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ABSTRACT 
 

 

Roadway maintenance and rehabilitation are critical tasks to sustain our transportation 

system. However, these activities often generate delays to road users, which can result in road user 

costs, work zone crash costs, and local business impact costs.  This thesis presents a comprehensive 

methodology to calculate these costs and a tool developed for engineers and project managers to 

implement this methodology in practice.  Specifically, this work develops methods for calculating 

a) road user costs, which adapts and updates FHWA and AASHTO policies, b) work zone crash 

mitigation costs, using an ordered probit model of crash severity estimated from eight states’ work 

zone crash databases, and c) local business impact costs, using another ordered probit model of 

driver behavior change estimated from a nationally-representative survey conducted for this work.  

To our knowledge, this is the first example of local business impact costs being studied on a 

nationally transferable scale. Results showed roadway geometry played a heavy role in work zone 

crash severity with the posted speed limit being the most statistically significant. For local business 

impacts, travelers’ decisions were most influenced by expected delay time, showing delay times 

exceeding 20 minutes resulted in travelers choosing to go somewhere else.  Finally, an Excel-

based tool was developed that completes a simulation of travelers through the work zone and 

calculates the costs for the project. 
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CHAPTER 1: INTRODUCTION 
 

 

Roadway maintenance and rehabilitation are critical and ubiquitous activities for state, 

county, and city engineers across the country. With this task, engineers constantly identify 

effective and efficient scheduling and rehabilitation methods that offer the lowest impact on local 

users and businesses. These blanketing costs need to be considered in the pavement type selection 

process and construction scheduling which this thesis will attempt to cover.  

Past research regarding lifecycle cost analyses tends to focus a limited scope on construction-

related costs (Asphalt Pavement Alliance, 2011, 2016), while other sources and studies are 

currently out-of-date or simplified (ASCE, 2014; Babashami, Yusoff, Ceylan, Nor, & Jenatabadi, 

2016; Borchardt, Pesti, Sun, & Ding, 2009; Mallela & Sadavisam, 2011). There are many factors 

affecting Road User Costs (RUCs), crash mitigation costs, and local business impact costs that 

need to be simultaneously accounted for to accurately calculate cost values. Most importantly, no 

relevant data-driven work exists to quantify local business impacts of work zones beyond broad 

discussions about including local business owners in project planning (Borchardt et al, 2009; 

Daniels, Ellis, & Stockton, 1999; Mallela & Sadavisam, 2011). 

Therefore, the objective of this thesis is to update the white paper Estimating User Costs of Asphalt 

and Concrete Pavement Rehabilitation (Memmot & McFarland, 1988) by: 
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• Developing a comprehensive set of data-driven, nationally transferrable metrics that 

quantify the costs associated with asphalt and concrete pavement rehabilitation in terms 

of (a) road user costs, (b) crash mitigation costs, and (c) local business impact costs.  

• Presenting how these costs vary by (a) types of pavement rehabilitation, (b) surrounding 

development (urban vs rural), and (c) types of scheduling alternatives. 

• Creating a convenient Excel tool for users to input project variables and receive associated 

direct and indirect costs.  

This tool is intended for any engineer or project manager who needs a streamlined, general analysis 

of likely impact costs when planning for road rehabilitation scenarios requiring lane closures. 

Users can test different scheduling alternatives to determine the least impactful course of action.   

Engineers and project managers can implement the models and tool developed in the project to a) 

characterize the road user, crash mitigation, and local business impacts of an existing project or 

projects that are being let for bid; b) to evaluate possible innovative scheduling opportunities in 

the project planning stage; and c) to illustrate to local business owners the potential loss in revenue 

they could receive during construction. 

This thesis is organized into chapters addressing each associated cost and the impact with the Excel 

tool. Chapter 2 presents a literature review of current methodologies and past research 

expenditures were collected and addressed. In Chapter 3, updated road user costs were compiled 

from several reputable sources and studies with a general example presented to guide the reader 

through the process. In Chapter 4 crash mitigation cost results were covered from research 

conducted across an eight-state data set regarding work zone crashes. Chapter 5 covers the 

methodology and results of the local business impact costs survey and model is addressed.  A 

detailed, step-by-step user guide of the Excel tool is then presented in Chapter 6 with a subsequent 



 

3 

 

real-world example is then given.  Finally, conclusions and suggestions for future work from the 

project are shared in the final two chapters. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

Research regarding Road User Costs (RUCs) is a hot topic with years of research dedicated 

to the subject and multiple federally funded projects commissioned to validate claims. The two 

main sources for standard RUC values and methodology come from the American Association of 

State Highway Transportation Officials (AASHTO) and the Federal Highway Administration 

(FHWA) guides User and Non-User Benefit Analysis for Highways and Work Zone Road User 

Costs: Conceptions and Applications, respectively (AASHTO, 2010; Mallela & Sadavisam, 2011). 

In terms of work zone analysis, the FHWA methodology solely focuses on this topic offering a 

comprehensive guide for determining RUCs, as well as alternatives to some calculations—such as 

emissions—based on individual state specific research. However, most of the provided values are 

out-of-date by several years, or in some cases decades, which in turn can greatly underestimates 

the actual RUCs. AASHTO’s methodology, while just as comprehensive, focuses mainly on RUC 

improvements from before and after a project is implemented which does in turn require some 

interpretation to convert to work zone related costs. As with the FHWA’s methodology, the 

provided values are out-of-date by similar timeframes, but alternative sources are not provided to 

update easily. Additionally, this methodology assumes the user has several inputs on hand, such 

as average delay times and average hourly traffic; values that traditionally need to be gathered in 

the field for the best accuracy. Since RUCs are most useful when calculated before a project’s 

implementation, these values need to be calculated off available information using methodology 

not directly sourced in AASHTO’s approach. Nonetheless, some work has already been done to 
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create ease-of-use spreadsheet tools to realistically predict an optimized work zone plan based on 

AASHTO and FHWA methodologies. Tang’s work created a plug-and-play Excel spreadsheet tool 

centered on optimizing work zone scheduling to reduce RUCs, contractor operation costs, and idle 

time (Tang & Chien, 2009). As results are mainly a function of vehicular volume, a detailed chart 

of the expected hourly vehicle volume was required to properly utilize the tool. Although historical 

average hourly traffic (AHT) data could be used, the concept of “natural diversion”, as Ullman 

pointed out, would not be accounted for (Ullman, 1992, 1996). This phenomenon is covered later 

in this chapter.  

Texas A&M Transportation Institute (TTI) research on RUCs mostly falls into the same outdated 

pitfalls as the aforementioned FHWA and AASHTO methodologies with the added limitation of 

only being Texas-specific (Borchardt et al, 2009; Daniels et al, 1999). Granted, Borchardt’s report 

was published in 2009 as opposed to Daniel’s’ in 1999, however Borchardt’s tended to direct 

readers to outside sources and focused mainly on comparing industry software methodologies. 

Both reports used data pulled from the MicroBENCOST software, whose biggest drawback being 

the lack of vehicle emissions costs. For other reviewed publications, the focus tended to ignore 

costs outside of construction and the resulting operational life cycle costs (ASCE, 2014; 

Babashami et al, 2016). 

 

2.1 CRASH FACTORS 

When focusing on crash mitigation costs, FHWA’s RUC publications provided a comprehensive 

analysis on crash rate calculations and their costs. However, the FHWA concludes by suggesting 

agencies assign their own crash modification factors since results vary from region to region as 

well as between published studies (Mallela & Sadavisam, 2011). AASHTO’s methodology also 
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provides a section on crash mitigation, but focuses mainly on crash frequency and individual costs 

as opposed to crash contributing factors (AASHTO, 2010). After further evaluation, several 

methods for determining work zone crash factors were identified from publications. Both 

Duncan’s and Kockelman’s successes with the ordered probit model in identifying crash injury 

thresholds proved to be promising in determining a viable predictive model (Duncan, Khattak, & 

Council, 1998; Kockelman & Kweon, 2002). Their methodology, which ultimately was chosen for 

this study, not only allowed the identification of statistically significant crash severity 

characteristics, but the ability to predict, given several road and driver characteristics, the probable 

crash severity to occur. Similarly, Li in his study used a simplified logistic regression model to 

determine the statistically significant crash severity characteristics of Kansas crashes (Li & Bai, 

2008). The shortfall of Li’s method is the lack of a resulting threshold calculation, so the user is 

left with identified significantly influencing crash factors but no way to probabilistically predict a 

possible crash scenario.  

Bai also analyzed Kansas work zone crashes (n = 157) using a logistic regression model, but 

focused solely on fatal crashes (Bai, 2006). Responsible driver characteristics showed 75 percent 

of fatal work zone crashes were caused by males. Drivers ages 35 to 44 and drivers above the age 

of 65 were responsible for 24 percent and 18 percent of fatal work zone crashes, respectively. 

Relevant to this project, he also reported findings involving time of day and road classification. 

Bai found 32 percent of fatal work zone crashes occurred during non-peak hours (10AM to 4PM). 

Additionally, 37 percent of fatal work zone crashes occurred between the hours of 8PM and 6AM; 

with 32 percent occurring in areas of no illumination. The most alarming result stemmed from 

two-lane highway work zones, accounting for 73 percent of all analyzed fatal work zone crashes; 

over double of all non-work zone fatal crashes over the same time-period (35 percent). In addition, 
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he found inclement weather and day of the week did not significantly contribute to crashes 

fatalities. 

Regarding actual work zone crash mitigation techniques, Meng found in a study of long-term work 

zones that a 20 percent reduction in the speed limit resulted in a 62 percent decrease in fatality risk 

(Meng, Weng, & Qu, 2010). In that same vein, it was found that reducing the work zone speed 

was more effective than reducing the emergency response time. When construction workers were 

surveyed in Debnath’s Australian study, they identified wet weather, speeding, and nighttime 

conditions as perceived hazards to both worker and motorist safety (Debnath, Blackman, & 

Haworth, 2015). Khattak’s analysis of California freeway work zone crash rates identified 

increased crash rates with increases in average daily traffic, work zone length, and work zone 

duration; with duration being the most significant factor (Khattak, Khattak, & Council, 2002). 

Overall, Khattak found a 21.5 percent increase in total crashes from pre and during work zone 

conditions. As this report’s model is analyzed, it would be expected these factors would play 

heavily in crash severity determination to validate these hypotheses. 

Overall, five main crash characteristic trends were identified: 

• Weather conditions did not significantly contribute to crash severity (Bai, 2006; Debnath 

et al, 2015; Duncan et al, 1998). As well as day of the week (Bai, 2006). 

• Head-on, angle, rollover, and rear-end crashes lead to the most crash fatalities (Bai, 2006; 

Li & Bai, 2008). 

• As driver age increases, the chance of a high severity crash increases (Bai, 2006; Li & Bai, 

2008). Additionally, drivers ages 35 to 44 were overrepresented (Bai, 2006). 
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• Dark, non-lit road conditions resulted in higher crash rates according to the literature (Bai, 

2006; Debnath et al, 2015; Duncan et al, 1998; Kockelman & Kweon, 2002). 

• Full and partially controlled road access resulted in less severe crashes and crash rates 

(Gluck, Levinson, & Stover, 1999; Schultz, Braley, Boschert, 2009). Two-lane roads were 

the most dangerous in terms of crash rates and severity (Bai, 2006), even though evidence 

has suggested otherwise (Harwood, Council, Hauer, Hughes, & Vogt, 2000). 

 

2.2 LOCAL BUSINESS IMPACT COSTS 

Regarding local business impact costs, very little prior research has been done in the past, and 

from what can be determined, not a single study has been conducted on a national scale. For the 

existing reports, FHWA’s RUC methodology offers references to previous studies, discussed 

below, but takes a qualitative rather than quantitative approach to the subject; while AASHTO 

only discusses the possible long-term benefits of improvement projects to the local economy. The 

first report FHWA refers to is a series of TTI studies completed in the late 90s on road-widening 

projects. Wildenthal and Buffington surveyed affected business owners on their thoughts and 

experiences during construction and compared their answers to field data (Buffington & 

Wildenthal, 1997; Wildenthal & Buffington, 1996). Data from the abutting businesses’ gross sales 

showed a 5 percent decrease during construction which was not nearly as negative as business 

owners originally perceived. However, these abutting businesses received higher traffic from 

construction workers so net loss from regular customers could not be fully calculated.  

The other recommended report from FHWA referred to a multiyear study for the town of Dubois, 

Wyoming, during a major highway improvement project (Buddemeyer, Young, & Vander 

Giessen, 2008). This report ended up being more comprehensive than the aforementioned TTI 
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reports documenting before and after conditions and different mitigation technique impacts. 

Overall, data was gathered from businesses, traveler surveys, traffic counts, and general economic 

sources. From Buddemeyer’s conclusions, traffic volumes did decrease during construction, but 

the majority of surveyed local businesses stated they had seen no change in gross sales, the number 

of customers, and net profit. Wyoming Department of Revenue data backed this claim showing 

the health of individual businesses was “very positive” once all individual businesses were equally 

weighted. Additionally, of the mitigation techniques employed to limit loss of business, an active 

public marketing campaign proved to be the most effective.  

When the section of Interstate 5 running through Sacramento, California was subject to “The Fix” 

improvement project, Ye and his group conducted a study on commuter responses through a series 

of surveys and field data counts (Ye, Mokhtarian, & Circella, 2012). Their non-work activity 

results found 44 percent of those surveyed changed their regular routes to avoid delays and 

construction. Additionally, more than 20 percent changed either the location or time of their 

activity, with 18 percent changing the day of the activity, and an additional +20 percent choosing 

to cancel the activity all together.  

 

2.3 NATURAL DIVERSION, VALUE OF TIME, AND STORE LOYALTY 

Briefly mentioned earlier, the concept of “natural diversion” plays a heavy influence in work 

zone/incident vehicular flows. Ullman defines the phenomena as the voluntary avoidance of delay 

(i.e., work zone, incidents, special events, etc.) without prompting by traffic control planning or 

enforcement personnel (Ullman, 1992, 1996). As RUCs, crash rates, and business impacts are 

directly tied to traffic flows, this concept is of the utmost importance. Although easily observed 

on freeways—because of their controlled access design—the concept has been applied to most 
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road networks. Karim summed this concept into an equation (presented later) for work regarding 

work zone capacity and queue estimation. His equation accounted for a reduction in traffic volume 

due to four situations: travelers choosing alternative routes, travelers changing their schedule to 

avoid the work zone, travelers canceling their trips because of the work zone, and travelers 

changing their transportation mode (Karim & Adeli, 2003). While straightforward in nature, the 

downfall of this equation is the unpredictability of the diversion factor. Karim suggests obtaining 

the factor from similar work zone studies or network analysis models, but admits it acts more of a 

function of variable changes in delay. If diversion estimates were universally low, this would not 

be a huge issue, but as shown in Khattak’s survey work of San Francisco Bay Area commuters, up 

to 40 percent of commuters could divert if warned ahead of time by an Advanced Traveler 

Information System (Khattak, Kanafani, & Le Colletter, 1994). This was from a 1993 study—

before the ubiquity of smart phones—so it’s not hard to imagine that commuters would be even 

more likely to divert given they have access to real-time delay estimates (Agrawal, Song, Peeta, 

& Benedyk, 2018; Thorhauge, Haustein, & Cherchi, 2016; Yu & Peeta, 2011).  

