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Abstract 

 

 

 With the continuous development of Computational Fluid Dynamics (CFD), many different 

numerical methods and turbulence models have been modified to enhance the capability of 

prediction of complex turbulence flow. This study investigates the characteristics of the shock 

wave-boundary layer interactions (SWBLI) generated by the fin with an angle of attack of 15°in  

a Mach 2 flow. Reynolds-averaged Navier-Stokes equations (RANS) are employed in this research 

with two different turbulence closures, which are Wilcox k −  Model and Blended ,k k − −  

Turbulence Model, using TENASI as the CFD solver. The simulation results are compared with 

the data from wind tunnel experiments using the Plenoptic PIV method so that the performance 

and limitations of different turbulence models could be estimated. The simulation of the fin tested 

in the same flow condition but in a non-obstacle surrounding is also introduced to show the 

difference of the supersonic flow field between the in-tunnel case and the free stream case. 
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Chapter 1 

Introduction 

 

1.1 Purpose of the Study

 Shock wave-boundary layer interactions (SWBLI) are one of the most significant flow 

phenomena to be regarded in the design of supersonic and hypersonic aircraft. These interactions 

ubiquitously exist in the flowfield around the aircraft, such as wing-body junctions, engine inlet 

corners and deflected control surfaces, and can extremely change the performance of the vehicle 

component. In some cases, the increase in acoustic and thermal loads caused by SWBLI might 

lead to the failure of structures in a short time [1]. To overcome the detrimental effect of SWBLI, 

one easy solution without fully understanding the interaction is to strengthen the structure of 

components by using more materials and put a thermal protection coating on the surface. However, 

this method is hard to accomplish due to both cost and weight. Therefore, it is important for the 

aerospace industry to discover the underlying physics and influence factors of shock wave-

boundary layer interactions so that the deleterious effects owing to interactions could be minimized. 

There is extensive research about SWBLI, which can be divided into laminar, transitional, and 

turbulent interactions according to the state of the incoming boundary. The overwhelming majority 

of SWBLI research is focused on either laminar or turbulent interactions for various geometry. In 
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the previous studies, laminar interactions have been revealed to be relatively steady, and numerical 

simulations have been employed to indicate the flow behaviors, such as thermal and acoustic 

effects very well. The research about laminar interactions is concentrated on non-equilibrium and 

reacting flows [2]. Since turbulence is unsteady, and people still have no consensus about the 

reason of this unsteadiness over several decades of research, the feature of turbulent interactions 

is difficult to characterize and predict. Many different turbulence models have been developed to 

describe turbulence characteristics, but they have their own limitations. So, numerical simulations 

still cannot provide an absolutely accurate result. All these reasons make turbulent interactions a 

very active area of research. The purpose of this thesis is to use CFD techniques to simulate a 

shock wave-boundary layer interactions process in order to expand the comprehension about 

turbulent interactions, discuss the merits and limitations of different turbulence models in 

numerical simulations, and facilitate future works. 

 

1.2 Shock Wave-Turbulent Boundary Layer Interaction 

 The interaction of a shock wave and a turbulent boundary layer is a universal occurrence in 

the supersonic aircraft’s flight. As usually assumed, in 1939, Antonio Ferri wrote the first reference 

to this possible interaction [3][4]. The incentive of this phenomenon has been studied for over 60 

years as the first step of the discovery of this complex interaction. The subsonic flow, such as the 

boundary layer, and the supersonic flow, such as the shock wave interaction can be a special study 

area. SWBLI always forms at the location of complex geometry, such as engine inlet, diffuser, and 
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wing-fuselage junctions. These areas usually experience detrimental effects, such as the losses of 

pressure, excessive heat transfer, and the separation of flow. The detrimental effects on the 

supersonic flight is apparent in the development of supersonic aircrafts, such as the hypersonic X-

15. The component mounted below the X-15 fuselage was burned by an impinging shock that 

caused the engine to separate from the plane during the high-speed engine test. It is possible that 

a hole would have burned through the fuselage, which would lead the X-15 to fall apart in flight 

[5][6]. The topics of shock waves and boundary layers interactions have become important 

throughout the continuous progress of the supersonic aircraft.  

 The study detailed here is a numerical simulation of SWBLI generated by an unswept fin. An 

unswept fin is placed in a Mach 2 flow which generates a planar oblique shock wave. Herein, the 

interaction happening at the base of the fin is the object of research. Along the oblique shock angle, 

the interaction is swept downstream. The assumption is that the fin leading edge is perfectly 

orthogonal to the surface of the test section. The Fig. 1.1 graphically demonstrates the 

characteristics of the fin and interactions. This figure comes from a previous study about Shock 

Wave-Turbulent Boundary Layer Interaction using a planar PIV technique [7]. The free stream 

flow is at Mach 2, and the fin's angle of attack is 15°. Such combination leads to the planar oblique 

shock wave at a wave angle of approximate 45°with respect to the free stream. 
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Figure 1.1: Diagram of the Fin-Generated SWBLI Flow Field 

 A λ-shaped structure is formed by the interaction between the shock wave and the boundary 

layer on the test section floor. Fig. 1.2 is the  -shock structure’s diagram. The  -shock has an 

upper shock corresponding to the inviscid shock created by the model. Because of the presence of 

the shock wave, the jump in the pressure gradient leads to the separation of the boundary layer, as 

shown as a recirculation region in Fig. 1.2. The deflection of the flow incurred by the separated 

region results in the separation shock, which is the upstream portion of the    structure. The 

separation shock turns some of the flow upward around the separation bubble and the flow 

encounters the horizontal flow behind the inviscid shock wave at the “triple point”, in which a 

third shock appears to align the two flows[8]. This third weaker shock, as the bottom leg of the 
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  structure, refers to the rear shock. The separation shock and this rear shock straddle a region 

of separation flow. The slip lines are generated by interactions between the flow behind the rear 

shock and the inviscid shock [9]. Although almost all of the details of this structure (e.g., separation 

length scale, unsteadiness, acoustic and thermal loading, etc.) depend on model geometry and 

incoming flow properties, the general structure is consistent. Additionally, according to Chapman 

et al.[10], the pressure increase leading to the separation of the flow does not rely on the model 

geometry for either laminar or turbulent 2-D interactions. This “free-interaction” phenomenon 

enlarges the pressure separation region at the centerline for blunt fin geometry [11]. 

 

Figure 1.2: Diagram of the  -Shock Structure 
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 While some SWBLI are quasi-2D structures, the large majority of SWBLI encountered on 

supersonic aircrafts are inherently 3D. The largest portion of prior research into SWBLI has been 

concentrated on the quasi-2D interactions. While the structure of quasi-2D interactions is a 

significant portion of the necessary knowledge regarding SWBLI, the fact that a large number of 

the commonly encountered SWBLI are inherently 3D should encourage studies of these truly 3D 

interactions. The entirety of past research into the quasi-2D interactions has provided the base of 

knowledge for progress in 3D studies. However, the structure of the three-dimensional interaction 

has a few other important characteristics, as shown in Fig. 1.3. The third dimension allows out 

flow around the obstruction, but on the centerline, there is a stagnation point on the model’s surface. 

The flow along the centerline that is processed by the normal shock wave is necessarily subsonic, 

but the flow that travels just below the triple point is processed by two or more oblique shocks and 

remains supersonic [12]. As the consequence of SWBLI, the supersonic “jet” is produced and leads 

to extremely high value of pressure and heat transfer where it impinges on the non-slip surface 

[13]. Away from the centerline of the three-dimensional interaction, the separated region is quickly 

swept downstream, causing curvature in the separation line. This primary vortex induces counter-

rotating horseshoe vortices immediately downstream [11], and the number of these vortex pairs 

decreases with decreasing Reynold number [14]. The upstream edge of the primary vortex 

demarcates the primary separation distance, sepl   [15][16]. Note that this does not necessarily 

correspond to the farthest upstream extent of the disturbed flow, as the initial rise in pressure and 

heating can occur several diameters upstream of separation [15]. The location where this initial 
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deviation from undisturbed values occurs is termed the upstream influence (UI) location. 

 Classifications for swept SWBLI have been previously described by Settles and Dolling [18]. 

The major classifications are semi-infinite and non-semi-infinite, and within the semi-infinite 

classification a subdivision exists between dimensional and dimensionless interactions. Semi-

infinite interactions refer to those SWBLI in which the shock generator is large enough that 

increases in the generator dimensions would not result in changes to the interaction. One example 

of these is an unswept fin-generated SWBLI. In the case of a sufficiently large fin, any increase in 

the fin's length or height would not change the dimensions of the SWBLI [15]. A non-semi-infinite 

interaction is one in which a change in the shock generator dimensions would result in changes in 

the interaction properties, such as small protuberances. As the height of a small protuberance is 

increased, the SWBLI takes a very different structure and dimension.  

 Dimensional interactions are those SWBLI in which the shock generator imposes a length 

scale on the interaction. In contrast to dimensionless interactions such as sharp fins, these 

generators cause a significant scaling of the interaction. For a sharp unswept fin, the major lengths 

such as the fin length do not matter to the interaction. In this case, the flow experiences a 

compression, and it does not have any consideration for the length of the fin which causes that 

compression. Although there is an inception zone with a certain curvature, this curvature does not 

correspond to any dimension of the fin itself. Any change in the dimensions of the fin (length, 

height, etc.) results in no change in the curvature of the inception zone. In contrast, a blunt fin 

results in a particular curvature of the interaction which is inherently tied to the diameter of the 
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fin's leading edge. An increase in this diameter would result in a change in the curvature of the 

interaction, and this length scaling is what makes the interaction dimensional. 

 

Figure 1.3: The Structure of Turbulence within the SWBLI induced by the Blunted Fin 

 

1.3 Computational Fluid Dynamics 

 Computational Fluid Dynamics (CFD) is the numerical analysis of fluid flow, heat transfer, 

and other related phenomena. By using a set of algorithms, CFD solvers have the capacity for 

modeling and simulating the flow feature about complex geometry. CFD methodology has a wide 

application in many technological fields such as airfoil design in aeronautics, drag simulation in 

automobile design, jet and thermal flow in engine design, and cooling airflow in an electronic 

product. CFD methodology has many different discretization approaches and turbulence models, 

but they share the same basic procedure. During pre-processing, the geometry of the physical 
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model is developed using computer aided design (CAD), and the surfaces and volumes of interest 

are defined. Next, the area of interest is subdivided into a large number of cells or control volumes. 

The mesh may be uniform or non-uniform, structured or unstructured, consisting of a combination 

of hexahedral, tetrahedral, prismatic, pyramidal or polyhedral elements. After defining the 

boundary conditions, the discretized governing equations are solved iteratively from a steady state 

to an unsteady state. Finally, a postprocessor is used to recompose the numerical solution and to 

visualize a complete description of the flow throughout the domain. 

 Over the past few decades, the Navier-Stokes equations, which are the governing equations 

for viscous flows, have been incorporated into computational fluid dynamics (CFD) codes. As the 

governing equations are non-linear Partial Differential Equations (PDE), the analytical solution is 

difficult to obtain in most of the cases. However, the numerical methods offer a possibility to solve 

the PDEs for a valid solution. The Navier-Stokes PDEs can be discretized and rewritten as 

algebraic equations that relate the velocity, temperature, pressure, density and other variables, and 

they are solved iteratively until the solution is converged. According to discretization methods, 

CFD can be categorized into the Finite Volume Method (FVM), the Finite Element Method (FEM), 

and the Finite Difference Method (FDM). The finite volume method (FVM) is a popular approach 

for most aerodynamic flows, as it has an advantage in memory usage and solution speed, especially 

for high Reynolds number turbulent flows and source term dominated flows (like combustion) 

[20]. The finite element method (FEM) is usually applied in solids mechanics analysis but is also 

applicable to fluids. Although FEM requires special care to ensure a conservative solution, it can 
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be much more stable than the finite volume approach in certain circumstance [21]. Nevertheless, 

compared with FVM, FEM requires more memory and time costs [22]. The finite difference 

method (FDM) [23] utilizes embedded boundaries or overlapping grids to resolve complex 

geometry with high accuracy and efficiency [24]. 

 The most general form of governing equations, particularly those incorporated in 

computational fluid dynamics (CFD), has been expressed in Eq. 1.1 with appropriate boundary 

conditions [5]. 

      in ,  0c v

tQ F F S t + − =     (1.1) 

where Q  represents state variables, cF  and vF  are convective and viscous fluxes respectively, 

and S  is a general source term. 
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In the above equation,    represents density, 1u  , 2u  , 3u   are the flux components of x-

momentum, y-momentum and z-momentum, respectively, E refers to the flux of total energy, 

P  refers to the static pressure, ij  refers to the Kronecker delta function, h  refers to the fluid 

specific enthalpy, PC  refers to the specific heat capacity at constant pressure, T   refers to 

temperature which is determined from ideal gas law given by P RT=  , R  is the specific gas 

constant, and ij  is the viscous stress which can be expressed as 

 
2

3
ij tot i j j i iju u u  

 
=  +  −  

 
  (1.3) 
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where tot  is the sum of dynamic and eddy viscosity (or total viscosity). The dynamic viscosity 

is calculated by Sutherland’s law and the eddy viscosity is calculated by the turbulence models. 

The total viscosity is given as follows 

 
*

tot dyn t

dyn t
tot

d tPr Pr

  

 


= +

= +
  (1.4) 

where dPr  and tPr  are dynamic and turbulent Prandtl numbers, respectively. 

 By solving the governing equations of the fluid flow, CFD provides important information 

about flow properties such as density, pressure, and temperature distribution. Furthermore, CFD 

methods have been modified not only to be applied in traditional aerodynamic research, but also 

in many different fields of investigation nowadays. Laminar flows have been the object of fluid 

dynamics study for a long time, but it is still a very active research area. Turbulent flows are a state 

of flow with a high disorder which is omnipresent and crucial for most engineering applications 

but requires improvement of the models to describe their characteristics. Although Newtonian 

fluids are predominantly studied, non-Newtonian flows are also topics of interest because the 

fluid’s complex rheology properties greatly affect the resulting flow field. CFD analysis has 

become an important part of the engineering design because of its advantages of predicting the 

performance of novel designs or processes before manufacturing or implementation. Moreover, 

CFD shows a great role in shortening the investigation time costs and preventing the experiments 

from being too expensive and risky. On the other hand, CDF also has some disadvantages, such as 

the reliance on computational power, and the reliance on highly refined meshes to ensure accuracy 
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and convergence. Although computers have become increasingly more powerful with time, highly 

refined volumetric meshes could make the CFD run-times grow quite large and, in extreme cases, 

can take months to finish. Despite these limitations, CFD simulations are universally used in the 

aerospace industry today. 

 

1.4 Organization of the Study 

 In order to establish a foundation for the unsteady analysis of turbulence problems of interest, 

Chapter 2 introduces the computational scheme of the fluid dynamic equations. The Reynolds-

averaged Navier-Stokes equations, which are detailed both in the non-conservative form and the 

conservative form, are followed by a discussion of the turbulence closure employed. The numerical 

approach for the Riemann problem and the WENO higher order variable reconstruction are 

presented. The numerical scheme for spatial and temporal discretization of the conservation 

equations based on a finite volume method is presented and the boundary conditions for the 

equations are also discussed. 

 In Chapter 3, the details of the physical experiments, which were performed by the Advanced 

Flow Diagnostics Laboratory (AFDL) at Auburn University, are presented by discussing the initial 

conditions of the supersonic wind tunnel facility and the physical dimensions of the test section 

and experimental object. In addition, the design of converging-diverging nozzle to provide Mach 

2 flow and the implementation of complete three-dimensional geometry is presented. 
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 CFD pre-processing is fully discussed in Chapter 4 and Chapter 5. The process to generate the 

volume grids is shown followed by the evaluation of the grid quality by analyzing several different 

parameters. Next, the numerical parameters setup, the boundary conditions, and the simulation 

details are introduced.  

 The SWBLI phenomenon and supersonic flow behavior around the fin are discussed. The 

results of different turbulence closures are compared with the results of the physical experiment 

so that the applicable environment and the limitations of turbulence models can be analyzed. A 

non-obstacle surrounding case is developed to show the differences between in-tunnel numerical 

simulation and free stream numerical simulation. 

