51

Table 3.3 Run-time values for G1

EST1(ni , p1) EST1(ni , p2) EST1(ni , p3)

EST2(ni , p1) nen EST2(ni , p2) nen EST2(ni , p3) nen
Iteration ReadyTaskLsit ni

EFT(ni , p1) EFT(ni , p2) EFT(ni , p3)

EFT(ni) fproc(ni)

0 0 0
0 n/a 0 n/a 0 n/a

1

1 1

14 16 9

9 3

27 27 9
14 1 16 1 n/a n/a

2 2,3,4,6,5 2

27 35 27

27 3

27 27 27
14 1 16 1 n/a n/a

3 3,4,6,5 3

25 29 46

25 1

25 18 27
n/a n/a 16 1 n/a n/a

4 4,6,5,7 4

38 24 44

24 2

25 24 27
n/a n/a n/a n/a n/a n/a

5 6,5,7 6

38 40 36

36 3

25 24 36
n/a n/a n/a n/a n/a n/a

6 5,7,8 5

37 37 46

37 1

47 50 50
50 4 43 5 47 5

7 9,7,8 9

65 55 67

55 2

37 55 48
n/a n/a 68 3 55 3

8 7,8 7

44 70 49

44 1

51 55 51
57 6 71 6 53 4

9 8 8

56 66 65

56 1

68 67 68
77 9 66 8 88 9

10 10 10

89 74 86

74 2

0

10

20

30

40

50

60

70

80

1 2 3
Processors

Ti
m

e
(S

ec
)

Duplicated Idle Task

1
11

24

5

3

11

9

8

10

5

7

8

6

 52

Figure 3.4 Gantt chart for G1

Step 6 (Figure 3.9) Node 5 is selected for mapping. The minimum EFT is obtained on p1

.Node 5 is scheduled on p1 and node 9 becomes free as a result of this mapping. The

ReadyTaskList is updated to {9,7,8} (since 9 is a CP node, it is inserted at the beginning

of the list)

Step 7 (Figure 3.10) Node 9 is selected for mapping. The minimum EFT is obtained on

p2 by duplicating node 5. The ReadyTaskList is updated to {7,8}.

Step 8 (Figure 3.11) Node 7 is selected for mapping. The minimum EFT is obtained on

p1. The ReadyTaskList is updated to {8}

Step 9 (Figure 3.12) Node 8 is selected for mapping. The minimum EFT is obtained on

p3. Node 10 becomes free as s result of this mapping and the ReadyTaskList is updated to

{10}.

Step 10 (Figure 3.13) Node 10 is selected for mapping. The minimum EFT is obtained on

p2 by duplicating node 8.

 53

Figure 3.5 HCNF running trace-step 1:
Node 1 is scheduled on processor 3

Figure 3.6 HCNF running trace-step 2:
Node 2 is scheduled on processor 3

Figure 3.7 HCNF running trace-step 3:
Node 3 is scheduled on processor 1 by

duplicating node 1

Figure 3.8 HCNF running trace-step 4:
Node 4 is scheduled in processor 2 by

duplicating node 1

 54

Figure 3.9 HCNF running trace-step 5:
Node 6 is scheduled on processor 3

Figure 3.10 HCNF running trace-step 6:

Node 5 is scheduled on processor 1

Figure 3.11 HCNF running trace-step 7:
Node 9 is scheduled on processor 2 by

duplicating node 5

Figure 3.12 HCNF running trace-step 8:
Node 7 is scheduled in processor 1

 55

Figure 3.13 HCNF running trace-step 9:
Node 8 is scheduled on processor 3

Figure 3.14 HCNF running trace –step10
Node 10 is scheduled on processor 2 by

duplicating node 8

3.4 Simulation Study

The simulation study consists of two parts. In the first part, the performance of

HCNF is compared against that of the Heterogeneous Earliest Finish Time (HEFT) [30]

algorithm. The experimental test suite[18] includes: randomly generated graphs,

Gaussian elimination graphs, Trace graphs, Benchmark graphs and Application graphs.

In the second part, a parametric random graph generator is developed to generate a

diverse range of graphs with specified input parameters. The performance of HCNF is

compared against that of the HEFT and the Scalable Task Duplication based scheduling

algorithm (STDS) [25].

3.4.1 Performance Parameters

 The three commonly used performance parameters to gauge the performance of

DAG scheduling algorithms are:

 56

Schedule Length Ratio (SLR): The ratio of the overall execution time of a DAG to the

sum of the weights of its critical-path nodes on the fastest processor.

Speedup: The ratio of the sequential execution time of the DAG on the fastest processor

to the parallel execution time.

Efficiency: The ratio of the speedup to the number of processors in the system.

3.4.2 Randomly Generated Graphs

The performance of HCNF and HEFT was compared using randomly generated

graphs of different sizes and CCRs. Each node in the random graph was allowed to have

up to five children. Node and the edge weights were generated randomly and the edge

weights were then iteratively adjusted to obtain a given CCR.

The SLR and speedup of HCNF and HEFT was compared using graphs of

different sizes. For each graph size shown in Figures 3.15 and 3.16, readings were

averaged using 10 random graphs of the same size with CCRs ranging from 0.5 to 1.5.

and out_degree = {1,2,5,100}. The average SLR of HCNF was better than HEFT by

12.3% and the speedup was better than HEFT by 7.9 %.

 57

0

1

2

3

4

5

6

7

8

20 30 40 50 60 70 80 90 100

Number of Nodes

S
LR

HEFT HCNF

Figure 3.15 Average SLR vs. number of nodes

0

0.5

1

1.5

2

2.5

3

3.5

20 30 40 50 60 70 80 90 100

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.16 Average speedup vs. number of nodes

 58

3.4.3 Gaussian Elimination Graphs

 The SLR and Efficiency of HEFT and HCNF were compared using DAGs

representing the Gaussian Elimination algorithm. Figure 3.17 gives the SLR for matrix

sizes ranging from 5 to 15. HCNF outperformed HEFT by an average of 25.7%. Figure

3.18 gives the efficiency for different number of processors, with the matrix size fixed at

50. HCNF outperformed HEFT by an average of 22.6%. The efficiency of HCNF

increased with the number of processors because of increased speedup facilitated by

enhanced task duplication (in the presence of a lager number of processors).

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 6 7 8 9 10 11 12 13 14 15
Matrix Size

S
LR

HEFT HCNF

Figure 3.17 Average SLR vs. matrix size

3.4.4 Benchmark Graphs

 DAG scheduling algorithms are commonly compared using randomly generated

graphs. However, to facilitate a fair and an unbiased comparison of algorithms from

 59

different authors, some researchers [21] have proposed using benchmark graphs. In the

following sections we compare the performance of HCNF using the “benchmark graph

test suite” [21]. The benchmark test suite consists of: Trace graphs, Graphs with optimal

solution generated by the branch and bound technique, Graphs with predetermined

optimal solutions and Application graphs

3.4.4.1 Trace Graphs

 These graphs are obtained from the referenced articles listed in Table 3.4.The

SLR and speedup of HEFT and HCNF was compared using these graphs. Figures 3.19

and 3.20 show the results. HCNF outperformed HEFT in SLR and speedup by an average

of 29.5% and 38.4% respectively

0

0.1
0.2

0.3

0.4
0.5

0.6

0.7

0.8
0.9

1

2 4 8 16

Number of Processors

E
ffi

ci
en

cy

HEFT HCNF

Figure 3.18 Efficiency vs. no. of processors

 60

.3.4.4.2 Random Graphs with Optimal Solutions (RGBOS)

 DAGs in this set are small sized, with the maximum node size being 32. Their

optimal solution can be obtained using the branch and bound technique. The set consists

of three subsets of graphs with different CCRs (0.1, 1.0, 10.0), and number of nodes vary

from 10 to 32, in increments of 2. Figures 3.21 thru 3.26 show the results. HNCF

outperformed HEFT in SLR and speedup by 32.5% and 24.6% respectively.

