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Abstract

In this thesis, the decomposition problem of graphs with two associate classes into paths

of length 3 is completely settled. The intersection problem for latin rectangles is completely

solved as well. In addition, an Euler circuit of K(n, p) with diameter at least (n− 3)p/2 + 1

is constructed and the intersection problem of latin squares of order n and n+1 is discussed.
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Chapter 1

Introduction

1.1 Basics

A graph G consists of a set V (G) of vertices together with a set E(G) of edges, and a

mapping associating to each edge e an unordered pair x, y of vertices called the endpoints

of e. There may be multiple edges associated to the same pair of vertices. Two vertices are

called adjacent if they are distinct and joined by an edge. A path of length n is a sequence

of n + 1 distinct vertices (v1, v2, ..., vn+1) such that vi and vi+1 are adjacent for 1 ≤ i ≤ n.

A decomposition of a graph G is a partition of its edge set E(G). An H-decomposition

of G is a decomposition D of G in which each element of D induces a copy of graph H.

For nonnegative integers n, p, λ1 and λ2, the equipartite graph with two associate classes

G(n, p, λ1, λ2) is defined to be the graph with np vertices, partitioned into p parts V1, ..., Vp,

each of size n, in which two vertices are joined by λ1 edges if they are in the same part, and

by λ2 edges if they are in different parts.

A walk is a sequence (v0, e1, v1, e1, ..., vk) of vertices vi and edges ei in a graph such that

for 1 ≤ i ≤ k, ei has endpoints vi−1 and vi. A walk is called closed if it starts and ends at

the same vertex. A trail is a walk without repeated edges. An Euler circuit of graph G is a

closed trail which includes every edge of G exactly once. The distance of two appearances

of the same vertex v in a walk W is the number of edges between the two appearances of

v along W . The distance of vertex v in a walk W , denoted by dW (v), is the least distance

among all pairs of appearances of v along W . The diameter d(W ) of a walk W is defined by

d(W ) = min{dW (v) | v ∈ V (W )} (i.e. the minimum distance of all vertices in W ).

For positive integers r, n with r ≤ n, a latin rectangle is an r × n array of n symbols

in which each symbol occurs exactly once in each row and at most once in each column,
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and each cell contains exactly one symbol. A latin square of order n is an n × n latin

rectangle. If L is a latin rectangle then let Li,j denote the symbol in cell (i, j) of L. For

n ≤ m, let L and S be latin squares of order n and m, respectively. The intersection

number of L and S is defined to be I(L, S) = |{(i, j) | 1 ≤ i, j ≤ n, Li,j = Si,j}|. Let

R and Q be r × n latin rectangles. The intersection number of R and Q is defined to be

I(R,Q) = |{(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ n,Ri,j = Qi,j}|. The problem of determining the set

of all the possible intersection numbers is referred as the intersection problem.

1.2 Outline

This thesis contains four topics that are described in their own chapters. The first two

topics are highly related to each other, as are the last two as well.

In Chapter 2, a complete solution to the decomposition problem for equipartite graphs

with two associate classes into paths of length 3 is presented. Necessary conditions for

the existence of such decomposition is determined, and it is shown that these necessary

conditions are also sufficient by constructing a decomposition of equipartite graphs with two

associate classes into paths of length 3 whenever the necessary conditions are satisfied.

In Chapter 3, for odd n and p we construct an Euler circuit E of K(n, p) with the

property that the diameter of E ≥ (n − 3)p/2 + 1, where K(n, p) = G(n, p, 0, 1) is the

complete multipartite graph of p parts with equal part sizes n. Then E is used to obtain

some results on the decomposition problem for equipartite graphs with two associate classes

into paths of various lengths.

In Chapter 4, two latin squares of order n and n + 1 are constructed, which partially

answers the intersection problem for latin squares of order n and n+ 1.

In Chapter 5, the intersection problem for latin rectangles of same order is completely

settled by finding necessary and sufficient condition for the existence of two r × n latin

rectangles with specified intersection numbers for all integers r and n with 1 ≤ r ≤ n.
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Chapter 2

Decomposing Graphs With Two Associate Classes Into Paths Of Length 3

2.1 Basics

It is common to refer the path with k vertices as Pk, which has k−1 edges. We however

focus on the number of edges in a path, therefore we will call the path with k edges Lk.

Thus Pk+1 = Lk.

Let G = (V,E) be a graph, and A,B be subsets of V . We use G[A]to denote the

subgraph of G induced by A. Furthermore, we use G[A,B] to denote the subgraph of G

whose vertex set is A ∪ B and whose edge set consists of all of the edges in E that have

exactly one endpoint in A and one endpoint in B.

A decomposition of a graph G is a partition of its edge set E(G). An H-decomposition

of G is a decomposition D of G in which each element of D induces a copy of H. G is said

to be H-decomposable if there exists an H-decomposition of G. It causes no confusion to

denote an H-decomposition D of G by the subgraph induced by the elements of D instead

of the actual partition of E(G).

If G is a graph then let λG denote the graph with vertex set V (G) in which for each

{u, v} ∈ V (G) , u and v are joined by λx edges in λG if and only if they are joined by x

edges in G.

2.2 History

Decomposing general graphs into paths has been considered over the last 50 years.

L1-decompositions are trivial. For L2, Kotzig [39] showed a connected simple graph is L2-

decomposable if and only if it has even number of edges. According to [9], the following
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elegent short proof is due to Dr. Dean G. Hoffman: assign an arbitrary orientation to the

graph. Since there are even number of edges, there must be even number of vertices with

odd out-degree. Pick two of those vertices. Since the graph is connected, there must be

a path in the underlying graph between these two vertices. Reverse the orientation on the

edges of the path. The out-degree remains the same for any vertices on the path except for

the two end vertices, and they have even out-degree now. Repeat until there is no vertex

with odd out-degree. For every vertex, pair its outgoing edges and use the vertex as center

to form paths of length 2.

Tarsi [58] solved the path decomposition problem for complete multigraphs.

Theorem 2.1 (Tarsi, 1981 [58]). λKn can be decomposed into Lk’s if and only if λn(n−1) ≡

0 (mod 2k) and n ≥ k + 1.

Parker [51] completely solved the case when it comes to simple complete bipartite graphs.

Theorem 2.2 (Parker, 1998 [51]). Let k,m, n be positive integers. Km,n has an Lk decom-

position if and only k divides mn and the parity conditions in Table 2.1 are satisfied.

Table 2.1: Parity Conditions for Km,n to have an Lk-decomposition
Case k m n Parity Conditions
1 even even even k ≤ 2m, k ≤ 2n, not both equalities
2 even even odd k ≤ 2m− 2, k ≤ 2n
3 even odd even k ≤ 2m, k ≤ 2n− 2
4 even odd odd not possible
5 odd even even k ≤ 2m− 1, k ≤ 2n− 1
6 odd even odd k ≤ 2m− 1, k ≤ n
7 odd odd even k ≤ m, k ≤ 2n− 1
8 odd odd odd k ≤ m, k ≤ n

Truszczyński [60] found Lk-decompositions of λKm,n in many cases. In particular when

it comes to λKn,n, Shyu [57] extended the result by settling the existence in all but one case,

namely when n = 15, λ = 3 and k = 27. (See Theorem 2.3)

Theorem 2.3 (Shyu, 2007 [57]). Suppose (n, λ, k) 6= (15, 3, 27). λKn,n has a decomposition

into Lk’s if and only
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(1) k | λn2.

(2) k ≤ n if λ = 1 and n is odd

(3) k + 1 ≤ 2n if λ ≥ 2 or n is even

Billington, Cavenagh and Smith [8, 9] solved the problem of decomposing the simple

complete equipartite graphs with 3, 4 and 5 parts into copies of Lk for all k ≥ 1. Lee, Lee

and Lin [42] solved the existence problem for Lk-decompositions of λKn,n,n .

As is the case in this paper, several results have been found that restricted attention

to L3-decompositions. Kumar [40] and Billington and Hoffman [10] independently settled

existence problem of L3-decompositions when G is a simple complete multipartite graph.

Billington and Hoffman [10] also solved the problem for L4 in the same paper.

Theorem 2.4 (Kumar, 2003 [40]). Suppose r ≥ 3, ni > 0 for all 1 ≤ i ≤ r. Then

the complete multipartite graph G = Kn1,n2,...,nr is L3-decomposable if and only if 3 divides

|E(G)| and G 6= K1,1,1.

Heinrich, Liu and Yu [34] proved a simple graph G is L3-decomposable if G is 3k-regular

and G has no cut-edge when 3k is odd. They also showed that a simple connected 4-regular

graph G is L3-decomposable if and only if 3 divides |E(G)|. Diwan, Dion, Mendell, Plantholt

and Tipnis [17] showed that each connected 4-regular multigraph G with maximum edge-

multiplicity at most 2 is L3-decomposable if and only if no 3 vertices of G induce a subgraph

with more than 4 edges and 3 divides |E(G)|.

A special kind of path decomposition is the balanced path decomposition where balanced

means each vertex appears in same number of elements of the decomposition as each other

vertex. Balanced path decomposition for λKn was settled by Huang [36] and Hung and

Mendelsohn [37], independently. Lee and Lin [43] found necessary and sufficient conditions

for λKn,n to have a balanced Lk-decomposition for all k ≥ 1.

A special kind of balanced path decomposition is the path factorization, or known as

resolvable path designs, meaning that the paths in the decomposition can be partitioned
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into vertex-disjoint spanning subgraphs. Horton [35] settled the L2-factorization problem

for λKn. Bermond, Heinrich and Yu [7] extended the result to all Lk, k ≥ 3. Yu [62] settled

the Lk-factorization problem for λKn,n and λKn,n,n. Yu also settled Lk-factorization problem

for λKn,...,n when k−1 is prime. Muthusamy and Paulraja [47] extended Yu’s result to when

k is prime.

Barát and Thomassen conjectured in [4] that for any fixed tree T , any simple graph G

with sufficiently large edge-connectivity for which |E(T )| divides |E(G)| is T -decomposable.

Several attempts to settle this conjecture focused on the case where T is a path [59, 12, 38].

The full conjecture was finally proved in [5].

For more on path decomposition, see survey by Heinrich [33].

In this thesis we consider L3-decompositions of another family of graphs that arises

in the literature [28, 30, 29, 2, 13, 48, 41, 54, 55]. Motivated by statistical applications

[52, 11, 15], these graphs are known as complete graphs with two associate classes. While

in general these graphs need not have the same number of vertices in each part, the focus of

this thesis is the equipartite family, defined as follows.

Definition 2.1. Let n, p, λ1, λ2 be nonnegative integers. Define G(n, p, λ1, λ2) to be the graph

with np vertices, partitioned into p parts V1, ..., Vp, each of size n, in which two vertices are

joined by λ1 edges if they are in the same part, and by λ2 edges if they are in different parts.

We say an edge is pure if both of its endpoints belong to the same part, and mixed otherwise.

Bose and Shimamoto [11] classified partially balanced designs with two association

classes into five types: group divisible, simple, triangular, latin square type and cyclic.

In graph thoery terms, the group divisible designs can be described as the decomposing of

graphs of two associate classes into complete graphs. For a wealth of information of group

divisible designs, see Raghavarao [52, p. 121].

H-decompositions of G = G(n, p, λ1, λ2) have been studied for a few choices of H. Fu,

Rodger and Sarvate [28, 30] settled the decomposition problem of G into 3-cycles. Fu and

Rodger [29] also decomposed G into 4-cycles, finding necessary and sufficient conditions for
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their existence. Bahmanian and Rodger [2] decomposed G into Hamilton cycles whenever

it is possible. Ndungo and Sarvate [48] showed G(n, 2, 3, 4) can be decomposed into K4’s if

and only if 3 divides n except possibly when n = 18; they also showed the obvious necessary

conditions for a K4-decomposition is also sufficient for: G(7m, 2, 5m, 7m− 1) for all m ≥ 2;

G(5m + 1, 2, 5m + 1, 7m) whenever m is even; and G(5m + 1, 2, 2(5m + 1), 14m) for all m.

A generalization of G allows the parts to have different sizes: in such a case where this

generalized graph has exactly 2 parts, if either one of the two parts has size 2 or λ1 ≥ λ2,

Chaffee and Rodger [13] settled the K3-decomposition problem.

Note that when p = 1 or λ2 = 0, each component of the graph G(n, p, λ1, λ2) is λ1Kn.

On the other hand, when n = 1 the graph is λ2Kp. In both cases Tarsi’s theorem suffices

to solve the path decomposition problem. Therefore throughout the rest of this chapter, we

will assume that n ≥ 2, p ≥ 2 and λ2 ≥ 1.