 The last chapter summarizes the whole study and presents the future directions to be 

investigated about both SWBLI and turbulence models. 
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Chapter 2 

Numerical Scheme 

 

 In this chapter, the numerical scheme is introduced for the solution of the Navier-Stokes 

equations. This chapter outlines the Tenasi unstructured flow solver followed by discussions based 

on governing equations together with the turbulence models. Additionally, the important 

mathematical fluxes, along with discretization methodology and boundary conditions are also 

discussed. 

 

2.1 Flow Solver 

 The Tenasi unstructured flow solver was introduced by SimCenter: National Center for 

Computational Engineering at the University of Tennessee, Chattanooga. Tenasi is a node-centered, 

FVM scheme that uses an implicit method applied to general multi-element unstructured grids for 

conducting their parallel computations. Tenasi provides the set of equations for 5 general flow 

systems: Incompressible [25], Incompressible Surface Capturing [26], Compressible, Arbitrary 

Mach Number [27], and Compressible Multi-species. The current research is dependent on the 

Arbitrary Mach Number (AMN) regime that applies a primitive-variable formulation for solving 

the governing equations. Meanwhile, the AMN flow system allows the solver to be used for flows 
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that range from lower subsonic (March number ≈ 0.0) to the supersonic. Moreover, Tenasi offers 

solutions to hybrid large eddy simulation (LES) and Reynolds-averaged Navier Stokes (RANS), 

in a bid to obtain closure of turbulence. Tenasi provides users more than ten different turbulence 

frameworks, including the one equation Spalart-Allmaras model, Menter’s Scale Adaptive (SAS) 

model, Menter’s Shear Stress Transport (SST) k-ω Model, Wilcox two equations k-ω Model, 

several version of Launder Shima Reynolds Stress Model (RSM), and the Classic Smagorinsky 

model. For these reasons, as compared with other flow solvers, Tenasi is competent for wide-

variety of fluid flow simulations. 

 

 2.2 Governing Equation of Fluid Dynamics  

 In computational fluid dynamics, Direct Numerical Simulations (DNS), Reynolds-Averaged 

Navier Stokes (RANS), and Detached/Large Eddy Simulations (D/LES) are three major categories 

of approaches used for turbulent fluid flow simulation. Direct Numerical Simulations (DNS) [28] 

is used to numerically simulate the transient of Navier-stoke equations in the absence of the 

turbulence model, which requires highly resolved grids in order to resolve the entire range of 

spatial scales together with temporal scales of turbulence. As the DNS model highly oversteps the 

present computational power, recent studies tend to numerically simulate the Navier-Stokes 

equations by modeling a portion of turbulence and resolving the remaining flow field by the 

algorithm. 

 The turbulence in unsteady flow is formed by the large-scale eddies that disperse energy from 
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mean flow in the form of heat, and turbulent pulsation frequency is often more than 10,000 Hz. 

The time scale of the smallest high frequency turbulence is far less than that of the largest eddy 

structure within flow. This phenomenon is termed as separation of scale. The objective of the 

algorithm is to define this entire spectrum of turbulence. Therefore, the time scale for calculations,

t , should be smaller compared to the rolling duration of the larger eddies and larger than the time 

range of the smallest vortex within the eddy. Thus, the bigger eddies are resolved while the smaller 

scale eddies are modeled.  

 Applying an average operation to the Navier-Stokes equations, Detached Eddy Simulations 

(DES) and Large Eddy Simulations (LES) [29] resolve large scales eddies that are strongly 

associated with momentum and energy transfer. The Subgrid Scale model (SGS) in the DES and 

LES approaches is employed to represent smaller scale eddies that are unresolved. Due to the 

capacity of resolving the large-scale turbulence, the DES and LES model performs well in 

separated flow regions when compared to RANS solutions. Nonetheless, at near wall regions, the 

DES and LES models are restricted and greatly rely on the refinement of grids because of small 

length-scales and time scales in this region. Since the DES and LES models provide a solution to 

the large-scale eddies and also models turbulence in small-scale, they require considerably less 

computational power compared to DNS, although being limited when simulating high Reynolds 

number flows [30]. 

 Applying a filtering process for a whole time scale upon the laminar Navier-Stokes equations 

provides the Reynolds-averaged Navier-Stokes equations (RANS) [31]. As the RANS models all 
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turbulent scales, relative to the DNS and the DES/LES models, this modeling approach 

significantly declines computational requirements. Furthermore, RANS provides the velocity of 

mean flow that shows direct consequence and does not require averaging the instantaneous 

velocity in steady flow simulation. However, RANS model does not resolve the turbulent scales 

and therefore performs well in the near wall regions but has limitations in separated flow regions 

as the information is lost by applying the RANS averaging procedures [32]. This thesis would 

throw emphasis on the Shock-Wave/Boundary-Layer Interaction (SWBLI) and supersonic flow 

that behaves in a test section. The majority of the flow field is sufficiently computed by RANS but 

SGS modeling is needed for small portions of the flow. 

 

2.2.1 Reynolds-averaged Navier-Stokes equations (RANS) 

 As regards to the Cartesian coordinates, the preconditioned unsteady three-dimensional 

Reynolds-averaged Navier-Stokes systems of equations [33][34] that were developed and applied 

in the AMN regime are defined as 

 1
ˆ

ˆ v

L

F n
M Qd F ndA dA

t Re

−

  


 +  =

      (2.1) 

where n̂  represents the external pointing unit normal vector to the control volume . The above 

equation presents the non-conservative form of Navier-Stokes equations. The vector of dependent 

variables is presented as 
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The components of the inviscid as well as viscous flux vectors are expressed as 
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where 1a = − ,
2

rb M= ; u , v , and w  indicates the Cartesian velocity constituents in the x , 

y , and z  axis, respectively, in addition to ˆ
xn  , ˆ

yn  , and ˆ
zn , that represent the constituents of 

the normalized control volume face vector.   represents the velocity normal to a control volume 

face: 

 ˆ ˆ ˆ
x y z tn u n v n w a = + + +   (2.6) 

where ta  indicates the grid speed: 

 ( )ˆ ˆ ˆ
t x x y y z za V n V n V n= − + +   (2.7) 

and the velocity of control volume face has been described as 
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 ˆˆ ˆ
s x y zV V i V j V k= + +   (2.8) 

The reference length scale ( rL ) , the reference values of density ( r ), velocity ( rU ), and viscosity 

( r ) are introduced to normalize the variables in the preceding equations. Thus, the Reynolds 

number could be expressed as /r r r rRe U L = . Meanwhile, pressure normalization is done with 

the help of 
2

r rU  and the equation of state becomes  

 
2/ rP T M =   (2.9) 

where T   is non-dimensional temperature, /r r rM U a=   indicates the reference Mach number, 

and r ra RT=  is the reference speed of sound. As regards to a perfect gas, the expression of 

the reference enthalpy is done as r p rh C T= . Besides that, the particular heat ratio definition is 

expressed as /p vC C = , and the Eckardt number is described as ( )2 2/ 1c r rE U h Mr= = − . 

 The stresses provided in Eq. 2.5 are presented as 
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where    represents the molecular viscosity, t   
shows eddy viscosity, correspondingly, ij

denotes the Reynolds stresses. 

 The Jacobian regarding the change to the primitive variables are expressed as: 
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where ( )2 2 2 / 2u v w = + + . The preconditioning matrix is defined as:  

 ( )1,1,1,1,diag  =   (2.12) 
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where ( )2min ,1rM = . Nevertheless, the preconditioning is removed from both the Jacobian and 

the flux for this study, implying the term 1 = . 

 The Tenasi solver is a node-centered, FVM scheme that uses an implicit scheme applied to 

general multi-element unstructured grids. Thus, the governing equation (Eq. 2.1) is expressed as 

 0N T R=  + =   (2.13) 

where 

 QT d
t 


=
 

  (2.14) 

 
1

vR F F ndA
Re

 
= −  

 
   (2.15) 

R  and T  is the spatial components and the temporal component of the total residual N .  

 

2.3 Turbulence Modeling 

 Turbulence closure is essential for the governing equations presented in the preceding RANS 

section. Spalart et al. [38] put forward the Detached Eddy Simulation (DES) model, switching 

between RANS and SGS models, which are developed on the bases of the local grid refinement. 

 Nonetheless, DES was shown to adversely affect the attached boundary layers in some 

situations [38]. In order to correct this problem, Spalart et al. [39] developed the Delayed DES 

(DDES) model that modifies the original length scale to compute local turbulent value using both 

grid length and flow features. Additional turbulence models use this approach are found in 

literature. The multi-scale model, developed by Nichols and Nelson [40], utilizes both grid length 

scales as well as turbulent length scales to define the SGS model. The Wilcox k-ω model [42] and 
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Menter’s SST k-ω [31] turbulence model are examples of two such models that are widely used in 

CFD solvers.  

 

2.3.1 Wilcox k −  Model 

 In this study, the Wilcox two equations k −  model has been applied [42]. Like all eddy 

viscosity models, the model applies the Bossiness approximation to calculate the Reynolds stresses. 

Two different equations related to turbulence kinetic energy ( k ) as well as turbulence dissipation 

( ) are employed to create a velocity scale together with length scale for calculating the eddy 

viscosity. The velocity scale here is the turbulent kinetic energy ( k ) and the length scale as 

1

2 /k  . 

The model uses below mentioned equations [42] for calculating the molecular stress tensor, ijt , 

along with calculation of specific Reynolds-stress tensor, ij : 

 2ij ijt S=   (2.16) 

 
2

2
3

ij t ij ijS k   = −   (2.17) 

 
1

3

k
ij ij ij

k

u
S S

x



= −


  (2.18) 

 ( ) ( )
2

= 2
2 2

3 3

i
k ij t ij ij

j

u
S S S

x

k
u u  

  
= − −  

  
−    (2.19) 

 
t

k



=   (2.20) 

 *

2
,

ij ij

lim

S S
max C 



 
 

=  
  

  (2.21) 

 
7

=
8

limC   (2.22) 
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where    and k   denote mean density and turbulence kinetic energy.   and t  represent 

molecular viscosity and eddy viscosity, correspondingly. The quantity 
1

2

ji
ij

j i

uu
S

x x

 
= +    

  is the 

conventional mean strain-rate tensor, ij  denotes the Kronecker delta,   is the specific rate of 

dissipation, limC  indicates the stress-limiter strength and 
*  depicts a turbulence-model closure 

coefficient. It is recommended by Wilcox [42] that the = 0.95limC   gives better estimation of 

shock-separated flows up to Mach 3. 

 The turbulence kinetic energy, k , together with dissipation,  , are governed by solving the 

following equations 

 
*ˆ

k k

k
Skd k dA k ndA k

t



    

  

  
+ − 

 
 +  =   +  


     (2.23) 
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
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

 
  







  

− +

  
+  = +   

  

 
+   + + 

 

  
  (2.24) 

where the turbulence-model closure coefficients 
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where, 1
=

2

ji
ij

j i

uu

x x

 
 − 

   

 represents the rotational strain rate tensor. 

 

2.3.2 Blended SST ,k k − −  Turbulence Model 

 The Shear-Stress Transport model formulated by Menter [31] facilitates the prediction of 

adverse pressure-gradient-dominant flows by means of the transport of the principal shear stress. 

It has been successfully employed for simulating the behavior of complex turbulent flows [43]. 

The blended ,k k − −   turbulence model [44][36] which is applied in this research is 

determined by: 

 ( )
3/21 ˆ

k t k d

t

k
kd k dA k ndA c p d

t Re l
S 


      

  

 
+  = +   + − + 

  
     (2.26) 
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+  

 
+ − + +   − + + 

  

 

  

 (2.27) 

where the eddy viscosity, production, turbulent length scale, and pressure dilatation terms are 

expressed as 

 1

ˆ
t L

a k
Re





=   (2.28) 

 ( )1 2

1
ˆ max , 2       

2

ji
ij ij ij

j i

uu
a F

x x
 

 
=    = − 

   

，   (2.29) 
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22 2 1

2       
3 3 2

jt i
k ij ij ij

L j i

uuk
S S S u u S

Re x x


    
= −  −  = +        

，   (2.31) 

 
2 2

2 3k t tp d S M M    = − +   (2.32) 
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2 1 3 4max 1 , 2 ,l t c ij ij
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D a M c F S S F

C
 

 
 = +    

  (2.35) 

 ( )11c d Dc c c F= = = −   (2.36) 

here, 0.65DESC = , max  represents local maximum space between node-to-node, 
2 22 /tM k c= , 

c k = , 0.09c = , 1 1.0 = , 2 0.4 = , 3 0.2 = , 1 0.31a =  and 2 2.5a = . The coefficients cc , 

dc , and Dc  put limitations for their related terms to the region outside of the boundary layer. In 

the SGS model, the turbulent length scale tl  functions as maximizing the local dissipation of k  

and aims to control the size of k  and eventually t . This property averts t  against huge growth 

or losing the spatial changes due to increase in distance from the viscous surface. 

 The blending functions are expressed as ( )4

1F tanh =  , ( )2

2 2F tanh =  , ( )2

3 3F tanh =  , 

and ( )2

4 4F tanh =  where 
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4500
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0.09 v L v k v
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d Re d D d





 


 

  
=     
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  (2.37) 

 2 2

2 500
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k

d Re d




 

 
=   

 
  (2.38) 

 ( )3 4 3/       / 2v DES maxd C  =  =，   (2.39) 
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1
max 2 ,10kD k  



− 
=   

 
  (2.40) 

where vd  indicates the distance to the viscous surface. However, application of 3F  as well as 

4F  is made for removing the effect of grid-induced separation caused by the high grid dependence 

of the original DES scheme [36].  

 The blending function 1F  plays an important role as an indicator function for near-wall and 

farfield regions of the flow. The k −  model form is recovered near the wall ( 1 1F = ), and the 

model trends to k −  model form far from the wall ( 1 0F = ) [31]. 1F  is applied for blending the 

model constants, which are among k −   as well as k −   regions of the flow by applying 

( )1 1 1 21F F  = + −   where 1   and 2   suggests the general constants as regards the k −   as 

well as k −  regions, correspondingly.  

 The model constants for the SST k −  field are presented as: 
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11
1 1 1 10.85 0.5 0.075 0.09k




 
    

 



 
= = = = = −， ， ， ，   (2.41) 

whereas, the model constants for the k −  field are presented as: 

 
2

22
2 2 2 21.0 0.856 0.0828 0.09k




 
    

 



 
= = = = = −， ， ， ，   (2.42) 

and 0.41 =  is applied on both regions. The boundary conditions used on the turbulent variables 

are 

 
7

2

1

38.4
1.0 10 10.0 0.0 v

farfield farfield viscous viscous v

v L

C
k k C

d Re


 

 

−=  = = = =，， ，   (2.43) 

In order to prevent division by zero, 0.1   is imposed for all control volumes. Moreover, 
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0.0k   is forced for maintaining physical kinetic energy of turbulence. 

 The source term G  creates a sensitivity to spatial variations in the strain rate for the 

dissipation rate. This is particularly useful for determining the shock wave location.  G  is 

defined as 

  t
G

L

S S

Re S

  
 =  

 
  (2.44) 

where 
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ˆ ˆ ˆ/ 2       2
3

ij

ij ij ij ijS S S S S u


= = − ，   (2.45) 

whereas ij  indicates the Kronecker delta. In some incidence, the additional   develops high 

dissipation on not only k   but also t   that causes low drag calculations. As a result, this 

expression needs to be selectively applied. 

 The source term R  applies realizability constraints to the turbulence model [45] to ensure 

adequate levels of dissipation. R  is defined as, 

 
( )

max ,0R
t

   −
 =  

 
  (2.46) 

where t  indicates the time step and   is the smallest 0.1   that satisfies both 

 
3

2
iiS    (2.47) 

and 

 ( ) ( )2 23 9ˆ ˆ ˆ ˆ ˆ 0.0
2 4

ii jj ii jj ijS S S S S − + + −    (2.48) 

R  only activates if ̂  . By means of R , the turbulence model offers a smooth procedure 

for maintaining appropriate levels of dissipation. 
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2.4 Numerical Approach 

2.4.1 HLLC Numerical Flux 

 High resolution near discontinuities, where shocks are a common occurrence, is of the most 

importance for Tenasi solvers. These cases come down to a classic Riemann problem. Numbers of 

estimations regarding Riemann solvers commonly used in CFD can be found. One such 

methodology was introduced by Roe [46]. However, it requires the entire decomposition of the 

eigensystem. Rather, the application of the approximate Riemann solver of Harten, Lax, and Van 

leer (HLL) [47] for two distinct contact waves (HLLC) is made to avoid the development of a 

complete eigensystem while still providing accurate results. The development presented hereunder 

follows the discussion of Toro [48][49][50].  