3.4.4.3 Random Graphs with Pre-Determined Optimal Schedules (RGPOS)

 The graphs in this set are reverse engineered [23]. A schedule for a set of

multiprocessors is generated and then the node and the edge weights are generated

randomly, but, consistent with the generated schedule. The graphs comprise of three sets

with CCR values 0.1,1.0 and 10.0. Within each set, the number of nodes vary from 50 to

500 in increments of 50. Figures 3.27 thru 3.32 show the results. HCNF outperformed

HEFT in SLR and speedup by 21.1% and 16.9% respectively.

Table 3.4 Trace graph details

Graph Tag Trace Graph # of Nodes Article Reference
D1 Ahmed-Kwok 13 [22]
D2 Yang-1 7 [13]
D3 Colin-Chretienne 9 [25]
D4 McCreary 9 [12]
D5 Kruatrachue 11 [16]
D6 Yang-2 7 [19]
D7 Ranka 11 [22]
D8 Shirazi 11 [23]
D9 Wu-Gajski 18 [25]
D10 Al-Maasarani 16 [33]
D11 AL-Mouhamed 17 [32]

 61

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Trace Graphs

S
LR

HEFT HCNF

Figure 3.19 Trace Graphs-SLR

0

0.5

1

1.5

2

2.5

3

3.5

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Trace Graphs

S
pe

ed
up

HEFT HCNF

Figure 3.20 Trace Graphs-Speedup

 62

0

0.5

1

1.5

2

2.5

3

3.5

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
LR

HEFT HCNF

Figure 3.21 RGBOS SLR (CCR = 0.1)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
LR

HEFT HCNF

Figure 3.22 RGBOS SLR (CCR = 1.0)

 63

0

0.5

1

1.5

2

2.5

3

3.5

4

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
LR

HEFT HCNF

Figure 3.23 RGBOS SLR (CCR = 10.0)

0

0.5

1

1.5

2

2.5

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.24 RGBOS Speedup (CCR = 0.1)

 64

0

0.5

1

1.5

2

2.5

3

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.25 RGBOS Speedup (CCR = 1.0)

0

0.5

1

1.5

2

2.5

3

3.5

4

10 12 14 16 18 20 22 24 26 28 30 32

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.26 RGBOS Speedup (CCR = 10.0)

 65

Figure 3.27 RGPOS SLR (CCR = 0.1)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
LR

HEFT HCNF

Figure 3.28 RGPOS SLR (CCR = 1.0)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
LR

HEFT HCNF

 66

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
LR

HEFT HCNF

Figure 3.29 RGPOS SLR (CCR = 10.0)

0

0.5

1

1.5

2

2.5

3

3.5

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.30 RGPOS Speedup (CCR = 0.1)

 67

0

0.5

1

1.5

2

2.5

3

3.5

4

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.31 RGPOS Speedup (CCR = 1.0)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

50 100 150 200 250 300 350 400 450 500

Number of Nodes

S
pe

ed
up

HEFT HCNF

Figure 3.32 RGPOS Speedup (CCR = 10.0)

 68

3.4.4.5 Application Graphs

 These graphs represent a few numerical parallel application programs. This set

contains of over 320 graphs in six categories: Cholesky factorization, LU decomposition,

Gaussian elimination, FFT, Laplace transforms and Mean Value Analysis (MVA). The

number of nodes ranges from 100 to 300. Figures 3.33 to 3.44 show the results of the

simulation. On an average, HCNF outperformed HEFT in SLR and Speedup by 27.5%

and 22.7% respectively

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.33 Fast Fourier Transform SLR vs. CCR

 69

0

0.5

1

1.5

2

2.5

3

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.34 Fast Fourier Transform Speedup vs. CCR

0

0.5

1

1.5

2

2.5

3

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.35 Cholesky Factorization Speedup vs. CCR

 70

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.36 Gaussian Elimination Speedup vs. CCR

0

0.5

1

1.5

2

2.5

3

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.37 Laplace Transform Speedup vs. CCR

 71

0

0.5

1

1.5

2

2.5

3

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.38 LU Decomposition Speedup vs. CCR

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 1 2 10

CCR

Sp
ee

du
p

HEFT HCNF

Figure 3.39 MVA Speedup vs. CCR

 72

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.40 Cholesky SLR vs CCR

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.41 Gaussian Elimination SLR vs.CCR

 73

0

0.5

1

1.5

2

2.5

3

3.5

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.42 Laplace Transform SLR vs.CCR

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.43 LU Decomposition SLR vs. CCR

 74

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.5 1 2 10

CCR

SL
R

HEFT HCNF

Figure 3.44 MVA SLR vs. CCR

3.4.5 Performance Comparison using a Parametric Random Graph Generator

 The performance of DAG scheduling algorithms varies largely with the type of

the input DAG. In order to conduct a fair comparison, we need to evaluate the

performance using a comprehensive set of randomly generated DAGs, exhibiting a wide

range of parameters. In our simulation study, a parametric random graph generator was

developed to generate diverse DAG types based on the following input parameters.

• n : Number of nodes in the DAG

 75

• CCR (Communication to Computation Ratio): Ratio of the sum of the edge

weights to the sum of the node weights in a DAG.

• out_degree: Maximum number of children a node in the DAG can have.

• α (The shape parameter of a DAG) : The height of a DAG is randomly generated

from a uniform distribution with mean equal to α × n . The width of a DAG is

randomly generated from a uniform distribution with mean equal to n ÷ α

• β (Range percentage of computation costs on processors): If the average

computation cost of a node over all the processors is avg_comp , the computation

cost ni on any processor pj is randomly selected from the range-

 avg_comp×(1- β/2) ≤ avg_comp ≤ avg_comp×(1+ β/2)

Input parameters were assigned the following values in our simulation study.

• n = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

• CCR = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5,
5.0}

• α = {0.5, 1.0, 2.0}

• out_degree = {1, 2, 5, 100}

• β = {0.1, 0.5, 0.75, 1.0}

These combinations yield 8640 different DAG types. For each DAG type, 25 different

random graphs were generated with the same parameters but with different edge and

node weights. Thus a sum total of 216,000 random DAGs were used in the study. The

 76

number of processors was fixed at 10. The processor speeds were randomly selected

based on the β value.

 Figure 3.45 provides the SLR of HCNF, HEFT and the STDS algorithms for graphs with

different Node sizes. Each data point is averaged over 864 distinct readings. The average

SLR improvement of HEFT over STDS is 6%, and over HEFT is 10% approximately.

Figure 3.46 gives the average speedup versus number of nodes. Each data point is

averaged over 864 different readings. The Average improvement in the speedup of the

HCNF over STDS is 9%, and over HEFT is 14%. Figure 3.47 provides the average SLR

values for CCR values ranging from 0.1 to 1.0 in steps of 0.1. Each data point is averaged

over 480 different readings. The average improvement of HCNF over HEFT is 11% and

over HEFT is 4 %. Figure 3.48 provides the average SLR values for CCR values ranging

from 1.0 to 5.0 in steps of 0.5. Each data point is averaged over 480 different readings.

The average improvement of HCNF over STDS is 7% and over HEFT is 11%. For higher

CCRs the STDS algorithm performs better than the HEFT algorithm since there is more

scope for task duplication. Figure 3.49 provides the average Speedup values for CCR

values ranging from 0.1 to 1.0 in steps of 0.1. Each data point is averaged over 480

different readings. The average improvement of HCNF over HEFT is 18% and over

HEFT is 9%. Figure 3.50 provides the average SLR values for CCR values ranging from

1.0 to 5.0 in steps of 0.5. Each data point is averaged over 480 different readings. The

average improvement of HCNF over STDS is 9% and over HEFT is 5%.