Factors that influence diversion have been found in several studies using stated preference surveys. 

Song’s 2007 study of Florida commuters tested results of a statewide survey against a discrete 

choice model (testing for utility of an alternate path) (Song, Yin, & Srinivasan, 2011). Included in 

the test was travel time, trip purpose (to work, to home, leisure), location (rural or urban), 

socioeconomic factors, and weather/road conditions. Results found only travel time (tcalc = -10.16) 

and rural location (tcalc = 2.84) were statistically significant in influencing route choice. As travel 

time increased, travelers were more likely to choose an alternative route. However, as travel time 

of an alternative route increased, travelers were more likely to stick with their original route. To 

put it quantifiably, for every minute increase of travel time for either route, utility for that route 
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decreased by 0.1416 (utility is a unit-less value). This suggested travelers equally weigh their 

original and alternative route choices. Rural locations resulted in travelers more likely adhering to 

their original routes; as rural road networks offer fewer alternatives. Sing also argued the inclusion 

of weather (tcalc = 1.58) being significant in route choice, even though it tested statistically 

insignificant (tcrit = 1.645). Interpreted, travelers were more likely to divert from their original route 

when facing poor weather conditions. This was in line with Khattak’s earlier study (Khattak et al, 

1994). Khattak’s study also found that individuals were more likely to divert if they took a higher 

number of recreational trips per week, implying individuals who drove more, may be more willing 

to divert, or knew the road network better. Additionally, there is also the possibility of commuters 

permanently switching their routes due to prolong road network change; as demonstrated in the 

Minneapolis I35W bridge collapse (Di, Liu, Zhu, & Levison, 2017). Di’s team found that even 

after the I35W bridge was rebuilt, traffic volumes never returned to their initial levels, thus 

demonstrating how prolong work zone delays can affect future traffic levels. 

Another factor to consider for natural diversion is an individual’s value of time (VoT). Value of 

time refers to an individual’s perceived monetary value of a set amount of time experienced. If an 

individual has a lower VoT, they would be less likely to change their decision. Generally, VoT is 

used to determine how travelers would react to toll road implementation (Lam & Small, 2001) or 

mode choice (Outwater, Castleberry, Shiftan, Ben-Akiva, Shuang, & Kuppam, 2003; Van 

Nostrand, Sivaraman, & Pinjari, 2013), but it has been used for route choice showing uncongested 

conditions produced lower VoTs than congested conditions (Calfee & Winston, 1998; Small, 

1999). Lam found under congested conditions, that men had a higher VoT ($19.22/hour) compared 

to value of reliability (VoR) ($11.90/hr) than females (VoT = $19.22/hour; VoR = $28.72/hr), but 

females had a higher VoR (Lam & Small, 2001). This would suggest females would be more likely 
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to choose a route with little variability in travel time, while males would be more likely to choose 

the fastest overall route. The concept of travel time reliability (i.e., VoR) was further defined by 

Pinjari, who found trips under 15 minutes had a higher VoR than VoT (a VoR-to-VoT ratio of 201 

percent), but trips over 15 minutes saw the relationship rapidly decrease (Pinjari & Bhat, 2006). 

Several studies had also found VoT increases as household income increases (Calfee & Winston, 

1998; Lam & Small, 2001; Van Nostrand et al, 2013). Outwater’s survey of San Francisco travelers 

found through factor analysis and regression models that people are more concerned with finding 

the fastest route than experience delays (Outwater et al, 2003). The same study found households 

with kids and larger households (greater than 3 individuals) had a greater need for time savings 

than households with no kids and smaller households, respectively. Age was more of a polarizing 

factor. Lam’s study found that age was not statistically significant in VoT, but Van Nostrand and 

Outwater found the opposite. Additionally, psychological sources support the latter as Agahi and 

Atchley have proposed. Agahi found from a study of Swedish citizens that leisure participation 

had a stable rate of participation as age increased (Agahi, Ahacic, & Parker, 2006) suggesting older 

populations may continue to participate in their regular leisure activities regardless of negative 

impacts to their VoT. According to Atchley’s continuity theory, people maintain patterns of 

activities, thought, and habits as a common strategy for adaptation to changes in daily life (i.e. 

retirement, bereavement, etc.) (Atchley 1989, 1993). This could further explain VoT findings 

showing older motorists having lower VoT and thus, less likely to change their plans. 

So, what about the other individuals who still choose a route/destination even when another option 

is more easily available? In general transportation, there is the idea of “habitual/self-selection” 

when it comes to a person’s bias in mode selection (Frank, Bradley, Kavage, Chapman, & Lawton, 

2008; Gärling & Axhausen, 2003; Pinjari, Pendyala, Bhat, & Waddell, 2011). This theory states 
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that individuals demonstrate a predisposition to choose one mode over another, even if an 

unchosen mode is more efficient—based on their past experiences and comfort level. This bias, 

along with the aforementioned personal value of time, can also be applied to how some individuals 

are less likely to go to a different store or choose another route (Bogers, Viti, & Hoogendoorn, 

2005) when faced with an increase in delay. However, this review found previous studies focused 

solely on grocery stores—although this can still be applied to personal shopping to a degree. 

Cunningham presented this principle using panel data acquired from the Chicago Tribune 

(Cunningham, 1956, 1961). Using this data, he found that the average family makes 48.6 percent 

of its total food purchases at its favorite store, families are more loyal to chain stores than 

specialty/independent stores, and there was no correlation between socioeconomic factors and 

brand loyalty. Carman’s study backed this claim, showing store loyalty reduced shopping around 

and in turn, saved time and money (Carman, 1969). This was also confirmed by Rao’s study on 

the Chicago Tribune panel survey, but found store bias was the result of certain physical/service 

factors in the store and “economical and locational factors” of the family (Rao, 1969). Basically, 

families were less inclined to go to stores further away from their residence, unless an in-store 

service factor made the trip worth the effort. Rao also found bias in store selection was “strongly 

related to the most recent uninterrupted sequence of favorable choices of that store” (Rao, 1969), 

and paired with Cunningham’s findings regarding total food purchases, would suggest families 

would be hard pressed to change their grocery store destination unless the journey exceeded their 

perceived value of time.  
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2.4 SUMMARY  

Overall, this research heavily influenced the choice in using FHWA and AASHTO RUC 

methodology in the tool’s design—mainly due to its simplicity and universal acceptance. As stated 

above, using an ordered probit model for crash mitigation costs was chosen to not only allow the 

identification of statistically significant crash severity characteristics, but to also allow the ability 

to predict, given several road and driver characteristics, the probable crash severity to occur. To 

the author’s knowledge no similar research methods have been conducted previously to measure 

stated preference travel changes due to work zones.  However, past work on stated preference 

surveys and results from analyses on driver diversion informed the survey development and 

hypotheses.   
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CHAPTER 3: ROAD USER COSTS 
 

 

Road User Costs (RUCs) are the first of the three impact categories associated with 

roadway pavement rehabilitation work and quantified in this thesis.  RUCs are defined as the total 

monetary and temporal costs experienced by both personal and freight vehicle road users when 

faced with delays caused by lane or total road closures due to rehabilitation work.  While RUCs 

have previously been calculated under a variety of scenarios and for different population groups 

(Babashami et al, 2016; Borchardt et al, 2009; Daniels et al, 1999), this section provides a 

straightforward methodology for calculating RUCs for pavement rehabilitation work synthesized 

from these past best practices.  Specifically, this chapter calculates a Total Dollar ($) per Day Road 

User Cost for any given work zone based on a) lost time costs, b) operating costs and c) emission 

costs.  Additionally, this chapter provides information on how scheduling rehabilitation work can 

impact costs. All values provided have been adjusted to 2016 dollars using the Bureau of Labor 

Statistics’ CPI calculator unless otherwise noted. 

 

3.1 ROAD USER COSTS MODEL EXPLANATION 

Road User Costs (RUC) for each vehicle i in a work zone are most often described using Equation 

3.1: 

 

𝑅𝑈𝐶𝑖 = 𝐿𝑇𝐶𝑖 + 𝑂𝐶𝑖 + 𝐸𝐶𝑖  (Eq. 3.1) 
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Where: 

 𝑅𝑈𝐶𝑖 = Road User Costs for vehicle i (dollars per vehicle), 

𝐿𝑇𝐶𝑖 = Lost Time Cost (dollars per vehicle),  

𝑂𝐶𝑖 = Operating Cost (dollars per vehicle), and  

𝐸𝐶𝑖 = Emissions Cost (dollars per vehicle) 

Each component is calculated as dollars per vehicle and outlined in detail in the following sections.  

These RUCs can be calculated for each individual vehicle and summed for the entire volume of 

traffic that passes through the work zone. To streamline the process, instead of calculating for each 

vehicle, RUCs will be calculated for each vehicle class c instead. For the purpose of this thesis, 

three vehicle classes are specified: personal, single-unit freight, and combination freight, as 

defined by FHWA. It is important that RUCs for work zones be focused on impacts generated 

from the work zone beyond those experienced by motorists during normal traffic operations when 

the work zone is not present.   

3.1.1 Impacts of Scheduling Rehabilitation Work on Costs 

One of the simplest ways to minimize RUCs is to reduce the number of vehicles affected by the 

work zone.  This can be achieved by scheduling projects during off-peak driving times.  First, 

project managers can select a month or day of the week that minimizes the traffic volumes (as seen 

in Tables 3-1 and 3-2 (ITE, 1999)).  These tables present the Average Daily Traffic (ADT) Factors 

for given months (Table 3-1) and days of the week (Table 3-2) for different roadway classifications 

in Georgia, as an example.  To convert from Annual Average Daily Traffic (AADT) to Average 

Monthly Daily Traffic (AMDT) or Average Daily Traffic (ADT), respectively, simply divide the 

AADT by the appropriate factor. AADT can be found readily from most state or city DOT websites 

and other relevant sources. As for interpreting Tables 3-1 and 3-2 below, the higher the factor 
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value, the smaller the estimated AMDT or ADT. Table 1 highlights that AMDT is greatest during 

the summer and fall months, so work zone projects completed in winter months will have lower 

overall RUCs when based solely on vehicle volume impacts. Similarly, Table 3-2 highlights that 

ADT is greatest during the weekdays with the greatest volumes occurring on Fridays and the lower 

volumes occurring on the weekend.  

Table 3-1: GDOT AMDT Factors 

Road Classification Jan Feb March April May June July Aug Sept Oct Nov Dec 

Rural/Small Urban 

Interstate 
1.18 1.08 0.97 0.95 1.01 0.95 0.91 0.94 1.06 1.04 1.00 0.96 

Rural Arterial 1.14 1.08 1.02 0.98 0.97 0.96 0.97 0.98 0.98 0.94 0.97 1.04 

Rural Collector 1.20 1.05 1.00 0.95 0.95 0.98 0.97 0.95 0.98 0.94 1.03 1.05 

Urbanized Interstate 1.11 1.05 0.99 0.99 0.99 0.94 0.97 0.95 1.01 1.00 1.01 1.03 

Urbanized Arterial 1.06 1.01 0.99 1.01 0.96 0.99 1.02 1.00 0.99 0.96 1.00 1.03 

Urbanized Collector 1.05 0.99 0.95 0.95 0.96 1.00 1.01 1.04 1.03 0.92 1.06 1.08 

 

Table 3-2: GDOT ADT Factors 

Road Classification Sun Mon Tues Wed Thurs Fri Sat 

Rural/Small Urban Interstate 0.99 1.07 1.12 1.08 1.02 0.85 0.93 

Rural Arterial 1.29 0.99 0.99 0.98 0.95 0.85 1.04 

Rural Collector 1.14 1.04 1.05 1.04 1.01 0.87 0.99 

Urbanized Interstate 1.39 0.98 0.94 0.92 0.91 0.86 1.18 

Urbanized Arterial 1.55 0.94 0.92 0.92 0.92 0.84 1.17 

Urbanized Collector 1.57 0.95 0.94 0.93 0.88 0.84 1.18 

 

Finally, in Table 3-3, from FHWA (Mallela & Sadavisam, 2011), shows the distribution of traffic 

in urban and rural areas throughout a typical weekday.  Again, if a project manager seeks to 

minimize RUCs, it would be preferred to schedule active work zones during the early morning 

hours in both urban and rural situations to avoid active work zones operating during 0600 to 2059. 
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Table 3-3: Distribution of Daily Traffic by Time Interval 

Time Interval Urban (% of ADT) Rural (% of ADT) 

0000 – 0259 2.7 4.6 

0300 – 0559 2.9 4.6 

0600 – 0859 19.2 10.2 

0900 – 1159 15.2 16.0 

1200 – 1459 17.2 18.9 

1500 – 1759 22.9 23.6 

1800 – 2059 13.1 14.0 

2100 – 2359 6.8 8.1 

 

Referring back to natural diversion, the factors from Table 3-1, AADT, and the diversion factor 

found from simulation models can be applied to find the new expected traffic volume of the work 

zone using Equation 3.2 

 

𝑓𝑡(𝑡) =  𝛼𝐷(𝑡) [
𝑓𝑡
∗(𝑡)

𝛼𝑠
] (Eq.3.2) 

 

Where: 

𝑓𝑡(𝑡) = Average traffic demand on the highway after the establishment of the work zone 

(vehicles at time, t),  

 𝛼𝐷(𝑡) = Diversion Factor (between 0 and 1, fraction of drivers who divert), 

 𝛼𝑆 = Seasonal Demand Factor (Table 3-1), and  

𝑓𝑡
∗(𝑡) = Average traffic demand on the highway prior to the establishment of the work zone 

(vehicles at time, t) 

This equation, modified from Karim’s work (Karim & Adeli, 2003), provides a more accurate 

portrayal of work zone traffic demand than just using historic numbers. As up to 40 percent of 

commuters have been found to divert due to an incident (Khattak et al, 1994), this conversion 

should not be ignored readily. However, as the diversion factor requires previous work to 
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determine (similar work zone traffic studies, or network analysis models), and varies with work 

zone delay, overestimating the RUCs presented in this thesis would be favorable to 

underestimation.  

 

3.2 ROAD USER COSTS MODEL COMPONENTS 

The RUC Model quantifies three avenues in which personal and freight vehicles are affected by 

delays in work zones: lost time costs, operating costs, and emission costs.  Each component is 

outlined below. Note that all provided equations are direct modifications of current AASHTO and 

FHWA methodologies, unless otherwise noted.  