2.3 Lemmas

This lemma will be needed:

Lemma 2.1. Suppose n ≥ 5 and n ≡ 2 (mod 3). There exists an L3-decomposition of Kn−e

for any e ∈ E(Kn).

Proof. Note if n ≡ 0 or 1 (mod 3), n ≥ 4, then Kn can be completely decomposed into L3’s

by Theorem 2.1.

It is not hard to decompose K5 into L3’s and a single edge. Suppose n > 5 and

n ≡ 2 (mod 3). Let {x, y} ⊂ V (Kn) and let V ′ = V (Kn) \ {x, y}. Then |V ′| = 3k for

some integer k > 1. Using Theorem 2.1, let (V ′, B1) be an L3-decomposition of Kn−2. By

Theorem 2.2, let (V,B2) be an L3-decomposition of K2,3k with bipartition {{x, y}, V ′} of the

vertex set. Then (V,B1 ∪B2) is an L3-decomposition of Kn − e with e = {x, y}.
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With Lemma 2.1 in mind, let (Vi, Di({x, y})) denote an L3-decomposition of G = Kn−e

with vertex set Vi and e being the edge {x, y} ⊂ Vi. Refer back to Theorem 2.2, if n ≡

0 (mod 3), then Kn,n can be completely decomposed into L3’s.

Lemma 2.2. Suppose n ≥ 2 and n ≡ 1 or 2 (mod 3). There exists an L3-decomposition of

Kn,n − e for any e ∈ E(Kn,n).

Proof. When n = 2, it is easy to see K2,2 composes of a L3 and a single edge. It is also

not hard to decompose K4,4 into L3’s and a single edge. Thus now suppose n ≥ 5. Let Vi,

i = 1, 2 be the vertex set of part i.

If n ≡ 2 (mod 3), pick two vertices xi, yi from Vi for i = 1, 2. Then |V1 \ {x1, y1}| =

|V2\{x2, y2}| = 3k for some positive integer k, and the graph induced by (V1\{x1, y1})∪(V2\

{x2, y2}) is a K3k,3k which can be decomposed into L3’s by Theorem 2.2. The graph induced

by (V1 \ {x1, y1})∪ {x2, y2} is a K2,3k, so is the one induced by (V2 \ {x2, y2})∪ {x1, y1}, and

K2,3k is decomposable by Theorem 2.2. The only edges left now are the edges between the

vertices {x1, y1, x2, y2}, which is a K2,2 and therefore a L3 with a edge left.

If n ≡ 1 (mod 3), pick four vertices wi, xi, yi, zi from each Vi. Then |Vi\{wi, xi, yi, zi}| =

3k for some positive integer k for all i, and the graph induced by ⋃
i=1,2(Vi \ {wi, xi, yi, zi})

is a K3k,3k. (V1 \ {w1, x1, y1, z1}) ∪ {w2, x2, y2, z2} is a K4,3k, so is (V2 \ {w2, x2, y2, z2}) ∪

{w1, x1, y1, z1}. Finally, ⋃
i=1,2{wi, xi, yi, zi} induces a K4,4. All graph above can be decom-

posed into L3’s except K4,4 has leave being a single edge. Therefore the lemma is proved.

Let (Vi, Vj, Di,j({xi, xj})) denote an L3-decomposition of G = Kn,n− e with bipartition

{Vi, Vj} of the vertex set and with e = {xi, xj}, xi ∈ Vi and xj ∈ Vj.

Proving the main result Theorem 2.6 when n ∈ {2, 3} is most difficult because then

no 3-path can be completely within one part. In these cases the proof technique makes

use of the method of differences. Given graph G = G(2, p, λ1, λ2), consider the multiset

M = λ2{i | 1 ≤ i ≤ p−1}∪λ1{p}, which is the multiset of the differences; a difference is called
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pure if it is equal to p, and mixed otherwise. This set of differences is a well-known useful way

to partition the edge set of G: {{i, i+ d | i ∈ Z2p} | d is a mixed difference in M} partitions

the mixed edges of G and {{i, i + d | i ∈ Zp} | d is a pure difference in M} partitions the

pure edges of G. It will be useful to let E(d) = {{i, i + d} | i ∈ Z2p if d is mixed}, and

{{i, i + d} | i ∈ Zp if d is pure}. So to find the L3-decomposition of G, we first form a

partition Π of M into multisets (possibly Π contains repetitions) such that for each S ∈ Π,

∪d∈SE(d) induces a graph G(S), which has a L3-decomposition.

This approach is also used when n = 3, and M = λ2{i | 1 ≤ i ≤ b3p
2 c, i 6= p} ∪ λ1{p}

where again p is the pure difference and all other differences are mixed. The partition of

E(G(3, p, λ1, λ2)) is {{i, i+ d | i ∈ Z3p} | d is a mixed difference in M,d 6= 3p
2 } ∪ {{i, i+ 3p

2 |

i ∈ Z 3p
2
} | if 3p

2 ∈M} ∪ {{i, i+ d | i ∈ Z3p} | d is a pure difference in M}.

For any multiset D, each element being in {1, 2, ..., bv2c}, define Gv(D) to be the graph

with vertex set Zv, and with edges in the multiset ⋃
d∈D{{i, i + d} | d ∈ D, i ∈ Zv if d <

v
2 , i ∈ Z v

2
if d = v

2}. Notice that if d occurs x times in the multiset D then the edge {i, i+d}

appears x times in Gv(D).

Bermond, Favaron and Maheo [6] proved a much more general result than the following

that shows when the edges of two differences can be used to form two edge-disjoint hamilton

cycles.

Theorem 2.5 ([6]). Let s, t, n be positive integers with s ≤ t < n
2 . If the greatest common

divisor among s, t, n is 1, then the graph Gn({s, t}) has a hamilton cycle decomposition.

The next two lemmas provide graphs that have L3-decompositions in the cases where n

is 2 or 3 respectively.

Lemma 2.3. Let p ≥ 2 be an integer and let d, d′, d′′ be distinct elements in {1, 2, . . . , p−1}.

Then G2p(D) has L3-decomposition, (Z2p, P ), if D is one of the following sets:

1. k{1} if 3 divides kp

2. {p, d}
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3. {1, 2} if 3 divides p

4. {d, d′, d′′}

5. {1, p, p} if 3 divides p

6. {2, 3, 3} if p = 3

7. {p3 , p, p, p} if 3 divides p

8. {d, p, p, p, p}

Proof. We consider each case in turn. It is not hard to check that each graph defined is a

path, and that the edges are covered by the paths as required.

1. G2p(k{1}) is isomorphic to kC2p, which is clearly L3-decomposable when 3 divides

kp.

2. Let P = {(0 + i, d+ i, d+ p+ i, p+ i) | i ∈ Zp}.

3. Since 3 divides p, Theorem 2.5 implies that G2p(D) has a decomposition into two

C2p’s, each being L3-decomposable.

4. Let P = {(0 + i, d′ + i, d′ + d+ i, d′ + d− d′′ + i) | i ∈ Z2p}, where d > d′ > d′′.

5. Let P = {(i, i+ p, i+ p+ 1, i+ 1) | i ∈ Zp} ∪ {(3i, 3i+ 1, 3i+ 2, 3i+ 3) | i ∈ Zp/3.

6. Let P = {(0 + i, 2 + i, 5 + i, 1 + i), (1 + i, 4 + i, 0 + i, 3 + i) | i ∈ {0, 3}}.

7. Each component of G2p(D) is isomorphic to G6({1, 3, 3, 3}), which has the following

L3-decomposition: {(0 + 2i, 3 + 2i, 4 + i, 1 + 2i) | i ∈ Z3} ∪ {(0, 1, 4, 5), (5, 2, 3, 0)}.

8. Let P = {(0 + i, p+ i, p+ d+ i, p+ d+ p+ i) | i ∈ Z2p}.

Lemma 2.4. Let p ≥ 2 be an integer and let {d, d′, d′′} ⊂ {1, 2, ..., b3p−1
2 c} \ {p}. Then

G3p(D) has L3-decomposition, (Z3p, P ), if D is one of the following sets:

1. {1}

2. {3p
2 , p} if 2 divides p
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3. {3p
2 , d} if 2 divides p

4. {d, p, p}

5. {d, d′, d′′}

6. {g1, g2} with gcd({g1, g2, 3p}) = 1, g1, g2 ∈ {1, ..., b3p
2 c} \ {

3p
2 }

Proof. Following the approach in Lemma 2.3, we consider each case in turn.

1. G3p({1}) is isomorphic to C3p, which is clearly L3-decomposable as p ≥ 2.

2. Let P = {(0 + i, p+ i, p+ 3p
2 + i, 3p

2 + i) | i ∈ Z 3p
2
}.

3. Let P = {(0 + i, d+ i, d+ 3p
2 + i, 3p

2 + i) | i ∈ Z 3p
2
}.

4. Let P = {(0 + i, d+ i, d+ p+ i, d+ 2p+ i) | i ∈ Z3p}.

5. If d = d′ = d′′ then, since d 6= p, let P = {(0 + i, d + i, 2d + i, 3d + i) | i ∈ Z3p}. If

d ≥ d′ ≥ d′′ with d > d′′ then let P = {(0 + i, d′ + i, d′ + d+ i, d+ d′ − d′′ + i) | i ∈ Z3p}.

6. Since p ≥ 2, Theorem 2.5 implies that G3p(D) has a decomposition into two C3p’s,

each being L3-decomposable.

Let S(p, λ, l) be the graph formed from λKp by adding p vertex disjoint paths of length

l, each path intersecting V (λKp) in one of the path’s end vertices.

Lemma 2.5. Let p ≥ 2 be an integer. There exists a L3-decomposition of the following

graphs:

1. S(p, 1, 1) when p ≡ 0 or 2 (mod 3) and p 6= 3

2. S(p, 1, 2) when p ≡ 0 (mod 3)

Proof. First we prove the S(p, 1, 1) case. Let S = S(p, 1, 1) have vertex set V (S) = Zp×Z2 =

{(i, j) | i ∈ Zp, j ∈ Z2}, where S[{(i, 0) | i ∈ Zp}] = Kp and (i, 1) has degree 1 being adjacent

to (i, 0) for each i ∈ Zp.

Suppose p ≡ 0 (mod 3). The proof is by induction on p. Suppose p = 6. Then {((i, 1), (i, 0), (i+

11



3, 0), (i+3, 1) | i ∈ Z3} together with an L3-decomposition of G6[{1, 2}] (see Lemma 2.3 case

(3)) provides the decomposition. Assume p = 9. Similarly, {((i, 1), (i, 0), (i+3, 0), (i−1, 0)) |

i ∈ Z9} and an L3-decomposition of G9[{1, 2}] by Lemma 2.4 case (7) provides the decom-

position.

Assume S(p, 1, 1) exists for p ≤ k. When p = k + 6, let p = 3q + 6 with 3q ≥ 6. Let

S = S(3q + 6, 1, 1) have vertex set V (S) = A ∪ B where A = {(i, j) | 1 ≤ i ≤ 3q, j ∈ Z2}

and B = {(i, j) | 3q+ 1 ≤ i ≤ 3q+ 6, j ∈ Z2}. Then S[A] = S(3q, 1, 1) and S[B] = S(6, 1, 1)

both are L3-decomposable by induction hypothesis, furthermore S[A,B] = K3q,6 is also

L3-decomposable by Theorem 2.2. Therefore S is L3-decomposable.

Suppose p ≡ 2 (mod 3). When p = 2, S(2, 1, 1) is isomorphic to a L3. When p = 5,

{((1, 1), (1, 0), (3, 0), (3, 1)), ((2, 1), (2, 0), (4, 0), (4, 1)), ((5, 1), (5, 0), (3, 0), (4, 0)), ((1, 0), (4, 0), (5, 0), (2, 0)),

((5, 0), (1, 0), (2, 0), (3, 0))} is a L3-decomposition for S. When p ≥ 8, express p = 3q + 2 for

some q ≥ 2 since p ≡ 2 (mod 3) and p ≥ 8. Let S = S(3q + 2, 1, 1) with vertex set V (S) =

A ∪B where A = {(i, j) | 1 ≤ i ≤ 3q, j ∈ Z2} and B = {(i, j) | 3q + 1 ≤ i ≤ 3q + 2, j ∈ Z2}.

Then S[A] = S(3q, 1, 1) and S[B] = S(2, 1, 1) both are L3-decomposable by the previous

cases, furthermore S[A,B] = K3q,2 is also L3-decomposable by Theorem 2.2. Therefore S is

L3-decomposable.