 77

0

1

2

3

4

5

6

7

8

20 30 40 50 60 70 80 90 100

Number of Nodes

S
LR

HEFT STDS HCNF

Figure 3.45 Parametric random graphs - SLR vs. number of nodes

0

0.5

1

1.5

2

2.5

3

20 30 40 50 60 70 80 90 100

Number of Nodes

S
pe

ed
up

HEFT STDS HCNF

Figure 3.46 Parametric random graphs - Speedup vs. number of nodes

 78

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCR

S
LR

HEFT STDS HCNF

Figure 3.47 Parametric random graphs-SLR vs. CCR (0.1 to 0.9)

0

1

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

S
LR

HEFT STDS HCNF

Figure 3.48 Parametric random graphs-SLR vs. CCR (1.0 to 5.0)

 79

0

0.5

1

1.5

2

2.5

3

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

CCR

S
pe

ed
up

HEFT STDS HCNF

Figure 3.49 Parametric random graphs-Speedup vs. CCR (0.1 to 0.9)

0

0.5

1

1.5

2

2.5

3

3.5

1 1.5 2 2.5 3 3.5 4 4.5 5

CCR

S
pe

ed
up

HEFT STDS HCNF

Figure 3.50 Parametric random graphs-Speedup vs. CCR (1.0 to 5.0)

 80

3.5 Conclusion

 A new task-duplication based static scheduling algorithm called the

Heterogeneous Critical Node First (HCNF) for scheduling DAGs onto a network of

heterogeneous processors was proposed. The performance of HCNF, HEFT and STDS

was compared using randomly generated graphs, benchmark graphs and parametric

graphs. HCNF clearly outperformed both HEFT and STDS with respect to speedup and

SLR. The superior performance of HCNF can be attributed to the low-cost task

duplication strategy that facilitates earlier start times for many nodes which otherwise

have to wait for all the data items to arrive from their favorite predecessors. HCNF can be

improved by exploring the possibility of duplicating the second and the third favorite

predecessors (if any) to further expedite the start times of nodes. The feasibility of such

an approach needs to be investigated.

 81

CHAPTER 4

THE HETEROGENEOUS LARGEST TASK FIRST (HLTF) ALGORITHM

 This chapter presents a new low-complexity algorithm called the Heterogeneous

Largest Task First (HLTF) for scheduling independent tasks of a meta-task onto a

network of heterogeneous processors to minimize the overall execution time. The

problem was formally defined in section 2.8. This chapter is organized as follows.

Section 4.2 discusses the motivation behind the development of HLTF. Section 4.2

describes the algorithm in detail. Section 4.3 provides the running trace of HLTF.

Section 4.4 discusses the theoretical non-equivalence of HLTF and the Sufferage

algorithm [23] and section 4.5 provides the simulation study.

4.1 Motivation

A meta-task is a set of independent tasks without any precedence constraints.

Scheduling a meta-task onto a set of heterogeneous processors to minimize the overall

execution time is a NP-complete problem. Among the scheduling algorithms discussed in

the literature review, the Sufferage has the best performance in terms of minimizing the

makespan [23]. The time complexity of Sufferage is O(s2* m), where s is the size of the

meta-task and m the number of processors.

 82

Meta-computing systems such as clusters and grids need to schedule tens of

thousands of tasks on a regular basis. A meta-task could contain over a 1000 independent

tasks in practical scenarios [23]. Figure 4.1 summarizes the running times of Sufferage.

Sufferage takes more than 100 seconds to schedule a meta-task of 1000 tasks. The

running time increases with the size of the meta-task. The algorithm takes more than

3000 seconds to schedule a meta-task of 5000 tasks. This can be mainly attributed to the

high time complexity O(s2* m) of the Sufferage algorithm . The high running times of

Sufferage could be a major bottleneck in the scheduling process and could negatively

impact the overall performance of a meta-computing system.

To counter this problem, we propose a new low-complexity algorithm called the

Heterogeneous Largest Task First (HLTF) to map a meta-task onto a set of heterogeneous

processors with an objective to minimize its makespan. Simulation results in chapter 4.5

reveal that in terms of minimizing the makespan, HLTF is at par with Sufferage.

However, with respect to running times, HLTF with a lower time complexity of O(s(log s

+ m)), significantly outperforms Sufferage.

 4.2 The Heterogeneous Largest Task First (HLTF) Algorithm

 HLTF adapts a simple approach to reduce the overall time complexity of the

scheduling process. We first recap the working of the Sufferage algorithm and then

explain the working of HLTF. Table 4.1 provides the definition of terms used in HLTF

and the Sufferage algorithms.

 83

Sufferage Running Times

0

500

1000

1500

2000

2500

3000

3500

4000

1000 2000 3000 4000 5000

Metatask Size

S
ec

on
ds

Figure 4.1 Running times of the Sufferage Algorithm

The Sufferage Algorithm

The algorithm is listed in Figure 4.1. At each scheduling step, the Sufferage

algorithm picks an arbitrary task from the meta-task set and computes its Earliest

Completion Time (ECT), favorite processor (fproc) and Sufferage values. If the task’s

favorite processor has no task previously assigned to it, the current task is tentatively

assigned to it. However, if the task’s favorite processor has a task already assigned to it,

the Sufferages of the current task and the task already assigned are compared. If the

Sufferage of the current task is higher, the previously assigned task is removed and the

current task is assigned to it. The task that is removed is reinserted into the meta-task.

The process is repeated until all the tasks of the Meta-Task set are scheduled.

The HLTF Algorithm

 The calculation of Sufferages at each scheduling step, re-inserting the tasks into

the meta-task list and repeating all the steps each time a task is reinserted into the list

 84

leads to the high complexity O(s2* m) of the Sufferage Algorithm. The HLTF algorithm

listed in Figure 4.3 drastically reduces the time complexity of the Sufferage Algorithm by

adopting the following approach. Instead of tentatively mapping tasks to processors,

HLTF algorithm sorts all tasks in the meta-task set in the non-decreasing order of their

sizes before the start of the mapping process. At each scheduling step HLTF picks the

largest task in the list and maps it onto a processor that provides its earliest completion

time. This seemingly simple approach leads to a very substantial decrease in running time

without compromising the performance. Simulation results are reported in Section 4.5.

The HLTF algorithm takes O(s*log s) to perform merge sort, O(s* m) to compute the

completion times of the tasks on all the processors and O(s * m) to compute the earliest

completion time of each task. The overall time complexity is O(s* log s+ s*m+ s) or

O(s(log s)+m)).

4.3 Theoretical nonequivalence of Sufferage and HLTF algorithms

 At each scheduling step, the Sufferage algorithm maps the task with the

maximum Sufferage to a machine that provides its earliest finish time. The HLTF

algorithm, at each scheduling step, maps the largest task among the candidate tasks to a

machine that provide its earliest finish time. Intuitively, the Sufferage and the HLTF

algorithms seem to be equivalent.This is because we tend to assume that the largest task

will always have the maximum Sufferage i.e for any two tasks ti and tj in the meta-task

set (t1, t2, t3,…tn-1, tn) where ti > tj and i < j , Sufferage(ti) > Sufferage(tj). However, this

is not the case always and is proved in Theorem 1.

 85

Table 4.1 Definition of Terms used in Sufferage and HLTF

Term Definition

T Meta-task set of size s

M Set of processors available for scheduling

m Number of processors

T_available(pj) Time at which processor pj can start execution of a new task.

Wk,j Running time of task tk on processor pj.

CT(tk, pj) T_available(pj)+ Wk,j // Execution completion time of task tk on

processor pj.