3.2.1 Lost Time Costs 

The first component of RUCs are costs due to personal and business time lost when travelers are 

delayed reaching their ultimate destination. The Lost Time Cost (LTC) for each vehicle class c that 

travels through a work zone (in dollars per vehicle) is calculated using Equation 3.3: 

 

𝐿𝑇𝐶𝑐 = 𝑉𝑜𝑇𝑐 × 𝑂𝑐 × 𝐷 (Eq. 3.3) 

 

Where:  

𝐿𝑇𝐶𝑐 = Lost Time Cost for vehicle class c (dollars per vehicle), 

𝑉𝑜𝑇𝑐 = Value of Time for vehicle class c (dollars per hour),  

𝑂𝑐 = Vehicle Occupancy of vehicle class c (persons per vehicle), and  

𝐷 = Average Delay of the work zone (hours), 

Values for these components are outlined below. 
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When calculating Total LTC for the work zone for the day, one will need to sum the individual 

LTC values for each vehicle type.  As there are three vehicle classes outlined in this thesis 

(personal, single-unit freight, and combination freight), the calculation is generalized by 

multiplying the LTC value for each vehicle/purpose type with the number of vehicles that fall in 

that category and adding these sums. 

Value of Time (VoT).  It is well documented that individuals and freight experience different 

values of travel time (and therefore face different values of lost time due to delay).  Table 3-4; 

based on values from AASHTO, FHWA, and the Bureau of Labor Statistics (AASHTO, 2010; 

Bureau of Labor Statistics, 2017; Mallela & Sadavisam, 2011); provides guidance on a range of 

values of travel time for passenger and freight vehicles under different trip purposes.   

Table 3-4: Personal and Freight Values of Travel Time 

Travel Purpose 

Value of Time ($/hr) 

PERSONAL 

VEHICLES 

FREIGHT 

VEHICLES 

General Personal (Local) $12.91 -- 

General Personal (Intercity) $18.07 -- 

General Work/Business $30.97 $30.46 

Transport & Warehousing -- $28.10 

Utilities -- $46.39 

 

Vehicle Occupancy (O). Vehicle occupancy can also vary by facility type and region.  While 

states and metropolitan planning organizations are likely to have information specific to their 

region, Table 3-5 provides average vehicle occupancy for the different regions of the US if local 

information is unavailable. These rates are taken from Census Transportation Planning Products 

(CTPP) estimates of the American Community Survey 2006 – 2010 (Census Bureau, 2010). Refer 

to Table 6-1 for a table of states in each region. 
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Table 3-5: Average Vehicle Occupancy by Census Region 

Census Region 

Average Vehicle Occupancy 

PERSONAL 

VEHICLES 

FREIGHT 

VEHICLES 

U.S. Overall 1.07 1.00 

Northeast 1.06 1.00 

Midwest 1.06 1.00 

South 1.14 1.00 

West 1.08 1.00 

 

Average Delay (D). The average delay (D) used in the LTC equation is identified from the work 

zone analyzed.  D can be measured by tracking vehicles through the work zone. It is important to 

recognize that D (in hours) measures the additional delay experienced by vehicles beyond the 

typical delay one would experience on the roadway without the presence of a work zone. Delay 

can be summed into two separate equations: one for detour scenarios, and one for lane 

closure/general delay. Below, detour delay can be calculated using Equation 3.4:  

 

𝐷𝐷𝑒𝑡𝑜𝑢𝑟 = [(
𝐿𝐷𝑒𝑡𝑜𝑢𝑟

𝑆𝐷𝑒𝑡𝑜𝑢𝑟
) − (

𝐿𝑁𝑜𝑟𝑚𝑎𝑙

𝑆𝑁𝑜𝑟𝑚𝑎𝑙
)] (Eq. 3.4) 

 

Where: 

 𝐷𝐷𝑒𝑡𝑜𝑢𝑟 = Detour delay time (hours per vehicle), 

 𝐿𝐷𝑒𝑡𝑜𝑢𝑟 = Detour length (miles), 

 𝑆𝐷𝑒𝑡𝑜𝑢𝑟 = Detour speed (mph), 

 𝐿𝑁𝑜𝑟𝑚𝑎𝑙 = Normal travel length (miles), and 

 𝑆𝑁𝑜𝑟𝑚𝑎𝑙 = Normal upstream speed (mph) 

For situations where lanes of traffic are reduced and detours are not utilized, the delay function is 

divided into four distinct sections: delay due to deceleration, delay due to reduced speed, delay 
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due to acceleration, and delay due to vehicle queues. Jiang’s general delay equation for 

uncongested traffic conditions (Jiang, 2001) is calculated using Equation 3.5: 

 

𝐷 =  𝐹𝑎𝑖(𝑑𝑑 + 𝑑𝑧 + 𝑑𝑎 + 𝑑𝑤) (Eq. 3.5) 

 

Where: 

 𝐷 = Delay time (vehicle hours), 

 𝐹𝑎𝑖 = Average arrival rate of vehicles in hour i (vehicles),  

 𝑑𝑑= Delay due to deceleration entering the work zone/queue (hours), 

 𝑑𝑧= Delay due to work zone speed (hours), 

 𝑑𝑎 = Delay due to acceleration out of the work zone (hours), and 

 𝑑𝑤 = Average waiting time a vehicle spends before entering the work zone (hours) 

Delay from acceleration, deceleration, and work zone speed are the easiest and most 

straightforward factors to calculate. The average arrival rate requires field studies to accurately 

predict, or by using the average hourly traffic (AHT). The average waiting time requires current 

field data to accurately measure as it varies by region, surrounding location (urban/rural/suburban), 

and work zone type. In addition, this equation is designed for uncongested traffic flow situations, 

which limits its application to mainly non-peak hours. For more information regarding general 

delay calculation for congested and uncongested traffic conditions, refer to Jiang’s Estimation of 

Traffic Delays and Vehicle Queues at Freeway Work Zones (Jiang, 2001). 

3.2.2 Operating Costs 

The second component of RUCs are additional costs related to idling a vehicle during a work zone 

traffic delay, referred to as vehicle operating costs.  Personal and freight vehicles incur typical 
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operating costs every mile they travel, but when a work zone generates a detour or congestion, 

vehicles generate additional operating costs. According to AASHTO, these operating costs include 

fuel, maintenance, insurance, and registration costs of the vehicle; directly perceived out-of-pocket 

expenses (AASHTO, 2010).  For work zone applications, current practice emphasizes the use of 

fuel costs.  

Operating costs are calculated differently for personal and freight vehicles.  The Operating Cost 

(OC) for the personal vehicle class traveling through a work zone (in dollars per vehicle) is 

calculated using Equation 3.6: 

 

𝑂𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = 𝐹𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 × 𝐷 × 𝐹𝑃 + 𝑂𝑤𝑛𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 × 𝐿 (Eq. 3.6) 

 

Where: 

𝑂𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = Operating Costs for personal vehicles (dollars per vehicle), 

𝐹𝐶𝑝𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = Fuel Consumption for personal vehicles (gallons per hour), 

𝐹𝑃 = Fuel Price (dollars per gallon), 

𝐷 = Average Delay in the work zone (hours), 

𝑂𝑤𝑛𝐶 = Ownership Cost of the vehicle (dollars per mile), and 

𝐿 = Length of the work zone (miles)   

Values for these components are outlined below. 

Alternatively, FHWA (Mallela & Sadavisam, 2011) recommends the Operating Cost RUC (OC) 

for each freight vehicle i that travels through a work zone (in dollars per vehicle) follow the same 

function as above with an additional inventory cost based on delay shown in Equation 3.7: 
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𝑂𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡 = {
𝐹𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡 × 𝐷 × 𝐹𝑃 + 0.20 × 𝐷 𝑓𝑜𝑟 𝑆𝑖𝑛𝑔𝑙𝑒 𝑈𝑛𝑖𝑡; 25,000𝑙𝑏 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠

𝐹𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡 × 𝐷 × 𝐹𝑃 + 0.34 × 𝐷 𝑓𝑜𝑟 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛; 42,000𝑙𝑏 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠
 (Eq. 3.7) 

 

Where: 

 𝑂𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡 = Operating Costs for freight vehicles (dollars per hour), 

 𝐹𝐶𝑓𝑟𝑒𝑖𝑔ℎ𝑡 = Fuel Consumption for freight vehicles (gallons per hour), 

𝐷 = Average Delay in the work zone (hours), and 

𝐹𝑃 = Fuel Price (dollars per gallon) 

FHWA suggests hourly inventory costs of $0.20/hr for single-unit trucks (25,000 lb.) and $0.34/hr 

for combination trucks (42,000 lb.) when adjusted from 2010 to 2016 dollars. 

When calculating Total OC for the work zone for the day, one will need to sum the individual OC 

values for each vehicle type.  As there are only 3 vehicle types (personal, single unit freight, and 

combination freight) used in the calculation, one can simplify the calculation by multiplying the 

OC value for each vehicle type with the number of vehicles that fall in that category and adding 

these. 

Fuel Consumption (FC).  AASHTO evaluated a variety of vehicle fuel consumption rates (in 

gallons per hour) (AASHTO, 2010), and these are averaged in Table 3-6 for application in this 

thesis.  These cost estimates assume the average car is retired after 75,000 miles. This is considered 

the average lifespan of a vehicle by AASHTO    
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Table 3-6: Fuel Consumption by Vehicle Type (gallons per hour) 

Traffic Speed Personal Vehicle (Gasoline Only) 
Freight (Diesel Only) 

SINGLE UNIT COMBINATION 

 25 1.56 5.82 14.52 

35 2.04 8.94 19.62 

45 2.58 12.36 24.66 

55 3.24 15.96 29.70 

65 3.96 19.68 34.68 

75 4.80 23.52 39.66 

 

Fuel Price (FP).  Fuel prices vary greatly and change frequently.  For up-to date estimates, users 

should refer to the US Energy Administration for current fuel prices across different US regions. 

Ownership Cost (OwnC). For every mile traveled, a vehicle will lose value and incur wear and 

tear.  This factor summarizes these effects across a variety of vehicle types.  AASHTO (AASHTO, 

2010) provides a complete review of automobile operating ownership costs across small cars, 

midsize cars, large cars, SUVs and vans, as seen in Table 3-7. Values of freight could not be found. 

For this thesis, personal vehicle ownership costs are simplified to an average of $0.21 per mile. 

Table 3-7: National Average Vehicle Ownership Costs (dollars per mile) 

SMALL CAR MIDSIZE CAR LARGE CAR SUV VAN 

$       0.16 $       0.196 $       0.219 $       0.253 $       0.219  

 

Average Delay (D). The average delay used in Equations 3.6 and 3.7 is identified from the work 

zone being analyzed.  This value can be measured by tracking vehicles through the work zone. It 

is important to recognize that this delay measures (in hours) the additional delay experienced by 

vehicles beyond the typical travel time one experiences on the roadway without the work zone 

present. Refer to the previous section for details. 

Length of Work zone (L).  This is the defined length of the work zone in miles.  

https://www.eia.gov/petroleum/gasdiesel/
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3.2.3 Emissions Costs 

The third component of RUCs are incurred on the environment through air pollutants, such as 

carbon monoxide (CO) and particulate matter (PM2.5), as well as greenhouse gas emissions which 

include direct emissions that are not recognized as air pollutants but do contribute to global climate 

change (Mallela & Sadavisam, 2011). The presented methodology for this thesis is for static 

emissions costs. This method is not as detailed and accurate as dynamic emission costs, but allows 

for easy calculation. If a more detailed analysis is required, the current version of the EPA’s Motor 

Vehicle Emission Simulator (MOVES) software is suggested for dynamic emissions calculations. 

It provides usable costs for all states except California which uses its state’s software, California 

Emission Factors (EMFAC). MOVES can be used on a macro or micro-scale across multiple user-

defined time aggregations (i.e. it can determine emissions on a per hour or a per month basis). 

What makes this model superior to static calculation methods is its inclusion of detailed emissions 

sources such as vehicle running, starting, extending idling, tire wear, brake wear, and general life 

cycle processes.  

The static Emission RUC (EC) for each vehicle class c that travels through a work zone (in dollars 

per vehicle) is calculated using Equation 3.8: 

 

𝐸𝐶𝑐 = ∑ 𝐸𝑅𝑝𝑐 × 𝐸𝐶𝑝𝑐
𝑃
 × 𝐿 × 0.00000110231 (Eq. 3.8) 

 

Where:  

𝐸𝐶𝑐= Emission RUC for each vehicle class c (dollars per vehicle),  

𝐸𝑅𝑝𝑐 = Emission Rate of pollutant p for vehicle class c (grams per mile),  

𝐸𝐶𝑝𝑐 = Emission Cost of pollutant p for vehicle class c (dollars per ton), and  

𝐿 = Length of the work zone (miles)   
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The additional factor is a conversion between grams and tons.  Values for these components are 

outlined below. 

Emission Rate (ER).  The values presented in Table 3-8 in grams per mile, are the 2017 

aggregated estimates used by the California EMFAC model.  Emissions included are CO, PM2.5, 

EPA-defined Volatile Organic Compounds (VOC) and Nitrogen Oxides (NOx). These values 

represent the average California emission rates across all tested model years with the “personal 

vehicle” category containing all passenger car models and the “freight” category describing all 

medium-heavy and heavy-heavy diesel trucks. Additionally, these values reflect running emissions 

and assume vehicles are moving through the work zone.  

Table 3-8: EMFAC Model Emission Rates for Personal and Freight Vehicles (g per mile) 

Traffic Speed 
Personal Vehicle (Gasoline Only) Freight (Diesel Only) 

CO VOC NOx PM2.5 CO VOC NOx PM2.5 

5 1.987 0.151 0.175 0.011 5.096 1.679 16.898 0.191 

15 1.488 0.062 0.123 0.005 2.396 0.781 9.761 0.124 

25 1.189 0.033 0.099 0.002 1.212 0.325 5.89 0.077 

35 1.007 0.022 0.088 0.002 0.773 0.199 4.713 0.066 

45 0.897 0.018 0.086 0.001 0.513 0.13 4.077 0.066 

55 0.819 0.019 0.089 0.001 0.398 0.102 3.791 0.079 

65 0.738 0.022 0.095 0.001 0.374 0.095 3.607 0.082 

 

Emission Cost (EC).  The general monetary costs for each emission type, from the Highway 

Economic Requirements System – State Version (HERS-ST) software, can be found in Table 3-9.  

These costs are adjusted from the year 2000 estimates using the BLS CPI Calculator and rounded 

to the nearest $50 increment, and they describe the economic costs of health impacts causes by 

emissions.  The CPI values incorporate both actual and perceived health costs for average 

consumers (Church, 2016). 



 

28 

 

Table 3-9: Adjusted HERS-ST Emissions Costs by Surrounding Development 

Development 
Personal Vehicle (Gasoline Only) 

CO VOC NOx PM2.5 

Urban $150 $5850 $7650 $6800 

Rural $75 $3900 $5100 $3400 

 

Length of Work Zone (L).  This is the defined length of the work zone in miles.  

For this thesis, the emissions cost equation can be simplified as Equation 3.9: 

 

𝐸𝐶𝑐 = 𝐸𝐹𝑐 × 𝐿 (Eq. 3.9) 

 

Where:  

𝐸𝐹𝑐 = Combined Emission Factor for vehicle class c (dollars per mile), and   

𝐿 = the defined length of the work zone (miles)   

Emission Factor (EF).  The values from the previous two tables are combined into Table 3-10.  