 Edge is reconstructed on the conserved variables, for example: 

 ( )1/2 1/2 1/2,
L Ri i iF F U U+  =   (2.49) 

wherein, 1/2LiU   as well as 1/2RiU  denotes the reconstructed conserved variables, subjected to 

both the left and right sides of the 1/ 2i  cell edges, respectively (see Fig. 2.1).  
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Figure 2.1: Schematic of the HLLC Approximate Riemann Solver 

 The HLLC Riemann solver [51] is used to estimate the Riemann solution by means of 

analyzing three wave speeds; RS  represents the largest speed wave, LS  represents the smallest 

speed wave, *S  shows contact wave speed. The contact wave then separates the two intermediate 

state vectors that are *LU  and *RU , which are restrictive by left as well as right waves. Appling 

these intermediate state vectors to calculate the intermediate fluxes *LF  as well as *RF  within 

these regions, the numerical flux HLLC is described as follows 
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 
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
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  (2.50) 

By integrating over appropriate control volumes, the flux is given as 
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F F S U U

F F S U U
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= + −

  (2.51) 
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Some extra conditions are imposed to solve the algebraic problem. 

For pressure and normal velocity, 

 
* * *

* * *

L R

L R

p p p

u u u

= =

= =
  (2.52) 

For tangential velocities, 
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,     

,     
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L L R R

v v v v

w w w w

= =

= =
  (2.53) 

It is also assumed that 

 
* *S u=   (2.54) 

thus, is an estimate for 
*S   is known, the normal velocity component 

*u   in the star region is 

known. By means of right and left state waves, the intermediate wave speed can be identified as 
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  (2.55) 

As it is expressed in the Eq. 2.50, one can carry out the flux determination by means of various 

speeds of waves. LF  and RF  are considered easy to find because the right and left states are 

already identified. In order to determine the star region flux *KF , star region state variables must 

be analyzed. The intermediate states are expressed as 
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  (2.56) 
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where K L=  and K R= .  

 

2.4.2 Weighted Essentially Non-Oscillatory (WENO) Edge Reconstruction  

 The WENO schemes are taken into consideration as extending the essentially non-oscillatory 

(ENO) scheme that was developed by Harten et al. [52] in the year 1987. The design of their 

scheme makes use of an adaptive polynomial reconstruction for the avoidance of the Gibbs 

phenomenon. The 1st WENO scheme was put forward by Oscher, Chan, and Liu [53] in the year 

1994, followed by extension upon the ENO scheme. The key concept put forward by them for 

obtaining a higher order approximation requires utilizing a linear combination of multiple, 

weighted lower order reconstructions. The use of adaptive stencils provides more weight to the 

stencils that have smooth regions while the stencils processing discontinuities or oscillations that 

avoided. Therefore, the smoothness of stencils decides the choice of weights. Extensive use of 

WENO schemes has been applied to structured FVM solvers, but Tenasi is the first unstructured 

solver to make use of this stencils. 7th order reconstruction developed by Balsara and Shu [73] is 

used in this work. 

 

2.4.3 Spatial Discretization  

 This study uses unstructured meshes for discretizing a specific spatial domain in which a dual 

mesh is used to create node-centered control volume. Multiple references discuss the 

implementation details [55][56]. 
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 Discretizing the equation over all the control volumes is explainable as 

 0i
i i

Q
R

t


+ =


  (2.57) 

where R  indicates the spatial residual, containing each and every contribution from the source 

terms and numerical fluxes [55]. “i” specifies the individual control volume, and iQ

t




 describes 

the change in the conservative variables over a particular time step. Generalization of the above 

expression is mandatory for the purpose of getting the direct solution of the non-conservative 

variables by means of the following: 

 0,     i i
i i i i

i

q Q
M R M

t q

 
+ = =

 
  (2.58) 

where 
iM  is a mapping of the conservative variables into non-conservative variable space. 

 In this study, the governing equations are discretized by a finite volume technique. Thus, the 

integrals in R  are discretely approximated by summing the fluxes through each of the faces of 

the control volume [74]. 
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v i i

i L

R F F n A
Re=

 
= −  

 
   (2.59) 

where k represents the number of faces on the control volume and A denotes the area of the face. 

Higher order flux evaluations are achieved by extrapolating the solution at the vertices to the faces 

by 

 
FL L L LF

FR R R LR

F F F r

F F F r

= + 

= + 
  (2.60) 

where r  is a vector from the vertex to face.  

 



32 

 

2.4.4 Temporal Discretization 

 The transient formulations applied are the second-order implicit scheme. The differential form 

to approximate the time derivative term is express as [71][72] 

 ( )1 1

1 1

n n nt
q q q

t



 

+ − 
 = + 

+  +
  (2.61) 

where 1n n nq q q+ = − . The first order accurate in time is given by 0 =  while the second order 

accurate in time is given by 0.5 = . “n” represent the present time step, “n+1” shows the next 

time step, whereas “n-1” represents the former time step. 

 The temporal component of the residual can be expressed as 

 
q q

T
t t

 
= 
 

  (2.62) 

where q Qd=  . Substituted into Eq. 2.13 

 1 1 1

1 1

n n nt
q q R



 

− − +
 −  = −

+ +
  (2.63) 

The solution variables are assumed to be constant throughout the cell in order to evaluate volume 

integrals. Thus, q Q= . 
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+

− − −

 + =

= +




  (2.64) 

Since the value 
q

t




for each cell is dependent on the value at neighboring cells, the solution must 

be determined iteratively. 

 

2.5 Boundary Condition 

 The application of the Navier-Stokes equations needs the specification of boundary conditions 

for non-periodic problems. The solution depends highly on the boundary conditions. The choice 
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of boundary conditions is decided by the physics of the problem of interest. In current formulation, 

the boundary conditions are implemented implicitly. In order to apply boundary conditions to the 

exact point at a boundary, an additional ghost cell is linked with each boundary cell. This inclusion 

of the ghost cells assists the boundary cells to be treated like inner cells. It allows the boundary 

cell unknown primary variable vector to be calculated with the inner cells. The ghost cells fill the 

outside of the boundary surface for a non-reflecting outflow or supersonic outflow state. Four cells 

are used in this case because the seventh-order WENO scheme asks for eight nodes. Subsequent 

to that, the outermost cells are copied to the four ghost cells. Moreover, sometimes, and 

accordingly, the velocity continues to follow the similar direction as in the case of the outermost 

cells regarding the ghost cells. 

 The boundary conditions are shaped with the help of starting with the quasi-linear form of the 

system, in addition to writing the equations in the direction that is normal to the boundary,  : 

 0
Q Q

A
t 

 
+ =

 
  (2.65) 

Since 
F

A
t


=


 is a constant-coefficient matrix. It can be diagonalized using the relation: 

 
1

AA X X −=    (2.66) 

where    is the matrix of eigenvalues and X   is the right eigenvector matrix of A . Then, the 

quasi-linear system then becomes: 
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Evaluating 1X −  at some reference state which shows a constant matrix, it is able to place in the 

derivative as, 

 

1 1

0 0 0A

X Q X Q

t 

− − 
+ =

 
  (2.69) 

however, 0 subscript points out the evaluation is constant. Subsequently, the characteristic variable 

vector W  is described as 
1

0W X Q−= , and W could be assessed as dependent on the sign of the 

eigenvalues on the boundary for the purpose of computing the values of bQ  which are then used 

in the evaluation of the numerical flux through the boundary. bQ  means the ghost cells’ variables. 

 

2.5.1 Inflow Boundary Condition for Subsonic In-Tunnel Inlet 

 The eigenvalues to be used in the system of equations of inflow are 
1 2 3   = = =  ,

4 c = +  , and 
5 c = −  . The inflow is distinguished with the help of the foremost three 

eigenvalues that are negative, and the 4th eigenvalue that is positive, whereas the 5th eigenvalue is 

again negative. The dependent variables within the ghost cell for that boundary have been 

expressed as 

 

1 1

0 0

2 2

0 0

3 3
0 0

44

00

55

00

a

a

a

l

ab

l P l Q

l u l Q

l v l Q

w l Ql

T l Ql

    
    

    
     = 
    

    
         

  (2.70) 

where 0    ( 1,2 5)il i =  are the left eigenvectors being assessed as fixed. (Note these are the rows 

of the matrix 
1

0R −
). Vectors 

aQ  and 
lQ  indicate the dependent variable vectors. Together with 

that, a subscript of “a” signifies the evaluation from a freestream location, whereas a subscript of 
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“l” signifies the evaluation inside of the boundary directly. Additionally, the “b” subscript signifies 

the ghost cells’ variables. 

 

2.5.2 Inflow Boundary Condition for Supersonic Farfield Inlet 

 The supersonic inflow is characterized by the all five eigenvalues that are negative. The 

dependent variables within the ghost cell for that boundary have been expressed as 
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  (2.71) 

 

2.5.3 Outflow Boundary Condition for Supersonic Outlet 

 The supersonic outflow is differentiated by means of all five eigen values are positive. The 

dependent variable for the ghost cell for this boundary is given as 
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  (2.72) 

 

2.5.4 Impermeable Surface with Viscous Flow 

 Either Dirichlet boundary condition or Neumann boundary condition are used for the 

impermeable surfaces in a viscous flow in this study. A Dirichlet boundary condition is used 
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throughout the entire simulation generally for the nondimensional temperature at the boundary. 

0T =  or 1T =  represent the wall is constantly heated or cooled, respectively. Moreover, the non-

slip condition is applied on the velocity which is a subset of the Dirichlet condition. A non-slip 

condition is achieved by enforcing fluid for having a zero-velocity subjected to the fixed surface 

all the time. Therefore, the following variables can be set and kept constant. The ghost cells within 

this condition just acquire a straight copy of the variables from the boundary. 
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  (2.73) 

where “b” subscript is once again a representation of the ghost cells’ variables whereas “l” 

subscript is a representation of the boundary cells’ variables. 

 The second boundary condition applied for the impermeable surface in viscous flow is the 

Neumann boundary condition. The two Neumann boundary conditions used in this study are: (1) 

enforcing a zero gradient for both temperature and pressure off the wall, (2) requiring the pressure 

gradient off the wall to be equal to the source term. 

Zero gradient 

 0,     0
T P

 

 
= =

 
  (2.74) 

 ,     l i l iT T P P= =   (2.75) 

Source term gradient 
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  (2.76) 
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2

( )l i i l i

Gr
P P T

Re
 = + −   (2.77) 

where “l” subscript denotes the variables of the node on the boundary and “i” subscript denotes 

the variables of the node directly interior of the boundary. Gr  is Grashof number. 
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Chapter 3 

Wind Tunnel Facility and Model Configuration 

 

 In this chapter, the details of the physical experiments, which were performed by the Advanced 

Flow Diagnostics Laboratory (AFDL) at Auburn University, have been introduced through the 

wind tunnel establishment. The configuration of the supersonic nozzle is discussed as well as the 

introduction of the test section and the object assembly.

 

3.1 Wind Tunnel Facility 

 The experiments were carried out by means of the Supersonic Wind Tunnel (SST), which is 

situated in the Florida Center for Advanced Aero-Propulsion (FCAAP) within Florida State 

University (FSU). The facility was provided with compressed air at approximately 500 psi (~3,400 

kPa) from a reservoir that possesses a volume of 3113 m . The SST test section has a height of 3 

inches (~76.2 mm), a width of 4 inches (~101.6 mm), and a length of 15.5 inches (~393.7 mm), 

correspondingly. The tunnel was designed for the purpose of generating free stream at a Mach 

number of 2 approximately. The pressure of stagnation was maintained at 51 psi (~350 kPa), 

whereas the stagnation temperature was maintained at 296 K approximately. The facility has an 

accumulated seeder that is considered as modified Wright nebulizer, which was mentioned by 
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Alkislar [61] that generates seeding particles with a mean diameter of 0.3 µm. Under these 

circumstances, the facility is able to generate runtimes of about 3 minutes, although the runtimes 

for data were restricted to about 2 minutes, which happens because of the accumulation and 

condensation of seeding particles on the test section window.  

 The fin model used for the shock wave-turbulent boundary layer interactions (SWBLI) was 

aluminum that possesses 37.5 mm height and 72mm length. The fin was positioned at an angle of 

attack of 15° that produces an oblique shock at 45° in Mach 2 flow. The supportive arrangement 

of the wind tunnel occludes the bottom part of the test section window from view; thus, in order 

to carry out experiments with ease, the fin was placed top-mounted as shown in Fig. 3.1.  

 

Figure 3.1: The Demonstration of Top-Mounting of the Fin in the Test Section 
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3.2 SolidWorks Model Configuration 

 In the physical wind tunnel experiment, the wind tunnel always consists of four sections 

ordered from upstream to downstream whose description is explicitly as follows: 

 1. Stagnation chamber: The stagnation chamber usually has a big volume to conserve gases 

and set up the flow’s initial conditions. In the chamber, a uniform, low-speed flow is provided to 

the nozzle inlet. 

 2. Nozzle: The nozzle accelerates the incoming flows to their respective target velocities. The 

supersonic nozzles were designed with a convergent-divergent contour, while the subsonic and 

sonic nozzles were designed with a purely convergent contour. 

 3. Test section: The test section in this research is a rectangular pipe with a height of 3 inches 

and a width of 4 inches. The supersonic flow reaches the design Mach number at the nozzle outlet 

and flows into the test section. The fin (experimental object) was mounted in the test section.  

 4. Diffuser: In the diffuser, the high-speed flow from the test section is decelerated to low-

speed. 

 For the numerical simulation, the initial flow conditions, such as temperature, pressure, density, 

velocity, and flow direction, can be determined through the input of boundary conditions at the 

nozzle inlet surface. Consequently, the stagnation chamber portion can be neglected. The 

supersonic flow that passes through the test section is decelerated by means of normal shocks in 

the diffuser. However, the complicated shock formation makes the algorithm easy to diverge. 

Using a diffuser at the back of the test section increases the difficulty of controlling the back 
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pressure of the test section. Thus, the diffuser section has not been used in the simulations. Since 

the shape of the nozzle in the wind tunnel is unknown, a converging-diverging nozzle is created in 

this study to accelerate the flow from stagnation state to Mach 2.  

3.2.1 Converging-Diverging Nozzle Design for the Computational Domain 

 The nozzle is the primary component involved with the acceleration of the flow to a target 

velocity. For a supersonic flow, the nozzle must be designed with a convergent-divergent contour 

so that the flow can undergo acceleration through supersonic expansion downstream of the throat. 

The relation between area ratio and the Mach number is given in Eq. 3.1 taken from Pope [66]. 

This equation shows the effect of the cross-sectional area of a nozzle on the velocity of the flow. 

 ( )2 1
dA du

M
A u
= −   (3.1) 

Since the area and the velocity are positive, in the subsonic portion, the velocity of the flow will 

increase as the area of the duct decreases and vice versa. In the supersonic portion, the velocity of 

the flow will increase as the area of the duct increases and vice versa. The cross-sectional area 

reaches a minimum at M=1, which is known as the “throat”. The throat area could be calculated 

by the nozzle cross-sectional area and local Mach number as the following equation [66]: 
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  (3.2) 

where A is the cross-sectional area, A* is the area of the nozzle throat, γ is the specific heat ratio 

of air, and M is Mach number. The nozzle is designed to create a Mach 2 flow, and the cross-

sectional area of the test section (the nozzle outlet) is known, so the nozzle throat for a given Mach 
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number was first calculated. Because the viscous wall is used in the flow solver, it can be known 

beforehand that the boundary layer growth in the simulation would reduce the total energy and 

available area of the flow. This viscosity effect decreases the actual Mach number produced in the 

test section. To overcome this, the actual design Mach number is 2.1 for the nominal Mach 2 

condition. Assuming 1.4 = , Eq. 3.2 was utilized for 2.1M =  to give */  1.84A A = . 