Second we prove the S(p, 1, 2) case. Let S = S(p, 1, 2) has vertex set V (S) = Zp×Z3 =

{(i, j) | i ∈ Zp, j ∈ Z3}, where S[{(i, 0) | i ∈ Zp}] = Kp and ((i, 0), (i, 1), (i, 2)) is a path of

length 3 for all i ∈ Zp. Suppose p ≡ 0 (mod 3). We will prove by induction on p. Suppose

p = 3. Clearly S(3, 1, 2) is L3-decomposiable, namely {((i, 0), (i+ 1, 0), (i+ 1, 1), (i+ 1, 2)) |

i ∈ Zp}. Assume S(p, 1, 2) exists for p ≤ k. When p = k + 3, express p = 3q + 3 with q ≥ 1.

Let S = S(3q + 3, 1, 2) with vertex set V (S) = A ∪ B where A = {(i, j) | i ∈ Z3q, j ∈ Z3}

and B = {(i, j) | 3q ≤ i ≤ 3q + 2, j ∈ Z3}. Then S[A] = S(3q, 1, 2) and S[B] = S(3, 1, 2)

both are L3-decomposable by induction hypothesis, furthermore S[A,B] = K3q,3 is also

L3-decomposable by Theorem 2.2. Therefore S is L3-decomposable.
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2.4 Main Result

We now prove the main theorem.

Theorem 2.6. Suppose n ≥ 2, p ≥ 2 and λ2 ≥ 1. G(n, p, λ1, λ2) has a decomposition into

L3’s if and only if the following conditions hold:

(1) 3 divides |E(G)| = 1
2λ1pn(n− 1) + 1

2λ2p(p− 1)n2.

(2) If n = 2, then λ1 ≤ 4(p− 1)λ2.

(3) If n = 3, then λ1 ≤ 3(p− 1)λ2.

Proof. We first prove the necessity of conditions (1-3). The necessity of (1) follows from the

total number of edges in G = G(n, p, λ1, λ2) must be a multiple of 3, as the edge set can

be partitioned into L3’s. Now suppose n = 2. First note that in any L3-decomposition of

G(2, p, λ1, λ2), each copy of L3 has at most 2 pure edges and therefore must have at least

one mixed edge. Thus the number of pure edges is at most twice the number of mixed edges.

Since there are pλ1 pure edges and 4p(p−1)
2 λ2 mixed edges, it follows that

1
2pλ1 ≤ 4p(p− 1)

2 λ2

is a necessary condition for the existence of a L3-decomposition of G. Finally suppose n = 3.

Similarly as in n = 2 case, each copy of L3 has at most 2 pure edges in any L3-decomposition

of G(3, p, λ1, λ2). There are 3pλ1 pure edges and 9p(p−1)
2 λ2 mixed edges and the inequality

follows. So (2) and (3) are necessary.

We now turn to the sufficiency, considering five cases in turn. The first two cases use

Lemmas 2.3 and 2.4, finding a suitable partition of M . The last three cases produce an

L3-decomposition (V (G), B) of G by using Lemmas 2.1 and 2.2. The cases are:

1. n = 2.
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2. n = 3.

3. n ≥ 4, n ≡ 1 (mod 3).

4. n ≥ 5, n ≡ 2 (mod 3).

5. n ≥ 6, n ≡ 0 (mod 3).

Case 1: n = 2. First suppose p = 2, so the set of difference is M = λ2{1} ∪ λ1{2}.

Express the number of pure differences as λ1 = 4t+ r for some integers t, r with 0 ≤ r ≤ 3,

then let λ2− t = s for some integer s; so by necessary condition (2), s ≥ 0. Furthermore, by

(2) it follows that if r ≥ 1 then s ≥ 1. Moreover, since |E(G)| = 2λ1 + 4λ2 = 12t+ 2r + 4s,

which by (1) is divisible by 3: if r = 2 then s ≥ 2 and if r = 3 then s ≥ 3. In particular,

s ≥ r.

We begin by forming a partition Π of M = (s + t){1} ∪ (4t + r){2}. Let Π contain t

copies of {1, 2, 2, 2, 2}, s− r copies {1} and r copies of {1, 2}; it was just shown that s ≥ r,

so this is possible. By condition (1), 3 divides |E(G)| = 2λ1 + 4λ2 = 12t + 2r + 4s, thus 3

divides (2r + 4s). Therefore, writing s− r = (2r + 4s)− (3r + 3s), it follows that the right

hand side of the equation is divisible by 3, so 3 divides s− r. Then, by Lemma 2.3 case (8),

(1) and (2) respectively, Π induces an L3-decomposition of G.

Next suppose p = 3, so M = λ2{1, 2} ∪ λ1{3}. Express the number of pure differences

as λ1 = 4t + r for some integers t, r with 0 ≤ r ≤ 3. Then let 2λ2 − t = 2u + s for some

integers u, s where u ≥ 0, if r = 0 then s ∈ {0, 1} and if r ≥ 1 then s ∈ {1, 2}. Such

u, s always exist by necessary condition (2). Let n1 = 0 if (r, s) ∈ {(0, 0), (1, 1), (2, 1)}

and 1 otherwise. Let n2 = 0 if (r, s) ∈ {(0, 0), (0, 1), (3, 1)} and 1 otherwise (It will be

useful later to note that in all 8 cases, n1 + n2 = s.) We now form the partition Π of

M = 1
2(t+ 2u+ s){1, 2}∪ (4t+ r){3}. Let Π contain: min{t, λ2−n2} copies of {2, 3, 3, 3, 3};

max{t − (λ2 − n2), 0} copies of {1, 3, 3, 3, 3}; (λ2 − n2 − min{t, λ2 − n2}) copies of {1, 2};

(λ2 − n1 −max{t− (λ2 − n2), 0} − (λ2 − n2 −min{t, λ2 − n2})) copies of {1}; and also 0, 1

or 2 more sets depending on the values of r and s as described in Table 2.2.
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Table 2.2: n = 2, p = 3
(r, s) Π also contains (r, s) Π also contains
(0,0) None (2,1) {2, 3, 3}
(0,1) {1} (2,2) {1, 3}, {2, 3}
(1,1) {2, 3} (3,1) {1, 3, 3, 3}
(1,2) {1}, {2, 3} (3,2) {1, 3}, {2, 3, 3}

We now prove this partition Π of M is always possible. We have two cases. Recall that

λ2 ≥ 1 and n2 ≤ 1.

First, if t ≤ λ2 − n2 then Π has t copies of {2, 3, 3, 3, 3}, 0 copies of {1, 3, 3, 3, 3},

(λ2 − n2 − t) copies of {1, 2}, (t+ n2 − n1) copies of {1} and up to two sets from Table 2.2.

Being in the first case implies that λ2 − n2 − t ≥ 0. Clearly t+ n2 − n1 ≥ 0 unless possibly

when t = 0, n2 = 0 and n1 = 1. This exceptional case can not happen since if t = 0, n2 = 0

and n1 = 1, then (r, s) ∈ {(0, 1), (3, 1)}, so s = 1. Thus 2λ2 = 2λ2 − t = 2u + s = 2u + 1, a

contradiction.

Second, suppose t > λ2 − n2. Then Π has λ2 − n2 copies of {2, 3, 3, 3, 3}, t− (λ2 − n2)

copies of {1, 3, 3, 3, 3}, 0 copies of {1, 2}, (λ2− n1− t+ λ2− n2) copies of {1} and up to two

sets from Table 2.2. Being in the second case, t−(λ2−n2) > 0. Also (λ2−n1−t+λ2−n2) =

2λ2 − t− n1 − n2 = t+ 2u+ s− t− n1 − n2 = 2u+ s− n1 − n2 = 2u ≥ 0.

In both cases, it is easy to check that Π contains exactly λ2 copies of differences 1 and

2 and λ1 copies of differences 3.

Finally assume that p ≥ 4. We construct the decomposition on the vertex set Z2p with

parts Pi = {i, i+ p} for each i ∈ Zp.

Again we consider a few cases. Write the number of pure differences as λ1 = 4t+ r for

some integers t, r with 0 ≤ r ≤ 3, then let (p− 1)λ2 − t = 3u+ s for some integers u, s with

u ≥ 0 and 0 ≤ s ≤ 3 where s ≥ 1 whenever r ≥ 1. Such u, s always exist by necessary

condition (2). We begin by placing r pure differences and s mixed differences into multisets

in Π, as defined in Table 2.3. (Whenever the difference p
3 appears in the table, it will be

shown that p ≡ 0 (mod 3).)
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Table 2.3: n = 2, p ≥ 4
(r, s) Π also contains (r, s) Π also contains
(0,0) None
(0,1) {1} (2,1) {1, p, p}
(0,2) {1, 2} (2,2) {p, d}, {p, d′}
(0,3) {d, d′, d′′} (2,3) {1}, {p, d}, {p, d′}
(1,1) {p, d} (3,1) {p3 , p, p, p}
(1,2) {1}, {p, d} (3,2) {1}, {p3 , p, p, p}
(1,3) {1, 2}, {p, d} (3,3) {p, d}, {p, d′}, {p, d′′}
Where d, d′, d′′ are arbitrary distinct mixed differences.

Next place into Π, u sets containing three distinct mixed differences in M . This can be

done greedily with the proviso that for 1 ≤ x < λ2 each difference is placed in x elements of

Π before it occurs in the (x + 1)th element of Π; note that since p ≥ 4 there are at least 3

different mixed differences.

There now remain t mixed differences and 4t copies of p in M which do not occur in a

set currently in Π; partition these into t sets of size 5, each of which contains exactly one of

the remaining mixed differences and place these sets Π.

We now prove that 3 divides p whenever the difference p
3 appears in the Table 2.3.

Note p
3 only appears in Table 2.3 when r = 3 and s = 1 or 2. By necessary condition (1),

|E(G)| = λ1p+ (p− 1)λ22p = (4t+ r)p+ (t+ 3u+ s)2p = 6tp+ 6up+ rp+ 2sp is divisible by

3 . Therefore 3 | rp+ 2sp. Thus 3 | 5p and 3 | 7p when (r, s) = (3, 1) and (3, 2), respectively.

In either case, it follows that 3 divides p.

Case 2: n = 3. Following the approach of Case 1, a partition Π of M = λ2{i |

1 ≤ i ≤ b3p
2 c, i 6= p} ∪ λ1{p} is defined below, such that by Lemma 2.4 there exists an

L3-decomposition of G3p(D) for each D ∈ Π.

First suppose 2 divides p. Then the set of difference is M = λ2{i | 1 ≤ i ≤ 3p
2 , i 6=

p} ∪ λ1{p}. We now form the partition Π of M .

Let Π contain: (a) min{λ1, λ2} copies of {3p
2 , p}; (b) {di, p, p} for 1 ≤ i ≤ max{bλ1−λ2

2 c, 0}

with di /∈ {p, 3p
2 }; (c) (λ1 − min{λ1, λ2} − 2 max{bλ1−λ2

2 c, 0}) copies of {p − 1, p}; and

(d) {di, 3p
2 } for 1 ≤ i ≤ max{λ2 − λ1, 0} with di /∈ {p, 3p

2 }. The particular assignment
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of the mixed differences to these sets can be done greedily in a way that ensures that

if U is the set of unused differences then ∆ = {δ1, δ2} ⊆ U if |U | ≡ 2 (mod 3) and

∆ = {δ1} ⊆ U if |U | ≡ 1 (mod 3), where δ1 = 1 and δ2 ∈ {1, 2}. Note that clearly

λ1−min{λ1, λ2}− 2 max{bλ1−λ2
2 c, 0} ≥ 0. Also notice that in the elements of Π just identi-

fied there occur λ1 copies of p and λ2 copies of 3p
2 .

Complete the formation of Π as follows. If |U | ≡ 0, 1 or 2 (mod 3) then let P be a

partition of U , U \ {δ1} or U \ {δ1, δ2} into sets of size 3 respectively. Let Π contain: (e) the

elements of P , and (f) the set ∆.

Use Lemma 2.4 case (2), (4), (6), (3), (5), and (1) (or (6) if ∆ = {1, 2}) to obtain the

required L3-decomposition in the cases (a-f) respectively.

Second, suppose 2 does not divide p; then p ≥ 3 (since p ≥ 2 is assumed). Then the

set of differences is M = λ2{i | 1 ≤ i ≤ 3p−1
2 , i 6= p} ∪ λ1{p}. Let λ1 = 2t + r where t, r

are nonnegative integers with 0 ≤ r ≤ 1. Then define nonnegative integers u and s with

0 ≤ s ≤ 2 by letting (3p−1
2 − 1)λ2 − t − r = 3u + s. This is always possible by necessary

condition (3).

We begin by placing into Π: (a) {1} if s = 1 and {1, 2} if s = 2, and put (b) r copies

of {4, p} into Π. This is always possible since p ≥ 3 in this case. Next we put into Π (c) 3u

mixed differences partitioned into sets of size three. There now remain t mixed differences

and 2t pure differences in M to be placed in sets in Π: (d) partition them into t sets of size

3, each of which contains exactly one of the mixed differences.

