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Abstract

With the rapid development of Internet of Things (loT) teicjues, RF sensing has found
wide applications for, e.g., indoor localization, actviecognition, and healthcare. In this disser-
tation, we investigate the problem of RF sensing for 10T usimgnnel state information (CSI) and
machine learning techniques. In particular, our work mafatuses on indoor localization using
deep learning and vital sign monitoring for RF sensing.

In this dissertation, we first study the problem of CSI basetbam localization. For first
three works, we exploit deep learning for three differemtoior localization systems using CSI
amplitudes, CSI calibrated phases, and CSI bimodal dategcteply. Moreover, we study and
analyze CSI data, which is stable for indoor localization. dgasider deep autoencoder net-
works to train CSI data, and employ the weights of the deeparétto represent fingerprints. A
greedy learning algorithm is leveraged to train the weiddnter-by-layer to reduce computational
complexity, where a sub-network between two consecutiyertaforms a Restricted Boltzmann
Machine (RBM). In the online stage, we use a probabilistic mefior online location estimation.

Then, we exploit deep convolutional neural networks (DCNd)ifdoor localization. Since
DCNN is a supervised method, it only requires to train one grofuweights for all the training
data with related labels, which is different with our prioonks that requires training weights for
every training location. Specially, we use estimated angkarival (AOA) images from CSI data
as input to the DCNN. By executing four convolutional and suofjgang layers, the system can
automatically extract the features of the estimated AOAgesa to obtain training weights. To
improve indoor localization accuracy, we propose deemuadisharing learning for training two
channels CSI tensor data. Moreover, we can stack many résidaang blocks for adding the

depth of the deep network, thus achieving higher learnimtrapresentation ability for CSI tensor



data. The proposed system can achieve decimeter leveldocatcuracy, which is better than
other deep learning methods.

This dissertation also focuses on vital sign monitoringn\g<CS| and machine learning tech-
niques. First, we consider CSI phase difference data to mobieathing and heart beats with
commodity WiFi device. We implement data preprocessindtercollected CSI phase difference
data to obtain the denoised breathing signal and the réstaacheart signal. Moreover, we lever-
age the peak detection method for breathing rate estimatidri-FT based method for heart signal
estimation. To estimate breathing rates for multiple pesseith CSI data. We leverage the tensor
decomposition technique to handle the CSI phase differeatae dhis work first uses CSI phase
difference data to create CSl tensor data. Then Canonicah&iol{YCP) decomposition is applied
to obtain the desired breathing signals. A stable signatimag algorithm is developed to find the
decomposed signal pairs, and a peak detection method irdpplestimate the breathing rates
for multiple persons. To improve the robustness of bregthigns monitoring, we exploit bimodal
CSl data, including amplitude and phase difference, fotirealbreathing monitoring. Then, we
implement the data preprocessing, adaptive signal sefe@nd breathing signal monitoring mod-
ules, and employ peak detection to estimate breathing.rates

The last work of this dissertation considers a phase badee aonar to monitor breathing
rates with smartphones. We implement several signal psoggalgorithms, including signal gen-
eration, data extraction, received signal preprocesaimgjpreathing rate estimation. Specially, we
propose an adaptive median filter approach to remove the geator in the received signal, which
allows to effectively extract the inaudible phase inforimat Our experimental results validate the

superior performance in different indoor environmentisgt.
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Chapter 1

Introduction

With the fast advances in mobile devices and communicaéohriologies, various machines and
devices are capable of interacting with each other withietavark. This new generation of infor-
mation network is the Internet of Things (loT), which is orfelee most important areas of net-
working and attracts much attention from academia and ing{(, 2]. In the 10T, data generated
by sensors or devices is shared with others or stored in thel cWith the powerful computation
capability of cloud servers, the data can be analyzed oregssr much more efficiently than ever
before.

Many emerging applications benefit from the developmenhefloT. In general, 10T based
applications consist of three layers: the sensing layergtteway layer, and the cloud layer. As
shown in Fig. 1.1, the left block represents gensing layer Sensed data is usually captured by
various sensors, such as accelerometer and gyroscopes ilaybr. Recently, researchers also
utilize RF signals to capture events in the IoT environmemt,(RF sensiny RF signals are
transmitted, reflected, blocked, and scattered by objéasnalls, furniture, vehicles, or human
body. Thus, it is possible to extract useful informationgts@as position, movement direction,
speed, and vital signs of a human subject, from received RfalsigUnlike traditional hardware
sensors, RF sensing provides users with low-cost and ursirgervices. Furthermore, due to
the broadcast nature of RF signals, RF sensing can be usedinab omonitor multiple subjects,
but also to capture changes in the environment over a laege ar

The gateway layeiin Fig. 1.1 (the middle block) is to transfer sensed signalthe cloud

layer (the right block). Usually captured signals are analyzatiécloud layer with various signal
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Figure 1.1: The layered architecture for RF sensing in the 10T

processing techniques or machine learning algorithms. iRkgcthere has been considerable inter-
est in applying deep learning techniques such as deep aaten convolutional neural network
(CNN), and long short-term memory (LSTM) to RF sensing [3, 4fditional machine learning
algorithms, such as support vector machine (SVM) and Keastareighbor (KNN) are effective
for small dataset and easy classification tasks. Howewey,¢annot scale well with the increase
number of samples. Moreover, SVM and KNN need careful dat@npcessing and parameters
selection to avoid over-fitting and under-fitting. For exdenp@PCA is always used for feature
extraction for traditional machine learning. However, glésarning can handle the large dataset
and complex classification tasks, which can obtain highessification accuracy. Moreover, deep
learning models can predict well, although being highlyrqvarametrized. Finally, deep learning
algorithms also have great potential to process high dimeabkdata that could not be handled by

shallow machine learning algorithms.



1.1 General Deep Learning Framework for RF Sensing

1.1.1 The General Framework

In this section, we present a general framework to leverage tearning techniques for RF sens-
ing applications. As shown in Fig. 1.2, various types of Ralg can be utilized as inputs to deep
learning algorithms, such as WiFi, RFID, UWB, and Acousticst IRB signals, preprocessing is
an essential step before employing deep learning algositihnthe applications, which is only a
data preparation step. In other words, compared with toait shallow machine learning tech-
niques such as SVM and KNN, feature extraction is not necggsaur framework, because deep
learning algorithms have an excellent capability to repnéslata and then extract features from
the data. In fact, pre-processing step needs to firstly mlo@ibrated data for RF signals, which
should remove randomness errors from other factors sudtegstcket boundary detection (PBD)
error, the sampling frequency offset (SFO) and centraluleagy offset (CFO). For example, cal-
ibrated phase or phase difference between two antennas feigR&ls should be implemented in
preprocessing step. Then, for different deep network tectures including CNN, LSTM, and
autoencoder, the inputs for them are different in prepsiogsstep. For example, when CNN is
used, images can be constructed from the calibrated phasespditudes of signals in the data
preprocessing step [4]. When LSTM is employed, signals cativbged into small time series in
this step before it is passed on to the LSTM. When autoence@apioited, signals can be directly
leveraged for the proposed deep learning framework.

The proposed framework consists of two stages: an offlingitigastage and an online predic-
tion stage. In the offline stage, training data is used to tita¢ deep leaning model. For different
types of applications, the deep network models exhibiedsiht potentials. For example, CNN
achieves outstanding performance in image classificathohpattern recognition, since it emu-
lates the natural visual perception mechanism. On the b, LSTM is effective at processing
variable-length inputs sequences, which makes it highitgddor time related applications. In the

online stage, the test data is fed into the well trained dexyark to provide prediction results.



RF Signal Collection

| |
OFFLINE i

Training Data

Deep Learning

Trained Weights

v \

Prediction Results
| | |
Healthcare |l Indoor Localization ACtIV'.tY
Recognition

Figure 1.2: A general deep learning framework for RF sensing.
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In this stage, strategies such as Bayesian methods have beénauoptimize the output of the
deep network (e.g., for indoor localization) [3]. Sometayne output of the deep network can be
directly used as prediction results, such as in some retiograr detection applications. On the
other hand, when the surrounding environment changesrtp@ped framework can use transfer
learning for updating training weights with small measueatdataset. In other words, we can
fix weights for low layers and only train weights for the togda with a classifier, which reduces

greatly training time and data collection time.

1.1.2 RF Sensing Techniques

Various wireless signals have been used for RF sensing, s, RFID, UWB, and acoustics

signals.



WiFi
WiFi is a technology that uses radio waves to provide networknectivity for devices based on
the 802.11 standards [5]. Over the years, a series of Wikdatas have been created by the IEEE
LAN/MAN Standards Committee (IEEE 802). Initially, the menam data rate is 2 Mbps with a
range of 20 m, which has now been increased to 1.73 Gbps wihgerof 35 m, as specified in
the IEEE 802.11ac standard [5]. WiFi usually uses the 2.4 @htz5.8 GHz bands (while IEEE
802.11ad uses the 60 GHz band). Compared with the 2.4 GHz ban&, GHz band provides
higher data rates and lower signal interferences, evemgththe longer wavelength of the 2.4 GHz
is beneficial to long-range transmissions.

WiFi has become the dominant data access technology folenaders. WiFi access is ubig-
uitous in many indoor and outdoor environments, which mak@s an ideal candidate for RF
sensing to capture changes in the environment. Comparedraditional sensors, WiFi is capable

of monitoring a large and crowded area, but WiFi signals aseaptible to interferences.

RFID

RFID is a technique to automatically identify and track tatiaaed to objects using electromag-
netic fields. The technology has been widely used in almostaustrial sectors, such as storage,
retail stores, factories, and supply chain managementg@hilar to WiFi, RFID signals are also
affected by the surroundings. Features of RFID signals, asdRSSI and phase obtained from a
reader, can also be utilized to monitor changes of enviroitme
There are two types of RFID systems, i.e., active and passie Bfstems. An active RFID

system depends on the internal power supply to reflect a mespo the reader. Although longer
ranges can be achieved, active RFID systems usually haveharhegst and larger form factor.
Passive RFID tags draw much attention because of its smakerlswer cost, and no need for
power sources. Passive tags also have great potentiaVacpmprotection because they could only

be read from a specific direction and at a small distance. Mexw&FID is also limited by its



extremely simple design. For instance, when a reader atsstmpead multiple tags close to each

other, there will be collision among the response signafs¢hvcauses data loss.

UwB

UWSB is a carrierless communication technology, which aatsdvigh date rates by utilizing ultra-
short pulses with a duration less than 1 nanosecond [7]. fieae a high data rate, the ultra-short
pulses are transmitted over a wide bandwidth, which is lsialger than 500 MHz. Due to the
ultra-short pulses, the power consumption of UWB is much faWan traditional communication
systems. Ultra-short pulses also mitigate the multipatbcefand enable high precision Time of
Flight (TOF) estimation, which is beneficial to many RF segsapplications. UWB signals can
penetrate materials, and many through-wall imaging systam proposed to exploit this feature.
Furthermore, because of its unique, wide spectrum, UWB sdgra robust to interference from
other wireless sources. However, comparing to WiFi and REN¥B hardware is usually more

expensive.

Acoustic Signals

Acoustic signals attract researchers’ attention due texktensive use of microphones and speakers
on mobile devices (i.e., smartphones). Considering therlpnapagation speed and narrow band-
width of an acoustics signal, high speed resolution can beigeed by acoustics signals, which
means that it is much easier for acoustic signals to capheesinall movements of an object.
Acoustic signals have been exploited for activity recagnitand speed detection based on ma-
chine learning and Doppler shift. However, comparing witteo signals such as WiFi and RFID,
acoustics signals can be easily affected by other sounde®ur adjacent frequencies. Acoustics
signals transmitted from smartphones also do not have agspenetration ability. Thus appli-
cations with smartphone acoustic signals can only be deglayithin small distances (e.g., in a

single room). If the acoustic signal is in the audible ranfge,sound would be annoying to users.



1.1.3 Deep Learning Techniques

Deep learning is a branch of Machine Learning that achievdsipte levels of representation of
data using a general purpose learning procedure. Recdrghg has been extraordinary interests
on applying deep learning to wireless systems, largely vated by the huge success of deep
learning in a variety of areas, such as natural languageepsitg, pattern recognition, image
classification, and gaming. We discuss the features of thidely used deep learning models,

including autoencoder, CNN, and LSTM.

Autoencoder Neural Network

An autoencoder neural network is an unsupervised leardgayithm. Its aim is to generate the
output that is an approximation of the input [8]. The arattilee of autoencoder is shown in
Fig. 1.3 (top). Generally, an autoencoder is composed Wwittetparts: an input layer, one or more
hidden layers, and an output layer. To reconstruct its oyntirthe output layer has an identical
number of nodes as the input layer. On the other hand, the euailmodes in the hidden layers
is always smaller than the number of nodes in the input lagethat a compressed representation
can be extracted from the input data.

There are three stages in the training process, includitggining, unrolling, and fine-tuning.
In the pretraining stage, each neighboring set of two laigensodeled as a Restricted Boltzmann
Machines (RBM) to approximate a good solution. Then the deépark is unrolled to obtain
the reconstructed input with forward propagation. Nexg llackpropagation technique is used
to fine-tune the results. Like PCA, the purpose of the autaderce to find low-dimensional
representations of the input data. Naturally, the auto@eicneural network is widely used in data
compression and signal denoising. With the proposed deepitey framework in Fig. 1.2, we can

also use deep autoencoder for activity recognition andtheahsing.
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Convolutional Neural Network

CNN is a widely used deep learning technique, which is insiping emulating the natural visual
perception mechanism of living creatures, and conseqye@NIN has achieved a great success
in computer vision. In 1998, LeCun proposed LeNet-5 [9], whi one of the first architecture
of CNN. As shown in Fig. 1.3, the convolution and subsamplipgrations of LeNet-5 are first
applied to the input data in the computation units calledsotutional layer and subsampling layer,
respectively. After two groups of such computation, thepatibf the higher layer is processed by

a fully connected traditional neural network, where thelfalassification results are improved.



In 2015, a residual learning framework, called ResNet, waggsed by Microsoft Research [10].
A 152-layer residual network achieves an error rate of 3.9r2the ImageNet test set, and won
the 1st place in the ILSVRC 2015 classification competitiamsdlve the vanishing gradient prob-
lem caused by greatly increased depth of the network, théualsmodule creates a shortcut path
between the input and output, which implies an identity niagpp

The great performance of CNNs also attracts RF sensing résgarattention. For example,
ResLoc [4], an indoor localization system with commodity 5Z3NiFi, uses bimodal CSI tensor
datato train @leep residual sharing learningResLoc has achieved superior performance of indoor

localization and outperformed several existing deep lagrbased methods.

Long Short-Term Memory

Recurrent neural networks (RNN) are developed to processblarlength input sequences, which
originated from conventional feedforward neural netwoMéth feedback loops in the recurrent
layer, long-term dependencies could be handled. Howdwerdépendencies also make it hard to
train the RNN, because the gradient of the loss function temdgher diminish or explode, which
makes gradient-based optimization methods ineffective.

The LSTM model, shown in Fig. 1.3, is proposed to addresspioblem [11]. Unlike the
traditional RNN where the input at each time-step affectsyeteedback loop, an LSTM unit
utilizes three gates to control the data flow. Aput gatedecides if a new value could flow
into the memory; dorget gatecontrols if a value should remain in memory; andarput gate
determines if the value in memory could be used to computetiteut of the unit. These gates
ensure that gradient-based optimization methods couldskd to train the LSTM. LSTM has
been used widely for machine translation, speech recognitind time-series prediction. More
and more applications based on LSTM have appeared in th@BRfasensing.

In the work, we investigate the problem of RF sensing for loi@€SI and machine learning
techniques. In particular, our work mainly focuses on indooalization and vital sign monitor-

ing for RF sensing. For indoor localization, we consideretight CSI features as fingerprints



for indoor localization using different deep learning nagth. On the other hand, for vital sign
monitoring, we consider breathing and heart rates mondoior single person and multiple per-
sons using CSI phase differences. Moreover, we study theergdireathing beats monitoring for
bad locations. In addition, we also exploit the acoustioalidor breathing rate estimation with
smartphones.

The contributions of our work is summarized as follows:

1. We present a novel deep learning based indoor fingemugirsystem using CSI, which is
termed DeepFi. Based on three hypotheses on CSI, the Deepéinsgschitecture includes
an off-line training phase and an on-line localization ghalh the off-line training phase,
deep learning is utilized to train all the weights of a deefpvoek as fingerprints. Moreover,
a greedy learning algorithm is used to train the weightsriyelayer to reduce complexity.
In the on-line localization phase, we use a probabilistithoé based on the radial basis
function to obtain the estimated location. Experimentautes are presented to confirm that
DeepFi can effectively reduce location error compared Witke existing methods in two

representative indoor environments.

2. We propose PhaseFi, a fingerprinting system for indocaliwation with calibrated CSI
phase information. In PhaseFi, the raw phase informatidinsisextracted from the multi-
ple antennas and multiple subcarriers of the IEEE 802.1fwarnk interface card (NIC) by
accessing the modified device driver. Then a linear transdtion is applied to extract the
calibrated phase information, which we prove to have a bednariance. For the offline
stage, we design a deep network with three hidden layeraitottie calibrated phase data,
and employ the weights of the deep network to represent fongés. A greedy learning
algorithm is incorporated to train the weights layer-bydato reduce computational com-
plexity, where a sub-network between two consecutive Bj@ms a RBM. In the online

stage, we use a probabilistic method based on the radiad hasition (RBF) for online
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location estimation. The proposed PhaseFi scheme is ingpitsd and validated with ex-
tensive experiments in two representation indoor enviems It is shown to outperform

three benchmark schemes based on CSI or RSS in both scenarios.

. We study fingerprinting based indoor localization in cooaiity 5GHz WiFi networks. We
first theoretically and experimentally validate three hyy@ses on the CSI data of 5GHz
OFDM channels. We then propose BiLoc, bi-modality deep learfor indoor localization
using commodity WiFi devices. We develop a deep learningrédlgm to exploit bi-modal
data, i.e., estimated angle of arrival (AOA) and average e (which are calibrated
CSI data with several proposed techniques), in both the efflimd online stages of indoor
fingerprinting. The proposed BiLoc system is implementedhwdammodity WiFi devices.
Its superior performance is validated with extensive expents under three typical indoor

environments and through comparison with three benchnadndéses.

. We propose CiFi, deep convolutional neural networks (DCiN)ndoor localization with
commodity 5GHz WiFi. First, by leveraging a modified devic&ver, we can extract phase
data of CSI, which is used to estimate AOA. We then create agtithAOA images as input
to the DCNN, to train the weights in the offline phase. The limcabf mobile device is
predicted based on the trained DCNN and new CSI AOA image. W2t the proposed
CiFi system with commodity Wi-Fi devices in the 5GHz band aedfy its performance

with extensive experiments in two representative indo@irenments.

. We propose ResLoc, a deep residual sharing learning basersfor indoor localization

with CSI tensor data. First, we introduce CSI data in wirelgssesns and discuss how to
build CSI tensor data for indoor localization. Then, we dedite ResLoc system, which
employs two channels CSI tensor data to train the deep netwouking the proposed deep

residual sharing learning in the offline phase. For onlirs¢ phase, we use newly received
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CSI tensor data to estimate the location of the mobile devasedh on the enhanced prob-
abilistic method. Finally, the experimental results shtw proposed ResLoc system can

obtain the decimeter level localization accuracy.

. We design PhaseBeat system to leverage CSI phase diffefetace® monitor breathing and
heart beats with commodity WiFi device. First, we deeplylyr@athe measured phase errors
and prove the phase difference with the same frequency wetitihing rate. Then, we imple-
ment data preprocessing for the collected CSI phase differdata to obtain the denoised
breathing signal and the restructured heart signal. M@®eave leverage the peak detection
method for breathing rate estimation and FFT based methduefrt signal estimation. Our
experimental results demonstrate that our PhaseBeat sgateobtain better performances

in different environmental parameters.

. We propose TensorBeat, a system to employ CSI phase diffedata to intelligently es-
timate breathing rates for multiple persons with commotliyi devices. The main idea
is to leverage the tensor decomposition technique to hahdl€SI phase difference data.
The proposed TensorBeat scheme first obtains CSI phase ddtedata between pairs of
antennas at the WiFi receiver to create CSI tensor data. Theon@al Polyadic (CP) de-
composition is applied to obtain the desired breathingagnA stable signal matching
algorithm is developed to find the decomposed signal paiisagpoeak detection method is
applied to estimate the breathing rates for multiple pess@ur experimental study shows
that TensorBeat can achieve high accuracy under differantogrments for multi-person

breathing rate monitoring.

. We present ResBeat, a commodity 5 GHz WiFi based system toiekpnodal CSI in-
cluding amplitude and phase difference, for realtime, {targn, and contact-free breathing
monitoring. Specifically, we first present an analysis ofaltineng signal anomaly based on

bimodal CSI data. Then, we implement the data preprocesadaptive signal selection,

12



and breathing signal monitoring modules of ResBeat, and gnmgeak detection to esti-
mate breathing rates. We conduct extensive experimentssathiing rate monitoring under
three different environments, where superior performanes two alternative methods is

validated.

. We present a SonarBeat system to leverage a phase basedsaaotir to monitor breathing
rates with smartphones. We design and implement the Sonasi&gam, with components
including signal generation, data extraction, receivemal preprocessing, and breathing
rate estimation, with Android smartphones. Our experimler@sults validate the superior

performance of SonarBeat in different indoor environmetttrsgs.
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Chapter 2

DeepFi: CSI Amplitude based Fingerprinting for Indoor Lazation Using Deep Learning

2.1 Introduction

With the proliferation of mobile devices, indoor localiat has become an increasingly important
problem. Unlike outdoor localization, such as the Globasiftaning System (GPS), that has
line-of-sight (LOS) transmission paths, indoor locali@atfaces a challenging radio propagation
environment, including multipath effect, shadowing, fagland delay distortion [12, 13, 14, 15].
In addition to the high accuracy requirement, an indoortpmsng system should also have a low
complexity and short online process time for mobile devicés this end, fingerprinting-based
indoor localization becomes an effective method to satlsfge requirements, where an enormous
amount of measurements are essential to build a databasglitafe real-time position estimation.
Fingerprinting based localization usually consists of tvesic phases: (i) the off-line phase,
which is also called the training phase, and (ii) the on-limase, which is also called the test
phase [16]. The training phase is for database constryatibaen survey data related to the posi-
tion marks is collected and pre-processed. In the off-liaming stage, machine learning methods
can be used to train fingerprints instead of storing all tkeiked signal strength (RSS) data. Such
machine learning methods not only reduce the computatmraplexity, but also obtain the core
features in the RSS for better localization performance. Khdiral networks, and support vector
machine, as popular machine learning methods, have bedircafip fingerprinting based indoor
localization. KNN uses the weighted averagefofnearest locations to determine an unknown

location with the inverse of the Euclidean distance betwteerobserved RSS measurement and

14



its K nearest training samples as weights [12]. A limitation ofNKI8 that it needs to store all the
RSS training values. Neural networks utilizes the back-ggagion algorithm to train weights, but

it considers one hidden layer to avoid error propagatioharttaining phase and needs labeled data
as a supervised learning [17]. Support vector machine usgekfunctions to solve the random-
ness and incompleteness of the RSS values, but has high aaqpaoinplexity [18]. In the on-line
phase, a mobile device records real time data and testsg tie database. The test output is then
used to estimate the position of the mobile device, by s@agaach training point to find the most
closely matched one as the target location. Besides suchstemtimation method, an alternative
matching algorithm is to identify several close points eaith a maximum likelihood probability,
and to calculate the estimated position as the weightecdgeef the candidate positions.

Many existing indoor localization systems use RSS as fingeggpdue to its simplicity and
low hardware requirements. For example, the Horus systes aiprobabilistic method for loca-
tion estimation with RSS data [19]. Such RSS based methodstivawdisadvantages. First, RSS
values usually have a high variability over time for a fixeddtion, due to the multipath effects in
indoor environments. Such high variability can introduexgeé location error even for a stationary
device. Second, RSS values are coarse information, which mateexploit the many subcarriers
in an orthogonal frequency-division multiplexing (OFDMyrfricher multipath information. It is
now possible to obtain CSI from some WiFi network interfacedsgNIC), which can be used
as fingerprints to improve the performance of indoor loedian [20, 21]. For instance, the FIFS
scheme uses the weighted average CSI values over multiglereas [22]. In addition, the PinLoc
system also exploits CSl information, while considering 1 m? spots for training data [23].

In this chapter, we propose a deep learning based fingangistheme to mitigate the several
limitations of existing machine learning based methods déep learning based scheme can fully
explore the feature of wireless channel data and obtain ptienal weights as fingerprints. It
also incorporates a greedy learning algorithm to reducepcational complexity, which has been
successfully applied in image processing and voice retiognj24]. The proposed scheme is

based on CSI to obtain more fine-grained information aboutvingless channel than RSS based
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schemes. The proposed scheme is also different from thBngxiSSI based schemes, in that it
incorporates 90 magnitudes of CSI values collected from liheetantennas of the Intel's IWL
5300 NIC to train the weights of a deep network with deep liegrn

In particular, we present DeepFi, a deep learning basedimitltgerprinting scheme using
CSI. We first introduce the background of CSI and present thypetheses on CSI. We then
present the DeepFi system architecture, which includedfdme training phase and an on-line
localization phase. In the training phase, CSI informatmmall the subcarriers from three anten-
nas are collected from accessing the device driver and atgzad with a deep network with four
hidden layers. We propose to use the weights in the deep retaoepresent fingerprints, and
to incorporate a greedy learning algorithm using a stack of RBd/train the deep network in a
layer-by-layer manner to reduce the training complexitye Greedy algorithm first estimates the
parameters of the first layer RBM to model the input data. Themp#rameters of the first layer are
frozen, and we obtain the samples from the conditional gritibato train the second layer RBM
and so forth. Finally, we can obtain the parameters of thettidayer RBM with the above greedy
learning algorithm. Moreover, for each layer RBM model, we tiiecontrastive divergence with
1 step iteration (CD-1) method to update weights, which hagitdime complexity than other
schemes such as Markov chain Monte Carlo (MCMC) [25]. In theilm@lbcalization phase, a
probabilistic data fusion method based on radial basistimmds developed for online location
estimation using multiply packets. To reduce the compaati complexity for online localiza-
tion, packets are divided into several batches, each offwdoatains the same number of packets.
Because packets are processed in parallel in batches, wegodgicantly shorten the processing
time when dealing with a large amount of packets.

The proposed DeepFi scheme is validated with extensiveriexgets in two representative
indoor environments, i.e., a living room environment andoanputer laboratory environment.
DeepFi is shown to outperform several existing RSSI and CStdashemes in both experi-
ments. We also examine the effect of different DeepFi patarsen localization accuracy and

execution time, such as using different number of anterusasg different number of test packets,
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and different number of packets per batch. Finally, we ingage the effect of different propaga-
tion environments on the DeepFi performance, such as reglabstacles, human mobility, and
the training grid size in our experimental study. Our expemtal results confirm that DeepFi can
perform well in these scenarios.

The remainder of this chapter is organized as follows. Weevevelated work in Section 2.2.
The background and hypotheses are presented in SectiomtidDeepFi system is presented in

Section 2.4 and evaluated in Section 2.5. Section 2.6 cdaslthis chapter.

2.2 Related Work

There has been a considerable literature on indoor lo¢@iizf26]. Early indoor location service
systems include (i) Active Badge equipped mobiles with irfdatransmitters and buildings with
several infrared receivers [27], (ii) the Bat system that &asatrix of RF-ultrasound receivers
deployed on the ceiling [28], and (iii) the Cricket systemttbquipped buildings with combined
RF/ultrasound beacons [29]. All of these schemes achieve lbialization accuracy due to the
dedicated infrastructure. Recently, considerable effargsmade on indoor localization systems
based on new hardware, with low cost, and high accuracy. eTtexsent work mainly fall into
three categories: Fingerprinting-based, Ranging-basddA@A-based, which are discussed in

this chapter.

2.2.1 Fingerprinting-based Localization

Fingerprinting-based Localization requires a traininggi to survey the floor plan and a test
phase to search for the most matched fingerprint for locagimation [30, 31]. Recently, dif-
ferent forms of fingerprint have been explored, including=W}iL9], FM radio [32], RFID [33],
acoustic [34], GSM [35], light [36] and magnetism [37], whaNiFi-based fingerprinting is the
dominant method because WiFi signal is ubiquitous in th@aneenvironments. The first work
based on WiFi is RADAR [16], which builds fingerprints of RSSngsbne or more access points.

It is a deterministic method using KNN for position estinoati Horus [19] is an RSS based
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scheme utilizing probabilistic techniques to improve l@aion accuracy, where the RSS from an
access point is modeled as a random variable over time ame.spa addition to RSS, channel
impulse response of WiFi is considered as a location-related stability signature, with which
the fine-grained characteristics of wireless channels eaexploited to achieve higher localiza-
tion accuracy. For example, FIFS [22] and PinLoc [23] use Gfhioed through the off-the-shelf
IWL 5300 NIC to build reliable fingerprints. Although thesehaiques achieve high localization
precision, they need a large amount of calibration to bligfingerprint database via war-driving,
as well as manually matching every test location with theesponding fingerprint. Currently,
time-reversal based methods are proposed for obtainingeeter-accuracy indoor localization
using a frequency hopping approach [38] and a multi-anteppaoach [39]. In fact, these meth-
ods require a large number of fingerprints collected in ingrphase and are implemented in a
small area.

Crowdsourcing is proposed to reduce the burden of war-dyiinsharing the load to multi-
ple users. It consists of two main steps: (i) estimationssef trajectories, and (ii) construction of
a database mapping fingerprints to user locations [40]. Rigc&ee [41] uses the inertial sensors
and particle filtering to estimate a user’s walking trajegtand to collect fingerprints with WiFi
data as crowd-sourced measurements for calibration. &igiLiFS [42] also uses user trajecto-
ries to obtain fingerprint values and then builds the mappe&tgveen the fingerprints and the floor
plan. Crowdsourcing can also be used to detect indoor cantéxtr example, CrowdInside [43]
and Walkie-Markie [44] can detect the shape of the floor plahlzuild the pathway to obtain the
crowdsourced user’s fingerprints. Moreover, Jigsaw [4%8] @ravi-Navi [46] combine vision and
mobility obtained from a smartphone to build user trajeetrAlthough crowdsourcing does not
require a large amount of calibration effort, it obtainsrseagrained fingerprints, which leads to

low localization accuracy in general.
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2.2.2 Ranging-based Localization

Ranging-based localization computes distances to at legest iccess points and leverages geo-
metrical models for location estimation. These schemesaigaly classified into two categories:
power-based and time-based. For power-based approabkegrevalent log-distance path loss
(LDPL) model is used to estimate distances based on RSS, wbere measurements are utilized
to train the parameters of the LDPL model [47]. For exampl&[48B] is a configuration-free lo-
calization scheme, where a genetic algorithm is used foirspthe RSS-distance equations. The
LDPL model and truncated singular value decomposition (H&ie used to build a RSS-distance
map for localization, which is adaptive to indoor enviromtag dynamics [47]. CSl-based ranging
is proposed to overcome the instability of RSS in indoor emuinents. For instance, FILA exploits
CSI from the PHY Layer to mitigate the multipath effect in tive¢-domain, and then trains the
parameters of LDPL model to obtain the relationship betvibereffective CSI and distance [49].
Acoustic-based ranging approaches are developed for inmgrandoor localization preci-
sion. H. Liuetal propose a peer assisted localization technique based otpsimiaes to compute
accurate distance estimation among peer smartphones eatistc ranging [50]. Centour [51]
leverages a Bayesian framework combining WiFi measurenagrtsacoustic ranging, where two
new acoustic techniques are proposed for ranging under Nbrd3ocating a speaker-only device
based on estimating distance differences. Guoguo [52] isaatphone-based indoor localization
system, which estimates a fine-grained time-of-arrival AT @sing beacon signals and performs

NLOS identification and mitigation.

2.2.3 AOA-based Localization

Indoor localization based on AOA utilizes multiple antesa estimate the incoming angles and
then uses geometric relationships to obtain the user twtatlihis technique is not only with zero
start-up cost, but also achieves higher accuracy than tgbleniques such as RF fingerprinting or
ranging-based systems. The challenge of this techniquewstd improve the resolution of the

antenna array. The recently proposed CUPID system [53] adbgtoff-the-shelf Atheros chipset

19



with three antennas, and can obtain CSI to estimate AOA, @cdigi@ mean error about 20 degrees
with the MUSIC algorithm. The relatively large error is migimlue to the low resolution of the
antenna array. For high localization accuracy, the ArregeK system [54] is implemented with
two WARP systems, which are FPGA-based software definedgaldimcorporates a rectangular
array of 16 antennas to compute the AOA, and then uses spatttadthing to suppress the effect of
multipath on AOA. However, Array-Track requires a large rngmof antennas, which is generally
not available for commodity mobile devices.

Onthe other hand, some systems, such as LTEye [55], Ubi&GE&Vi-Vi [57], and Pinlt [58],
use Synthetic Aperture Radar (SAR) to mimic an antenna arraygdmve the resolution of angles.
the main idea of SAR is to use a moving antenna to obtain sgmgbshots as it moves along a
trajectory, and then to utilize these snapshots to mimiecgelantenna array along the trajectory.
However, it requires accurate control of the speed anddi@jg by using a moving antenna placed

on an iRobot Create robot.

2.3 Background and Hypotheses

2.3.1 Channel State Information

Thanks to the NICs, such as Intel's IWL 5300, it is now easierdndtict channel state mea-
surements than in the past when one has to detect hardwanelsdor physical layer (PHY)
information. Now CSI can be retrieved from a laptop by aceestie device drive. CSI records
the channel variation experienced during propagationndrratted from a source, a wireless sig-
nal may experience abundant impairments caused by, eegnuhipath effect, fading, shadowing,
and delay distortion. Without CSI, it is hard to reveal theroie characteristics with the signal
power only.

Let X andY denote the transmitted and received signal vectors. We have

Y =CSI- X + N, (2.1)



where vectorN is the additive white Gaussian noise and CSI represents trnelis frequency
response, which can be estimated frahandY’.

The WiFi channel at the 2.4 GHz band can be considered as@wiznd flat fading channel
for OFDM system. The Intel WiFi Link 5300 NIC implements an @ system with 56 subcarri-
ers, 30 out of which can be read for CSI information via the cedriver. The channel frequency

response C$bf subcarrieri is a complex value, which is defined by
CSl; = |CSl;| exp {7 £CSl;}. (2.2)

where|CSl;| andZCSl|; are the amplitude response and the phase response of seihgaespec-
tively. In this chapter, the proposed DeepFi framework iseobon these 30 subcarriers (or, CSI

values), which can reveal much richer channel propertias RSSI.

2.3.2 Hypotheses

We next present three hypotheses about the CSI data, whighlatated with the statistical results

through our measurement study.

Hypothesis 1

CSI amplitude values exhibit great stability for continugueceived packets at a fixed location,
compared with RSS values.

CSI amplitude values reflect channel properties in the freguelomain and exhibit great
stability over time for a given location. Fig. 2.1 plots thenwulative distribution function (CDF)
of the standard deviations of normalized CSI and RSS ampétimtel 50 sampled locations. At
each location, CSl and RSS values are measured from 50 reqeiekdts with the three antennas
of Intel WiFi Link 5300 NIC. It can be seen that for CSI amplitugues, 90% of the standard
deviations are below 10% of the average value; for RSS vahmsever, 60% of the standard

deviations are below 10% of the average value. Therefore€Q8lUich more stable than RSS. Our
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Figure 2.1: CDF of the standard deviations of CSl and RSS amdpktior 150 sampled locations.

measurements last a long period including both office hauaisjaiet hours. No obvious difference
in the stability of CSI for the same location is observed dedént times. On the contrary, RSS
values exhibit large variations even at the same positionerdfore, CSI amplitude values are

leveraged as the feature of deep learning in the DeepFimyste

Hypothesis 2

Because of the multipath effect and channel fading indoeir@mment, the number of clusters of
CSl values over subcarriers varies at different locations.

CSI amplitude values reflect channel frequency responsésabitndant multipath compo-
nents and channel fading. Our study of channel frequen@orees shows that there are several
dominant clusters for CSI amplitude values, where eacharusinsists of a subset of subcarri-
ers with similar CSI amplitudes values. To find the featurelo$ters of CSI amplitudes values,
we draw the CDF and the two-dimensional (2D) contour of the memof clusters for CSI am-
plitude values for 50 different locations in the living ro@nvironment in Fig. 2.2 and Fig. 2.3,
respectively. For every location, CSl values are measuged &0 received packets with the three
antennas of Intel WiFi Link 5300 NIC. Based on Fig. 2.2 and Fig, @e can see that the number
of clusters of CSI amplitude values varies at 50 differenatmns. Moreover, at most of locations,

CSI amplitude values exhibit two or three clusters. Sometiona have one cluster because of
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Figure 2.3: 2D contour of the number of clusters of CSI amgétualues at 50 different locations.

less reflection and diffusion. Some other locations with fieesor six clusters may suffer from the
severe multipath effect.

To detect all possible numbers of clusters, we measure CSlitadgvalues from received
packets for a long period at each location, which can be usetddining weights in deep network.
In addition, more packet transmissions will be helpful teea the comprehensive properties at
each location. In our experiments, we consider 500 and 186Kaps for training in the living room

environment and the computer laboratory environmentgesgely, more than the 60 packets used

in FIFS.
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Figure 2.4: Amplitudes of channel frequency response medst the three antennas of the Intel
WiFi Link 5300 NIC (each is plotted in a different color) fob%eceived packets.

Hypothesis 3

The three antennas of the Intel WiFi Link 5300 NIC have diffe@SI features, which can be
exploited to improve the diversity of training and test s&ap

Intel WiFi Link 5300 is equipped with three antennas. We findttthe channel frequency
responses of the three antennas are highly different, evéhd same packet reception. In Fig. 2.4,
amplitudes of channel frequency response from the thremaat exhibit different properties. In
FIFS, CSI amplitude values from the three antennas are siagglymulated to produce an average
value. In contrast, DeepFi aims to utilize their varialgilib enhance the training and test process
in deep learning. The 30 subcarriers can be treated as 3@ modeused as input data of visible
variability for deep learning. With the three antennasretae 90 nodes that can be used as input
data for deep learning. The greatly increased number of héafeinput data can improve the
diversity of training and test samples, leading to bettefgomance of localization if reasonable

parameters are chosen.
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Figure 2.5: The DeepFi architecture.

2.4 The DeepFi System

2.4.1 System Architecture

Fig. 2.5 shows the system architecture of DeepFi, which osdgires one access point and one
mobile device equipped with an Intel WiFi link 5300 NIC. At thebile device, raw CSI values
can be read from the modified chipset firmware for receivedeitac The Intel WiFi link 5300
NIC has three antennas, each of which can collect CSI data 3@muiifferent subcarriers. We
can thus obtain 90 raw CSI measurements for each packet i@tepinlike FIFS that averages
over multiple antennas to reduce the received noise, otersysses all CSl values from the three
antennas for indoor fingerprint to exploit diversity of tHeanel. Since itis hard to use the phases
of CSl for localization, we only consider the amplitude resges for fingerprinting In this chapter.
On the other hand, since the input values should be limitederrange (0, 1) for effective deep

learning, we normalize the amplitudes of the 90 CSI valuebddin the offline and online phases.
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In the offline training phase, DeepFi generates feature<b&ngerprints, which are highly
different from traditional methods that directly store C8lues. Feature-based fingerprints utilize
a large number of weights obtained by deep learning for mffelocations, which effectively
describe the characteristics of CSI for each location andoedoise. Meanwhile these weights
can indirectly extract the feature of clusters hidden in C8ues. The feature-based fingerprints
server can store the weights for different training logagioln the online localization phase, the

mobile device can estimate its position with a data fusigoregch.