This table simplifies the EC calculation based solely on the vehicle type and location of the work 

zone.  

Table 3-10: Summarized Emissions Costs per Mile 

Traffic Speed (mph) 
Personal Vehicle (Gasoline Only) Freight (Diesel Only) 

URBAN RURAL URBAN RURAL 

5 $0.0028604 $0.0018385 $0.1555966 $0.1033520 

15 $0.0017205 $0.0010998 $0.0886732 $0.0588945 

25 $0.0012592 $0.0008042 $0.0525418 $0.0348983 

35 $0.0010654 $0.0006800 $0.0416490 $0.0276622 

45 $0.0009971 $0.0006388 $0.0357978 $0.0237686 

55 $0.0010159 $0.0006535 $0.0332840 $0.0220797 

65 $0.0010725 $0.0006934 $0.0317057 $0.0210244 
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The emissions costs during construction will always be higher than pre-construction levels due to 

force flow conditions, accelerations, and queuing characteristics. Therefore, the proper course of 

action is to find the change between pre-construction and current work zone conditions calculated 

using Equation 3.10: 

 

∆𝐸𝐶𝑐 = 𝐸𝐶𝑐,𝑤𝑜𝑟𝑘 𝑧𝑜𝑛𝑒 − 𝐸𝐶𝑐,𝑝𝑟𝑒−𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 (Eq. 3.10) 

 

Where: 

 ∆𝐸𝐶𝑐 = Change in emissions cost during construction for vehicle class c (dollars), 

𝐸𝐶𝑐,𝑤𝑜𝑟𝑘 𝑧𝑜𝑛𝑒 = Emissions Cost for vehicle class c based on work zone posted speed 

(dollars), and 

𝐸𝐶𝑐,𝑝𝑟𝑒−𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛= Emissions Cost for vehicle class c based on pre-construction posted 

speed (dollars) 

Each separate EC value would be solved as outlined above with the only difference being the 

traffic speed. For example, if am urban roadway was to be subjected to a work zone calling for a 

drop in the posted speed limit from 55mph to 35mph, the ECc, pre-construction variable would refer to 

the “Traffic Speed: 55” row of Table 10 while the ECc, work zone variable would refer to the “Traffic 

Speed: 35” row.  

 

3.3 COSTS CALCULATION EXAMPLE 

Recalling the previous section, overall RUC calculation is a simple and straightforward process 

that involves summing all the specific user costs listed (i.e., lost time costs, operating costs, and 

emissions costs) and multiplying by associated traffic volumes using Equation 3.1: 
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𝑅𝑈𝐶𝑖 = 𝐿𝑇𝐶𝑖 + 𝑂𝐶𝑖 + 𝐸𝐶𝑖 (Eq. 3.1) 

 

Where: 

 𝑅𝑈𝐶𝑖 = Road User Costs for vehicle i (dollars per vehicle), 

𝐿𝑇𝐶𝑖 = Lost Time Cost for vehicle i (dollars per vehicle),  

𝑂𝐶𝑖 = Operating Cost for vehicle i (dollars per vehicle), and  

𝐸𝐶𝑖 = Emissions Cost for vehicle i (dollars per vehicle) 

Since this equation is specific for one vehicle, results would need to be aggregated for each vehicle 

to determine the total RUC per day. From there, it is a simple equation of multiplying the daily 

user costs by the duration, in days, of the project. Granted, this method is only reliable for short 

construction periods and seasonal adjustments may need to be considered for projects lasting 

greater than six months.   

To provide an example, let’s say the following rehabilitation project is occurring on a 2-mile 

stretch of rural two-lane arterial in May. Table 3-11 shows the characteristics of the proposed 

project as well as several assumptions: 
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Table 3-11: Proposed Project Characteristics 

CHARACTERISTIC VALUE 

LENGTH OF PROJECT 2 miles 

PRE- CONSTRUCTION POSTED SPEED LIMIT 45 mph 

AADT  4200 vehicles 

DIVERSION FACTOR 0.8 

WORK ZONE POSTED SPEED LIMIT   35 mph 

ESTIMATED AVERAGE DELAY 10 minutes (0.167 hours) 

TRUCK VOLUME (SU ONLY) 8% 

PROJECT MONTH  May  

DURATION OF PROJECT 10 Days 

VALUE OF TIME (PERSONAL) $12.91 

VALUE OF TIME (FREIGHT) $30.46 

OCCUPANCY RATE (PERSONAL) 1.07 

PRICE OF GASOLINE $2.50 

PRICE OF DIESEL $2.90 

 

The first step would be to determine the expected traffic volume as well as the expected number 

of personal vehicles and freight vehicles. The diversion equation (Equation 3.2) is applied: 

 

𝑓𝑡(𝑡) = 0.8 [
4200 𝑣𝑒ℎ𝑠

0.97
] ≈ 3464 𝑣𝑒ℎ𝑠 

 

The 0.97 factor is from Table 1 intersection of rural arterial and May, the 0.8 from the Table 11 

diversion factor, and the 4200 vehicles is the AADT specified for the project. From this number, 

8 percent of would be considered freight (277 vehicles) and the rest (3187 vehicles) would be 

considered personal vehicles.  

The next step would be to determine the LTC, EC, and OC costs from Equations 3.3, 3.6, 3.7, 3.8, 

and 3.10. The LTC, EC, and OC costs for personal vehicles and freight are calculated below. 

Remember that EC is found from the difference of work zone and pre-construction emissions. 
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𝐿𝑇𝐶𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = ($12.91)(1.07)(0.167ℎ𝑟𝑠) = $2.31 

𝑂𝐶𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = (2.04
𝑔𝑎𝑙

ℎ𝑟
) (0.167ℎ𝑟𝑠) ($2.50 𝑔𝑎𝑙⁄ ) ($0.21 𝑚𝑖𝑙𝑒⁄ ) (2 𝑚𝑖𝑙𝑒𝑠) = $0.36 

∆𝐸𝐶𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = [($0.00068)(2𝑚𝑖𝑙𝑒𝑠)] − [($0.00064)(2𝑚𝑖𝑙𝑒𝑠)] = $0.00008 

𝑅𝑈𝐶𝑃𝑒𝑟𝑠𝑜𝑛𝑎𝑙 = $2.31 + $0.36 + $0.00008 = $2.67 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

 

𝐿𝑇𝐶𝐹𝑟𝑒𝑖𝑔ℎ𝑡 = ($30.46)(1.00)(0.167ℎ𝑟𝑠) = $5.09 

𝑂𝐶𝐹𝑟𝑒𝑖𝑔ℎ𝑡 = (8.94
𝑔𝑎𝑙

ℎ𝑟
) (0.167ℎ𝑟𝑠) ($2.90 𝑔𝑎𝑙⁄ ) + ($0.26 𝑚𝑖𝑙𝑒⁄ ) (0.167ℎ𝑟𝑠) = $4.37 

∆𝐸𝐶𝐹𝑟𝑒𝑖𝑔ℎ𝑡 = [($0.02766)(2𝑚𝑖𝑙𝑒𝑠)] − [($0.02377)(2𝑚𝑖𝑙𝑒𝑠)] = $0.00779 

𝑅𝑈𝐶𝐹𝑟𝑒𝑖𝑔ℎ𝑡 = $5.09 + $4.37 + $0.00779 = $9.48 𝑝𝑒𝑟 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 

 

Using the RUCs and associated adjusted traffic volumes for each vehicle class, the total RUC per 

day is found to be roughly $11,132 for 3187 personal vehicles and 277 freight vehicles. This cost, 

multiplied by the duration of the project, results in a total RUC of $111,321 for this project. Since 

this is assuming a constant average delay for the project as well as the expected uniform traffic 

flow, it should be noted this predicted cost would be presented as a “ballpark” estimate as opposed 

to a precise measurement.  

3.4 SUMMARY 

Traditionally, RUCs have been divided into three main categories: LTCs, OCs, and ECs. This 

section presented accepted methodology used by AASHTO and FHWA as well as basic traffic 
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volume distribution and modified traffic flow theory due to natural diversion. Existing 

methodology was adapted and updated in most cases for streamlined use and reliability. All 

associated monetary values were updated from 2000/2010 dollars to 2016/2017 dollars using 

related sources or the BLS CPI calculator. Additionally, vehicle classes were reduced to three 

unique types (personal, single unit freight, and combination freight). This was done once again to 

streamline the estimation process. Lost Time Costs were found to be the largest costs experienced 

by road users, followed by Operating Costs, then Emissions Costs. Although Emissions Costs were 

incredibly small, their calculation and value should not be ignored. Finally, it was found the largest 

influences of RUCs was delay time and traffic volume. As traffic volume was shown to be directly 

related to time of day, day of week, and delay time; it is of the utmost importance delay time is 

minimized to as minor as possible with work zone scheduling following suite. 
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CHAPTER 4: CRASH MITIGATION COSTS 
 

 

In 2015, there were 96,626 recorded work zone crashes in the United States; averaging one 

crash every 5.4 minutes (Federal Highway Administration, 2017a). Although the crash severity 

distribution is similar for work zone and non-work zone crashes, work zone crashes have 

traditionally resulted in higher rates of fatalities. 2014 reports stated there were 669 fatalities 

recorded in work zones, equating to 2 percent of all national roadway fatalities (National Highway 

Traffic Safety Administration, 2015). 43 percent of these fatal crashes occurred on urban freeways 

and arterials, even though they only make up 5 percent of the total roadway mileage; an effect of 

higher AADTs. Additionally, rear-end crashes accounted for 43 percent of all fatal work zone 

crashes, compared to 16 percent of all fatal crashes. Therefore, continued research into work zone 

crash trends and factor identification is vital for crash reduction. Crash Mitigation Costs (CMCs) 

are the second of the three category impacts associated with roadway pavement rehabilitation work 

and quantified in this thesis. CMCs are defined as the cost associated with the most likely crash 

type to occur at a work zone. The FHWA and National Highway Traffic Safety Administration 

(NHTSA) have done countless reports and studies to evaluate the economic impact of crashes 

resulting in the KABCO scale (outlined below in Table 4-1).  This scale designates 5 types of 

crashes that can occur within a work zone, on a severity scale from a property damage only crash 

(PDO) to fatal crash (K).  Additionally, the typical cost associated with each crash type, including 

both direct and indirect costs, is reported in the Highway Safety Manual (Bonneson 2010). Table 
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4-1, from the Highway Safety Manual, has been scaled to 2016 dollars using the same 

methodology outlined in the previous chapter. 

Table 4-1: Comprehensive Unit Costs by FHWA Severity Scale 

Crash Severity CODE Descriptor Cost per Injury ($) 

K Fatal 4,008,900 

A Incapacitating Injury 216,000 

B Non-Incapacitating Injury  79,000 

C Possible Injury 44,900 

PDO Property Damage Only 7,400 

 

This section calculates a Total Dollar ($) per Project Duration Crash Mitigation Cost for any given 

work zone based on the most likely crash to occur at the specified location.  This chapter is 

organized as such: first, the data collection methods and associated summary characteristics are 

outlined; next, the crash model’s methodology is discussed; following this, the model results and 

their interpretation are presented; finally, a simple example of how to use the results is shown.    

 

4.1 DATA COLLECTION 

The work zone crash type prediction model is based on representative work zone crash records.  

The data includes crashes from eight states (Alabama, California, Illinois, Maine, North Carolina, 

Ohio, Pennsylvania, and Washington) across the country, to ensure that the model is transferrable 

for work zones in any US region.  Specifically, crash data was collected from three primary 

sources: a) the Highway Safety Information System (HSIS), b) the Alabama Department of 

Transportation work zone crash database compiled by Auburn University, and c) the PENNDOT 

OpenData Portal. Current crash records were collected from 2008 to the most recent year, which 

varied by state.  The database across all states and years includes 4,324,686 total crashes and 

89,212 work zone related crashes, roughly 2.1 percent.  The specific number of total crashes from 
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each state across each year are presented in Table 4-2.  It is important to recognize that the crash 

records used in this analysis are generated by a law enforcement officer, who designated the 

location (i.e. in a work zone or not) of the crash and recorded the vital information.   

Table 4-2: Work Zone Crashes Collected Across the United States  

STATE WORK ZONE CRASHES PERCENT OF TOTAL WORK ZONE CRASHES 

ALABAMA 4,840 5.4% 

CALIFORNIA 20,300 22.8% 

ILLINOIS 25,230 17.1% 

MAINE 1,528 1.7% 

NORTH CAROLINA 9,083 10.2% 

OHIO 20,555 23.0% 

PENNSYLVANIA 11,324 12.7% 

WASHINGTON 6,352 7.1% 

TOTALS 89,212 100.0% 

 

Each crash includes many variables in addition to crash severity, including driver characteristics, 

crash characteristics, roadway characteristics, and project characteristics.  Due to the range of data 

sources, all record variables were normalized to similar variable categories.  Specifically, every 

record was restructured to match the North Carolina data dictionary, as it provided the most 

flexibility in variable definitions.  A few states identified multiple at-fault persons in multiple-

vehicle crashes, so the ages and genders for all the people at-fault in these crashes were combined 

in the record. This resulted in some crashes having several different age and gender categories 

when run through the final model so gender and age categories reflected all involved drivers 

instead of only at-fault drivers.  Additionally, a few variables were either not present in each state’s 

dataset or were not included in the responding officer’s report.  If this occurred, the variable was 

recorded as “other” or “unknown”, as appropriate.  Finally, any crashes showing an unknown 

KABCO variable were removed from the dataset to limit error in the final statistical model. 
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Initial analysis of the final data set showed that trends varied from national trends in most cases 

due to data availability. Regardless, Figure 4-1 shows the final work zone crash set broken down 

by census region.  

 

Figure 4-1: Work Zone Crashes by Census Region 

 

In terms of population, the Midwest and West regions were overrepresented in the number of 

crashes (mainly due to California and Ohio data) with the South underrepresented due to the lack 

of available data. Efforts were made to acquire data from Texas and Florida since they, along with 

California, have the highest vehicle miles traveled of all the states, but were abandoned due to time 

constraints and communication issues.  

Driver age was included for statistical comparison reasons. Figure 4-2 presents the data set 

categorized by driver age. 
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Figure 4-2: Work Zone Crashes by Driver Age 

 

It should be noted that these numbers are based off all involved drivers since there was no way to 

determine the at-fault driver in most crashes. Regardless, crash trends proved to be similar to 

national trends in terms of driver age.  

Figure 4-3 below presents the crash severity distribution of the final data set.  

 

Figure 4-3: Work Zone Crashes by Severity Level 

 

According to FHWA 2015 statistics, work zone crash severity levels were roughly summed up as 

73 percent “PDO”, 26.4 percent “Injury”, and 0.7 percent “Fatal” (FHWA, 2017a). The working 
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data set reflects these national trends in terms of general proportion except for fatal injuries. This 

was mainly due to the recording methods of some states, mainly Pennsylvania, where only fatal 

crashes were recorded with all the necessary roadway information needed for a full analysis. This 

overrepresentation of fatal crashes provides more data for a category that typically has less 

available data, which allows us to identify more detailed relationships and more accurately 

estimate the model. Table 4-3 shows the distribution of crash severity by involved driver age. 