Use Lemma 2.4 cases (1) (or (6) if s = 2), (6), (5) and (4) to obtain required the

L3-decomposition in the cases (a-d) respectively.

Case 3: n ≡ 1 (mod 3), and n ≥ 4. The pure edges induce p copies of λ1Kn, each

of which is L3-decomposable by Theorem 2.1; so let (V,B′) be an L3-decomposition of the

graph induced by all the pure edges. Thus it remains to consider the mixed edges in G.

Consider three cases, forming an L3-decomposition (V,B) of G in each case.
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If p = 2 then λ2 ≡ 0 (mod 3) by (1). Let B = λ2
3 D1,2(x1, x2) ∪ λ2

3 D1,2(y1, x2) ∪
λ2
3 D1,2(y1, y2) ∪ λ2{(x1, x2, y1, y2)} ∪B′, where y1 6= x1 and y2 6= x2.

If p = 3 then let B = λ2D1,2(x1, x2)∪λ2D2,3(x2, x3)∪λ2D1,3(y1, x3)∪λ2{(x1, x2, x3, y1)}∪

B′, where y1 6= x1.

If p ≥ 4 then, by (1), either λ2 ≡ 0 (mod 3) or p ≡ 0 or 1 (mod 3). In both cases, by

Theorem 2.1, there exists an L3-decomposition ({xi | xi ∈ Vi, 1 ≤ i ≤ p}, B1) of λ2Kp. Let

B = B′ ∪B1 ∪ (⋃
1≤i<j≤p λ2Di,j(xi, xj)).

Case 4: n ≡ 2 (mod 3), and n ≥ 5. We begin by considering a special case when

λ1 ≡ λ2 ≡ 0 (mod 3). Note λ1Kn and λ2Kn,n are both L3-decomposable by Theorem 2.1

and Theorem 2.3 respectively, thus so is G(n, p, λ1, λ2). So suppose either λ1 6≡ 0 (mod 3)

or λ2 6≡ 0 (mod 3). For 1 ≤ i ≤ p, let xi, yi, zi, wi be 4 distinct vertices in Vi (recall n ≥ 5).

Suppose p = 3.

For 1 ≤ i ≤ 3 and 1 ≤ k ≤ λ1, let

{xi,k, yi,k} =


{xi, yi}, if k ≡ 1 (mod 3)

{yi, zi}, if k ≡ 2 (mod 3)

{zi, wi}, if k ≡ 0 (mod 3)

and place (Vi, Di(n, {xi,k, yi,k})) into B. For 1 ≤ i ≤ 3 let B contain bλ1
3 c copies of

(xi, yi, zi, wi). Then for 1 ≤ i ≤ 3, there are at most two pure edges in G[Vi] remaining

to place in 3-paths: none if λ1 ≡ 0 (mod 3), {xi, yi} if λ1 ≡ 1 (mod 3) and {xi, yi} and

{yi, zi} if λ1 ≡ 2 (mod 3).

For 1 ≤ i < j ≤ 3, let

{xi,j, yi,j} =


{xi, xj}, if (i, j) 6= (1, 3)

{y1, x3}, if (i, j) = (1, 3)

and place into B λ2 copies of (Vi, Vj, Di,j(n, n, {xi,j, yi,j})). Let B contain λ2 − 1 copies of

(x1, x2, x3, y1). Then the mixed edges remaining to be place in 3-paths are {{x1, x2}, {x2, x3}, {x3, y1}}.
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If λ1 ≡ 0 (mod 3), then place (x1, x2, x3, y1) into B to complete the decomposition.

If λ1 ≡ 1 (mod 3), then the leaves remaining are {{xi, yi} | 1 ≤ i ≤ 3}∪{{x1, x2}, {x2, x3}, {x3, y1}}.

Place (x2, x1, y1, x3) and (y2, x2, x3, y3) into B.

If λ1 ≡ 2 (mod 3), then the leaves remaining are {{xi, yi}, {yi, zi} | 1 ≤ i ≤ 3} ∪

{{x1, x2}, {x2, x3}, {x3, y1}}. Place (z1, y1, x1, x2), (z2, y2, x2, x3) and (y1, x3, y3, z3) into B.

So it remains to consider the case where p = 2 or p ≥ 4. For 1 ≤ i ≤ p and 1 ≤ k ≤ λ1,

let

{xi,k, yi,k} =


{xi, yi}, if k ≡ 1 (mod 3)

{yi, zi}, if k ≡ 2 (mod 3)

{zi, wi}, if k ≡ 0 (mod 3)

where {xi, yi, zi, wi} ⊆ Vi, and place (Vi, Di(n, {xi,k, yi,k})) into B. For 1 ≤ i ≤ p let B

contain bλ1
3 c copies of (xi, yi, zi, wi). Then for 1 ≤ i ≤ p, there are at most two pure edges

in G[Vi] remaining to place in 3-paths: none if λ1 ≡ 0 (mod 3), {xi, yi} if λ1 ≡ 1 (mod 3)

and {xi, yi} and {yi, zi} if λ1 ≡ 2 (mod 3).

For 1 ≤ i < j ≤ p and 1 ≤ k ≤ λ2, let

{xi,j,k, yi,j,k} =


{xi, xj}, if k ≡ 1 (mod 3) or k ≥ 3bλ2−1

3 c+ 1

{yi, xj}, if k ≡ 2 (mod 3), k ≤ 3bλ2−1
3 c

{yi, yj}, if k ≡ 0 (mod 3), k ≤ 3bλ2−1
3 c

and place (Vi, Vj, Di,j(n, n, {xi,j,k, yi,j,k})) into B. For 1 ≤ i < j ≤ p let B contain bλ2−1
3 c

copies of (xi, xj, yi, yj). Then for 1 ≤ i < j ≤ p, there are at most three mixed edges in

G[V i, Vj] remaining to place in 3-paths: 3{xi, xj} if λ2 ≡ 0 (mod 3), {xi, xj} if λ2 ≡ 1 (mod 3)

and 2{xi, xj} if λ2 ≡ 2 (mod 3).

Now we consider 8 cases in turn.

If λ1 ≡ 0 (mod 3) and λ2 ≡ 1 (mod 3), then p ≡ 0 or 1 (mod 3) by necessary condition

(1). The graph induced by the set of leaves {{xi, xj} | 1 ≤ i < j ≤ p} is isomorphic to Kp,

which is L3-decomposable by Theorem 2.1.
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If λ1 ≡ 0 (mod 3) and λ2 ≡ 2 (mod 3), then p ≡ 0 or 1 (mod 3) by necessary condition

(1). The graph induced by the set of leaves 2{{xi, xj} | 1 ≤ i < j ≤ p} is isomorphic to 2Kp,

which is L3-decomposable by Theorem 2.1.

If λ1 ≡ 1 (mod 3) and λ2 ≡ 0 (mod 3), then p ≡ 0 (mod 3) by necessary condition (1).

The graph induced by the set of leaves {{xi, yi} | 1 ≤ i ≤ p} ∪ 3{{xi, xj} | 1 ≤ i < j ≤ p}

is isomorphic to 2Kp ∪ S(p, 1, 1), which is L3-decomposable by Theorem 2.1 and Lemma 2.5

respectively.

If λ1 ≡ λ2 ≡ 1 (mod 3), then p ≡ 0 or 2 (mod 3) by necessary condition (1). The graph

induced by the set of leaves {{xi, yi} | 1 ≤ i ≤ p} ∪ {{xi, xj} | 1 ≤ i < j ≤ p} is isomorphic

to S(p, 1, 1), which is L3-decomposable by Lemma 2.5.

If λ1 ≡ 1 (mod 3) and λ2 ≡ 2 (mod 3), then p ≡ 0 (mod 3) by necessary condition (1).

The graph induced by the set of leaves {{xi, yi} | 1 ≤ i ≤ p} ∪ 2{{xi, xj} | 1 ≤ i < j ≤ p}

is isomorphic to Kp ∪ S(p, 1, 1), which is L3-decomposable by Theorem 2.1 and Lemma 2.5

respectively.

If λ1 ≡ 2 (mod 3) and λ2 ≡ 0 (mod 3), then p ≡ 0 (mod 3) by necessary condition

(1). The graph induced by the set of leaves {{xi, yi}, {yi, zi} | 1 ≤ i ≤ p} ∪ 3{{xi, xj} | 1 ≤

i < j ≤ p} is isomorphic to 2Kp ∪ S(p, 1, 2), which is L3-decomposable by Theorem 2.1 and

Lemma 2.5 respectively.

If λ1 ≡ 2 (mod 3) and λ2 ≡ 1 (mod 3), then p ≡ 0 (mod 3) by necessary condition (1).

The graph induced by the set of leaves {{xi, yi}, {yi, zi} | 1 ≤ i ≤ p} ∪ {{xi, xj} | 1 ≤ i <

j ≤ p} is isomorphic to S(p, 1, 2), which is L3-decomposable by Lemma 2.5.

If λ1 ≡ λ2 ≡ 2 (mod 3), then p ≡ 0 or 2 (mod 3) by necessary condition (1). If p = 2

then the leaves induce S(2, 2, 2), which has L3-decomposition (x2, x1, y1, z1)∪ (x1, x2, y2, z2).

If p ≥ 4 and p ≡ 0 (mod 3), then graph induced by the set of leaves {{xi, yi}, {yi, zi} |

1 ≤ i ≤ p} ∪ 2{{xi, xj} | 1 ≤ i < j ≤ p} is isomorphic to Kp ∪ S(p, 1, 2), which is L3-

decomposable by Theorem 2.1 and Lemma 2.5 respectively. If p ≥ 4 and p ≡ 2 (mod 3),

then let p = 3q + 2 where q is an integer with q ≥ 1. The graph induced by the leaves is
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isomorphic to S(2, 2, 2) ∪K2,3q ∪K3q ∪ S(3q, 1, 2), which is L3-decomposable by above case,

Theorem 2.2, Theorem 2.1 and Lemma 2.5 respectively.

Case 5: n ≡ 0 (mod 3), and n ≥ 6. Since 3 divides |E(Kn)| = 1
2n(n − 1), by

Theorem 2.1 there exists an L3-decomposition (Vi, Bi) of λ1Kn for 1 ≤ i ≤ p. By Theorem

2.2 there exists an L3-decomposition (Vi, Vj, Bi,j) of λ2Kn,n for 1 ≤ i < j ≤ p. Then

(V (G), (⋃
1≤i≤pBi) ∪ (⋃

1≤i<j≤pBi,j)) is the required decomposition.
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Chapter 3

Euler Circuits With Large Minimum Distance in Graphs With Two Associate Classes

3.1 Basics

A latin square of order n is an n × n array of n symbols in which each symbol occurs

exactly once in each row and column. A transversal of a latin square of order n is a set of n

entries with no pair of entries that share the same row, column or symbol.

For the rest of the chapter, we will assume that n is an odd positive integer with

n = 2k + 1 for some integer k.

We define L to be the n× n array with (i, j)th entry Li,j = (i+ j)(k + 1) (mod n) for

i, j ∈ Zn. The following is well-known but proof is included for completeness.

Lemma 3.1. L is an idempotent latin square. Moreover, entries of L can be partitioned

into n transversals.

Proof. To see L is a latin square, note that L is obtained by renaming the addition table

of Zn by multipling each entry with (k + 1). L is idempotent since for 0 ≤ i ≤ n − 1,

Li,i ≡ 2i(k + 1) ≡ 2i(2−1) ≡ i (mod 2k + 1).

We now proceed to prove L can be partitoned into n transversals. For 0 ≤ i ≤ n − 1,

let Ti = {Li+j,j | 0 ≤ j ≤ n − 1} where the subindices are calculated modulo n. We claim

that {Ti | 0 ≤ i ≤ n − 1} is a set of transversals that partition the entries of latin square

L. Suppose for some 0 ≤ j 6= j′ ≤ n − 1, Li+j,j = Li+j′,j′ . Thus ((i + j) + j)(k + 1) ≡

((i + j′) + j′)(k + 1) (mod 2k + 1). Clearly this implies j = j′ since k + 1 = 2−1 and so Ti

is indeed a transversal. It is easy to see {Ti | 0 ≤ i ≤ n − 1} partitions the cells of L by

definition of the Ti’s.
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The graph G(n, p, 0, 1) is more commonly denoted by K(n, p), since it is the complete

multipartite graph of p parts with equal part sizes n. Let vi,j denote the ith vertex of jth

part of K(n, p) for 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ p− 1.