2.4.2 Weight Training with Deep Learning

Fig. 2.6 illustrates how to train weights based on deep IegrnThere are three stages in the
procedure, including pretraining, unrolling, and fineitun[8]. A deep network with four hidden
layers is adopted, where every hidden layer consists off@reift number of neurons. In order to
reduce the dimension of CSI data, we assume that the numbeuodms in a higher hidden layer
is more than that in a lower hidden layer. Uét, K5, K5 and K, denote the number of neurons in
the first, second, third, and fourth hidden layer, respebtivt follows thatK; > Ky, > K3 > Kj.

In addition, we propose a new approach to represent fingespiie., using the weights be-
tween connected layers. Defiilé , W5, W5 andW, as the weights between the normalized mag-
nitudes of CSI values and the first hidden layer, the first andrs# hidden layer, the second and
third hidden layer, and the third and fourth hidden layespeztively. The key idea is that after
training the weights in the deep network, we can store thefimgsrprints to facilitate localization
in the on-line test stage. Moreover, we definas the hidden variable at laygrfori = 1, 2, 3, 4,
respectively, and let denote the input data, i.e., the normalized CSI magnitudes.

We represent the deep network with four hidden layers witfolaabilistic generative model,

which can be written as

Pr(v, h', h% 13 h*)

= Pr(v|h!') Pr(h|h?) Pr(h?|h®) Pr(h®, h*). (2.3)
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Figure 2.6: Weight training with deep learning.

Since the nodes in the deep network are mutually independenth'), Pr(h!|h?), andPr(h?|h?)

can be represented by

Pr(v|h') = T2, Pr(uilh!)
Pr(h'|n?) = [T2, Pr(h}|h?)
Pr(i?|h%) = L2, Pr(hf|h?).
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In (2.4), Pr(v;|h!), Pr(h}|h?), andPr(h?|h3) are described by the sigmoid belief network in the

deep network, as

Pr(v;|ht) =1/ (1 +exp (—b) — Z]K:ll Wf%}))
Pr(h}|h?*) =1/ (1 +exp (=b; — 23[21 Wé’jh§>) (2:5)
Pr(h?|h®) =1/ (1 +exp (=0} — Znggl Wéjh;))))

whereb?, b} andb? are the biases for unitof input dataw, unit: of layer 1, and unit of layer 2,
respectively.
The joint distributionPr(23, h*) can be expressed as a RBM [25] with a bipartite undirected

graphical model [25], which is given by
Pr(h?, i) = o exp(~E(i*, 1), (2.6)

whereZ = 3,0 3y exp(—E(h, b)) andE(h*, ht) = — 3215 bR =371 bHhd =371 S0 WiThihg.
In fact, since it is difficult to find the joint distributioRr(%3, h*), we use CD-1 method [25] to ap-

proximate it, which is given by

Pr(h®|ht) = [[2 Pr(h3|ht)

(2.7)
Pr(h*|h?) = T2 Pr(h{|h?),
wherePr(h3|h*), andPr(h}|h?) are described by the sigmoid belief network, as
3| pt) = b3 S ppriipa
Pr(hd|nt) = 1/ (1 +exp (b} — X1 Wi7nt)) 29

Pr(hfn¥) = 1/ (1 +exp (b} — X1 Wi7hd))

Finally, the marginal distribution of input data for the gdeelief network is given by

Pr(v) => 3 Y > Pr(v,h',h* h° hY). (2.9)

Rl h2 h3 A4
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Due to the complex model structure with the large number ofores and multiple hidden
layers in the deep belief network, it is difficult to obtairetiveights using the given input data
with the maximum likelihood method. In DeepFi, we adopt aegkelearning algorithm using a
stack of RBMs to train the deep network in a layer-by-layer nearj5]. This greedy algorithm
first estimates the parametdis, b', W, } of the first layer RBM to model the input data. Then the
parametergd®, W, } of the first layer are frozen, and we obtain the samples franctmditional
probability Pr(h!|v) to train the second layer RBM (i.e., to estimate the paramétérs?, 1, 1),
and so forth. Finally, we can obtain the paramefgfsb*, W} of the fourth layer RBM with the
above greedy learning algorithm.

For the layeri RBM model, we use CD-1 method to update weidhts We first geth’ based
on the samples from the conditional probabilty(:|h'~!), and then obtairk’~! based on the
samples from the conditional probabiliy(h~1|h). Finally we obtaim’ using the samples from

the conditional probabilit)Pr(h’VL"*l). Thus, we can update the parameters as follows.

Wi = W; + a(hi=thi — hi=1h)
b = b + a(hi — i) (2.10)
pi—l = pi—1 ¢ a(hzel . Bz‘q)’

whereq is the step size. After the pretraining stage, we need tollutheodeep network to obtain
the reconstructed datausing the input data with forward propagation. The erromeen the
input dataw and the reconstructed daitaan be used to adjust the weights at different layers with
the back-propagation algorithm. This procedure is calleg-funing. By minimizing the error, we
can obtain the optimal weights to represent fingerprintsclvhare stored in a database for indoor
localization in the on-line stage.

The pseudocode for weight learning with multiply packetgiien in Algorithm 1. We first
collectm packet receptions for each of thétraining locations, each of which has 90 CSI values,
as input data. Let(t) be the input data from packet The output of the algorithm consists of

groups of fingerpirnts, each of which has eight weight masidn fact, we need to train a deep
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network for each of thev training locations. The training phase includes threesstppetraining,
unrolling and fine-tuning. For pretraining, the deep nekweith four hidden layers is trained with
the greedy learning algorithm. The weight matrix and biaswary layer are initialized first, and
are then iteratively updated with the CD-1 method for obtagra. near optimal weight, where
packets are trained and iteratively become output as irfgheaext hidden layer (lines 4-21).
Once weight training is completed, the input data will bealied to obtain the reconstructed
data. First, we use the input data to compBt¢h’|h'~!) based on the sigmoid with inpaf !
to obtain the coding output!, which is a reduced dimension data (lines 23-26). Then, Ioy-co
puting Pr(h'~!|h’) based on the sigmoid with inpiif, we can sample the reconstructed data
where the weights of the deep network are only transposed, riducing the time complexity
of weight learning (lines 27-31). Once the reconstructet é4 if obtained, the unsupervised
learning method for the deep network becomes a superviaeaing problem as in the fine-tuning
phase. Thus, we compute the error between the inputwdatah’ and reconstructed datd to

successively update the weight matrix with the standaré-pagpagation algorithm (lines 33-34).

2.4.3 Location Estimation based on Data Fusion

After off-line training, we need to test it with positionsathare different from those used in the
training stage. Because the probabilistic methods haveriettformance than deterministic ones,

we use the probability model based on Bayes’ law, which isrgbse

Pr(L;) Pr(v|L;)
SN Pr(L;) Pr(v|L;)’

=1

Pr(L;|v) = (2.11)

where L, is reference locatiom, Pr(L;|v) is the posteriori probabilityPr(L;) is the prior prob-

ability that the mobile device is determined to be at refeeelocationi, and V is the number

of reference locations. In addition, we assume tRatl;) is uniformly distributed in the set
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Algorithm 1: Training for Weight Learning

1 Input: m packet receptions each with 90 CSI values for each ofMtigining locations;
2 Output: N groups of fingerprints each consisting of eight weight ncasj
gforj=1:Ndo
4 /I pretraining;
5 fori=1:4do
6 Initialize W* = 0.1 - randn, b* = 0, llrandn is the standard Gaussian distribution
function;
7 for £ = 1 : maxepochdo
8 fort =1:mdo
RO = v(t);
10 ComputePr(h?|h*~1) based on the sigmoid with inpéit—;
11 Sampleh! from Pr(h?|h*1);
12 ComputePr(h*~!|h?) based on the sigmoid with inpht;
13 Samplehi~! from Pr(hi~1|ht);
14 ComputePr(h|hi~1) based on the sigmoid with inpéif—;
15 Sampleh? from Pr(hi|hi=1);
16 Wi = Wi + a(hi—'hi — hiti);
17 b = b + ok — RY);
18 b=l = bl 4 (BT — hiTLy;
19 end
20 end
21 end
22 /lunrolling;
23 fori=1:4do
24 ComputePr(h?|h*~1) based on the sigmoid with inpiit—;
25 Sampleh’ from Pr(h?|h*1);
26 end
27 Seth! = hf;
28 fori=4:1do
29 ComputePr(hi~1|h) based on the sigmoid with inpit;
30 Sampleh’~! from Pr(hi=1|h?);
31 end
32 /ffine-tuning;
33 Obtain the error between input dat4 and reconstructed daité ;
34 Update the eight weights using the error with back-propagation;
35 end
{1,2,--- N}, and thu$r(L;) = 1/N. It follows that

Pr(L;|v) = = (2.12)

PI"(U|L7;)% Pr(v|L;)
Zf\il Pr(v|L,~)% sz\il Pr(v|L;)
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Based on the deep network model, we deftév|L;) as the radial basis function (RBF) in

the form of a Gaussian function, which is formulated as

=

lv —

Pr(v|L;) = exp (— o ) , (2.13)

wherev is the input datay is the reconstructed input datajs the variance of input data, is the

coefficient of variation (CV) of input data. In fact, we use tiple packets to estimate the location
of a mobile device, thus improving the indoor localizatiarcaracy. Fom packets, we need to

compute the average value of RBF, which is given by

Zexp( i = ”Z”) (2.14)

Finally, the position of the mobile device can be estimate@ aveighted average of all the

reference locations, as
N
L= Pr(Lijv)L: (2.15)

The pseudocode for online location estimation with mujtipackets is presented in Algo-
rithm 2. The input to the algorithm consists wfpacket receptions, each of which has 90 CSI
values, andV groups of fingerprints obtained in the off-line training paaeach of which has
eight weight matrices for each known training locationsstwe compute the variance of the 90
CSl values from each packet. We also groupritpackets inta: batches, each withpackets, for
accelerating the matching algorithm (lines 3-4). To obth@posterior probability for different lo-
cations, we need to compute the RBF as likelihood functiondasehe reconstructed CSI values
and input CSI values, where the reconstructed CSI values ga@el by recursively unrolling the
deep network using the input data with forward propagatiéor. batchj, the reconstructed CSI
valuesf/j are obtained by iterating the input databased on the eight weight matrices (lines 10-

12). Then the sum of the RBFs (i.e., #tigs) is obtained by summing over the 90 CSl values and
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Algorithm 2: Online Location Estimation

1 Input: n packet receptions each with 90 CSI valud'sgroups of fingerprints each with
eight weight matrices and the known training location;
2 Output: estimated locatiot;

3 Compute the variance of CSI values
Group then packets inta: batches, each with packets;

N

s fori=1:Ndo

6 forj=1:ado

7 /lcompute the reconstructed C?@I with b packets;

: Vi = V.

9 llwhereV is the matrix with 90 rows anbl columns;

10 fork=1:8do

1 | V= 1/(1 + exp(~V; - W));

12 end

13 dj = 221:1 exp (‘,\17 ?21 (Vjtm - Vjtm)Q);

14 /lwhereV /™ is the element at rowand columnm in matrix V;, Vjtm is the element at row
t and columnm in matrix Vj;

15 end

16 p=1 Y01 dj

17 end

18 // Obtain the posterior probability for different locations;
19 fori=1:Ndo

20 | Pri=P/Y N, P;

21 end

22 // Compute the estimated location;

23 L=Y"N PrL;;

theb packets in each batch (line 13). In addition, the expected RBBmputed by averaging over
all then packets (line 16). Then, we compute the the posteriori foitiba Pr; for every reference
location, thus obtaining the estimated position of the ri@othevice as the weighted average of all

the reference locations (lines 19-23).

2.5 Experiment Validation

2.5.1 Experiment Methodology

Our experiment testbed is implemented with two major conepts) the access point, which is a

TP Link router, and the mobile terminal, which is a Dell Igptguipped with the IWL 5300 NIC.
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At the mobile device, the IWL 5300 NIC receives wireless sigifieom the access point, and then
stores raw CSI values in the firmware. In order to read CSI vdhoes the NIC driver, we install
the 32-bit Ubuntu Linux, version 10.04LTS of the Server diton a Dell laptop and modify the
kernel of the wireless driver. In the new kernel, raw CSI valcan be transferred to the laptop and
can be conveniently read with a C program.

At the access point, the TL router is in charge of continuptiginsmitting packets to the
mobile device. Since the router needs to respond to a mobilea who requires localization
service, we use Ping to generate the request and responsesproetween the laptop and the
router. Initially, the laptop Pings the router, and thennieter returns a packet to the laptop. In
our experiment, we design a Java program to implement aomim Pings at a rate of 20 times
per second. There are two reasons to select this rate. Fiveg, run Ping at a lower rate, no
enough packets will be available to estimate a mobile dgvasgtion. Second, if too many Pings
are sent, there may not be enough time for the laptop to psdbeseceived packets. Also, since
we need to continuously estimate the device position, it caage buffer overflow and packet loss.
Numerically, we consider that the rate of 20 times per sedstide order of magnitude from 10
to 100. Because we need 100 packets for online localizatidakés few seconds to complete
the data collection. If we select the rate of 1 time per secomate than 1 minute are required to
collect data, which is not acceptable for online phase. @rother hand, if we choose the rate of
1000 times per second for online phase, huge data are othtauhéch cannot obviously improve
the result of indoor localization. In addition, after the IVBBOO NIC receives a packet, the raw
CSI value will be recorded in the hardware in the form of CSI ket reception. DeepFi can
obtain 90 raw CSI values for each packet reception, which laresed for fingerprinting or for
estimating the device position.

We experiment with DeepFi and examine both the training @laasl the test phase. During
the training phase, CSlI values collected at each locatiomtdized to learn features, which are
then stored as fingerprints. In the test phase, we need tonlse @ata to match the closest

spot with the similar feature stored in the training phasefatt, a major challenge in the feature
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matching is how to distinguish each spot without overlapuaeiness. Although CSI features vary
for different propagation paths, two spots with a shortstatice and a similar propagation path
may have a similar feature. We examine the similarity of C&tdee along with spot interval in
Section 2.5.5, where more details are discussed. If th@migspots we select are too sparse, it is
possible to cause fuzziness in the test phase, resultimmvholcalization accuracy. For example,
a measurement could hardly match any training spot with kigtilarity, as it in fact has strong
similarity with many random spots. On the other hand, if wease dense training spots, it will
cost a lot of efforts on pre-training data collection. Baseduor experiments, the distance between
two spots is set to 50 cm, which can maintain the balance leet\hoalization accuracy and pre-
process cost.

Since DeepFi fully explores all CSl features to search fomtlest matched spot, each packet
is able to fit its nearest training spot with high probabilifynerefore, in our localization system,
only one access point is utilized to implement DeepFi, whiah achieve similar precision as
other methods such as Horus and FIFS with two or more accass pAlthough DeepFi has high
accuracy with a single access point, it needs more time amgpgtation in the offline training
phase in order to learn fine-grained features of the spotsurirately, the pre-training process will
be performed in the offline phase, while the online test pltaseestimate position quickly. We
design a data collection algorithm with two parts. In thenireg phase, we continuously collect
500-1000 packets at each spot and the measurement wilfdadtsnin. When collecting packets
in our experiment, the laptop remains static on the floorjevail the test spots are at the same
height, which construct a 2D platform. Then all the packetidected at each spot are used in
DeepFi to calculate the weights of the deep network, whielstored as a spot feature. In the test
phase, since we match for the closest position with weiglehave saved in the database, it is
unnecessary to group a lot of packets for complex learninggssing. We thus use 100 packets to
estimate position, thus significantly reducing the opagatiomplexity and cost.

We verify the performance of DeepFi in various scenariosa@mpare the resulting location

errors in different environments with several benchmahestes. We find that in an open room
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Figure 2.7: Layout of the living room for training/test poens.

where there are no obstacles around the center, the perfoentd indoor localization is better
than that in a complex environment where there are fewer L&Ssp We present the experimental

results from two typical indoor localization environmerds described in the following.

Living Room in a House

The living room we choose is almost empty, so that most of teasured locations have LOS
receptions. In thist x 7 m? room, the access point was placed on the floor, and so do all the
training and test points. As shown in Fig. 2.7, 50 positiores@osen uniformly scattered with
half meter spacing in the room. Only one access point iszetlliin our experiment, which is
placed at one end (rather than the center) of the room to @swicbpy. We arbitrarily choose 12
positions along two lines as test positions and use the renggpositions for training (in Fig. 2.7:

the training positions are marked in red and the test positere marked in green). For each
position, we collect CSI data for nearly 500 packet recepgtior60 s. We choose a deep network

with structurek’; = 300, K, = 150, K3 = 100, and K, = 50 for the living room environment.

Computer Laboratory

The other test scenario is a computer laboratory in BrouniH#tle campus of Auburn University.
There are many tables and PCs crowded irsthe) m? room, which block most of the LOS paths
and form a complex radio propagation environment. In th®tatory, 50 training positions and

30 test positions are selected, as shown in Fig. 2.8. Thelendbvice will also be put at these
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Figure 2.8: Layout of the laboratory for training/test ptinsis.

locations on the floor, with LOS paths blocked by the tables@mputers. To obtain fine-grained
characteristics of the subcarriers, CSI information frol@A @acket receptions are collected at
each training position. We choose a deep network with stradt; = 500, K, = 300, K3 = 150,

and K, = 50 for the laboratory environment.

Benchmarks and Performance Metric

For comparison purpose, we implemented three existingadsthincluding FIFS [22], Horus [19],
and Maximum Likelihood (ML) [59]. FIFS and Horus are intrada. In ML, the maximum
likelihood probability is used for location estimation twiRSS, where only one candidate location
is used for the estimation result. For a fair comparisonseghgchemes use the same measured
dataset as DeepFi to estimate the location of the mobiledevi

The performance metric for the comparison of localizatilgoathms is the mean sum error
£. Assume the estimated location of an unknown user(z;, ;) and the actual position of the

user is(z;, y;). For K locations, the mean sum error is computed as

Z V(@ — 202+ (G — )2 (2.16)

37



Table 2.1: Mean errors for the Living Room and and Laboratoqydtiments

| Living Room | Laboratory
Method| Mean error| Std. dev)| Mean error | Std. dev.
(m) (m) (m) (m)
DeepFi| 0.9425 0.5630 1.8081 1.3432
FIFS 1.2436 0.5705 2.3304 1.0219
Horus 1.5449 0.7024 2.5996 1.4573
ML 2.1615 1.0416 2.8478 1.5545

2.5.2 Localization Performance

We first evaluate the performance of DeepFi under the tweessmtative scenarios. The mean and
standard deviation of the location errors are presentedlel2.1. In the living room experiment,
the mean distance error is about 0.95 meter for DeepFi withghesaccess point. In the computer
laboratory scenario, where there exists abundant muitiadl shadowing effect, the mean error is
about 1.8 m across 30 test points. DeepFi outperforms FIBStmscenarios; the latter has a mean
error of 1.2 m in the living room scenario and 2.3 m in the labory scenario. DeepFi achieves
a 20% improvement over FIFS, by exploiting the fine-grainexpprties of CSI subcarriers from
the three antennas. Both CSI fingerprinting schemes, i.epBesd FIFS, outperform the two
RSSI-based fingerprinting schemes, i.e., Horus and ML. Titerlawo have errors of 2.6 m and
2.8 m, respectively, in the laboratory experiment.

Fig. 2.9 presents the CDF of distance errors with the four ouzlin the living room experi-
ment. With DeepFi, about 60% of the test points have an emdeul meter, while FIFS ensures
that about 25% of the test points have an error under 1 metexddition, most of the test points
have distance errors less than 1.5 m in FIFS, which is sirtol@eepFi. On the other hand, both
RSSI methods, i.e., Horus and ML, do not perform as well as tHeb@Sd schemes. There are
only 80% of the points have an error under 2 m.

Fig. 2.10 plots the CDF of distance errors in the laboratopeexnent. In this more complex
propagation environment, DeepFi can achieve a 1.7 m distamor for over 60% of the test points,

which is the most accurate one among the four schemes. Betausables obstruct most LOS
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Figure 2.9: CDF of localization errors in the living room erpeent.
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Figure 2.10: CDF of localization errors in the laboratory esiment.

paths and magnify the multipath effect, the correlatiorwleein signal strength and propagation
distance is weak in this scenario. The methods based ongmabpa properties, i.e., FIFS, Horus,
and ML all have degraded performance than in the living rooemario. In Fig. 2.10, it is noticed
that 70% of the test points have a 3 meters distance error#B and Horus. Unlike FIFS,
DeepFi exploits various CSI subcarriers. It achieves higloeuracy even with just a single access

point. It performs well in this NLOS environment.
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2.5.3 Effect of Different System Parameters
Impact of Different Antennas

In order to evaluate the effect of different antennas on Begerformance, we consider two
different versions of DeepFi: (i) DeepFi with 90 CSI valuesnirthe three antennas as input data
in both phases (3-antenna DeepFi); (ii) DeepFi with only30eCSI values from one of the three
antennas in the training phase and estimating the posigorgB0 CSI values from the same
antenna in the test phase (single antenna DeepFi). In adgditie set all the other parameters the
same as that in the computer laboratory experiments.

In Fig. 2.11, we compare these two schemes with differergrarés in the training and test
phases. According to the CDFs of estimation errors, more@bémof the test points in the 90-CSI
scheme have an estimated error under 1.5 m, while the oth€SB8ingle antenna schemes have
an estimated error under 1.5 m for fewer than 40% of the tastgoln fact, the single antenna
scheme has a mean distance error around 2.12 m, while tleedhtenna scheme has reduced the
mean distance error to about 1.84 meters. Thus the 90-CSingchehieves better localization
accuracy than the 30-CSI schemes, because more environmeetty of every sampling spot is
exploited for location estimation in the test phase as theusrhof CSI values is increased from
30 CSI values to 90 CSI values, thus improving the diversity of €®nples. This experiment
validates our Hypothesis 3.

Even though the 3-antennas DeepFi scheme achieves a loweremn®r, it takes more time
for processing the 90 CSl values as input data for each padkegvaluate the average processing
time to estimate the device position in the test phase usgdceived packets. The processing
time is measured as the CPU occupation time for the Matlabranogunning on a laptop. In
Fig. 2.12, we can see that the single antenna schemes tak®@.8verage to estimate the device
position, while the 3-antenna scheme takes around 2.5 sdoepsing the 100 packets with 90 CSI
values per packet as input data to estimate the locationdifieeence is small, although the latter

processes three times input data than that in the singl@etscheme. Although the 3-antenna
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Figure 2.12: The average execution time for DeepFi witheddht number of antennas.

DeepFi takes about 10 percent extra processing time, itcaie\ae a 15 percent improvement in
localization precision. The latter is generally more intpat for indoor localization. For 3-antenna
approach, it can obtain the most accurate estimation anavigrage execution time is acceptable

for indoor localization. Thus, we consider 3-antenna apgindor our DeepFi system.

Impact of the Number of Test Packets

In order to study the impact of the number of test packets, asgth a specific experiment by
utilizing different numbers of packets to evaluate thefeeff on both localization accuracy and
execution time. In DeepFi, the laptop requests packets themwireless router every 50 ms, i.e.,

at a rate of 20 packets per second. In addition, we assuma thegr randomly moves with the
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Figure 2.13: The expectation and standard deviation afheséid error for DeepFi using different
number of test packets.

speed of about 1 meter per second, then stays in a 1 meteessparfor 1 second, moves again,
and so forth. Thus 20 packets per second are received fotestdbcation.

Fig. 2.13 shows the expectation and the standard deviatiogalization error of 90 indepen-
dent experiments. As the number of test packets is increéisedhean localization error tends to
decrease. For example, the mean estimated localizationisrabout 1.83 meters for the case of
300 packets, which is better than the error of 1.93 meteti@icase of 5 packets. This is because
a large number of test packets provide a stable estimatguity¢hus mitigating the influence of
environment noise on CSl values. Another trend is that thedsta deviation of localization error
will decrease as the number of packets is increased. Thecause that as more samples are avail-
able, the standard deviation of samples will be decreasadh®other hand, the characteristic of
clusters hidden in CSl values is revealed by increasing thebeu of packets, thus improving the
localization accuracy.

In the case of using 5 test packets, although it takes leaslidas for collecting them, DeepFi
can still achieve a good performance of localization. Apeoin reducing the collecting time,
DeepFi using 5 test packets also simplifies the process ohgivey packets in the test phase, thus
significantly reducing the execution time for the online gdhaWe compare the average execution
time of position estimation for 90 independent experimédrased on recorded CPU occupation

time for the cases of using different test packets. In Fig42it can be seen that as the number
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Figure 2.14: The average execution time of position estondor DeepFi using different number
of test packets.

of test packets is increased, the execution time also isesequickly. This is because DeepFi
estimates the error of every location by averaging erroldhe test packets. For instance, the
execution time with 300 packets is around 4.2 s, which is aBdutimes of that with 5 packets
(about 1.7 s). Therefore, even though more packets cotgstio slightly improving the local-
ization precision, we prefer to reduce the number of padketsaving collecting and processing

time.

Impact of the Number of Packets per Batch

Since deep learning utilizespackets in the test phase, how to pre-process these pagskaisar-
tant for DeepFi to reduce the computation complexity. Betbegtest phase in DeepFi, packets are
divided into several batches, each of which contains a sammbar of packets. Because packets
are processed in parallel in batches, we can significantstesh the processing time when dealing
with a large amount of packets. We analyze the impact of timelreu of packets per batch in this
section. We set 1, 3, 5, 10, 50 and 100 packets per batch ireghehase with 100 collected
packets. Again, we examine two main effects: the localiraéirror and the test execution time.
Fig. 2.15 shows the expectation and the standard deviatiocalization error with different
number of packets per batch. As expected, the six expersmaaintain approximately the same

mean and standard deviation of errors, due to the fact tbaidhallel processing based on batches
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Figure 2.16: The average execution time of position estondbr DeepFi with different number
of packets per batch.

only averages the errors of 100 packets. In Fig. 2.16, it tced that as the number of packets
per batch is increased from 1 to 10, the average executiendauoreases quickly. For continuing
increasing the number of packets from 10 to 100, we can findhlkesaverage computation time is
approximately from 2.28 s to 2.15 s, which has smaller chalmgaddition, we need to average the
errors over different batch data to improve the robustnétisedocalization results. For example,
if we consider 100 packets per batch, there is only 1 batch®0rpackets, thus leading that we
cannot average the errors. Thus, we employ 10 packets padr fmatour DeepFi system, which

not only has lower average computation time, but also higgealization results.
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2.5.4 Impact of Environment Variation

Since the CFR changes as the indoor propagation environragesywe examine the effect of

varying propagation environment on CSI properties thromghgpecific aspects: replaced obsta-
cles in the room and human mobility. First, because theivelaistance between the transmitter
and the obstacle can affect the strength and direction afatesh of wireless signal, we consider

the impact of replaced obstacles at different relativeadists. In the experiment, We place a lap-
top and a wireless router at two fixed positions, and then adtholes at different distances to the
router, i.e., at 1 meter, 2 meters, and 3 meters locationsen,TWwe calculate and plot the CDF of

the correlation coefficient of (i) the 90 CSI values under thigtered environment and (ii) the 90

CSl values under the obstacle-free environment.

In Fig. 2.17, we can see that as the distance between thectebatad the wireless router is
increased, the correlation between the two groups of 90 G&sdecomes stronger, which means
that the obstacle has less impact on wireless signal trasgmiwhen it is farther away. This is
due to the fact that when the obstacle is farther from thestratter, there is lower possibility that
it distorts strong signals such as the LOS signal that thioapeceives. In addition, more than
80% of the test points have a correlation coefficient gretatem 0.8 when the obstacle is 3 meters
away from the wireless router. The high correlation suggtsit the obstacle placed more than 3
meter has no significant impact on the 90 CSI values the lagtgives. On the other hand, when
the obstacle is very close to the router, the 90 CSI valuessiglhtly change. It leads to a smaller
correlation coefficient, which affects the precision ofandlocalization in the test phase based on
such CSI properties. Therefore, when the obstacle artiytraoves in the room, its impact on CSI
properties is acceptable, and high localization precisamstill be achieved with DeepFi.

In addition to static obstacles, human mobility is anothrebpem we need to consider in prac-
tical localization. The experiment of human mobility catsiof two scenarios: a user randomly
moves (i) near the LOS path, and (ii) near the NLOS path. Toahestnate the effect of human

interference on indoor localization, we also plot the CDFh&f torrelation coefficients between
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Figure 2.17: CDF of correlation coefficient between the 90 G8las under cluttered environment
and the 90 CSI values measured without obstacles.

(i) the 90 CSI values when a user moves near the LOS path artkdgi90 CSI values when a user
moves near the NLOS path.

We then present the human mobility experiment results inZEB. It can be seen that there
are only fewer than 20% of the test points with a correlatioafficient under 0.7, if a user moves
near the LOS path. On the other hand, when a user moves aparttfe LOS path, approximately
20% of the test points has a correlation coefficient under B8we can see, the correlation of
the two groups of 90 CSl values if a user moves around the LOSipateaker than that if a user
moves around the reflected path, which is about 2 meter away fine wireless router. In fact,
due to the stability of CSI values and high correlation coeffits for the above two scenarios,
the property of the 90 CSI values will not be significantly afézl by human mobility. Therefore,

DeepFi can still achieve high localization accuracy evea lusy environment.

2.5.5 Impact of the Training Grid Size

With DeepFi, a mobile device in the test phase uses 90 CSl| vatueceives to search for the
most similar training position. Thus, it is preferable teath training position possesses a unique
property for the 90 CSI values. Otherwise, if most of the poisg have similar CSI properties,
it would be difficult to separate the matched positions fraimatched ones. As a result, these

unmatched positions, which randomly scatter in the covesgace, lead to reduced localization
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the LOS path and the 90 CSI values when a user moves around Q8 |dath.
accuracy. Therefore, in order to design a suitable traiigind size for DeepFi, we study the
correlation coefficient of the 90 CSI values between two ngogimg training positions as the
distance between them is increased. Our experiment reowdyg pairs of positions with different
distances, including 15 cm, 30 cm, 60 cm, and 120 cm. In omlenitigate the effect of the
direction of the router on the correlation coefficient of 8@ CSI values, we equally place the
laptop at four directions facing north, south, west and.east

Figure 2.19 shows that as the grid size is increased, thelaton coefficient of the 90 CSI
values between two neighboring positions becomes weakeatheer words, their CSI properties
have less similarity due to the larger grid size. In fact, sgusitions even have low or negative
correlation coefficients, even when the grid size is smadl,(when they are close to each other).
This is because the CFR will change as a user moves, as sompatiultomponents may be
blocked at near positions and thus some of clusters in reg¢€d5| values may be lost. If the CSI
values cannot match the corresponding clusters, the atimelwill obviously become low. From
Fig. 2.19, we find that the localization performance shoel@tceptable when the grid size is over
30 cm. i.e., most of the training positions can be separaged3i with the 30 cm range. We thus
set the grid size at about 50 cm for the training positionghaba test position at the center of the
square formed by four neighboring training positions hastdce o0 x 1/2/2 = 35 cm to the

nearest training position in the worst case. A larger gra svould fail to match highly similar
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Figure 2.19: CDF of correlation coefficient of the 90 CSI valbesveen two adjacent training
positions.
positions because of the scarcity of matched positiondgvehsmaller grid size requires redundant

pre-training work.

2.6 Conclusion

In this chapter, we presented DeepFi, a deep learning basedr fingerprinting scheme that
uses CSl information. In DeepFi, CSI information for all thésarriers and all the antennas are
collected through the device driver and analyzed with a despork with four hidden layers.
Based on the three hypotheses on CSI, we proposed to use thetsveighe deep network to
represent fingerprints, and incorporated a greedy leamdgmyithm for weight training to reduce
complexity. In addition, a probabilistic data fusion medhisased on the RBF was developed
for online location estimation. The proposed DeepFi schem® validated in two representative
indoor environments, and was found to outperform seveiiatiag RSS and CSI based schemes
in both experiments. We also examined the effect of diffepamameters and varying propagation
environments on DeepFi performance, and found that DeepFachieve good performance under

such scenarios.
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Chapter 3

PhaseFi: CSI Phase Fingerprinting for Indoor Localizatidth @ Deep Learning Approach

3.1 Introduction

The proliferation of mobile terminals such as smartphom&slets, and laptops has stimulated
enormous interests in indoor localization and locatiosdaaservices [60, 61, 62, 63]. As one
of the popular schemes for indoor localization, a fingetprgibased approach first establishes a
database with thorough measurements of the field and thersitife real-time location by com-
paring the new measurements with database data. It requoradditional infrastructure support
and is thus amenable for indoor deployment.

By modifying the device driver, we can now obtain CSI from somessmced WiFi NIC, such
as the Intel WiFi Link 5300 NIC [20, 21]. CSI values provide satrier-level channel measure-
ments, which can be helpful for indoor fingerprinting. Foample, FIFS [22] utilizes the weighted
average CSI values over multiple antennas to improve thempeaince of RSS-based method for
indoor fingerprinting. Another work, DeepFi [64] learns egaamount of CSI data from three an-
tennas for indoor localization based on a deep network. Mewéhese schemes only consider the
amplitude of CSI, and the CSI phase information is ignoredcivis largely due to the randomness
and unavailability of the raw phase information. To the ldstur knowledge, CSI-MIMO [65]
incorporates both magnitude and phase information of C®h feach sub-carrier for fingerprint-
ing, but the phase information is not calibrated. In fact, ¢alibrated phase information obtained

with a linear transformation is successfully used for LO&hiafication with WiFi [66] and passive
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human movement detection [67]. These two interesting workvate us to explore calibrated
CSI phase information for indoor fingerprinting.

In this chapter, we present PhaseFi, an indoor fingerpgrstystem based on calibrated phase
information of CSI. In PhaseFi, the raw phase informationr& gxtracted from the CSI values
from the 30 subcarriers of each of the three antennas of teé\WiFi Link 5300 NIC (i.e., 90
in total), by accessing the modified device driver. Then,rbglementing a linear transformation
to remove the phase offset, we obtain the calibrated phdseriation, which is shown in our
measurement study to be considerably more accurate thaphases. We also provide a phase
calibration algorithm and prove an upper bound on the vadasf the calibrated phase, which
clearly indicates its stability feature.

In the offline stage, unlike traditional shallow learningthuls, we design a deep network
with three hidden layers to train the calibrated phase datd,use weights to represent finger-
prints, which can fully exploit the characteristic of thdilbeated phase data. We also develop a
greedy learning algorithm to train the weights in a layesldyer manner to effectively reduce the
computational complexity. With this training approach,ud-$etwork between two consecutive
layers forms a RBM, which is solved by a CD-1 algorithm for sulbiropl solutions. Once the
fingerprint database is established, the online stage uBayes method based on the RBF for
location estimation.

We implement the PhaseFi system with a laptop computer anilcaess Point (AP), and
conduct extensive experiments to validate the performahte PhaseFi system under two repre-
sentative indoor environments, including a living room ihaise and a computer laboratory that
is cluttered with metal tables and computers. We find thas@Rieoutperforms three benchmark
schemes that are either based on CSI or RSS in both scenarios.

In summary, the main contributions In this chapter include:

1. We propose to use CSI phase information for indoor fingetipg. Specifically, we theoret-

ically prove and experimentally validate the feasibilifyutilizing the calibrated CSI phase
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information for indoor localization. To the best of our krledge, this is the first work to

leverage the calibrated CSI phase information for indoorglipgnting.

2. We design a deep network with three hidden layers to tteercalibrated phase data, and
utilize the weights of the deep network to represent fingetgr We also develop a greedy
learning algorithm to effective reduce the computatiovarbead for training. Furthermore,

we present a Bayes method based on RBF for probabilistic lacastmation.

3. We implement the PhaseFi system with commodity WiFi d=aied demonstrate its perfor-
mance in two representative indoor environments. Experiateéesults show that PhaseFi
outperforms several existing RSSI and CSI based schemesyatligfitly increased execu-

tion time. PhaseFi satisfies the real-time localizatiomnemnent for indoor localization.

The remainder of this chapter is organized as follows. Tleéirpmaries and phase sanitiza-
tion are introduced in Section 3.2. We present PhaseFi iid®e8.3 and our experimental study

in Section 3.4. Section 3.5 concludes this chapter.

3.2 Preliminaries and Phase Sanitization

3.2.1 Channel State Information

In modern digital wireless communication systems, OFDMidaly used (e.g., in WiFi standards
such as IEEE 802.11a/g/n) to combat frequency selectiviedand multipath propagation environ-
ments. As shown in Fig. 3.1, at the OFDM transmitter, datantoded and mapped into multiple
orthogonal subcarriers and then transmitted over the subza With inverse Fast Fourier Trans-
form (IFFT), the subcarriers are converted from the fregyestomain to the time domain. To
reduce the inter-symbol interference (ISl), the cyclicfipres added in the time domain. Then,
in-phase and quadrature (I-Q) modulation is used for trasson in the multi-path channel. The
digital data is converted into analog data with the DigiteRhnhalog Converter (DAC). Finally, the

analog signal is up-converted and amplified by the high pamweplifier (HPA). At the OFDM

receiver, the signal is down-converted to the basebandAlit@matic Gain Controller (AGC) can
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Figure 3.1: The block diagram of an OFDM transceiver

compensate for the signal amplitude attenuation. The sevprocess of that at the transmitter is
implemented for recovering the data at the receiver.

By modifying the device driver of off-the-shelf NICs, i.e. télis IWL 5300, we are able to
obtain CSI as fine-grained PHY information, which repres#éimessubcarrier-level channel mea-
surements. In addition, CSI describes the channel propestiperienced by the packet. For ex-
ample, a wireless signal in propagation may undergo coredtleimpairments due to shadowing,

multipath propagation, and distortion, which are reflectetthe CSI.

3.2.2 Phase Sanitization

Although the phase of CSI is available from the IWL 5300 NIC, theye not been exploited
for indoor localization yet. The problem is mainly due to trerdware imperfection, which leads
to measured phase errors. In fact, there are two main caois#sefabove errors for the system
in Fig. 3.1. The first one is CFO generated by the down-convéotereceiver signal, because
the central frequencies between the receiver and the titasgannot be perfectly synchronized.

The other one is the SFO generated by the ADC, because of muwsyized clocks. Moreover,
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for SFO, the measured phase errors are different for diffesebcarriers. Thus, the raw phase
information is of limited use for indoor localization.

In this chapter, we propose a simple yet effective approachitigate the random phase off-
sets by implementing a linear transformation. zcef\SIi denote the measured phase of subcarrier

1. It can be written as
/CSI, = /CSl, + zw%m + B+ 2, (3.1)

where ZCS|; is the genuine phasé\t is the time lag due to SFQy; is the subcarrier index of
the ith subcarrier,N is the FFT sizef is the unknown phase offset due to CFO, dnhds the
measurement noise. We can obtain the subcarrier indigefer : = 1 to 30, and the FFT size
N from the IEEE 802.11n specification [21]. In fact, becaus¢hef unknownAt and g, it is
impossible to obtain the genuine phase information. Howesansidering the phase across the
total frequency band, we can implement a linear transfaonain the raw phases to remove the
At andg terms [67].

Let £ andb denote the slope of phase and the offset across the entiugefney band, respec-
tively. Itis noticed that the phase err 52 At + 3 is a linear function of the subcarrier index.

We can estimate the slope of phasand the offseb with the following expressions.