 For the converging portion of the supersonic nozzle, the shape of the nozzle was designed by 

fitting the contour according to the fifth order polynomial equation [67],  

 ( )
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y x h h
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with the constrains, 
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where x and y are the Cartesian coordinates, h is the height of the converging portion of the nozzle, 

and L is the total length converging portion of the nozzle. In this research, the height and length of 

the converging portion of nozzle is 5 inches and 8 inches, respectively. The contour of the 

converging portion of nozzle is shown in Fig. 3.2. 
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Figure 3.2: Subsonic Nozzle Portion Spline 

 For the diverging portion of the supersonic nozzle, the quasi-one-dimensional theory indicates 

nothing about the contour of the nozzle. If the variation respect to the flow direction ( )A A x=  is 

not appropriate, the shock waves will coalesce and propagate into the test section. For this reason, 

the Method of Characteristics (MOC) [68], a technique for solving the hyperbolic partial 

differential equations for supersonic flow, has been employed in order to provide a proper design 

of the nozzle contour for shock free, isentropic flow. By using this technique, flow properties, such 

as direction and velocity, can be calculated at distinct points throughout a flow field. A MATLAB 

code is applied to this research to generate a gradual-expansion nozzle (Fig. 3.3 a) through the 

process of the Method of Characteristics. The gradual-expansion nozzle is a type of expansion 

nozzle that maintains a high-quality flow at the exit of the nozzle with desired conditions. 

Compared with the minimum-length nozzle (another type of expansion nozzle, Fig. 3.3 b), which 
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utilizes a sharp corner to provide the initial expansion, the gradual-expansion nozzle is better suited 

for use in supersonic wind tunnels. The behavior of these characteristic lines is shown for both a 

gradual expansion nozzle and a minimum-length nozzle in Fig. 3.3. The Mach waves reflect and 

intersect with each other in the non-simple region. 

 

Figure 3.3: Characteristic Lines in Expanding Supersonic Flow 

 The MATLAB program provided contour coordinates of the diverging portion of the nozzle 

normalized to the throat height. To obtain the dimensional full-size coordinates, the normalized 

coordinates were simply multiplied by the throat height to get the full-size coordinates. The upper 

contour of the diverging portion of the nozzle is shown in Fig. 3.4.  

 

Figure 3.4: Supersonic Nozzle Portion Spline 
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 In some cases, the flow is transonic at the throat but decelerates back to the subsonic flow in 

the diverging portion of the nozzle following the relation between area ratio and Mach number. 

Therefore, a constant area portion for 2 inches in length is given to the throat of the nozzle to let 

compressible flow transit from subsonic to supersonic. Notice that the cross-section of the test 

section is a rectangle (3 inches by 4 inches). The contour of upper and lower surfaces of the nozzle 

depends on the height of the test section while the contour of front and back surfaces of the nozzle 

depends on the width of the test section. Therefore, contours of the supersonic nozzle are calculated 

separately, but in the same process presented above. The contour of the converging-diverging 

nozzle is shown in the Fig. 3.5. 

 

Figure 3.5: The Converging-Diverging Nozzle Spline (with Reservoir) 
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3.2.2 Test Section Assembly 

 The cross-section of the test section model in the CFD process has the same size as that in the 

physical experiment in section 3.1. The test section has a height of 3 inches, and a width of 4 inches. 

The connection between the nozzle and the test section is smooth to minimize the generation of 

strong oblique shock waves due to the corners on the sidewalls. The oblique shock waves produced 

at the inlet of the test section propagate and reflect in the tunnel, and they affect the supersonic 

flow properties. However, rather than eliminating oblique shock waves entirely, oblique shock 

waves can be only weakened by modifying the nozzle configuration. In the physical wind tunnel 

experiments, oblique shock waves exist and are visible in schlieren at the inlet of the test section 

because of the corner and a machining tolerance of about 0.1 mm (0.004 inch) in the nozzle and 

test section assembly. The unswept fin is positioned at the same place compared to the real 

experiments; the tip of the fin is 5 inches away from the inlet of the test section and 1.5 inches 

away from the right sidewall of the test section as indicated in Fig. 3.6. The fin has an angle of 

attack of 15° and is perpendicularly mounted on the bottom of the test section. The tip of the fin 

has been blunted by an arc with a radius of 0.002 inch (Fig. 3.7) to prevent the problems caused 

by a sharp point intersecting the wall. The final model configuration shown in Fig. 3.8 is used to 

build the unstructured meshes. 
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Figure 3.6: Engineering Drawing of the Fin in the Test Section 

 

 

Figure 3.7: The Dimension of the Blunted Fin Apex 
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Figure 3.8: The Configuration of Final Model  
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Chapter 4 

Grid Generation 

 

 CFD pre-processing can be divided into three major steps, which are model creation, grid 

generation, and numerical simulation parameters setup. In this chapter, the volume grid is 

generated using the wind tunnel model discussed in chapter 3. The process to achieve surface 

meshes and volumetric grid generation with Pointwise is presented. The evaluation of the grid 

quality, which affects the numerical simulation, is fully analyzed.

 After configuring the model in SolidWorks, the surfaces of the model are discretized into small 

elements, and the computational domain should be filled by individual control volume. Using the 

volumetric grid solver, the Tenasi can employ numerical methods to calculate the solution of the 

governing equations which have been discretized into an algebraic equation. In this research, 

Pointwise software, a powerful meshing package, has been utilized to generate the unstructured 

mesh of the computational domain. Pointwise provides high quality meshes, which are essential 

for accurate CFD solutions, by means of structured, unstructured, and hybrid grids including an 

anisotropic tetrahedral extrusion (T-Rex) technique for boundary layer resolving meshes. By using 

Pointwise, the surface mesh generation is achieved by a bottom-up technique, and the 

discretization of the flow field (volumetric grid generation) is accomplished by the proper 
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extrusion of the surface domain meshes. Moreover, Pointwise provides several essential 

parameters to evaluate the quality of the model grids such as area ratio and minimum included 

angle, which impact the convergence of the later numerical simulation. 

 

4.1 Surface Mesh Generation 

 Pointwise imports the database generated by several widely used engineering design software 

packages, such as SolidWorks and CATIA. The CAD model (quilts) is provided by a database to 

create connectors and domains. As shown in Fig. 4.1, the surfaces of the in-tunnel model have 

been classified into four portions: Inlet/Outlet, Converging-Diverging Nozzle, Test Section and 

Fin, which are indicated by different colors.  

 

Figure 4.1: The Classification of Model Surfaces 
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 The points distribution is determined by the flow speed and by geometric features. Since this 

experiment focuses on the supersonic case, the s  used to decompose the connectors (the edges 

of the model) should be small enough to capture the characteristics of the supersonic flow and the 

shape of the geometry. Otherwise, the result of simulation will be inaccurate. However, over 

populating the mesh would produce too many elements in the grid and enormously increase the 

simulation time without improving the solution. Considering the flow field is designed to reach

2Mach =  in the test section, the average spacing of the test section connectors is about 0.05 inch 

along the surface. The converging part of the nozzle connectors has a larger average spacing 

because the flow is accelerating to transonic at the throat of the nozzle. The nozzle connectors near 

the outlet have the same spacing compared with the test section connectors in order to make the 

cells generate smoothly between different portions of the model and also avoid the inaccuracy 

caused by a huge jump in grid spacing. The smallest spacing is defined at the leading edge of the 

fin because more points are needed at the front of the fin to capture details of the shape. 

Additionally, the leading edge of the fin naturally requires more points on the wall which gives 

better accuracy for the oblique shock wave. Figure 4.2 shows the difference between segmenting 

the blunted head connector in 7 points (Left) and 11 points (Right). Some meshing details about 

different portions of the model are given in Table 4.1. 
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Figure 4.2 The Improvement of the Fin Apex Curve Fitting 

 

 

Portions of 

model 

Surface Domain meshes Volume Grids 

Average spacing in 

connectors (in) 

T-Rex boundary 

conditions 

y   T-Rex boundary 

conditions 

y   

Inlet section 0.120 Match  Match  

CD Nozzle 0.055 Wall 0.005 Wall -51.0 10   

Test Section 0.050 Wall 0.005 Wall -51.0 10   

Fin (blunted 

head domains) 

0.007 Wall 0.0004 Wall -51.0 10   

Fin (other 

domains) 

0.007 Wall 0.001 Wall -51.0 10   

Outlet section 0.055 Match  Match  

Table 4.1: The Details of Meshing Processes in Different Portions of the Model 

 The high aspect ratio anisotropic cells, also called T-Rex cells in Pointwise, are applied in 

meshing the domains to resolve the high curvature geometry at the intersection of surface domains. 
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y  refers to the initial spacing of the T-Rex layers. The growth rate of 1.1 and the advancing front 

algorithm are used in generating T-Rex layers while meshing the domains. The different values of 

the initial spacing of the T-Rex layers are indicated in the Table 4.1. Figure 4.3 shows the T-Rex 

effects on the unstructured meshes of the domain in the blunted head of the fin.  

 

Figure 4.3: The Generation of Anisotropic Cells on Domain Meshes 

The inlet and outlet surface are set to “Match” which uses the “Push Attribute” to push the viscous 

boundary attributes from the volume grid to the surface grids and connectors to be consistent with 

the volumetric T-Rex boundary conditions. The Push Attribute only applies to surface and 

connectors that have the Match boundary condition. By using the Push Attribute, the spacing of 

the inlet and outlet connectors are matched to the spacing of the adjoining volumetric points.  

 

4.2 Volume Grid Generation 

 After generating the meshes for surface domains, the computational domain should be 

discretized with different types of cells. At first, the computational domain, which is a three-
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dimensional space of interest to the research, is created by combining the surface domains into a 

fully enclosed volume. Domains and the face orientation are selected to generate the block as 

shown in the Fig. 4.4. All of the surfaces have been highlighted to define the boundary of the block 

and the face orientation has been chosen to point inside the tunnel.  

 

Figure 4.4: The Generation of Block for Volume Grids 

The grid is built by generating anisotropic cells (T-Rex layers) with a specified initial spacing and 

a constant growth rate to create the appropriate viscous layers and then using isotropic tetrahedral 

cells to occupy the remaining space in the volume. 

 The T-Rex layers are generated by piling up the anisotropic cells such as prisms and pyramids 

elements normal to the domain in order to predict the boundary layer accurately. Those anisotropic 

cells are continuously produced through a specific initial spacing and a constant growth rate until 

the maximum layers are reached. The initial spacing y   is determined based on flat-plate 

boundary layer theory from White's Fluid Mechanic [69]. 
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In the above equation, Y + value is a non-dimensional normal distance to a wall which is defined 

as  

 
fricU y

Y

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where fricU  is the friction velocity at the nearest wall, y is the distance to the nearest wall, and   

is the local kinematic viscosity of the fluid. Y + value dictates the resolution level in the grids 

convergence study. Because the friction velocity which is unknown before solving the flow is used 

to calculate Y + value, the real Y + value requires an iterative approach that is difficult to achieve. 

For simplicity, 
4

9
Y + =  is recommended to get a acceptable grid resolution level. Based on the 

physical wind tunnel experiments, the supersonic flow parameters are provided as follows: 
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Substituting the Y +  value and the supersonic flow parameters, the Reynolds number and the 

initial spacing y  can be determined as 
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  (4.5) 

In this research, the initial spacing is chosen as -51.0 10  inches , which is slightly smaller than the 

calculation to get more layers in the viscous sub-layer region. The growth rate is required to be no 

larger than 1.25 to prevent layers from over expanding. The height of the cell is 1,000 times larger 



56 

 

than that of the initial cell after thirty layers when using the growth rate 0 1.25GR =  . The 

appropriate growth rate to improve grid quality can be decided based on the expression 

 

1

0 
nFGrowth Rate GR=   (4.6) 

where 1.5F   and 2n =  are used for this study of a fine grid level. Thus, the growth rate used 

in this research is equal to 1.1. The boundary conditions and the initial spacing y  for generating 

T-Rex layers in the volume grid is presented in the Table 4.1. Moreover, the advanced criteria for 

T-Rex layers are stated in the Table 4.2.  

T-Rex Layers Criteria Value 

The Growth Rate 1.1 

Max Layers 100 

Isotropic Seed Layers 2.0 

Collision Buffer 2.0 

Aniso-Iso Blend 1.0 

Maximum Angle 160 

Centroid 0.7 

Table 4.2: Advanced Criteria for T-Rex Layers Generation in Volume Grids 

The T-Rex Layers are stopped at the location where either the maximum layers are reached, or the 

anisotropic cells violate the advanced criteria. The Push Attribute is also involved in volume grid 

generation so that the T-Rex layers could grow correctly near the inlet of the nozzle and the outlet 

of the test section. Figure 4.5 shows the difference between the grids with and without the Push 

Attribute. The Push Attribute in the volume grid generation will change the surface meshes to 

allow for the creation of the anisotropic cells. 
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Figure 4.5: The Inlet Portion Grids with/without the Push Attribute 

 After the generation of anisotropic cells (T-Rex layers), the tetrahedral cells are used to 

populate the remaining space. The size of the tetrahedral cells in the test section (the area of interest) 

are constrained through the “Sources” tool, which helps users to specify value to the maximum 

size of elements in a selected region. Figure 4.6 shows the source being used to define the 

supersonic region and to control the size of tetrahedral cells inside of the source at a fixed spacing 

of 0.1 inch. This method ensures the flow features in the interest area has a good resolution.  
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Figure 4.6: The Application of Source for Better Control on Isotropic Cells’ Size 

 The volume grids are achieved through utilizing a combination of different types of elements, 

which are prisms, pyramids, and tetrahedral elements. Figure 4.7 shows the different cells 

distributing around the fin, where green elements are prisms, yellow elements are pyramids, and 

red elements are tetrahedrals. Figure 4.8 indicates the transformation from prisms and pyramids to 

tetrahedral cells at the leading blunted head. Pyramids are used to connect the T-Rex-layer 

extrusion (prisms) and tetrahedral cells. 
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Figure 4.7: Multi-Element Grid with Prisms, Pyramids, and Tetrahedral Cells 

 

Figure 4.8: The Transformation from Anisotropic Cells to Isotropic Cells at the Leading Blunted 

Head in the Grid Generation 

 Notice that a farfield case model is also established using the grid generation procedures and 

parameters introduced in this section. The farfield case arranges the fin on the center of the bottom 
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surface of a box with the size of 2 2 1m m m  . The number of total nodes and different cells in 

the volume grid has been tabulated in the Table 4.3. 

 

Model Nodes Prisms Pyramids Tetrahedrals Total Cells 

In-Tunnel  21,927,844 41,869,502 524,390 3,853,837 46,247,729 

Farfield 13,170,581 15,526,687 254,725 31,649,493 47,430,905 

Table 4.3: Total Number of Nodes and Different Type of Cells 

 

4.3 Grid Export 

 After generating the volume grid successfully, Pointwise allows users to export the grid into 

an SG file that is acceptable by the Tenasi solver. The domains have been identified before export 

so that the Tenasi solver could apply different boundary conditions to those surfaces in the 

numerical solving process. Domains are divided into inlet, outlet, fin, mounting plate, and 

sidewalls; furthermore, appropriate boundary conditions are written in a boundary condition file. 

 

4.4 Grid Quality 

 A high grid quality will significantly influence the numerical simulation. So, it is necessary to 

evaluate the grids generated and make some modifications to the grids before applying them into 

the flow solver. The quality of volume grids depends on the quality of domain meshes extruded to 

create blocks and the parameters used to restrict volume grid generation. The absolute definition 

of grid quality level is virtually absent; nevertheless, high-quality grids reveal all of the structural 
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characteristics of the model to maintain a maximum accuracy for solutions and to economize the 

numerical computation cost and time. Several important parameters used to examine the quality 

of grids are area ratio, minimum included angle, maximum included angle, aspect ratio, and 

centroid skewness. 