A walk is a sequence (v0, e1, v1, e1, ..., vk) of vertices vi and edges ei in a graph such that

for 1 ≤ i ≤ k, ei has endpoints vi−1 and vi. We often omit the edges while writing down

a walk. A walk is called closed if it starts and ends at the same vertex. A trail is a walk

without repeated edges. An Euler circuit of graph G is a closed trail which includes every

edge of G exactly once.

If W1,W2, ...,Wx are walks in G where, for 1 ≤ i ≤ x − 1, Wi ends at the same vertex

where Wi+1 starts, then define the walk W = (W1,W2, ...,Wx) to be the concatenation of

these x walks. The distance of two appearances of the same vertex v in a walk W is the

number of edges between the two appearances of v along W . The distance of vertex v in a

walkW , denoted by dW (v), is the least distance among all pairs of appearances of v alongW .

In other words, it is the length of the shortest closed walk in W starting at v. The diameter

d(W ) of a walkW is defined by d(W ) = min{dW (v) | v ∈ V (W )} (i.e. the minimum distance

of all vertices in W ).

For the rest of the chapter, let p be an odd positive integer. Define the hamilton cycle

H = (0, 1, 2, p−1, 3, p−2, ..., p−1
2 , p+3

2 , p+1
2 ), and σ be the permutation (0)(123...(p−2)(p−1)).

Let Hi = σi(H). Then {Hi | 1 ≤ i ≤ p−1
2 } is a hamilton cycle decomposition of Kp whose

vertices are labelled {0, 1, 2, ..., p−1}. This is known as the Walecki construction. By Tarsi’s

result [58], the diameter of the walk (H1, H2, ..., H(p−1)/2) is p− 2.

For a graph G, define spread(G) = max{d(E) | E is an Euler circuit of G}. Ramirez-

Alfonsin [53] showed the spread of K4m+1 ≥ 2m − 1. In [49], Oksimets showed p − 4 ≤

spread(Kp) ≤ p− 2 for p ≥ 5 and d(K2n,2n) = 4n− 4 for n ≥ 2.

Given hamilton cycle Hi of Kp, we now construct a family of hamilton cycles of K(n, p).

Let πi(j) be the jth vertex in the hamilton cycle Hi for 1 ≤ j ≤ p and 1 ≤ i ≤ (p− 1)/2.
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For 0 ≤ a, b ≤ n−1, define Pi,a,b = (vπi(1),x(j), vπi(2),x(j), ..., vπi(j),x(j), ..., vπi(p),x(j), vπi(1),x(j)+1)

(addition modulo n) where

x(j) =


a if j is odd, j 6= p,

b if j is even, and

La,b if j = p,

and L is the latin square in Lemma 3.1. Let Ci,a,b be (Pi,a,b, Pi,a+1,b+1, ..., Pi,a+n−1,b+n−1) and

Ei = (Ci,0,0, Ci,0,1, ..., Ci,0,n−1). We show next that Ci,a,b is a hamilton cycle of K(n, p) and

E = (E1, E2, ..., E p−1
2

) is an Euler circuit of K(n, p).

Throughout the chapter, all the second and third subindex of Pi,a,b and Ci,a,b are module

n.

3.2 Lemmas

Lemma 3.2. For 1 ≤ i ≤ p−1
2 and 0 ≤ a, b ≤ n − 1, Ci,a,b is a hamilton cycle of K(n, p).

Moreover, for 0 ≤ x ≤ p− 1 and 0 ≤ y ≤ n− 1, vx,y is the (zp+ w)th vertex of Ci,a,b where

w = π−1
i (x) and z is given by

z =


y − a (mod n) if w is odd, w 6= p,

y − b (mod n) if w is even, and

y + k(a+ b) (mod n) if w = p.

(3.1)

Proof. We first prove that Ci,a,b is a closed walk of K(n, p). Note the last vertex of Pi,a,b and

the first vertex of Pi,a+1,b+1 is the same vertex, namely vπi(1),a+1. Furthermore, the first and

last vertex of Ci,a,b is the same one, namely vπi(1),a. This shows Ci,a,b is a closed walk.

We now show property (1), in particular this shows that each vertex appears at least

once in Ci,a,b. For any vertex vx,y, 0 ≤ x ≤ p− 1 and 0 ≤ y ≤ n− 1, let w = π−1
i (x). There

are three cases.
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Case 1: w is odd, w 6= p. Then vx,y appears in Pi,a+j,b+j, 0 ≤ j ≤ n − 1 only when

y = a + j. Thus j = y − a (mod n) and vx,y is the wth vertex in Pi,y,b+y−a. Moreover,

prior to Pi,a+j,b+j there are j = y−a paths in Ci,a,b, namely Pi,a,b, Pi,a+1,b+1, ..., Pi,a+j−1,b+j−1.

Therefore vx,y is the ((y − a)p+ w)th vertex in Ci,a,b.

Case 2: w is even. Clearly w 6= p. Then vx,y appears in Pi,a+j,b+j, 0 ≤ j ≤ n − 1 only

when y = b + j. Thus j = y − b (mod n) and vx,y is the wth vertex in Pi,a+y−b,y. Similarly

as in case 1, there are j = y − b paths in Ci,a,b prior to Pi,a+y−b,y. Therefore vx,y is the

((y − b)p+ w)th vertex in Ci,a,b.

Case 3: w = p. Then vx,y is the pth vertex in Pi,a+j,b+j, for some unique j with

La+j,b+j = y by Lemma 3.1. La+j,b+j = (a + j + b + j)(k + 1) ≡ (a + b + 2j)(k + 1) ≡

(a+ b)(k + 1) + j(2k + 2) ≡ (a+ b)(k + 1) + j (mod 2k + 1). Thus j ≡ y − (a+ b)(k + 1) ≡

y − (a + b)(k + 1) + (2k + 1)(a + b) ≡ y + k(a + b) (mod 2k + 1), and vx,y is the wth

vertex in Pi,a+y+k(a+b),b+y+k(a+b). Again there are j = y + k(a + b) paths in Ci,a,b prior to

Pi,a+y+k(a+b),b+y+k(a+b). Therefore vx,y is the ((y + k(a+ b))p+ w)th vertex in Ci,a,b.

Since Ci,a,b has length np and hence by cases 1-3 each vertex appear at least once in

Ci,a,b, each vertex appears exactly once in Ci,a,b. So Ci,a,b is a hamilton cycle.

Lemma 3.3. E is an Euler circuit of K(n, p) and the diameter of E is at least n−3
2 p+ 1.

Proof. We begin by proving E = (E1, E2, ..., En) is an Euler circuit of K(n, p). First of all,

for any C ∈ {Ci,1,j | 1 ≤ i ≤ p−1
2 , 0 ≤ j ≤ n − 1}, the first and last vertex is vπi(1),0 = v0,0

since πi(1) = 0 for all i. Therefore, E is indeed a closed walk.

We now show that every edge appears in E exactly once. Let e = {vu,v, vu′,v′}, u 6= u′

be an edge of K(n, p). Since {Hi | 1 ≤ i ≤ p−1
2 } is a hamilton cycle decomposition of Kp,

there is a unique i such that the edge {u, u′} is in Hi. Thus e can only possibly appear in Ei.

Without loss of generality, assume that πi(w) = u and πi(w+1) = u′ for some w, 1 ≤ w ≤ p.

We have four cases.
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Case 1: w 6= p and w is odd. Clearly, w+ 1 6= p since w+ 1 is even. By definition of E,

e only appears in Pi,v,v′ , which is a part of Ci,0,v−v′ .

Case 2: w is even and w 6= p− 1. By definition of E, e only appears in Pi,v′,v, which is

a part of Ci,0,v′−v.

Case 3: w is even and w = p − 1. By definition of E, e only appears in Pi,x,v′ , where

0 ≤ x ≤ n− 1 with Lx,v′ = v. By Lemma 3.1, x is unique, namely 2v − v′.

Case 4: w = p. By definition of E, e only appears in Pi,x,v′−1, where 0 ≤ x ≤ n− 1 with

Lx,v′−1 = v. By Lemma 3.1, x is unique, namely 2v − v′ + 1.

This concludes the proof that E is an Euler circuit ofK(n, p). We now move to determine

the diameter of E.

For any i, j, Ci,0,j is a hamilton cycle and no vertex appears twice except the start/end

vertex v0,0. Since E is obtained by concatenating these cycles, dE(v0,0) = np. For vertex

vx,y 6= v0,0, any two appearances of vx,y must be in different hamilton cycles. By definition

of E, there are two cases: (1) vx,y is in Ci,0,a and Ci,0,a+1, for some a, 0 ≤ a ≤ n− 2 and (2)

vx,y is in Ci,0,n−1 and Ci+1,0,0, for some i, 1 ≤ i ≤ p−3
2 .

Case 1: the consecutive appearances of vx,y are in Ci,0,a and Ci,0,a+1, for some a, 0 ≤

a ≤ n − 2. The distance of vx,y in (Ci,0,a, Ci,0,a+1) is determined by finding its location in

Ci,0,a and Ci,0,a+1, respectively. Let w = π−1
i (x).

i) Suppose w is odd and w 6= p.

By Lemma 3.2, vx,y is the ((y − 1)p + w)th vertex in both Ci,0,a and Ci,0,a+1. Clearly,

the distance of two appearances of vx,y is np.

ii) Suppose w is even. Clearly w 6= p.

By Lemma 3.2, vx,y is the ((y−a)p+w)th and ((y− (a+1))p+w)th vertex in Ci,0,a and

Ci,0,a+1, respectively. The distance is np− ((y − a)p+w) + ((y − (a+ 1))p+w) = (n− 1)p.

iii) Suppose w = p.
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By Lemma 3.2, vx,y is the ((y + k(1 + a))p+ w)th and the ((y + k(1 + a+ 1))p+ w)th

vertex in Ci,0,a and Ci,0,a+1, respectively. The distance is np− ((y + k(1 + a))p+w) + ((y +

k(1 + a+ 1))p+ w) = (n+ k)p = 3n−1
2 p.

Case 2: the consecutive appearances of vx,y are in Ci,0,n−1 and Ci+1,0,0, for some i,

1 ≤ i ≤ p−3
2 . Let w = π−1

i (x) and w′ = π−1
i+1(x). We have six cases, as showed in the table

below:

w′ is odd, w 6= p w′ is even w′ = p

w is odd, w 6= p Case 1 Case 1 Case 3

w is even Case 2 Case 2 Case 4

w = p Case 5 Case 5 Case 6

The following facts from Lemma 3.2 are used repeatedly in this case.

location of the vertex

1* w is odd, w 6= p yp+ w

2* w is even (y + 1)p+ w if y 6= n− 1, w if y = n− 1

3* w = p (y − k + 1)p if y ≥ k, (y + k + 2)p if y < k

4* w′ is odd, w 6= p yp+ w′

5* w′ is even yp+ w′

6* w′ = p (y + 1)p

Subcase 1: w is odd, w 6= p and w′ 6= p.

Using 1* and 4*/5*, the distance is (np − (yp + w)) + (yp + w′) = np − w + w′ ≥

np− p+ 0 = (n− 1)p.

Subcase 2: Both w and w′ are even.

Using 2* and 5*, if y = n − 1 then the distance is (np − w) + ((n − 1)p + w′) =

(2n−1)p−w+w′ ≥ (2n−2)p. If y 6= n−1 then the distance is (np−((y+1)p+w))+(yp+w′) =

(n− 1)p− w + w′ ≥ (n− 2)p.

Subcase 3: w is odd, w 6= p and w′ = p.

Using 1* and 6*, the distance is (np− (yp+ w)) + (y + 1)p = (n+ 1)p− w ≥ np.
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Subcase 4: w is even and w′ = p.

Using 2* and 6*, if y = n− 1 then the distance is (np− (0p+w)) + np = (2n)p−w′ ≥

(2n−1)p. If y 6= n−1 then the distance is (np−((y+1)p+w))+(y+1)p = np−w ≥ (n−1)p.

Subcase 5: w = p and w′ 6= p.

Using 3* and 4*/5*, if y ≥ k then distance is (np − (y − k + 1)p) + (yp + w′) =

(n+ k− 1)p+w′ ≥ (n+ k− 1)p. If y < k then distance is (np− (y+ k+ 2)p) + (yp+w′) =

(n− k − 2)p+ w′ ≥ (n− k − 2)p+ 1 = (n−3
2 )p+ 1.

Subcase 6: w = p and w′ = p.

This is not possible as this implies πi(p) = x = πi+1(p), which means the edge {x, 0} ∈

E(Kp) is in both hamilton cycle Hi and Hi+1, but {E(Hi) | 1 ≤ i ≤ p−1
2 } is a partition of

the edges of Kp.