Table 4-3: Crash Severity by Driver Age [Percent of Severity (Standard Deviation)] 

DRIVER AGE K A B C PDO TOTAL 

UNDER 25  17.7% (0.73) 7.5% (0.10) 9.7% (1.69) 13.9% (1.42) 51.2% (-0.96) 100.0% 

25 – 34 17.7% (0.73) 7.7% (0.48) 9.3% (-0.70) 13.5% (0.39) 51.8% (-0.71) 100.0% 

35 – 44 17.2% (0.47) 7.7% (0.48) 9.3% (-0.70) 13.0% (-0.91) 52.8% (-0.29) 100.0% 

45 – 54 16.9% (0.31) 7.7% (0.48) 9.6% (1.09) 12.8% (-1.42) 53.0% (-0.20) 100.0% 

55 – 64 16.1% (-0.10) 7.8% (0.67) 9.3% (-0.70) 13.2% (-0.39) 53.6% (0.05) 100.0% 

OVER 64 12.2% (-2.14) 6.3% (-2.20) 9.3% (-0.70) 13.7% (0.91) 58.5% (2.11) 100.0% 

AVERAGE 16.3% 7.5% 9.4% 13.4% 53.5% 100.0% 

 

As age increased, the proportion of PDO crashes increased and fatal crashes decreased. The largest 

deviations occurred with work zone crashes that involved drivers over the age of 64 years-old. 

Here, over two standard deviations from the mean were observed for fatal crashes (2.14 deviations 

less), Class A crashes (2.20 deviations less), and PDO crashes (2.11 deviations greater). Other 

notable trends included the increased chance of injury for involved drivers under 25 years-old. 

This was the only group to be consistently above the average injury rate for all four injury 

categories.  

For this study, road surface composition was determined to be a vital component. Figure 4-4 shows 

the data set’s breakdown by surface composition.  
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Figure 4-4: Work Zone Crashes by Surface Type 

 

Effort was made to get an even sample of both AC and PCC crashes.  According to FHWA reports, 

of the 4.1 million miles of roadway in the United States, over 783,000 miles are paved with AC 

while only 57,000 are paved with PCC (FHWA, 2017b). However, an additional 112,000 miles is 

defined as “composite”, i.e. the application of an AC overlay over a jointed concrete pavement. 

The sizable sample of PCC crashes recorded could be related to the large number of recorded urban 

crashes where PCC application is more common (FHWA, 2017b). The large percentage of 

“unknown” cases was mainly due to incomplete reports, or in the case of the Alabama dataset, lack 

of an identifiable surface composition variable. Final model results would not be largely affected 

by this unknown presence since the model was designed for categorical dummy variables. 

Other notable statistics included a 26/74 percent split rural/urban area definition, 82 percent of 

crashes occurring during clear weather, and 70 percent of crashes occurring during daylight 

lighting conditions. These further statistics reflected work zone crash trends found in previous 

studies by Kockelman, Bai, and Khattak (Bai, 2006; Khattak, & Council, 1998; Kockelman & 

Kweon, 2002); with the major exception of rural/urban split, as this was heavily influenced by 

study areas.  
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4.2 METHODOLOGY 

The ordered probit regression model is the most appropriate method for predicting crash type 

because this dependent variable is a) categorical, meaning that crashes can only be labeled as one 

type, and b) presented in an ordered scale, meaning that the crash types move from low severity to 

high severity.   

The ordered probit regression model is similar to a continuous linear regression model, in that it 

first calculates a continuous underlying unitless “likely crash severity” score for each work zone 

based on the input independent variables. This score has no upper or lower limits, but a higher 

score translates to a higher likelihood of a severe crash. The “likely crash severity” score equation 

can be calculated using Equation 4.1: 

 

𝑦∗ = 𝛽′𝑥 + 𝜖 (Eq. 4.1) 

 

Where: 

  𝑦∗ = Injury severity level  

β = Matrix of estimated coefficients 

x = Matrix of independent variables  

ε = Error term (assumed to be normally distributed)   

Independent variables included traditional crash factors from past research describing driver 

characteristics, crash characteristics, roadway characteristics, and project characteristics.  These 

are all categorical, indicator variables (for ease in application) with the exception of AADT and 

posted speed limit. The coefficients provide relative weights for each independent variable, 

assuming all other variables are held constant. 
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Next, the crash type categories are mapped to this underlying “likely crash severity” scale as 

demonstrated in Figure 4-5.  One can see that the continuous “likely crash severity” score is 

partitioned into the scaled crash types, such that if a work zone receives a score between 𝛾3  and 

𝛾4 , the most likely crash type result is an “Incapacitating Injury”.  The thresholds between crash 

types are estimated specific for the model and do not need to be evenly spaced, highlighting the 

varying ranges of severity the can occur within each crash type. In the possibility of a threshold 

being statistically insignificant, it is interpreted as being as equally likely that a score could fall 

into either the insignificant threshold category or into a surrounding threshold category.  

 

Figure 4-5: Likely Crash Severity Scale 

 

This mapping can also be written as: 

𝑦 =

{
 
 

 
 
𝐾 𝑖𝑓 𝑦∗ > 𝛾4 
𝐴 𝑖𝑓𝛾3 ≤ 𝑦∗ < 𝛾4
𝐵 𝑖𝑓𝛾2 ≤ 𝑦∗ < 𝛾3
𝐶 𝑖𝑓𝛾1 ≤ 𝑦∗ < 𝛾2
𝑂 𝑖𝑓 𝑦∗ ≤ 𝛾1

 

The ordered probit model assumes independence of irrelevant alternatives, low collinearity, and a 

normal distribution of error terms. This model is commonly used in crash severity analyses to 

identify factors affecting crashes. For example, Duncan used this method to determine injury 

severity level factors for heavy truck-passenger car rear-end collisions finding dark and wet roads 

greatly increased the probability of a severe injury (Duncan et al, 1998). Kockelman found through 
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her research two-vehicle crashes had lower injury severities for their drivers as opposed to their 

passengers (Kockelman & Kweon, 2002).  

The model coefficients and thresholds were estimated using maximum likelihood estimation.  The 

model was iteratively estimated, removing variables that were insignificant at the 99 percent 

confidence level until a final model was derived. Model validity was tested using the chi-squared 

likelihood ratio. This ratio is the difference between the null (intercept-only) model’s log 

likelihood value and the final (fitted) model’s log likelihood value. If this value exceeds the critical 

chi-square value, then the null model is rejected. This is further demonstrated by the associating 

p-value which is the probability of obtaining the chi-square value with a model where all regression 

coefficients are set to zero. If the p-value is less than the alpha value (α = 0.01), then the null 

hypothesis is rejected, stating the fitted model is better than the null model at a 99 percent 

confidence level. 

 

4.3 ESTIMATION RESULTS AND DISCUSSION 

Optimized model results produced the following threshold scale (Figure 4-6). All thresholds were 

found to be statistically significant allowing this model to be used to confidently predict a work 

zone’s probable crash severity. 

 

Figure 4-6: Work Zone Crash Severity Thresholds 
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To properly use this model, users must pair crash characteristics with its associated coefficient and 

sum the results. This summation would then be compared to the severity threshold ranges to 

determine the probable crash severity. The chi-squared likelihood ratio of the final model is 

39034.15 with 32 degrees of freedom and a p-value of less than 0.001, confirming this model has 

a better fit than the null model. The final model estimation results are presented in Table 4-4. 

Dashes signify the variable, while tested, was not statistically significant in the final model.  

Table 4-4: Work Zone Crash Severity Model Estimation Results 

    IMPACT 

  

  COEFF. P-VALUE 

M
O

D
E

L
 

C
H

A
R

A
C

T
E

R
IS

T
IC

S
 

Injury Thresholds 
    

No Injury/Property Damage Only < 2.739  

Class C Injury (Possible Injury) 2.739 < 0.001 

Class B Injury (Non-Incapacitating Injury) 3.214 < 0.001 

Class A Injury (Incapacitating Injury) 3.699 < 0.001 

Fatal Injury 4.223 < 0.001  

C
R

A
S

H
 C

H
A

R
A

C
T

E
R

IS
T

IC
S

 

Weather (Base: Other) 
   

Clear - - 

Cloudy - - 

Rain -0.333 < 0.001 

Snow -0.548 < 0.001 

  
   

Census Region (Base: South) 
   

Midwest 0.288 < 0.001 

Northeast - - 

West 1.525 < 0.001 

Season (Base: Winter) 
   

Spring - - 

Summer -0.048 0.001 

Fall -0.059 < 0.001 

  
   

Time Of Week (Base: Weekend) 
   

Weekday -0.134 < 0.001 
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Accident Type (Base: Other) 
   

Ran Off Road 0.486 < 0.001 

Struck Object 0.256 < 0.001 

Rear-End 0.214 < 0.001 

Sideswipe 0.392 < 0.001 

Angle 0.216 < 0.001 

   

Driver Age (Base: Unknown)  
   

Under 25 - - 

25 To 34 - - 

35 To 44 - - 

45 To 54 - - 

55 To 64 - - 

Over 64 -0.057 < 0.001 

      

R
O

A
D

 C
H

A
R

A
C

T
E

R
IS

T
IC

S
 

Rural/Urban Locale 
   

Rural 0.240 < 0.001 

Urban - - 

  
   

Lighting (Base: Other) 
   

Daylight 0.318 < 0.001 

Dusk 0.417 < 0.001 

Dawn - - 

Dark - Lighted Roadway 0.251 < 0.001 

Dark - Roadway Not Lighted 0.341 < 0.001 

  
   

Road Condition (Base: Other/Unknown) 
   

Dry - - 

Wet -0.114 < 0.001 

Ice/Snow - - 

   

Roadway Access (Base: Unknown) 
   

No Access Control 0.194 < 0.001 

Partial Control -0.855 < 0.001 

Full Control -0.631 < 0.001 

  - - 

Roadway Classification (Base: Unknown) 
   

Urban Freeways -0.546 < 0.001 

Urban Freeways Less Than 4 Lanes -0.733 < 0.001 

Urban 2 Lane Roads - - 

Urban Multilane Divided Non-Freeway - - 
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Urban Multilane Undivided Non-Freeway - - 

Rural Freeways -0.668 < 0.001 

Rural Freeways Less Than 4 Lanes - - 

Rural 2 Lane Roads -0.313 < 0.001 

Rural Multilane Divided Non-Freeway - - 

Rural Multilane Undivided Non-Freeway - - 

Others - - 

Lane Width (Base: Unknown) 
   

1 To 11 Feet -0.432 < 0.001 

12 To 20 Feet -0.503 < 0.001 

21 To 30 Feet - - 

Greater Than 30 Feet - - 

  
   

Surface Composition (Base: Unknown)   

Asphalt Concrete  -0.188 <0.001 

Portland Cement Concrete  - - 

Other -0.185 < 0.001 

   

AADT (in 1000s Continuous) 0.003 < 0.001 

  
   

Speed Limit (Continuous) 0.051 < 0.001 

      

        

  Likelihood Ratio Chi-Square 39034.15 < 0.001 

  Degrees Of Freedom 32 

 

Although driver gender was found to be statistically insignificant in crash severity, driver age 

proved to be moderately influential. Drivers over the age of 64 were less likely to have a severe 

crash when all other factors were held constant. This can be explained by the crash severity 

distribution of the over 64 age group. As presented earlier, only 12.2 percent of crashes involving 

drivers over the age of 64 resulted in a fatality. This was found to be 2.14 standard deviations from 

the mean fatality rate of 16.3 percent. Previous research showed an opposite impact with an 

increase in age resulting in a higher chance of injury severity (Kockelman & Kweon, 2002). This 
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could be due to methodology differences (continuous versus categorical variable) which would 

emphasize the larger driver population in the 21 to 55 age range. 

 Crash time and location played a significant part in determining crash severity. Tested western 

region states were the most likely states to have a higher severity work zone crash compared to all 

other census regions when all other factors were held constant. Since data used included California, 

the state’s higher VMT counts could bias the results slightly to reflect the higher number of sever 

crashes. The Midwest region also showed a penchant for more severe crashes when all other factors 

were held constant. Once again, this could be due to the bias Ohio data presented with its large 

number of individual cases. Looking at surrounding locale classification, rural crashes were more 

likely to be severe than urban crashes when all other factors were held constant. Possible 

explanations for this could be the higher chances of two-lane, undivided highways that would 

increase head-on crashes if a lane was closed for rehabilitation.   

Compared to all other unlisted weather events, rain and snow were the least likely to cause a more 

severe crash compared to the base category, when all other factors were held constant. While it is 

possible that there is a higher crash rate during these weather conditions, drivers could be operating 

at lower speeds, which would greatly reduce the severity level of an ensuing crash event. This is 

once again reflected under the road condition category where wet road conditions were less likely 

to cause a more severe crash compared to other conditions, when all other factors were held 

constant. 

Regarding seasonality, it played an overall negative role in crash severity with summer and fall 

being the only statistically significant seasons found compared to winter. From the summary 

statistics, it was found 64 percent of all work zone crashes occurred during these two seasons, but 

frequency of road construction occurs during this time at a higher rate than winter and spring 
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seasons resulting in a small bias. Weekdays (Monday through Friday) were less likely than 

weekends (Saturday and Sunday) when all other factors held constant. Since travel and work zone 

activity occurs more often during the week, these results are not surprising and are in line with 

conventional knowledge. As for light conditions, dusk light conditions, compared to all other 

options, had the highest probability for high severity crashes when all other factors held constant. 

This could be due to drivers being blinded by the sun; obscuring their vision and increasing crash 

rates. Dark, not-lighted highways, compared to all other options, had the second highest probability 

for high severity crashes when all other factors held constant. Reasons for this are obvious—

drivers who can’t see the road are more likely to be surprised by work zones in general. The same 

can be said for dark, lighted highways where the impact was still high but was statistically safer 

than unlit roadways.  Roadway characteristics and crash type in general greatly influence probable 

severity outcomes. Higher AADT and posted speed limits resulted in higher likelihoods of a severe 

crash when all other factors were held constant. Non-access-controlled roads were more likely to 

have severe crashes than all other types, when all other factors were held constant. Possible 

reasoning could be due to vehicles entering the roadway at random resulting in possible more right-

angle crashes occurring. Full and partial control were less likely to have high severity crashes when 

all other factors were held constant. This reflects previous research on the subject where 

controlling access points statistically lowers crash severities and crash frequencies overall (Gluck 

et al, 1999; Schultz et al, 2009). Oddly enough, partial control roads were statistically the least 

likely to increase accident severity. This could be due to access points being situated mainly at 

controlled intersections, but further research would be needed to determine the actual cause. For 

crash type, crashes that occurred under the “ran of road” and “sideswipe” categories had a higher 

chance of severity compared to “other” category when all other factors held constant. Compared 
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to previous studies, “rollover” crashes were found to be the deadliest (Duncan et al, 1998; 

Kockelman & Kweon, 2002); but due to the small sample size (roughly 1 percent) of those types 

of crashes in the dataset, they were combined into the “other” category in analysis. 