 The area ratio is the ratio of areas between the neighboring cells. Since the generation of a 

volume gird is achieved by inserting points normal to the domain with a distance decided by initial 

spacing and growth rate, the large area elements in the domain will extrude significantly faster 

than the small area elements, which can generate skewed cells to connect them. Generally, in order 

to forestall the high skewness, an area ratio up to 5 is acceptable in the tetrahedral dominant region 

and values up to 10 is acceptable in the prismatic dominant region. However, skewed cells always 

exist because small differences between elements increase exponentially through iterations. The 

area ratio of fin and test section domains have been demonstrated in the Fig. 4.9, and the maximum 

area ratio occurs in the outlet domain because of matching the extrusion of sidewalls. The inlet 

and outlet domain show an “X-shape” mesh because the four sidewalls use the Push Attribute to 

extrude normally but the extrusion stops when overlapping the extrusion in another direction as 

shown in the Fig. 4.10. 
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Figure 4.9: The Area Ratio of Elements around the Fin 

 

Figure 4.10: Large Area Ratio in the Elements Connecting the Sidewalls and Outlet Domain 

 Maximum and minimum included angle are the maximum angle and minimum angle in the 

grid cells, respectively. The maximum included angle in surface meshes is often controlled under 

150° and the minimum included angle that is greater than 2° is acceptable. The difficult part of 

meshing surfaces and generating volume grids is using different parameter combinations to 

achieve a reasonable minimum angle in the sharp corner (leading edge of the fin). The supersonic 



63 

 

case is always problematic in CFD because the large gradient of flow properties need strict 

discretization to guarantee the validity in the iterative process. Thin boundary layers in supersonic 

simulations require a very small initial spacing in extruding the T-Rex layers (boundaries); 

however, over-segmentation along the sidewalls increases the computational time significantly so 

using the same magnitude value of initial spacing to decompose the connectors is meaningless. 

Pointwise can split the connectors and recombine them to decrease the maximum angle if the angle 

in cells is extremely large (larger than 179°), but this approach does not always work and leads to 

the failure of the grid generation. When meshing the domains, the maximum included angle is 

about 159° while the minimum included angle is about 1°, which are demonstrated in Fig. 4.11. 

The minimum angle is located at the middle of the leading blunted head of the fin. When generating 

the volume grids, the maximum included angle is about 179°, which happens near the bottom 

corner of the fin and the corner of sidewalls. This is caused by the difference between the initial 

spacing of T-Rex and average spacing of connectors in addition to the termination of the T-Rex 

extrusion in two overlapping directions. Figure 4.12 shows large angle cells distributed around the 

rear bottom corner of the fin. 

 

Parameters Domain meshes Volume grids 

Maximum included angle 159.009 179.171 

Minimum included angle 1.019 0.013 

Table 4.4: The Maximum and Minimum Included Angle in the Grid Generation 

 



64 

 

 

Figure 4.11: The Maximum (Left) and Minimum (Right) Included Angle in the Domain Meshes 

 

Figure 4.12: The Distribution of Large Angle Cells around the Rear Bottom Corner of the Fin. 
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 Another quality criteria, the centroid skewness is defined as  
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Figure 4.13 Illustration of Cell Face Normal Vectors and Vectors from the Cell Centroid to the 

Face Centroid 

where iA  is the cell face normal vector and if  is a vector connecting the cell centroid and the 

face centroid (Fig. 4.13). Values range from 0 (no-skew) to 1 (collapsed cell). It is recommended 

to keep the value below 0.8 for good grids and sometimes the value below 0.95 is acceptable. As 

shown in Fig 4.14, the centroid skewness of most of the cells is under 0.5. The extremely large 

centroid skewness values belong to cells situated at the corner of sidewalls. Similar to domain 

meshes, during the volume grid generation, if the anisotropic cell extruded normal to the domain 

overlaps another extrusion, the anisotropic cell layer (T-Rex layer) stops locally, and isotropic cells 

fill the gap that has been squeezed to elongated tetrahedral cells. 
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Figure 4.14: The Distribution of Skewed Cells 

 Through the discussion of grid quality, the grids created for this research are of high quality. 

The area ratio in domain meshes is below 5, which is reasonable. Most of the control volumes have 

a maximum included angle under 178° while 30 volumes in the grid have a maximum included 

angle greater than 178.5°. However, some highly skewed cells occur around the intersection of 

sidewalls which have not been found to adversely affect the simulations, and the number of cells 

that have the centroid skewness greater than 0.9 just occupy a very small percentage (0.046%) of 

the entire volume mesh. Hence, the grids are considered to be of high quality. 
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Chapter 5 

Numerical Simulation 

 

 After building the volumetric grid, the processes of numerical simulations are demonstrated 

in this chapter. The numerical parameters setup and boundary conditions are presented and 

followed by the discussion of the simulation details in different cases. The CFD solver calculates 

the discretized governing equations iteratively, and the numerical simulations are considered to be 

achieved when the calculations are convergent after numbers of iterations. Nevertheless, as 

mentioned in the previous chapter, the absolute convergence is rarely achieved in most cases. Thus, 

the valid numerical simulation result is obtained when the residuals are either stable over a long 

iteration period or under an acceptable tolerance. 

 

5.1 Numerical Simulation Parameters Setup 

 The Tenasi solver is employed to solve the Reynolds-averaged Navier-Stokes equations 

(RANS) and some parameters must be specified. The numerical simulation parameters setup is an 

important procedure because an appropriate combination of the parameter set not only determines 

the nature of the simulations, but also improves the accuracy of simulation results. Generally, the 

parameters involved in the simulation are classified into five categories: Flow conditions, Solution 
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algorithm, Turbulence model, Run control, and Postprocessing.  

 The Supersonic flow conditions used in the numerical simulations are provided as hereunder: 

⚫ Reference density: 
30.9525 /kg m   

⚫ Reference velocity: 514.0068 /m s  (also the velocity of the flow at infinity conditions) 

⚫ Reference length: 0.072 m   

⚫ Reference temperature: 164.44 K   

⚫ Reference pressure: 4 24.4940 10  /N m   

⚫ Reference molecular viscosity: ( )-51.846 10  /kg m s    

 Some of the important parameters used for solving the governing equations (Eq. 2.1) in the 

Tenasi flow solver are listed as follows: 

⚫ Flow regime: Arbitrary Mach  

⚫ Solution algorithm: Implicit 

⚫ Number of sweeps in the linear solution algorithm: 10 

⚫ Inviscid flux Jacobian computation method: Approximate Jacobians 

⚫ Temporal accuracy (for time accurate simulation): 2nd order 

⚫ Number of Newton steps per time step: 5 

⚫ Inviscid flux computation method: HLLC discretization 

⚫ High order inviscid flux controls: Venkatakrishnan limiter 

⚫ WENO higher-order solutions: 7th order 

⚫ Viscous gradients computation: Weighted least square 
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 The simulation utilizes both Wilcox k −   model and the blended ,k k − −  

turbulence model. The detail about the turbulence model parameters have been listed below 

respectively. 

Wilcox k −  model: 

⚫ Number of linear sub-iterations: 10 

⚫ Applies a mean field generation source term for use with aerodynamic shocks: yes 

⚫ Uses a large-eddy simulation variation of the turbulence model: yes 

⚫ k  value for the run-time initialization: 1.0e-7 

⚫   value for the run-time initialization: 10.0 

Blended ,k k − −  turbulence model: 

⚫ Number of linear sub-iterations: 10 

⚫ Applies a mean field generation source term for use with aerodynamic shocks: yes 

⚫ Applies the compressibility correction to the entire flow field: yes 

⚫ Applies the pressure dilatation term to the entire flow field: yes 

⚫ k   value for the run-time initialization: 1.0e-7 

⚫   value for the run-time initialization: 10.0 

⚫ Coefficient for the mean field generation term: 1.0 

⚫ Sets force function 1F  : 1.0 
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5.2 Boundary Conditions 

 For the in-tunnel cases, the sidewalls of the converging-diverging nozzle, the sidewalls of the 

test section and the fin surfaces are set as non-slip, viscous, adiabatic walls. The flow direction is 

set along the x-axis. The total pressure of 351633.0 Pa and the total temperature of 296 K is defined 

as the inlet condition and the back pressure at the outlet is 44940.3 Pa. 

 For the non-obstacle surrounding cases, the bottom surface and the fin surface are set as non-

slip, viscous, adiabatic walls. The remaining surfaces are set as the farfield. The flow direction is 

set along the x-axis.  

 

5.3 Simulation Details 

 Most of the simulation cases in this study have over 20 million nodes, which needs a massive 

computation power and can be only achieved by operating in super computers. For this research, 

the numerical simulations are performed using High Performance Computation Linux Clusters 

(HPC) found in Auburn University known as Hopper. Hopper cluster offers 191 "Standard" nodes, 

and each node has 128GB of memory and 2 "Haswell" CPUs (10 cores/CPU). The grids are 

decomposed such that each core receives approximately 200,000 grid points in order to keep an 

optimal run speed.  

 The numerical simulations using the AMN regime performs steady state solutions to establish 

the basic flow field and then time accurate solutions to capture unsteady phenomena. In the 

operation process of the steady state, the simulation uses the first order iterations (flux 



71 

 

computations) to prevent instability followed by the higher order flux evaluations to improve the 

solution. Compared with the higher order schemes, the lower order schemes run the flow field with 

high dissipation and quickly generate an approximate mean flow. For this reason, the lower order 

iterations create a reasonable flow field at the beginning and offer a general flow field solution for 

improved higher-order iterations. The temporal accuracy is used after the steady state solutions 

establish the flow field, and then second order accuracy in time using five Newton iterations with 

10 linear subiterations is utilized in the simulations. For unsteady simulations, time steps are 

-710  s . Overall, the simulation process of each of the cases could be separated into five portions: 

first order steady state simulation, second order steady state simulation, first order temporal 

accuracy (unsteady state) simulation, second order temporal accuracy (unsteady state) simulation, 

and WENO higher order solutions simulation, which has been demonstrated in Table 5.1. The 

convergence history for three numerical simulation cases has been presented in Fig. 5.1, which 

shows the residual of all three cases is smaller than 310−  and runs stably in the WENO higher-

order solutions process. The Wilcox k −  turbulence shows a better stability compared with the 

Menter SST turbulence model because the switch criteria of the Menter SST needs more 

parameters to control, and inappropriate parameters lead a huge residual value in the iterative 

numerical computational processes. In order to show the feature of the supersonic flow, 5,000 

iterations are used to time average data for the unsteady run. Notice that the Plenoptic PIV results 

are an average of 500 images taken at 15 frames per second (15 Hz), so around 30 seconds of run 

time. Furthermore, the camera frame rate used in the physical experiment is 0.5Hz so that the 
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averaged results are really the mean flowfield. This run time scale is unaccessible for numerical 

simulation because of the memory and time costs. In the CFD process, the numerical solutions are 

averaged for 5,000 iterations so the averaged result indicates the flow features in -45 10 s  . 

Compared with the Plenoptic PIV results, the CFD results can be consider as an instantaneous 

result. 

 

Figure 5.1: The Convergence Plots in the Different Simulation Cases 

 In the numerical simulation processes, there is an automatic CFL adjustment procedure for 

steady state simulations such that problems could be detected before arising, and the adjustment 

of the CFL number prevents the program from going unstable. In this study, CFL-START = 1.0, 

CFL-RAMP = 1,000, and CFL = 2.0, which means 1,000 time steps is used to ramp the CFL 

number linearly from 1.0 to 2.0. The details about runs are shown in Table 5.1 below 
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Details In-tunnel Cases Farfield Cases 

Turbulence Model Wilcox k −  Menter SST Wilcox k −  

Grids Size 72.1 10   72.1 10   71.3 10   

Number of Nodes (Cores) Used 9 (180) 9 (180) 9 (180) 

CFL-START 1.0 1.0 1.0 

CFL-RAMP 1,000 1,000 1,000 

CFL 2.0 1.5 2.0 

Time Step (s) -710  -710  -710  

1st Order Steady Iteration Number 60,000 65,000 20,000 

2nd Order Steady Iteration Number 65,000 30,000 5,000 

1st Order Unsteady Iteration Number 20,000 10,000 10,000 

2nd Order Unsteady Iteration Number 7,5000 10,000 5,000 

WENO Higher-Order Solutions Iteration 

Number 

47,500 45,000 20,000 

Table 5.1: Details about Numerical Simulation Processes for Different Cases 

 The simulation time (CPU time) is around 2-5 seconds per iteration in the steady state 

solutions, but this time might increase to 10-30 seconds because of Newton iterations to resolve 

unsteady features. The total simulation time for each case usually remains several days. However, 

there are some fluctuations in the CPU usage time because of the busy situation of the Hopper 

cluster. Heavy I/O operations among the users affect the network speed and operation speed of the 

computation node. 
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Chapter 6 

Results and Discussion

 

 The results from numerical simulations introduced in the previous chapters are analyzed by 

means of examining various flow characteristics, such as the velocity in the x-direction, the density, 

the total pressure, and the temperature. Furthermore, the velocity components from CFD 

simulation results are compared with the measured value of the wind tunnel experiments using the 

Plenoptic PIV method for validation.  

 FieldView version 16 is applied for the CFD post-processing and visualization. Meanwhile, 

for the requirement of the numerical analysis and comparison of simulation results, the data set is 

also extracted and processed in MATLAB. There are two methods for the data set extraction: (1) 

using the python script to extract results directly from the Tenasi flow solver and (2) exporting the 

data after the CFD post-possessing from FieldView. The data set for the analysis is extracted from 

a cubic region, which is identical to the region of used in the physical experiment. The cubic region 

has a height of 29mm, a width of 16mm, and a length of 45mm, correspondingly, and it is 6mm, 

0mm, and 16mm away from the bottom point of the leading edge of the fin in the x, y, and z-axis, 

respectively. The location of the cubic region for the data extraction has been indicated in Fig. 6.1 

(Left), and the planar oblique shock wave at a wave angle of approximate 45°passes through the 
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cubic region, which is shown in the Fig. 6.1 (Right). Notice that the original coordinate system of 

the data set from physical experiments is different than the coordinate system established in the 

numerical simulations, and the PIV data has been translated into the coordinate system of the 

numerical simulations for these comparisons.  

 

Figure 6.1: Data Analysis Region of the Numerical Simulation 

The discrete data has been interpolated to create the figures of the flow properties in the MATLAB. 

The interpolation method employed in this study is a triangulation-based cubic interpolation, 

which has a continuity of 2C . From the numerical simulation of different cases, the feature of the 

 -structure of the SWBLI is obtained, which is illuminated in Fig. 6.2. The velocity of the free 

stream reaches to 2Mach  , which is roughly 510 /m s . Because of the obstruction of the fin, 

the oblique shock wave is generated, and the separation line is curved to the downstream. The 

green portion is the transonic region. It can be observed in Fig. 6.2 that the boundary layer is very 

thin in the supersonic condition, that the thickness of the boundary layer is altered because of the 

oblique shock wave. The main oblique shock wave, the separation shock wave, and the rear shock 

wave encounter at the triple point forming the  -structure of the SWBLI. The downstream flow 
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impinges the perpendicular surface of the fin and deforms the sonic line at the intersection of the 

fin and the bottom surface. 

 

Figure 6.2: The Demonstration of the  -Structure of the SWBLI from the Numerical 

Simulation (Location: Z=0) 

 

6.1 In-Tunnel Case Using Wilcox k −  Turbulence Model 

 Figure 6.3 shows the streamlines of the supersonic flow in the test section. The tailing vortexes 

form at the leading edge and on the top surface of the fin. The vortexes occurring and being 

constrained in the region near the rear surface of the fin incessantly rotate dragging the model. 

Because of the oblique shock wave, the stream lines are forced to turn toward the right sidewall of 

the test section. Since the shock wave impinges and affects the boundary layer of the sidewall, the 

flow near the right sidewall of the tunnel rises to the top surface of the tunnel and vortexes are 

generated and intermingled together. The downstream of the oblique shock wave is a high-pressure 
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region. 

 

Figure 6.3: Supersonic Flow Streamlines in the Test Section Using Wilcox k −  Model 

 By using Wilcox k −   model, the 3D structure of the SWBLI generated by the fin is 

demonstrated by means of the velocity iso-surfaces in Fig. 6.4. The velocity of Mach 2 flow is 

514 /m s  . However, since the shock wave is a discontinuity causing high gradient of flow 

properties, it is difficult to capture the iso-surface of the shock wave by setting the velocity equal 

to 514 /m s . Rather, a smaller value of velocity is selected to represent the oblique shock wave. 