3.3 Main Result

Theorem 3.1. Let n, p be odd positive integers, and {k1, k2, ..., km} be a multiset of integers

which satisfies 1 ≤ ki ≤ 1
2(n− 3)p for 1 ≤ i ≤ m and ∑m

i=1 ki = 1
2n

2p(p− 1). Then K(n, p)

can be decomposed into paths P1, P2, ..., Pm, where the length of Pi is ki for 1 ≤ i ≤ m.

Proof. By Lemma 3.3, E is an Euler circuit of K(n, p) with diameter at least 1
2(n− 3)p+ 1.

Then P1, P2, ..., Pm are obtained by cutting E into paths of lengths k1, k2, ..., km. Since the

diameter of E is greater than the length of any of P1, P2, ..., Pm, they are indeed paths.

The path-arboreal question asks, given graph G with |V (G)| = n, suppose that {ki | 1 ≤

i ≤ m} is a multiset of m positive integers satisfying 1 ≤ ki ≤ n− 1 and ∑m
i=1 ki = |E(G)|,

can G be decomposed into paths of lengths k1, k2, ..., km? The above Theorem partially

answers the question for K(n, p).

Corollary 3.1. Let n, p be odd positive integers and k be an integer with 1 ≤ k ≤ 1
2(n− 3)p.

If 1
2n

2p(p− 1) is divisible by k, then there exists an Lk-decomposition of K(n, p).
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Theorem 3.2. Suppose n, p are odd positive integers; λ1, λ2 are positive integers with λ1 ≤

λ2; and k ≤ 1
2(n−3)p. Then graph G(n, p, λ1, λ2) is Lk-decomposable if and only if k divides

|E(G)| = 1
2n(n− 1)pλ1 + 1

2p(p− 1)n2λ2.

Proof. Since λ1 ≤ λ2, G(n, p, λ1, λ2) = G(n, p, λ1, λ1) ∪ G(n, p, 0, λ2 − λ1) = λ1Knp ∪ (λ2 −

λ1)K(n, p).

For (λ2 − λ1)K(n, p), by Lemma 3.3 E is an Euler circuit of K(n, p) with diameter at

least 1
2(n− 3)p+ 1. Since k ≤ (n− 3)p/2, E can be used to form a Lk-decomposition D1 of

(λ2 − λ1)K(n, p) with possibly some edge(s) left, which induce a path of length less than k.

These edges are called the leaves of D1.

For λ1Knp, by Tarsi’s result [58] the Walecki construction produces an Euler circuit W

with diameter d(W ) = np − 2. Since k ≤ (n − 3)p/2 < np − 2, W can be used to form

a Lk-decomposition D2 of λ1Knp into copies of Lk with possibly some edge(s) left, which

induce a path of length less than k. These edges are called the leaves of D2. Since the λ1Knp

is edge-transitive, we can assume that none of the vertices in the leaves of D2 appears in the

leaves of D1. Thus leaves of D1 and D2 together form a path P .

Since k divides E(G) = D1 ∪ D2 ∪ P , k divides |E(P )| and path P has a trivial Lk-

decomposition D3. Then D1 ∪D2 ∪D3 is a Lk-decomposition of G(n, p, λ1, λ2).

3.4 Future Directions

A pair of latin squares are orthogonal if the n2 ordered pairs of symbols formed by

juxtaposing the pairs of symbols appearing in the same cell of the two arrays are all distinct.

A latin square of order n which can be partitoned into n transversals is equivalent to a pair

of orthogonal latin squares of order n. To see this, given such a latin square L we can make

a new latin square L′ from L by assigning L′x,y = i if Lx,y is part of ith transversal. Then

clearly, L and L′ are orthogonal. The reverse can be proved similarly. Given orthogonal

latin squares L and L′ with symbols {0, 1, 2, ..., n − 1}, define Ti = {Lx,y | L′x,y = i} for
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0 ≤ i ≤ n − 1. It’s easy to see that every Ti is a transversal and the Ti’s partition L. This

means to find such a latin square of order 4n + 2 satisfying the additional useful structure

found in L would be diffcult in general, as we know from the eventual disproof of the famous

Euler’s conjecture. One approach to try to generalize what follows might be to try to use

symmetric idempotent latin square of even order with holes in place of L.
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Chapter 4

The Intersection Problem for Two Latin Squares of size difference one

4.1 Basics

Let r, s and n be positive integers with n ≥ r, s. A partial latin rectangle is an r × s

array of n symbols (we usually use {1, 2, ..., n}) in which each symbol occurs at most once

in each row and column and each cell contains at most one symbol. An incomplete latin

rectangle is a partial latin rectangle in which every cell contains a symbol. A latin rectangle

is an incomplete latin rectangle in which each symbol appears exactly once in each row. A

latin square of order n is an n × n latin rectangle. If L is a (partial or incomplete) latin

rectangle then let Li,j denote the symbol in cell (i, j) of L.

Latin squares satisfying additional properties are also of interest. Let L be a latin square

of order n. L is said to be idempotent if Li,i = i for 1 ≤ i ≤ n. L is unipotent if Li,i = c for

1 ≤ i ≤ n and a fixed symbol c. If n is even then L is said to be half-idempotent if Li,i = i

for 1 ≤ i ≤ n
2 and Li,i = i − n

2 for n
2 + 1 ≤ i ≤ n. If Li,j = Lj,i for 1 ≤ i, j ≤ n, then L is

said to be symmetric (or commutative). L is semi-symmetric if for all i, j, the entry in cell

(i, Lj,i) is j. L is totally symmetric if for any i, j, the entries in cell (i, Li,j) and (Li,j, j) are

j and i, respectively. It is well-known that an idempotent totally symmetric latin square of

order n is equivalent to a Steiner triple system (STS) of order n (see [16], Remark III.2.12).

Finally, L is said to have holes of size k if (1) H = {h1, h2, ..., hn
k
} partitions the set

{1, 2, ..., n} with |hi| = k for 1 ≤ i ≤ n/k, and (2) the cells in hi × hi are filled with symbols

from hi for 1 ≤ i ≤ n/k (so are latin subsquares).

Throughout this chapter, assume that if L has order n then the cells of L are (i, j) for

1 ≤ i, j ≤ n. Given two latin squares L and S, possibly of different orders, a cell (i, j) is said

to be (L, S)-different if (i, j) is a cell in both L and S, and these two cells contain different
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symbols; if it is clear to which latin squares are being referred to, then (i, j) is simply called

a different cell. In this paper, of particular interest is the possible number of (L, S)-different

cells two latin squares L and S can have. To this end, for any two latin squares L and S,

let D(L, S) denote the number of (L, S)-different cells where L and S are latin squares of

orders x and y respectively with x ≤ y. The intersection number I(L, S) is defined to be the

number of cells (i, j) for which cell (i, j) in L and S contains the same symbol; so clearly

I(L, S) = x2 −D(L, S). More formally we have the following definition.

Definition 4.1. Suppose x ≤ y and let L and S be latin squares of order x and y respectively.

The number of (L, S)-different cells is defined to be |{(i, j) | 1 ≤ i, j ≤ x, Li,j 6= Si,j}|; that

is, the number of cells of L and the top left partial square of S of order x that contain

different symbols. The intersection number of L and S, denoted by I(L, S), is defined to be

x2 −D(L, S). Define I(n) = {I(L, S) | L and S are latin squares of order n }.

4.2 History

The problem of determining I(n) is referred as the intersection problem for latin squares

of the same order. This was settled by Fu [26] who proved the following result.

Theorem 4.1 (Fu, 1980 [26]). Let L, S be latin squares of order n. Then

I(n) =



{1} if n = 1;

{0, 4} if n = 2;

{0, 3, 9} if n = 3;

{0, 1, 2, 3, 4, 6, 8, 9, 12, 16} if n = 4;

{0, 1, 2, ..., n2} \ {n2 − 1, n2 − 2, n2 − 3, n2 − 5} if n ≥ 5.

A natural extension to finding I(n) is to add the requirement that L and S both satisfy

an additional property. In [26], Fu also solved the intersection problem for idempotent latin

squares and for unipotent latin squares. Webb [61] settled the symmetric idempotent case.

The half-idempotent case was solved in [21] by Fu and Fu. The symmetric case was solved
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by Fu, Fu and Guo [23]. Fu [27] and Lindner and Wallis [46] solved the symmetric unipotent

case. Fu, Gwo and Wu [24] settled the semi-symmetric case. Fu, Huang, Shih and Yaon [25]

solved the totally symmetric case.

Since an idempotent totally symmetric latin square is equivalent to a Steiner triple

system, the intersection problem was solved by Lindner and Rosa [44, 45] and DiPaola and

Nemeth [50].

Fu and Fu [21] settled the intersection problem for latin squares with holes of size 2 and

commutative latin squares with holes of size 2. Baker [3] settled the intersection problem

for latin squares with holes of size 2 and 3. There is some doubt about whether there exist

two latin squares with holes of size 2 such that they have exactly 35 cells in common, but

it appears that no such pair exists. Chang and Faro [14] solved the intersection problem for

latin squares which have orthogonal mates.

For a survey of results of intersection problem for many kinds of pairs of latin squares

of the same order, see [22] by Fu and Fu.

In [20], Fu and Fu extended the intersection problem to considering three latin squares,

all of same order, n. They found all the possible numbers k such that there exist three

distinct latin squares of order n in which there are exactly k cells in which all three latin

squares contain the same symbol. Note that for the remaining n2 − k cells, it was only

required that at least one pair of the three latin squares had different entries. In [1], Adams,

Billington, Bryant and Mahmoodian completely solved a stronger version of the problem

where they required that all three latin squares contain different symbols in each of the

remaining n2 − k cells.

In [19], Dukes and Mendelsohn introduced a generalization of the intersection problem,

namely that of finding intersection numbers for latin squares of orders n and n + k. They

settled the problem for most values of n and k. Dukes and Howell [18] later completely

solved the problem. Unknown to the development in [18] at the time, we were interested by

the problem solving the case k = 1; this is one of the unsolved cases in [19]. The proof when
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k = 1 presented in Chapter 5 is basically self-contained, thus differing from the proof in [18]

which relies on the deep theorem of Heinrich ([32], Theorem 4.4 - 4.12).

4.3 Main Result

Let L(2) denote the latin square of order 2x formed from the latin square L of order x

by the particular direct product defined as follows: for 1 ≤ i, j ≤ x, if cell (i, j) of L contains

symbol k, then cells (2i − 1, 2j − 1), (2i − 1, 2j), (2i, 2j − 1) and (2i, 2j) of L(2) form a

2× 2 subsquare c(i, j), the cells containing symbols 2k − 1, 2k, 2k and 2k − 1 respectively.

Throughout the following construction, many of the 2× 2 subsquares in L(2) remain intact.

It will be convenient to refer them as the special 2× 2 subsquares.

Theorem 4.2. Let n ≥ 12, and let c ∈ [n2 − (n − 3)(n − 1), n2 − n + 1]. There exist two

latin squares K and K+ of order n and n+1 respectively, which have exactly n2− c different

cells.

Proof. Assume that n ≥ 12 and that c ∈ [n2 − (n − 3)(n − 1), n2 − n + 1]. Let ∞ be the

only symbol occurring in K+ that does not occur in K. Since ∞ can occur at most once

in each of row n + 1 and column n + 1 of K+, necessary there are at least n − 1 cells (i, j)

that are (K,K+)-different because in K+ cell (i, j) contains ∞. With this in mind, let

d = n2 − c− (n− 1). So d counts the number of (K,K+)-different cells that exclude n− 1

mandatory (K,K+)-different cells that in K+ contain symbol∞. Possibly there is one more

such cell, which could occur when K+
i,j =∞; so exactly 0 or 1 of these d cells contain ∞ in

K+.

Our construction depends on the value of n modulo 4, and the parity of m = bn2 c is

also relevant. Therefore define m = 2x+ ε1 and n = 4x+ 2ε1 + ε2, where ε1, ε2 ∈ {0, 1}. By

assumption since n ≥ 12 it follows that x ≥ 3. Furthermore, let d = p(n− 1) + 4q+ r where

p, q, r ∈ N ∪ {0}, 0 ≤ r ≤ 3, 4q + r ≤ n − 1, and p ≤ n − 3. In the following construction,

K is formed from L(2) for some careful choice of L. so K is constructed to contain many
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2× 2 subsquares. Then K+ is formed from K. In so doing, p of the rows of K are deranged,

and in some of the remaining rows (in particular the first 4 rows) q of the 2× 2 subsquares

are selected and the symbols within them are switched, thus providing 4 different cells for

each 2× 2 subsquare. There are 3 further cells that we can control to ensure that in the end

exactly r cells are (K,K+)-different (for any r ∈ {0, 1, 2, 3}).

First we construct an m × m partial latin square T on symbol set {1, 2, ..., n}, from

which K will then be constructed, using the following seven steps,

1. Let L be any idempotent latin square of order x ≥ 2; this exists because we know that

x ≥ 3.