Finally, roadway classifications were considered.  Both urban and rural freeways were less likely 

to have high severity crashes than all other categories when all other factors were held constant. 

This can be attributed to full access control on these roadways, which in turn increases overall 

safety.  Rural two-lane roads were less likely to have high severity crashes when all other factors 

were held constant.  The lower AADTs as well as the lower speeds on such roadways would reduce 

severe accidents (Harwood et al, 2000). In addition, since surface rehabilitation usually results in 

a lane closure, traffic would be forced to use a single lane alternating flow between traffic 

directions. Lane width was found to follow a pattern of larger widths resulted in less severe crashes 

when all other factors were held constant. Explanations for this could be attributed to the increased 

maneuver room for vehicles to avoid crashes. 

 

4.3.1 Costs Calculation Example 

To illustrate how the model results influence crash severity, assume the following scenario. A 

work zone crash occurs on a 55 mph, limited access, asphalt concrete 2-lane highway. The crash 

occurred during a rainy summer evening in rural Ohio resulting in an angle crash. Using this 

information, an equation predicting the probable severity can be found:   

 

𝑦 = −0.048(𝐼𝑓 𝑆𝑢𝑚𝑚𝑒𝑟) + 0.194(𝐼𝑓 𝑁𝑜 𝐴𝑐𝑐𝑒𝑠𝑠) − 0.333(𝐼𝑓 𝑅𝑎𝑖𝑛𝑖𝑛𝑔) −
0.313(𝐼𝑓 𝑅𝑢𝑟𝑎𝑙 2 𝐿𝑎𝑛𝑒) + 0.417(𝐼𝑓 𝐷𝑢𝑠𝑘) − 0.188(𝐼𝑓 𝐴𝑠𝑝ℎ𝑎𝑙𝑡 𝐶𝑜𝑛𝑐𝑟𝑒𝑡𝑒) +
0.285(𝐼𝑓 𝑀𝑖𝑑𝑤𝑒𝑠𝑡 𝑅𝑒𝑔𝑖𝑜𝑛) + 0.216(𝐼𝑓 𝐴𝑛𝑔𝑙𝑒 𝐶𝑟𝑎𝑠ℎ) + 0.24(𝐼𝑓 𝑅𝑢𝑟𝑎𝑙) − 0.114(𝐼𝑓 𝑊𝑒𝑡) +
0.051(𝑆𝑝𝑒𝑒𝑑 𝐿𝑖𝑚𝑖𝑡)  
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It can be assumed that since it is a rural setting, the “rural 2 lane” and “rural” factors can be 

included in this equation. In addition. Since it is raining, it is safe to assume the road surface would 

also be wet. Calculated, the probable severity, y, would equal 3.164 or a “Class C” injury according 

to the scale.  

 

4.4 SUMMARY 

On average, a work zone crash occurs every 5.4 minutes according to FHWA. Although only 0.7 

percent of work zone crashes result in a fatality, the estimated economic impact is in the millions. 

Therefore, it is imperative that efforts be made to reduce crash rates as well as severity levels. 

Using a nationally distributed crash database, an ordered probit model was developed to illustrate 

work zone crash severity thresholds as well identify influencing characteristics. Results showed 

the most statistically significant factor to be the posted speed limit and census region (specifically 

the Western census region). Although speed limit was found to be in accordance to past studies, 

the Western census region’s significance was thought to be the result of data set bias. Other notable 

results were wet weather conditions, weekday crashes, and drivers over the age of 64 causing less 

severe work zone crashes, compared to their bases and when all other factors were held constant. 

Rural two-lane roads were found to not impact crash severity as greatly as previous studies had 

found. However, both urban and rural freeways were found to be the least likely road type to cause 

a severe crash compared to all other road type categories. Finally, work zone crashes that occurred 

at dusk were the most likely lighting category to cause a severe crash compared to all other lighting 

categories—although this was not found in previous studies, where unlit dark road conditions were 

found to lead to the most severe crashes.  
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CHAPTER 5: LOCAL BUSINESS IMPACT COSTS 
 

 

Local Business Impact Costs (LBICs) are the third of the three categories of impacts 

associated with roadway pavement rehabilitation work and quantified in this thesis.  LBICs are 

defined as the economic impacts on local businesses from nearby pavement rehabilitation work 

zones caused by changes in customer spending and visitation behaviors. As previous literature has 

shown, work zone delay can result in motorists changing their habits based on the theory of natural 

diversion and an individual’s value of time. Additionally, previous work has shown perceived 

monetary losses to businesses have in general been higher than actual losses. This results in 

negative connotations between business owners and road owners leading to unnecessary conflict 

(Buddemeyer et al, 2008). Despite being a well-documented challenge, there is little guidance on 

how engineers should quantify these impacts.  Therefore, a national survey was conducted to 

determine customer preferences to different work zone durations as it related to their activity 

choices. Results were gathered from an ordered probit model with direct monetary relations taken 

from the survey response distributions. First, a summary of data collection and summary statistics 

is presented. Following this, an explanation of the ordered probit model is provided. Finally, model 

results and variable explanations are discussed.  
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5.1 DATA COLLECTION 

The national LBIC survey was conducted through the Survey Monkey platform to limit costs and 

maximize the sample size. Originally, 425 responses were recorded then another 345 responses 

were solicited during the ensuing phases. Respondents were chosen to reflect US Census 

demographics and socioeconomic factors to allow a representative sample of the entire nation. 

Questions covered consumer spending habits among three different activities (leisure, grocery 

shopping, home/houseware shopping), average travel times to said activities, and behavioral 

changes to travel if a work zone of variable durations is introduced to the trip. Respondents were 

asked how an increased travel time of 5, 20, or 40 minutes over a project duration of a day, week, 

or month would affect their travel choices. Respondents were provided five choices:  

• “Still take the trip.” 

• “Reschedule the trip for another day/time while construction is still happening and the 

delay is still the same.” 

• “Reschedule the trip for another day/time after construction is completed and there is no 

longer a delay.” 

• “Go somewhere else.” 

• “Cancel trip entirely (including shopping online instead).” 

Additionally, the scenarios included either a duration for the work zone construction of either a 

day, a week, or a month.  These durations were assigned probabilistically across all respondents, 

meaning that each scenario had a 1/3 chance of being assigned one of these durations and the 

overall entire sample of scenarios included an equal distribution of all three durations. 
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This was asked for each of the three activity categories with construction duration distributed at a 

33 percent probability. Overall, 770 survey responses were recorded before cleaning.  

Since the survey was conducted electronically, all results were already formatted into an easy-to-

use SPSS file so little cleaning/formatting was required. Even with mandatory responses and 

incentives to complete the survey, 55 of the original respondents (7 percent) did not complete the 

survey in some form or another and had their responses removed from the final dataset. Final 

model results were calculated using the final 715 sample size.   

Each respondent was asked several demographic questions to not only identify second-round 

survey target response groups, but to also put results into context. Figure 5-1 shows the age 

distribution of respondents.  

 

Figure 5-1: Age Distribution of Sample 

 

Due to Institutional Research Board (IRB) regulations, all respondents had to be 19 years of age 

or older to take the survey, but these categories were still matched to crash results in the previous 

section. Compared to US Census 2015 estimates (Census Bureau, 2016), the “35 to 44 years old” 

and “55 to 64 years old” categories were overrepresented by roughly 8 percent each, and the “45 
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to 54 years old” category was overrepresented by roughly 5 percent. However, the “19 to 24 years 

old” and “65 years old or older” categories were within a percent of actual representation.  

Respondent gender (Figure 5-2), although not accounted for in the crash results, reflected national 

trends within ±5 percent.  

 

Figure 5-2: Gender Distribution of Sample 

 

According to 2015 American Community Survey estimates, the US population is almost evenly 

split at 49 percent male and 51 percent female (Census Bureau, 2015). Regardless, these results 

were favorable. 

Regionally, shown in Figure 5-3, survey results showed an almost perfect match to census 

estimates for 2016 with variations under ±1 percent (Census Bureau, 2016). Refer to Appendix B 

for a table of states in each region. Use of US Census region definitions was decided as the easiest 

way to describe the data in a nationally recognized scale. The individualization of states was 

deemed too detailed and complex for the scale of this project. 
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Figure 5-3: Regional Distribution of Sample 

 

Household income, Figure 10, varied from census estimated data. While for household type, Figure 

5-4, no records on matching national categories could be found. 

 

Figure 5-4: Income Distribution of Sample 
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Figure 5-5: Household Type Distribution of Sample 

 

Household income varied from the national estimates the most with the “$25,000 to $49,999” 

category at 6.5 percent over the national percentage (Census Bureau, 2015). All other categories 

were within ±3.5 percent of the national percentage. This tight grouping was considered the most 

important category to match for the model. As buying power is directly correlated to household 

income, the validity of the model depended on matching the national census estimates as closely 

as possible.  

Overall, the highest proportion of survey respondents were 35 to 44-year-old, female, lived either 

alone or with children, lived in the Southern US region, or had household incomes in the $25,000 

to $49,999 range. Conversely, the lowest proportions were survey respondents who identified as 

“other”, 19 to 24 years-old, lived alone with children under the age of 5, lived in the Northeast 

region, or had household incomes in the $75,000 and $99,999 range. In the analysis, these 

infrequent choices would be used as the base cases in the model.  
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5.2 SURVEY RESULTS REGARDING USER DELAY 

The most notable initial result was survey respondents’ behavior choices for each delay category. 

For all business types tested (leisure, grocery, and personal shopping), there was a substantial shift 

between delay increases. Presented in Figures 5-6 through 5-8, most respondents, regardless of 

work zone duration, shifted their travel choice from “Still take the trip” to “Go somewhere else” 

when faced with a work zone delay exceeding 20 minutes. 

 

Figure 5-6: Survey Responses to Delay Increases for Grocery Trips  

 

 

Figure 5-7: Survey Responses to Delay Increases for Leisure Trips 

0

10

20

30

40

50

60

70

80

90

Day Week Month Day Week Month Day Week Month

5 Minute Delay 20 Minute Delay 40 Minute Delay

P
er

ce
n

ta
ge

 o
f 

R
es

p
o

n
d

en
ts

Still Take the Trip

Reschedule During Project

Reschedule After Project

Go Somewhere Else

Cancel Trip

0

10

20

30

40

50

60

70

80

90

Day Week Month Day Week Month Day Week Month

5 Minute Delay 20 Minute Delay 40 Minute Delay

P
er

ce
n

ta
ge

 o
f 

R
es

p
o

n
d

en
ts

Still Take the Trip

Reschedule During Project

Reschedule After Project

Go Somewhere Else

Cancel Trip



 

58 

 

 

Figure 5-8: Survey Responses to Delay Increases for Personal Shopping Trips 

 

Interestingly, leisure and personal shopping trips, compared to grocery trips, had a higher 

percentage of respondents who chose to cancel their trip entirely, across all delay types. This 

suggested respondents treated grocery trips as more essential than the other trip types. Regardless, 

overall results showed that somewhere between a delay time of 5 minutes and 20 minutes there is 

a significant shift in behavior. Previous research would suggest that the critical time would be 

around 15 minutes based on user VoT (Pinjari & Bhat, 2006), but further investigation is required 

to confirm.  

 

5.3 METHODOLOGY 

Again, the ordered probit regression model is the most appropriate method for predicting choice 

because this dependent variable is a) categorical, meaning that choices about whether to take the 

trip or not are mutually exclusive, and b) presented in an ordered scale, meaning that the choices 

move from ‘no deviation from regular behavior’ to a ‘complete change in behavior’.   

The ordered probit regression model is similar to a continuous linear regression model, in that it 

first calculates a continuous underlying unitless “trip disruption/aggravation” score for driver that 
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travels through a work zone based on the input independent variables.  This score has no upper or 

lower limits, but a higher score translates to a more likely deviation from the original travel.  This 

“trip disruption/aggravation” score equation can be calculated using Equation 5.1: 

 

𝑦∗ = 𝛽′𝑥 + 𝜖 (Eq. 5.1) 

 

Where: 

  𝑦∗ = Injury severity level  

β = Matrix of estimated coefficients 

x = Matrix of independent variables  

ε = Error term (assumed to be normally distributed)   

Independent variables describe driver characteristics, region characteristics, roadway 

characteristics, and project characteristics.  These are all categorical, indicator variables (for ease 

in application). The coefficients provide relative weights for each independent variable, assuming 

all other variables are held constant. 

Next, the driver trip choice categories are mapped to this underlying “trip disruption/aggravation” 

scale as demonstrated in Figure 5-9.  One can see that the continuous “trip disruption/aggravation” 

score is partitioned into the scaled trip decisions, such that if a driver receives a score between 𝛾3  

and 𝛾4., the most likely outcome would be for the driver to “go somewhere else”.  The thresholds 

between trip decisions are estimated specific for the model and do not need to be evenly spaced, 

highlighting the varying ranges of annoyance/impact that work zones that can occur within each 

avoidance behavior type. In the possibility of a threshold being statistically insignificant, it is 

interpreted as being as equally likely that a score could fall into either the insignificant threshold 
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category or into a surrounding threshold category. In the case of strict application, the level of 

insignificance can be ignored.  

 

Figure 5-9: Trip Distribution/ Aggravation Scale 

 

This mapping can also be written as: 

𝑦 =

{
 
 

 
 

𝐶𝑎𝑛𝑐𝑒𝑙 𝑡𝑟𝑖𝑝 𝑒𝑛𝑡𝑖𝑟𝑒𝑙𝑦 𝑖𝑓 𝑦∗ > 𝛾4 
𝐺𝑜 𝑠𝑜𝑚𝑒𝑤ℎ𝑒𝑟𝑒 𝑒𝑙𝑠𝑒 𝑖𝑓𝛾3 ≤ 𝑦

∗ < 𝛾4
𝑅𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑓𝑜𝑟 𝑎𝑓𝑡𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑓𝛾2 ≤ 𝑦

∗ < 𝛾3
𝑅𝑒𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑑𝑢𝑟𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑖𝑓𝛾1 ≤ 𝑦

∗ < 𝛾2
𝑆𝑡𝑖𝑙𝑙 𝑡𝑎𝑘𝑒 𝑡ℎ𝑒 𝑡𝑟𝑖𝑝 𝑖𝑓 𝑦∗ ≤ 𝛾1

 

The ordered probit model assumes independence of irrelevant alternatives, low collinearity, and a 

normal distribution of error terms. The model coefficients and thresholds were estimated using 

maximum likelihood estimation.  The model was iteratively estimated, removing variables that 

were insignificant at the 99 percent confidence level until a final model was derived. Model 

validity was tested using the chi-squared likelihood ratio. This ratio is the difference between the 

null (intercept-only) model’s log likelihood value and the final (fitted) model’s log likelihood 

value. Log likelihood values improve the closer they converge to zero. If this ratio value exceeds 

the critical chi-square value, then the null model is rejected. This is further demonstrated by the 

associating p-value which is the probability of obtaining the chi-square value with a model where 

all regression coefficients are set to zero. If the p-value is less than the alpha value (α = 0.01), then 
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the null hypothesis is rejected, stating the fitted model is better than the null model at a 99 percent 

confidence level.   