The  -structure is shown in Fig 6.4 by three color iso-surfaces where the main oblique shock 

wave and separation shock wave, the rear shock wave, and the slipline region are presented by the 

red, yellow, and green iso-surface, respectively. The three iso-surfaces separate at the triple point, 

and the portion under the separation shock wave and the rear shock wave is the separation region. 

With the shock wave propagation away from the fin toward the right sidewall of the tunnel, the 
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size of the  -structure increases.  

 

 

Figure 6.4: The Structure of the SWBLI Generated by the Fin in the Test Section Using Wilcox 

k −  Model (Iso-Surfaces of X-Velocity) 

 Distributions of the different flow characteristics are provided by the slice cut figures in the z-

direction in order to show the growth process of the SWBLI in the in-tunnel case using Wilcox 

k −  model. The distribution of the x-direction component of the velocity, the total pressure, the 

density, and the temperature are presented in Fig 6.5, Fig. 6.6, Fig. 6.7, Fig 6.8, Fig. 6.9, Fig. 6.10, 

Fig 6.11, Fig. 6.12, Fig. 6.13, Fig 6.14, Fig. 6.15, and Fig. 6.16, respectively. The x-velocity 

distribution shown in Fig. 6.5, Fig 6.6, and Fig. 6.7 provides a good illustration of the development 

of the SWBLI structure, which demonstrates the behavior shown in Fig. 6.4. The boundary of the 

dark red region on the left and the orange region on the right represents the main shock wave and 
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the separation shock wave. The region downstream of the main shock wave is a low-velocity 

region which is terminated by the rear shock wave and slip surfaces generated by the SWBLI. The 

separation region increases and the slipline region extends backward with the increase of the z 

location. The thickness of the boundary behind the shock wave increases significantly and changes 

back to the thickness upstream of the shock wave within 40mm.  

 The total pressure distribution presented in Fig. 6.8, Fig. 6.9, and Fig. 6.10 shows a high-

pressure region behind the main shock wave. The separation bubble in the separation region is 

obvious, and a pressure “jet” occurs from the triple point to the bottom along the separation shock 

wave. With the development of the separation region in z-axis, the separation bubble is enlarged.  

 The density distribution shown in Fig. 6.11, Fig. 6.12, Fig. 6.13 indicates a high-density region 

behind the main shock wave. An extreme low-density region, which is related to the extension of 

the slipline region, is located near the mounting plate and increases along the x-direction.  

 The temperature distribution presented in Fig. 6.14, Fig. 6.15, and Fig. 6.16 shows a high-

temperature region behind the main shock wave. More important, an extreme high-temperature 

region occurs in the subsonic region near the bottom mounting plate which illustrates the thermal 

loads on the aircraft’s surface caused by the SWBLI. It is also shown in Fig 6.14, Fig. 6.15, and 

Fig. 6.16 that the extreme high-temperature region is separated into an upper portion and a lower 

portion by a relatively low-temperature layer (the yellow line in Fig 6.14, Fig. 6.15, and Fig. 6.16). 
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Figure 6.5: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, (e) 

Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.6: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 12.25mm, (e) 

Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.7: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 18.25mm, (e) 

Z=19.25mm 
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Figure 6.8: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, (e) Z=7.25mm, 

(f) Z= 8.25mm 
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Figure 6.9: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 12.25mm, (e) 

Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.10: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 18.25mm, (e) 

Z=19.25mm 
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Figure 6.11: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, (e) Z=7.25mm, 

(f) Z= 8.25mm 
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Figure 6.12: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 12.25mm, (e) 

Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.13: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using Wilcox 

k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 18.25mm, (e) 

Z=19.25mm
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Figure 6.14: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, (e) 

Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.15: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 12.25mm, (e) 

Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.16: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 18.25mm, (e) 

Z=19.25mm 
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6.2 In-Tunnel Case Using Blended SST ,k k − −  Turbulence Model 

 

Figure 6.17: Supersonic Flow Streamlines in the Test Section Using Blended ,k k − −  Model 

 The streamlines of the supersonic flow in the test section have been shown in Fig. 6.17. Similar 

to the numerical simulation using the Wilcox k −  model, the tailing vortexes form at the leading 

edge and on the top surface of the fin. The vortexes occurring and being constrained in the region 

near the rear surface of the fin incessantly rotate dragging the model. Because of the oblique shock 

wave, the stream lines are forced to turn toward the right sidewall of the test section. Since the 

shock wave impinges and affects the boundary layer of the right sidewall, the flow near the right 

sidewall of the tunnel rises to the top surface of the tunnel and vortexes are generated and 

intermingled together. In addition, the blended ,k k − −  model provides a better description 

of the turbulence in the tunnel. The vortexes upstream of the shock wave and the tailing vortexes 
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formed at the intersection of the fin rear surface and the bottom mounting plat are illuminated. 

 

Figure 6.18: The Structure of the SWBLI Generated by the Fin in the Test Section Using 

Blended ,k k − −  Model (Iso-Surfaces of X-Velocity) 

 By using the blended ,k k − −  model, the 3D structure of the SWBLI generated by the fin 

in the test section is demonstrated by means of the velocity iso-surfaces in Fig. 6.18. For the same 

reason introduced in the previous section, a smaller value of the velocity is selected to represent 

the oblique shock wave. The  -structure is shown in Fig. 6.18 by three color iso-surfaces where 

the main oblique shock wave and separation shock wave, the rear shock wave, and the slipline 

region are presented by the red, yellow, and green iso-surface, respectively. The three iso-surfaces 

separate at the triple point, and the portion under the separation shock wave and the rear shock 

wave is the separation region. With the shock wave propagation away from the fin toward the right 

sidewall of the tunnel, the size of the   -structure increases. In the extension process of the 
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slipline region, the iso-surface of the same velocity is not always continuous. As Fig. 6.18 shows, 

the slipline region is cut off by the lower velocity portion. The main shock wave above the fin 

toward the ceiling of the tunnel turns downward and generates a high velocity region above the 

model. 

 Distributions of the different flow characteristics are provided by the slice cut figures in the z-

direction in order to show the growth process of the SWBLI in the in-tunnel case using the blended 

,k k − −   model. The distribution of the x-direction component of the velocity, the total 

pressure, the density, and the temperature are presented in Fig 6.19, Fig. 6.20, Fig. 6.21, Fig. 6.22, 

Fig. 6.23, Fig. 6.24, Fig. 6.25, Fig. 6.26, Fig. 6.27, Fig. 6.28, Fig. 6.29, and Fig. 6.30, respectively. 

The x-velocity distribution provides a good illustration of the development of the SWBLI structure, 

which demonstrate the behavior shown in Fig 6.19, Fig. 6.20, and Fig. 6.21. The downstream of 

the main shock wave is a low-velocity region (green and yellow region), which is terminated by 

the rear shock wave and slip surfaces generated by the SWBLI. The separation region increases 

and the slipline region extends backward with the increase of the z location. The thickness of the 

boundary behind the shock wave increases significantly and uses a longer distance compared with 

Wilcox k −   model to change back to the thickness upstream of the shock wave. The low-

velocity region behind the main shock wave and the subsonic region at the bottom in this case are 

larger than that in the in-tunnel case simulation using the Wilcox k −  model. Moreover, the 

velocity gradient is also clearer than that in the simulation utilizing the Wilcox k −  model.  

 The total pressure distribution presented in Fig. 6.22, Fig. 6.23, and Fig. 6.24 shows a high-
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pressure region behind the main shock wave. It is obvious that the separation bubble is located at 

the bottom of the separation region. The pressure “jet”, which is more intense than that in the 

simulation using the Wilcox k −  model, also happens from the triple point to the bottom along 

the separation shock wave. With the development of the separation region in z-axis, the size 

separation bubble is enlarged, and the high-pressure region is shrunk.  

 The density distribution shown in Fig. 6.25, Fig. 6.26, and Fig. 6.27 indicates a high-density 

region behind the main shock wave. An extreme low-density region, which is related to the 

extension of the slipline region, is located at the bottom and increases along the x-direction.  

 The temperature distribution presented in Fig. 6.28, Fig. 6.29, and Fig. 6.30 shows a high-

temperature region behind the main shock wave. Additionally, an extreme high-temperature region 

occurs in the subsonic region near the bottom mounting plate which illustrates the thermal loads 

on the aircraft’s surface caused by the SWBLI. The extreme high-temperature region increases, 

but the high-temperature region behind the main shock wave shrinks with the development of the 

main shock wave in the z-direction. The separation of temperature exists in the extreme high-

temperature region because of a relatively low-temperature layer (the yellow line in Fig. 6.28, Fig. 

6.29, and Fig. 6.30). 
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Figure 6.19: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, 

(e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.20: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 

12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.21: X-Velocity Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 

18.25mm, (e) Z=19.25mm 
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Figure 6.22: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, 

(e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.23: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 

12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.24: Pressure Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 

18.25mm, (e) Z=19.25mm 
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Figure 6.25: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, 

(e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.26: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 

12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.27: Density Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 

18.25mm, (e) Z=19.25mm 
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Figure 6.28: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) Z= 6.25mm, 

(e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.29: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) Z= 

12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.30: Temperature Distribution in the SWBLI of the In-Tunnel Case Simulation Using 

Blended ,k k − −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, (d) Z= 

18.25mm, (e) Z=19.25mm 
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6.3 Non-Obstacle Surrounding Case Using Wilcox k −  Turbulence Model 

 

Figure 6.31: Supersonic Flow Streamlines in the Non-Obstacle Surrounding Using the Wilcox 

k −  Model 

 The farfield (non-obstacle surrounding) case has the different simulation environment and the 

boundary conditions setup. The free stream velocity is artificially set to 514 /m s  in order to make 

the flow reach Mach number 2. For this reason, as shown in Fig. 6.31 (b), the velocity at the bottom 

of the inlet is not zero, however, the velocity suddenly decreases to transonic and subsonic because 

of the viscous effects. Therefore, it is considered that the viscous boundary layers are formed 

correctly at the beginning of the numerical simulation, which is shown in the Fig. 6.31 (b). From 

the vertical cutting plan in Fig. 6.31 (b), the free stream velocity is approximately Mach 2, and the 

main shock wave propagates to the far field without the obstructive effects of the sidewalls of the 

tunnel. The oblique shock is generated by the fin, and the separation line is curved to the 
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downstream.  

 The streamlines of the supersonic flow around the fin have been shown in Fig. 6.31 (a) & (c). 

Similar to the in-tunnel case simulation using Wilcox k −  model, the tailing vortexes form at 

the top surface of the fin and the intersection of the rear surface of the fin and the bottom mounting 

plate. The vortexes near the rear surface of the fin incessantly rotate dragging the model. Because 

of the oblique shock wave, stream lines are forced to turn toward the right following the separation 

line and then turn back toward the free stream direction. Compared with the stream lines in the in-

tunnel case using Wilcox k −  model presented in Fig. 6.3, the turbulence flow around the fin 

and the oblique shock wave are uncomplicated. In the Fig. 6.3, the stream line along the separation 

lines impinges the right surface of the tunnel and intermingles with the stream line near the tunnel 

boundary in x-direction arising to the top surface of the tunnel. However, in Fig. 6.31 (a) & (c), 

the stream line follows the separation line and turn toward x-direction without obstruction. As 

shown in Fig. 6.3, the tailing vortexes near the top surface of the fin flow downward due to the 

influence of the turbulence flow near the ceiling of the tunnel while the tailing vortexes near the 

top surface of the fin generated in the farfield case, as shown in Fig. 6.31 (c), flow in x-axis without 

changing its direction. 
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Figure 6.32: The Structure of the SWBLI Generated by the Fin in the Non-Obstacle Surrounding 

Using the Wilcox k −  Model (Iso-Surfaces of X-Velocity) 

 By using Wilcox k −  model, the 3D structure of the SWBLI generated by the fin in a non-

obstacle surrounding condition is demonstrated by means of the velocity iso-surfaces in Fig. 6.32. 

The   -structure of the SWBLI, which is not very obvious compared with in-tunnel case 

numerical simulations, is shown by different color iso-surfaces, where the main oblique shock 

wave and separation shock wave, the rear shock wave, and the slipline region are presented by the 

red, green and blue iso-surface, respectively. Without the tunnel, the main shock wave (red iso-

surface) propagates to the far field and no reflection of shock waves exists. 

 Distributions of the different flow characteristics are provided by the slice cut figures in the z-

direction in order to show the growth process of the SWBLI in the farfield case using Wilcox 

k −  model. The distribution of the x-direction component of the velocity, the total pressure, the 
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density, and the temperature are presented in Fig 6.33, Fig. 6.34, Fig. 6.35, Fig 6.36, Fig. 6.37, Fig. 

6.38, Fig 6.39, Fig. 6.40, Fig. 6.41, Fig 6.42, Fig. 6.43, and Fig. 6.44, respectively.  

 The x-velocity distribution (Fig 6.33, Fig. 6.34, and Fig. 6.35) could not show a quite obvious 

 -structure of the SWBLI compared with that in the in-tunnel case. The downstream of the main 

shock wave is a low-velocity region. The thickness of the boundary layer increases significantly 

behind the shock wave and compared with the boundary layer change in the in-tunnel case (Fig. 

6.5, Fig. 6.6, and Fig. 6.7), the boundary layer change on the thickness in the farfield case is much 

larger than that in the in-tunnel case.  

 The total pressure distribution presented in Fig. 6.36, Fig. 6.37, and Fig. 6.38 shows a 

separation of pressure and a high-pressure region exists downstream of the main shock wave. 

However, the separation bubble is not shown in the farfield case which is different from the in-

tunnel case in Fig. 6.8, Fig. 6.9, and Fig. 6.10. Further, the high-pressure region near the bottom 

mounting plat behind the shock wave in the farfield case is not as obvious as the high-pressure 

region of the in-tunnel case using the same turbulence model. 

 The density distribution presented in Fig. 6.39, Fig. 6.40, and Fig. 6.41 indicates a low-density 

region upstream of the main shock wave while a high-density region downstream of the main 

shock wave. The low-density region is much larger than the low-density region in the simulation 

of the in-tunnel case shown in Fig. 6.11, Fig. 6.12, and Fig. 6.13. 

 The temperature distribution presented in Fig. 6.42, Fig. 6.43, and Fig. 6.44 shows a high-

temperature region behind the main shock wave. More important, an extreme high-temperature 
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region occurs in the subsonic region near the bottom mounting plate, which has larger are and 

higher temperature than that in the simulation of in-tunnel cases using Wilcox k −  model (Fig. 