2. Consider L(2). Let S3 be the 2× 2 subsquare in the first 2 rows of L(2) that contains

symbols 3 and 4. Let S2 be the 2× 2 subsquare in the 3rd and 4th rows of L(2) that

contains symbols 1 and 2. Replace each symbol α in the 8 cells in S2 and S3 with

m+ α to form an incomplete latin square, L2 of order 2x.

3. For 1 ≤ i ≤ x, remove the symbol 2i in cells (2i − 1, 2i), (2i, 2i − 1) from L2, and for

1 ≤ i ≤ 2x, replace the symbol 2d i2e − 1 in cell (i, i) with symbol i to form the partial

idempotent latin square L3 of order 2x.

4. If r ∈ {0, 1}, then let L4 = L3. If r ∈ {2, 3} then form L3 from the partial idempotent

latin square L4 as follows:

(a) Remove the symbol from each of the cells (3, 1), (3, 2), (4, 1) and (4, 2),

(b) Remove the occurence of symbol 3 from column 1, and the occurence of symbol

2 from column 1, and

(c) Fill cells (2, 1) and (3, 1) with 3 and 2 respectively.

(Eventually, once K and K+ are formed, exactly r of the cells (1, 1), (2, 1) and (3, 1)

will be (K,K+)-different.)
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5. If ε1 = 1 then L4 has order 2x = m − 1, so to L4 add a new row and column (i.e.

the mth row and column) in which all cells are empty except that cell (m,m) contains

symbol m. So the result is the partial idempotent latin square L5. If ε1 = 0, then let

L5 = L4. In both cases L5 has order m.

6. If ε2 = 0, then change all symbols in last two columns of L5 by replacing i with m+ i

for 1 ≤ i ≤ m. Let the result be L6. If ε2 = 1 then let L6 = L5. This ensures that

eachl symbol in {m+ 1,m+ 2, ..., n} appears at least once* in L6. So L6 has order m.

7. Fill the empty cells in L6 greedily with symbols in {1, 2, ..., n} to form the incomplete

idempotent latin square T ; this is possible since n ≥ 2m.

By Step 6, if ε2 = 0 then each of the symbols m+ 1, ..., n appears in L6 and thus in T .

Therefore by theorem embed T in an idempotent latin square K of order 2m+ ε2 = n.

We now turn our attention to forming K+. To do so we modify and expand K into a

latin square of order n + 1 in such a way that I(K,K+) = c. This can be accomplished as

follows. As K+ is being formed, it will be helpful to identify the number of (K,Ki)-different

cells formed in Step i.

Step 1. From K remove the symbols in cells (i, i) and fill them with ∞ for 2 ≤ i ≤ n to form

the incomplete latin square K1. (These are the n − 1 mandatory occurrences of the

symbol ∞ in K+, producing n− 1 (K,K+)-different cells.)

Step 2. Note that since n ≥ 12, 4q + r ≤ n− 1, and x = bn4 c, it follows that q ≤ 2x− 3. Also

K contains at least 2x − 3 2 × 2 subsquares. Therefore we can pick q of the 2x − 3

special 2× 2 subsquares in the first 4 rows of K1 and switch the symbols in each such

subsquare to form the imcomplete latin square K2. This provides 4q (K,K2)-different

cells (in addition to the n− 1 (K,K2)-different cells formed in Step 1).

Step 3. If r = 1 or 3, then replace the symbol 1 in cell (1, 1) of K3 with ∞. If r = 2 or 3,

then replace the symbol in cell (2, 1) with 2 and the symbol in cell (3, 1) with 3. Let
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the resulting incomplete latin square be named K3. This step introduces r (K,K3)-

different cells (so there are exactly (n− 1) + 4q + r (K,K3)-different cells in total).

Step 4. Derange the bottom p rows of K3 to create K4, using some permutation π on {1, ..., n},

which has π(i) = i if 1 ≤ i ≤ n − p, and is a bijective derangement on [n − p + 1, n].

This step creates p(n − 1) further (K,K4)-different cells since each such row already

has a cell containing ∞ which was used in Step 1 to identify a (K,K1)-different cell

(and so has already been counted).

So in the incomplete n× n latin square K4 we have (n− 1) + 4q+ r+ p(n− 1) = n2− c

(K,K4)-different cells.

We now expand K4 to a latin square K+ of order n + 1 by adding a new column and

row as the (n+ 1)th column and row as follows:

1. If the symbol in cell (1, 1) = 1 or ∞, then fill cells (n+ 1, 1) and (1, n+ 1) with ∞ or

fill them with 1 respectively. Fill cell (n+ 1, n+ 1) with the symbol in cell (1, 1).

2. By step 1, for 2 ≤ i ≤ n column i is missing symbol c(i) = i. By step 3, column 1 is

missing symbol c(i) = 1 if r ∈ {1, 3} and symbol c(i) = ∞ otherwise. For 1 ≤ i ≤ n

fill cell (n+ 1, i) with symbol c(i).

3. By step 4, for 2 ≤ i ≤ n row i is missing symbol c(i) = π(i). For 2 ≤ i ≤ n fill cell

(i, n+ 1) with symbol c(i).
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Chapter 5

The Intersection Problem for Latin Rectangles

5.1 Basics

For definitions and history of intersection problems, see Chapter 4.

5.2 Lemmas

We now turn to solving the intersection problem of latin rectangles. In the rest of

the chapter, assume that 1 ≤ r < n. Let R and S be r × n latin rectangles. Define the

intersection number of R and S to be I(R, S) = |{(i, j) | 1 ≤ i ≤ r, 1 ≤ j ≤ n,Ri,j = Si,j}|.

Similarly to defining I(n), define I(r, n) = {I(R, S) | R, S are r × n latin rectangles}.

The following well-known facts will be useful.

Theorem 5.1 (Hall [31], 1945). Any r×n latin rectangle can be embedded in an n×n latin

square.

Theorem 5.2 (Ryser [56], 1951). Let T be an r × s latin rectangle on the symbols in

{1, 2, ..., n}. Let N(i) denote the number of times that the symbol i occurs in T . Then

T can be embedded in an r× n latin rectangle if and only if N(i) ≥ r + s− n for 1 ≤ i ≤ n.

Lemma 5.1. Let R, S be r × n latin rectangles on the symbols in {1, 2, ..., n}. Let di be the

number of cells in row i in which R and S differ. Then di 6= 1 for 1 ≤ i ≤ r.

Proof. Observe that if two rows from two latin rectangles agree in n−1 cells, then they must

agree in the last cell as well since each symbol appears exactly once in each row. Therefore,

two rows can not differ by exactly one cell.

Corollary 5.1. rn− 1 /∈ I(r, n) for all r < n.
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Proof. If I(R, S) = rn− 1, then R and S differ by exactly one cell. Then there is a row in

which where R and S differ in exactly one cell, which contradicts Lemma 5.1.

Lemma 5.2. I(2, 3) = {0, 2, 3, 6}.

Proof. It is trivial that 0 and 6 are in I(2, 3). By Corollary 5.1, 5 /∈ I(2, 3).

For 2 and 3, there are three latin rectangles listed below. The first two have intersection

number 2 and the the last two have intersection number 3.

2 1 3 1 2 3 1 2 3

3 2 1 2 3 1 3 1 2

Now we show 4 and 1 are not in I(2, 3).

If two 2 × 3 latin rectangles R and S have intersection number 4, then they differ

by exactly 2 cells. By Lemma 5.1, these two cells must be in the same row. Without

the loss of generality, assume they are cell (1, 1) and (1, 2), and R1,1 = 1 and R1,2 = 2.

Then R1,3 = 3 = S1,3, and S1,1, S1,2 must be 2 and 1, respeactively. Consider R2,1. Since

R2,1 = S2,1, it can not be 1 (R1,1 = 1) or 2 (S1,1 = 2). Thus R2,1 = 3. Same argument on

R2,2 shows R2,2 = 3, a contradiction.

If two 2 × 3 latin rectangles R and S have intersection number 1, then they agree on

exactly 1 cells. Without the loss of generality, assume it is the cell (1, 1) and R1,1 = S1,1 = 1.

We can further assume that R1,2 = 2 and R1,3 = 3. Since S has to differ with R at rest of

the cells, we have S1,2 = 3 and S1,3 = 2. There are only two possiblities for the second row

of R: 231 or 312. Similarly for S, the second row can only be 321 or 213. In any of the four

cases, R and S must agree on one cell in the second row, therefore completing the proof.

Lemma 5.3. For 1 ≤ r < n and 4 ≤ n, {rn− 2, rn− 3, ..., (r− 1)n+ 2, (r− 1)n} ⊆ I(r, n).

Proof. Let d be an integer with 2 ≤ d ≤ n − 2 or d = n. We will first construct an n × n

latin square, and then obtain two r × n latin rectangles with d different cells from it.
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We start by constructing the first and second row as follows. If 2 ≤ d ≤ n − 2, then

consider
1 2 ... d− 1 d d+ 1 ... n− 1 n

2 3 ... d 1 d+ 2 ... n d+ 1

which is possible as long as d ≥ 2 and n− d ≥ 2, which is true since 2 ≤ d ≤ n− 2.

If d = n, then we simply use

1 2 ... n− 1 n

2 3 ... n 1

In either case, by Theorem 5.1 there is an n×n latin square L with such first and second

rows. We obtain L′ by switching the first d entries of the first row and second row. Note L′

is still a n× n latin square as every symbol appears exactly once in every row and column.

We then obtain two r × n latin rectangles R and S by deleting the second row and other

arbitrarily chosen n − r − 1 rows, excluding the first, from L and L′, respectively. Clearly,

R and S agree on every cell that is not in the first row, where they agree on exactly n − d

cells. So I(R, S) = rn− d.

Lemma 5.4. Let n ≥ 3. For 1 ≤ r ≤ n− 2, (r − 1)n+ 1 ∈ I(r, n).

Proof. Consider the latin rectangle with first three rows being 12...n, 23...n1, 3...n12, re-

spectively. This is possible since n ≥ 3. By Theorem 5.1, there is a n × n latin square L

with such first three rows. Let R be the latin rectangle obtained by deleting the second, the

third and arbitrary other n− r− 2 rows (but not the first row) from L. Form S by replacing

the first n− 1 entries in the first row with 234...(n− 1)1.

Since the first n − 2 entries of second row of L is 234...(n − 1), and L3,n−1 = 1, no

symbol appears more than once in any column of S and S is still a latin rectangle. Clearly,

I(R, S) = rn− (n− 1) = (r − 1)n+ 1.

Lemma 5.5. For 4 ≤ r and n = r + 1, (r − 1)n+ 1 ∈ I(r, n).
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Proof. We will prove by constructing two r × n latin rectangles R, S with I(R, S) = (r −

1)n+ 1. For 5 ≤ n ≤ 8, R and S are presented below. The (R, S)-different cells in S are in

bold font.

For n = 5:
1 2 3 4 5 2 1 3 4 5

2 1 4 5 3 1 2 4 5 3

3 4 5 1 2 3 4 5 1 2

5 3 1 2 4 5 3 1 2 4

For n = 6:
1 2 3 4 5 6 2 3 1 4 5 6

2 1 4 5 6 3 1 2 4 5 6 3

3 4 6 2 1 5 3 4 6 2 1 5

4 6 5 1 3 2 4 6 5 1 3 2

6 5 2 3 4 1 6 5 2 3 4 1

For n = 7:
1 2 3 4 5 6 7 2 3 1 4 5 6 7

2 3 1 5 6 7 4 1 2 3 5 6 7 4

3 1 2 6 7 4 5 3 1 2 6 7 4 5

4 5 6 7 1 3 2 4 5 6 7 1 3 2

5 6 7 1 4 2 3 5 6 7 1 4 2 3

6 7 4 2 3 5 1 6 7 4 2 3 5 1
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For n = 8:
1 2 3 4 5 6 7 8 2 1 5 3 4 6 7 8

2 1 4 5 6 7 8 3 1 2 4 5 6 7 8 3

3 4 6 1 8 2 5 7 3 4 6 1 8 2 5 7

4 5 7 8 1 3 6 2 4 5 7 8 1 3 6 2

5 3 8 2 7 1 4 6 5 3 8 2 7 1 4 6

7 8 2 6 3 4 1 5 7 8 2 6 3 4 1 5

8 6 1 7 2 5 3 4 8 6 1 7 2 5 3 4

For n ≥ 9, consider the 3× n latin rectangle:

1 2 3 4 ... n− 4 n− 3 n− 2 n− 1 n

2 3 1 5 ... 4 n− 2 n− 1 n n− 3

3 1 2 6 ... n− 2 n− 1 n 4 5

This exists since (n− 4)− 4 + 1 ≥ 2, because n ≥ 9. By Theorem 5.1 there is an n× n latin

square L with such first three rows. We obtain a new latin square L′ from L by switching

the first n−4 cells in the first and second rows, then switch the first three cells in the second

and third rows. So the first three rows of L′ are:

2 3 1 5 ... 4 n− 3 n− 2 n− 1 n

3 1 2 4 ... n− 4 n− 2 n− 1 n n− 3

1 2 3 6 ... n− 2 n− 1 n 4 5

We then obtain two r × n latin rectangles R and S by deleting the second row and another

arbitrarily chosen n− r− 1 rows, excluding the first and third rows, from L and L′, respec-

tively. Clearly, R and S differ on first n− 4 cells in the first row and the first 3 cells in the

second. Hence, I(R, S) = rn− (n− 4)− 3 = (r − 1)n+ 1.