L £CSTy — £CST,

(3.2)

mszo — My

1 30 o
b=— Y /CSI,. 3.3
30; CS (3.3)

Subtractingem; + b from the raw phasé@i, we can obtain the calibrated phaSé”AS/IZ-, which

is given by

/CSI; = /CSI; — km; — b. (3.4)
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Although the above expression (3.4) can be used for calilgy@hase information, the mea-
sured phase is folded due to the recurrence characterigifase. Thus, we need to transform the
measured phase into the true value. In Fig. 3.2, we plot tresared phase values of CSI for the
three antennas at the receiver. It is noticed that the medginase of each of the three antennas is
folded with the increase of subcarrier index and the randgkeephase i$— 7. In order to obtain
the true measured phase, the folded phase can be recovesadtbgcting multipler. Thus, we
propose a new phase calibration algorithm in Algorithm 3lines (8-13) of the algorithm, the
measured phase is compensated for multipfe by judging whether the measured phase change
between the adjacent subcarriers is greater than the diveshiold such as. In lines (14-18), the
calibrated phase is obtained based on the above phasetialianalysis.

Figure 3.3 presents the true measured phase values fordiffierent antennas. We can see
that with the increase of subcarrier index, the true measspinase gradually decreases for all the
three different antennas. Fig. 3.4 shows the calibratedgtalues for three different antennas. It
is noticed that the range of the calibrated phase becomebk smaller than the measured phase
for three antennas. On the other hand, we present an upped botthe variance of the calibrated

phase in the following theorem.

Theorem 1. When the indices of 30 subcarriers are symmetric (i.e., irgngrom -28 to 28 as in

IEEE 802.11n) and the true phases of the 30 subcarriers ate,ian upper bound of the variance
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Figure 3.4: Calibrated phase values for three differentraras.

of the calibrated phase is given by
—~ 23
Var(£CSI;) < EVar(ACSIi). (3.5)

Proof. We can compute the slope of the phase: £€5L0=2CS0 4 21 Ay and the offset across

m3p—mi

the total frequency bantl = L > /CST, + Z24 5% m, + 8 + Z. Since the indices of
the 30 subcarriers are symmetric for IEEE 802.11n [67], weeBd’, m; = 0. It follows that

b= % 2?21 LCST; + p+Z. Substituting the slope of the phagethe offsetp, and the measured
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Algorithm 3: Phase Calibration

Input: measured phase valugsy, of 30 subcarriers;
Output: calibrated phase valu€% of 30 subcarriers;
SetTp as a vector as the same size\dp;
Setm as a vector from -28 to 28;
Set diff = 0;
Setn =m;
SetTp(1)=Mp(1);
for i =2:30do

if MP(Z) — Mp(i — 1) >n then

\ diff = diff + 1;

end

Tp(i) = Mp(i) — diff %2 % 7;
end

© 00 N o o b~ W N P

e e
w N P O

_ Tp(30)-Tp(1) .
Computek = ~2o5="0"

Computeb = sum{Tp}/30;
fori=1:30do

| Cp(i) =Tp(i) — k*m(i) — b;
end

[
i

e
o N o o

phase of subcarrier 4(75\Ii, into (3.4), the calibrated phase is given by

LOST30—£CS14

m3o—1m

/CSI;, = /CSI,—

1 30
——N" /081,
mn 30%?

Note that the calibrated phase is a linear combination dftlegphases, with the random offset
B and time lagAt removed. Since the true phases of the 30 subcarriers ake tihie variance of
. . o m2
the calibrated phase is @afC'S1;) = Var(£CSI;) + m(Var(ACSIgo) +Var(£ZCSIy)) +
Var(+ "% ZCSI;). Since the subcarrier indices are symmetric, we have< my, andms, =
m? m3y

—my, and it follows that(mgo_! = 1. Furthermore, since the true phases of the

m1)?2 — (2ma0)? 4

30 subcarriers are i.i.d., we have Y&r>* ZCSI;) = LVar(ZCSI,;) and VafZCSI;) =

Var(£CS1Iy) = Var(ZCSI,). We thus have VAZCSI;) < 2Var(£CSI,), which completes

the proof. ]

Theorem 1 provides an upper bound on the variance of theratdihphase, and indicates that
the calibrated phase is relatively more stable. In Fig. ®ébplot the raw phases (as blue crosses)

and the calibrated phases (as red dots) in the polar cotedigatem for 100 CSI data units for the

56



Figure 3.5: Raw phase and calibrated phase measurements.

8th subcarrier in the first antenna of the IWL 5300 NIC. It can agilg seen that the raw phases
scatter randomly over all feasible angles. This is why ita$ nseful for indoor localization.
However, the calibrated phases, after the proposed limaasformation, all concentrate into a
sector between 33@nd 0. Thus, the proposed linear transform does remove the pliisse. o

On the other hand, another characteristic of CSI phase isrda gariability at different lo-
cations. Fig. 3.6 plots the calibrated phase for 100 paecdetptions from three different positions,
from which we can observe that calibrated phases are difféoe three locations. The calibrated
phase not only is more stable in one given location, but ads@s in different locations, which

can be very useful for indoor fingerprinting.
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3.3 The PhaseFi System

3.3.1 System Architecture

The architecture of PhaseFi is presented in Fig. 3.7. In esigth, PhaseFi requires one mobile
device equipped with an IWL 5300 NIC, which can read CSI data fiteerslight modified device
driver. The IWL 5300 NIC has three antennas, each of whichivesérom 30 subcarriers. Thus
we can collect 90 CSI data units for one packet reception. eSatiche subcarriers are utilized,
PhaseFi can effectively improve the diversity of trainimgngples in deep learning, and is thus ef-
fective in exploiting the location features for buildingetfingerprint database. Then, the calibrated
phases are obtained by implementing the proposed lingeftianation on the the raw phases ex-
tracted from CSI data. PhaseFi considers the phase datadfworifingerprinting for two reasons.
First, when a signal encounters obstacle blockages, théitadgof the signal will be strongly
weakened, but the phase of the signal with the periodicahgdaver the propagation distance
is relatively more robust. Second, the calibrated phasmnmdtion is relatively more stable for a
given position.

The calibrated phases are then used for both offline trammgonline testing. In the offline

training stage, PhaseFi employs a deep network with thrégehi layers to train the calibrated
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Figure 3.7: Architecture of the proposed PhaseFi system.

phases. It incorporates deep learning to generate febased fingerprints. This approach is dif-
ferent from the traditional methods that directly storeteasurement data as fingerprints, which
are easily influenced by the complex indoor propagationrenment. In addition, a large number
of weights in the deep network are used as feature-basedgmgs, which effectively represent
the characteristics of the calibrated phases for eachipositVe create the fingerprint database
by training the weights of the deep networks with calibrgtbdses for different positions. In the
online test stage, a probabilistic data fusion approachas to estimate the mobile device location

based on the fingerprint database and the new calibrated passfrom the mobile device.

3.3.2 Offline Training

In the offline training stage, PhaseFi incorporates deemileg to train weights and then stores
them as the feature-based fingerprint database. The gamotedure consists of three stages:
pretraining, unrolling, and fine-tuning [8] as shown in F38. In the pretraining stage, we use a

deep network with one input layer (withiy inputs) and three hidden layers (each withnodes,
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k = 1,2,3). The final weight value mainly depends on input data and aegwork structure
including the number of hidden layers and the number of nodeach hidden layer. For PhaseFi,
we employ three hidden layers to train and test CSI calibratee data. There are two reasons
for the chosen structure. First, the deep network with thesthidden layers can achieve near real-
time online localization performance, where the mean exacuimes are 0.3780 s and 0.3770 s
for living room and laboratory, respectively. If we use theed network with four or more layers,
it leads to a higher time complexity for online localizatjavhich is not traditionally effective for
systems with real-time requirement. Second, the deep metwith the three hidden layers can
also achieve low localization errors, which are 1.0800 m 2:8d4.34 m for the living room and
laboratory scenarios, respectively. If we use a network V@ss than or equal to two layers, the
deep network will become a shallow network, where deep iegnmay not be necessary for these
networks and the localization accuracy will become low. A‘atenote the hidden variable wifk;
nodes at layer, i = 1,2, 3, andh® denote the calibrated phase data. In additioniiigt 17, and
W3 be the weights between the calibrated phase data and theididein layer, the first and second
hidden layer, and the second and third hidden layer, relspbct

LetPr(h°, ht, h2, h3) denote the probabilistic generative model for the deep oiitwith one
input layer and three hidden layers. To obtain the optimagiats in the pretraining stage, we need
to maximize the marginal distribution of the calibrated ghaata for the deep network, which is

formulated by

{W%§W3}222Pr(h°, h', B2, hP). (3.6)

ht  h2 A3

Due to the complex model structure with multiple hidden fayend a large number of nodes
in the deep network, it is challenging to obtain the optimalgits using the calibrated phase data
with the maximum likelihood method. In PhaseFi, we develgpeedy learning algorithm to train
the weights layer-by-layer by using a stack of RBMs to reduacapiexity [25]. For the layer
RBM model,i = 1,2, 3, the joint distributionPr(2~1, k') is expressed by an RBM as a bipartite
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Pretraining

undirected graphical model [25], which is given by

exp(—E(hi™1, b))
> i1 Dopi eXp(=E(hi1, hi))’

Pr(hi~! b)) = (3.7)

whereE(h'~!, h') represents the free energy between layeil and layeri. E(h'~!, 1) is defined

as

E(h', hY) = b R — bR — B UWR, (3.8)

whereb'~! andb® are the biases for units of layer 1 and units of layef, respectively. In fact, since

it is difficult to find the joint distributionPr(h*~!, h?), we use the CD-1 algorithm to approximate
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it as follows.

Pr(h=! ) = [T Pr(hi " |n)

(3.9)
Pr(hi|hi=t) = [[2, Pr(hi|hi-Y),
wherePr(h’!|h’), andPr(hi|h'~") are described by sigmoid belief network, that are
) —1
Pr(hi7'[h') = |1+ exp (=b' = Y0 WA
(B RE) = (14 exp (=0 = 20 W h)| .10)

Pr(151) = (L4 exp (= = SIS W)

We use the greedy algorithm to estimate the parameters weahts for a stack of RBMs.
First, given the calibrated phase data, the paramétérs!, W, } of the first layer RBM are es-
timated by using CD-1 method. Then we freeze the paramétérsl’; } of the first layer, and
sample from the conditional probabili§r (1! |h°) to train the parameters?®, b2, W, } of the sec-
ond layer RBM. Next, the parametef&’, b*, W, 1>} of the first and second layers are frozen,
and then we sample from the conditional probability/?| k') to train the parametefd?, b, W5}
of the third layer RBM.

To update the weights in each RBM, the CD-1 method is adoptedpmeimate them. For
the layeri RBM model, First,2""! is estimated by sampling from the conditional probability
Pr(hi~*|h'). Thenh! is obtained by sampling from the conditional probabikity 27 |hi~1). Finally,

the parameters are updated as follows.

AW; = e(hi="hi — hi='hi)
Ab = ¢(hi — h?) (3.11)
Ab—1 = 6<hi—1 _ ﬁi—l)’

wheree is the step size.
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Once the pretraining stage is completed, we obtain the otamral weights for the deep
network. Then, in the unrolling stage, the reconstructédithreded phase data are obtained by un-
rolling the deep network with forward propagation. Finallie use the back-propagation algorithm
to train all weights in the deep network by computing the ebetween the input calibrated phase
data and the reconstructed calibrated phase data. In@uditie error can be used to iteratively
optimize the weights layer-by-layer based on the backgmapon algorithm. This stage is called
fine-tuning. After minimizing the error, the optimal weighdre stored in the fingerprint database.

The pseudocode for weight training with multiple receiveathets is presented in Algo-
rithm 4. We first receive: packet for each of thev training positions, each of which has 90
CSl calibrated phase data units as input data.wl@tbe the input data from packet The output
of the training includesV groups of fingerpirnts, each of which owns six weight magiddore-
over, a deep network for each of tié training locations should be trained. The training phase
consists of three steps: pretraining, unrolling and fimerty. For pretraining, the greedy learning
algorithm is used to train the deep network with three hididgers. The weight matrix are ini-
tialized first, and are then iteratively updated with the CBydthod for obtaining initial weights,
wherem packets are learned and iteratively generate output asafhie next hidden layer (lines
4-21).

After weights training is finished, the input data will be aled to get the reconstructed
data. First, we utilize the input data to compute(hi|hi~1) based on the sigmoid with input
hi~! to get the coding output®, which is a reduced dimension data (lines 23-26). Then, by
computingPr(h~1|h?) based on the sigmoid with inpiif, the reconstructed daté is sampled,
where the weights of the deep network are only transposad,rdducing the time complexity of
weights training (lines 27-31). Once the reconstructed Hais obtained, a supervised learning
method based on back-propagation algorithm is used for ¢le@ detwork as in the fine-tuning
phase. Thus, we compute the error between the inputwdatah’ and reconstructed datdl to

successively update the weight matrix (lines 33-34).

63



Algorithm 4: Weights Training

1 Input: n packet receptions each with 90 CSI calibrated phase valuesbh of theV
training locations;

2 Output: N groups of fingerprints each consisting of six weight masjce
gforj=1:Ndo
4 /I pretraining;
5 fori=1:3do
6 initialize W* = 0, b® = 0;
7 for £k = 1 : maxepochlo
8 fort=1:ndo
9 RO = v(t);
10 ComputePr(h*|h*~1) based on the sigmoid with inpat—1;
11 Sampleh! from Pr(h?|h*1);
12 ComputePr(h*~!|h?) based on the sigmoid with inpht;
13 Sampleh’~! from Pr(h'~1|h¥);
14 ComputePr(h|hi~1) based on the sigmoid with inpéf—;
15 Sampleh! from Pr(hi|hi=1);
16 Wi = W; + a(hi=tht — hi=1hi);
17 bi = b + a(hi — hi);
18 bi—l — bi—l + a(hi—l _ ]fLi—l);
19 end
20 end
21 end
22 /lunrolling;
23 fori=1:3do
24 ComputePr(h*|h*~!) based on the sigmoid with inpat—1;
25 Sampleh’ from Pr(h?|h*1);
26 end
27 Seth! = h;
28 fori=3:1do
29 ComputePr(hi~!|ht) based on the sigmoid with inpit;
30 Sampleh’~1 from Pr(hi=1|h?);
31 end
32 /ffine-tuning;
33 Obtain the error between input datand reconstructed datd;
34 Update the six weights using the error with back-propagation;
35 end

3.3.3 Position Algorithm

In the online test stage, a probabilistic method is devaldpeestimate the location of the mobile

device based on the fingerprint database and new calibrateswlata. We compute the posteriori
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probability Pr(;|h°) based on Bayes’ law, which is given by

Pr(l;) Pr(h|l;)
SV Pr(l;) Pr(hO|l)’

Pr(l;|h°) = (3.12)

whereN is the number of reference locationsis reference locationin the fingerprint database,
Pr(l;) is the prior probability that the mobile device is deterndinelocate at the reference location
l;. We assume thdtr(/;) follows an uniformly distribution, and then the posteriprbbability

Pr(1;|h") can be simplified as follows.

Pr(h°|l;)
>y Pr(hO|L)

Pr(l;|h%) = (3.13)

Based on the deep network model, we considgin’|l;) as the RBF in the form of a Gaussian
function to measure the degree of similarity between thenstructed calibrated phase dafa

and the input calibrated phase datawhich is given by

Pr(h|l;) = exp (—% Hho—i{OH), (3.14)

whereo is the variance andl is the parameter of the variance of the input calibratedepdata. Fi-
nally, the position of the mobile device can be computed asighted average of all the reference

locations, as

r(1;|R0)1;. (3.15)

||M2

3.4 Experimental Validation

3.4.1 Experiment Methodology

We examine the performance of PhaseFi with extensive expets. In our experiments, a TP

Link router serves as AP and the mobile device is a Dell laptpopped with an Intel WiFi Link
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Figure 3.9: Layout of the living room for training/test ptsns.

5300 NIC. We also modify the NIC’s device driver to read CSI valtigat are recorded in the
hardware in the form of CSI for each packet reception. ThegHbata are extracted from the CSI
and calibrated for training and testing.

At the access point, the router needs to respond to a mohiieed®r the localization service.
Thus, the Ping command is employed to implement the requelstesponse process between the
laptop and the router. The laptop Pings the router, and tierouter returns packets to the laptop.
In our localization experiment, we write a Java program tpleament continuous Pings at a rate
of 20 times per second. There are two reasons to choose thidHisst, if we run Ping at a lower
rate, no enough packets will be available to determine a lmalgivice position. The rate of 20
times per second is proper for the online phase in PhaseEan8eif too many Pings are run, it
is difficult for the laptop to process the received packeth whe short time. Also, because we
need to continuously determine the mobile device positiomay cause packet loss and buffer
overflow. Moreover, once the IWL 5300 NIC receives a packet, @51 value will be recorded
in the hardware in the form of CSI per packet reception. Phassatobtain 90 CSI values and
calibrate them for each packet reception, which are all imedeights training or for determining
the mobile device position.

In this section, we validate the performance of PhaseFi m t&presentative indoor envi-
ronments as follows. First, we conduct experiments ih>a7 m? living room where there are
no outstanding obstacles around the center so that mosé shéfasured locations can have LOS

receptions. Fig. 3.9 shows the layout of the living room a#l a®the training/test points. The
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Figure 3.10: Layout of the laboratory for training/test fioss.

AP is placed at one end (rather than the center) of the livaagr on the floor to avoid isotropy.
We set 38 points as training points (in red) and 12 points stsp@ints (in green). In addition,
we collect CSI data for 400 packet receptions for each trgipwint, and 20 packet receptions for
each test point. A deep network with structure 90 inpifs,= 60, K = 30, andK3 = 15 is
used for the living room environment. We use a deep netwotk structure 90 inputs, K1 = 60,
K2= 30, and K3 = 15 for both the living room and laboratory easments. The main reason is
that for PhaseFi, we need to satisfy the near real-time rexpgint for indoor localization so that
the number of nodes should be not be very large. Compared hatbdep network structure, we
also tried other structures, such as K1 = 150, K2 = 100, K3 2/#®found that although the mean
execution time varies from 0.37s to 0.65s, the indoor l@esibn errors do not change much, i.e.,
around 1m and 2m for living room and laboratory environmergspectively. Thus, we choose
the deep network structure with the smaller mean executios t

Second, we chose a computer laboratory in Broun Hall in thepaamof Auburn University.
In this6 x 9 m? laboratory, there are PCs and many desks crowded in the rocimtisat most of
the LOS paths are blocked, thus leading to a complex radipggation environment. Fig. 3.10
shows the layout of the laboratory, where we select 50 tngipoints and 30 test points. The AP
is placed on the left bottom corner. To obtain integratedattaristics of the subcarriers, we read

CSI data for 800 packet receptions for each training poird, Zhpacket receptions for each test
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Table 3.1: Mean errors and execution time (Living Room)
Algorithm | Mean error (m)| Std. dev. (m) Mean exe. time (s)

PhaseFi | 1.0800 0.4046 0.3780
FIFS 1.2436 0.5705 0.2362
Horus 1.5449 0.7024 0.2297
ML 2.1615 1.0416 0.2290

Table 3.2: Mean errors and execution time (Laboratory)
Algorithm | Mean error (m)| Std. dev. (m) Mean exe. time (s)

PhaseFi | 2.0134 1.0139 0.3770
FIFS 2.3304 1.0219 0.2439
Horus 2.5996 1.4573 0.2214
ML 2.8478 1.5545 0.2220

point. The structure of the deep network in the laboratomirenment is the same as that in the
living room environment.

For comparison purpose, we implement three existing msthiodluding FIFS [22], Ho-
rus [19], and ML [59]. FIFS and Horus are discussed in intotidun. In ML, based on RSS
measurements, only one reference location with maximurtedos probability is considered as
the estimated result. For a fair comparison, all schemethessame measured data set to estimate

the position of the mobile device.

3.4.2 Localization Performance

Tables 3.1 and 3.2 present the mean location errors, thdasthdeviations, and the average ex-
ecution time of the living room and the laboratory experitsenespectively. In the living room

environment, we find PhaseFi to achieve a mean location efrb08 m and a standard deviation
of 0.4046 m for the 12 test points. In the laboratory scenahie error is higher due to abundant
multipath and shadowing effect. Our system achieves a meana 2.0134 m and a standard

deviation of 1.0139 m for the 30 test points. For indoor I@alon accuracy, PhaseFi based on
calibrated phases outperforms all the other schemesKIFES, Horus and ML) that are based on

amplitudes. PhaseFi also demonstrates robust perforniandéferent locations with the smallest
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Figure 3.11: CDF of localization errors of the living room eximents.

standard deviation. We also examine the computational ity of the schemes. Although the
mean execution time for PhaseFi is higher than the benchedmmes, the 0.38 s average exe-
cution time of PhaseFi for both scenarios still satisfiesrda-time requirement for most indoor
localization applications. In fact, by optimizing the paxeters and reducing the number of nodes
in the deep network, the average execution time of Phasefedurther reduced.

Fig. 3.11 shows the CDF of distance errors with the four sclsamthe living room scenario.
For PhaseFi, more than 50% of the test points have an err@r @@ m using one AP, while the
other schemes guarantee that 30% of the test points havecarueder 0.9 m. Moreover, PhaseFi
and FIFS have approximate 80% of the test points with meaatitwt errors under 1.5 m, while
Horus and ML have the same test points with mean error un@enznd 3.0 m, respectively. The
CSl-based schemes such as PhaseFi and FIFS can utilize thgfaieed subcarrier information,
and are thus more stable than the RSS-based schemes.

Fig. 3.12 presents the CDFs of distance errors achievedhégtfour schemes in the laboratory
environment. In this more complex propagation environmiEmtPhaseFi, about 60% of the test
points have a distance error under 2 m, while the other schdraee the same portion of test
points with error under 2.7 m. We find PhaseFi to be the mostrate among the four schemes,
because the phase of the signal periodically changes cxg@rtipagation distance, which is more

robust than amplitude, especially in cluttered propagatiovironments. The signal amplitude is
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Figure 3.12: CDF of localization errors of the laboratory exments.

usually more vulnerable to transmission impairments, &eccbrrelation between signal strength
and propagation distance is usually weak in indoor scesafibus PhaseFi outperforms the three
amplitude based schemes (based on either CSl or RSS).

Fig. 3.13 shows the mean localization errors versus diftenember of packets in the labo-
ratory and living room experiments. In both experiments,distance error is decreased as more
packets are used. In particular, the mean distance errecigedsed from 1.21 m to 1.03 m in the
living room experiment, and from 2.23 m to 1.98 m in the lalb@naexperiment, when the number
of packets is increased from 5 to 50. Only small reductiorogalization error is achieved when
the number of packets is increased for 10 times. Thus, weupadkets for online test in PhaseFi,
which achieves not only a good localization accuracy, kad allow computational complexity for

real-time localization applications.

3.5 Conclusion

In this chapter, we proposed PhaseFi, a phase fingerprisystgm for indoor localization. In the

system, the phase information was first extracted and eaéiifrom the three antennas of the Intel
WiFi Link 5300 NIC by accessing the modified device driver.the offline stage, we designed a
deep network with three hidden layers to train the calilorgibase data, and used weights to

represent fingerprints. To reduce complexity, a greedynlegralgorithm was incorporated to
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room experiments.

train the weights layer-by-layer, where a sub-network leetvtwo consecutive layers formed an
RBM approximately and solved by a CD-1 algorithm. In the onlitage, a Bayes method based
on RBF was used for location estimation. The proposed PhasbEire was validated in two
representative indoor environments, and was shown to datpethree benchmark schemes based

on either CSI or RSS in both scenarios.
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Chapter 4

BiLoc: Bi-modal Deep Learning for Indoor Localization with Corodity 5GHz WiFi

4.1 Introduction

The proliferation of mobile devices has fostered greatré@gein indoor location-based services,
such as indoor navigation [68, 69, 70, 71, 72], robot tragkmthe factories [73], locating work-
ers in construction sites [74], and activity recognitio]j7all requiring accurately identifying
locations of mobile devices indoors. The indoor environtgmses a complex radio propagation
channel, including multipath propagation, blockage, amadew fading, and stimulates great re-
search efforts on indoor localization theory and syster@é [Among various indoor localization
schemesWiFi-based fingerprintings probably one of the most widely used techniques. With fin-
gerprinting, a database is first built with data collectexhrfra thorough measurement of the field
in the offline training stage. Then, the position of a mobBercan be estimated by matching the
newly received data in the pre-built database. A uniquetdgge of this approach is that no extra
infrastructure needs to be deployed.

Recently, for the Intel 5300 NIC in 2.4GHz, two effective mmadlk are proposed to remove the
randomness in raw CSI phase data. In [67], the measured phase30 subcarriers are processed
with a linear transformation to mitigate the randomness ih@ase, which is then employed for
passive human movement detection. In [66], in addition éditrear transformation, the difference
of the sanitized phases of two antennas is obtained and ase®8 identification. Although both
approaches can stabilize the phase information, the mdaa wvéphase will be zero (i.e., lost)

after such processing. This is actually caused by the firmasign of the Intel 5300 NIC when
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operating on the 2.4GHz band [76]. To address this issuesd?lj@6] is the first to exploit CSI
phase in 5GHz WiFi. Phaser constructs an AOA pseudospedtuphase calibration in single
Intel 5300 NIC. Motivated the above works, we explorer effedy cleansed phase data for indoor
localization with commodity 5GHz WiFi.

In this chapter, we consider the problem of fingerprintiragdd indoor localization with com-
modity 5GHz WiFi. We first present three hypotheses on CSI @@ and phase information for
5GHz OFDM channelsFirst, the average amplitude over two antennas is more stabletliaan
from a single antenna as well as RS&&cond CSI phase difference values from two antennas
in 5GHz are highly stable. Due to the firmware design of In®)® NIC, the phase differences
of consecutively received packets form four clusters whaerating in 2.4GHz. Such ambiguity
makes measured phase difference unusable. However, whimthenomenon does not exit in the
5Ghz band, where all the phase differences concentratadmne value. We further design a sim-
ple multi-radio hardware for phase calibration which isagiedifferent from the technique [76]
that uses AOA pseudospectrum searching with high compuatatbmplexity to calibrate phase in
single Intel 5300 NIC. As a result, the randomness from thgueacy and time difference between
the receiver and transmitter, and the unknown phase oftsetit be removed; and stable phase
information can be obtainedThird, the calibrated phase difference in 5GHz can be translated
into AOA with considerable accuracy when there is a strongldomponent. We validate these
hypotheses with both extensive experiments and simplgsisal

We then design BiLod3i-modal deep learning for indodwcalization using commodity WiFi
devices, to incorporate the three hypotheses in an indogerjminting system. In BiLoc, we
first extract raw amplitude and phase data from the threenaate each with 30 subcarriers, with
a modified firmware. We then obtain bi-modal data, includiagrage amplitudes over pairs of
antennas and estimated AOAs, with the calibration proaediscussed above. In the training
phase, we adopt a deep autoencoder network to extract theauchannel features hidden in the
bi-modal data, and leverage the weights of the deep autdencetwork as the extracted features

(i.e., fingerprints). To reduce the computational compies greedy learning scheme is leveraged
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to train the deep autoencoder network using a RBM model. Inetbtephase, bi-modal test data is
first collected from a mobile device. Based on the RBF, a Bayesi@mpility model is employed
to estimating position.

The main contributions of this chapter are summarized helow

e We theoretically and experimentally validate the feagipf using bi-modal CSI data for
indoor localization. In particular, we deeply analyze theasured phase errors and design a
multi-radio hardware for calibrating the unknown phassetfflifference in single Intel 5300
NIC. To the best of our knowledge, we are the first to employ laedrage amplitudes and

estimated AOAs for indoor fingerprinting in commodity 5GHzRMetworks.

e We propose a deep learning approach for indoor fingerpgntin particular, we leverage
a deep autoencoder network to extract OFDM channel feahideten in the rich CSI bi-
modal data, and use weights to build the bi-modal fingerpiatabase. Further, we propose

a probability fusion method for accurately estimating posiwith bi-modal test data.

e We implement the BiLoc system with commodity 5GHz WiFi andwhis superior perfor-
mance in three typical indoor scenarios with extensive expnts. Our test results demon-

strate that BiLoc outperforms three representative exjsaihemes on localization accuracy.

In the rest of this chapter, the preliminaries and hypothese given in Section 4.2. We
present the BiLoc system in Section 4.3 and validate its padoce in Section 4.4. Section 4.5

summarizes this chapter.

4.2 Preliminaries and Hypotheses

4.2.1 Distribution of Amplitude and Phase

In general bothZ; and Q; can be modeled as i.i.d. AWGN of varianeé. The amplitude re-
sponse i§CSl;| = /Z? + Q?, which follows a Rician distribution when there is a strong3.0

component [77]. The probability distribution function (PPof the amplitude response is defined
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where|CSly| is the amplitude response without noidg(-) is the zeroth order modified Bessel
function of the first kind. When the signal to noise ratio (SN&high, the PDFf(|CS;|) will
converge to the Gaussian distribution/d$,/|[CSk|? + 02, ¢2) [77].

The phase response of subcariié computed by/CS|; = arctan(Q;/Z;) [77]. The phase
PDF is given by
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where@(-) is the Q-function. In the high SNR regime, the PIPEZCSI;) also converges to a
Gaussian distribution a8 (0, (¢/|CSk|)?) [77]. The distribution of amplitude and phase of the
subcarriers would be useful to guide the design of locabradlgorithms.

4.2.2 Hypotheses

We consider three important hypotheses about the 5GHz C8§) daich are demonstrated and

tested with our measurement study and theoretical analysis

Hypothesis 1

The average CSI amplitude value over two adjacent antennatébGHz OFDM channel is

highly stable at a fixed location
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We find CSI amplitude values exhibit great stability for cantusly received packets at a
given location. Fig. 4.1 presents the CDF of the standardatievis (STD) of (i) the normalized
CSI amplitude averaged over two adjacent antennas, (ii) tnemalized CSI amplitude from a
single antenna, and (iii) the normalized RSS amplitude frosingle antenna, for 90 positions.
At each position, 50 consecutive packets are received byntieé 5300 NIC operating on the
5GHz band. It can be seen that 90% of the testing position®lave 10% of the STD in the
case of averaged CSI amplitudes, while the percentage is 80%¢d case of single antenna CSI
and 70% for the case of single antenna RSS. Thus, averagimgwoeadjacent antennas can
make CSI amplitude highly stable for a fixed location with 5GBEEDM channels. We conduct
the measurements over a long period of time, including mgignhours and business hours. No
obvious difference in the stability of CSl is observed ovdiedent times, while RSS values exhibit
large variations even for the same position. This findingivestus to use average CSI amplitudes
of two adjacent antennas as one of the features of deeprigamihe BiLoc design.

Recall that the PDF of the amplitude response of a single aatenGaussian in the high
SNR regime. Assuming that the CSI values of the two antenreasial. (true when two adjacent
antennas are more than a half wavelength apart [66]), theageeCSI amplitudes also follow
the Gaussian distribution, a€(,/|CSk|2 + o2, 0%/2), but with a smaller variance. This proves
that stability can be improved by averaging CSI amplitudes two antennas [78](as observed in
Fig. 4.1). On the other hand, we consider the average CSI et over two antennas instead
of three antennas or only one antenna, because BiLoc systg@hysra bi-model data, such as
estimated AOAs and average amplitudes. This requires tbats@ the same number of nodes as

the input for a deep autoencoder network.

Hypothesis 2

The difference of CSI phase values between two antennas of the ©6DM channel is highly
stable, compared to that of the 2.4GHz OFDM channel.
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Figure 4.1: CDF of the standard deviations of average CSI &mdglj a single CSI amplitude, and
a single RSS in the 5GHz OFDM channel for 90 positions.

Although the CSI phase information is also available fromltitel 5300 NIC, it is highly
random and cannot be directly used for localization, duedisanand the unsynchronized time
and frequency of the transmitter and receiver. Recently,usejul algorithms are used to remove
the randomness in CSI phase. The first approach is to makesa tra@sform of the phase values
measured from the 30 subcarriers [67, 79]. The other oneigfiloit the phase difference between
two antennas in 2.4GHz and then remove the measured avé&@jgé\[though both methods can
stabilize the CSI phase in consecutive packets, the avelage walue they produce is always near
zero, which is different from the real phase value of the ikazksignal.

Switching to the 5GHz band, we find the phase difference besdmghly stable. Fig. 4.2
shows the measured phase differences of the 30 subcarigredn two antennas for 200 consec-
utively received packets in the 5GHz (in blue) and 2.4GHz¢ah) bands. The phase difference
of the 5GHz channel varies between [0.5, 1.8], which is aersibly more stable than that of the
2.4GHz channel (varies betwegnr, 7]). To further illustrate this finding, we plot the measured
phase differences between the 5th subcarrier of two ansaumsiag polar coordinates in Fig. 4.4.
We find that all the 5GHz measurements concentrate arouhavBile the 2.4GHz measurements
form four clusters around°Q90°, 180, and 270. It is because of the firmware design of the Intel

5300 NIC when operating on the 2.4GHz band, which reportphase of channel modulo/2
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Figure 4.2: The measured phase differences of the 30 sidrsapetween two antennas for 200
consecutively received packets in the 5GHz (blue) and 2z @®¢t) bands.
rather thar2z on the 5GHz band [76]. Comparing to the ambiguity in the 2.4®#&iad, the highly
stable phase difference in the 5GHz band could be very uefuidoor localization.

As in Hypothesis 1, we also provide an analysis to validateotbservation from experiments.

Let A(iS”\]i denote the measured phase of subcafriehich is given by [80, 81]
LCST; = ZCSk + (A + A)mi + A+ B+ Z, (4.2)

where ZCS|; is the true phase from wireless propagatignis the measurement noisé,is the
initial phase offset because of the phase-locked loop (Phl )s the subcarrier index of subcarrier

i, Ap, As and . are phase errors from PBD, SFO and CFO, respectively [80],dme expressed

by
Ap = QW%
A = 2m(TT) I (4.3)
Ae = 2nAfTyn,

where At is the packet boundary detection delay,is the FFT sizel” andT are the sampling
periods from the receiver and the transmitter, respegtiélis the total length of the data symbol

and the guard interval,, is the length of the data symbal,is the sampling time offset for current
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packet,A f is the center frequency difference between the transndatidrreceiver. It is noticed
that we cannot obtain the exact values ab@utT’T‘T, n, Af,andjs. Moreover,\,, \; and\, vary
for different packets with differenf\¢ andn. Thus, the true phaséCSl; cannot be derived from
the measured phase value.

However, note that the three antennas of the Intel 5300 NECthis same clock and the
same down-converter frequency. Consequently, the meagpinases of subcarrigrfrom two
antennas have identical packet detection delay, sampénggs and frequency differences (and
the samen,) [76]. Thus the measured phase difference on subcarbetween two antennas can

be approximated as
A/CSI; = A/CS| + AB + AZ, (4.4)

whereA ZCS|; is the true phase difference of subcariief g is the unknown difference in phase
offsets, which is in fact a constant [76], a\¥’ is the noise difference. We can find tmaKO/\SIZ-
is stable for different packets because of the above equétid) withoutAt andn.

In the high SNR regime, the PDF of the phase response of sudrcaior each of the anten-
nas isN(0, (¢/|CSk|)?). Due to the independent phase responses, the measurediffeasece
of subcarrieri is also Gaussian with/'(A3, 26%(1 + 1/|CSk|?)). Note that although the vari-
ance is higher comparing to the true phase response, thetaintgefrom the time and frequency

differences is removed, leading to much more stable meamnts (as shown in Fig. (4.4)).

Hypothesis 3

The calibrated phase difference in 5GHz can be translatéaltime AOA with considerable accu-

racy when there is a strong LOS component.
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The measured phase difference on subscriloan be translated into an estimation of AOA,

as

A/CSI,
f = arcsin ﬂ , (4.5)
2md

where) is the wavelength and is the distance between the two antennas (sét+00.5\ in our
experiments). Although the measured phase diﬁerMéTS\]i is highly stable, we still wish to
remove the unknown phase offset differenkg to further reduce the error of AOA estimation.
For commodity WiFi devices, the existing approach for algmgjC is to search for\ 5 within an
AOA pseudospectrum in the range[efr, 7], which, however, has a high time complexity [76].

For the proposed Biloc system, we design a simple method towertihe unknown phase
offset differenceAS using two Intel 5300 NICs. As in Fig. 4.3, we use one Intel 5300C lds
transmitter and the other as receiver, whilsignal splitteris used to route signal from antenna
1 of the transmitter to antennas 1 and 2 of the receiver thir@adles of the same length. Since
the two antennas receive the same signal, the true phaseesdifieA ~ CS|; of subcarrier is zero.
We can thus obtail\3 as the measured phase offset difference between antenmais2lcd the
receiver. We also use the same method to calibrate anteraras 2 of the receiver, to obtain the
unknown phase offset difference between them as well. Weenttat the unknown phase offset
difference is relatively stable over time.

After calibrating the unknown phase offset differencestfa@ three antennas, we then use
the MUSIC algorithm for AOA estimation [82]. In Fig. 4.5, tHA estimation using MUSIC
with the calibrated phase information for the 30 subcasrieplotted for a high SNR signal with a
known incoming direction of 14 We can see that the peak occurs at arourtdr2€ig. 4.5, indi-
cating an AOA estimation error of about.an fact, there are multiple paths indoor environments.
Thus, only using three antennas cannot still obtain acewagle estimation. Moreover, we im-
plemented more experiments for angles estimation by usid§I indoor environments; we find

that the estimated angles are changing for different lonatbecause of NLOS paths. Although
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Figure 4.3: The multi-radio hardware design for calibrgtihe unknown phase offset difference
AB.
the calibrated phase differences are not available famesitng angles by using three antennas, we
believe that the new phase calibrated method can be usedttoe fWiFi systems such as IEEE
802.11 ac that has more than three antennas.

We can obtain the true incoming angle with MUSIC when the L@8gonent is strong.
To deal with the case with strong NLOS paths (typical in indexvironments), we adopt a deep
autoencoder network to learn the estimated AOAs and thegeeamplitudes of adjacent antenna
pairs as fingerprints for indoor localization. As input te ttheep network, the estimated AOA is
obtained as follows.

0 = arcsin ((AACTSTIZ- — AB) ﬁ)\d) + g, (4.6)

whereAg is measured with the proposed multi-radio hardware experimThe estimated AOA

is in the range of0, 7].

4.3 The BiLoc System

4.3.1 BilLoc System Architecture

The overall architecture of BiLoc is illustrated in Fig. 4.8he BiLoc design uses one mobile
device and one access point, each equipped with an Intel HBOQservicing as receiver and
transmitter, respectively [83, 84]. All the communicasoare on the 5GHz band. Based on the

Intel 5300 NIC with three antennas, we can collect 90 CSI datavery received packet. We then
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Figure 4.4. The measured phase differences of the 5th sudrchetween two antennas for 200
consecutively received packets in the 5GHz (blue dots) a#@12z (red crosses) bands.
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Figure 4.5: The estimated AOAs from the 30 subcarriers ugiegMUSIC algorithm, while the
real AOA is 14.

calibrate the phase information of the received CSI datagusur multi-radio hardware design
(see Fig. 4.3). Both the estimated AOAs and average ampétoflevo adjacent antennas are used
as location feature for building the fingerprint database.

A unique feature of BiLoc is its bi-modal design. With the #hreceiving antennas, we can
obtain two groups of data: (i) 30 estimated AOAs and 30 aveeagplitudes from antennas 1 and
2, and (ii) that from antennas 2 and 3. BiLoc utilizes estida#©As and average amplitudes for
indoor fingerprinting for two main reasons. First, these tymes of CSI data are highly stable
for any given position. Second, they are usually compleargrib each other under some indoor
circumstances. For example, when a signal is blocked, thi@ge amplitude of the wireless signal

will be significantly reduced; but the estimated AOA becommese effective. On the other hand,
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Figure 4.6: The BiLoc system architecture.

when the NLOS components are stronger than the LOS compaienaverage amplitude will
help to improve the localization accuracy.