 

5.4 ESTIMATION RESULTS AND DISCUSSION 

Optimized model results produced the following threshold scale (Figure 5-10). All thresholds but 

those highlighted red were found to be statistically significant. With the highlighted thresholds, 

motorists are equally as likely to either still take the trip or reschedule it at another time during 

construction. Participants most likely assumed that work zone delay would be less if they went at 

a different time during construction.  

 

Figure 5-10: LBIC Threshold Results (Red signifies statistical insignificance)  

 

Threshold range varied by business category heavily between response choices. From observation, 

it appeared leisure trips had a higher threshold for changing from the base action, but was just as 

equally sensitive for change up to the third threshold. Each business category showed the threshold 

between “Go Somewhere Else” and “Cancel Trip Entirely” was over double or triple the previous 

threshold. This suggests respondents would prefer heavily to still take the trip, albeit to a different 

venue, than completely cancel plans—unless faced with extreme situations. The chi-squared 

likelihood ratios of the final models are 8825.68 for grocery, 4524.86 for personal shopping, and 
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5389.36 for leisure with all having p-values less than 0.001, confirming each model has a better 

fit than their associated null model. To properly use this model, users must pair their 

socioeconomic and work zone characteristics with its associated coefficient and sum the results 

for whichever business type is to be examined. This summation would then be compared to the 

response threshold ranges to determine the probable motorist response. The final model estimation 

results are presented in Table 5-1.   

Table 5-1: Business Impact Model Estimation Results 

  

  
Impacts on Business Type… 

  

  
Grocery Shopping 

Personal 

Shopping         

(e.g. Clothes                       

or Home Goods) 

Leisure Activity             

(e.g. Eat at a 

Restaurant or Go 

to a Movie) 

  

  
 Coeff. p-value  Coeff. p-value  Coeff. p-value 

M
o

d
el

 C
h

ar
ac

te
ri

st
ic

s Choice Thresholds             

Still Take the Trip < 0.914  < 0.363  < 1.298  

Reschedule during construction 0.914 0.073 0.363 0.189 1.298 < 0.001 

Reschedule after construction 1.219 0.017 0.685 0.013 1.492 < 0.001 

Go somewhere else 2.024 < 0.001 1.832 < 0.001 2.255 < 0.001 

Cancel trip entirely 6.292 < 0.001 4.100 < 0.001 5.076 < 0.001 

              

R
eg

io
n

 C
h

ar
ac

te
ri

st
ic

s 

US Region (Base: Northeast) 
        

West 0.271 0.012 - - - - 

Midwest - - - - - - 

South - - -  -  - - 

       

Community Type (Base: Rural) 
        

Urban 0.331 0.015 - - -0.230 0.062 

Suburban 0.289 0.014 - - -0.262 0.016 
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D
ri

v
er

 C
h

ar
ac

te
ri

st
ic

s 
Age (Base: 19 to 24 years old)             

25 to 34 years old 0.742 < 0.001 - - - - 

35 to 44 years old 0.836 < 0.001 - - - - 

45 to 54 years old 0.745 < 0.001 - - 0.559 < 0.001 

55 to 64 years old 0.391 0.024 - - 0.564 < 0.001 

65 years old or older 0.599 0.002 - - 0.550 < 0.001 

  
        

Gender (Base: Female) 
        

Male  - - - - - - 

Other -1.076 0.028 0.828 0.063 - - 

  
        

Household Type (Base: Single Adult) 
        

Single Parent with at least one child less 

than 5 years old 
0.582 0.063 - - - - 

Single Parent with at least one child, 

none less than 5 years old 
- - - - - - 

Couple without children 0.227 0.045 - - 0.203 0.054 

Couple with at least one child less than 5 

years old 
- - 0.263 0.082 0.565 0.001 

Couple with at least one child, none less 

than 5 years old 
- - 0.332 0.003 - - 

Living with Friends or Roommates 0.268 0.066 - - - - 

  
        

# Household Vehicles (Base: 0 

vehicles) 
        

1 Vehicle 0.616 0.001 0.309 0.001 0.792 < 0.001 

2 Vehicles 0.672 < 0.001 - - 0.654 < 0.001 

3 to 5 Vehicles 1.054 < 0.001 0.229 0.042 0.776 < 0.001 

6 or More Vehicles 1.924 0.034 -2.114 0.014 -2.669 0.021 

  
        

Household Income (Base: Less than 

$25,000) 
        

$25,000 to $49,999 - - 0.366 0.002 - - 

$50,000 to $74,999 0.206 0.077 0.500 < 0.001 - - 

$75,000 to $99,999 - - 0.651 < 0.001 - - 

$100,000 or more - - 0.610 < 0.001 - - 

  
        

Typical Daily Commute (Base: 5 

Minutes or Less) 
        

6 to 10 minutes - - - - - - 

11 to 20 minutes - - - - -0.287 0.005 

21 to 40 minutes - - - - - - 

41 to 60 minutes - - - - -0.562 < 0.001 

Longer than an hour - - - - -0.366 0.091 
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B
u

si
n

es
s 

A
c
ti

v
it

y
 C

h
ar

ac
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Typical Time to Reach Business 

(Base: 5 Minutes or Less) 
        

6 to 10 minutes 0.471 < 0.001 0.736 < 0.001 - - 

11 to 20 minutes 0.478 < 0.001 1.119 < 0.001 - - 

21 to 40 minutes 0.451 0.015 1.136 < 0.001 0.207 0.043 

41 to 60 minutes - - 1.562 < 0.001 0.529 0.006 

Longer than an hour -1.883 0.002 0.704 0.048 - - 

  
        

Typical Amount Spent at Business 

(Base: Nothing) 
        

$1 to $20 -1.840 < 0.001 -0.732 0.009 - - 

$21 to $50 -1.599 < 0.001 -0.993 < 0.001 - - 

$51 to $100 -1.747 < 0.001 -1.255 < 0.001 - - 

$101 to $200 -1.868 < 0.001 -1.218 < 0.001 - - 

More than $200 -1.697 < 0.001 -1.399 < 0.001 -1.183 0.001 

  
        

C
o

n
st

ru
ct

io
n

 C
h

ar
ac

te
ri

st
ic

s Construction Delay (Base: Minor [+5 

minutes]) 
            

Average [+20 minutes] 1.924 < 0.001 1.512 < 0.001 1.791 < 0.001 

Significant [+40 minutes] 2.660 < 0.001 2.140 < 0.001 2.550 < 0.001 

  
        

Construction Duration (Base: Day) 
        

Week  0.366 0.001 - - - - 

Month 0.476 < 0.001 0.238 0.006 0.217 0.014 

              

    
        

-2 Log Likelihood 4407.79 < 0.001 4524.86 < 0.001 4001.47 < 0.001 

Pearson Chi-Squared Ratio 8825.68 < 0.001 5537.91 < 0.001 5389.36 < 0.001 

 

Regional characteristic results showed only grocery trips were statistically affected by which US 

Census region, West, the respondent was located. As for the respondent’s community, both grocery 

and leisure trips were statistically significant. Urban and suburban respondents were more likely 

to change their grocery trip plans when faced with construction compared to rural respondents 

when all other factors were held constant. Leisure trips showed an opposite trend where urban and 

suburban respondents were less likely to change trip plans compared to rural respondents. As 

grocery shopping can be deemed more mandatory than leisure trips, rural respondents, most likely 
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limited in grocery store options, would be less inclined to reschedule or cancel a trip. However, as 

leisure trips could be perceived as more of a luxury or abundant in options, rural respondents could 

be more willing to change trip plans. 

Respondent demographics presented the most opportunities to influence trip-making decisions. 

Age categories showed a general trend of older age groups were less likely to change grocery and 

leisure trip plans compared to all other age groups. This could be the result of older individuals 

being less willing to change routines than younger individuals as illustrated in several studies 

(Agahi et al, 2006; Atchley, 1989, 1993). Gender results showed respondents who identified as 

“other” were less likely to change grocery trip plans, but more likely to change personal shopping 

trip plans compared to female respondents when all other factors were held constant. This is most 

likely the result of the small sample size of “other” respondents (roughly 1 percent) which could 

cause bias in the results. Household type showed influence over all three trip types in varying 

degrees. Only two categories (“Couple without children”, and “Couple with at least one child less 

than 5 years old”) were statistically influential over more than one trip type. Overall, households 

defined as having at least one child less than 5 years old, regardless of marriage status, were the 

most likely to change trip plans compared to all other household types. The number of household 

vehicles available had the most variety in influence statistically affecting all trip types over almost 

every single category. Respondents were more likely to change grocery trip plans as the number 

of vehicles available increased. However, leisure and personal shopping trips showed a rather odd 

inverse. As the number of household vehicles increased, the likelihood to change personal 

shopping trips decreased before greatly declining at the “6 or more” category. Leisure trips showed 

a steadier response, but once a respondent reached the “6 or more” category, the same inversion 

occurred; albeit at a greatly increased affect. Reasons for this could not be immediately ascertained. 
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Oddly enough, as the number of household vehicles could be an indicator of household wealth, 

household income did not reflect similar results. As household income increased, generally, the 

more likely a respondent was to change personal shopping trip plans. This could be an indicator 

of being able to afford more options therefore changing personal shopping locations would not be 

as detrimental. 

Response results to business activity showed that as travel time increased for grocery trips, the less 

likely respondents were to change trip plans when all other factors were held constant. As grocery 

trips can be defined as the most mandatory of the three trip types defined in the survey, respondents 

would be less likely to change trip plans. Personal shopping and leisure trips showed opposite 

trends with respondents being more likely to change plans the longer the travel time. The only 

exception to this was personal shopping trips that took longer than hour to make. This could be the 

result of extreme rural isolation where options are severely limited; the same with grocery trips. 

Surprisingly, the amount of money typically spent at all trip types had a little affect in changing a 

respondent’s mind in changing their trip plans, when all other variables were held constant. While 

grocery trips were uniform in coefficient weight, personal shopping showed a more negative trend 

as the amount spent increased. 

Finally, construction characteristics showed that delay time was greatly more influential than the 

duration of the project. For all trip types, as delay time increased, respondents were inclined to 

change their trip plans when all other factors were held constant. This factor was so influential that 

average delay (+20 minutes) resulted in a base threshold of “rescheduling after construction” while 

significant delay (+40 minutes) placed a base threshold of “go somewhere else” when all other 

factors were held constant. To visualize, consider Figure 5-11: 
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Figure 5-11: Effects of Work Zone Delay on Respondent Behavior 

 

These charts show the corresponding thresholds passed for each activity and work zone delay type, 

when all other model factors are set to the base alternative. As shown, each activity exhibits 

different ranges for thresholds, with each colored zone representing the most probable respondent 

behavior. Using this information, it would be beneficial to limit work zone delay to as little as 

possible and to schedule construction at non-peak times to reduce traffic affected. 
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5.5 SUMMARY 

During work zone rehabilitation projects that result in user delay, Local Business Impact Costs can 

be described as the most directly perceived costs of the three impact categories presented. 

Although a well-documented challenge, engineers and decision makers have been provided little 

guidance on how to predict and quantify these costs on a national scale. Using a nationally tailored 

stated preference survey and the ordered probit regression model, motorist response to work zone 

delays was quantified through socioeconomic, demographic, and work zone characteristics. 

Results showed work zone delay had the highest influence on trip choice with several 

socioeconomic and demographic characteristics (household income, trip travel time, and age) 

influencing trip choice in accordance to previous studies. Trip choice thresholds also varied by 

business type with leisure trips having the highest base threshold for behavior change. 

Additionally, the thresholds between “Go Somewhere Else” and “Cancel Trip Entirely” were 

double or triple the previous threshold. This suggests respondents would only cancel trips under 

the most unideal conditions.  
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CHAPTER 6: PAVEMENT REHABILITATION PROJECT COST 

TOOL 
 

 

The three models are combined into a transferrable and easy-to-use Excel tool. This section 

outlines the tool interface, how users may implement the tool, a description of the tool’s 

methodology, and suggestions on how utilize during construction project planning.   

 

6.1 TOOL OVERVIEW 

The tool is designed to provide U.S. users the ability to calculate costs associated with a 

rehabilitation project, regardless of their past modeling experience.  As such, the tool only requires 

users to collect and enter information about the roadway, surrounding area, and work zone. The 

spreadsheet then calculates the impact costs once the user clicks the “calculate” button.  The 

calculations run in the background are outlined in the next section. 

It is important to recognize that the tool generates a simulated population of drivers through a work 

zone that reflect the distributions of regional population demographics.  Each time the tool is used, 

it generates a new simulated set of drivers, which may provide slightly different LBIC results.   

The tool has population distributions built-in to represent the four regions of the United States 

(Northeast, South, Midwest, and West), shown in Figure 6-1, that are generated from the 2010 US 

Census socioeconomic and demographic information. A detailed list of states in each region is 

provided in Table 6-1. 
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Figure 6-1: US Census Bureau Definitions of Demographic Regions  
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Table 6-1: US Census Bureau Demographic Region Categories 

Northeast Midwest South West 

Connecticut Illinois Alabama Alaska 

Maine Indiana Arkansas Arizona 

Massachusetts Iowa Delaware California 

New 

Hampshire 
Kansas 

District of 

Columbia 
Colorado 

New Jersey Michigan Florida Hawaii 

New York Minnesota Georgia Idaho 

Pennsylvania Missouri Kentucky Montana 

Rhode Island Nebraska Louisiana Nevada 

Vermont 
North 

Dakota 
Maryland 

New 

Mexico 

 Ohio Mississippi Oregon 

 
South 

Dakota 

North 

Carolina 
Utah 

 Wisconsin Oklahoma Washington 

  
South 

Carolina 
Wyoming 

  Tennessee  

  Texas  

  Virginia  

  
West 

Virginia 
 

 

Users are limited to these base data sets for simulating drivers. However, local values for some 

inputs, such as gasoline and diesel prices, are allowed.  
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The Excel Workbook consists of five tabs: “Work Zone Characteristics”, “Vehicle Simulation”, 

“Regional Demographics”, “Crash Costs”, and “Reference Tables”.  Only the “Work Zone 

Characteristics” tab requires data input to use the tool effectively; the other tabs illustrate the 

methodology and statistics used to compute the end results. This section provides an overview and 

brief explanation of each tab.  

6.1.1 Work Zone Characteristics 

This is the main tab of the tool where all inputs and outputs are shown. All inputs can be entered 

via user input or selected via drop-down box. Figure 6-2 below, shows the layout. 