We note that all pairs (R, S) in this lemma only have different cells in the first two rows,

which will be useful in Lemma 5.9.

42



Lemma 5.6. For 2 ≤ r < n, (r − 1)n− 1 ∈ I(r, n).

Proof. If n = 3 then (r, n) = (2, 3), and this case is shown in Lemma 5.2.

For 4 ≤ n ≤ 6 and r = n−1, R and S are presented below. If r < n−1, then delete the

bottom n− 1− r rows to obtain R and S. The (R, S)-different cells in S are in bold font.

For n = 4,
1 2 3 4 2 3 1 4

2 1 4 3 1 2 4 3

3 4 2 1 3 4 2 1

For n = 5,
1 2 3 4 5 2 3 1 4 5

2 3 1 5 4 1 2 3 5 4

3 4 5 1 2 3 4 5 1 2

4 5 2 3 1 4 5 2 3 1

For n = 6,
1 2 3 4 5 6 2 1 4 3 5 6

2 3 1 5 6 4 1 2 3 5 6 4

3 4 5 6 1 2 3 4 5 6 1 2

4 5 6 2 3 1 4 5 6 2 3 1

5 6 2 1 4 3 5 6 2 1 4 3

For n ≥ 7, consider the 3× n latin rectangle:

1 2 3 4 ... n− 3 n− 2 n− 1 n

2 3 1 5 ... n− 2 4 n n− 1

3 1 2 6 ... n− 1 n 4 5

This exists since (n− 2)− 4 + 1 ≥ 2, because n ≥ 7. By Theorem 5.1 there is a n× n latin

square L with these first three rows. We obtain a new latin square L′ by switching the first

n − 2 cells in the first and second rows, then switch the first three cells in the second and
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third rows. So the first three rows of L′ are:

2 3 1 5 ... n− 2 4 n− 1 n

3 1 2 4 ... n− 3 n− 2 n n− 1

1 2 3 6 ... n− 1 n 4 5

We then obtain two r×n latin rectangles R and S by deleting their second row and another

arbitrarily chosen n−r−1 rows excluding the first and third rows, from L and L′, respectively.

Clearly, R and S differ in the first n− 2 cells in the first row and the first three cells in the

second row. Hence, I(R, S) = rn− (n− 2)− 3 = (r − 1)n− 1.

We note that all pairs (R, S) in this lemma only have different cells in the first two rows,

which will be useful in Lemma 5.9.

Corollary 5.2. For 3 ≤ r < n, (r − 2)n− 1 ∈ I(r, n).

Proof. For 4 ≤ n ≤ 6 and r = n − 1, the following are the required R and S, which are

obtained by modifying the latin rectangles from Lemma 5.6. If r < n − 1, then delete the

bottom n− 1− r rows to obtain R and S. The (R, S)-different cells in S are in bold font.

For n = 4,
1 2 3 4 2 3 1 4

2 1 4 3 1 2 4 3

4 3 1 2 3 4 2 1

For n = 5,
1 2 3 4 5 2 3 1 4 5

2 3 1 5 4 1 2 3 5 4

3 4 5 1 2 5 1 4 2 3

4 5 2 3 1 4 5 2 3 1
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For n = 6,
1 2 3 4 5 6 2 1 4 3 5 6

2 3 1 5 6 4 1 2 3 5 6 4

6 1 4 3 2 5 3 4 5 6 1 2

4 5 6 2 3 1 4 5 6 2 3 1

5 6 2 1 4 3 5 6 2 1 4 3

For n ≥ 7, consider the latin squares L and L′ constructed in Lemma 5.6. Let K be the

latin square obtained by switching the second and fourth rows of L′. We then obtain two

r×n latin rectangles R and S by deleting the second row and arbitrary other n− r− 1 rows

(but not the first, third or fourth row) from L and K, respectively. Then R and S differ on

first n− 2 cells in the first row, the first 3 cells in the seconds row and the entire third row.

Hence, I(R, S) = rn− (n− 2)− 3− n = (r − 2)n− 1.

Lemma 5.7. For 2 ≤ r < n, {(r − 2)n+ 2, ..., (r − 1)n− 2} ⊂ I(r, n).

Proof. Let k ∈ {(r− 2)n+ 2, ..., (r− 1)n− 2}. We will prove the result by constructing two

r × n latin rectangles R, S with I(R, S) = k. Let d = rn − k. Then n + 2 ≤ d ≤ 2n − 2

and 2 ≤ d − n ≤ n − 2. Let L and L′ be latin squares constructed in Lemma 5.3 that

have d − n different cells in each of the first and second rows. Switch the second and third

rows of L′. The two r × n latin rectangles R and S formed by deleting the third row and

arbitrary n− r− 1 rows (other than the first and second row) from both L and L′. Clearly,

R and S differ in exactly d − n cells in the first row and n cells at the second row. Hence

I(R, S) = rn− ((d− n) + n) = rn− d = k.

Lemma 5.8. For r ≥ 3 and n = r + 1, {(r − 2)n+ 1, (r − 2)n+ 2} ⊆ I(r, n).
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Proof. We begin with the (r−2)n+2 case. We start with the 3×3 incomplete latin rectangle

1 2 3

2 1 4

∗ 3 2

where ∗ = 4 if n = 4, and ∗ = 5 if n ≥ 4. Embed this into a 3 × n latin square L by

Theorems 5.1 and 5.2. Let R be the (n − 1) × n latin rectangle obtained by deleting the

third row of L. Let S be the latin rectangle by switching the symbols 1 and 2 in R. Since

R and S disagree in exactly two cells per row, I(R, S) = rn− (2n− 2) = (r − 2)n+ 2.

For the (r − 2)n + 1 case, modify S as follows. Form S ′ by switching symbols in S1,2

and S1,3. Note S1,2 = 1 and S1,3 = 3. S ′ is still an latin rectangle, as no symbol in the

second and third column is 3 and 1, respectively, since L3,2 = 3 and L3,3 = 2. Since R

and S ′ differ at cells (1, 1) (1, 2) and (1, 3) and two cells per row (except the first row),

I(R, S ′) = rn− (2n− 1) = (r − 2)n+ 1.

Lemma 5.9. For 3 ≤ r < n, {2, ..., (r − 2)n− 2} ∪ {(r − 2)n} ⊆ I(r, n).

Proof. Let d = qn+ p with 0 ≤ p ≤ n− 1 and 2 ≤ q ≤ r − 1.

Suppose p = 0 or 2 ≤ p ≤ n − 2. Let R, S be r × n latin rectangles with p different

cells as constructed in Lemma 5.3. Note R and S agree on all cells outside the first row.

Derange the bottom q rows of S to create S ′, using some permutation π on {1, ..., r}, which

has π(i) = i if 1 ≤ i ≤ n− q, and is a bijective derangement on [r− q+ 1, r]. Clearly, R and

S ′ differ in p+ qn cells.

Suppose p = n − 1. Let R, S be r × n latin rectangles with n − 1 different cells as

constructed in Lemma 5.4 if r ≤ n−2 and Lemma 5.5 if r = n−1, respectively. Note R and

S agree on all cells outside the first and second rows. Derange the bottom q rows of S to

create S ′, using some permutation π on {1, ..., r}, which has π(i) = i if 1 ≤ i ≤ n− q, and is

a bijective derangement on [r−q+1, r]. We note that since d 6= rn−1, (q, p) 6= (r−1, n−1).
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Thus p = n− 1 implies q ≤ r − 2, so r − q + 1 ≥ 3 and thus the first two rows of S ′ are the

same as in S. Therefore, R and S ′ differ at p+ qn cells.

Suppose p = 1. Let R, S be r×n latin rectangles with n+1 different cells as constructed

in Lemma 5.6. Then d = qn+ 1 = (q− 1)n+ (n+ 1). We note that since d 6= 2n+ 1, q ≥ 3.

Moreover, q ≤ r − 1. Therefore 2 ≤ q − 1 ≤ r − 2. Derange the bottom q − 1 rows of S to

create S ′, using some permutation π on {1, ..., r}, which has π(i) = i if 1 ≤ i ≤ n− q, and is

a bijective derangement on [r− q+ 1, r]. Since q ≤ r− 2, so r− q+ 1 ≥ 3 and thus the first

two rows of S ′ are the same as in S. Therefore, R and S ′ differ at (q−1)n+ (n+ 1) = qn+ 1

cells.

Lemma 5.10. For 1 ≤ r < n and 4 ≤ n, 1 ∈ I(r, n).

Proof. By Theorem 4.1, there exist two n × n latin squares L and L′ with I(L,L′) = 1.

Without loss of generality, we may assume they agree at cell (1, 1). Delete the bottom n− r

rows from both L and L′. This results two r × n latin rectangles which only agree at cell

(1, 1).

Lemma 5.11. For 2 ≤ r ≤ n− 2, (r − 2)n+ 1 ∈ I(r, n).

Proof. Consider the 4× n partial latin rectangle:

2 3 ... n 1

1 2 ... n− 1 n

n 1 ... n− 2 n− 1

3 4 ... 1 2

This exists since n ≥ 4. By Theorem 5.1 there is a n× n latin square L with such first four

rows. Let L′ be the latin square obtained by switching the first and third rows in L. We

then obtain two r × n latin rectangles R and S by deleting the third, fourth and another

arbitrary arbitrarily chosen n − r − 2 rows excluding the first and second rows from L and

L′, respectively.
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Note the second, third and fourth rows of L are exactly the same as the first three rows

of L defined in Lemma 5.4. Therefore by the exactly same argument as in Lemma 5.4, let

S ′ be the r × n latin rectangle formed by replacing the first n− 1 cells of the second row of

S with 234...(n− 1)1. Then I(R, S ′) = rn− n− (n− 1) = (r − 2)n+ 1.

5.3 Main Result

Theorem 5.3. Let 1 ≤ r < n be positive integers. Let J(r, n) = {0, 1, 2, ..., rn − 2, rn}.

Then

I(r, n) =


{0, 2, 3, 6} if (r, n) = (2, 3);

J(3, 4) \ {9} if (r, n) = (3, 4);

J(r, n) otherwise.

Proof. We first show 9 /∈ I(3, 4). Suppose 9 ∈ I(3, 4). Then there exists two 3 × 4 latin

rectangles R and S, such that I(R, S) = 9. By Lemma 5.1, all the three cells in which R

and S differ must be in the same row. Without loss of generality, we may assume the first

row of R and S are 1234 and 2314, respectively. Since R and S agree in the last 2 rows,

R2,1 ∪ R3,1 = {3, 4}, R2,2 ∪ R3,2 = {1, 4} and R2,3 ∪ R3,3 = {2, 4}. This is impossible since

symbol 4 cannot appear three times in two rows.

The case 0 and rn are trivial to show.

In the case r = 1 and n ∈ {2, 3}, it is easy to create examples with desired intersection

numbers. If n ≥ 4, use Lemma 5.3, 5.10 and Corollary 5.1 for intersection numbers {2, ..., n−

2}, 1 and n− 1, respectively.

If (r, n) = (2, 3), then Lemma 5.2 solves the case.

For all other cases, the results are arranged into the following table.

48



Intersection number

k =

r = 2, n ≥ 4 r ≥ 3

n ≥ r + 2 n = r + 1

rn trivial

rn− 1 Corollary 5.1

rn−2 ≥ k ≥ (r−1)n+

2 or k = (r − 1)n

Lemma 5.3

(r − 1)n+ 1 Lemma 5.4 Lemma 5.5

(r − 1)n− 1 Lemma 5.6

(r−1)n−2 ≥ k ≥ (r−

2)n+ 2

Lemma 5.7

(r − 2)n+ 1 Lemma 5.11 Lemma 5.8

(r − 2)n See k = 0 Lemma 5.9

(r − 2)n− 1 n/a Corollary 5.2

(r − 2)n− 2 ≥ k ≥ 2 n/a Lemma 5.9

1 Lemma 5.10

0 trivial
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