ECT(tk) Min kЄT & jЄM{ CT(tk, pj) }//Earliest Completion time of task tk

Proc(tk) The processor on which ECT(tk) can be obtained

Sufferage(tk) ECT(tk)-Second best CT(tk)

HLTF Algorithm
Sort T using merge sort in non-decreasing order
While T ≠ Φ do

 Pick the largest task tk in T.
 For all j Є M
 Compute CT(tk, pj)
 End For

Compute ECT(tk)
T=T- {tk}

 Schedule tk on Proc(tk)
End While
End HLTF

 Figure 4.2 HLTF Algorithm

 86

Sufferage Algorithm
While T ≠ Φ do
Pick a task tk Є T in an arbitrary order.
For all j Є M

 Compute CT(tk, pj)
End For
Compute ECT(tk)
Sufferage(tk)= ECT(tk)-Second best CT(tk)
 If Proc(tk) has a task ts already assigned to it
 If Sufferage(tk)> Sufferage(ts)
 Remove ts from Proc(tk) and schedule tk on Proc(tk)
 T=T+ {ts}
 T=T- {tk}
 End If
 Else
 Schedule tk on Proc(tk)
 T=T- {tk}
 End If
End While
End Sufferage

Figure 4.3 The Sufferage algorithm

Thoerem 1 : For any two tasks ti and tj in the meta-task set (t1, t2, t3,…tn-1, tn) where ti > tj

and i < j , Sufferage(ti) is not always greater than Sufferage(tj)

Case 1 : Let mx and my be the processors on which tasks ti and tj obtain their best ect

and the next best ect’s repectively. Let px and py where px > py , be the speeds of

processors mx and my in MIPS.

Sufferage(ti)=(ti/ py+T_Available(py)) – (ti/ px + T_Available(px))

Sufferage(tj)= (tj/ py+T_Available(py)) – (tj/ px + T_Available(px))

To prove

Sufferage(ti)> Sufferage(tj)

 87

or, (ti/ py+T_Available(py)) – (ti/ px + T_Available(px)) > (tj/ py+T_Available(py)) – (tj/

px + T_Available(px))

or, ti/ py+T_Available(py) – ti/ px - T_Available(px) > tj/ py+T_Available(py) – tj/ px -

T_Available(px)

 or, ti/ py- tj/ py> ti/ px- tj/ px OR

(ti- tj)/ py > (ti- tj)/ px

Which is true since ti > tj , (ti- tj) > 0 and px > py

Case 2 : Let mx and my be the processors on which tasks ti and tj obtain their best ect

and the next best ect’s repectively. Let px and py where px < py , be the speeds of

processors mx and my in MIPS.

Sufferage(ti)=(ti/ py+T_Available(py)) – (ti/ px + T_Available(px))

Sufferage(tj)= (tj/ py+T_Available(py)) – (tj/ px + T_Available(px))

To prove

Sufferage(ti)> Sufferage(tj)

or, (ti/ py+T_Available(py)) – (ti/ px + T_Available(px)) > (tj/ py+T_Available(py)) – (tj/

px + T_Available(px))

or, ti/ py+T_Available(py) – ti/ px - T_Available(px) > tj/ py+T_Available(py) – tj/ px -

T_Available(px)

 or, ti/ py- tj/ py> ti/ px- tj/ px OR

(ti- tj)/ py > (ti- tj)/ px

Which is NOT true since ti > tj , (ti- tj) > 0 and px < py

 Therefore for any two tasks ti and tj in the meta-task set (t1, t2, t3,…tn-1, tn) where ti > tj

and i < j , Sufferage(ti) > Sufferage(tj) is not always true.

As an example, in Table 4.2 observe that in the third iteration, T3 is the largest task in the

Metatask set and the HLTF algorithm picks T3 and schedules it onto its favorite

processor p1. However, notice that the Sufferage of T3 (14.25) is less than the sufferage

of T2 (16.91), despite T3 being larger than T2. Also, observe that the fproc1 of all the

 88

tasks is processor 1, the fproc2 of all the tasks is processor 3 and the speed of processor 1

(4 MIPS) is less than that of processor 3 (5 MIPS). This scenario illustrates case 2 of

Theorem 1 and provides a practical example of the difference between the Sufferage and

the HLTF algorithms

4.4 Simulation and Results

 Simulations were conducted on a 440 MHz Sun Ultra 5 machine running on a

Solaris 8 Operating System. We compared the relative performance of HLTF and

Sufferage w.r.t makespan and running costs. We developed a simulator with the

following input parameters.

n : Number of tasks in the metatask.

p: Number of processors in the distributed system.

std_dev: Standard deviation of the metatask

size_min :Minimum task size in MIPS.

size_max: Maximum task size in MIPS.

m: Number of metatasks.

The maximum number of the processors used in our simulations was 20.

 89

4.4.1 Comparison of Makespan

 The makespan of various metatasks using HLTF and sufferage was measured

using the following input parameters.

n ={50,100,200,300,400,500,750,1000}

P ={5,10,15,20}

std_dev={5,10,15,20,25,30}

size_min ={10}

size_max ={ 100}

m ={1}

The results are shown in Figures 3 to 6. Each data point is an average different readings

on 4 different processors. The performance of HLTF was slightly better than that of

Sufferage. An important observation was that we did not come across a metatask for

which the performance of Sufferage was better than that of HLTF. The Average

improvement of HLTF over Sufferage was 0.48%.

4.4.2 Comparison of Running Costs

The running times of Sufferage and HLTF were measured using different

metatask sizes. The results are shown in Figures 4.10 to 4.12. Each data point is an

average of 25 different readings. The running cost of the Sufferage Algorithm

exponentially increases as the size of the met-task increases. For meta-task sizes > 1000,

the HLTF provides a very significant reduction in the running costs.

 90

Table 4.2 Example showing nonequivalence of the Sufferage and the HLTF Algorithms:

Sufferage

Meta-Task={t1,t2,t3,t4,t5,t6}
Task Sizes t1=157, t2=111, t3=143, t4=128, t5=111, t6=149 (MI)

Processor Speeds p1=4, p2=5, p3=6 (MIPS)

HLTF

Meta-Task={t1,t6,t3,t4,t2,t5}// Sorted in

the non decreasing order using merge sort

First Iteration

task Eft1 fproc1 eft2 fproc2 Sufferage

T1 26.17 3 31.4 2 5.23

T2 18.5 3 22.2 2 3.7

T3 23.83 3 28.6 2 4.77

T4 21.33 3 25.6 2 4.27

T5 18.5 3 22.2 2 3.76

T6 24.83 3 29.8 2 4.97

Schedule t1 on processor 3 Meta-Task={t2,t3,t4,t5,t6}

t_avail[1]=0, t_avail[2]=0, t_avail[3]=26.16

First Iteration

Largest task = t1

Schedule task t1 on processor p3

t_avail[1]=0, t_avail[2]=0, t_avail[3]=26.16
Meta-Task={t6,t3,t4,t2,t5}

Second Iteration

task Eft1 fproc1 eft2 fproc2 Sufferage

T2 22.2 2 27.75 1 5.55

T3 28.6 2 35.75 1 7.15

T4 25.6 2 32 1 6.4

T5 22.2 2 27.75 1 5.55

T6 29.8 2 37.25 1 7.45

Schedule t6 on processor 2 Meta-Task={t2,t3,t4,t5}

t_avail[1]=0, t_avail[2]=29.8 , t_avail[3]=26.16

Second Iteration

Largest task = t6

Schedule task t6 on processor p2

t_avail[1]=0, t_avail[2]=29.8,

t_avail[3]=26.16
Meta-Task={t3,t4,t2,t5}

Third Iteration

task Eft1 fproc1 eft2 fproc2 sufferage

T2 27.75 1 44.67 3 16.92

T3 35.75 1 50 3 14.25

T4 32.0 1 47.5 3 15.5

T5 27.75 1 44.67 3 16.92

Schedule t2 on processor 1 Meta-Task={t3,t4,t5}

t_avail[1]=27.75, t_avail[2]=29.8 , t_avail[3]=26.16

Third Iteration

Largest task = t3

Schedule task t3 on processor p1

t_avail[1]=35.75, t_avail[2]=29.8,

t_avail[3]=26.16
Meta-Task={t4,t2,t5}

 91

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000
4500

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

 Figure 4.4 Average Makespan of Metatasks, std_dev=5

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000
4500

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

 Figure 4.5 Average Makespan of Metatasks, std_dev=10

 92

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000
4500

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

Figure 4.6 Average Makespan of Metatasks, std_dev =15

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

Figure 4.7 Average Makespan of Metatasks, std_dev=20

 93

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

Figure 4.8 Average Makespan of Metatasks std_dev=25

Average Makespan

0
500

1000
1500
2000
2500
3000
3500
4000

50 100 200 300 400 500 750 1000

Metatask Size

S
ec

on
ds

Sufferage HLTF

Figure 4.9 Average Makespan of Metatasks, std_dev=30

 94

Running Times

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50 100 200

Metatask Size (n)