6.14, Fig. 6.15, and Fig. 6.16). This illustrates a more serious thermal load issue caused by the 

SWBLI compared with the in-tunnel case.  
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Figure 6.33: X-Velocity Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) 

Z= 6.25mm, (e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.34: X-Velocity Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) 

Z= 12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.35: X-Velocity Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, 

(d) Z= 18.25mm, (e) Z=19.25mm 
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Figure 6.36: Pressure Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) 

Z= 6.25mm, (e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.37: Pressure Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) 

Z= 12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.38: Pressure Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, 

(d) Z= 18.25mm, (e) Z=19.25mm 
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Figure 6.39: Density Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) 

Z= 6.25mm, (e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.40: Density Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) 

Z= 12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.41: Density Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, 

(d) Z= 18.25mm, (e) Z=19.25mm 
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Figure 6.42: Temperature Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 3.25mm, (b) Z= 4.25mm, (c) Z= 5.25mm, (d) 

Z= 6.25mm, (e) Z=7.25mm, (f) Z= 8.25mm 
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Figure 6.43: Temperature Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 9.25mm, (b) Z= 10.25mm, (c) Z= 11.25mm, (d) 

Z= 12.25mm, (e) Z=13.25mm, (f) Z= 14.25mm 
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Figure 6.44: Temperature Distribution in the SWBLI of the non-obstacle surrounding Case 

Simulation Using Wilcox k −  Model: (a) Z= 15.25mm, (b) Z= 16.25mm, (c) Z= 17.25mm, 

(d) Z= 18.25mm, (e) Z=19.25mm 
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6.4 Comparison with Wind Tunnel Experiments 

 

Figure 6.45: The Comparison of X-Velocity Distribution at Z = 7.25mm between Numerical 

Simulations and the Plenotic PIV Method 
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Figure 6.46: The Line Cut Comparison of X-Velocity between Numerical Simulations and the 

Plenotic PIV Method: (a) Y= -17.55mm & Z= 7.25mm, (b) Y= -23.55mm & Z= 7.25mm, (c) Y= 

-27.55mm & Z= 7.25mm, (d) Y= -33.55mm & Z= 7.25mm 
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Figure 6.47: The Comparison of X-Velocity Distribution at Z = 11.25mm between Numerical 

Simulations and the Plenotic PIV Method 
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Figure 6.48: The Line Cut Comparison of X-Velocity between Numerical Simulations and the 

Plenotic PIV Method: (a) Y= -17.55mm & Z= 11.25mm, (b) Y= -23.55mm & Z= 11.25mm, (c) 

Y= -27.55mm & Z= 11.25mm, (d) Y= -33.55mm & Z= 11.25mm 
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Figure 6.49: The Comparison of X-Velocity Distribution at Z = 15.25mm between Numerical 

Simulations and the Plenotic PIV Method 
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Figure 6.50: The Line Cut Comparison of X-Velocity between Numerical Simulations and the 

Plenotic PIV Method: (a) Y= -17.55mm & Z= 15.25mm, (b) Y= -23.55mm & Z= 15.25mm, (c) 

Y= -27.55mm & Z= 15.25mm, (d) Y= -33.55mm & Z= 15.25mm 

 Figure 6.45, Fig. 6.47, and Fig. 6.49 present the comparison of the x component of the velocity 

between numerical simulations and the Plenotic PIV method at three different z-axis locations: at 

7.25mm, 11.25mm, and 15.25mm. Because of the structure of the data set from the physical 

experiment, data at the closest location is applied in the comparison. The low-velocity region 

behind the main shock wave from the Plenotic PIV result is larger, and also has a smaller velocity 
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value than that from both two numerical simulations’ results. The thickness of the boundary layers 

from the experiments using the Plenotic PIV method has some small fluctuations but is fairly 

constant across the cuts. However, the thickness of the boundary layers in the two numerical 

simulations have an increasing portion, which is closer to the SWBLI characteristics established 

in Fig. 1.2. This difference might be caused by the limitation of velocity measurement at the near 

wall region of the Plenotic PIV method. The difficulties and inaccuracy of capturing the flow 

properties near the wall because of the usage of cameras have been mentioned in the previous 

study [64]. Compared with the numerical simulation utilizing the Wilcox k −   model, the low-

velocity region behind the main shock wave and the subsonic region at the bottom are larger in the 

numerical simulation utilizing the blended ,k k − −  model. Moreover, the velocity gradient is 

also clearer than that in the simulation utilizing the Wilcox k −  model. It is obvious that the 

SWBLI structures are different between the farfield and in-tunnel simulations. That means that the 

results from the wind tunnel experiments would have some deviation to a physical atmosphere 

flight. Compared with the numerical simulation of the in-tunnel case, the numerical simulation 

results of the farfield case has a larger subsonic region near the bottom surface. This points out 

that the extreme high-temperature region near the sidewall in a physical flight might be larger than 

that in the wind tunnel experiments. Hence, the thermal load issue caused by the SWBLI on the 

aircraft’s surface might be more serious than the experimental expectation.  

 As shown in Fig. 6.46, Fig. 6.48, and Fig. 6.50, the line cuts of the x-velocity are used to better 

illustrate the comparison between numerical simulations and the wind tunnel experiment. Figure 
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6.46, Fig. 6.48, and Fig. 6.50 show the x-velocity on four y-location (y= -17.55mm, -23.55mm, -

27.55mm, and -33.55mm) from Fig. 6.45, Fig. 6.47, and Fig. 6.49, respectively. The results at y= 

-17.55mm, -23.55mm, and -27.55mm show a good similarity on shock wave determination 

between numerical simulations and the physical experiment. However, a big difference occurs at 

-33.55mm because of the instability of the slip surface region and the difference in the   -

structure between cases. As far away from the near surface region, the simulation results become 

closer to the result of the wind tunnel experiment. This indicates the turbulence modeling needs to 

be improved in the near wall region and the boundary layer grid needs to be modified. The result 

in the physical experiment shows a larger low velocity region downstream of the main oblique 

shock wave. Moreover, the x-velocity downstream of the shock wave in the numerical simulations 

is larger than that in the wind tunnel experiment. The reason is that the sharp surface of the shock 

wave has not been captured away from the fin surface and the bottom surface of the test section. 

This leads to an inaccuracy on calculating the energy dissipation cross the shock wave so that the 

x-velocity decreases less than that in the physical experiments result through the shock wave. The 

grid resolution is required to improve in the further in order to capture the detail of recirculation 

region, and shock face. 

 The primary separation distance sepl , which measured by the distance between two bottom 

legs in the  -structure as shown in Fig.1.2, is one of the important indicators for the SWBLI 

structures. The primary separation distance from the result of both the numerical simulation and 

the physical experiments has been measured and listed in Table 6.1. The  -structure enlarges on 
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the z-direction away from the fin. The primary separation distance from the in-tunnel case using 

the blended ,k k − −  model is larger than that from the in-tunnel case using Wilcox k −  

model, which represents that the result of the in-tunnel case using the blended ,k k − −  model 

has a larger  -structure. The primary separation distance measured in the numerical simulations 

is bigger than that in the physical experiments. Notice that the  -structure in the farfield case 

using Wilcox k −  model is not obvious enough to measure the primary separation distance. 

Cases Z-Location 

Z = 7.25mm Z = 11.25mm Z = 15.25mm 

In-Tunnel Case using Wilcox k-ω Model 7.6 12.9 16.5 

In-Tunnel Case using Menter SSTModel 13.5 17.1 22.3 

Plenoptic PIV Method 4.6 7.7 11.5 

Table 6.1: The Primary Separation Distance of the SWBLI Structure (mm) 

 

6.5 Explication of the Additional Shock Wave in the Test Section 

 An unexpected oblique shock appears in the numerical simulation and is shown in Fig. 6.51. 

The wave detection method [70], which is based on searching the maxima of the density gradient, 

is applied to determine the location of the shock wave. The iso-surface for the shock wave and the 

criteria of the filter are expressed as 
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The iso-surface corresponds to the maxima or minima of the streamwise density gradient. If the 

filter is larger than zero, it represents a shock wave. If the filter is smaller than zero, it represents 

an expansion wave. However, some smooth flow regions also satisfy the condition that the second 

derivatives of density equal to zero, and the first derivatives of density are greater than zero. 

Therefore, the perturbation value  should be large enough to remove the smooth flow regions 

and small enough to preserve the weak shock wave. This wave detection method is also used in 

the previous analysis of simulation results. 

 

Figure 6.51: The Additional Shock Wave Created by the Change of Boundary Layer Thickness 

 From the result of shock wave detection (Fig. 6.51 Left), the additional shock wave is not 

generated by the reflection of oblique shock waves. Although the additional shock wave is weaker 

than the strong oblique shock generated by the fin, it is more obvious than the weak shock waves 

in the test section (Fig. 6.51 Right) and somewhat affects the strong oblique shock, which is the 

object of the research.  

 In the test section, the strong oblique shock wave is formed at the leading edge of the fin and 
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impinges the sidewall of the test section in its outward propagation. The thickness of the boundary 

layer on the test section’s sidewall is altered due to the shock wave impingement as seen in Fig. 

6.51, and the increase of the boundary layer thickness translates forward while the subsonic region 

near the sidewall of the tunnel enlarges. As the boundary layer thickness upstream of the main 

shock, it turns the flow and generates the additional weak shock wave. This phenomenon shows 

the complexity of the supersonic flow experiments in the wind tunnel. The existence of the 

additional shock waves indeed influence the result of the experiment, but it is easy to be ignored. 

The CFD study provides a direct way to visualize the details happening in the test section, which 

can be observed in the physical experiment. 
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Chapter 7 

Conclusion and Future Works

 

7.1 Conclusion 

 

7.1.1 Shock Wave-Turbulent Boundary Layer Interaction (SWBLI) 

 The characteristics of the shock wave turbulence boundary layer interaction have been 

obtained and analyzed based on the numerical simulations. The  -structure composed by the 

main shock wave, the separation shock wave, and the rear shock wave is observed in the simulation 

results, of which the size is increasing with the outward propagation of the shock wave. Meanwhile, 

the slipline region extends along the flow direction with the with the propagation of the shock 

wave. The separation bubble and pressure “jet” are presented in the total pressure analysis. The 

numerical simulation shows an extreme high-temperature region near the sidewall, which would 

cause the thermal load issue on the supersonic vehicle’s surface. The numerical simulations also 

indicate additional interactions between the main shock wave and the boundary layer, which was 

not observed in the physical experiments due to the placement of the cameras. 
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7.1.2 Turbulence Model 

 The Wilcox k −   model and the blended ,k k − −   model have been applied in the 

numerical simulation processes successfully. The blended ,k k − −   model shows a better 

capability on describing the behaviors of turbulence in the supersonic wind tunnel due to its 

advanced region switch criteria. However, the Wilcox k −  model expresses a better stability in 

operating the complex vortexes in the wind tunnel. The blended ,k k − −  model needs to run 

more iterations to be convergent; the sensitivity of the control parameters make it easy to the failure. 

Ignoring the loss of some accuracy, the k −   term could be eliminated for the blended 

,k k − −  model in order to obtain the improvement of the stability. The x-velocity simulation 

results by using two turbulence models are compared with the result from the wind tunnel 

experiment. The x-velocity by using the blended ,k k − −  model is closer to that measured in 

the physical experiment compared with the x-velocity by using Wilcox k −  model. However, 

both models need to be improved on modeling the near wall region flow. 

 

7.2 Future Works 

 The numerical simulation results capture the general characteristics of the SWBLI but the 

volume grid resolution need to be improved in order to capture the detail of the recirculation region, 

sharp surface of the oblique shock wave, and the λ-structure. The source terms should be discussed 

if they affect too much on the determination of the shock wave location. 

 When the experimental object is placed in the wind tunnel, it will produce oblique shock 
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waves which might influence and alter the properties of the incoming supersonic flow. Further, it 

is impossible to eliminate redundant oblique shock waves entirely, and the propagation and 

reflection of those oblique shock waves cause the supersonic flow behaviors in the wind tunnel to 

be more complex than that in the free stream flow. For this reason, it is significant to predict the 

effect of the tunnel’s surface shape on the generation of shock waves, which could be applied to 

improve the accuracy of investigations related to supersonic and hypersonic flows. 

 The impingement and coalescence of oblique shock waves have been observed in the 

numerical simulation results. The 2D-structure and 3D-structure of shock wave-turbulent 

boundary layer interactions have been examined in previous research. However, the features of the 

interaction between two oblique shock waves and boundary layers are rarely investigated. 

Furthermore, the studies about the supersonic flow behaviors in the area where several different 

shock waves and the boundary layer interact together should be encouraged.  

 The Plenoptic particle image velocimetry (PIV) method utilizes seeding particles with a mean 

diameter of 0.3 µm to capture the characteristics of the flow field. However, in the physical 

experience, it is obvious that seeding particles adhere and accumulate on the surfaces of sidewalls 

and the model. The micron-scale particles are large enough to change the micro-shape of the 

surfaces and have an effect on the formation of the boundary layers. The CFD provides a good 

way to establish the model and simulate in the expected condition helping the Plenoptic particle 

image velocimetry (PIV) method overcome the limitation of cameras. In order to enhance the 

comprehension of shock wave-turbulent boundary layer interactions, more work on the 
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relationship between the boundary layer deformation and the micro-shape and micro-structure 

change should be developed in the future.  

 The supersonic flow shows its complexity when the shock wave and the boundary layer 

interact with each other in the near wall region. Therefore, modeling the behaviors of the near wall 

region flow is a big challenge for the modern turbulence closure. Even though the CFD techniques 

continue to advance, modern turbulence models, which play an important role in numerical 

simulation, need better techniques to improve the predictability of numerical methods.  
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Appendix A

The MATLAB Program for Converging-Diverging Nozzle Design 

Flow Characteristic: 

G = 1.4; 

Me = 2.1; 

n = 25; 

grids = 1; 

Initialize datapoint matrices: 

Km = zeros(n,n);    % K- vlaues (Constant along right running characteristic lines) 

Kp = zeros(n,n);    % K- vlaues (Constant along left running characteristic lines) 

Theta = zeros(n,n); % Flow angles relative to the horizontal 

Mu = zeros(n,n);    % Mach angles 

M = zeros(n,n);     % Mach Numbers 

x = zeros(n,n);     % x-coordinates 

y = zeros(n,n);     % y-coordinates 

Find NuMax (maximum expansion angle): 

[~, ThetaMax, ~] = PMF(G,Me,0,0); 

NuMax = ThetaMax/2; 

Define some flow parameters of originating characteristic lines: 
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dT = NuMax/n; 

ThetaArc(:,1) = (0:dT:NuMax); 

NuArc = ThetaArc; 

KmArc = ThetaArc + NuArc; 

[~, ~, MuArc(:,1)] = PMF(G,0,NuArc(:,1),0); 

Coordinates of wall along curve from throat 

y0 = 1; % Define throat half-height 

ThroatCurveRadius = 3*y0; % Radius of curvature just downstream of the throat 

[xarc, yarc] = Arc(ThroatCurveRadius,ThetaArc); % Finds x- and y-coordinates for given theta-values 

%xarc = ThroatCurveRadius.*tand(ThetaArc)./sqrt(1 + tand(ThetaArc).^2); 

%yarc = ThroatCurveRadius - sqrt(ThroatCurveRadius.^2 - x.^2); 

yarc(:,1) = yarc(:,1) + y0; % Defines offset due to arc being above horizontal 

Fill in missing datapoint info along first C+ line: 

Km(:,1) = KmArc(2:length(KmArc),1); 

Theta(:,1) = ThetaArc(2:length(KmArc),1); 

Nu(:,1) = Theta(:,1); 

Kp(:,1) = Theta(:,1)-Nu(:,1); 

M(1,1) = 1; 

Nu(1,1) = 0; 

Mu(1,1) = 90; 

y(1,1) = 0; 

x(1,1) = xarc(2,1) + (y(1,1) - yarc(2,1))/tand((ThetaArc(2,1) - MuArc(2,1) - MuArc(2,1))/2); 

% Finds the information at interior nodes along first C+ line 

for i=2:n 
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        [M(i,1), Nu(i,1), Mu(i,1)] = PMF(G,0,Nu(i,1),0); 

        s1 = tand((ThetaArc(i+1,1) - MuArc(i+1,1) + Theta(i,1) - Mu(i,1))/2); 

        s2 = tand((Theta(i-1,1) + Mu(i-1,1) + Theta(i,1) + Mu(i,1))/2); 

        x(i,1) = ((y(i-1,1)-x(i-1,1)*s2)-(yarc(i+1,1)-xarc(i+1,1)*s1))/(s1-s2); 

        y(i,1) = y(i-1,1) + (x(i,1)-x(i-1,1))*s2; 

end 

Find flow properties at remaining interior nodes: 

for j=2:n; 

    for i=1:n+1-j; 

        Km(i,j) = Km(i+1,j-1); 

        if i==1; 

            Theta(i,j) = 0; 

            Kp(i,j) = -Km(i,j); 

            Nu(i,j) = Km(i,j); 

            [M(i,j), Nu(i,j), Mu(i,j)] = PMF(G,0,Nu(i,j),0); 

            s1 = tand((Theta(i+1,j-1)-Mu(i+1,j-1)+Theta(i,j)-Mu(i,j))/2); 

            x(i,j) = x(i+1,j-1) - y(i+1,j-1)/s1; 

            y(i,j) = 0; 

        else 

            Kp(i,j) = Kp(i-1,j); 

            Theta(i,j) = (Km(i,j)+Kp(i,j))/2; 

            Nu(i,j) = (Km(i,j)-Kp(i,j))/2; 

            [M(i,j), Nu(i,j), Mu(i,j)] = PMF(G,0,Nu(i,j),0); 

            s1 = tand((Theta(i+1,j-1)-Mu(i+1,j-1)+Theta(i,j)-Mu(i,j))/2); 

            s2 = tand((Theta(i-1,j)+Mu(i-1,j)+Theta(i,j)+Mu(i,j))/2); 
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            x(i,j) = ((y(i-1,j)-x(i-1,j)*s2)-(y(i+1,j-1)-x(i+1,j-1)*s1))/(s1-s2); 

            y(i,j) = y(i-1,j) + (x(i,j)-x(i-1,j))*s2; 

        end 

    end 

end 

Find wall node information: 

xwall = zeros(2*n,1); 

ywall = xwall; 