Another unique characteristic of BiLoc is the use of deeprlie@rto produce feature-based
fingerprints from the bi-modal data in the offline trainingge, which is quite different from the
traditional approach of storing the measured raw data asrnigpts. Specifically, we leverage the
weights in the deep autoencoder network as the featurestihiagerprints for every position. By
obtaining the optimal weights with the bi-modal data onreated AOAs and average amplitudes,
we can establish a bi-modal fingerprint database for thaitr@ipositions. The third feature of
BiLoc is the probabilistic data fusion approach for locatestimation based on received bi-modal

data in the online test stage.

4.3.2 Offline Training for Bi-Modal Fingerprint Database

In the offline stage, BiLoc leverages deep learning to trathstare the weights to build a bi-modal

fingerprint database, which is a deep autoencoder netwatkrvolves three phases: pretraining,
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unrolling, and fine-tuning [8, 64]. In the pretraining phaaeleep autoencoder network with three
hidden layers and one input layer is used to learn the bi-hdata. We denoté’ as the hidden
variable with K; nodes at layet, i = 1,2, 3, andh® as the input data witti{, nodes at the input
layer. Let the average amplitude data:deand the estimated AOA data bé. To build the bi-
modal fingerprint database, we #t= v! andh® = v? for database 1 and 2, respectively, each of
which is a set of optimal weights. We dendig, W, and V3 as the weights between input data
and the first hidden layer, the first and second hidden lapertlae second and third hidden layer,
respectively.

To reduce the computational complexity for obtaining tir@gnweights, a greedy learning
algorithm for the proposed BiLoc system is developed to |&aerweightdayer by layerbased on
a stack of RBMs [25]. We develop a greedy algorithm to train tleéghts and biases for a stack
of RBMs, which is the same scheme in PhaseFi system [85]. T tinai weights and biases of
each RBM, we use the CD-1 approach to solve them. For the {aR&M model, we estimate
hi~1 by sampling from the conditional probabilif§r(hi~!|h?); by sampling from the conditional
probability Pr(k?|hi~1), we can estimaté'.

After the pretraining phase, we then unroll the deep autmggrcnetwork usingprward prop-
agationto obtain the reconstructed input data in the unrolling phasnally, in the fine-tuning
phase, thbackpropagatioralgorithm is used to train the weights in the deep autoenaoetevork
according to the error between the reconstructed data aidplt data. The optimal weights are
obtained by minimizing the error. In BiLoc, we use estimat€dlA& and average amplitudes as

input data, and obtain two sets of optimal weights for thenbdal fingerprint database.

4.3.3 Online Data Fusion for Position Estimation

In the online phase, we adopt a probabilistic approach tatioe estimation using the bi-modal

fingerprint database and the bi-modal test data. We derev@disteriori probabilityPr(I;|v*, v?)
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using Bayes’ law as

. 1,27,
Pr(Lot o?) ]IVDI(ZZ) Pr(v', v?|l;) ’ 4.7)
> oin Pr(l;) Pr(vt, v?|l;)

wherel; is theith reference location in the bi-modal fingerprint databases the number of refer-
ence positions, anHr(/;) is the prior probability, which is uniformly distributedrfany reference
position/; [85]. The posteriori probability’r(/;|v!, v?) becomes

Pr(vt, v?|l;)

Pr(l;|vt, v?) = ) 4.8
(lilv,v%) SRR (4.8)

In BiLoc, we approximatePr(vt, v?|l;) with an RBF to consider the degree of similarity

between the reconstructed bi-modal data and the test bahdath, given by

1 Al 2 A2
Pr(ut, i) = exp (—(1 Y L N Uitk ”) | (4.9)

o1 1209

whered! and?? are the reconstructed average amplitude and reconstra@adrespectively;
ando, are the variance of the average amplitude and estimated A&fectivelyy); andn, are
the parameters of the variance of the average amplitudesasimaged AOA, respectively; andis
the ratio for the bi-modal data.

For the Eq. (4.9), the average amplitudésand the estimated AOA&’ are as the input of
the deep autoencoder network, where the different nodelseoinput can express the different
CSI channels. Then, by employing the test ddtand?, we compute the reconstructed average
amplituded! and reconstructed AOA? based on database 1 and database 2, respectively, which is
used to compute the likelihood functidh (v, v?|1;).

The location of the device is finally determined as a weigtaeerage of all the reference

positions, that is
. N
1= Pr(l;jv',0%) - 1. (4.10)
=1
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4.4 Experimental Study

4.4.1 Test Configuration

We present our experimental study with BiLoc in the 5GHz banthis section. In the experi-

ments, we use a Dell laptop as a mobile device and a desktoputenas an access point, both of
which are equipped with an Intel 5300 NIC. In fact, we use thekttep computer instead of the

commodity routers that are not equipped with the Intel 5300 howadays. Our implementation

of BiLoc is executed on the Ubuntu desktop 14.04 LTS OS for blm¢haccess point and mobile
device. We use QPSK modulation and a 1/2 coding rate for theNDBystem. For the access
point, it is set in monitor model and the distance betweenadjacent antennas is= 2.68 cm.

It is half of a wavelength for the 5GHz band. For the mobileideyit transmits packets at 100
packets per second using only one antenna in injection ma@elz CSI data can be obtained by
using packet injection technique based on LORCON version én;Tlve extract bi-modal data for

training and test stages as described in Section 5.3.2.

We implement three representative schemes from the litexate., Horus [19], FIFS [22],
and DeepFi [64]. Moreover, all the schemes employ the sanasetacaptured in the 5GHz band
for a fair comparison. Moreover, we can find that the threehot do not leverage phase dif-
ference information. We conduct extensive experimenth tié schemes in the following three
representative indoor environments.

Computer Laboratory: This is a6 x 9 m*> computer laboratory, a cluttered environment with metal
tables, chairs, and desktop computers, blocking most oE @@ paths. The floor plan is shown
in Fig. 4.7, with 15 chosen training positions (marked assgaares) and 15 chosen test positions
(marked as green dots). The distance between two adjaeennt positions is 1.8 m. The single
access point is put close to the center of the room. We cdiiatiodal data from 1000 packets for
each training position, and from 25 packets for each testipns The deep autoencoder network
used for this scenario is configuredfs; = 150, K, = 100, K3 = 50}. Also, the ratiop for the

bi-modal data is set as 0.5.
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Figure 4.7: Layout of the computer laboratory: trainingiposs are marked as red squares and
testing positions are marked as green dots.
Corridor: This is a2.4 x 24 m? corridor, as shown in Fig. 4.8. In this scenario, the AP isgthat
the left end of the corridor and there are plenty of LOS patiles. training positions (red squares)
and 10 test positions (green dots) are arranged along glstiaie. The distance between two
adjacent training positions is also 1.8 m. We also colleanbdal data from 1000 packets for
each training position and from 25 packets for each testipasiThe deep network used for this
scenario is configured d9¢; = 150, Ky = 100, K3 = 50}. Also, the ratig for the bi-modal data
issetas 0.1.
Two Corridors: These are a.4 x 24 m? corridor and &.4 x 20 m? corridor, as shown in Fig. 4.9.
In this scenario, six APs are placed two corridors and thiseeae enormous LOS paths. Eighteen
training positions (red squares) are arranged along twadows. And plenty of test positions are
randomly in the two corridors, which are not shown in Fig. 4.Be distance between two adjacent
training positions is also 1.8 m. We also measure bi-modalfitem 1000 packets for each training
position and from 25 packets for each test position. Othearpaters in deep network are set as
the same with the above one corridor. For the deployment,nlieleverage it to study the impact

of the number of APs on indoor localization results for diffiet schemes.
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Figure 4.8: Layout of the corridor: training positions ararked as red squares and testing posi-
tions are marked as green dots.
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Figure 4.9: Layout of the two corridors: training positicar® marked as red squares.

4.4.2 Accuracy of Location Estimation

Tables 4.1 and 4.2 show the mean and STD of localizationsresd the execution time of the
four schemes for the two scenarios, respectively. In therktbry environment, BiLoc achieves a
mean error of 1.5743 m and an STD error of 0.8312 m across tliestpoints. In the corridor
experiment, because only one access point is used for tigisrlapace, BiLoc achieves a mean
error of 2.1501 m and an STD error of 1.5420 m across the 1@tasts. BiLoc outperforms the
other three benchmark schemes with the smallest mean agavell as with the smallest STD
error, i.e., being the most stable scheme in both scenafifesalso compare the online test time
of all the schemes. Due to the use of bi-modal data and the nietsyork, the mean executing

time of BiLoc is the highest among the four schemes. Howeliemtean execution time is 0.6653
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Table 4.1: Mean/STD error and execution time of the laboyadaperiment
Algorithm | Mean error | Std. dev| Mean execution time

(m) (m) ()

BiLoc 1.5743 0.8312 | 0.6653
DeepFi 2.0411 1.3804 | 0.3340
FIFS 2.7151 1.0805 | 0.2918
Horus 3.0537 1.0623 | 0.2849

Table 4.2: Mean/STD errors and execution time of the corrgkperiment

Algorithm | Mean error| Std. dev| Mean execution time
(m) (m) (s)

BiLoc 2.1501 1.5420 0.5440

DeepFi 2.8953 2.5665 0.3707

FIFS 4.4296 3.4256 0.2535

Horus 4.8000 3.5242 | 0.2505

s for the laboratory case and 0.5440 s for the corridor cak&hnare sufficient for most indoor
localization applications.

Fig. 4.10 shows the CDF of distance errors of the four methodlsa laboratory scenario. In
this complex propagation environment, BiLoc has 100% of & positions with an error under
2.8 m, while DeepFi, FIFS, and Horus have about 72%, 52%, &Pt df the test positions with
an error under 2.8 m, respectively. For a much smaller errdr.® m, the percentage of test
positions having a smaller error are 60%, 45%, 15%, and 5%itarc, DeepFi, FIFS, and Horus,
respectively. BiLoc achieves the highest precision amorddhr schemes, due to the use of bi-
modal CSI data (i.e., average amplitudes and estimated AQAdact, when the amplitude of a
signal is strongly influenced in the laboratory environméme estimated AOA can be utilized to
mitigate this effect by BiLoc. However, the other methodsdobsolely on CSI or RSS amplitudes
will be affected.

Fig. 4.11 presents the CDF of distance errors of the four seldor the corridor scenario.
Only one access point is used at one end for this 24 m longdawymnaking it hard to determine
the position of the mobile device. For BiLoc, more than 90%hef test positions have an error

under 4 m, while DeepFi, FIFS, and Horus have about 70%, 60% 58% of the test positions
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Figure 4.10: CDF of localization errors in 5GHz for the laliorg experiment.
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Figure 4.11: CDF of localization errors in 5GHz for the coorn@xperiment.

with an error under 4 m, respectively. For a tighter 2 m erfnoeshold, BiLoc has 60% of the test
positions with an error below this threshold, while it is 4886 the other three schemes. For the
corridor scenario, BiLoc mainly utilizes the average anuplés of CSl data, because the estimated
AOAs are similar for all the training/test positions (rddhht they are aligned along a straight line
with the access point at one end). This is a challenging siefa differentiating different test

points and the BiLoc mean error is 0.5758 m higher than thdtefaboratory scenario.
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Figure 4.13:Mean localization errors versus parametéor the laboratory and corridor experiments.
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Figure 4.14:Mean localization errors versus the number of packets us#tkionline test stage for the laboratory
and corridor experiments.
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Figure 4.16: Mean localization errors versus the numberFs for two corridors experiment.

4.4.3 2.4GHz versus 5GHz

We also compare the 2.4GHz channel and 5GHz channel with ttecBicheme. For a fair com-
parison, we conduct the experiments at night, because #4@&Hz band is much more crowded
than the 5GHz band during the day.

Fig. 4.14 presents the CDF of localization errors in the 2.4@Hd 5GHz band in the labo-
ratory environment, where both average amplitudes anthattd AOAs are effectively used by
BiLoc for indoor localization. We can see that for BiLoc, ab@0€6 of the test positions have an

error under 2 m in 5GHz, while 50% of the test positions haveraor under 2 m in 2.4GHz. In
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addition, the maximum errors in 2.4GHz and 5GHz are 6.4 m aBa? respectively. Therefore,
the proposed BiLoc scheme achieves much better performar®Hiz than 2.4GHz. In fact, the
phase difference between two antennas in 2.4GHz exhibéist gariations, which lead to lower

localization accuracy. This experiment also validatesHypothesis 2.

4.4.4 Impact of Parameterp

Recall that the parameteris used to trade off the impacts of average amplitudes arhastd
AOAs in location estimation as in (4.9). We consider the inotpaf p on localization accuracy
under the two environments. With BiLoc, we use bi-modal dataohline testing, ang directly
influences the likelihood probabilitir(vt, v?|1;) (4.9), which in turn influences the localization
accuracy.

Fig. 4.13 presents the mean localization errors for inéngasfor the laboratory and corridor
experiments. In the laboratory experiment, wheis increased from 0 to 0.3, the mean error de-
creases from 2.6 m to 1.5 m. Furthermore, the mean error nsmaadund 1.5 m fop € [0.3,0.7],
and then increases from 1.5 m to 2 m whes increased from 0.6 to 1. Therefore, BiLoc achieves
its minimum mean error fop € [0.3,0.7], indicating that both average amplitudes and estimated
AOAs are useful for accurate location estimation. MorepBéroc has higher localization accu-
racy with the mean error of 1.5m, compared with individualdady such as the estimated AOAs
with that of 2.6m or the average amplitudes with that of 2.0m.

In the corridor experiment, we can see that the mean erroairesmaround 2.1 m whep
is increased from 0 to 0.1. Whenis further increased from 0.1 to 1, the mean error keeps on
increasing from 2.1 m to about 4.3 m. Clearly, in the corridqueziment, the estimated AOAs
provide similar characteristics for deep learning, andrareuseful for distinguishing the posi-
tions. Therefore BiLoc should mainly use the average angsgwf CSI data for better accuracy.
These experiments provide some useful guidelines on gettep value for different indoor envi-

ronments.
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4.4.5 Impact of the Number of Packets

We study the impact of the number of packets used in the omdisestage of BiLoc. In this
experiment, we estimate the location of the mobile devigegudifferent number of packets for
the two indoor environments. Although 1000 test packetsegeived for each position, we only
use 25, 50, 100, and 300 of them in the online test for locagtimation. We also randomly select
the parametep value to guarantee the consistency of localization resildtained with different
number of packets.

In Fig. 4.14, we plot the mean localization errors for diéier number of packets in the cor-
ridor and laboratory experiments. We can see that the medande error in the laboratory ex-
periment is lower than that in the corridor experiment fdfedlent packets. Moreover, with the
increase of packets, the mean distance error for both erpats is decreased. Also, we can find
that the maximum distance errors for the laboratory anddarexperiments are 1.7 m and 2.3
m, respectively, while the minimum distance errors for thieoratory and corridor experiments
are 1.58 m and 2.1 m, respectively. In fact, with the incredsbe packets, the decrease of mean
distance error is small for both experiments. Thereforechmose 25 packets for the test phase
in the proposed BiLoc system, which can obtain a lower contjutal complexity and a good

localization performance.

4.4.6 Impact of the Number of Nodes in Deep Network

We study the impact of the number of nodes in deep network califation results of our BiLoc
system. Although there are lots of values we can set for trenpeters<;, K, and K3, the number
of all nodes K, + K> + K3) in deep network is considered. In addition, we set the nurobe
nodes as 200, 300 and 400, respectively, for the two indogramments.

Fig. 4.15 presents the mean distance errors for increasimdper of nodes in deep network
for the laboratory and corridor experiments. We can seetligatnean distance error is decreased
with the increasing number of nodes in deep network for bagreements. It is noticed that

the difference of the mean errors is small for different nemtif nodes, where the mean error is
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from 1.8 m to 1.5 m in the laboratory experiment, and thatosfi2.2 m to 2.1 m in the corridor
experiment. This demonstrates that our BiLoc is robust féeint number of nodes in deep
network. Thus, we select the proper number of nodes with Ba0i$ K, = 150, K, = 100 and

K3 = 50, thus obtaining the lower cost.

4.4.7 Impact of the Number of APs

Finally, we study the impact of the number of APs on locai@atesults for different methods,
where we consider the two corridors deployment with six ARs.multiple APs, we consider the
online localization scheme by multiplying equation (4 @&)&ll APs to obtain the fusion likelihood
function for every location [22]. Moreover, we implemeng tbroposed BiLoc system without cal-
ibration for indoor localization. Also, we consider thertsanitter device can access the maximum
three APs.

Fig. 4.16 presents the mean distance errors for increasimdper of APs based on five differ-
ent schemes in the two corridors environment. It is notited, the mean error is decreased with
the increasing number of APs for all schemes. Moreover, fhoBisystem, we can see that with
the increase of the number of APs from 1 to 3, the distance exmecreased from approximate
2.4 mto 1.8 m, which can improve the localization accuraayweler, we can see that compared
with other traditional methods such as Horus and FIFS, tipeorement for localization accuracy
is small. Moreover, we can find that the proposed method vimijles AP can even obtain higher
accuracy than other methods. Furthermore, we also find leaBil_oc system has better local-
ization performance than BiLoc system without calibratidhus, we consider one AP for BiLoc

system based on the proposed method, which reaches theltmaBzation error and device cost.

45 Conclusions

We proposed BiLoc, a bi-modal deep learning system for fing&ipg-based indoor localization
with 5GHz commodity WiFi NICs. In BiLoc, we first extracted analibrated CSI data to obtain

bi-modal CSI data, including average amplitudes and estidhADAs, which were used in both
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the offline and online stages. In the training phase, we égext a deep autoencoder network to
train the bi-modal data, and the weights were used to représebi-modal fingerprints. In the test
phase, a Bayesian approach based probability model was yedplor estimating position with
bi-model test data. We evaluated the performance of BiLok @itensive experiments under three
representative indoor environments. The experimentaltsegalidated the superior performance

of BiLoc over several benchmark schemes.
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Chapter 5

CiFi: Deep Convolutional Neural Networks for Indoor Locatipa with CSI Images

5.1 Introduction

The rapid development of mobile devices and wireless tegtes has promoted location-based
services for internet of things, such as indoor trackindpotamavigation in the industry, health
sensing, and activity recognition [86, 87, 88, 89, 90]. Ehapplications require accurately de-
termining the location of a mobile device indoors. Becaustefcomplex wireless propagation
in indoor environments, due to shadow fading, multipathppgation, and blockage, indoor lo-
calization with wireless signals is a challenging problératthas attracted considerable research
effects. Recently, indoor fingerprinting based on Wi-Fi sigrhas become a research hot-spot,
which first builds a database with a large amount of Wi-Fi mea®ents in the offline phase, and
then determines the location of a mobile device by matcHiegiewly received Wi-Fi data with
that in the database.

In this chapter, phase difference data with 5 GHz Wi-Fi isduseestimate AOA, which can
be useful for indoor localization. Estimated AOA values &ogiven location are relatively more
stable due to the stability of phase difference data. Thu& A&imation is robust for complexity
indoor environments. For example, when Wi-Fi signal is kéatby, e.g., chairs or computers,
the CSI amplitudes will be strongly weakened. However, thenased AOA remains the same
when the transmitter location is not changed. Furthermeeeemploy the DCNN [91] to train
the AOA data from all the training locations as a supervisgzaiing. DCNN is a powerful deep

learning technique that has been successfully appliedriage recognition [24], human activity
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recognition based on sensors [92, 93] and social networds Rpecifically, we create AOA im-
ages based on a large number of received packets as inpet INN. The proposed method is
to exploit the time-frequency feature of AOA data for impiraylocalization performance. More-
over, since DCNN is a supervised methddonly requires to train one group of weights for all
the training data with related labelsvhich is different with our prior work DeepFi that requires
training weights for every training location [64, 3]. Thtise proposed method can greatly reduce
the storage requirement.

In particular, we present CiFi, a de@onvolutional neural networks (DCNN) based scheme
for indoor localization with commodity 5 GHz \Wi. In CiFi, we first obtain 90 CSI data from
the three antennas for every received packet from the mddiftel 5300 firmware, and extract all
phase information. Then, we compute two sets of CSI data, ieattiding 30 phase differences,
from antennas 1 and 2, and from antennas 2 and 3, respeciiveyphase difference data is used
to estimate AOA. Next, CiFi uses the estimated AOA values f@@® received packets to construct
16 images with siz60 x 60. These images are then used as input to the DCNN. For offlimértga
we use all the constructed images from all training locatitmtrain the DCNN, which consists
of a convolutional layer, a subsampling layer, and a futiynzected layer. For the convolutional
layer, we obtain the feature map and extract the time-speateire for AOA images. The mean
pooling function is implemented in the subsampling layerdduce training time. We use the
squared error loss function based on back propagation (BiRditothe convolutional weights. In
the online stage, we propose a probabilistic method to prele location of the mobile device
based on the trained DCNN and the new CSI AOA images receivettfie device.

The main contributions of this chapter are summarized helow

e We theoretically and experimentally verify the feasilyildf exploiting AOA values of CSI
data for indoor localization. In particular, we derive a rabidr measured phase and analyze

phase errors. We prove that phase difference is stable,aanblecused to estimate AOA.

e This is also the first work to employ DCNN for indoor localizatiwith Wi-Fi. We use

estimated AOA image from CSI data as input to the DCNN. By exagutiur convolutional
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Figure 5.1:CSl images for three different locations: (a) CSI image émation 1, (b) CSI image for location 2, (c)
CSl image for location 3.

and subsampling layers, CiFi can automatically extract dagures of the estimated AOA
image, to obtain training weights with the BP algorithm. Rermore, we implement DCNN
training algorithm for CSl images. In the online phase, weseng a probability method for

location estimation.

e We implement the proposed CiFi system with commodity 5 GHZRWand verify its per-
formance in two representative indoor environments witkesive experiments. The results
show that CiFi achieves better location accuracy than thwséiregy schemes. Moreover, we

consider the impact of various system parameters on latadiz performance.

In the remainder of the chapter, we provide the prelimirsameSection 5.2. We present the

CiFi design in Section 5.3 and performance evaluation ini@e&.4. Section 5.5 concludes this

chapter.

5.2 Preliminaries

The Intel 5300 NIC provides readings from 90 subcarriersnftbe three antennas. Then, we
compute two sets of CSl data, including 30 phase differerroas &ntennas 1 and 2, and 30 phase
differences from antennas 2 and 3. Thus, 60 estimated AO4esdbr each received packet can

be obtained using (4.5). We take 960 packet samples for érsnyng location, and construct 16
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images with size 6 60 based on the estimated AOA values. Each image consisGddkets
(z-axis) and the corresponding 60 estimated AOA values fon gacket (-axis). For example,
Fig. 5.1 shows CSI images for three different locations. haticed that three CSI images have
different data distribution, which can be used as fingetprfor indoor localization. For CiFi

system, the constructed images will then be used to traiD@ieN.

5.3 The CiFi System

5.3.1 CiFi System Architecture

Figure 5.2 shows the CiFi system architecture. The CiFi sysie®s one mobile device and one
access point as Wi-Fi transmitter and receiver, respdgtiboth equipped with the Intel 5300
NIC. Using the packet injection technique, the transmittedt eeceiver are set to the injection
and monitor modes, respectively. The 5 GHz band is used fprawing channel stability. CiFi
exploits the constructed images for two reasons. Firstestiemated AOA values are highly stable
and robust for each given location. When the Wi-Fi signal sckéd by a wall or chair, the
CSI amplitudes will be strongly weakened, which influenceltioalization accuracy. However,
the estimated AOA values are more robust if the transmisgdistance is not changed. Second,
the constructed image can leverage all subcarrier infoomdtom all received packets, which
contains rich time and frequency features of the CSI data.

The CiFi procedure includes two stages: offline training anithe location predication. In
the offline phase, the constructed images from all locatemesused to train the DCNN. This
method is quite different from traditional fingerprintingded methods, where a database is es-
tablished for every training location, and either the meaduwaw data or leant features are stored
as fingerprints. Howevenur CiFi system only trains one group of weights for all the niag
locations which is analogous to a classification or regression probiemachine learning. This
proposed method can not only decrease the amount of stot@dbdéalso improve the robustness
of the system. In the online phase, we employ an enhancedlpit@tic approach for location

estimation based on the constructed images of newly ret €& data.
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Figure 5.2: The CiFi system architecture.

5.3.2 Offline Training

The DCNN incorporates several convolutional and subsampdiyers as well as one or more fully
connected layers. It can exploit local correlations by islgathe same weights between neurons
of adjacent layers, thus reducing the training time. DCNN &lgon obtain the local dependency
and scale invariant feature from input data. More impolyaiit can extract more abstract rep-
resentation of the input image data from the lower layerdi¢ohigher layers in the hierarchical
architecture of DCNN, which can strengthen the feature etitia of CSI AOA data for indoor
localization. We introduce three main components of DCNMafollowing.

The convolutional layer can extract feature maps withiraleegions in the previous layer’s
feature maps with linear convolutional filters followed bgnhinear activation functions. Denote

6! as theith feature map in laydrof the DCNN, which is defined as

Oh=o | > wh, 0+, (5.1)

meS;_1
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Figure 5.3: CSl data training based on deep convolutionalaheetworks (C. and S. are short for
convolutional and subsampling, respectively).

whereo(t) = is the sigmoid function}! is the bias of theth feature map in layet,

W
S,_1 is the set of feature maps in lay@r— 1) connected to the current feature may),, is the
convolutional kernel to generate thth feature map in layel, which is the same for different
due to local weights sharing. The convolution operation @atain the shift-invariance of input
data and extract robust features. Then, the activatiortitme(¢) is used to avoid obtaining trivial
linear combinations of input data.

The subsampling layer or the pooling layer can reduce thautisn of the feature maps by
downsampling over a local neighborhood in the feature mégseoprevious layer. It is invariant

to distortions on the inputs. The feature maps in the preayer are pooled over a local temporal

neighborhood by the mean pooling function, as

o = Z Ohi, (5.2)
keGl
WhereG’. is the set of pooling region for thgh value in theith feature map in laydr, |sz| is the
number of elements in sétl 6., is thekth value of theith feature map in layer Other methods
such as the sum or max pooling function can be also used irstdge for reducing the training

time.
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For the fully-connected layer, we utilize a basic neuralek with one hidden layer to train
the output data after all the convolutional and subsampéggrs. Moreover, the loss function is
employed to measure the difference between the true locktel and the output data of DCNN.
By minimizing the values of the loss function with the BP algfum, we can update the convo-
lutional weights with the stochastic gradient descent wekthn the proposed DCNN, we use the

squared error loss function for training these parametérgh is defined as

K

e T (5.3)

=1

where K is the number of training locationg; is the true label for théth location, and; is the
DCNN output for theith location.

Fig. 5.3 illustrates CSI data training for the DCNN. To obtdue input AOA images, we
first estimate AOA values from 960 received packets as in).(41'Ben, we construct 16 images
with size60 x 60 out of the 960 AOA values. The images are convenient for DCNNrézess
in its convolution and subsampling layers. For each inpwgenin the first convolutional and
subsampling layer, we employ 32 convolutional filters wittes x 5 to obtain the same number
of feature maps with size 56 56, which can extract different characteristics. To reduaming
data and guarantee the invariance of feature maps, the samgen of feature maps with size 28
x 28 can be obtained by executing the subsampling with size22Then, by implementing other
three convolutional and subsampling layers as in Fig. 58 can obtain 16 feature maps with
size 1x 1, which can be fully-connected in the next layer. Finallg wan obtain the forward
output results and then combine the label of training dakéchivcan be used to update the training
weights such as the convolutional filers based on the losgiumwith the BP algorithm.

The pseudocode for offline training of CiFi is presented inokithm 5 and Algorithm 6. The
inputs to the Algorithm 5 are CSI images from all training lbeas, location labels, Marpoch
and learning rate. First, we randomly initiate all weightd diases (step 3). Then, for each epoch,

we randomly select a mini-batch from CSI images from all irggriocations, which are passed
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into DCNN defined by the network architecture (step 5). In theppsed CiFi system, the first

layer and the last layer are used as the input layer and thpblatyer respectively. From the

second layer, the input data are processed by the convadlifimyer and down sampling layer in

sequence (step 8-16). The outputs of the last third layecamgpressed as the inputs of fully-
connected layer (step 18-19). Based on the outputs of folhnected layer and location labels,
loss function is used to measure the difference betweemubddcation label and the output data
of DCNN (step 21). After the forward propagation, the erraesieen network outputs and labels
are used as inputs of BP algorithm to train DCNN.

The pseudocode for DCNN BP Algorithm is given in Algorithm 6.r BECNN BP algorithm,
we calculate the values of delta for every layer and coniariat kernel, which are used to update
weights and biases. First, the errors for the output layeecalculated with the difference between
outputs of neural network and labels, which are employealfdaining the values of delta in the
L — 1 layer using step 2. Because inputs of the fully connected gecompressed data from the
previous layer in the forward propagation, its shape shbeldestored in DCNN BP algorithm,
which is implemented by step 4. Furthermore, to obtain tHeegof delta for current layer, if
the current layer is a sub-sampling layer, the weights oflaker layer are rotated 180 degrees
and convoluted with values of delta from later layer (step. 18ignificantly, connected to the
feature maps in the current layer, only kernels from the latger are calculated in this step. When
the current layer is a convolutional layer, the values ofadfdr the later layer are upsampled by
Kronecker product (step 15). Then, the values of delta fercilwrrent layer are obtained by the
element-wise product between the upsampled delta valubsdaivatives of sigmoid function (step
18). We define the values of scale as the quotient of the sifeatire maps in the previous layer
and the current layer. Depending on delta values for eaddr,lélye training weights are updated
(step 22-37). The learning ratecontrols the speed of adjusting the weights of the DCNN. We
will discuss it in the experimental section. It is noticedttthe mean gradient over the mini-batch
is calculated because a random mini-batch from CSI images &lbtraining locations is passed

into DCNN for each epoch.
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5.3.3 Online Algorithm

In the online test phase, we adopt a probabilistic methodddipt the location of the mobile device

based on the trained DCNN and newly received CSI AOA images fhamest location. Leb/

denote the number of images from one location, antbe the prediction output of the DCNN for

theith location using thgth image. We can obtain a matr@ as the output of the DCNN faok

training locations by using/ images, which is given by

011 012

021 022
O =

OK1 OK2

013

023

OK3

O1Mm

O2M

OKM

(5.4)

With matrix O, we propose a greedy method to sel&ctandidate locations and compute

a weighted average of these locations as the estimateddodat the mobile device. We first

select location indexes of the largest outputs from the DCNN for every column of maté

thus producing a new matrig with sizeR x M as

S11

5921

SR1

512

5922

SR2

515

82]‘

SRj

S1Mm

Som

SRM

, (5.5)

wheres;; is the location index of théh largest output for thgth image. Every element of matrix

S belongs to the set of location indexgs 2, ..., K'}. The R largest location indexes are obtained

by computing the frequencies of all location indexes in ma#. Moreover, the weight of théh

location index can be computed by averaging all the selemtiouts for theith location index,

which is denoted ag;.
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Algorithm 5: Weights Training of CiFi System

1 Input: CSlimages from all training locations, location labels wak architecture,
Max_epoch, and learning rate;

2 Output: Trained weightsy andb;

3 Randomly initializew andb;

4 while epoch < Max_epoch do

5 Randomly select a mini-batch from inputs;
6 //[Forward propagation;

7 Il L is the number of layers for DCNN;

8 fori=2:L—-2do

9 if the current layer is a convolution layénen
10 0 = 0 (Somes, Wh * 0t +8L);
11 end

12 else

13 /IThe current layer is a subsampling layer layer;
14 QZH = ﬁ Zkecg 0

15 end

16 end

17 I/l The last layer is a fully-connected layer;
18 v = Dense(6-1);

19 | o=oc(wh xv+bl);

20 /ILoss function;

21 E =g i (i — )%

22 Call DCNN BP algorithm;

23 end

Finally, the position of the mobile device can be estimate@ aveighted average of the

selected locations, as

R
- Di
i=1 Zf:l bi

wherel; is theith training location. In our experiment, we sBt = 2 for better localization

performance.
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Algorithm 6: DCNN BP Algorithm
1 //IComputes™“~! as the delta value of the — 1 layer;

2 61 = (wL)T X(0—y)®(0®(1—0));

3 /l ® is used to denote the element-wise product;

4 5Z-L = Reshape (5L_1) ;

5 //Reshap@’—! into feature map stylg,is the index of feature maps ih— 1 layer ;
6 foril=L—-2:2do

7 if the current layer is a subsampling layer laytbien

8 fori=1:M,;do

9 Il M; is the number of feature maps in the layer
10 (55 = szSl 5%‘1 * rot180 (wﬁj{i),

11 end

12 end

13 else

14 fori=1:M;do

15 Upsampling(5-1) = 617 @ ¢;

16 Il ¢ is an all-ones matrix with the size of scatescale;
17 Il ® is denoted as the Kronecker product ;

18 8t = Upsampling(51) @ o’ (8L);

19 end

20 end

21 end

22 // Update weights;
23 fori=2:L—1do

24 if the current layer is a convolution layénen

25 for j =1: M;do

26 while i € S; do

27 wg,j = wij — a x (Mean{mini—patch} (r0t180(9§71) * 55-));
28 IIM ean gmini—pateny MeAnNs the average of the results over mini-batch data;
29 end

30 bé = bé —ax (Mean{mim?batch}(éé‘));

31 end

32 end

33 else

34 wh = wh — a x Mean mini—pateny (E © (0 © (1 — 0) x vT);

35 b=t —ax Mean{mini—batch} (E © (0 © (1 - 0)))1

36 end

37 end

5.4 Experimental Study

5.4.1 Experiment Configuration

We implement CiFi with 5 GHz commodity Wi-Fi devices and caomt extensive experiments to

valid its performance. In particular, we utilizd@/desktopnputer and a Dell laptop as access point



and mobile device, respectively. Both devices are equippttdam Intel 5300 NIC. The operating

system is Ubuntu desktop 14.04 LTS OS. We set the PHY parasret€)PSK modulation and 1/2
coding rate for the OFDM system. We set the access point imth@tor model and the distance
between its two adjacent antennagis- 2.68 cm, i.e., a half wavelength for 5.58 GHz Wi-Fi on
channel 116. The mobile device is set in the injection mod## wne antenna. Using the packet
injection technique with LORCON version 1, we can extract 5 @ data at the receiver.

We compare CiFi with three representative approaches,dmgDeepFi [64, 3], FIFS [22],
and Horus [19]. To guarantee a fair comparison, we impleresge three methods with the same
CSI dataset in the 5 GHz band for estimating the position oitlbile device. We experiment
with the four schemes in the following two indoor environrtgen
Computer Laboratory: This is a 6x 9 m? computer laboratory in the Broun Hall in the Auburn
University campus. The indoor space is a cluttered enviemtrvith many desktop computers,
chairs, metal tables, which block most of the LOS paths. Tdwr fblan is shown in Fig. 5.4. We
use 15 training locations (marked as red squares) and 16¢esions (marked as green dots). The
access point is put at the center of the room. We set the distaetween two adjacent training
locations to 1.8 m, and obtain CSI data from 1000 packets foh é&@ining position and test
position.

Corridor: This is a long corridor in Broun Hall with dimension about 2424 n¥. As in Fig. 5.5,
we place the access point at one end on the floor to measure £SHfata. There are main LOS
paths in this scenario. We use 10 training locations (redisg) and 10 test locations (green dots)
along a straight line. The distance between two adjacentrigalocations is also 1.8 m. We extract

5 GHz CSl data from 1000 packets for each training and testitota

5.4.2 Accuracy of Location Estimation

Figure 5.6 presents the training errors over iteratione®DCNN, for the laboratory and corridor
experiments. We set the threshold of training error to Odd§uarantee successful training and

to avoid overfitting for input AOA images. Moreover, the a@éons indicate the times of training
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Figure 5.5: Layout of the corridor: training locations ararked as red squares and testing loca-

tions are marked as green dots.

input AOA images with the DCNN. For the laboratory experinsgtie training error curve starts

to converge aftet.48 x 10* iterations, which finally reaches the preset threshold afitbut 0.06

training error aftert.85 x 10? iterations. For the corridor experiments, the trainingpeaurve

begins to converge afte33 x 10* iterations, which is slower and eventually reaches thegpres

threshold after.86 x 10* iterations.

Tables 5.1 and 5.2 present the mean and STD of localizatronseias well as the execution

time for the four schemes in the two indoor environments. hia laboratory experiments, the

proposed CiFi scheme achieves a mean error of 1.7882 and are®diDof 1.2489 m. For the

corridor environment, CiFi achieves a mean error of 2.3863nchan STD error of 1.4575 m

for the 10 test locations. It is noticed that the performaoic€iFi is better than the other three

schemes. This is because the CiFi system utilizes the AOMastns, which is more stable

and robust in complexity indoor environments, comparedtb@oRSS or CSI amplitude based
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Figure 5.6:Training errors for the laboratory and corridor experinsent

Table 5.1: Localization Error And Execution Time (laborgjo

Algorithm | Mean error| Std. dev| Mean execution time
(m) (m) (s)

CiFi 1.7882 1.2489 0.5496

DeepFi 2.0411 1.3804 | 0.3340

FIFS 2.7151 1.0805 0.2918

Horus 3.0537 1.0623 | 0.2849

Table 5.2: Localization Error And Execution Time (Corridor)

Algorithm | Mean error| Std. dev, Mean execution time
(m) (m) (s)

CiFi 2.3863 1.4575 | 0.6484

DeepFi 2.8953 2.5665 | 0.3707

FIFS 4.4296 3.4256 | 0.2535

Horus 4.8000 3.5242 | 0.2505
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however, are still quite sufficient for realtime indoor lézation.

methods. Since more test packets are used to construct tAeérmA@yes in the online phase, the
mean execution time of CiFi is the highest among all the scBerfibe mean execution time of

CiFi for the computer laboratory and corridor cases are @S48nd 0.6484 s, respectively, which,

Figure 5.7 presents the CDF of distance errors of four schémise computer laboratory

case. For this environment with the complex multipaths, C#s utilize the unique multiple path
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Figure 5.7:CDF of localization errors for the laboratory experiment.

feature for location estimation, which is different forfdifent locations. CiFi has 40% of the test
locations having an error less than or equal to 1 m, while fitvathe other schemes is 30%. We
also find that about 87% of the test locations for CiFi have aoremnder 3 m, while the percentage
of test locations having a smaller error than 3 m are 73%, 60%,52% for DeepFi, FIFS, and
Horus, respectively. Thus, CiFi achieves the best perfocmanthis experiment. This is because,
when the magnitude of wireless signal is always influencedldstacles such as computers in the
laboratory environment, the estimated AOA values of CiFiraoge robust to the indoor multipath
environment, which results in smaller localization errors

Figure 5.8 presents the CDF of localization errors of all tfeesne in the corridor environ-
ment. We can see that the maximum error for CiFi is 4.8 m, wiiée for the other schemes is
more than 8 m. This validates that the CiFi system is more tabas the other three schemes.
Moreover, about 60% of the test locations for CiFi and Deeaivehan error under 3 m, while it
is 40% for FIFS and Horus. This result shows that the CiFi sysiehieves a close localization
performance to that of DeepFi, while both outperform theeotivo schemes. However, different
from DeepFi, the proposed CiFi system does not require tal loygla database for every training

location, thus greatly reducing the storage requirement.
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Figure 5.9:Mean localization errors for different number of packetthie laboratory and corridor experiments.