 

Figure 6-2: Cost Tool Overview 

 

The user will spend most, if not all their time on this tab, so understanding it is key. The inputs 

required are divided into the three sections as illustrated in Figure 6-3. 
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Figure 6-3: Variable Inputs 

 

Users have 25 characteristics to describe a work zone across three different categories. Most inputs 

are determined via drop-down menus, including posted speed limit, so users are limited to certain 

scenarios. The variables needed to run the model are shown in Tables 6-2 through 6-4.: 

Table 6-2: Roadway Characteristics 

INPUT 
INPUT 

TYPE 
DESCRIPTION WHERE TO FIND 

AADT User-Defined Annual Average Daily Traffic 
State DOT agency 

database 

TRUCK VOLUME User-Defined Percent of AADT that is freight vehicles 
State DOT agency 

database 

ROADWAY TYPE 
Drop-Down 

List 

Roadway classification as defined by 

DOT 

State DOT agency 

database 

ROADWAY ACCESS 

TYPE 

Drop-Down 

List 

How traffic access is managed onto the 

roadway 

State DOT agency 

database 
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Table 6-3: Surrounding Area Characteristics 

INPUT 
INPUT 

TYPE 
DESCRIPTION WHERE TO FIND 

CENSUS REGION 
Drop-Down 

List 

Target state’s US Census Region 

designation 

US Census map 

provided 

URBAN OR RURAL 

DEVELOPMENT 

Drop-Down 

List 

If project is located in a rural or 

urban area 

Site visits, US Census 

designations 

PERSONAL VEHICLE VALUE 

OF TIME 

Drop-Down 

List 

The value of time of the average 

personal vehicle  
Provided 

FREIGHT VALUE OF TIME 
Drop-Down 

List 

The value of time of the average 

freight vehicle  
Provided 

AVERAGE GASOLINE PRICE 

PER GALLON 

User-

Defined 

Area average gasoline price per 

gallon 

Site visits, AAA 

website 

AVERAGE DIESEL PRICE 

PER GALLON 

User-

Defined 

Area average diesel price per 

gallon 

Site visits, AAA 

website 

EXPECTED WEATHER 

PATTERN 

Drop-Down 

List 

Average weather conditions 

expected 

Site visits, weather 

forecasts 

SURROUNDING BUSINESS 

TYPE 

Drop-Down 

List 

Defines area business as leisure, 

personal, or grocery 

Google Maps, surveys, 

site visits 
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Table 6-4: Work Zone Characteristics 

INPUT 
INPUT 

TYPE 
DESCRIPTION WHERE TO FIND 

AVERAGE HOURLY 

VEHICLE VOLUME 

User-

Defined 

Average number of vehicles 

while work zone is present 

Onsite counts, AADT 

conversion using percentages 

from Table 3 

PRE-CONSTRUCTION 

SPEED LIMIT 

Drop-Down 

List 
Normally posted speed limit Site visits 

WORK ZONE SPEED 

LIMIT  

Drop-Down 

List 

Posted speed limit during 

construction 
Site visits, traffic plans 

LENGTH OF PROJECT 
User-

Defined 

Total length of the work zone 

in miles 
Work zone plans 

AVERAGE LANE WIDTH 
Drop-Down 

List 
Lane width of the travel-way Site visits, Google Earth 

WORK ZONE 

LIGHTING? 

Drop-Down 

List 

Is an artificial light source 

present for roadway 

illumination? 

Site visits, work zone plans  

DURATION OF PROJECT 
User-

Defined 

How many full days the project 

is expected to last 
Work zone plans 

AVERAGE DELAY TIME 
User-

Defined 

The average delay time 

expected in minutes 

Site visits, estimates, traffic 

plans 

MONTH OF PROJECT 
Drop-Down 

List 

The starting month of the 

project resulting in delays 
Work zone plans 

DAY OF PROJECT 
Drop-Down 

List 

The starting day of the project 

resulting in delays 
Work zone plans 

STARTING HOUR OF 

THE PROJECT 

Drop-Down 

List 

The starting hour of the project 

resulting in delays 
Work zone plans 

CLOSING HOUR OF THE 

PROJECT 

Drop-Down 

List 

The closing hour of the project 

ending delays  
Work zone plans 

TYPE OF SURFACE 
Drop-Down 

List 

The majority surface type used 

in the project 
Work zone plans 

 

In addition, a benefit of the tool is the limited inputs required to create a report. At a minimum, the 

average hourly vehicle volume and average delay time are required to produce a predicted Road 

User Cost. Obviously, the more information provided, the more accurate the results.  Several 

assumptions, Table 6-5 are made for the tool to function properly:

 1 

 2 

 3 
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Table 6-5: List of Tool Assumptions 4 

TOPIC ASSUMPTION 

G
E

N
E

R
A

L
 

If the starting and ending time if the project is not specified, it is assumed the project duration is 24 hours.  

The value of time for personal vehicle and freight is assumed to be uniform for all road users. 

The average hourly wage and compensation for personal users are assumed to be $25.81 per hour and 

$30.46 per hour, respectively. 

B
U

S
IN

E
S

S
 

IM
P

A
C

T
 

C
O

S
T

S
 

All vehicles are attempting to utilize the specified business. 

Only one business type can be selected at a time. 

Time of day is not factored into the calculation. 

C
R

A
S

H
 

M
IT

IG
A

T
IO

N
 

C
O

S
T

S
 

Driver’s age is 35 to 44 years old. 

If the specified weather pattern is “rain” or “snow”, the road condition will be assumed to be “wet” or 

“ice/snow”, respectively. 

The default crash type is assumed to be Property Damage Only (PDO). 

Only one of the most probable crash type determined will occur during the project duration. 

5 

As the user selects their inputs, the output section will automatically populate with the expected 

impact costs, shown in Figure 6-4.  

 

Figure 6-4: Tool Outputs 
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The probable impact costs are displayed to the user by hour, day, total project duration among each 

of the sections. It should be noted the tool assumes at least one crash will occur regardless, so the 

default is assumed to be “Property Damage Only”. Additionally, the LBIC section will not begin 

to populate until the “Calculation” button is pressed by the user. This is because the tool must use 

an Excel macro code to compute this section through a Monte Carlo simulation, explained in detail 

in the next section. 

6.1.2 Vehicle Simulation Tab 

This tab displays the results of each simulated vehicle used to determine the probable business 

impact costs. Using user input and regional-specific census demographics, simulated vehicles are 

created via a Monte Carlo simulation of the Business Impacts Model. Figure 6-5 shows an example 

output of the simulation.  

 

Figure 6-5: Monte Carlo Simulation Results 

 

To the right of this section, the associated coefficient of the simulated vehicle is displayed as well 

as the resultant probable choice and costs. As a default, 1000 simulated vehicles are computed 

with their choices and associated monetary costs summed and computed into a probable 

distribution. This distribution is then scaled to the user-specified average hourly vehicle volume. 

This process is illustrated below in Figure 6-6. 
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Figure 6-6: Scaling Procedure for Vehicle Simulation1 

 

6.1.3 Regional Demographics Tab 

This tab displays the census data characteristics used for the vehicle simulation section. Two tables 

are presented, a cumulative demographics table and the raw US Census Region Demographics 

table. This is purely for the tool to easily relate random probabilities back to actual distributions. 

There is no discrepancy between the values between the two tables. 

                                                 

1 This illustration demonstrates the process for any one of the five probable choices a vehicle can make. By doing this, 

the deviation between run iterations is reduced to give the end user a more reliable predicted monetary impact. 
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6.1.4 Crash Costs Tab 

This tab illustrates the crash characteristics pulled from the user inputs. Characteristics are 

identified by a binary system with a “1” signifying the applied characteristic coefficient. Results 

of this tab are relayed back to the output section of the “Work zone Characteristics” tab. 

6.1.5 Reference Table Tab 

All tables presented in the main report are displayed here for reference values. These tables are 

divided into four sections: Value of Time Tables, Operating Costs Tables, Time Modifier Tables, 

and Emission Cost Tables. Values from these tables are used by the tool to calculate the per hour, 

per day and project duration impact costs. They also allow the user to see where the values are 

being pulled from and offer an expanded selection of some of the tables presented in this thesis.  

 

6.2 HOW TO USE THE TOOL 

To operate this tool, the user needs to follow these three steps: 

1. Reset or Clear the Form by pressing the “Clear Form” button located on the far right of the 

“Work Zone Characteristics” tab. 

2. Enter or select Roadway, Work Zone, and Surrounding Area Characteristics via the input 

boxes. 

3. Calculate the Total Costs by pressing the “Calculate” button located on the far right of the 

“Work Zone Characteristics” tab. 

It should be noted that the “Clear Form” button DOES NOT reset the vehicle simulation used in 

the Local Business Impact Costs section. The vehicle simulation automatically resets each time 

the “Calculate” button is pressed by the user. 
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To demonstrate, let the following conditions exist for a work zone as shown in Figure 6-7: 

 

Figure 6-7: Work Zone Example 

 

Once the inputs are set as shown, the “Calculate” button is pressed to complete the results section. 

As the program is running, the user will see the impact costs begin to rise and summate with the 

other impact costs that were automatically calculated. Figure 6-8 below shows the final impact 

cost results. 
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Figure 6-8: Leisure Example Results 

 

As you see, this work zone scenario had a total monetary impact of almost $4.5 million during its 

eight-day duration. It should be noted that the business impact costs are only for leisure activities. 

If we were to change the Surrounding Business Type to “Grocery” the following results may occur 

(Figure 6-9). 
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Figure 6-9: Grocery Example Results 

 

Although some road users would still shop, the clear majority would still go somewhere else. 

Additionally, as people tend to spend more money on groceries compared to leisure trips, the 

overall impact costs has risen by nearly $1.8 million. Therefore, an alternative work zone design 

should be investigated to minimize these costs.  

 

6.3 HOW TO APPLY THE TOOL 

The tool can be applied in three significant ways: 

6.3.1 Project Evaluation 

First, the tool can characterize the road user, crash mitigation, and local business impacts of an 

existing project or projects that are being let for bid.  For example, road owners can use the tool to 

conduct benefit-cost analyses based on their proposed plan, scheduling, material choices, work 
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zone layout, etc.  This information can put construction costs in perspective; for example, if a 

project is sped up, it reduces overall road user, crash, and local business impacts. 

6.3.2 Project Planning 

Second, the tool can be used in the project planning stage to evaluate possible innovative 

scheduling opportunities.  The tool can quantify the cost generated per day or per hour, and, as 

such, can inform decision makers of the economic benefits of reducing construction times.  Each 

complex scenario, whether it includes time of day, duration of the project, traffic volumes, seasons, 

etc., can be compared with a dollar-per project amount.  Likely project impact costs can be 

calculated for many scenarios before work is begun to determine the most efficient and cost-

effective approach.  This should be done early in the planning process, perhaps as part of the LCCA 

and prior to any design work, to effectively influence the overall budget and schedule. Road 

owners can further use the tool to create incentives/disincentives under contract using the per day 

or per vehicle impact costs to encourage contractors to reduce overall impacts. 

6.3.3 Community Outreach 

Finally, the tool can be used to illustrate to local business owners the potential loss—or lack of 

loss—in revenue they could receive during construction. As found through previous studies 

(Buddemeyer et al, 2008; Buffington & Wildenthal, 1997; Wildenthal & Buffington, 1996), actual 

revenue losses are not nearly as extreme as owner-perceived revenue losses. Explaining that results 

are assuming worst-case scenario situations could help ease business owners’ nerves and lower 

potential conflict points. Furthermore, increasing communication between the road owner and 

community regarding project updates and timelines has been shown to increase positive public 

perception and relations (Buddemeyer et al, 2008).  
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CHAPTER 7: CONCLUSIONS 
 

 

This study presents a comprehensive set of data-driven, nationally transferrable metrics 

that quantify the costs associated with asphalt and concrete pavement rehabilitation in terms of (a) 

road user costs, (b) crash mitigation costs, and (c) local business impact costs. These metrics are 

combined into a convenient Excel tool for users to input project variables and receive associated 

direct and indirect cost projections. 

Specifically, costs are characterized in three ways: Road User Costs (RUCs) are defined as the 

total monetary and temporal costs experienced by both personal and freight vehicle road users 

when faced with delays caused by lane or total road closures due to rehabilitation work.  Crash 

Mitigation Costs (CMCs) are defined as the cost associated with the most likely crash type to occur 

at a work zone.  Local Business Impact Costs (LBICs) are defined as the economic impacts on 

local businesses from nearby pavement rehabilitation work zones caused by changes in customer 

spending and visitation behaviors. 

Nationally representative data was collected for each Road User Cost category, including from the 

Highway Safety Information System (HSIS) and a unique national travel behavior survey 

conducted specifically for this study, and models to predict these costs for given roadway 

environments were estimated, using ordered probit regression models.   

Overall, the results from the study indicate that impacts on road users, crashes and local businesses 

are governed not just by the project construction characteristics and the roadways on which the 
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projects occur but the interactions with the drivers and vehicles on those roadways.  As a result, 

when estimating these costs, it is imperative to simulate the traffic that travels through the resulting 

work zones, and the tool developed in this project does this. 

Additionally, the tool incorporates the difference in costs generated for personal and freight 

vehicles.  Travel for leisure versus freight deliveries and vehicle class greatly affect the impact 

cost.  

Finally, applications of the Excel workbook highlight that small increases in travel delay have 

significant impacts on local businesses. 
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CHAPTER 8: SUGGESTIONS FOR FUTURE WORK 
 

 

Over the course of this thesis, three future studies were identified and determined outside 

the scope of this work: determining the average time and cost per mile of pavement rehabilitation 

projects, determining the critical delay time signifying change in user behavior, and updating 

traffic flow factors. What follows are brief proposals for each study. 

Early on, it became apparent that reporting realistic work zone durations and costs per mile would 

be beneficial to the overall accuracy of the final model. However, very little US-based research 

was found that quantified the temporal and monetary costs differences between asphalt cement 

(AC) and Portland cement concrete (PCC) rehabilitation roadway projects. What could be found 

regarding costs and benefits for each type was highly subjective. This was mainly due to the studies 

being conducted by lobbyist/activist groups for AC and PCC who would present information that 

sometimes contradicted each other. Additionally, while there are historical cost estimates available 

through state DOTs/road owners, no known national set metrics exist to our knowledge. Therefore, 

it is proposed that a study be done to determine the average expected dollar cost as well as expected 

duration of different pavement rehabilitation projects on a per mile basis. 

As stated in section 5.2, there is an identifiable critical time between delay times of 5 and 20 

minutes resulting in a change in respondent behavior. As the delay data used was categorical 

instead of continuous, the exact critical delay time could not be identified. Determining this point 

could have wide-reaching applications and would improve the Excel tool presented in chapter 6. 

Therefore, it is proposed that a study using a similar survey design, as presented in chapter 5, be 

conducted with random delay increases distributed to respondents. 

In subsection 3.1.1, of this thesis, AADT conversion factors and the diversion equation were 

presented to the reader. It was noted that the AADT conversion factors were from a Georgia DOT 

study conducted in 1999 which, while still serviceable, could be outdated or inaccurate given the 

localization of the study area. As noted, traffic diversion factors are heavily location-dependent, 
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preventing universal values from existing. Therefore, it is proposed a study be conducted to 

validate the AADT conversion factors as well as create a set of AADT conversion factors 

categorized by state (or other division), roadway type, and surrounding location. If possible, 

determining a set of localized traffic diversion factors from previous work zone studies would also 

be beneficial in assisting planners during the traffic control phase of projects.
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