S
ec

on
ds

HLTF Log (10) of Sufferage

Figure 4.10 Running Times {n =50,100,200}

Running Times

0

0.5

1

1.5

2

2.5

3

500 1000 2000

Metatask Size (n)

S
ec

on
ds

HLTF Log (10) of Sufferage

Figure 4.11 Running Times {n =500,1000,2000}

 95

Running Times

0

0.5

1

1.5

2

2.5

3

3.5

4

3000 4000 5000

Metatask Size (n)

S
ec

on
ds

HLTF Log (10) of Sufferage

Figure 4.10 Running Times {n =3000,4000,5000}

 96

CHAPTER 5

SCHEDULING INDEPENDENT TASKS WITH DISPATCH TIMES

In this section we introduce a novel heuristic to schedule independent tasks of a

meta-task onto a network of heterogeneous processors to minimize the makespan of the

meta-task. This section is organized as follows. In Section 5.1 we provide the motivation

towards solving this problem. In Section 5.2 we introduce the Earliest Finish Time with

Dispatch Time (EFT-DT) algorithm. In Section 5.3 we provide a practical example of the

algorithm’s working. In Section 5.4 we discuss simulation results.

5.1 Motivation

 In meta-computing systems such as the grid, a centralized scheduler may make all

scheduling decisions with respect to independent tasks. The scheduler makes a

scheduling decision and maps tasks onto processors. In reality, the mapping of tasks onto

processors requires time to dispatch the task from the scheduler onto a processor. In the

previous works [20] [21][23] related to scheduling independent tasks of a meta-task onto

a network of heterogeneous processors, the dispatch times of the tasks have not been

considered in making scheduling decisions. The Sufferage, Min-Min and the Min-Max

[23] algorithms assume a zero dispatch time in their scheduling model. We believe that in

practical scenarios a zero dispatch time is not feasible and may lead to unrealistic

schedules. In this section we introduce a novel heuristic to schedule independent tasks of

 97

a meta-task onto a network of heterogeneous processors considering the dispatch times of

tasks.

5.2 The Earliest Finish Time with Dispatch Time (EFT-DT) Algorithm

 In the EFT-DT algorithm, the priority of a task is defined as the sum of its mean

execution time over all the processors and the standard deviation of its execution time

over all the processors. At each scheduling step, EFT-DT picks the task with the highest

Table 5.1 EFT-DT Algorithm –Defnition of Terms

Term Definition

T Meta-task set of size s

M Set of processors available for scheduling

m Number of processors

meank Mean execution time of task tk over all the processors

stdk Standard deviation of the execution times of task tk over all the
processors

T_available(pj) Time at which processor pj can start execution of a new task.

Wk,j Running time of task tk on processor pj.

Dkj Time required to dispatch task tk from the scheduler to processor pj

CT(tk, pj) = Max{T_available(pj),Dkj } + Wk,j // Execution completion time of
task tk on processor pj.

ECT(tk) = Min kЄT & jЄM{ CT(tk, pj) }//Earliest Completion time of task tk

Proc(tk) The processor on which ECT(tk) is obtained

 98

 priority and schedules it onto a processor that provides its earliest completion time.

EFT-DT Algorithm
For all tk Є T
priority(tk)← meank + stdk
End For
While T ≠ Φ do
Pick a task tk Є T with the highest priority
 For all j Є M

 CT(tk, pj) ← Max{T_available(pj), Dkj}+ Wk,j
 End For
 ECT(tk) ← Min kЄT & jЄM{ CT(tk, pj) }
 Compute Proc(tk)
 Assign tk to Proc(tk)
 T_available(Proc(tk))← ECT(tk)
 T=T- {tk}
End While
End EFT-DT

Figure 5.1 The EFT-DT Algorithm

The completion time of task on a processor is defined as

CT(tk, pj) ← Max{T_available(pj), Dkj}+ Wk,j

to account for the dispatch times. EFT-DT later calculates the processor on which the

least completion time is obtained and schedules the task onto it. EFT-DT takes O(s) to

compute the priorities of all the tasks and O(s × m) to calculate the earliest completion

times of the tasks. Thus the overall complexity is O(s × m).

 99

5.3 Example Run of EFT-DT

 We now show the working of EFT-DT with a sample meta-task shown in Figure

5.2. Task priorities are computed as follows {8,2,10,1,3,9,4,7,5,6}.

Step1: Schedule task 8 on processor P2

Step 2: Schedule task 2 on processor P3

Table 5.2 A sample metatask

Task P1 P2 P3
1 15 13 15
2 16 20 16
3 17 16 11
4 20 13 10
5 11 11 12
6 14 14 12
7 15 11 15
8 20 17 13
9 19 10 16

10 18 19 18

Table 5.3 Meta-task Dispatch Times

Task P1 P2 P3
1 6 6 7
2 9 8 5
3 7 8 9
4 6 9 10
5 8 7 7
6 10 7 6
7 9 7 7
8 6 10 10
9 10 9 5

10 9 8 10

Step 3: Schedule task 10 on processor P1

Step 4: Schedule task 1 on processor P2

 100

Step 5: Schedule task 3 on processor P1

Step 6: Schedule task 9 on processor P3

Step 7: Schedule task 4 on processor P3

Step 8: Schedule task 7 on processor P2

Step 9: Schedule task 5 on processor P2

Makespan

0
10
20
30
40
50
60
70
80
90

1 2 3

Processors

Se
co

nd
s

task Idle

10
8 2

3 1

9

7
4

5
6

Figure 5.2 Gantt Chart for the Meta-Task

 Step 10 : Schedule task 6 on processor P3

The Gantt chart for the meta-task is provide in Figure 5.3

5.4 Simulation Study

We developed a simulator with the following input parameters to compare the

performance of EFT-DT and the FIFO approach.

n: Meta-task size

 101

size_max: Maximum size of a task within a meta-task

dis_max: Maximum dispatch time of each task

std_dev: Standard deviation of the meta-task

proc_dev: Standard deviation of the processor speeds

num_proc: Number of processors used.

The input parameters were set with the following values in our simulation study.

n: {1000,2000,5000,7500,10000}

size_max: ={100}

dis_max: {50}

std_dev: {5,10,15,20,25,30}

proc_dev: {2,4,6}

num_proc: {5,10,15,20}

Table 5.4 Parameter Values

Parameter Minimum Maximum Standard

Deviation
Task Size 10 100 5-30

Dispatch Times 10 50 X

Proc Speeds 1 10 2,4,6

No of tasks 1000 10000 X

No of Processors 5 20 X

Each data point in the graphs that follow is an average of 4 different readings obtained

using different number of processors. Figure 5.3 compares the makespan of EFT-DT and

 102

FIFO for std_dev=5 and proc_dev=2. The average improvement of EFT-DT is 28%.