5.4.3 Impact of Various System Parameters
Impact of the number of training packets

To evaluate the effect of different training packets on mdimcalization, we construct training
CSIl images with different numbers of packets. For each CSlgiagkcontains 30 phase values
extracted from 30 subcarriers of each antenna. In the peabG#-i system, the size of an image
used as inputs of DCNN is considered as 60x60, which means Atdes estimated by two
antenna pairs compose y-axis and 60 packets compose x@fXigackets from 2 antenna pairs

could generate input image with the size of 60x60 perfe@tlizgen the number of packets is fewer
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than 60, AoA values estimated by packets are duplicatedjuesee until the image size is 60x60.
For example, to generate a 60x60 input image with 40 pactetsmage with a size of 60x40 is
produced firstly, and then the image constructed by first 28gda is duplicated and concatenated
with previous 60x40 image. Thus, different training imagestain different AoA information,
even though the sizes of all images are identical.

Figure 5.9 shows mean localization errors for different banof packets in the laboratory and
corridor experiments, respectively. In two indoor envirants, we evaluate the performance of
CiFi, respectively, with 5 training datasets that conta@ining images constructed by a different

number of packets. As we can see the distance error will deereith the number of packets
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increases in both scenarios. The minimum distance err@@86& in the corridor and 1.788m in
the lab, are reached when 60 packets are used to generait@rggtimage. Therefore, more AoA

information contributes to improving the localization pison.

Impact of the number of images per training location

To study the impact of the number of training images, we bbiitthtasets, which contain different

numbers of images for each training location, in two indoori@nments respectively. For the
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sake of fairness, images in all datasets are generated byB0OvAlues estimated from two an-
tenna pairs. We set the packet transmit rate as 1000Hz, wh@tantees that 16 images could be
generated within 1 second.

Figure 5.11 illustrates mean localization errors for défe number of images in the labora-
tory and corridor experiments, respectively. With the dase of the number of images for one
training location, the mean localization error will incega When 16 images are generated for
one training location, mean distance errors reach 1.788h2886m in two indoor environments,
respectively. As we can see, the highest distance error2.@84dm and 3.282m in the lab and
the corridor respectively, which are acceptable for thesedcenarios. In other words, our CiFi
system could not only achieve a better performance withgeetanput dataset but also obtains an

acceptable localization precision with a limited numbetraining images.

Impact of antenna pairs

Since Intel Wi-Fi Wireless Link 5300 has three antennas d&@d@SI data could be collected
from all three antennas simultaneously, we construct ttiad@sets to study the impact of different
antenna pairs. For each packet, 30 AoA values could be dstinieom 30 subcarriers of each
antenna pair. Similar with the method about the impact ohilnaber of training packets, we also
construct a training image with the size of 60x60. If only @améenna pair is used to estimate AoA
values, the image generated by AoA values is duplicated andatenated together i.e., a 30x60
image is generated firstly with 60 packets collected from rerana pair and then the image is
duplicated and concatenated with itself to generate a 60ré0e.

Figure 5.10 presents mean localization errors for diffeagenna pairs in the laboratory and
corridor experiments, respectively. It is obvious thatlbest localization precisions with 2.386m
in the corridor and 1.788m in the lab are reached, respégtmdien CSI AoA values from all
antennas are leveraged to construct training images. érantite, we notice that our CiFi system

performs well even input images are produced by one ante@inalhe highest distance errors in

115



the lab and corridor are 2.507m and 2.972m, respectivelgrevantenna 2 and 3 are leveraged to

generate training images.

Impact of different learning rate

To study the effect of different learning rate, we design ecHir experiment by setting different
learning rates to evaluate their effect on localizatiorci@ien. In the experiment, the number of
epoch is set in 1200 to guarantee the fairness.

Figure 5.12 illustrates mean localization errors for iasiaga in the laboratory and corridor
experiments, respectively. As the learning rate increftegs0.1 to 0.5, the minimum distance er-
rors for two scenarios are obtained when the learning rét&isAfter that, the mean distance error
goes up with the increase of the learning rate. Basicallywaldéarning rate induces that DCNN
could not achieve the convergence within 1200 epochs. Hexvéw a higher leaning rate such as
0.7 or 0.9, DCNN could not reach the best convergence poirdusecthe BP algorithm hops back
and forth over the valley repeatedly. For our CiFi systemning time does not jeopardize user
experience in the offline stage. Thus, in order to reach twedbdistance error, the learning rate

is set as 0.5 for two scenarios.

Impact of different value oR?

In the proposed CiFi system, we propose a greedy method tct $eteandidate locations to com-
pute a weighted average of these locations as the estinet&titin. In our experience, we find that
most of correct location predictions are always includethmtop five outputs of DCNN. Thus,
to improve the localization precision, only the top five autpare leveraged to calculate location
estimation in the proposed CiFi system.

Figure 5.13 shows mean localization errors for increaginig the laboratory and corridor
experiments, respectively. As we can see, when the valdgisf2, the distance errors reach the

lowest values for two scenarios. Thus, we Beas 2 in the CiFi system. Furthermore, with the
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value of R increases, the mean distance error rises slightly, whicdmnshéhat our CiFi system is

robust to different values aR.

5.5 Conclusions

In this chapter, we proposed CiFi, a DCNN based fingerprintystesn for indoor localization with
5 GHz Wi-Fi. We theoretically and experimentally verifie@ tleasibility of using AOA values for
indoor localization. We then presented the CiFi system, vhist formed AOA images to train the
DCNN, and then used newly received AOA images to estimateoitetibn of the mobile device.
Through extensive experiments, we demonstrated the sugmrformance of the proposed CiFi

system.
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Chapter 6

ResLoc: Deep residual sharing learning for indoor localzretvith CSI tensors

6.1 Introduction

With the remarkable development in mobile devices and es®techniques [95, 96, 97, 98, 99],
location-based services for internet of things, like astivecognition and health sensing, has
been enhanced significantly [100, 54, 75]. To fulfill the regonent of these applications, a high
precision location information is indispensable. Congidgthe fact that the wireless propagation
is much more complex in the indoor environment, indoor lzedion with wireless signals faces
lots of unsolved issues, which draw so much attention froseaechers. Lately, fingerprinting-
based indoor localization has become a research hot-spathwuilds a database with a large
amount of Wi-Fi measurements in the offline phase, and thempates the position of a mobile
device by comparing the newly received Wi-Fi data with tinathie database.

Recently, several 802.11n measurement and experimentatitsnare released, such as Intel
Wi-Fi Link 5300 NIC [21] and the Atheros AR9580 chipset [81]hah can extract CSI from re-
ceived packets by the modified firmware. Comparing with RSS, €8ie fine-grained channel
information, including subcarrier-level channel meameats in OFDM systems. Moreover, CSI
is much more stable than RSS for a given location [23]. BasedherCSI information, several
fingerprinting systems exhibit better localization penance. FIFS exploits the weighted aver-
age of CSI amplitudes over three antennas to achieve fineegrdocalization [22]. In addition,
CSI amplitudes and calibrated phases information are Igeery DeepFi [3] and PhaseFi [85],

respectively. These two schemes collect CSI from all theawuigrss at all the three antennas and
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generate fingerprinting with deep autoencoder networksrebieer, to improve the localization

accuracy, BiLoc system is proposed based on average CSI adghind phase difference infor-
mation for indoor localization by using bimodal deep autmater network [101]. Although these
three localization systems based on deep network can dixttier localization performance, they
need to build a database to store training feature as fing&sor every training location, which

increases the training time and storage space.

In this chapter, we consider bimodal CSI tensor data inclydstimated AOA and amplitude
information that are obtained from the 5GHz band. Firsti@AAand amplitude information are
stable, which can be effective features for fingerprintiagda indoor localization. Moreover, AOA
and amplitude information are complementary to each othdeudifferent indoor environments.
For example, when LOS component for wireless signal is wethlean other AOASs, the amplitude
information is useful for improving the localization penfieance. On the other hand, once the
signal is blocked by objects such as wall, the estimated A@l&es will help to strengthen the lo-
calization accuracy because the amplitude informatiomaatty weakened. Moreover, we present
a new deep residual sharing learning for improving the ingircapacity with two channels CSI
tensor data. The proposed method is different from the malgieep residual unit without shar-
ing the residual function. Moreover, we can stack many tedithlocks for adding the depth of
the deep network, thus achieving higher learning and reptaton ability. The residual learning
method has been successfully applied for image recogriibnl0, 102]. The proposed method
only requires for training one group of weights in deep realshetwork for all training locations as
a classification problem in statistical learning, thus Bigantly reducing the amount of the stored
data.

In particular, we present ResLoc, a ddgesdual sharing learning for indodrocalization
with CSI Tensor. In ResLoc, we first construct a CSl tensor inolythree images, each of which
has the same size with 3030 based on the estimated AoA values and the CSI amplitudesalu
For CSl tensor, we consider two images from estimated AoAeshetween antenna 1 and 2, and

antenna 2 and 3. Another image is from the amplitude valwes ine antenna. Thus, by using
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990 packets, we can obtain 33 CSI tensor data for one traiocggibn. Moreover, we consider
two channels CSI tensor data, where the difference betwei €&V tensor data is that they have
different amplitude information from different antennas €reating the third image in CSl tensor.
In ResLoc system, we consider the amplitude information festenna 1 and antenna 2 for two
channel CSI tensor data. For offline training phase, all thesttacted two channels CSI tensor
data from all training locations are leveraged to train tiegghts of the deep network based on the
proposed deep residual sharing learning, which includesiut block, the residual block and the
output block. The new idea for the residual block is that trepsed scheme shares the residual
functions for two channels, which can effectively explbié tCSI tensor data. Moreover, we also
analyze the proposed deep residual sharing learning ferafoling and backward propagation.
For the online stage, we use newly received CSI tensor datampute the location of the mobile
device based on the probabilistic method.

The main contributions of this chapter are summarized helow

e This is the first work to use CSI tensor data for indoor locaikzg which can exploit the
rich frequency and time features of the CSl data includingithplitude and phase difference

information.

¢ We propose deep residual sharing learning for training twamoels CSI tensor data. More-
over, we can stack many residual sharing blocks for addiegiépth of the deep network,
thus achieving higher learning and representation abidtyCSI tensor data. Moreover, the
proposed scheme is analyzed for forwarding and backwangbgeation. In the online test,

we consider a probability method for location prediction.

¢ We implement the proposed ResLoc system with commodity 5 GHEiM two representa-
tive indoor environments with extensive experiments. Hseilts show that ResLoc achieves

decimeter level location accuracy, which is better thamiotieep learning methods.
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6.2 Layout

In the remainder of the chapter, we introduce the prelingsaaind CSI tensor in Chapter 6.3. We
design the ResLoc design in Chapter 6.4 and performance @ealia Chapter 6.5. Chapter 6.6

summaries this chapter.

6.3 CSI Tensor

To build CSI tensor as the input of the ResLoc system, we compatedal CSI data including
estimated AOAs and amplitude information that are obtaiinech the 5GHz band. Besides the
amplitude information from three antennas, it is also easgdtimate the corresponding AoA
values between two adjacent antennas from each subcardeyaeh received packet by using the
same method in BiLoc system [101]. Then, for every 30 packetz{s) with 30 subcarriers (y-
axis), we can construct a CSl tensor including three images ef which has the same size with
30 x 30 based on the estimated AoA values and the CSI amplitudesalbor CSI tensor, we
consider two images from estimated AoA values between aatérand 2, and antenna 2 and 3;
Another image is formed from extracted amplitude valuesifame antenna. Thus, by using 1500
packets, we can obtain 50 CSl tensor data for one trainingitocar one test location. For ResLoc
system, we consider two channels CSI tensor data, whereffeesdice between two CSI tensor
data is that they have different amplitude information frdifferent antennas for creating the third
image in CSI tensor. In ResLoc system, we consider the amplinfdrmation from antenna 1
and antenna 2 for two channel CSI tensor data.

There are three reasons for using the CSI tensor as the infreéstfoc. First, by using CSI
tensor with three dimensional data it can strengthen tHeqeance of deep network for classifica-
tion problem with indoor localization. Moreover, all subgar information from all packet sample
are exploited by three images in CSI tensor, which contaafsfrequency and time features of the

CSl data. We can thus extract more effective features fromé&fSbr. Third, we leverage bimodal
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CSl data including the estimated AoA values and the CSI angdit@lues for indoor localization,

which are complementary to each other under different indagironments [4].

6.4 The ResLoc System

6.4.1 ResLoc System Architecture

In Figure 6.1, the ResLoc system is composed by one trangnwitiiéch is a mobile device, and

one receiver, which is an access point. Both devices are pegiwith the Intel 5300 NIC. To

collect the CSI data, the transmitter is set to the injectimde) and the receiver works in the
monitor mode. The Intel 5300 NIC reports CSI from 30 groupsuliicarriers from each antenna.
After CSI data collection, we can build two channels CSI terssed on estimated AOAs and
amplitude information. ResLoc system employs the fingetipgnbased method, which includes
the offline training and online location prediction. Foritiag data with two channels CSI tensor
in the offline phase, we propose a deep residual sharingiegior obtaining the optimal weights

of deep residual network. For online location predictioe,wtilize newly received CSl tensor data
to compute the location of the mobile device based on an eslbprobabilistic approach. Our
ResLoc system is totally different from traditional fingenping based methods, which build the
database for every training location based on raw data mirigafeatures as the fingerprints. In
fact, ResLoc system only requires for training one group dafs in deep residual network for
all training locations like the regression or classificatfroblem in statistical learning. Appar-
ently, this method reduces the amount of the stored dat#ismmtly. On the other hand, it also
contributes to the improvement of the robustness for indocalization based on the proposed

deep residual sharing learning, which can effectivelyespnt the features of CSI data.

6.4.2 Offline Training

We propose a deep residual shared learning for traininggép detwork with bi-modal CSl tensor,

which includes the input block, the residual block, and tagat block in Fig. 6.2.
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Figure 6.1: The ResLoc system architecture.

Input Block

For the input block, the bi-modal CSI tensor data can be tdamefour different layers with the
Convolution2D layer, batch normalization layer, activatiayer and max pooling layer, respec-
tively. It can obtain the local dependency and scale inmarffieature from bi-modal CSI tensor.
Furthermore, Input block can exploit more abstract repred®mn of the input CSI tensor data
from the lower layers to the higher layers, which can imprineefeature extraction of CSI tensor
data for indoor localization. We discuss four differentdeg/for the input block.

The Convolution2D layer is to obtain feature maps within lgegions in input CSI tensor or
the previous layer’s feature maps with several convolutiemels. In fact, each data of a feature
map is connected with the local data in the previous layeredeer, by using different convolution

kernels we can obtain all produced feature maps.éLefenote as théth feature map in layer,
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which is defined as

0h= > wh, =0 + b, (6.1)

mes;_
wherew!, . is the convolutional kernel to generate thiefeature map in laye 4! is the bias of the
ith feature map in layel, S;_; is the set of feature maps in lay@r— 1) connected to the current
feature map, which is the same for differentdue to local weights sharing. The convolution
operation with weights sharing scheme can improve the effayi for training deep network.

The batch normalization layer can adjust the input distidoufor different layers and thus
alleviate the problem of Internal Covariance Shift that iglees data flow propagates for differ-
ent layers in deep network, the distribution of input will Sleifted, thus reducing the learning
capacity[103]. In batch normalization layer, the inputedate normalized such that it can satisfy a
zero mean and a unit standard deviation, where the estimatimean and variance are obtained
by each mini-batch. Then, to improve the representatiolityabn deep network, the normalized

data is shifted and scaled. Thus, the batch normalizatiotihé&:;;, input dataz,, is formulated by

T —UB

whereup ando?% are the the mean and variance of mini-batch, respectiwédythe small constant

+8 (6.2)

value to avoid numerical problems in batch normalizatipand are the scaled and shifted pa-
rameters, which are learned from training. By using batcimadization, it can instead of Dropout
for avoiding overfitting in training.

The activation layer can be employed to avoid obtainingatikmear combinations of input
data, which can detect nonlinear features. Traditionalinear activation functions mainly ex-

ploit sigmoido(z) = L ) and tanhtanh(z) = 20(z) — 1 functions in neural networks. In

14-exp( —x
ResLoc system, we leverage rectified linear unit (ReLU) asctieadion function with the expres-

sion ReLu(x) = max(x,0), which can stay the positive part and suppress the totatinegzart
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to zero [104]. For training in deep convolution neural natwo RelLU function has faster train-
ing than that for traditional sigmoid and tanh functions. rstwver, it can also exploit the sparse
representations in the hidden units and can have effegtikahing without pre-training.

The max pooling layer can reduce the resolution of the feanaps by downsampling over a
local neighborhood in the feature maps of the previous ldyerinvariant to distortions and small
shifts on the inputs. Moreover, it also improves the robessnof the deep network. The feature
maps in the previous layer are pooled over a local tempolghberhood by the max pooling
function, as

I+1

= max @}, (6.3)
keG)

WhereGé. is the set of pooling region for thgh value in theth feature map in layes 6., is thekth
value of theith feature map in layel. Other methods such as the mean or sum pooling function

can be also used in this stage for reducing the training time.

Residual Block

For the residual block, we propose a new deep residual shi@anning for improving the training
capacity with two channels CSI tensor data. The proposedadeshdifferent from the original
deep residual unit without sharing the residual functiomordbver, we can stack many residual
blocks for adding the depth of the deep network, thus achighigher learning and representation
ability. For residual learning [10, 102], the idea is thadtead of learning the underlying mapping
H(x) by using a few stacked layers, we can learn the residualibtmét(z) = H(x) — x. Thus,
the original mapping can becon#®x) + =, wherex is implemented by identity mapping with
the shortcut connection. Thus, it is easy for training vesgm network by using residual learn-
ing. Moreover, we implement the proposed deep residualrghigarning by sharing the residual
functions for two channels input data in Figure 6.2. On theepohand, the residual function in-
cludes two layers convolution operations, each of whicluthes the batch normalization layer,
the activation layer, and the convolution2D layers. Theyiamplemented as the same as the input

block.
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Figure 6.2: Deep residual sharing learning for offline tiragn

For analyzing deep residual sharing learning for forwagcind backward propagation, we
denote ther; andz? as the input data with channel 1 and channel 2 foritheresidual block,
respectively. LetR denote the residual function with tw® x 3 convolution layers. Based on
Figure 6.2, we have, ., = z; + R(z;) + R(z;) andzi,, = z + R(x}) + R(z},) for the ky,

residual block at channel 1 and channel 2, respectively.sTive can recursively obtain the,
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andz? for the Ky, residual block at channel 1 and channel 2, which is formdlate

vl = ol + 20 Rah) + 205 R(a?)

ri =2} + L5 Rad) + 5 Riah)

(6.4)

Based on the above equations about forward propagation, wdirghthat the outputr}, and

r2 shares the same residual function, which can be represbyptdte summation of preceding
residual functions adding inpuf or z2, respectively. This reduces the error of the gradient prop-
agation. Moreover, it is easier to train the sharing reditluzctions, which are pushed into zeros
when the identity mapping are optimal. On the other hand, avssider the loss function dsfor

the backward propagation. Based on the chain rule of backgedfmn, we can obtain:

o = e (L4 52 (1 (R(a}) + R(a3)))

= o (L4 55 (05 (Rad) + R(e)))))

(6.5)

By the the above equations about backward propagation, weemthat the gradiemﬁf;— and

2L are directly propagated back to the any shallower ingutand x7, respectively. More-

2
Oz,

over, because the gradients for the sharing residual mms:gj—l(zii;m(x}) + R(x?))) and

%(Zi}cl(}%(ﬁ) + R(z}))) are not always -1, the gradier% andai’%( cannot be canceled for
the mini-batch with SGD to avoid the problem of the vanishaiggradient. Thus, the proposed
deep residual sharing learning can increase the learnpacds and leverage two channels CSI

tensor data.

Output Block

For the output block, we first merge two channel data intolsicgannel. Then, we implement
basic data operations for the merged data including batcmal@ation, activation with ReLU,
and max pooling. Moreover, the main operation in the outpatibis the fully-connected layer,
which employs a basic neural network with one hidden laydram the output data based on

softmax classifier. We consider the input data for the softfaaction as the? dimensional vector
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z = |21, 22, ..., zr|, WhereR is the number of clusters. Then, the softmax function can theg

dimensional vector to the normalized date: [py, ps, ..., pr|, that is

In addition, we define the loss function as the cross-enttopyeasure the difference between the

output normalized data and the true label data, that is

R
E ==Y y(r)log(p,), (6.7)

wherey(r) means the true label data for thg location. Then, we can train the parameters in deep

network with the stochastic gradient descent method bymaing the values of the loss function.

Weight Training with Deep Learning

The pseudocode for offline training with two input tensorprssented in Algorithm 7 and Algo-
rithm 8. The inputs to the algorithm 7 are two bimodal CSI tessBor one input tensor, it includes
two phase difference slices and an amplitude slice. Eaclcekshas the same size with 30 times
30 based on the estimated AoA values and the CSI amplitudewv&bu every 30 packets(x-axis)
with 30 subcarriers (y-axis). The input datasets are spit mini batches to train the network.
First, batches are processed by the input block, which stengf a convolution layer, a batch nor-
malization layer, an activation layer and a pooling layey.obtain the output of the input block,
batches are dealt by the layers sequentially (lines 10B&)ause of our two-channel framework,
two input tensors pass two channels parallel based on fémweoihe outputs of the input block
are processed by residual blocks.Then the outputs of r@sidocks are delivered into the out-
put block. Similarly, the output block consists of a batclhmalization layer, an activation layer,
a convolution layer and a pooling layer as well. What the diffee in the output block is two
special layers, a merge layer and a fully-connected layefiorBéhe input tensors pass the merge

layer, they are passed into two-channel framework pahall®&amely, two inputs of the output
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block are dealt by the batch normalization layer, the attwdayer and the convolution layer par-
allel (line22-29). After the two-channel framework mergegether at the merge layer, the output
of the merge layer is processed by a batch normalizatiom,lapeactivation layer, a pooling layer
and a fully connected layer sequentially (line 32-45). Oieeoutput of the fully-connected layer
is obtained, we could compute cross entropy between thegticedresult of the network and the
desired labels. Then, the weights and biases are updateglthsi error with back-propagation al-
gorithm. Finally, we need to update all batches, which islem@nted for 50 epochs in the offline
training algorithm.

The pseudocode for residual blocks is given in Algorithm &eTnputs to the algorithm
are the number of repetitions for residual blogkand two output tensors of input blocks and
I,. The repetition defines the number of residual blocks thastacked to form a residual part.
Typically, the repetition is a one-dimensional array, whtength is the number of residual blocks
with different size convolution layers. And the elementlté tairray defines the number of residual
blocks with same size convolution layers. The total amodimesidual blocks is defined by the
sum of elements in the repetition vector. The basic residloak is composed by a two-channel
framework, which includes two convolution layers, a batonnmalization layer and an activation
layer in each channel. The stacking sequence of these lmyassshown (line10-17). It is note-
worthy that there is a sharing layer at the end of residuakbld@he output of previous layer and
the residual output of the blocks are sum up in the sharingrlag the new output and the new

residual output of the block.

6.4.3 Test Phase

For the test phase, a probabilistic method is leverageditoa& the position of the mobile device
by using the newly received CSI tensor data from the test pbiaed on the trained deep network.
Let 7" denote the number of CSI tensor from one position,@gndenote as the output result of the
deep network with thgth CSI tensor for theéth location. The matrix? as the prediction output

of the deep network witd” CSI tensor data foR training locations, that is
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Algorithm 7: Weights Training

1 Input: Input tensor datasét, and input tensor datasét, number of repetitions for
residual blocksx ;

2 Output: : Trained weight/V/, b;
3 Divide input dataset$; and7; into a batches that containsCSI tensors;
4 ¢ denotes as channel index;
5 while epoch < 50 do
6 ford=1:ado
7 91 = Mla,
8 62 = M;,
9 /M denotes as CSI tensor batch;
10 forc=1:2do
11 0. = Convolution(0.);
12 /[Calculate outputs of the convolution layer
_ Oc—upc .
13 0. = . e + Be;
14 /[Calculate outputs of the batch normalization layer
15 0. = ReLU(6.);
16 /[Calculate outputs of the activation layer
17 0. = pool(6,);
18 /[Calculate outputs of the pooling layer
19 end
20 do Residual blocks;
21 forc=1:2do
22 0. = X,
23 /X . is the output of the residual block
24 0. = 'Yc% + Be;
25 /[Calculate outputs of the batch normalization layer
26 0. = ReLU(6,);
27 /[Calculate outputs of the activation layer
28 0. = Convolution(6.);
29 /[Calculate outputs of the convolution layer
30 end
31 S = 0, + 6,; lICalculate outputs of the merge layer
32 S = 7% + f,; l/Calculate outputs of the batch normalization layer
33 S = ReLU(S); l/Calculate outputs of the activation layer
34 S = pool(S); l/Calculate outputs of the pooling layer
35 q = softmax(W * flattened(S) + b);
36 /[Fully-connected Layer
37 Loss functionL = — > v, log (g);
38 Update weights and bias using the error with back-propagati
39 end
40 end
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Algorithm 8: Pseudocode for residual blocks

1 Input: two outputs of input blocksl; and/,, and number of repetitions for residual
blocks K;

2 Output: : two outputs of residual block&; and X5;

3 ¢ denotes as channel index;

4 fork=1:Kdo

5 if k. == 1then

6 X1 =1y,

7 Xy = Iy,

8 end

9 forc=1:2do

10 0. = Convolution(X.);

11 /[Calculate outputs of the convolution layer
12 b = et + B

13 /ICalculate outputs of the batch normalization layer
14 0. = ReLU(6,);

15 /[Calculate outputs of the activation layer
16 0. = Convolution(6.);

17 /[Calculate outputs of the convolution layer
18 end

19 Xy =0, +60,+ Xy

20 Xo =01 + 0 + Xo;

21 //Calculate outputs of residual blocks

22 end
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P11 P12 P13 ... PiT

p_ P21 P22 P23 ... Par ' (6.8)

|Pr1 PR2 PR3 --- DRT|
To reduce the variance of the output resulfsputput data for every location are averaged.
Thus, we can obtain the vectét = [pi, p», ..., pr|, Wherep; is the mean for the output vector
[Di1, Dias -, Pir] IN thedy, row.
Finally, we can compute the location of the mobile device ageahted average of alk

locations, that is
R
L=> lixp (6.9)
=1
wherel; is theith training location.

6.5 Experimental Study

6.5.1 Experiment Configuration

To evaluate the performance of the ResLoc, we implement it ®@&Hz WiFi devices. In order to
collect CSl data, a desktop computer and a Dell laptop areasadcess point and mobile device.
Both computers are equipped with an Intel 5300 network carthing Ubuntu desktop 14.04 LTS
system. To transmit the data to the desktop, the Dell lapitpane antenna works in the injection
mode. The monitor mode is executed in the desktop to receitee drhe distance between two
adjacent antennas on the Desktop is set as 2.68 cm, whichai§wadve length for 5.58GHz WiFi
signal. Moreover, the PHY is the IEEE 802.11n OFDM systenn@PSK modulation and 1/2
coding rate. To accelerate the training process, we empoyffline stage of the ResLoc in Keras
with tensorflow backend on a PC with Intel(R) Core(TM) i7-6700RU, and an Nvidia GTX1070
GPU [105].
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Figure 6.3: Layout of the computer laboratory: trainingations are marked as red squares and
testing locations are marked as green dots.

ResLoc are compared with two typical deep learning locabma&pproaches, BiLoc [101]
and DeepFi [3], to evaluate its performance. Moreover, \8e abnsider the localization perfor-
mance for ResLoc with the single channel. For the sake ofdagnthe same CSI training dataset
and testing dataset are leveraged in all four approachesexXamine them in two experimental

environments including a computer laboratory and a corrido

Computer Laboratory

Computer Laboratory: We set up the first testbed in a69 m? computer laboratory in the Borun
Hall in the Auburn University campus. This laboratory is aromed environment. The furniture
and appliances block the most of LOS paths. 15 training locatare shown as red squares in
Figure 6.3, while the other 15 green dots are testing lonatidhe distance between two adjacent
training locations is 1.8 m. Our receiver is fixed on the tabée collect 1000 CSI packets from
every training location and testing location to accumu@®# data. Moreover, we set the number
of layers for the proposed deep network as 34, which has higbalization accuracy and smaller
training time.

Corridor:
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Figure 6.4: Layout of the corridor: training locations ararked as red squares and testing loca-
tions are marked as green dots.

Corridor in Broun Hall

We set up the second testbed in a long corridor in Borun haiGlwis 9 x 25 n?. filled with no
furniture and appliance. In this scenario, LOS path is niigjokVe employ 15 training location
and 15 testing location in a straight line. The distance betwtwo adjacent training locations is
1 m. The red squares are training locations and the rest gi@smare testing locations. We set
the receiver in the middle of the corridor. 1000 packets étained from every training location
and testing location to collect 5GHz CSI data. The number yérigin the deep network in the

corridor is the same as that in the computer laboratory.

Accuracy of Location Estimation

Figure 6.5 depicts the training loss over epoches of the Reshothe laboratory and corridor
scenarios. To prevent overfitting for the training CSI terdata set and reduce training time, the
epoch is set as 50. As illustrated in Fig.3, the train losgHercorridor curve reaches about 0.3
and the training loss for the lab scenario stops at aboutMdoBeover, based on Nvidia GTX1070
GPU, we can obtain the smaller training time for the labasaémd corridor scenarios, which are
608.14 s and 619.35 s, respectively. Also, the test timehfeddboratory and corridor scenarios
are 0.587 s and 0.647 s, which can be accepted for indooidatiah.

Figure 6.6 shows the CDF of distance error across the 15 posiin the laboratory. Unlike
the corridor scenario that the LOS is majority, the furretand appliances block most of LOS

paths in this environment. As we can see, the maximum distenors for ResLoc with two
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Figure 6.6: CDF of localization errors for the laboratory esment.

channels and single channel are about 2.5 m, which is leasDbkapFi and BiLoc. In addition,
the median of distance errors for ResLoc with two channelssargle channel are about 0.89 m,
which also outperforms BiLoc and DeepFi by 0.51 m and 0.89 speetively. For ResLoc with
two channels, the distance error of over 30% testing datasis than 0.3 m. However, there is

no data falling within this error range for DeepFi and BiLon.summary, based on the proposed
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deep residual sharing learning, ResLoc with two channelbgghhe best performance in this rich
multipath scenario.

Figure 6.7 plots the CDF of localization error in the corridoenario. As shown in Figure 6.7,
the maximum distance error for ResLoc with two channels amglsichannel are 3.14 m and 3.95
m, respectively, which are significantly less than that bkeotwo schemes, DeepFi and BiLoc. It
shows that the ResLoc has a better stability than DeepFi andcBiln addition, the median of
distance errors for ResLoc with two channels and single adlaBii_oc and DeepFi are about 0.98
m, 1.24 m, 1.68 m, and 1.75 m, respectively. Thus, ResLoc withdhannels achieves the best
performance in this scenario. Besides the better perforeydahe proposed ResLoc system only
requires one set of weights for all training locations toieeh localization, which means that it is
not necessary for ResLoc to store fingerprints for everyitrgitocation like BiLoc and DeepFi.
Furthermore, ResLoc does not need a ratio for the bi-modal wabbtain a better localization

performance.
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Effect of Different Parameters

To determine how image size impacts the accuracy of the indoalization, we test ResLoc with
images sized to 30x20, 30x25, 30x30, 30x35 and 30x40. Fordss, 50 images are constructed
for every training position. Epoch and batch size are seOtarkl 10, respectively. As is shown
in Figure 6.8, distance errors for both scenarios decrdagelg as the image size increases from
30x20 to 30x30, then rise as the image size increases froB030x30x40. However, the distance
errors are stable in these two scenarios. The errors in iy land the lab are about 1.2 mand 1.13

m, respectively. This result indicates that the localmaperformance of Resloc is robust enough
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to the image size. Even though the size of images is changethdeould achieve localization
with high precision.

As discussed previously, the image size does not show afisaymti effect on localization
accuracy. To select the best size for training and testiagngtwork, we also compare the testing
time with different image sizes.As is shown in Figure 6.9 ipparent for both scenarios that the
testing time rises with the increment of the image size. Tétsmally, with the same image size, the
testing time should be identical in these two scenarios. édaw there is a 0.1 s gap between the
lab and the lobby. We find that this gap is resulted from thepaer performance. Considering
the testing time and the distance error, the image size 3@3xthe best choice for training and
testing because of its lowest distance error and acceptilag time in two scenarios.

To further explore how many the number of pictures affecesdistance error, we build 5
datasets with different number of pictures in every positicAs is shown in Figure 6.10, the
distance error declines with the increase of the numberatipgs. The lowest distance errors,
1.0869 m for the lab and 1.1819 m for the lobby, are obtaineehahe number of pictures is 130.
This result indicates that the number of pictures is relébetthe localization accuracy positively.

Furthermore, the distance error in the lobby is more sersiti the number of pictures. We also
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notice that all distance errors for the lab are smaller thamiand distance errors for the lobby are
lower than 1.3 m when the number of pictures is greater thait @0 shows that the performance
of ResLoc is robust to the change of the number of pictures.

Figure 6.11 shows the training time across all datasets diiterent number of pictures. It
is intuitive to show that the training time is directly progonal to the number of pictures. For
the same number of pictures, the training time for the lolsbglightly longer than the training
time for the lab. Considering that the training process isragfaffline stage, namely the training
time does not compromise user experience. Thus, we choeskathset with 130 pictures in every

training point as the input of ResLoc because of the lowesanic® error.

Impact of Bimodality

To evaluate the performance of our proposed bimodal inpatalso deploy our ResLoc model
with different kind of input datasets, the amplitude datatee phase difference dataset and the
bimodal dataset. We compare the performance of these thtasals in two indoor environments,
a computer laboratory and a long corridor. We know that CSllaénae values reflects channel
frequency responses with abundant multipath componendtsfaamnel fading. In other words, the
performance of amplitude dataset is degraded by the indoaromments. The computer lab is a

cluttered environment. The furniture, computers, andiappés block most of the LOS paths and
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generate lots of multipath. As is shown in Figure 6.12, thestvperformance is achieved by the
amplitude dataset in the lab. Comparing with the amplitudeeg the phase values of the signal
with the periodical change over the propagation distancel&ively more robust. According to

Figure 6.12, we have a lower distance error with the phaserdifce dataset. The bimodal tensor
shows the lowest distance error among three datasets. Dbe tse of bi-modal CSI tensor, the
phase difference values can be utilized to mitigate theenite of the complex indoor environment.

The mean distance errors are 1.0869 m and 1.819 m in the lathhawdrridor, respectively.
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We also implement the single channel version ResLoc on tliniese tatasets to investigate
the performance difference between the two channel ResLabthasingle channel ResLoc. Fig-
ure 6.13 shows a similar trend to previous two channel Reskloich means that the complexity of
the indoor environment is a dominant effect to the locailmaperformance. However, it is noticed
that all distance errors showed in Fig. 6.13 are larger tlmaresponding distance errors slightly.
The distance error that is obtained by the amplitude datagke lab is over 2 m. For the single
channel ResLoc, the lowest distance error, 1.2027 m, thditared by bimodal dataset is still
higher than the corresponding distance error, 1.0869 ntiwikithe best result of the two channel
ResLoc. According to Figure 6.12 and Figure 6.13, it is obsitureveal that the two-channel
architecture enhances the performance of the ResLoc system.

We now show the impact of different number of layers on theopsed ResLoc system. All
convolutional kernels in residual blocks are sized to 3xBer€ are four sizes of residual blocks.
For each convolutional layer, the number of feature map$enfirst block, second block, third
block, forth block are 64, 128, 256 and 512 respectively. édoer, two convolutional layers
are stacked up to form a basic residual block. To evaluatethevdepth of network affects the
performance of the network, four basic residual blocks epeated twice, three times, four times,
five times and six times, respectively. Theoretically, @aging layers may reduce the distance

error. However, Figure 6.14 shows that the distance eramtres lowest point when the network
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scheme is 3-3-3-3. After that the distance error rises asnéh@ork goes deep. We believe that
all schemes are deep enough to solve indoor localizatioblgmm All distance errors are about
1.2 m, which means the distance error is robust when the metwalesigned as deep as we did.
We choose 3-3-3-3 scheme as the best scheme to train therkegbs&oause of the lowest distance
error and a relatively simple scheme.

Batch size defines number of samples that can be propagatedththe network. We study
the impact of batch size on localization accuracy underwmtedanvironments. Figure 6.15 illus-
trates the mean distance errors for increasing batch sireilab and lobby scenarios. As we can

see, there is no relation between the value of batch sizethendean distance error. For the lab
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scenario, the highest mean error is 1.0869 m and the lowest Breor is 1.0579 m. The difference
between the maximum and minimum of mean error is 0.029 m, wimeans the mean distance
error is robust enough to the change of the batch size. Slyitae difference between the max-
imum and minimum of the mean error is only 0.0613 m for the jobbenario. It also shows that
the mean distance error is independent to the value of beteh s

Figure 6.16 depicts the training time for different batchesi Typically, networks trains
faster with mini-batches. We observe that the training ty@es shorter with increasing batch size.
According to the Figure 6.16, we know the longest trainimgets are 1744 s and 1581 s in the
lobby and the lab, and the shortest training times are 108814@17 s in the lobby and the lab.

To improve the accuracy of ResLoc, we adjust the value of epdble impact of epoch on
localization accuracy is shown in Figure 6.17. In both indevironments, the lab and the lobby,
the highest distance error is obtained when the value oftreE80. Along with the growth of
the value of epoch, the distance error keeps decreasingitAmaintains at about 1.1 m from 50
epochs. Intuitively, the network does not converge bef@epochs. When the network reaches
convergence, the distance error remains at same levelndtised that the lowest distance errors
in the lab and the lobby are obtained at 50 epochs.

Figure 6.18 depicts the training time against the value otbpAs is shown, the training time

increases as the value of the epoch increases in both saenkris consistent with our intuitive

143



2500 ;
I Lobby
[ JLab a
2000
o _
(0] —_
£ 1500
=
> _
£
.S 1000
s
|_
500
0
30 40 50 60 70 80

Epoch
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result that the more epoch loops the more time is consumexkabh the lowest distance error, we

spend about 1344 s and 1256 s to train the network in the lobtbyree lab respectively.

6.6 Conclusions and Future Work

In this chapter, we presented ResLoc, a deep residual sHaangng based system for indoor
localization with two channels CSI tensor data. We introduC&l in WiFi network with OFDM
system and discussed how to build CSI tensor data for indeatikation. Then, we designed the
ResLoc system, which leverages two channels CSI tensor datsridhe deep network by using
the proposed deep residual sharing learning. For onlingwesused newly received CSI tensor
data to compute the location of the mobile device based opribleabilistic method. Finally, the

experimental results showed the superior performanceegbtbposed ResLoc system.
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Chapter 7

PhaseBeat: Phase Information for Tracking Vital Signs witim@mdity WiFi Device

7.1 Introduction

It is evaluated that 100 million Americans have chronic treabnditions such as lung disorders
and heart disease, which require three-fourths of total &&8thcare costs to treat these condi-
tions [106]. This causes an increasing demand for long-teeaith monitoring in indoor envi-
ronments. Tracking vital signs such as breathing and hates can be leveraged to estimate the
humans physical health and offer the important clues foricaégroblems. For example, monitor-
ing vital signs can help a patient to find the sleep disordessmiomalies, and reduce sudden infant
death syndrome (SIDS) for sleeping infants [107]. The tradal methods for vital monitoring
are required a person to wear special devices such as a caf@di08] to detect breath rate or a
pulse oximeter [109] on the finger to measure the heart rdtesd technologies are inconvenient
and uncomfortable. Thus, an alternative solution is rexguio offer a contact-free and long-term
vital signs monitoring.