ThetaWall = ywall; 

xwall(1:n,1) = xarc(2:length(xarc),1); 

ywall(1:n,1) = yarc(2:length(xarc),1); 

ThetaWall(1:n,1) = ThetaArc(2:length(xarc),1); 

for i=1:n-1 

    ThetaWall(n+i,1) = ThetaWall(n-i,1); 

end 

for i=1:n 

 

    s1 = tand((ThetaWall(n+i-1,1) + ThetaWall(n+i,1))/2); 

    s2 = tand(Theta(n+1-i,i)+Mu(n+1-i,i)); 

    xwall(n+i,1) = ((y(n+1-i,i)-x(n+1-i,i)*s2)-(ywall(n+i-1,1)-xwall(n+i-1,1)*s1))/(s1-s2); 

    ywall(n+i,1) = ywall(n+i-1,1) + (xwall(n+i,1)-xwall(n+i-1,1))*s1; 

 

end 

assignin('caller','Coords',[xwall ywall]) 

Plot MOC Result: 
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figure (1) 

if grids == 1 

    plot(xwall,ywall,'r-','LineWidth',3) 

    axis equal 

    axis([0 ceil(xwall(length(xwall),1)) 0 ceil(ywall(length(ywall),1))]) 

    hold on 

    plot(xarc,yarc,'r-','LineWidth',3) 

    hold on 

    plot(xarc,yarc) 

    for i=1:n-1 

        plot(x(1:n+1-i,i),y(1:n+1-i,i),'b-') 

    end 

    for i=1:n 

        plot([xarc(i,1) x(i,1)],[yarc(i,1) y(i,1)],'b-') 

        plot([x(n+1-i,i) xwall(i+n,1)],[y(n+1-i,i) ywall(i+n,1)],'b-') 

    end 

    for c=1:n 

        for r=2:n+1-c 

            plot([x(c,r) x(c+1,r-1)],[y(c,r) y(c+1,r-1)],'b-') 

        end 

    end 

    hx1 = xlabel('Length [x/y0]'); 

    hy1 = ylabel('Height [y/y0]'); 

    set(hx1,'Fontsize',15); 

    set(hy1,'Fontsize',15) 

    ht1 = title(['Supersonic Portion Contour Using MOC ']); 
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    set(ht1,'Fontsize',15); 

    set(gca,'FontSize',15); 

    grid on 

    print(gcf,'-dpng',strcat('C:\Users\Jiayue\Desktop\Supersonic.png')); 

end 

Plot the Contour of CD Nozzle: 

Diverging = ywall; 

X = zeros(1150,1); 

Y = zeros(1150,1); 

x1 = [0:0.008:8]; 

x2 = [0:0.02:2]; 

len = xwall(50) 

x3 = xwall./len.*6; 

height_exit = Diverging(50); 

Diverging = Diverging./height_exit.*1.5; 

%Diverging = Diverging./height_exit.*2.0; 

height_throat = Diverging(1); 

y1 = 5-5.*(10.*(x1./8).^3-15.*(x1./8).^4+6.*(x1./8).^5); 

y1 = y1+height_throat; 

for i = 1:1:1150 

    if i <= 1000 

        X(i) = x1(i)+2; 

        Y(i) = y1(i); 

    else if i>1000 && i<=1100 

            X(i) = x2(i-1000)+10; 
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            Y(i) = height_throat; 

 

        else 

            X(i) = x3(i-1100)+12; 

            Y(i) = Diverging(i-1100); 

        end 

    end 

end 

figure(2) 

plot(X,Y,'-','LineWidth',2); 

hold on 

plot(X,-Y,'-','LineWidth',2); 

hold on 

plot([X(1150),X(1150)],[-Y(1150),Y(1150)],'-','LineWidth',2); 

hold on 

% Plot Reservoir 

plot([0,2],[Y(1),Y(1)],'-','LineWidth',2) 

hold on 

plot([0,2],[-Y(1),-Y(1)],'-','LineWidth',2) 

hold on 

plot([0,0],[-Y(1),Y(1)],'-','LineWidth',2) 

% 

hx2 = xlabel('Length'); 

hy2 = ylabel('Height'); 

set(hx2,'Fontsize',15); 

set(hy2,'Fontsize',15) 

ht2 = title(['The Contour of Converging-Diverging Nozzle']); 
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set(ht2,'Fontsize',15); 

set(gca,'FontSize',15); 

set(gca,'xtick',[0:2:20]); 

set(gca,'ytick',[-8:2:8]); 

grid on 

print(gcf,'-dpng',strcat('C:\Users\Jiayue\Desktop\CDnozzle.png')); 

assignin('caller','Contour',[X Y]) 
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Appendix B

The Python Script for the Data Extraction 

#!/usr/bin/env python 

############################################################################## 

# supersonic wind tunnel data extraction 

############################################################################## 

#import math,numpy,sys 

#import simcenter 

import numpy 

 

def UX_get_nsensor(uxp,sdb,grid): 

   print "PYTHON: changing nsensor." 

   grid['nsensor'][0] = 3 

 

   return 0 

 

def UX_get_sensor_points(uxp,sdb,grid): 

   print "PYTHON: getting sensor points." 

   nsensor = grid['nsensor'] 

   sxyz = grid['xyz'] 

 

   if nsensor == 0: 

      return 0 

 

   sxyz[1,:] = [x, y, z] 

   sxyz[2,:] = [x, y, z] 

   sxyz[3,:] = [x, y, z] 

 

   # scale by reference length 

   scale = uxp['REFERENCE-LENGTH'][0] 

   print "PYTHON: scaling by reference length " + str(scale) 

#   sxyz = sxyz / scale 

#   grid['xyz'] = sxyz 

   sxyz /= scale 
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   return 0 

 

def UX_get_sensor_box(uxp,sdb,grid): 

   print "PYTHON: getting sensor box." 

   nsensor = grid['nsensor'] 

   sbox = grid['box'] 

 

   if nsensor == 0: 

      return 0 

 

   for i in xrange(1,nsensor+1): 

      sbox[i,0] = 5.0 

      sbox[i,1] = 5.0 

      sbox[i,2] = 5.0 

 

   return 0 

 

# unit testing.  Here, we can run the module directly and double check the numbers. 

if __name__ == "__main__": 

  ndim = 3 

  nrelease = 1 

  nsensor = 2 

  grid = {} 

  uxp = {} 

  sdb = {} 

  grid["nrelease"] = 0 

  grid["ndim"] = ndim 

  grid["xyz"] = numpy.zeros((nsensor+1,ndim)) 

  grid["box"] = numpy.zeros((nsensor+1,ndim))  

  grid["nsensor"] = numpy.zeros(1) 

  uxp['REFERENCE-LENGTH'] = numpy.zeros(1) 

  uxp['REFERENCE-LENGTH'][0] = 2.0 

  UX_get_nsensor(uxp,sdb,grid) 

  UX_get_sensor_points(uxp,sdb,grid) 

  print grid['xyz'] 
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Appendix C

The MATLAB Program for Data Analysis 

Interpolation processing and generating images of flow characteristics: 

load('wilcox.mat');     %data input 

%load('sst.mat'); 

%load('sst.mat'); 

S = size(Data); 

    p1 = 1; 

    num = 1; 

for i = 1:1:S-1 

    if Data(i,3) ~= Data(i+1,3) 

        z_location = Data(i,3)*1000;    %in mm 

        p2 = i; 

        A = Data(p1:p2,:); 

        A(:,1:3) =  A(:,1:3).*1000; % in mm 

        x_min = min(A(:,1)); 

        x_max = max(A(:,1)); 

        y_min = min(A(:,2)); 

        y_max = max(A(:,2)); 

        figure (1)  %   X-Velocity Distribution 

        

[X,Y,V]=griddata(A(:,1),A(:,2),A(:,4),linspace(x_min,x_max,50)',linspace(y_min,y_max,50),'cubic')
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; 

        contourf(X,Y,V,80); 

        shading flat 

        hx = xlabel('x'); 

        hy = ylabel('y'); 

        set(hx,'Fontsize',25); 

        set(hy,'Fontsize',25); 

        colormap(jet(128)) 

        colorbar 

        caxis([200,500]) 

        ht = title(['X-Velocity Distribution at z=' num2str(z_location),'mm (m/s)']); 

        set(ht,'Fontsize',25); 

        set(gca,'FontSize',20); 

        print(gcf,'-

dpng',strcat('C:\Users\Jiayue\Desktop\Pic_from_Matlab\Vx','_at_z=',num2str(z_location),'.png')); 

        figure (2)  %   Density Distribution 

        

[X,Y,rho]=griddata(A(:,1),A(:,2),A(:,7),linspace(x_min,x_max,50)',linspace(y_min,y_max,50),'cubic

'); 

        contourf(X,Y,rho,80); 

        shading flat 

        hx = xlabel('x'); 

        hy = ylabel('y'); 

        set(hx,'Fontsize',25); 

        set(hy,'Fontsize',25); 

        caxis([0.7,1.7]) 

        colormap(jet(128)) 
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        colorbar 

        ht = title(['Density Distribution at z=' num2str(z_location),'mm (kg/m^3)']); 

        set(ht,'Fontsize',25); 

        set(gca,'FontSize',20); 

        print(gcf,'-

dpng',strcat('C:\Users\Jiayue\Desktop\Pic_from_Matlab\rho','_at_z=',num2str(z_location),'.png')); 

        figure (3)  %   Pressure Distribution 

        

[X,Y,P]=griddata(A(:,1),A(:,2),A(:,8),linspace(x_min,x_max,50)',linspace(y_min,y_max,50),'cubic')

; 

        contourf(X,Y,P,80); 

        shading flat 

        hx = xlabel('x'); 

        hy = ylabel('y'); 

        set(hx,'Fontsize',25); 

        set(hy,'Fontsize',25); 

        caxis([43657,107536]) 

        colormap(jet(128)) 

        colorbar 

        ht = title(['Pressure Distribution at z=' num2str(z_location),'mm (Pa)']); 

        set(ht,'Fontsize',25); 

        set(gca,'FontSize',20); 

        print(gcf,'-

dpng',strcat('C:\Users\Jiayue\Desktop\Pic_from_Matlab\Pressure','_at_z=',num2str(z_location),'.pn

g')); 

        figure (4)  %   Temperature Distribution 
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[X,Y,T]=griddata(A(:,1),A(:,2),A(:,9),linspace(x_min,x_max,50)',linspace(y_min,y_max,50),'cubic')

; 

        contourf(X,Y,T,80); 

        shading flat 

        hx = xlabel('x'); 

        hy = ylabel('y'); 

        set(hx,'Fontsize',25); 

        set(hy,'Fontsize',25); 

        caxis([162,280]) 

        colormap(jet(128)) 

        colorbar 

        ht = title(['Temperature Distribution at z=' num2str(z_location),'mm (K)']); 

        set(ht,'Fontsize',25); 

        set(gca,'FontSize',20); 

        print(gcf,'-

dpng',strcat('C:\Users\Jiayue\Desktop\Pic_from_Matlab\Temperature','_at_z=',num2str(z_location),'

.png')); 

        num = num +1 

        p1 = p2 +1; 

    end 

end 

Generation of line cuts for simulation data: 

clear all; 

clc 

%load('wilcox.mat');     % data input 
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%load('SST.mat'); 

load('far.mat'); 

%load('PIVdata.mat'); 

z_location = 7.25;      % determine z location 

%z_location = 11.25; 

%z_location = 15.25; 

S = size(Data); 

p1 = 1; 

num = 1; 

Data(:,1:3) =  Data(:,1:3).*1000;       % in mm 

X = linspace(590,635,100); 

Y = zeros(4,100); 

V = zeros(4,100); 

yc = [-17.55; -23.55; -27.55; -33.55];      % y location of four lines 

for i = 1:1:S(1)-1 

    if Data(i,3) ~= Data(i+1,3) && abs(Data(i+1,3)-z_location)<0.001 

        p1 = i+1; 

    end 

    if Data(i,3) ~= Data(i+1,3) && abs(Data(i,3)-z_location)<0.001 

        p2 = i; 

        A = Data(p1:p2,:); 

        for j = 1:1:4 

            y_temp = yc(j); 

            for k = 1:1:100 

                clear n 

                clear m 

                clear c1 
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                clear c2 

                c1 = (A(:,1)-X(k)).^2+(A(:,2)-y_temp).^2; 

                n = find(c1==min(c1)); 

                Sn = size(n,1); 

                for h = 1:1:Sn 

                    c2(h,1) = A(n(h),1)-X(k); 

                end 

                m = find(c2==min(c2)); 

                Y(j,k) = A(n(m(1)),2); 

                V(j,k) = A(n(m(1)),4); 

            end 

        end 

    end 

end 

X1 = 590:0.1:635; 

for i = 1:1:4 

    V1(i,:) = interp1(X,V(i,:),X1,'Spline'); 

end 

Generation of line cuts for physical experiment data: 

clear 

clc 

load('PIVdata.mat'); 

z_location = 7.25;      % determine z location 

%z_location = 11.25; 

%z_location = 15.25; 
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X_velocity=double(uAvg); 

for i=1:1:73 

    for j=1:1:46 

        for k=1:1:73 

            if mask(i,j,k)==0 

                X_velocity(i,j,k) = 0; 

            end 

        end 

    end 

end 

x = x(14:60,5:36,:); 

y = y(14:60,5:36,:); 

z = z(14:60,5:36,:); 

X_velocity = X_velocity(14:60,5:36,:); 

num = 1; 

z_col = 0; 

y_col = 0; 

X = x(:,1,1); 

yc = [-17.55; -23.55; -27.55; -33.55];      % y location of four lines 

for i = 1:1:73 

    if abs(z(1,1,i)-z_location)<0.1 

        z_col = i; 

    end 

end 

for i = 1:1:4 

    for j = 1:1:32 

        if abs(y(1,j,1)-yc(i))<0.001 
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            y_col = j; 

        end 

    end 

    V(:,i) = X_velocity(:,y_col,z_col); 

end 

X2 = 599:0.1:629; 

for i = 1:1:4 

    V2(i,:) = interp1(X,V(:,i),X2,'Spline'); 

end 

Image plot: 

z_location = [7.25,11.25,15.25]; 

yc = [-17.55; -23.55; -27.55; -33.55]; 

n = 0; 

for i = 1:1:3 

    n = n+1; 

    for j = 1:1:4 

        figure (n) 

        load(strcat('wilcox_z_location_',num2str(z_location(i)),'.mat')); 

        plot(X1,V1(j,:),'b-','LineWidth',3); 

        hold on 

        load(strcat('SST_z_location_',num2str(z_location(i)),'.mat')); 

        plot(X1,V1(j,:),'y-','LineWidth',3); 

        hold on 

        load(strcat('far_z_location_',num2str(z_location(i)),'.mat')); 

        plot(X1,V1(j,:),'g-','LineWidth',3); 
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        hold on 

        load(strcat('PIV_z_location_',num2str(z_location(i)),'.mat')); 

        plot(X2,V2(j,:),'r-','LineWidth',3); 

        hx = xlabel('x (mm)'); 

        hy = ylabel('x-velocity (m/s)'); 

        set(hx,'Fontsize',15); 

        set(hy,'Fontsize',15); 

        ht = title(['X-Velocity at y=',num2str(yc(j)),'mm & z=',num2str(z_location(i)),'mm']); 

        set(ht,'Fontsize',15); 

        set(gca,'FontSize',15); 

        h = legend('In-Tunnel Wilcox k-/omega Model','In-Tunnel Menter SST Model','Farfield Wilcox 

k-/omega Model','Physical Experiment'); 

        set(h,'Fontsize',15); 

        grid on 

        print(gcf,'-dpng',strcat('C:\Users\Jiayue\Desktop\pic_comparison\X-Velocity at 

y=',num2str(yc(j)),'mm & z=',num2str(z_location(i)),'.png')); 

        n = n+1; 

    end 

end 
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