Figure 5.4 provides the comparison for std_dev=10 and proc_dev=2. The average

improvement of EFT-DT is 29%. Figure 5.5 provides the comparison for std_dev=15 and

proc_dev=2. The average improvement of EFT-DT is 28%. Figure 5.6 provides the

comparison for std_dev=20 and proc_dev=2.The average improvement of EFT-DT is

30%. Figure 5.7 provides the comparison for std_dev=25 and proc_dev=2. The average

improvement of EFT-DT is 29%. Figure 5.8 provides the comparison for std_dev=30 and

proc_dev=2. The average improvement of EFT-DT was 30%. Figure 5.9 provides the

comparison for std_dev=5 and proc_dev=4. The average improvement of EFT-DT was

29%. Figure 5.10 provides the comparison for std_dev=10 and proc_dev=4. The average

improvement of EFT-DT was 28%. Figure 5.11 provides the comparison for std_dev=15

and proc_dev=4. The average improvement of EFT-DT was 31%. Figure 5.12 provides

the comparison for std_dev=20 and proc_dev=4. The average improvement of EFT-DT

was 31%. Figure 5.13 provides the comparison for std_dev=25 and proc_dev=4. The

average improvement of EFT-DT is 30%. Figure 5.14 provides the comparison for

std_dev=30 and proc_dev=4. The average improvement of EFT-DT is 29%. Figure 5.15

provides the comparison for std_dev=5 and proc_dev=6. The average improvement of

EFT-DT is 30%. Figure 5.16 provides the comparison for std_dev=10 and proc_dev=6.

The average improvement of EFT-DT is 29%. Figure 5.17 provides the comparison for

std_dev=15 and proc_dev=6. The average improvement of EFT-DT is 32%. Figure 5.18

provides the comparison for std_dev=20 and proc_dev=6. The average improvement of

EFT-DT is 28%. Figure 5.19 provides the comparison for std_dev=25 and

proc_dev=6.The average improvement of EFT-DT is 32%. Figure 5.20 provides the

 103

comparison for std_dev =30 and proc_dev=6.The average improvement of EFT-DT is

30%. From all these average improvements, the overall average improvement of EFT-DT

over FIFO is 29%

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.3 Average Makespan- std_dev=5, proc_dev=2

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.4 Average Makespan- std_dev=10, proc_dev=2

 104

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.5 Average Makespan- std_dev=15, proc_dev=2

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.6 Average Makespan- std_dev=20, proc_dev=2

 105

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.7 Average Makespan- std_dev=25, proc_dev=2

Average Makespan

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.8 Average Makespan- std_dev=30, proc_dev=2

 106

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.9 Average Makespan- std_dev=5, proc_dev=4

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.10 Average Makespan- std_dev=10, proc_dev=4

 107

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.11 Average Makespan- std_dev=15, proc_dev=4

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.12 Average Makespan- std_dev=20, proc_dev=4

 108

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.13 Average Makespan- std_dev=25, proc_dev=4

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.14 Average Makespan- std_dev=30, proc_dev=4

 109

Average Makespan

0

50000

100000

150000

200000

250000

300000

350000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.15 Average Makespan- std_dev=5, proc_dev=6

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.16 Average Makespan- std_dev=10, proc_dev=6

 110

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.17 Average Makespan- std_dev=15, proc_dev=6

Average Makespan

0

50000

100000

150000

200000

250000

300000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.18 Average Makespan- std_dev=20, proc_dev=6

 111

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.19 Average Makespan- std_dev=25, proc_dev=6

Average Makespan

0

50000

100000

150000

200000

250000

1000 2000 5000 7500 10000

Number of tasks in the metatask

S
ec

on
ds

FIFO EFT-DT

Figure 5.20 Average Makespan- std_dev=30, proc_dev=6

 112

Percentage Improvement over FIFO

0

5

10

15

20

25

30

5 10 15 20 25 30

std_dev

P
er

ce
nt

ag
e

Figure 5.21 Percentage improvement of EFT-DT over FIFO for various std_dev

Percentage Improvement over FIFO

0

5

10

15

20

25

30

35

2 4 6

proc_dev

P
er

ce
nt

ag
e

Figure 5.22 Percentage improvement of EFT-DT over FIFO for various proc_dev

 113

Percentage Improvement over FIFO

0

5

10

15

20

25

30

1000 2000 5000 7500 10000

Number of tasks in the metatask

P
er

ce
nt

ag
e

Figure 5.23 Percentage improvement of EFT-DT over FIFO for various metatask sizes

 114

CHAPTER 6

CONCLUSION

In this dissertation, we presented three new algorithms: the Heterogeneous Critical Node

First (HCNF) algorithm; the Heterogeneous Largest Task First (HLTF) algorithm and the

Earliest Finish Time with Dispatch Time (EFT-DT) algorithm. These algorithms were

compared against existing algorithms through extensive simulation. The simulation

results were presented in the earlier chapters. In this chapter, we would like to summarize

the simulation results briefly and provide concluding remarks.

With respect to the HCNF algorithm, the experimental test suite consisted of

application graphs, trace graphs, RGBOS, RGPOS graphs etc. HCNF was compared

against HEFT using these graphs and was later compared using both HEFT and STDS

using the parametric random graph generator. We now summarize the experimental

results.

 The SLR and speedup of HCNF and HEFT was compared using graphs of

different sizes. The average SLR of HCNF was better than HEFT by 12.3% and the

speedup was better than HEFT by 7.9 %. The SLR and Efficiency of HEFT and HCNF

were compared using DAGs representing the Gaussian Elimination algorithm. HCNF

outperformed HEFT by an average of 25.7% with respect to SLR. With respect to

efficiency, HCNF outperformed HEFT by an average of 22.6%. The SLR and speedup of

 115

HEFT and HCNF was compared using trace graphs. HCNF outperformed HEFT in SLR

and speedup by an average of 29.5% and 38.4% respectively. The SLR and speedup of

HEFT and HCNF was compared using RGBOS graphs whose optimal schedule can be

obtained using branch and bound technique. HNCF outperformed HEFT in SLR and

speedup by 32.5% and 24.6% respectively. The SLR and speedup of HEFT and HCNF

was compared using the RGPOS graphs. HCNF outperformed HEFT in SLR and speedup

by 21.1% and 16.9% respectively. The SLR and speedup of HEFT and HCNF was

compared using application graphs.These graphs represent a few numerical parallel

application programs. This set contains of over 320 graphs in six categories: Cholesky

factorization, LU decomposition, Gaussian elimination, FFT, Laplace transforms and

Mean Value Analysis (MVA). The number of nodes ranges from 100 to 300. On an

average, HCNF outperformed HEFT in SLR and Speedup by 27.5% and 22.7%

respectively. The SLR of HCNF, HEFT and the STDS algorithms was compared using

the parametric random graph generator. The average SLR improvement of HEFT over

STDS is 6%, and over HEFT is 10% approximately. The speedup of HCNF, HEFT and

the STDS algorithms was compared using a parametric random graph generator. The

Average improvement in the speedup of the HCNF over STDS is 9%, and over HEFT is

14%. The average SLR values for CCR values ranging from 0.1 to 1.0 in steps of 0.1 was

compared using the parametric random graph generator. The average improvement of

HCNF over HEFT is 11% and over HEFT is 4 %. The average SLR values for CCR

values ranging from 1.0 to 5.0 in steps of 0.5 was compared using the parametric random

graph generator. The average improvement of HCNF over STDS is 7% and over HEFT is

11%. The superior performance of HNCF can be attributed to the low-cost task

 116

duplication strategy that facilitates earlier start times for many nodes which otherwise

have to wait for all the data items to arrive from their favorite predecessors. HCNF can be

improved by exploring the possibility of duplicating the second and the third favorite

predecessors (if any) to further expedite the start times nodes. The feasibility of such an

approach needs to be investigated.

The average makespan of HLTF and the Sufferage algorithms was compared

using different metatask sizes and different std_dev. The average improvement of HLTF

over Sufferage was 4.13%.