Recently, RF based vital sings monitoring systems have tgttanore attention, which em-
ploys wireless signal to extract the breathing-inducesgttigange of a person. Vital-Radio system
leverages frequency modulated continuous wave (FMCW) radastimate breathing and heart
rates, even for multiple person subjects in parallel [LEl]t the system requires a custom hard-
ware with a large bandwidth from 5.46 GHz to 7.25 GHz. Somangpies such as the Doppler
radar [111, 112] and the ultra-wideband radar [113] are adsal to monitor vital signs, which re-

quire the dedicated hardware with high frequency and thie ¢dgt. mmVital system [114] can use
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60 GHz millimeter wave (mmWave) signal based on RSS for bregtéind heart rates estimation
with the larger bandwidth about 7GHz, which also requiresdhistom hardware with a mechan-
ical rotator. Moreover, UbiBreathe system only monitorshiheathing signal by leveraging WiFi
RSS with the coarse channel information [115]. This systeregsiired that the device is placed
in the line of sight path between the transmitter and theivecewhich limits the RF monitoring
range in the deployment environment.

CSI provides fine-grained channel information, which can bevobtained from several off-
the-shelf WiFi NIC, e.g., Intel WiFi Link 5300 NIC [21], and éhAtheros AR9580 chipset [81].
Also, CSI represents both amplitude and phase informatisub€arrier-level measurements of
OFDM channels. It is a more stable representation of chasirahcteristics than RSS. Recently,
the authors leverage the amplitudes of CSI data of WiFi tktvéal signs. This system is mainly
to monitor the vital signs when a person is sleeping [116)welcer, the collected phase informa-
tion of CSl data is not directly usable for vital monitoringclaeise of large phase fluctuation from
the noise and the unsynchronized time and frequency of éinsrmitter and receiver.

In this chapter, we leverage CSI phase difference data batiweeantennas to monitor the
breathing and heart rate. First, CSI phase difference datalide because the randomness of raw
CSl phase is removed at the subtraction in the WiFi NIC, whichtha same sampling clock and
the same down-converter frequency for each of three anterMareover, for different distances
and orientations between the transmitter and the reced®@t,phase difference is more robust
than the amplitude based method, which has large attemuddi® to obstacles and long distances.
On the other hand, our work is the first to prove that for indmottipaths environments with the
small scale signal fading, the CSI phase difference dataeatetbeiver is a periodic signal with
the same frequency as the breathing signal when the wirglgsal is reflected from the chest of
one person. Moreover, we also prove that leveraging doeatiantenna to improve the power of
the transmitter can boost the magnitude of CSI phase diiferelata, which can be exploited to

monitor the minute heart beating signal.
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In this chapter, we then design PhaseBeat, CSI phase difeedata for monitoring breathing
and heart beats with commodity WiFi device. First, PhaseBgstem employs CSI phase differ-
ence data to extract the periodic signal from the changedrciiest of a person such as inhaling
and exhaling. Then, we implement data preprocessing foctilected phase difference data,
which includes environment detection, data calibratiamcsirrier selection and discrete wavelet
transform. For environment detection, we need to detecstiteonary person such sitting, stand-
ing and sleeping with the threshold method. Then, effeqiivase difference data is calibrated
by removing direct current (DC) component and high frequemmge, and by implementing the
downsampling for the processed data. Due to frequencysiiyethe most sensitized subcarrier is
selected for implementing the discrete wavelet transfarmbtain the denoised breathing signal
and the reconstructed heart signal. Finally, we leveragep#ak detection method for breathing
signal detection and FFT based method for heart signal astim

We implement PhaseBeat on the commodity WiFi devices andiatglts performance with
four persons over three months in different indoor envirenta such as a computer laboratory,
a through-wall scenario and a long corridor. The resultsatestiate that our PhaseBeat system
can achieve high estimated accuracy of breathing rate Wwéhmedium error about 0.25 bpm.
Moreover, the medium error for the heart rate estimationbisua 1 bpm by using directional
antennas at the transmitter. We also extensively evalbat®bustness of PhaseBeat for breathing
rate estimation under varying environmental parameters.

The main contributions of this chapter are summarized helow

e We theoretically and experimentally validate the feagipbibf using CSI phase difference
for vital signs monitoring. In particular, we deeply anaythe measured phase errors and
prove the phase difference with the same frequency withthiregarate. To the best of our
knowledge, we are the first to leverage CSI phase differenderéathing rate and heart rate

estimation.
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e We implement several signal processing algorithms in degprpcessing for the collected
CSI phase difference data, which can obtain the denoisedhiongasignal and the restruc-
tured heart signal. Then, we leverage the peak detectionaddbr breathing rate estimata-

tion and FFT based method for heart signal estimation.

e We prototype the PhaseBeat system with commodity WiFi devacel validate its superior
performance in different indoor environments with exteasxperiments. Our experimen-
tal results demonstrate that our PhaseBeat system can diatthén performance than the

amplitude based method for breathing rate estimation.

In the rest of this chapter, the preliminaries and phasermdiffce information are provided in
Section 7.2. We propose the PhaseBeat system in Sectiond amonstrate its performance in

Section 7.4. Section 7.5 reviews related work and Sectidredncludes this chapter.

7.2 Phase Difference Analysis

In this section, we show that the difference of CSI phase gahetween two antennas for contin-
uous packets of the 5GHz OFDM channel is highly stable. Aitfiothe CSI phase information
is also available from the Intel 5300 NIC, it is highly randondacannot be directly used for vital
signs monitoring, due to noise and the unsynchronized timeflequency of the transmitter and
receiver. Recently, two useful algorithms are used to reniogeandomness in CSI phase. The
first approach is to make a linear transform of the phase salueasured from the 30 subcarri-
ers [67, 79]. The other one is to exploit the phase differdrateseen two antennas in 2.4GHz and
then remove the measured average [66]. Although both metbad stabilize the CSI phase in
consecutive packets, the average phase value they praxlateays near zero, which is different
from the real phase value of the received signal.

We provide an analysis to validate the stability from the sseament phase difference. Let

/CS1; denote the measured phase of subcafriethich is given by [80, 81]

LCST; = ZCSk + (A + A)mi + A+ B+ Z, (7.1)
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whereZCS]; is the true phase from wireless propagatignis the measurement noise that is as-
sumed as the AWGN of variane€’, 3 is the initial phase offset because of the phase-locked
loop (PLL), m; is the subcarrier index of subcarrigr),, A; and A\, are phase errors from the
packet boundary detection (PBD), the sampling frequensebd{lSFO) and central frequency off-
set (CFO), respectively [80], which are expressed by

Ap = QW%
As = 27T(T/T_T)g—;n (7.2)
Ae = 2nAfTyn,

where At is the packet boundary detection deldy,is the FFT sizel” andT are the sampling
periods from the receiver and the transmitter, respegtiélis the length of the data symbdl, is
the total length of the data symbol and the guard intervad, the sampling time offset for current
packet A f is the center frequency difference between the transnaittéreceiver. It is noticed that
we cannot obtain the exact values abduf TT;T n, Af,andg in (7.1) and (7.2). Moreovep,,,

s and . vary for different packets with differerk¢ andn. Thus, the true phas€CS|; cannot be
derived from the measured phase value. Fortunately, theuned phase difference on subcarrier

1 can be leveraged as the following theorem.

Theorem 2. The measured phase difference on subcaririeetween two antennas is stable, and

its mean and variation are expressed by

E(AZCST;) = E(AZCSE) + AB, (7.3)
Var(AZCST;) = Var(AZCS)) + 202, (7.4)

Proof. Note that the three antennas of the Intel 5300 NIC use the sdmok and the same
down-converter frequency. Consequently, the measureceplEssubcarriei from two anten-
nas have identical packet detection delay, sampling peraodl frequency differences (and the

samem;) [76]. Thus the measured phase difference on subcarbetween two antennas can be
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Figure 7.1: The comparison between the single antenna plfaseblue crosses) and the phase
differences (as red dots) of ttsh subcarrier in the polar coordinate system for 600 contiguin
packets

approximated as
A/CST; = A/CS| + AB + AZ, (7.5)

whereA ZCS]; is the true phase difference of subcarried S is the unknown difference in phase
offsets, which is in fact a constant [76], aid” is the noise difference with the varianze?. We
can find thatA ZC S1; is stable for different packets because of the above equéti®) without
At, A f andn. For the above equation (7.5), we have the results aboutéla® end variation of the
measured phase difference on subcatrtmE(Aé(iS’\Ii) = E(AZCSI)+Ap, Var(AéC/'S\Ii) =
Var(AZCSl) + 202, Thus, we proof the theorem 2. O

We can see that the difference between the mean of the mdasutéhe mean of true phase
differences on subcarriéris constant, which would not change the estimation frequenhwital

signals, although its variation becomes larger. Fig. 7dwshthe comparison between the single
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antenna phases (as blue crosses) and the phase differasced (lots) of théth subcarrier in the
polar coordinate system for 600 continuing packets. We earlgt the single antenna phase of the
5th subcarrier is nearly uniform distribution between 0 and 86Qree, which is greatly unstable.
However, all phase difference data of fité subcarrier concentrate into a sector between 190 and
210 degree, which supports the theorem 2. On the other hang@ravide the theorem of phase

difference information with periodic as the following.

Lemma 1. When the wireless signal is reflected from the chest of oneperith the breathing
frequencyf,, the true phase of the refection signal at any antenna of ¢oeiver is a periodic

signal with the frequency,, that is

fr = fb' (76)

Proof. Because the wireless signal for subcarfiexa plane wave, its true phase at the receiver is
related with the propagation distance with the signal, ihat

2md(t)

ZCS|; = "

(7.7)

whered(t) is the propagation distance at théme, )\, is the wavelength of the subcarrienWhen
the chest of a person periodically inhales and exhales Wwéltirequencyf,, the propagation dis-

tanced(t) for the reflection signal can be updated by

d(t) = D+ A - cos(2T fyt) (7.8)

whereD is the constant distance for the reflection paths the amplitude of the periodic signal.

) Itis noticed

Thus, its true phase of the reflection signal at the receswe€iS|; = 2“(D+A'§‘?S(2”fbt

that the true phase at the receiver is a period signal witdhee the frequencg. Thus, we prove

the lemma withf, = f;. O
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Theorem 3. For indoor environments with mutipaths, when the wirelessdigreflected from the
chest of one person with the breathing frequefigithe true phase at any antenna of the receiver

is also a periodic signal with the frequengy as the following

P(|fa— fo] <€) =1, foranye > 0. (7.9)

Proof. Based on Lemma 1, we can find that the true phase of the reflessgoal at the receiver

with ZCS|; = 2”(D+A'§?5(2”fbt)) is a periodic signal with the frequengy. We mark the reflection
signal as the dynamic component, while LOS and other mittipatstatic component. Then, we

can update the equation 2.2 as

K
CSl = Zrk . e I2mfiTk
k=0
K

— Z rL - e I2mfiTk +ry- e I2rfiTa

k=0,k#£d
= CSF + CSK.
= |CSF|exp (jZCSE) + |CSE|exp (j£CSK) (7.10)

where CS] is the static component that is representeozlé,gzojkid ry, - e fime and CSY is
the dynamic component that is represented ase7>"/i"¢, |CSE| and ZCSE is the amplitude

and phase of C3) |CSF|and ZCSF is the amplitude and phase of GSIMoreover,Z/CSl =

2D Acos2ill) s a periodic signal with the frequengy. And [CSE|, ZCSE and|CSE| are
considered as constant.

To obtain the phase of CSlwe need to build the geometric relationship among thecstati
component CS| the dynamic component CSand the total component CSising anin-phase-
quadraturdl-Q) plot in Fig. 7.2. Based the geometric relationship ig.Fi.2, we can easily obtain
the angle/DST = /CSE — ZCSF and the lengtiD7 = |CSF| - cos(ZCSE — ZCSI) 4 |CSE],
and the lengti’D = |CSF| - sin(£LCSE — ZCSFK). Thus, the phase of the total component CSI
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is computed by

ZCSl|; = ZCSF

|ICSE| - sin(£CSE — ZCSI)
|CSK| - cos(£LCSE — ZCSK) + |CSE|

(7.11)

— arctan

Because the/CSI = 2”(D+A'§‘i’s(2”fbt)) is a periodic signal, theZCS|; is also a periodic signal.
Then, to prove the frequency of the total phas8Sl; with f,, we make the derivation of the
equation 7.11 zero, that %ﬁ% = 0. Then, we can obtain

cos(£LCSE — ZCSI) = — (7.12)

which has the solutions that are tH€SI! = /CSFE + 7 — arccos(|CSE|/|CSE|) with node D2

or /CSK = Z/CSF + 7 + arccos(|CSK|/|CSE|) with node D1 in Fig. 7.2. We can find, when the
phase/CSI ¢ (Z/CSFE + r + arccos(|CSF|/|CSEK|) — 27, ZCSK + 7 — arccos(|CSE|/|CSE])),
the equation 7.11 is increasing function; otherwise, igisrdasing function. Thus, unless the only
two nodes D1 and D2, the phase of the total componenti€gkriodic signal with the frequency
f»- Also, because the true phase CiSicontinuing, the probability of the true phase C&linode

D1 or node D2 equals zero. Thus, we proves the theorem 3. n

On the other hand, considering another antenna with the saualgsis, we can obtain the
similar expression (7.11), which is also a periodic signihwhe frequencyf, . However, its the
static component CShnd the dynamic component GSbr on subcarriei are different, because
different positions of two antennas produces differeneless channels. In fact, the phases of
the total component CSfor any two antennas have different phase difference whigesame
frequency. Thus, we can obtain the true phase differencgdeet any two antennas is also a
periodic signal with the frequencf.

Based on theorem 2 and equation 7.5, we can easily find thatghsured phase difference on

subcarrieri between two antennas is also a stable periodic signal wétfirfguencyf,, although
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the waveform of the signal is attenuated due to the incrgasimse. To improve the signal wave-
form, directional antennas is always used as the transmittech can strengthen the power of the
reflection signal from the body of one person. In our systerasBBeat, we use the directional
antennas as the transmitter to estimate the heart ratayseeobthis greatly weak signal power. To
see the function of directional antennas, we derive thevioilig the corollary based on theorem 3

and equation 7.11.

Corollary 3.1. When the ratio i§CSF|/|CSF| — oo, the true phase of subcarrigrat the one

antennas is a periodic signal with the frequenfgyand has the following result:

/CS|, = Z/CSF. (7.13)
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Proof. Base on the equation 7.11, we can easily obtdd$l;, = Z/CSI when the ratio i$CSI|/|CSE| —
00. Moreover,ACSIf is a periodic signal with the frequengy, and thus we can proof the corollary

3.1. ]

Corollary 3.2. When the ratio i§CSF|/|CSE| — 0, the true phase of subcarrigrat the one

antennas is not a periodic signal, and has the following resul

/CS| = /CSE. (7.14)

Proof. Base on the equation 7.11, we can also easily obt&®l;, = ZCSFE when the ratio is

|CSK|/|CSE| — 0. Moreover,/CSk is not a periodic signal, which proves the corollary 3.2]

Based on corollary 3.1 and corollary 3.2, we can find that whernr¢flection from the chest
of one person becomes strong, the waveform of the receigedlds periodic with high signal-to-
noise ratio (SNR); when the reflection from the chest of onsgrebecomes weak, the waveform of
the received signal is periodic with low SNR, even it is noi@eic. Thus, to estimate the breathing
rate and heart rate, it is still challenging because of wagimultipaths and low SNR of reflection
signal such as the long distance between the person andcddigaeor several obstacles. Thus,
we design the PhaseBeat system to overcome the above clediterggtimating the breathing rate

and heart rate, even for several persons.

7.3 The PhaseBeat System

7.3.1 PhaseBeat System Architecture

The core idea of our PhaseBeat system is to monitor the vgakssuch as breathing and heart
beating of a person by leveraging CSI phase difference ddketiv commodity WiFi device. In
fact, PhaseBeat system employs CSI phase difference dat&racteke periodic signal from the
change in the chest of a person such as inhaling and exhaaged on the above theorem 2

and theorem 3, PhaseBeat system exploits CSI phase diffedatecéo monitor the vital signs for
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Figure 7.3: PhaseBeat system flow

three reasons. First, CSI phase difference data is rehatitable for continued packets at station-
ary environments such as sitting, standing or sleepingghwisithus effective for monitoring vital
signs. Second, CSI phase difference data includes the pesigdal with the same frequency with
breathing signal. Finally, the CSI phase difference datalsist, where the change of phase dif-
ference data is small for different distances or differaigrdations, compared with the amplitude
based method for monitoring vital signs.

Fig. 7.3 shows PhaseBeat system flow. It includes four basduras: Data Extraction, Data
Preprocessing, Breathing Rate Estimation and Heart Rate &giim For Data Extraction module,
the PhaseBeat system can extract CSI phase difference datebaivo antennas at the receiver
with an off-the-shelf WiFi device. Then, Data Preprocegsitodule is implemented, which con-
sists of environment detection, data calibration, sulaselection and discrete wavelet transform.

For environment detection, we leverage a threshold metho@termine the stationary situations
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with a person such as sitting, standing or sleeping for trackital signs. For data calibration, we
need to remove direct current component and high frequeoisgnand to implement the down-
sampling for the processed data. Then, subcarrier setecéin be used to improve the reliability
of CSI phase difference data. For discrete wavelet transflircan obtain the denoised breathing
signal with approximation coefficient for level 4 and thetrestured heart signal with the sum
of detail coefficients for level 3 and level 4. For BreathingdrBstimation module, we leverage
peak detection for single persons and FFT method for malpptsons. For Heart Rate Estimation

module, we use FFT method based for heart signal estimation.

7.3.2 Data Preprocessing
Environment Detection

After CSI phase difference extraction based on equation, (W& need to determine whether one
person is in stationary environment or not. If one personasing such walking, running, jumping
or gesture moving indoor environment, even there is no persar PhaseBeat needs to continu-
ously detect. Only if the person is determined at statiosaich as sitting, standing, or sleeping,
PhaseBeat system is leveraged to estimate the breathingnteeart rate. In fact, a threshold-
based method is used to identify whether a segment of CSI mlifseence data is in stationary
environment or not by computing the absolute deviation ef@$| phase difference data in a short
moving window. We defin®” as the sum of absolute deviations of all CSI phase differeatseid

the moving window as the following

=L - —
V= Wi 373 |AZCSTi(k) ~ E(ALCSTi(k))], (7.15)
=1 keW

WhereAZCTS\IZ-(k;) is the measured phase difference in subcairier the packett, W is the
index set of the packets in the moving windaW,| is the length of the moving window. Because
the other movement events lead to the larger change of CSé mitisrence data than that from

the minute movements of breathing and heart signals, tlestbid-based approach by using the
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Figure 7.4: Environment detection

absolute deviation of CSI phase difference data in the mowiinglow can be used to detect the
large movements. In our PhaseBeat system, we set the thilds#taleen 0.25 and 6 as the useful
data for vital signs monitoring. Fig. 7.4 shows environmeéetection results for different situa-
tions. We can notice that in sitting situation the phaseedtifice data presents a sinusoidal-like
periodic signal over the time data; in no person situatiendata seems a line with small fluctua-
tion; in standing up and walking situations, the data hagelafluctuation. Thus, we can leverage

the threshold to obtain the stationary situations with @esuch sitting, standing and sleeping.

Data Calibration

To obtain the robust CSI phase difference data, data cabbritleveraged to remove DC compo-
nent and high frequency noise, and to implement the downksagrfpr the processed data. Firstly,

because the DC component influences subcarrier selectak, getection performance and FFT
frequency estimation results, our PhaseBeat system needstve it based on the Hampel Fil-
ter. Different from traditional data calibration methodths to only remove the high noise, we
firstly use the Hampel Filter for detrending of the originall@8ase difference data to remove DC
component. The Hampel Filter is utilized to obtain the bassad of original data, which is set

as a large moving sliding window with 2000 samples and a sthedshold with 0.01. Then, the
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Figure 7.5: Data calibration

detrending data is obtained from the basic trend data suibttdrom the original data. In addi-
tion, we also leverage the Hampel Filter to reduce the higguency noise by using the sliding
window with 50 samples and the same threshold with 0.01. @mwther hand, because PhaseBeat
system employs 400 Hz for data sampling, we need to impledmmbhsampling for reducing the
computation complexity of breathing rate and heart raten@ston. Thus, we use the 20 sampling
interval to obtain the low frequency CSI phase differencedédiat is identical to sampling with
20 Hz.

Fig. 7.5 shows data calibration for original phase diffeeenlt is noticed that the original
phase differences of all subcarriers have the DC compomehhigh frequency noise. By imple-
menting the our data calibration scheme, we can see that@edmponent is removed and all
subcarriers show a sinusoidal-like periodic signal overghckets with low noise as well as the
number of packets is decreased from 10000 to 500, whichastafély leveraged for implementing

other signal processing methods.

Subcarrier Selection

Subcarrier selection can be leveraged to boost the retiabflCSI phase difference data, because

different subcarriers have different wavelengths, legdnthe different sensitivity for breathing
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and heart signals. We utilize the absolute deviation of C@&lsphdifference data for every sub-
carrier to measure its sensitivity. In fact, it is noticedttthe larger absolute deviation, the higher
sensitivity. Thus, we first chooge maximum absolute deviations of CSI phase difference data.
To improve much more robustness of subcarriers to avoidatietfiat some large absolute devia-
tions are from higher noise. Then, we leverage the mediuinadfsolute deviations of CSI phase
difference data to select the final subcarrier. Fig. 7.6 shO8| phase difference series patterns
after data calibration. We can see that the neighboring ledauier 20 have higher sensitivity for

breathing signals. Then, as shown in Fig. 7.7, the absokit@tlon of CSI phase difference data
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of subcarrier 19 is the maximum. In our PhaseBeat system, itbese = 3 as the default value,
where subcarrier 19, 18 and 2 are thus selected. Based onlmumecthe subcarrier 18 is the final

subcarrier, which can reflect the high sensitivity basechdrig. 7.7.

Discrete Wavelet Transform

Different from FFT and short time Fourier transform (STFdigcrete wavelet transform (DWT)
can implement a time-frequency representation of datagiwmdt only provide the optimal resolu-
tion both the time and frequency domains but also obtainisualke analysis of the data. Based on
DWT, the phase difference data after the subcarrier sefecao be decomposed into an approx-
imation coefficient vector with low-pass filter and a detaiefficient vector with high-pass filter.
In fact, the approximation coefficient vector represengsitaisic shape of the input signal with the
large scale characteristic, while the detail coefficientoedescribes the high frequency noise and
the detail information with the small scale characteridticwavelet decomposition, the following
steps recursively split the previous approximation cokefficand detail coefficient into two new
coefficients based on the same scheme [117]. Afteteps, the DWT can obtain an approxima-

tion coefficienta” and a sequence of detail coefficiepts 52, ...3%. We can compute the DWT
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coefficients as the following,

o) =3 ALCSIm)eY,., Lez (7.16)
nez

BY =3 ALCSIm), ,,  1€{1,2,..L} (7.17)
nez

WhereAA@(n) is the phase difference data after the subcarrier selectios the integer set,
¢s andirs are the wavelet basis functions, which are traditionalthagonal to each other. The

phase difference data/CSI (n) can be approximated by using inverse DWT,

L
AZCSI(n) =Yl + 373 800 . (7.18)

keZ =1 keZ

In our PhaseBeat system, the DWT is leveraged to remove higdrey noise from the
collected CSI phase difference data. Moreover, the appatiom coefficient” is used to extract
the breathing rate, while the sum of detail coefficiepits! + 3% is employed to estimate the heart
rate, whereL is set as 4 in our system. As shown in Fig. 7.8, for the origsighal, we first
implement the DWT based decomposition recursively by foulewith Daubechies(db) wavelet
filter. Because we obtain 20 Hz sampling rate after the dathratibn and the sampling rate is
halved for every step decomposition, the detail coefficiErand the approximation coefficieat
have the frequency range froifi Hz to 5 Hz and 0 Hz to 5Hz. Then, the approximation coefficient
o* has the frequency is 0 Hz to 0.625 Hz to obtain the denoiseatttirg) signal, while the sum of

detail coefficients3® + 5% has the range from 0.625 Hz to 2.5 Hz to restructured the biaral;
7.3.3 Breathing Rate Estimation

Peak Detection for Single Person

As breathing signal is a small periodic movement of inhalmgl exhaling, the phase difference
data can extract the periodic change. Although FFT basetiadetan be used to effectively

estimate the breathing rate, its peak cannot obtain theraectrequency estimate, because the
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frequency resolution depends on the window size of FFT. ttasced that if the window size
becomes larger, the estimated accuracy is improved, ®#dslto a lower time domain resolution.
Thus, our PhaseBeat system leverages the peak detectiotimtatesthe breathing rate based on
the approximation coefficient” for improving the estimated accuracy.

However, we find that the approximation coefficieritstill includes the fake peak that is not
the true peak but it has larger values than its two neighbasamples. To avoid the fake peak,
we leverage the moving window method to obtain the true pedlere the window size is set as
51 samples based on humans maximum breathing periodic.[Th&h, we can find all peaks by
identifying whether the medium of all samples in the windevitie maximum value or not. After
peak detection, all peak-to-peak intervals are averagexbtain the final periodic of breathing
signal this time, which is defined d3. Thus, the estimated breathing rate can be computed by

60/ P bpm.

FFT for Multiple Persons

Breathing rate estimation for multiple persons becomedeargihg based on the approximation
coefficienta”, because the reflection components of the received sigadt@n multiple inde-
pendent movements of the breathing chests. Thus, the pgadak detection method cannot be
available for the approximation coefficient, which is not a clear periodic signal. Thus, we can
leverage FFT based method to transfer the approximate fh@ximation coefficient” in the
time domain to the frequency domain to estimate the bregtirgguencies from multiple per-
sons. Fig. 7.9 shows breathing rate estimation for two pets@/e can notice that two estimated
frequencies are 0.2 Hz and 0.3 Hz, respectively, which apeoxpmately the ground truths. It

demonstrates our method for PhaseBeat system is effectiveuitiple estimation.
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7.3.4 Heart Rate Estimation
FFT Scheme based Heart Rate Estimation

Heart rate can express the person’s health condition aaldsign. Similar to breathing signal, the
heart signal is also periodic, but its magnitude is greayakv Traditionally, breathing signal is
orders of magnitude larger than the heart signal because aihall change of blood vessels from
heart beating such as diastole and systole. Thus, the nfieai¢ signal detection is challenging.

Moreover, due to the stronger breathing signal, its frequean leak to nearby frequencies, which
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will mask the heart signal. Also, the harmonic wave of bremgtsignal will influence the heart
rate detection.

In our PhaseBeat system, we need to leverage directionairemtes the transmitter to im-
prove the power of the reflection signal, and then the sum w@iildeoefficients3’—! + 5~ based
on wavelet decomposition is employed to estimate the hatet When the level of decomposition
is L = 4, the frequency range is between 0.625 Hz and 2.5 Hz, whienditiut the breathing fre-
guency range that is about between 0.17 Hz and 0.62 Hz andrimgise. Finally, we can leverage
FFT based method to transform the sum of detail coefficights + 3 to the frequency domain
for estimating the heart rate. To improve the frequencylwiem, we leverage the method [110]
to estimate the heart rate. After finding the peak of FFT, weethe three bins including the peak
bin and its two adjacent bins, where an inverse FFT is lewstag obtain a complex time-domain
signal. The heart rate is estimated by computing the phaseafignal. Fig. 7.10 shows the heart
rate estimation based on FFT. We can see that the estimatpeeficy is 1.07 Hz, while the ground
truth is 1.06 Hz from the measurements of commercial finggutilse sensor for 30 s. The heart
rate estimated error is 0.01 Hz, that is 0.6 bpm. It demotestrdnat my method can obtain the

higher accuracy of heart rate estimation.

7.4 Experimental Study

7.4.1 Test Configuration

In this section, we implement the experimental study witlag®Beat in the 5GHz band. In the
experiments, we leverage a desktop computer as an accesapdia Lenovo laptop as a mobile
device, both equipped with an Intel 5300 NIC. In fact, we emple desktop computer instead of
the commaodity routers that are not equipped with the Int@l06RIC nowadays. Our PhaseBeat
system is implemented on the Ubuntu desktop 14.04 LTS OSdtr the access point and the
mobile device. For the access point, it is set in monitor rhaahel the distance between two
adjacent antennas is d = 2.68 cm, which is half of a wavelefogttne 5GHz band. For the mobile

device, it is set in injection model, which transmits paskeatt 400 packets per second using only
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Figure 7.11: Experimental setup

one antenna. Then, we extract CSI phase difference data dretwe® adjacent antennas at the
receiver for vital signals estimation.

We implement our experiments with the total of four persomsrdhree months. The test
scenarios include a computer laboratory and a corridorgn Fill. We have three setups for the
two environments. The first setup is within the laboratorthwd.5 x 8.8 m? room. Also, there
are many tables and PCs crowded, which block parts of the L@t jpad form a complex radio
propagation environment. The second setup is throughsgathario, where the person is on the
transmitter side. The final setup is the long corridor with lgngth 20 m, where we set the longest
distance as 11 m for locating the the receiver and the tratesmiVe use omnidirectional antennas
for the receiver and the transmitter for breathing estiomatt all setup scenarios. However, due
to the minute signal change of heart signals, we leveragditbetional antennas to increase the
power of the transmitter for the first setup scenario to estinthe heart signal. Moreover, we
leverage the NEULOG Respiration and a fingertip pulse oxinteteecord the ground truths of

the breathing and heart rates.
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7.4.2 Performance of Breathing and Heart Rate Estimation

Fig. 7.12 shows the CDF of estimation error for the perforneasfdoreathing rate estimation. We
use the amplitude based method [116] as the benchmark toazempth our PhaseBeat system.
We can see that two systems have same medium estimate estdr0ab5 bpm. However, we can
see that for PhaseBeat, 90% of the test data have an estimmededraer 0.5 bpm, while 70% of
the test data for the amplitude based method have an estireat® under 0.5 bpm. Moreover,
the maximum estimation errors for PhaseBeat and the ameltaded method are 0.85 bpm and
1.7 bpm, respectively. Therefore, our PhaseBeat systenmelstaich better performance than the
amplitude based method for breathing rate estimation.

Fig. 7.13 shows the CDF of estimation error for the perforneasfcheart rate estimation. For
heart signal detection, we need to leverage the directammahna at the transmitter to improve the
power. Based on corollary 3.1, we can notice that the chanG&bphase difference data becomes
larger, while the change of CSI amplitude data is small, evecannot observe the periodic signal.
Thus, we only show the phase difference data for heart segtahation. In Fig. 7.13, we can find
that PhaseBeat system has the medium estimate error abou,lwiple 80% of the test data
have an estimated error under 2.5 bpm. Moreover, the maxiestimation errors for PhaseBeat
is about 10 bpm. We notice that the estimated accuracy of hetaris lower than the breathing
rate estimation because of minute heart signal and the lmacm@ve of breathing signal.

Fig. 7.14 shows the accuracy of breathing and heart ratesag&in for different sampling
frequencies. For data calibration part, we leverage 400atizpting frequency to estimate the
vital signs, which aims to accurately detect the heart $ighs is shown in the Fig. 7.14, we
can find that the breathing rate estimation have the simitdr &iccuracy about 98% for different
sampling frequencies. However, the accuracy of the he@restimation is only 88% for sampling
frequency with 20 Hz, while it can obtain 95% for 400 Hz samgli Thus, we choose the 400
Hz sampling for PhaseBeat system, which is used for the fallgwxtensively experimental data

with breathing rate estimation for different factors.
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7.4.3 Impact of Various Factors
Impact of the Distance between the Transmitter and the Rerceiv

Fig. 7.15 and Fig. 7.16 show the impact of the distance betlee transmitter and the receiver
for the long corridor and through-wall scenario, respetiv It is noticed that with the increase
of the distance between the transmitter and the receiveanrastimation error is also increased.
This is because the reflection signal is reduced for longdcs between the transmitter and the
receiver, which influences the change of phase differenize 8éoreover, we can see that the mean

estimation error with the same distance for through-wahseio is larger than that for the long
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corridor. For example, when the distance is 7m, the meamastn errors for the long corridor
and the through-wall scenario are 0.3 bpm and 0.52 bpm, ceégely. It is because the signal for

the through-wall scenario has larger attenuation thanftinahe long corridor.

Impact of the Distance between User and the Receiver

Fig. 7.17 shows the distance between the user and the retmitiee long corridor. We can notice
that when the user locates in the middle of the transmittdrtha receiver, the mean estimation
error is the maximum with about 0.52 bpm. In addition, whesnudker is in the side of transmitter
or the receiver, the estimation error is the minimum valuigs about 0.1 bpm and 0.15 bpm in the
sides of transmitter and the receiver, respectively. Wheruger is far away with WiFi devices,
the reflection signal from the transmitter is greatly weakeimich influences the phase difference

data.

Impact of User Orientation Relative to the Receiver

Fig. 7.18 shows the impact of user orientation relative ®riceiver within the laboratory. We
consider four cases including front (O degree), 45 degr@ele@gree and back (180 degree). As is
shown in the Fig. 7.14, we can see that for 90 degree, meanatgin error is the maximal value
with 0.3 bpm, while for the front orientation relative to theceiver, we can obtain the minimum
value with 0.14 bpm. When the user orientation relative ta#oeiver is the front or the back, the
reflection component of the wireless signal can mainly aaptite movement chest of body such

as inhaling or exhaling. Thus, we can obtain low mean estimairrors.

Impact of Different Poses

Fig. 7.19 shows the impact of different poses within the tabwry. We consider three common
poses for a stationary person such as sitting, standingyamgl IAs is shown in the Fig. 7.19, for

standing pose, mean estimation error with 0.31 bpm is ldhger other cases such as sitting with
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0.22 bpm and lying with 0.26 bpm. This is because the chestegpérson will have less reflection

from the wireless signal for standing pose.

7.5 Related Work

This work is closely related to two categories of vital sigmsnitoring, i.e., sensor based and RF
signal based, which are discussed in the following.

Sensor based systems for vital signs monitoring leverdgespecial hardware attached to
the person body. Typically, the special devices, such asdpaometer that can measure carbon
dioxide (CO2) concentrations in respired gases, are leedrém monitor patients breathing rate
in hospital [108]. However, they are uncomforted for thagratwearing them, which are mainly
used in clinical environments. Photoplethysmography (PiB@n optical technique to measure
the blood volume changes in the tissues by detecting lighbrgition changes, which requires
the sensors attached to persons finger such as pulse ox8rfiH18j. Moreover, smartphone can
utilize the camera to measure light changes from the vid@mds. Then, the pixel of the frame
is transformed into RGB components, which can extract the Big@al to estimate the heart
rate [118]. Recently, the smartphones can measure the limgatte by leveraging the built-in
accelerometer, gyroscope [119] and microphone [120], mt@quire persons to place smartphones
near-by and wear sensors in the monitoring environment.s& bechniques, however, leverage
attached sensors, which cannot be applied for remote morgteital signs.

RF based systems for vital signs monitoring leverages vesedgnal to extract the breathing-
induced chest change of a person, which is mainly based am aad WiFi techniques. For radar
based vital signs monitoring, some techniques such as tpelBoradar [111, 112] and the ultra-
wideband radar [113] are leveraged to monitor vital sigigctvrequire the special hardware with
high frequency and the high cost. Recent work leverages éremyumodulated continuous wave
(FMCW) radar to estimate breathing and heart rates, even fitrpheuperson subjects in paral-

lel [110]. But the system requires a custom hardware withgelaandwidth from 5.46 GHz to 7.25
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GHz. For WiFi based vital signs monitoring, UbiBreathe sgsteverages WiFi RSS for breath-
ing rate estimation, which, however, requires the devieegd in the line of sight path between
the transmitter and the receiver for monitoring the brewglsignal [115]. Furthermore, based on
RSS, mmVital can use 60 GHz millimeter wave (mmWave) signabfeathing and heart rates
estimation with the larger bandwidth about 7GHz citeMilitar. Its techniques cannot monitor
the longer distance and require high gain directional arasffior the transmitter and the receiver.
Recently, the authors leverage the amplitudes of CSI data Bf Myitrack vital signs [116]. This
work is mainly to monitor the vital signs when a person is gieg.

The PhaseBeat system is motivated by these interestingwmitis. To the best of our knowl-
edge, it is the first to leverage CSI phase difference data tutorahe breathing and heart rates
with commodity WiFi devices, which can obtain the higheiraeated accuracy of vital signs. And
this work analyzes and proves the phase difference dataicdpeand has the same frequency as

the the breathing signal.

7.6 Conclusions

In this chapter, we presented PhaseBeat, CSI phase diffedete#o monitor breathing and heart
beats with commodity WiFi device. PhaseBeat system lever&fal phase difference data to
extract the periodic signal from the change in the chest ofragn such as inhaling and exhal-
ing. Then, We implemented data preprocessing including@mwment detection, data calibration,
subcarrier selection and discrete wavelet transform. blae we employed the peak detection
approach for breathing rate estimation and FFT based mdtindatart rate estimation. We con-
ducted with the experiments with three setups such as tleedadyy, through-wall scenario and
the long corridor. The results showed that the PhaseBeatmystin obtain better performance
than the amplitude based method. In the future, we will netelow to use the omnidirectional

antennas as the transmitter to detect the minute heartl figheveraging phase difference data.
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Chapter 8

TensorBeat: Tensor Decomposition for Monitoring Multi-8tar Breathing Beats with
Commodity WiFi

8.1 Introduction

Recently, the authors in [116] use the CSI amplitude data tatordoreathing and heart signals,
which requires the person to remain in the sleeping mode. edew the measured CSI phase
data has not been fully exploited in prior works, largely tmeandom phase fluctuation resulting
from asynchronous times and frequencies of the transnatidrreceiver. For multiple person
breathing monitoring, because the reflected componenkeireceived signal are from the chests
of multiple persons, each moves slightly due to breathind) the movements are independent.
Thus, vital signs monitoring and estimation for multiplersmns still remains a challenging and
open problem.

In this chapter, we propose to utilize CSI phase differenta between antenna pairs to mon-
itor the breathing rates of multiple persons. First, we skimat when the person is in a stationary
state, such as standing, sitting, or sleeping, the CSI phfiseedce data is highly stable in consec-
utively received packets, which can be leveraged for etitrg¢he small, periodic breathing signal
hidden in the received WiFi signal. In fact, phase diffeeerscmore robust than amplitude, which
usually exhibits large fluctuations because of the attémiatver the link distance, obstacles, and
the multipath effect. Moreover, the phase difference dafstwres and preserves the periodicity

of breathing, when the wireless signal is reflected from thepts’ chests. To extract the weak
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breathing signal, and more important, to distinguish amowdfiple persons, we propose to em-
ploy a tensor decomposition method to handle the phaseetite data [121, 122, 123]. We create
the CSI tensor data by increasing the dimension of CSI data éroerto three, which can be used
to effectively separate different breathing signals ifedént clusters.

We present a system termé&dnsorBeagtTensordecomposition for estimating multiple per-
sons breathind@@eats by exploiting CSI phase difference data. TensorBeat opecdollows.
First, it obtains 60 CSI phase difference data from antenira fpaand 2, and 2 and 3, at the re-
ceiver. Next, a data preprocessing procedure is appliedeorteasured phase difference data,
including data calibration and Hankelization. In the datkration phase, the DC component and
high frequency noises are removed. In the Hankelizatios@hatwo dimensional Hankel matrix
is created based on the calibrated phase difference dateefvery subcarrier, and the rank of the
Hankel matrix is analyzed. Then, we adopt Canonical Poly@i®) decomposition for estimating
multiple persons breathing signs, and prove the uniquesfeb® proposed CSI tensor. After CP
decomposition, we obtain twice amount of breathing signatgch, however, are randomly in-
dexed. We thus design a stable signal matching algorithni{#stable roommate problem [124])
to identify the decomposed signal pairs for each personallyjnwve combine the decomposed
signals in each pair and employ a peak detection method itnastthe breathing rate for each
person.