The running times of HLTF and Sufferage were compared using metatasks of

different sizes. For metatask sizes greater than 1000, HLTF shows an improvement of

over a 1000%. The superior performance of HLTF in terms of running times can be

attributed to the low complexity sorting technique that is used by the algorithm.

Experiments were conducted to compare the makespan of EFT-DT and FIFO. The

overall average improvement of EFT-DT over FIFO is 30%. The superior performance of

EFT-DT over FIFO can be attributed to the dispatch times and task execution times

occurring in parallel.

 117

BIBLIOGRAPHY

[1] A. Abraham, R. Buyya and B. Nath, “Nature’s Heuristics for Scheduling
Jobs on Computational Grids,” Proc. ADCOM 2000, pp. 45 - 52, Cochin
India.

[2] V. A. F. Almeida , I. M. M. Vasconcelos , J. N. C. Rabe and D. A.

Menasc, “Using random task graphs to investigate the potential benefits of
heterogeneity in parallel systems,”Proc. 1992 ACM/IEEE conference on
Supercomputing, pp. 683-691, Nov. 1992.

[3] J. R. Allen and K. Kennedy, “PFC: A Program to Convert FORTRAN to
Parallel Form,” Proc. of the IBM Conference on Parallel Computers and
Scientific Computations, March 1982.

[4] R. Bajaj and D.P. Agarwal, “Improving Scheduling of Tasks in a

Heterogeneous Environment,” IEEE Trans. Parallel and Distributed
Systems, Vol. 15 No. 2,pp. 107-118 February 2004.

.

[5] S. Baskiyar, “Scheduling DAGs on Message Passing m-Processors

Systems,” IEICE Trans. Information and Systems, v E-83-D, no. 7, Oxford
University Press, July 2000.

[6] S. Baskiyar, “Scheduling Task-In Trees on Distributed Memory Systems,”

 IEICE Trans. Information and Systems, vol. E-84-D, no. 6, June 2001.

 [7] S. Baskiyar and P.C. SaiRanga, “Scheduling DAGs on Heterogeneous

Multiprocessor Systems to Minimize Finish Time,” Proc. ISCA PDCS,
Reno, Nevada, Aug 2003.

[8] S. Baskiyar and P.C. SaiRanga, “Scheduling DAGs on Heterogeneous

Network of Workstations to Minimize Schedule Length,” Proc. ICPP
Workshops, Taiwan, Oct 2003.

 118

[9] S..Baskiyar and P.C. SaiRanga, “Scheduling independent tasks of a
metatask with significant dispatch times,” Technical Report # CSSE06-03,
Auburn University, Nov 2006.

[10] S.Baskiyar and P.C SaiRanga, “Scheduling DAGs on Heterogeneous

Network of Workstations to Minimize Finish Time,” Trans. IJCA, Vol 13,
No 4, Dec 2006.

[11] O. Beaumont, V. Boudet, and Y. Robert, “A Realistic Model and an

Efficient Heuristic for Scheduling with Heterogeneous Processors,” Proc.
IPDPS, 2002.

[12] C. Boeres, G. Chochia and P. Thanisch, “On the Scope of Applicability of

the ETF Algorithm,” Proc. Workshop on Parallel Algorithms for
Irregularly Structured Problems, pp. 159-164, 1995.

[13] R. Buyya, D. Abramson, and J. Giddy, “An Economy Driven Resource
Management Architecture for Global Computational Power Grids,” Proc.
International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA 2000), June 26-29, 2000, Las
Vegas, USA, CSREA Press, USA, 2000.

[14] R. Buyya, D. Abramson, and J. Giddy, “Nimrod-G: An Architecture for a

Resource Management and Scheduling System in a Global Computational
Grid,” Proc. 4th International Conference on High Performance
Computing in Asia-Pacific Region (HPC Asia 2000), May 2000, Beijing,
China, IEEE Computer Society Press, USA.

[15] R. Buyya, D. Abramson, and J. Giddy, “A Case for Economy Grid

Architecture for Service-Oriented Grid Computing,” Proc. International
Parallel and Distributed Processing Symposium: 10th IEEE International
Heterogeneous Computing Workshop (HCW 2001), April 23, 2001, San
Francisco, California, USA, IEEE CS Press, USA, 2001

[16] W.Y Chan and C.K. Li, “Heterogeneous Dominant Sequence Cluster

(HDSC): a low complexity heterogeneous scheduling algorithm,” Proc.
IEEE Pacific Rim Conference on Communications, Computers and Signal
Processing, 1997, Vol. 2 , pp. 956-959, Aug. 1997.

[17] W.Y. Chan and C.K. Li, “Scheduling tasks in DAG to heterogeneous

processor system,” Proc. Sixth Euromicro Workshop on Parallel and
Distributed Processing(PDP ’98), pp. 27-31, Jan. 1998.

 119

[18] H. B. Chen, B. Shirazi, K. Kavi, and A. R. Hurson, “Static scheduling
using linear clustering and task duplication,” Proc. ISCA International
Conference on Parallel and Distributed Computing and systems, 1993, pp.
285-290.

[19] C. Chiang, C. Lee, and M. Chang, “A Dynamic Grouping Scheduling for
Heterogeneous Internet-Centric Metacomputing System,” Proc. ICPADS,
pp. 77-82, 2001.

[20] W.Y. Chan and C.K. Li, “Scheduling Tasks in DAG to Heterogeneous

Processors System,” Proc. 6th Euromicro Workshop on Parallel and
Distributed Processing, Jan.1998.

[21] M. Chetty and R. Buyya, “Weaving computational grids: how analogous

are they with electrical grids,” IEEE Trans. Computational Science and
Enginering, Volume 4, Issue 4, July-Aug. 2002, Pages:61 – 71.

[22] B. Cirou and E. Jeannot, “Triplet : a Clustering Scheduling Algorithm for
Heterogeneous Systems,” Proc. IEEE ICPP International Workshop on
Metacomputing Systems and Applications (MSA'2001), sept. 2001,
Valencia, Spain

[23] T.H Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,

The MIT Press, 1990.

[24] M. Cosnard and E. Jeannot, “Compact DAG representation and it’s

dynamic Scheduling,” Journal of Parallel and Distributed Computing,
Vol. 58, No. 3, September 1999, pp. 487-514.

[25] S. Darbha and D. P. Agrawal, “A task duplication based scalable
scheduling algorithm for distributed memory systems”, Journal of parallel
and Distributed Computing, Vol. 46, No. 1, October 1997, pp. 15-27.

[26] S. Darbha and D.P. Agrawal, “Optimal Scheduling algorithm for

distributed memory machines”, IEEE Trans. Parallel and Distributed
Systems, Vol. 9, No. 1, January 1998, pp. 87-95.

[27] A. Dogan and F. Ozguner, “Stochastic Scheduling of a Meta-task in

Heterogeneous Distributed Computing,” Proc. ICPP Workshop on
Scheduling and Resource Management for Cluster Computing, 2001.

 120

[28] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell, M. Halderman, D.
Hensgen, E. Keith, T. Kidd, M. Kussow, J. D. Lima, F. Mirabile, L.
Moore, B. Rust, and H. J. Siegel, “Scheduling Resources in Multi-User,
Heterogeneous, Computing Environments with SmartNet,” Proc. 7th
IEEE Heterogeneous Computing Workshop (HCW ’98), Mar.1998, pp.
184–199.

[29] M.Grajcar, “Genetic list scheduling algorithm for scheduling and

allocation on a loosely coupled heterogeneous multiprocessor system,”
Proc. 36th Design Automation Conference, pp. 280-285, 1999.

[30] A. Gerasoulis and T. Yang, “A comparison of clustering heuristics for

scheduling directed acyclic graphs onto multiprocessors,” Journal of
Parallel and Distributed Computing, Vol. 16, No. 4, December 1992, pp.
276-291.