We implement TensorBeat on commodity 5 GHz WiFi devices antdyis performance
with five persons over six months in different indoor envirants, such as a computer laboratory,
a through-wall scenario, and a long corridor. The resulbs\sihat the proposed TensorBeat system
can achieve high accuracy and high success rates for neuttgysons breathing rates estimation.
Moreover, we demonstrate the robustness of the proposesbieat system for monitoring mul-
tiple persons’ breathing beats under a wide range of enviesrtal parameters.

The main contributions of this chapter are summarized da/Wsl

1. We theoretically and experimentally verify the feasipibf leveraging CSI phase difference

for breathing monitoring. In particular, we analyze the swgad phase errors in detail and
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demonstrate that phase difference data is stable and caebteaextract breathing signs. To
the best of our knowledge, we are the first to leverage phdiseatice for multiple persons

breathing rate estimation.

2. We are also the first to apply tensor decomposition for RBisgrbased vital signs moni-
toring. We use the phase difference data to create a CSI teorsall subcarrier at the three
antennas of the WiFi receiver. We then incorporate CP decsitipo to obtain the desired
breathing signals. A stable signal matching algorithm isettgped to match the decomposed
signals for each person, while a peak detection method ttesestimate multiple persons’

breathing rates.

3. We prototype the TensorBeat system with commodity 5 GHz dékFices and demonstrate
its superior performance in different indoor environmenith extensive experiments. The
results show that the proposed TensorBeat system can ack@gvhigh accuracy and high

success rates for multiple persons breathing rate estimati

The remainder of this chapter is organized as follows. Tleémmaries and phase difference
analysis are provided in Section 8.2. We present the Tenabistem design and performance
analysis in Section 8.3 and verify its performance with egiee experiments in Section 8.4. We

provide the related work in Section 8.5. Section 8.6 cornedutiis chapter.

8.2 Preliminaries and Phase Difference Information

8.2.1 Tensor Decomposition Preliminaries

A tensor is considered as a multidimensional array [125¢ dimensions of the tensor are called
as modes, and the order of the tensor is the number of the medesxample, théV-order tensor

is a N-mode tensor. Moreover, It is noticed that a first-order ¢ens a vector, a second-order
tensor is a matrix, and a third-order tensor is a cubic strectHigher-order tensors wittiv. > 3)
have a wide range of applications such as data mining, betan @halysis, recommendation sys-

tems, wireless communications, computer vision, and heate and medical applications [121].
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For higher-order tensors, they face various computationallenging because of the exponential
increase in time and space complexity with the orders isgreatensors. This leads to the curse of
dimensionality. Fortunately, tensor decomposition aspmweerful tool is leveraged for alleviating
the curve by decomposing high-order tensors into a limitachlmer of factors. Also, it can ob-
tain hidden feature components, thus extracting physisajint of higher-order tensors. Two main
tensor decompositions are tucker decomposition and CP gexstion [125]. We consider CP de-
composition for multiple persons breathing rate estinmabiecause it can easily obtain the unique
solution [125]. On the other hand, we will provide some neaeg definitions and equations of

tensor decomposition, which can be used for our proposeditig.

Definition 1. (Frobenius Norm of a Tensor). The Frobenius norm of a tesarK/ 1 x/2xxI~ is

the square root of the sum of the squares of all its elemenishvusdefined by

I I In

i1=lia=1  in=1

whereK stands foiR or C.

Definition 2. (Kronecker Product). The Kronecker product of matrit¢sc K>/ and B € KM*¥

is denoted asA ® B. The resultis arf/ M) x (JN) matrix, which is defined by

CLHB algB Ce CLL]B
an B axB ... ayyB

A®B: 21 22 2J ' (82)
CL[lB CL[QB (l]JB

Definition 3. (Khatri-Rao Product). The Khatri-Rao product df ¢ K%/ and B € KM*/ is
denoted asA ® B. It is the column-wise Kronecker product with the sjZé/) x J, which is
defined by

AOB=[a1®b;,a:@by, - ,a;®by]. (8.3)
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Definition 4. (Hadamard product). The Hadamard product 4f ¢ K%/ and B € K>/ is

denoted asA x B. It is the elementwise matrix product with the size J, which is defined by

a11bir  aizbia ... Clele
a21b21  agabay ... asjbay

AxB = . (8.4)
anbp arpbre ... arsbry

8.2.2 Phase Difference Information for Multiple Breathing Monitoring

Breathing rate estimation for multiple persons is a chailegngroblem, because the reflected
components in the received signal are from the chests ofipfeulbersons, each moves slightly
due to breathing and the movements are independent. Thupgetk-to-peak detection method
cannot be effective for detecting the multiple breathingnals from the received signal. The
aggregated breathing signal from multiple persons is nt#aly periodic signal anymore. Fig. 8.1
shows the detected breathing signals for one person (ther ybgt) and three persons (the lower
plot). We can see that for one person, the breathing sigriabiéx a noticeable periodicity. So
the breathing rate can be estimated by peak detection a&fteowing the noise. However, the
aggregated breathing signal of three persons does not shiveable periodicity for packet 400
to 600. Traditional FFT based methods can transform thevetsignal from the time domain to
the frequency domain to estimate the breathing frequefi@asmultiple persons. Fig. 8.2 shows
the breathing rate estimation for one person (the uppey ahat three persons (the lower plot) with
the FFT method. We can see that the estimated frequencyégrenson is 0.2 Hz, which is almost
the same as the true breathing rate. However, for threepdngathing rate estimation, the FFT
curve only has two peaks, and the estimated breathing reggaizch less accurate. In particular,
the third peak cannot be estimated. This is because FFT Ipastubds require a larger window
size to improve the frequency resolution. We show that tlop@sed tensor decomposition based

method is highly effective for multi-person breathing ragéimation in the following section.
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Figure 8.1: Detected breathing signals for one person (bperplot) and three persons (the lower

plot).
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Figure 8.2: Breathing rate estimation for one person (theeupfot) and three persons (the lower

plot) based on FFT.
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8.3 The TensorBeat System

8.3.1 TensorBeat System Architecture

The main idea of the proposed TensorBeat system is to estimateperson breathing rates by
employing a tensor decomposition method. To obtain CSI tedata, we first create a two di-
mensional Hankel matrix with phase difference data fronkbaeback received packets extracted
from each subcarrier at each antenna. Then, by leveraginghése differences from the 60 sub-
carriers, i.e., that between antennas 1 and 2, and betwéemas 2 and 3, we can construct the
third dimension of the CSI tensor data. The TensorBeat systéinthen leverage the created
CSI tensor to estimate multi-person breathing signs. Ourcaggh is motivated by two observa-
tions. First, for stationary modes of a person, such as stgnditting, or sleeping, CSI phase
difference from consecutively received packets is highdpke. It can thus be useful for extracting
the periodic breathing signals. Second, the tensor decsitipomethod can effectively estimate
multi-person breathing beats. We create the CSI tensor ¢gatackeasing the dimension of CSI
data, from one dimension to three dimensions. The higheension CSI data is helpful to effec-
tively separate different breathing signals by formindedént clusters. This strategy is similar to
the kernel method in traditional machine learning, such\asl 18] or multiple hidden layers in
deep learning [91, 64, 3].

As shown in Fig. 8.3, the TensorBeat system consists of foum madules: Data Extraction,
Data Preprocessing, CP Decomposition, Signal Matching,Bxedthing Rate Estimation. For
Data Extraction, TensorBeat obtains 60 CSI phase differeat® 80 between antennas 1 and 2,
and 30 between antennas 2 and 3, at the receiver with anesfktalf WiFi device. The Data Pre-
processing module includes data calibration and Hanka&lizaData calibration is implemented to
remove the DC component and high frequency noises. Haalielizis to create a two dimensional
Hankel matrix with phase difference data from each submafor back-to-back received packets.
The rank of the constructed Hankel matrix is then analyzed.nékt apply CP decomposition to

estimate multiple persons’ breathing signals, and proseithqueness of the proposed CSI tensor.
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Figure 8.3: The TensorBeat system architecture.

For Signal Matching, we first compute the autocorrelatiomcfion of the decomposed signals,
and incorporate a stable roommate matching algorithm tatiigethe decomposed signal pairs for
each person, where a preference list is computed with thandintime warping (DTW) values of
the autocorrelation signals. For Breathing Rate Estimatiancombine the decomposed signals
in each pair and use the peak detection method to computedhthing rate for each person.

In the remainder of this section, we present the design aatysia of each module of the

TensorBeat system in detail.

8.3.2 Data Preprocessing
Data Calibration

We use a 20 Hz sampling rate to obtain 60 CSI phase differertee 3@ between antennas 1 and

2, and 30 between antennas 2 and 3, at the receiver with dhesffhelf WiFi device at 5 GHz for
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Figure 8.4: Data calibration: an example.

data extraction. Then, data calibration is applied to resribe DC component and high frequency
noises. Because the DC component is also considered as aflsighal, which may affect CSI
tensor decomposition, TensorBeat adopts the Hampel filteertmve the DC component. Un-
like traditional data calibration approaches that only seenthe high frequency noise, we use the
Hampel Filter for detrending the original CSI phase diffeedata to remove DC component. In
fact, the Hampel Filter, which is set as a large sliding wimdath 150 samples wide and a small
threshold of 0.001, is firstly used to extract the basic tr@fittie original data. Then, the detrended
data is generated by subtracting the basic trend data frenoriginal data. We also utilize the
Hampel Filter to reduce the high frequency noise by usingdang) window of 6 samples wide and
a threshold of 0.01.

Fig. 8.4 presents an example of data calibration. We carhsé#he original phase differences
of all the subcarriers have both a DC component and high &ecpnoises. With the proposed
data calibration approach, it can be seen that the DC cormt®aee readily removed and all the
subcarriers demonstrate a similar calibrated signal d(ve2600 packet range with low noise. Such

calibrated signal will then be used for estimating the bnegt rates of multiple persons.

Hankelization

After data calibration, we obtain the CSI phase differenda daatrix with a dimension of (humber

of packetsx number of subcarriers). We then employ a Hankelization oetb transform the
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large CSI matrix into a CSI tensor by expanding the packetsantadditional dimension [126].
Specifically, we rearrange the signals of each subcarrteran2-D Hankel matrix, so that the
signals from all the 60 subcarriers can be considered as ian@+i3ional tensor. Defing,. as the
constructed Hankel matrix with the siZex J for subcarrierr, which is created by mappindy
packets onto the Hankel matrix withk = 7 + J — 1. We consider the Hankel matrix with size

I1=J= % We thus obtain the Hankel matri, for subcarrier-, as

L) ) b5~ 1)
H - hr.(l) hTF2) hr(.T“) | ©.5)
h(S2 1) h(ME) L h(N-1)

whereh,(7) is the calibrated phase difference data from subcarrfer packeti. In our experi-
ments, we selvV = 599 and/ = J = 300. To determine the number of components needed for

CSl tensor decomposition, we provide the following theoremektimatingR? breathing signals.

Theorem 4. If there areR breathing signals in an indoor monitoring environment, to@structed

Hankel matrixH,. for subcarrierr has a rank o2 R when noise is negligible.

Proof. When analyzing signal data structure, we assume the noiseglgible. Moreover, let
theith breathing signal be representedsa&) = A; cos(w;t + ¢;). The observed signal from a

subcarrier can be represented by [127]

@
Il
—
.
Il
—
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where K; is the coefficient for breathing signaland the new coefficienk; = K;A;. Theith

component ol (t), K; cos(w;t + ¢;), can be decomposed using Euler’s formula. We have

~

5 exp(j(wit + ¢;)) + 5 exp(j(—wit — ¢;))
> exp(jp;) exp(jwit) + > exp(—jpi) exp(—jwit). (8.7)

K; cos(wit + ;) =

Each breathing signal can be separated into two exponesgiaéls with different coefficients.

Combining all theR breathing signals, we have

R A A
K; . . K; . ,
Y (t) > (7 exp(jpi) exp(jwit) + == exp(—ji) eXP(—]wz‘t))
1

2n
Y K. Z, (8.8)
1=1

where the updated signal! is denoted asz! = exp(+jw;t), and K; = %exp(:l:jgoi) is its
coefficient. For packets received at discrete times, weessmt the received signal &3§n) =

fol K, Z?". Note that the combined signal can be considered as an exi@lynomial with
2R different exponential terms. Map signeln) forn = 1,2,--- | N into a Hankel matrix with

sizel = J = 2t we have

- - ~  N41_
2?51 KiZz‘O 2?51 KiZz‘l o Zifl KiZz’ T
- ~ ~  N41
S K 7] S Kz - SHKZ
H, = - - - . (8.9)
. N41_ ~ N41 -
Z?fl KiZz’ T Z?fl KiZz‘ ’ e Z?fl KiZiN_l

We can see that the Hankel matrix can be decomposed with ¥faodee decomposition [126], as

HT:‘/;"diaqkluklu'” 7R2R)"~/;‘T7 (810)
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where the Vandermode matricks € K™z *2E andV, € K 3 *2E are given by

1 1 1
i Z Zy - Z
V.=V — ! ? o (8.11)
N4l _ N1 N1
|2, * Zy* Zs8

Because a Vandermode matrix is full rank, which is obtainedliffgrent poles, the rank of the

Hankel matrix generated by breathing signals i8R. n

According to Theorem & R signal components is required to separateRhareathing sig-
nals.

Next we consider the influence of measurement noise on thkdHamatrix H,. Because of
noise, the Hankel matri¥/, is actually a full-rank matrix. However, Theorem 4 showst tifne
rank of the combined breathing signabiB, meaning that the fir&R weighted decomposed com-
ponents are much stronger than the remaining ones as lohg agyhal to noise ratio (SNR) is not
very low. This shows that the Hankel matrix structure candeluo effectively separate breathing
signals from white noise. Actually, the different signalsl Wwe well denoised and separated by

using tensor decomposition, as to be discussed in Sectod. 8.

8.3.3 Canonical Polyadic Decomposition

Once the CSl tensor is ready, we apply CP decomposition to &stimultiple persons’ breathing
signals. With CP decomposition, the CSI tensor data can be@xippated as the sum @R rank-
one tensors according to Theorem 4. Denpte K*/*X as a third-order CSI tensor, which can

be obtained by the sum of three-way outer products as [125, 12

2R
X%ZGrObrOCm (8.12)
r=1
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wherea,, b,, ¢, are the vectors at theh position for the first, second, and third dimension, re-
spectively, an@R is the number of decomposition components, which is thecqmpiation rank

of the tensor based on CP decomposition [128, 129]. Their gubeluct is defined by

(a, 0 b, 0¢)(i,7, k) = a,(i)b.(j)cr(k), forall i,j, k. (8.13)
We consider factor matriced = [ay, as, - ,a0p] € KX, B = [by, by, -+ ,byg] € K/*2E,
andC = [c1, ¢, ,cop] € KE*2E as the combination of vectors from rank-one components.

Moreover, defineY;, € K'*/X, X;) € K”*'*, andX3 € K**!/ as 1-mode, 2-mode, and
3-mode matricization of CSI tensqr ¢ K/*/*X respectively, which are obtained by fixing one
mode and arranging the slices of the rest of the modes intogantatrix [125]. Then, we can write

the three matricized forms as

X1y~ A(C® B)", (8.14)
X2 ~B(Co A)T, (8.15)
Xz ~C(BoA)T, (8.16)

where® denotes the Khatri-Rao product.

When the number of componer2® is given, we apply the Alternating Least Squares (ALS)
algorithm, the most widely used algorithm for CP decomposifil25]. To decompose the CSI
tensor, we minimize the square sum of the differences betteeCSI tensox and the estimated

tensor.

2

min

Jnin, (8.17)

2R
X — E a.ob.oc,
r=1

F

Note that (8.17) is not convex. However, the ALS algorithm effectively solve the problem by

fixing two of the factor matrices, to reduce the problem taadir least squares problem with the
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third factor matrix as variable. If we fiB andC, we can rewrite problem (8.17) as
. T2
min || X, — A(C © B)'[[. (8.18)

We can derive the optimal solution to problem (8.18)As= X;)[(C ® B)"]i. Applying the

property of pseudoinverse of the Khatri-Rao product, itthel that
A =X, (C e B)(C"C * B"B), (8.19)

wherex denotes the Hadamard product. This equation only requinegpating the pseudoinverse
of a2R x 2R matrix rather than &/ K x 2R matrix. Note thatk is much smaller thaw and
K, thus the computing complexity can be greatly reduced. I8ityj we can obtain the optimal

solutions forB andC as

B = X;5(C® A)(C"C x ATA)' (8.20)

C = X3 (BoA)(B"Bx ATA)'. (8.21)

Applying ALS to CP decomposition, we obtain matricds B, andC'. To guarantee the effective-
ness of the decomposed components, we next examine theenesgiof CP decomposition. The
basic theorem on the uniqueness of CP decomposition is givgi2b], which is provided in the

following.

Fact 1. For tensory with rank L, if k4 + kg + k¢ > 2L + 2, then the CP decomposition gfis
unique, where: 4, kg, and ke denote the:-rank of matrix A, B, C, respectively. Heré-rank

means the maximum valéesuch that anyt columns are linearly independent [125].
Based on Fact 1, we have the following theorem for the CSI tensor

Theorem 5. For the proposed CSI tensqrwith rank2 R, the CP decomposition gfis unique.
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Figure 8.5: CP decomposition results for a CSl tensor of theesgms.

Proof. The proposed CSI tensqris created bykX Hankel matrix, where theth Hankel matrix
H, is rank-2R according to Theorem 4. Thus, for theank of the matricesA and B, we have
ka = 2R andkg = 2R. On the other hand, because phase differences of subsargereen
antennas 1 and 2, and antennas 2 and 3 are independéntahle of matrixC' haskc > 2. Thus,
the expression is4 + kg + k¢ > 2R + 2R + 2 = 2(2R) + 2, which satisfies the conditions in

Theorem 1. This proofs the theorem. O

Theorem 5 indicates that the CP decomposition of the createte@$or is unique, which can
be used to effectively estimate multiple breathing ratesthe proposed TensorBeat system, we
leverages the matriXd = [aq, as, - - - , azr] as decomposed signals, Sa, - - - , Sor. FoOr example,
Fig. 8.5 shows the results of CP decomposition for CSI tensiar flam three personsi( = 3).
We can see that there are six signals. Moreover, signals P amnd similar, signals 3 and 5 are
similar, and signals 4 and 6 are similar. This is because CBndjgasition cannot guarantee that
similar signals are located in adjacent locations (i.es, dhtput signals are randomly indexed).
Thus, we need to identify the signal pairs among the decoetpsignals for each person, which

will be addressed in Section 8.3.4.
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Figure 8.6: Autocorrelation of the decomposed breathiggals.

8.3.4 Signal Matching Algorithm

The CP decomposition of CSI tensor data yields decomposed signals, i.65;,Ss, -+ , Sar,
which, however, are randomly indexed. In this section, wappse a signal matching algorithm
to pair the two similar decomposed signals that belong tostree person. The main idea is
to leverage the autocorrelation to strengthen the peiitgdid decomposed signals and use the
Dynamic Time Warping (DTW) method to compute the similarigiue for any pair of signals.
Finally, we apply the stable-roommate matching algoritlorpéir the decomposed signals for
each person, using the DTW values as the closeness metriantkduce the proposed signal

matching algorithm in the following.

Autocorrelation and Dynamic Time Warping

After CP decomposition of CSI tensor data, we first computeti@carrelation function of the R

decomposed signals to strengthen their periodicity. Wiiat@the autocorrelation function of the
decomposed signals for two reasons. The first is that theautlation of a decomposed signal
can increase the data length, which helps to improve theracgwf the peak detection. Second,
because the decomposed signals have phase shift and momahiy using the autocorrelation
of decomposed signals can reduce such shifts and strentijtbgreriodicity of the decomposed

signals. Fig. 8.6 shows the autocorrelation of the decoegbbseathing signals produced by CP
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decomposition. We can see that each autocorrelation segyhatbits a more obvious periodicity
than that of the original decomposition signals. Moreothez,data length is increased from 300 to
600.

Furthermore, we employ the DTW approach to measure thendistbetween any pair of
autocorrelation signals, which is different from the Edeln distance method that computes the
sum of distances from each value on one curve to the corrdsppralue on the other curve.
Moreover, the Euclidean distance method believes that twacarrelation signals with the same
length are different as long as one of them has a small shiftveder, DTW can automatically
identify these shifts and provide the similar distance raeswent between two autocorrelation
signals by aligning the corresponding time series, thusocoveing the limitation of the Euclidean
distance method.

With the autocorrelation signals, we design the DTW metlardnieasuring their pairwise
distance. Given two autocorrelation signals and a costtimmcthe DTW method seeks an align-
ment by matching each point in the first autocorrelationaigmone or more points in the second
signal, thus minimizing the cost function for all points [530, 131]. To reduce the compu-
tational complexity of DTW, we apply downsampling to the tawotocorrelation signals, which
leads to a reduced number of packats Then, consider two downsampled autocorrelation sig-
nalspP, = [P;(0), P,(1),--- , P(N'—1)] andP; = [P;(0), P;(1),--- , P;(N'—1)], we need to find
a warping patiV = [wq,ws, - -+ ,wy], whereL is the length of the path, and tlith element of
the warping path isy, = (m,, n;), wherem andn are the packet index for the two downsampled
autocorrelation signals. The objective is to minimize thialtcost function by implementing the

non-linear mapping between two downsampled autocorogiaignalsP; and P;. The formulated
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problem is given by

L
min Y [[Pi(mi) = Py(m)]| (8.22)
sit. (lT:nll,nl) = (0,0) (8.23)
(mg,np) = (N —1,N' —1) (8.24)
my <mypr <my +1 (8.25)
n < mgp <ng+ 1. (8.26)

The objection function is to minimize the distance betwaemdownsampled autocorrelation
signals. The first and second constraints are boundaryreamtst which require that the warping
path starts af’;(0) and P;(0) and ends af’;(N’' — 1) and P;(N’ — 1). This can guarantee all
points of the two downsampled autocorrelation signals ae&l dior measuring their distance, thus
avoiding to use only local data. Furthermore, the third andth constraints are monotonic and
marching constraints, which require that there be no cyfoles; andw; in the warping path and
the path is increased with the maximum 1 at each step.

We apply dynamic programming to solve problem (8.22), taambthe minimum distance
warping path between two downsampled autocorrelatiorassgiWe consider a two-dimensional
cost matrixC with size N’ x N’, whose elemen€(m;,n,;) is the minimum distance warping
path for two downsampled autocorrelation sign&ls= [FP;(0), P;(1),---, Pi(my)] and P; =
[P;(0), P;(1),---, Pj(ny)]. We design the recurrence equation in dynamic programmnsnigla

lows.

C(my,ny) = ||P;(my) — Pj(ny)|| + min [C(m; — 1,n;),C(my,ny — 1),C(my — 1,n;, — 1)]. (8.27)

By filling all elements of the cost matr, the valueC(N'—1, N'—1) can be computed as the DTW
value between the two downsampled autocorrelation signale time complexity isO(N").

Fig. 8.7 shows the DTW results for downsampled autocoioglaignals 4 and 6 (the upper plot),
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Figure 8.7: DTW results for downsampled autocorrelatigmals 4 and 6 (the upper plot), and
downsampled autocorrelation signal 4 and 3 (the lower plegpectively.

and downsampled autocorrelation signals 4 and 3 (the lole®; prhere we set the downsampling
number of packets a§’ = & = 60. It can be seen that downsampled autocorrelation signals
4 and 6 have a smaller DTW value (i.e., 3.65) than downsangaléatcorrelation signals 4 and 3
(i.e., 13.7). Thatis, signals 4 and 6 are more similar, ancertikely to belong to the same person.
We also find that the downsampled autocorrelation signais adigh similarity in the center than
that on the boundary, and it can reduce the phase shift valliess, the DTW value is a good
measure of the distance between two downsampled autcatiorekignals. We need to compute
the DTW values for all the downsampled autocorrelationaigairs, which are then used in stable

roommate matching.

Stable Roommate Matching

Since the CP decomposed signals are randomly indexed (se& ®ligve need to identify the pair
for each person. With the DTW values for all downsampled e@utelation signal pairs, we can
model this problem as a stable roommate matching problerh [i22, 133]. There are a group of
2R signals, and each signal maintains a preference list otladrssignals in the group, where the
preference value for another signal is the inverse of theespponding DTW value (i.e., distance).

The problem is to pair the signals, such that there is no spelr@f signals that both of them have

192



a more desired selection than their current selectiontaénd a stable matching [124, 132, 133].
The proposed signal matching algorithm is presented in vtlyo 9.

We first compute the autocorrelation of all decomposed $sgriBhen each autocorrelation
signal populates its preference list with other autocatieh signals according to the DTW values.
The stable roommate matching algorithm is executed in tepsstin step 1, each signal proposes
to other signals according to its preference list. If a sigmaeceives a proposal from another signal
n, we implement the following strategy: (i) signalrejects signah if it has a better proposal from
another signal; (ii) signah accepts signatb’s proposal if it is better than all other proposals that
signalm currently holds. Moreover, signalstops to propose when its proposal is accepted, while
it needs to continue to propose to other signals if beingctege This strategy is implemented in
step 1 of the signal matching algorithm, where we (igeish_flag to mark whether the current
signal_num is accepted or not. Moreover, variables:ept_num andpropose_num are used to
record the current signal’s proposed number and proposingoer, respectively. Also, variable
scan_num IS used to record the current scanning signal number. Atierpdeting step 1, every
signal holds a proposal or one signal has been rejected by sitinals (this case hardly happens in
TensorBeat, because the CP decomposition produces two walgrsignals with high probability
for each person). Then, we need to delete some elementsthregireference lists based on the
following method, which is that if signah is the first on signah’s list , then signak: is the last
on signalm’s list. For the proposed algorithm, every signal can regggmals that have less than
accept_num in its preference list symmetrically (reject each other).

An example is shown in Fig. 8.5. According to the DTW valuegnals 1, 2, 3, 4, 5, and 6
have their preference lists as (2, 3, 5, 6, 4), (1, 3, 5, 6,54)1(2, 6, 4), (6, 5, 3, 2, 1), (3, 2, 1, 4,
6), and (4, 5, 3, 2, 1), respectively. When step 1 is executedhave: Signal 1 proposes to 2, and
signal 2 holds 1; Signal 2 proposes 1, and signal 1 holds;@B®proposes to signal 5, and signal
5 holds; Signal 4 proposes to signal 6, and signal 6 holdsigbig proposes to signal 3, and signal
3 holds; Signal 6 proposes to signal 4, and signal 4 holds.dasy to find three pairs (1,2), (3,5),
and (4,6).
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Although most of decomposed signals are paired in step f,steill still be necessary for
the more challenging cases of much more breathing sign@dN&i®©S environments. In step
2, we consider the reduced preference lists, where someedists have more than one signals.
By implementing step 2, we can reduce the preference lists that each signal only holds one
proposal. The main idea is that we need to find some all-dringtcycles and symmetrically
delete signals in the cycle sequence by rejecting the fidiast choice pairs. The signal in the
cycle accepts the secondary choice, thus obtaining a stabiemate matching. To find all-or-
nothing cycles, lep; be a signal with a preference list that contains more thareteraent, and
generate the sequences such thatthe second preference pfs current list, ang; . ; = the last
preference ofy;'s current list. After the cycle sequence generation, deppts the first element
in the p sequence to be repeated. Then, we reject matdhing i — 2,p, +¢ — 1) fori = 1 to
r symmetrically, where is the length of the cycle. Finally, we can obtain signal rhaig pairs
based on all processed preference lists. The computationablexity of Algorithm 9 isO(R?),

because steps 1 and 2 each has a complexi®(&f), respectively.

8.3.5 Breathing Rate Estimation
Signal Fusion and Autocorrelation

After obtaining the outcomes of the signal matching aldponit TensorBeat next applies peak de-
tection to estimate the breathing rates for multiple pess@omparing to the FFT method, a higher
resolution in the time domain can be achieved. To implemeakpmetection, we first need to com-
bine the decomposed signal pairs for each person into aessighal, by taking the average of the
signal pairs. Averaging can decrease the variance of thendgased signals while preserving the
same period. For example, Fig. 8.8 shows the fusion resattedon the outcome of the signal
matching algorithm, where three smoothly decomposed Egvith different periods are obtained.

To strengthen the accuracy of peak detection, we computauttoeorrelation function again for

every fused signal. Fig. 8.9 shows the autocorrelation®thiee fused signals. It can be seen that
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Figure 8.8: Fusion results based on the outcomes of thelsiatahing algorithm.
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Figure 8.9: Autocorrelation of fused signals.

the length of data is increased from 300 to 600 and the nunfheeaks of every signal are also

increased, which help to improve the estimation accuracy.

Peak Detection

Although breathing signal is generated by the small peciodest movement of inhaling and exhal-

ing, the phase difference data can effectively capture thathing rate. Traditionally, estimation

of breathing rates is achieved with FFT based methods. Henvne FFT approach may have lim-

ited accuracy, because the frequency resolution of brggatignals is based on the window size

of FFT. When the window size becomes larger, the accuracybeiliigher, but the time domain

resolution will be reduced. Also see Figs. 8.1 and 8.2 fotith#ation of the FFT based approach
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for the multi-person scenario. Therefore, we leverage petdction instead in TensorBeat system
to achieve accurate breathing rate estimation for eachtotatrelations of fused signals.

For peak detection, the traditional method based on andglineeds to detect the fake peak,
which is not a real peak but has larger values than its two idiate neighboring points. To avoid
the fake peak, a large moving window can be used to identdyehl peak based on the maximum
breathing periodicity. This method is not robust, whichuiegs adjusting the window size. In
TensorBeat, we only consider a smaller moving window of 7 daswwide. This is because we
leverage the Hankel matrix and CP decomposition to smoottinedttreathing curves, which hardly
contains any fake peaks. Then, for thle autocorrelation curve of fused signal, we seek all the
peaks by determining whether or not the medium of the 7 sampléhe moving window is the
maximum value. Finally, we consider the median of all peafp¢ak intervals as the final period
of theith breathing signal, which is denoted Bs Finally, the estimated breathing rates can be

computed ag; = 60/T;, fori = 1to R.

8.4 Experimental Study

8.4.1 Experiment Configuration

In this section, we validate the TensorBeat performance antimplementation with 5 GHz Wi-
Fi devices. To obtain 5 GHz CSI data, we use a desktop compuatka dell laptop as access
point and mobile device, respectively, both of which areigoed with an Intel 5300 NIC. We use
the desktop computer instead of the commodity routers,Usecaone is equipped with the Intel
5300 NIC. The operating system is Ubuntu destop 14.04 LTS ©@8dth the access point and
the mobile device. The PHY is the IEEE 802.11n OFDM systerh @PSK modulation and 1/2
coding rate. Moreover, the access pointis set in the momatel and the distance between its two
adjacent antennas is approximately 2.68 cm, which is halefvavelength of 5GHz WiFi. Also,
the mobile device is set in the injection model and uses otenaa to transmit data. Moreover,

we use omnidirectional antennas for both the receiver arbitter to estimate breathing signs
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beats. With the packet injection technique with LORCON versipwe can obtain 5 GHz CSI
data from the three antennas of the receiver.

Our experimental study is with up to five persons over a peoiosix months. The experi-
mental scenarios include a computer laboratory, a thravglhscenario, and a corridor, as shown
in Fig. 8.10. The first scenario is within a 4:58.8 m? laboratory, where both single person and
multi-person breathing rate estimation experiments arelgcted. There are lots of tables and
desktop computers crowded in the laboratory, which blockspa the LOS paths and form a com-
plexity radio propagation environment. The second setupttgrough-wall environment, where
single person breathing rate estimation is tested due teetavely weaker signal reception. The
person is on the transmitter side, and the receiver is behivdll in this experiment. The third
scenario is a long corridor of 20 m, where the maximum disdretween the receiver and trans-
mitter is 11 m in the experiment. This scenario is still cdesed for single person breathing rate
monitoring. We use a NEULOG Respiration to record the grouuatths$ for single person breath-
ing rates. The single person breathing rates estimatiorbeagasily implemented by removing
the signal matching algorithm, because there are only twomeosed signals after CP decom-
position in this case. For muti-person breathing rate egion in the first scenario, all persons
participating in the experiment record their breathing@sdiy using a metronome smartphone ap-
plication with 1 bpm accuracy at the same time. We considergarsons are stationary for LOS
and NLOS environments for breathing monitoring. Moreovleere are no other persons in the
breathing measurement area.

For multi-person breathing rate estimation, we need to defiproper metric for evaluating
TensorBeat's performance. F& estimated breathing rateg;[ /2, ... fr], the ith breathing rate

estimation errorf;, is defined as

Ei: fl_flv fori:1a27"'aR7 (828)
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Figure 8.10: Experimental setup: computer laboratorgugh-wall, and long corridor scenarios.

where ; is the ground truth of théth breathing rate. We also define a new metric termed success

rate, denoted aSRz, which is defined as

_ N{max; {E;} < 2bpm}
o= N{E]}

x 100%, (8.29)

where N{max; {E;} < 2bpm} means the number of repeated experiments of the maximum
breathing rate error less than 2 bpm, av{lE'} is the number of repeated experiments. We adopt
the success rate metric because there are weak signals fiyperson experiments in indoor
experiments at different locations, and sometimes a hregatignal may not be successfully de-

tected [134].

8.4.2 Performance of Breathing Estimation

In Fig. 8.11, we present the CDF of the estimation errors fuglsiperson breathing rate detection
for three different experiment scenarios. We can see thdigiosorBeat, high estimation accuracy
of breathing rates can be achieved in all the three scendr@smaximum estimation error is less

than 0.9 bpm. Moreover, it is noticed that 50% of the teststfercomputer laboratory experiment
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Figure 8.11: Performance of single person breathing rdtmason in the computer laboratory,

through-wall, and long corridor scenarios.

have errors less than aboout 0.19 bpm, while the tests fayahelor and through-wall scenarios
have errors less than approximately 0.25 bpm and 0.35 bgpecévely. Thus, the performances
in the laboratory setting is better than that in the corridod through-wall scenarios. This is
because the laboratory has a smaller space and the breattnaj is stronger than that of other
two cases with larger attenuation due to the long distanddhanwall.

Fig. 8.12 presents the performance of breathing rate estimtor different number of per-
sons. It is noticed that higher accuracy is achieved for ithgles person test, where approximately
96% of the test data have an estimation error less than 0.5 Bpetfive-person test has the worse
performance, where approximately 62% of the test data haestamation error less than 0.5 bpm.
Moreover, we fine that the performances of the two-persortlaee-person tests are similar, both
of which can have an error smaller than 0.5 bpm for 93% of teedata. Generally, when the
number of persons is increased, the performance of bregatate estimation gets worse. In fact,
when the number of breathing signals is increased, thert@iof the mixed received signal will
become larger, thus leading to high estimation errors.

Fig. 8.13 plots the success rates for different number ddqes. We find that although the
success rate for one person is the highest, there are stilbfféest data that cannot obtain high
accuracy breathing rates estimation. These test datadshonie from different locations in the

indoor environments, where parts of the received sign&saverely distorted. In fact, we find
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Figure 8.12:
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Figure 8.13: Success rates for different number of persmmsuter laboratory).

that low phase difference usually occurs when the SNR is IOn. the other hand, we can see

that breathing rate estimation for two persons also hastasgcess rate, because the probability

for two persons to have exactly the same breathing rate ysloer When the number of persons

is increased, the chance of getting two close breathing tzeomes higher. Even in this case,

TensorBeat can still effectively separate them with a higitess probability. With the increase of

the number of persons, the success rate for TensorBeat sgist@sases. The reason is that each

breathing rate is more likely to cover each other and thengtheof the received signal becomes

lower. From Fig. 8.13, we can see that the success rate i$ 82a1% when the number of persons

is five.
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Figure 8.14: Success rates for different sampling ratempcer laboratory).

Fig. 8.14 shows the success rate for different sampling réweethis experiment, there are four
persons and the window size is set to 30 s. From Fig. 8.14, weeathat with the increase of the
number of sampling rates, the success rate is also increlasedoticed that the success rates for 5
Hz and 30 Hz are approximately 70% and 90%, respectivelyhAsampling rate is increased, the
length of the data for CP decomposition is increased for the ®ihdow size case, which helps
to improve the estimation accuracy. Furthermore, we find tthe performance becomes stable
when the sampling rate exceeds 20 Hz, indicating that a sagmwaite of 20 Hz is sufficient for CP
decomposition. Thus, we set the sampling rate to 20 Hz fofémsorBeat experiments.

Fig. 8.15 plots the success rates for different window sidéds experiment is for the com-
puter laboratory scenario with four persons and the sampéte is set to 20 Hz. From Fig. 8.15,
we can see that the success rate is greatly increased basnuyehe window size of the Hankel
matrix from 15 s to 30 s. This is because Hankelizaiton whkthalf of the data to smooth the
phase difference signal, which reduces the resolutionertithe domain. Thus, we need to in-
crease the window size to improve the estimation accuragyth&€rmore, the change of success
rate is small for window sizes from 30 s to 45 s. Thus, we setexivindow size of 30 s for the
TensorBeat experiments.

Finally we examine the impact of LOS and NLOS scenarios. Titeess rates are plotted in

Fig. 8.16. In this experiment, we consider the challengeditmmm of the NLOS scenario, where
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Figure 8.15: Success rates for different window sizes (adsrdaboratory).
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Figure 8.16: Success rates for (i) when multiple persons @line in the LOS path between the
transmitter and receiver; (ii) when multiple persons arsdattered around (computer laboratory).
all the persons stay on the LOS path between the transmittieregeiver, i.e., they form a straight
line and block each other. From Fig. 8.14, we find that thegoer&nces for LOS and NLOS
are nearly the same for the cases of two or three personsewiigh estimation accuracy can
be achieved. This is due to the WiFi multipath effect, whishreagarded harmful in general but
becomes helpful in breathing rate estimation when tensoordgosition is used. The breathing
signal of every person can still be captured at the receioen the phase difference data. However,
when the number of the persons is further increased, thessicate will decrease quickly. In fact,

the strength of the breathing signals for some persons etbme too weak to be detected when

there are too many people blocking each other.
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8.5 Related Work

This work is closely related to RF signal based vital signsitooing, as well as CSI based indoor
localization and human activity recognition, which arecdssed in the following.

RF based systems for vital signs monitoring use wirelessasgio track the breathing-
induced chest change of a person, which are mainly baseddan aamd WiFi techniques. For
radar based vital signals monitoring, Vital-Radio emploiJW radar to estimate breathing and
heart rates, even for two person subjects in parallel [1BQ}.the system requires a custom hard-
ware with a large bandwidth from 5.46 GHz to 7.25 GHz. For Wi&sed vital signs monitoring,
UbiBreathe system employ WiFi RSS for breathing rate momitgriwhich, however, requires
the device placed in the line of sight path between the trétesnand the receiver for estimat-
ing the breathing rate [115]. Moreover mmVital based on RSBuse 60 GHz millimeter wave
(mmWave) signal for breathing and heart rates monitorirtg tie larger bandwidth about 7GHz,
which cannot monitor the longer distance and require high digectional antennas for the trans-
mitter and the receiver [114][135]. Recently, the authovelage the amplitudes of CSI data to
monitoring vital signs [116]. This work is mainly to trackehvital signs when a person is sleeping,
which is limited for monitoring a maximum of two persons a game time.