[31] D. Hensgen, M. Maheswaran, S. Ali, and H.J. Siegal, “Dynamic matching
and scheduling of a class of independent tasks onto heterogeneous
computing systems,” Proc. Heterogeneous Computing Workshop, 1999.

[32] J. Huang and S.Y.Lee, ”Effects of Spatial and Temporal Heterogeneity on

Performance of a Target Task in Heterogeneous Computing
Environments,” Proc. 15th ISCA International Conference on Parallel
and Distributed Systems, Sept. 2002.

[33] C. C. Hui and S. T. Chanson, “Allocating task interaction graphs to

processors in heterogeneous networks,” IEEE Trans. Parallel and
Distributed Systems, Vol. 8, No. 9, September 1997, pp. 908-926.

[34] M. Iverson, F. Ozguner, and G. Follen, “Parallelizing Existing

Applications in a Distributed Computing Environment,” Proc.
Heterogeneous Computing Workshop, pp. 93-100, 1995.

[35] M. A. Iverson, F. Ozguner and L.C. Potter, “StatisticalPrediction of Task

Execution Times Through Analytic Benchmarking for Scheduling in a
Heterogeneous Environment,” Proc. 8th Heterogeneous Computing
Workshop (HCW ’99), p. 99, April 1999.

[36] M. Kafil and I. Ahmed, “Optimal Task Assignment in Heterogeneous

Distributed Computing Systems,” Proc. IEEE Concurrency, Vol. 6, No. 3,
July-September 1998, pp. 42-51.

 121

[37] S.J. Kim and J.C. Browne, “A General Approach to Mapping of Parallel

Computations upon Multiprocessor Architectures,” Proc. ICPP, IEEE-CS,
v. 3, 1988.

[38] D.J. Kuck et. al., “Dependence Graphs and Compiler Optimizations,”

Proc. 8th ACM Symposium on Principles of Programming Languages, pp
207-218, Jan. 1981.

[39] Y. Kwok, I. Ahmad and J. Gu, “FAST: A Low-Complexity Algorithm for

Efficient Scheduling of DAGs on Parallel Processors,” Proc. ICPP, 1997.

[40] Y.K Kwok, “Parallel Program Execution on a Heterogeneous PC Cluster
Using Task Duplication,” Proc. 9th HCW, 364-374, 2000.

[41] D.Li and N.Ishii, “Scheduling task graphs onto heterogeneous

multiprocessors,” Proc. IEEE Region 10’s Ninth Annual International
Conference. Theme: ’Frontiers of Computer Technology’ (TENCON ’94),
pp. 556-563 vol.2, Aug. 1994.

[42] Y. A. Li and J. K. Antonio, “Estimating the execution time distribution for

a task graph in a heterogeneous computing system,” Proc.6th
Heterogeneous Computing Workshop (HCW ’97), p.172, April 1997.

 [43] Z.Liu, “Scheduling of random task graphs on parallel processors,” Proc.
Third International Workshop on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems (MASCOTS ’95), pp. 143-
147, Jan. 1995.

[44] S.Y. Lee and J.Huang, “A Theoretical Approach to Load Balancing of a

Target Task in a Temporally and Spatially Heterogeneous Grid
Computing Environment,” Proc.GRID 2002, pp. 70-81.

[45] Z. Liu, B. Fang, Y.Zhang and J.Tang “Scheduling algorithms for a fork
DAG in a NOWs,” Proc. Fourth International Conference/Exhibition on
High Performance Computing in the Asia-Pacific Region, Vol. 2 , pp. 959-
960, May 2000.

[46] M. Maheswaran and H. J. Siegel, “A Dynamic Matching and Scheduling
Algorithm for Heterogenous Computing Systems,” Proc.7th HCW, pp. 57-
69, IEEE Press, Mar. 1998.

 122

[47] H. Oh and S. Ha, “A Static Scheduling Heuristic for Heterogeneous

Processors,” Proc. Euro-Par, pp. 573-577, v 2, 1996.

[48] S. S. Pande, D. P. Agrawal and J. Mauney, “A scalable scheduling method

for functional parallelism on distributed memory multiprocessors,” IEEE
Trans. Parallel and Distributed Systems, Vol. 6, No. 4, April 1995, pp.
388-399.

[49] C. Papadimitriou and M. Yannakakis, “Towards an Architecture

Independent Analysis of Parallel Programs,” SIAM J. of Computing, v 19,
no. 2, pp 322-328, 1990.

[50] G.L Park, B.Shirazi, J.Marquis and H.Choo, “Decisive path scheduling: a

new list scheduling method,” Proc. International Conference on Parallel
Processing, pp. 472-480, Aug. 1997

[51] A. Radulescu and A.J.C. Van Gemund, “Fast and Effective Task
Scheduling in Heterogeneous Systems,” Proc. HCW, pp.229-238, May,
2000.

[52] A. Ranaweera and D. P. Agrawal, “A Task Duplication Based algorithm

for Heterogeneous Systems,” Proc. IPDPS, pp 445-450, May 1-5, 2000.

[53] H. E.Rewini and T. G. Lewis, “Scheduling parallel programs onto

arbitrary target architecture,” Journal of Parallel and Distributed
Computing, Vol. 9, No. 2, June 1990, pp. 138-153.

[54] P.C. SaiRanga and Sanjeev Baskiyar, “A Low-Complexity Algorithm for

Dynamic Matching and Scheduling of Independent Tasks onto
Heterogeneous Computing Systems,” Proc. ACMSE 2005, March 2005.

[55] V.Sarkar, “Partitioning and Scheduling Parallel Programs for

Multiprocessors,” The MIT Press, Cambridge, MA 1989.

[56] G. Sih and E. Lee, “A Compile Time Scheduling Heuristic for
Interconnection Constrained Heterogeneous Processor Architectures,”
IEEE Trans. Parallel and Distributed Systems, vol. 4(2), pp. 175-187,
1993.

[57] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A.

Chien, “The MicroGrid: A Scientific Tool for Modeling Computational
Grids,” Proc. IEEE Supercomputing (SC 2000), Nov. 4-10, 2000, Dallas,
USA.

 123

[58] H. Topcuoglu, S. Hariri and M.-Y. Wu, “Task Scheduling Algorithms for
Heterogeneous Processors,” Proc. HCW, pp 3-14, 1999.

[59] H. Topcuoglu, S. Hariri, and M-Y. Wu “Performance-effective and low-

complexity task scheduling for heterogeneous computing Parallel and
Distributed Systems,” IEEE Trans. Parallel and Distributed Systems,
Volume: 13 Issue: 3, Mar 2002.

[60] T. Tsuchiya, T. Osada, T. Kikuno, “A new heuristic algorithm based on

GA’s for multiprocessor scheduling with task duplication,” Proc. Third
International Conference on Algorithms and Architectures for Parallel
Processing, 1997, pp. 295- 308.

[61] J. Ullman, “NP-complete Scheduling Problems,” Proc. JCSS, vol. 10, pp.

384-393. 1975.

[62] L.Yang, M. Jennifer and I.Foster, “Conservative Scheduling: Using

Predicted Variance to Improve Scheduling Decisions in Dynamic
Environments,” Proc. Supercomputing’03, November 2003.

[63] T. Yang and A. Gerasoulis, “DSC: Scheduling Parallel Tasks on an

Unbounded Number of Processors,” IEEE Trans. Parallel and Distributed
Systems, v. 5, no. 9,1994.

	LP1.doc
	IP3.doc
	Dissertation-latest.doc
	1.4.1 Scheduling Strategies
	1.4.1.1 Static Scheduling
	1.4.1.2 Dynamic Scheduling
	1.4.1.3 Hybrid Static-Dynamic Scheduling
	HLTF Algorithm
	 Else
	
	BIBLIOGRAPHY