In additional to vital signs monitoring, recently, CSI bassshsing systems have also been
used for indoor localization and human activity recogmitj&36]. CSl-based fingerprinting sys-
tems have been proposed to obtain high localization acgufd€S is the first work to uses the
weighted average of CSI amplitude values over multiple ard@erfior indoor localization [22]. To
exploit the diversity among the multiple antennas and suteza, DeepFi leverage 90 CSI ampli-
tude data from the three antennas with a deep autoencodeorikebr indoor localization [64].
Also, PhaseFi leverages calibrated CSI phase data for irldoalization based on deep learn-
ing [79]. Different from CSl-based fingerprinting technigu&potFi system leverages a super-

resolution algorithm to estimate the AOA of multipath compots for indoor localization based
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on CSI data from three antennas [137]. On the other hand, &system leverages CSI ampli-
tude values for recognizing household activities such ashumg dishes and taking a shower [75].
WiHear system employs specialized directional antennasgasure CSI changes from lip move-
ment for determining spoken words [138]. CARM system consideCSI based speed model
and a CSI based activity model to build the correlation bebn@81 data dynamics and a given
human activity [139]. Although CSI based sensing are effedtir indoor localization and activity
recognitions, there are few works for using CSI phase diffeeedata to detect multiple persons
behaviors at the same time.

The TensorBeat system is motivated by these interesting mooks. To the best of our
knowledge, we are the first to leverage CSI phase differentedalamultiple persons breathing rate
estimation. We are also the first to employ tensor decomipadior RF sensing based vital signs

monitoring, which can be also employed for indoor local@matnd human activity recognition.

8.6 Conclusions

In this chapter, we proposed TensorBeat, tensor decompogdr estimating multiple persons
breathing beats with commodity WiFi. The proposed TensarBgstem employed CSI phase dif-
ference data to obtain the periodic signals from the movésneihmultiple breathing chests by
leveraging tensor decomposition. We implemented sevayahkprocessing methods including
data preprocessing, CP decomposition, signal matchingitdgg and peak detection in Tensor-
Beat. We validate the performance of TensorBeat with exterestperiments under three indoor
environments. Our analysis and experimental study demaiedtthat the proposed TensorBeat

system can achieve satisfactory performance for multiptegns breathing estimation.
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Algorithm 9: Signal Matching Algorithm
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()]

Input: Decomposed signalsi, Ss, - - - , Sag.
Output: Matched signal pairs.
Compute autocorrelation of all decomposed signals;
Compute the DTW values for every pair of autocorrelation aign
Each autocorrelation signal sets its preference list usiad>oTW values;
for signal num =1:2R do
Setfinish_flag = 0;
Setscan_num = signal_num;
while finish_flag = 0 do
if the proposal is the first orghen
Proposing signal’'sropose_num=the current choice;
Setfinish_flag = 1,
Proposed signal'sccept_num = scan_num;
else
if the signal prefers the former propogaken
Reject the current proposal symmetrically;
Propose to the next choice;
else
Accept the current proposal;
Reject the former proposal symmetrically;
scan_num = proposed signal'accept_num;
Propose to the next choice;
end
end
end
end
for signal num =1: 2R do

\ Reject signals that have less thatmept_num in every preference list symmetrically;
end
signal_num = 1,
while signal_num < 2R + 1 do
if propose_num = accept_num then

‘ stgnal_num=signal_num+1;
else
Letp, be a signal whose preference list contains more than oneeatem
while p sequence is not cyclao

¢; = the second preference gfs current list;
pi+1 = the last preference @f’s current list;

end
Denotep, as the first element in thesequence to be repeated anas the length
of the circle;
fori=1:rdo

\ Reject matchindgs.;_o, ps+i—1) Symmetrically;
end
stgnal_num = 1, 205
end
end
Obtain signal matchina pairs based on all processed preferests:




Chapter 9

ResBeat: Resilient Breathing Beats Monitoring with Realtime Biah@51 Data

9.1 Introduction

Vital signs can provide useful clues to many diseases subleas disease, lung disorder, and di-
abetes, which cost considerable expenses for treatmebt 1048]. Effective solutions are in great
demand for realtime, long-term, and contact-free bregtbignal monitoring [141, 142]. Recently,
CSI amplitude based method is proposed for monitoring biegtnd heart beats when a person
is sleeping [116]. In addition, our recent works PhaseBe&B][And TensorBeat [144] leverage
CSI phase difference data to monitor a single person’s vgaleds and multiple persons’ breath-
ing signals, respectively. However, these works are netcétffe in detecting the weak breathing
signals at some special locations [134], which motivatetousse bimodal CSI data for resilient
breathing monitoring.

In this chapter, we employ CSI amplitude and phase differéme®dal data to detect and
monitor breathing beats with commodity 5GHz WiFi devicesr fhdoor environments under
small-scale fading, we consider the chest reflected signatignamic componenivhile lumping
the LOS and all other multipath signals together asagic componentWe model the amplitude
and phase response of the CSI subcarriers with the dynamistatid component approach, and
prove that CSI amplitude and phase information carry thetbhigg information with the same
rate. Moreover, we present an analysis of breathing sigrahaly with CSI amplitude and phase
information, and show that the breathing signals can be wweakme monitoring locations. Thus,

we propose to use bimodal CSI data for resilient breathingitmiamg, due to the fact that CSI
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amplitude and phase difference data in consecutively vedgpackets are stable, and they are
complementary to each other with respect to mitigating thenzalous breathing signals at some
bad locations. The bimodal data is also robust to environiméerferences and body movements
for breathing signal monitoring.

We present the design of ResBeat, iReslient realtime breathind@eat monitoring with
bimodal CSI amplitude and phase difference data with comtyliFi devices. The ResBeat
system consists of data preprocessing, adaptive sigreadtgei, and breathing signal monitoring
modules. For data preprocessing, we calibrate CSI data witxponentially weighted moving
average(EWMA) method to extract the static, or environment, compuraand the dynamic, or
breathing, component. For adaptive signal selection, wpgse a signal selection algorithm based
on signal energy detection and movement detection, totsbkemost sensitive signal group, which
can successfully mitigate the effect of anomalous bregtiignals. Finally, the peak detection
method is used to estimate breathing rates in realtime C8&l dat

We implement ResBeat with commodity 5GHz WiFi devices anduatal its performance
with four persons over three months in different indoor emwments, such as a computer labo-
ratory, a through-wall scenario, and a long corridor. Treults validate that the ResBeat system
can achieve high estimation accuracy of breathing rate avittedian error of 0.25 bpm (beats per
minute), and has a higher success rate of 90% for breathieglesection at different locations.

The main contributions of this chapter are summarized helow

e We theoretically demonstrate the feasibility of using bialbCSI data for breathing beats
monitoring. In particular, we provide the breathing sigaabmaly analysis for CSI ampli-
tude and phase information. To the best of our knowledge revéha first to leverage online

CSI amplitude and phase difference data for breathing rataason.

¢ We implement data preprocessing, adaptive signal seteatid breathing signal monitoring
for the collected bimodal CSI data in ResBeat system. We empm¥EWMA method for
obtain environment component and breathing componenttanaidibration. Moreover, we

utilize the peak detection method for breathing rate egtona
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Figure 9.1: The geometric relationship of the static andadtyic components for breathing signal
anomaly analysis.

e We prototype the ResBeat system with commodity 5 GHz WiFi d=vignd validate its
superior performance in three different indoor environtaemith extensive experiments.
The results show that our ResBeat system can achieve higlwessuates than the amplitude

based method and phase difference based method for bigpdttiection.

In the rest of this chapter, the preliminaries and breatBiggal anomaly analysis are intro-
duced in Section 9.2. We design the ResBeat system in SecB@m@.validate its performance in

Section 9.4. Section 9.5 summaries this chapter.

9.2 Breathing Signal Anomaly Analysis

We consider indoor environments with NLOS components [1@Dkre the chest reflected signal
is regarded as théynamic componenaind the sum of the LOS and all other mutipath signals is

regarded as atatic componentThus, the channel frequency response of subcatrgsanoted by
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H;, can be written as

K
H, = E - e J2mfiTk 4y e J2mfita — Hf + H;-j
k=0,k#d

= |Hi| exp (5 ZH;) + [H| exp (j2H), (9.1)

where K is the number of multipaths; andr; are the attenuation and propagation delay of the
k., path, respectively; H= Z,ﬁiak#d i - €727/ is the static component and'H= r; - e7727fiTa

is the dynamic componeriti;| and/H; are the amplitude and phase of, llespectively, an¢H?|
and/H¢ are the amplitude and phase df,Hespectively.

The amplitude response of subcarriean be computed as

[l = y/IH2J2 4 [HEJ2 -+ 201 [ cos (£H — 2HS). 9.2)

In (9.2), the amplitude and phase of the static componérdre regarded as constants, and the
amplitude of the dynamic componentf s also assumed to be constant. Moreover, the phase of
the dynamic componentftan be modeled agH? = 27L/\;, where); is the wavelength of
subcarrieti and L is the distance of the dynamic path going through the cheste that the phase
of the dynamic component‘Hs periodic because the dynamic path distahds periodic due to
chest movements (i.e., it gets slightly longer when exigadind shorter when inhaling). Thus, the
amplitude response of subcarrigrH;|, is also periodic. In most cases, the CSI amplitude can
effectively capture the breathing signal. However, at somo@itoring locations, when the phase
difference between the static componeritatid the dynamic component’Hs nearly zero, the
variations of the CSI amplitude will be small, leading to higbnitoring errors.

This is illustrated in Fig 9.1, where the geometric relasioip of the static and dynamic com-

ponents is presented. The dynamic component@m = 1,2, 3,4, and the static component
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is O? We can see that when the dynamic vector oscillates bet@nand S?Q, the CSI am-
plitude varies betwee@l\ and|0?2|, with very small variations. Such small variations in the
CSI amplitude leads to a weak breathing signal and high deteetror.

On the other hand, let’s consider the phase response ofrsid#néa/H;, which can be written

as [143]

(9.3)

d, . s d
/H; = /H; — arctan{ |H; | sin(2H; - 2H;) } :

IHY|cos(H; - 2HD+HS)|
Note that the phase response of subcaingmlso periodic, which can be used to detect breathing
rate. However, there are also some cases where the phaseatitm is not effective for monitor-
ing breathing signals. As shown in Fig 9.1, when the dynaractar oscillates betwee@?) and
8?4, the phase value changes slightly betwe(eﬁg and 4@4. Such negligible variations in
phase value makes it hard to detect the breathing rate witbepimformation in this situation.
Fortunately, we can see that in the first example, when thati@r in CSI amplitude is small,
the change in CSI phase is betweé@?l and 4@2, which is quite large. On the other hand,
in the second example when the variation in CSI phase is sthallchange in CSI amplitude is
betweeriO?ﬂ and\O?d, which is also quite large. This observation motivates uswerage bi-
modal CSlI data, including CSI amplitude and phase differefioceesilient breathing monitoring.
Fig. 9.2 and Fig. 9.3 show the all calculated amplitude arasphdifference from CSI values
for position 1 and 2, respectively. In our experiment, theme three antennas used for receiving
data, and each antenna can collect CSI values from all 30 sidysausing Intel 5300 NIC. Thus,
we can totally get 90 amplitudes and 90 phases from a singleepaln the experiment, we can
consider 30 rows data as a group. For example, the first grioG@bamplitude values represents
first 30 rows data, which are collected by antenna 1 from aB@carriers, while the second and
third group data are collected from antenna 2 and antenrespectively. When it comes to phase
data, the first group of CSI phase difference is collected famtenna 1 and antenna 2, while the

second group and the third group of data are collected fromnaa 2 and 3, antenna 1 and 3,
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Figure 9.2: Colormap for breathing signals using CSI ampéitadd phase difference in position
1.
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Figure 9.3: Colormap for breathing signals using CSI ampéitadd phase difference in position
2.

respectively. The color of the data means the strength dirtb&thing signal, where red means the
signal is strong, while blue means the signal is weak. Baseti@oolormap, we can easily find
out some periodic signals from Fig. 9.2 and Fig. 9.3, whiahstand for the breathing signals. As
illustrated in Fig. 9.2, the first and the second group of pltherence can effectively capture the
breathing signal, as well as the second group of the amplitiath. However, when the user moves
to another position, the signal strength is totally differé=ig. 9.3 shows that the phase difference

can barely capture the breathing signal effectively exsepte subcarriers in the second group, and
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the second group of the amplitude values become weak aslwelider to continuously monitor
human breathing, we should better leverage the third grbamelitude data and the second group
of phase difference for breathing monitoring, thus avajdime weak breathing signals because of

the diversity of locations.

9.3 The ResBeat System

9.3.1 ResBeat System Architecture

The main idea of the proposed ResBeat system is to monitorhiimgatignals using realtime bi-
modal CSI data from 5GHz WiFi devices. We propose an adaptivakselection method to select
the most sensitive CSl data, i.e., amplitude or phase diftereto mitigate the anomalous breath-
ing signals, as shown in Fig. 9.1. The ResBeat system canieéflyatxploit realtime bimodal CSI
data to monitor breathing beats for three reasons. Firsta@flitude and phase difference data
are quite stable for consecutive packets in a stationarya@ment, both of which can effectively
capture the breathing beats. Second, CSI amplitude and pifeesence data are complementary
to each other with respect to their resilience to the two aloos cases shown in Fig. 9.1. Using
the bimodal data can effectively deal with anomalous biegthkignals. Third, ResBeat is robust
to environment interference and body movements by usingithedal CSI data.

Fig. 9.4 shows ResBeat system flow, which consists of three maitules: Data Prepro-
cessing, Adaptive Signal Selection, and Breathing SignaliMadng. Data Preprocessing module
mainly includes CSI data extraction and data calibratiospeetively. For CSI data extraction,
we can obtain 90 CSI amplitude values and 90 phase differemloes from three antennas for
each received packet by using the modified Intel 5300 NICedrivor data calibration, we employ
the EWMA method to obtain the environment component, and teathing component can be
extracted by subtracting the environment component frandémoised CSI data. Adaptive Sig-
nal Selection module includes signal energy detection,em@nt detection and signal selection.
We can use the normalized breathing component to computalsgergy for 30 subcarriers data

from CSI amplitude or phase difference data. Then, we impterie counting method for three
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Figure 9.4: The ResBeat system architecture.

CSI phase difference groups for movement detection. Moreaxedevelop the signal selection
algorithm to boost the reliability of bimodal CSI data for atieing signal monitoring by select-
ing the most sensitive signal group from CSI amplitude andseldifference data groups. For
Breathing Signal Monitoring module, peak detection is erpgtbfor breathing beat monitoring

with real-time CSI data.

9.3.2 Data Preprocessing
CSI Data Extraction

We collect 90 CSI values for every received packet from theelantennas of the IEEE 802.11n
NIC, each of which provide CSI values from 30 subcarriers,(P@. CSI amplitude and phase
values). We employ three groups of CSI amplitude values frotarmas 1, 2, and 3, respectively.
We also use (7.5) to obtain three groups of CSI phase differgalties from antennas 1 and 2,
antennas 2 and 3, and antennas 3 and 1, respectively. Eaghigodudes 30 values, which will

be processed in the next step.
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Data Calibration

Data calibration is to partition the original CSI amplitudedghase difference data into the static
component (or, thenvironment componénand the dynamic component (or, theeathing com-
ponenj. The environment component can represent the change elies# channel from the sur-
rounding environment such as reflection from walls, desksstationary body of a person. On
the other hand, the breathing component can represent émgelof wireless signal due to chest
movements when inhaling and exhaling.

In ResBeat, the environment component can be extracted usngWMA method, which
is based on a first-order autoregressive model [145]. Y. die the realtime CSI data (i.e., CSI

amplitude or phase difference), anf] be its local mean. We have

My=p-Y,+(1—p) - My, fort=1,2,...,n, (9.4)

wherep is a parameter that determines the relative weights of tentesample value and historical
values, and: is the number of observed samples. In our experiments, we-=sét.1 to obtain the
environment component.

We propose the EWMA method for extracting the environmentmament for three reasons.
First, the EWMA method does not require a large data bufferisaditable for realtime breathing
monitoring. Second, as the moving average (MA) method, MW&VEA method can effectively
extract the outline of realtime data, from which the breajhsignal can be filtered. Last but not
least, compared with MA, EWMA is more sensitive to the moreergcsample data. When the
body moves, EWMA will capture a large changelify and thus can have a more rapid response,
which is beneficial for detecting environmental changes.

After obtaining the environment component, we first appé/MA method to the original CSI
data to remove high frequency noises, where the window sigetito 3. Then, the breathing com-
ponent can be extracted by subtracting the environment coerg from the denoised CSI data.

Fig. 9.5 illustrates calibration of the original phase elifince. We can see in the top plot that the
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Figure 9.5: Data calibration results.

original phase difference values, for subcarrier 5 betwaa#annas 1 and 2, have a DC component
as well as high frequency noises. Applying the EWMA method,case obtain the environment
component, which is the outline of the original phase défere. Then, the breathing component
can be extracted by de-noising the CSI phase difference ddteeanoving the environment com-
ponent, which exhibits a sinusoidal-like periodicity otlee received packets with low noise (see

the bottom plot).

9.3.3 Adaptive Signal Selection

For adaptive signal selection module, we will implemennaigenergy detection and movement
detection to select the most sensitive signal group frormetlf€SI amplitude groups and three
CSI phase difference groups, because there are differesitiggies for CSI amplitude and phase

difference information.

Signal Energy Detection

For signal energy detection module, we consider the eneaf)yes of breathing components to
measure the sensitivity of CSI amplitude and phase differémmrmation, where one CSI data
group includes 30 values with the every received packet fdradglitude and phase difference

information. Moreover, we consider the window size of oall®S| data as 20 to compute the local
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Algorithm 10: Movement Detection

1 Input: current average of the environment components of all phiffeeeshce (4,,), and
the averages in the 2 last statets, (1) and (4,,_»);

2 Output: moveflag;

3 /nitialize ;

4 setmove_flag =0;

5 Setcount_-num =0 ;

6 //Movement detection;

7 if count_num < 9 then

8 if (A, > 1.05A4,,_1andA,_1 > 1.05A4,,_9) or (A, < 0.954,,_1 andA,,_1 < 0.954,,_5)
then

9 ‘ count_num = count_num + 1;

10 end

11 else

12 ‘ count_.num =0

13 end

14 end

15 else

16 setmove_flag =1

17 setcount_num =0 ;

18 returnmove_flag ;

19 end

energy value of thg,, CSI data groupF;(¢) which is formulated by

1=30 t=k

i)=Y 3 v (9.5)

1=1 t=k—19

wherek is the current data poinﬁ,/i?(t) is the normalized breathing component data forithe
subcarrier of the,, CSI data group at thig, time. Compared with other advanced method such as
FFT based method, the signal energy detection method caralgy smaller data points to measure
the sensitivity of CSI amplitude and phase difference infatron, which can reach the real-time
processing requirement. Signal energy values for six CSlggare leveraged for signal selection

module.
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Movement Detection

In this module, we make use of the environment componentaptiase difference data to detect
body movement. We choose phase difference data becauseatfixad range betweenr and,
while CSI amplitude data has a variable range. We first comihgt@verage of the environment
components of all the phase difference data over the 30 sidrsa which can be used to detect
body movement by comparing with adjacent average valudsactnthe phase difference data can
increase or decrease due to body movement. Thus, a body reavésndetected if the current
average value is lower than 0.95 times or larger than 1.0&giofi the previous average value.
Furthermore, we find that small movements of the body or m@rgsnfrom nearby persons
may also cause large changes in the average of the envirbsoraponent. We propose a counting
method to deal with such small body movements and envirotaherterference. The counting
method is designed in algorithm 10 by the following stepststiithe count is initialized to O.
Then, the count will be increased by 1 when the current agevatue of phase difference data
is lower than 0.95 times or larger than 1.05 times of the lastage value. However, once the
above condition is violated, the count will be reset to 0. Averaent is detected if and only if the
count reaches 10. In ResBeat, we implement the counting métladdises the three CSI phase
difference data groups for movement detection. If a movensaetected in one of the CSI phase

difference data groups, ResBeat will execute the followiggai selection algorithm.

Signal Selection

This module is to select the most sensitive group from theisnodal CSl data groups, for accurate
breathing signal monitoring. The procedure is presentedlgorithm 12. The input parameters
include the movement detection flag.4v_flag) and the local energy of each signal groug |
Es, ..., Eg) computed as in (9.5). The output is the index of the mostisem€ S| data group.

In the beginning, we use 30 phase difference data from aasehrand 2 to implement the
signal selection no matter whether a movement is detectedtorAfter the initialization, we use

the above movement detection module based on the countitfgpchéo determine whether the
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environment has a large change. When a movement is deteaednwhe signal selection again.

First, the system will wait for 2 s so that the environment poments based on EWMA can return
to stable values (recovers from the movement). Then, thersysorts the signal groups (i.¢=6)

in descending order of the local energy of the CSI data groups £1, E», ..., Es). If a group

is ranked top 1 for three consecutive times, it will be sa&das the most sensitive data group. If
the top-ranked group is changed before thkect_count reaches 3, the counting number will be
reset to zero. Moreover, if there is a new movement detetliedgsignal selection will be restarted.

ResBeat can keep on using the previously selected data grongribor breathing beats until the

next most sensitive data group is selected. The proposedlssglection algorithm is robust to

environment interference and small movements of the bodyrebler, with the signal selection

module, ResBeat can rapidly recover for large body movements.

9.3.4 Breathing Signal Monitoring

Although both of CSI amplitude and phase difference data g#act the breathing beats with
small movement such as inhaling and exhaling, the mosttsensignal group we select can be
effectively to avoid the anonymous breathing signal in sémcations. Traditionally, FFT based
method can estimate the breathing frequency with the largsing window size to improve the
estimated accuracy. However, it cannot achieve real-tireathing rates estimation for ResBeat
system. Thus, the proposed ResBeat system employs the peakaleto compute the breathing
rate online.

We leverage peak detection to estimate the breathing ragesion the breathing components
in the selected signal group. However, the breathing comptsrstill include the fake peak, which
is not the true peak but its value is larger than two neigimgppoints. Fig. 9.6 shows the calibrated
breathing signal for 30 s, which contains five times resfgnatWe can see that, there is a fake peak
located inside the second respiration. Even though theepttifference of the fake peak is higher
than its two adjacent values, it should not be consideredmsathing signal peak. To avoid the

fake peak, we employ a moving window approach with the windae as 6 samples to get the all
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Algorithm 11: Signal Selection Algorithm

1 Input: movement detection flagr{ov_flag) and the local energy of each data groip,(
EQ, veny E()’),

2 Output: index of the most sensitive data group;

3 Setinitialize_flag =1

4 Setselect_.num =1 ;

5 if mov_flag == 1then

6 Wait for 2 seconds ;

7 Setmov_flag =0;

8 Setselect_count =0 ;

9 while mov_flag == 0 or initialize_flag == 1 do
10 Sort the data groupd{6) in descending order off{;, Eo, ..., Eg);
11 if New first group index equals to the former first group intten
12 select_count + +;

13 if select_count == 3 then

14 Choose the first data group;
15 Setinitialize_flag = 0;

16 Setselect_count =0 ;

17 Break ;

18 end

19 end

20 else

21 ‘ Setselect_count =0 ;

22 end

23 end

24 end

25 Return the index of the most sensitive data group ;
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Figure 9.6: Calibrated breathing signal with the fake peak.
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true peaks in a buffer with 100 points, which can be detecyatEbermining whether the median of

all points in the window is the maximum value or not. Then, \@a compute the breathing period

t by averaging all peak-to-peak intervals. Because the bdi&a can be updated for real-time,

we build a small buffer with 20 points to store 20 estimateehlthning periodic values. Then, the
=20

final period of breathing signal can be computed/by- 2—10 > i_, t;. Therefore, we can obtain the

estimated breathing frequency with/T" bpm.

9.4 Experimental Study

9.4.1 Test Configuration

In our experiments, ResBeat operates in the 5GHz ISM band. CaBd¢ system is executed
on the Ubuntu Desktop 14.04 LTS OS for both the transmittel @Teiver, each of which is
equipped with an Intel 5300 NIC. The transmitter is a Lenoyadp set in the injection model,
which transmits 10 packets per second using one antennaectéwer is an Acer laptop working
in the monitoring mode for collecting CSI data, where thegrantennas are placed in a row with
an interval of 2.68 cm. The ResBeat system collects realtimea@®litude and phase difference
data from the three antennas for breathing beats monitoring

We implement our Resbeat system in three different enviromsneith the same floor in Fig.
9.7. In the first environment, both the transmitter and the=iker are placed in a Laboratory
with the area of 4.5< 8.8 m?, where the person can stay at anywhere in the office. The decon
scenario is the through-wall scenario to test the perfonaafithe ResBeat system for the received
weak wireless signal because of large signal attenuatibe.tAird scenario is implemented in the
corridor to validate the influence of the long distance betwée transmitter and the receiver
for breathing rates estimation. On the other hand, we Igesoamnidirectional antennas for the
transmitter and the receiver at all three scenarios. Inta@adiNEULOG Respiration is used to
measure the ground truths of the breathing rates.

The breathing signal could be extremely weak at certain oreagent locations, which is

hard to detect [134]. To measure the resilience of breatf@tggmonitoring methods, we define a
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Figure 9.7: Configuration of the ResBeat experiments.

success ratperformance metric, denoted hyas

N
n:%z(sgr(Q—Qei)Jrl), (9.6)

=1

wheree; is the breathing estimation error in bpm for thelocation, sgi-) is thesi gn function,
and N is the total number of different locations tested in the expent. The success rate repre-

sents the ratio of the number of locations having an erra tlean 2 bpm to the total number of

locations.

9.4.2 Performance of Breathing Rate Estimation

Fig. 9.8 plots the CDF of estimation errors of breathing ratthe computer laboratory, through-
wall, and long corridor scenarios. We find that ResBeat achiloweer breathing beats estimation
errors, where the maximum error is less than 1.75 bpm. Memedwan be seen that for ResBeat,
the median errors are 0.25 bpm, 0.25 bpm, and 0.3 bpm for theuter laboratory, long corridor,

and through-wall cases, respectively. The breathing esitom errors in the laboratory and long
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Figure 9.8: Performance of breathing rate estimation irctmeputer laboratory, through-wall, and
long corridor scenarios.

corridor scenarios are lower than that in the through-wadhgrio. This is because the breathing
signal in the through-wall scenario is much weaker. In féog accuracy for the through-wall
scenario is still high and acceptable. We conclude that tbpgsed ResBeat system is robust in
different scenarios.

Fig. 9.9 presents the success rates for three differentrehén the computer laboratory,
through-wall, and long corridor scenarios. In this expemt) We use the amplitude based method [116]
and PhaseBeat [143] as benchmarks for success rate conmpaifedind that the proposed Res-
Beat system achieves high success rates about 90% in thatiatyoand long corridor scenarios,
and about 86% in the through-wall scenario. This means thatger breathing signals can help
to achieve higher breathing beat estimation accuracy. ©mtiher hand, the success rate of the
proposed ResBeat is higher than that of the other two schenadislire three environments. This
is because ResBeat employs bimodal CSI data and the adaptina sedection method to select
the most sensitive data group, which can effectively miéghe effect of anomalous breathing

signals at certain locations.
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Figure 9.9: Success rates for three different schemes icotimguter laboratory, through-wall, and
long corridor scenarios.

9.4.3 Impact of Environments and Parameters

Fig. 9.12 shows the success rates for different orientstidre transmitter and the receiver are
placed besides each other in this experiment in A part of &it). 0 degree means the user faces
directly to the devices, and 180 degree means the back idlglite the devices. The results show
that when the user directly faces to the devices, the sucagsschieves the maximum, which
is about 95%, while the minimum success is about 80% with tivedn back is directly to the
antennas. We can also find out that the success rate decasabesuser turns back to the devices.
It is because the reflected signal strength is the highesh e user faces the transmitter. As
the user turns around, the wireless signal can be rarelgrirdited to the human chest directly.
Although the signal can still reach the human chest by reéfigdtom surroundings, the strength
of the signal is much more weaker than the direct transmdigoil.

Fig. 9.11 shows the success rates for different distandeseba the user and devices. In this
scenario, the transmitter and the receiver are all placeskdio each other in the laboratory in B
part of Fig. 9.10. As Fig. 9.11 shows, when the distance batvike user and devices increases,
the success rate of the ResBeat system is reduced becausdasistioé reflected signal strength.
Moreover, we can see that the success rate is higher than 8@¥othe distance increases from1m

to 3 m, while the success rate drops significantly as therdistes larger than 4 m. This is because

223



when the user is not so far from the transmitter, the most ftéated signal from surroundings
can reach human chest. These signals can also help to ia¢heastrength of the reflected signal
from the human chest. However, when the user is too far avwaag the transmitter, only a few
wireless signals can be reflected by the human chest. Thausutitess rate of the system decreases
significantly with long distance from the user to the devices

To prove the robustness of the ResBeat system, we evaluatgstensin five different posi-
tions in the laboratory in Fig. 9.13. Different positionsanedifferent deployments for the trans-
mitter, the receiver, and the user. The wireless channeldsst the transmitter and the receiver is
independent for each position, so the success rates fa fiveslocations are statically indepen-
dent. We notice that the minimum success rate is achieveaolitign 4 which is about 85%, while
the highest success rate achieved in position 1 is about B&§49.13 shows that success rates for
all five different positions are all higher than 85%, and ¢hoéthem are higher than 90%. The re-
sults demonstrate that the the proposed ResBeat system & fobmonitoring human breathing
rate in different environments.

We also test the impact of different EWMA parameters on theessg rate of the ResBeat
system in Fig. 9.14. As we mention, EWMA algorithm is used ttvaot environment component
from the raw received signal. From the equation 9.4, we firtdhat if the parameteris too small,
the EWMA will hardly capture the real-time change of humanybodowever, if the parameter
p is too large, the EWMA result will be too sensitive to the imitenovement so the environment
component is hardly to be extracted. To find out the apprapparametep for EWMA, we test
the success rates for differemtFig. 9.14 represents the success rate with different petermin
EWMA algorithm. we can see that, the success rate achievasakanum when the equals to
0.1. The success rate decreases significantly when the ptmams smaller than 0.05 or larger

than 0.25. As a result, we choose 0.1 as the parameter udesl EWMA algorithm.
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9.5 Conclusions

In this chapter, we proposed ResBeat system, resilient lingaltieats monitoring by using on-
line CSI amplitude and phase difference data in the commliBi devices. We developed the
ResBeat system including data preprocessing, adaptivel sigieation and breathing signal mon-
itoring. For data preprocessing, we implemented the ddta@ion and calibration to obtain the
breathing component and environment component. For thetimdaignal selection, we proposed
the signal selection algorithm based on signal energy tleteand movement detection for se-

lecting the most sensitive signal group. Then, we levergugak detection to estimate breathing
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rates. We implemented with the experiments with three idifiescenarios. The results validated

the effectiveness of the proposed ResBeat system.
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Chapter 10

SonarBeat: Sonar Phase for Contactless Breathing Beats Mogiteith Smartphones

10.1 Introduction

With the rapid development of mobile techniques and the grawthe living standard, healthcare
has become one of the main application areas for 10T [1461 2, TThe healthcare I0T architecture
mainly consists of three layers: (i) the sensing layer fonitwoing vital signals, such as body
temperature, heart rate, respiration rate, and blood presgi) the gateway layer for collecting
data from the sensing layer, and transmitting them to the thiyer, the cloud layer [148]; (iii)
the cloud layer consisting of data centers in the cloud toesfarocess, and analyze multi-modal
medical datasets [149, 150, 151, 152, 153], and deliver tiadysis results to medical centers.
Particularly, the respiration signal is one of the key vi@ns to be collected in the first layer,
which is indispensable for physical health monitoringgsisuch vital signals can offer important
information for personal health problems such as SIDS [10vdditional systems in the sensing
layer require a person to wear special devices, such aseaimaeter [109] or a capnometer [108]
to monitor breathing rates, which are not convenient for imooimg vital signals for the elders
and infants, and are hard to be used for an extended periach@f Thus, technologies that can
enable contact-free, easy deployment, and long-termsigal monitoring are highly desirable for
healthcare provisioning.

Existing vital signal monitoring systems are mainly foaiga radio frequency (RF) based
techniques, which leverage RF signals to capture breatmddhaart movements. The existing

techniques can be classified into (i) radar based and (ii) Wéd6ed approaches. Examples of radar
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based vital sign monitoring include Doppler radar [111,]10L8ra-wideband radar [113], FMCW
radar [110], all of which require a piece of customized hadwworking on high frequency. With
the development of wireless techniques, WiFi based metinctisle UbiBreathe [115] and mmVi-
tal [114], which exploit the RSS of 2.4 GHz WiFi and 60 GHz mmWaignals (i.e., 802.11ad),
respectively. Recently, the authors in [116] employ the @nongié of WiFi CSI data to track vital
signs for a sleeping person, while our prior works PhaseBet][and TensorBeat [144] exploit
the CSI phase difference data for vital sign monitoring fog& and multiple persons, respectively.
Although RF based techniques work over a relatively longadise, they could be susceptible to
environmental change, such as the movements of other [zensamnby.

To this end, the smartphone can serve as an excellent prattorvial sign monitoring, by
exploiting its built-in sensors, such as accelerometerpgpope [119], and microphone [120].
Usually the smartphone should be placed near the body, qetts®n needs to wear special types
of sensors that connect to the smartphone. The device4fileeantact-free monitoring techniques
aim to relieve the burden of attached sensors. In a recerkt \i/64], the authors propose to use an
active sonar builtin the smartphone by leveraging the FMCiNrigue for respiration monitoring.
The scheme is shown to work well, but the FMCW based techneggires an accurate estimation
of the distance between the smartphone and the chest. Whéyodyesuddenly moves (e.g.,
rolling over in bed), the system needs to detect the new pimame-chest distance, thus leading to
a large time complexity. Alternatively, the Low-Latency dastic Phase (LLAP) system employs
a continuous-wave (CW) radar to measure distance and acldevae-free hand tracking using
sonar phase information [155]; while [156] uses the phasa&colistic OFDM signals for finger
tracking.

Motivated by these interesting studies, we employ sonasgbata with a smartphone imple-
mentation to monitor the periodic signal caused by the rigekfalls of the chest (i.e., inhaling
and exhaling). We find that the sonar phase information dagtefely track the periodic signal of
breathing rate with a high accuracy. Compared with othettiegisystems such as Doppler shift

and FMCW [154], the sonar phase based scheme has a lowenjaiethcomplexity. In addition,
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the sonar phase data is highly robust to different oriemati distances, and respiration rates of
different persons.

Specifically, we first present a rigorous sonar phase arsalygiich proves that the sonar
phase information can accurately capture the breathimgwdh the same frequency. Built upon
analysis, we design SonarBeat, an acBamar phase foBreathing rate monitoring system with
a smartphone. The SonarBeat system consists of four modiubdsling signal generation, data
extraction, received signal preprocessing, and breatlsiteggestimation. First, it transmits an in-
audible sound signal in the frequency range of 18-22 KHz ftbensmartphone speaker, which
serves as a CW radar. Then, the reflected signal from the chiést imonitored subject is received
by the microphone of the same smartphone. The received ssth@n calibrated and the breath-
ing signal will be recovered. We implement SonarBeat with aid smartphone and validate
its performance with extensive experiments that involve fiersons over a period of three months
in three different environments, including an office scemaa bedroom scenario, and a movie
theater scenario. The experimental results show that Beaacan achieve a low estimation error
for breathing rate estimation, with a medium erro0df bpm in most experiments. We also find
that SonarBeat is highly robust to different experimentahpeeters and settings.

The main contributions of this chapter include the follows.

e Through analysis and experiments, we validate the fedgibil leveraging the active sonar
phase information for breathing rate estimation. To theé dfsur knowledge, this is the first

work to employ active sonar phase information for breatmragitoring with smartphones.

e We design SonarBeat based on the analysis and address theachallenges on using
active sonar phase. We implement several signal processgagithms, including signal
generation, data extraction, received signal preproegssind breathing rate estimation.
Specially, we propose an adaptive median filter approachrnmwye the static vector in the

received signal, which allows to effectively extract thaudible phase information.
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e \We prototype the SonarBeat system with Android smartphonésalidate its superior per-
formance with comparison with an existing scheme in thréergint indoor scenarios. Our
extensive experimental results demonstrate the supeeidormance of SonarBeat under

different environment factors and different experimep&iameters.

In the remainder of this chapter, Section 10.2 reviews edlatork. Then, we present the
sonar phase analysis and technical challenges in Secti@n \M@ describe the SonarBeat design

in Section 10.4 and validate its performance in Section.18egtion 11 concludes this chapter.

10.2 Related Work

The work is related to the prior works on sensing systems aolilenhealth systems based on
audible signal with smartphones. We review the key relatexksvin this section.

Mobile sensing systems with audible signals have attragtedt attention [157, 158]. Such
systems are increasingly convenient for people’s life agalthcare. In the meantime, by using
mobile audible sensing systems with smartphones, peopleotioeed to pay extra money for
new devices. Traditionally, mobile audible sensing systean be classified into two categories,
including passive and active sensing systems. First, theiy@maudible sensing systems mainly
focus on how to leverage the microphone to sense and reetr@zsurround audible signal [159].
The recent work AAmouse leverages an inaudible sound pulddferent frequencies to trans-
form a mobile device into a mouse by exploiting the Doppléftsbpeed, and distance estima-
tion [160]. Moreover, the CAT system implements a distridu@ICW for tracking devices, such
as VR/AR headsets. This work mainly is focused on synchrogifivo smartphones and using
the microphone as a mouse, which can interact with VR/AR hetader more accurate localiza-
tion [161]. In addition, audible based sensing technigusge used for wireless virtual keyboard
with smartphones. Keystroke snooping [162] and Ubik systgl63] can obtain the sound sig-
nal with a smartphone’s single or dual microphones, andrégesthe time-difference-of-arrival
(TDOA) measurements to monitor finger stroke on the tableenTthe strokes are transformed

into related alphabets in the same position as a computeokeg. SilentWhistle is a light-weight
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indoor localization system using acoustic sensing for iobtg users’ locations [164]. Another
work Dhwani builds an acoustics-based NFC system with grhartes, using a technology Jam-
Secure. It can provide a secure communication channel ketdevices, which is an OFDM
channel for audible signals [165].

On the other hand, active inaudible sensing systems traasimartphone to an active sonar
using ultrasonic sound waves at 18 KHz to 22 KHz, which iselpeelated to the proposed Sonar-
Beat system [166]. OFDM based sensing systems such as Finganltrack the finger movement
in a 2-D domain through tracking echoes from the finger thatraceived by the microphone,
to measure the finger position [156]. BatMapper employs anstimosensing based system for
fast and accurate floor plan construction using commoditgrgghones [167]. Moreover, LLAP
leverages the principal of CW radar to measure distance apttient device-free hand track-
ing [155]. This work is closely related to SonarBeat, becaas@ system use the phased based
CW signal to sense movements. The difference between theystenss is that SonarBeat is more
robust to different environments with the adaptive mediterftechnique. On the other hand, the
AudioGest system employs a pair of built-in speaker andapicone to send inaudible sound and
leverage the echos to sense the hand movement [168]. OurB&@taystem is motivated by the
active inaudible sensing systems to transform a smartphmoean active sonar with ultrasonic
sound waves.

Mobile health applications and research have become anriengqpart of the l1oT [169].
Smartphones and other wearable devices can provide pedpla wmore convenient way to mon-
itor their health conditions without the need of professicequipment [170]. The recently work
Burnout leverages accelerometers to sense skeletal mubcdiions, which does not require to
wear a suit embedded with sensors [171]. The authors in [fiJose to capture the depth video
of a human subject with Kinect 2.0 to monitor heart rate arythnin. Moreover, wearable devices
for monitoring exercise and body are widely available. B@reple, the FEMO system achieves an
integrated free-weight exercise monitoring service withRtags on the dumbbells and leverages

the Doppler shift for recognition and assessment of fregfeexercise [171]. For vital signal
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monitoring, fine-grained sleep monitoring using a micrapha the earphone can record human
breathing sound to monitor people’s heath signal when theyskeeping [120], which adopts a
passive audible method. The Apnea system uses an activewithamartphone to monitor the
breathing signal [154]. This work leverages the FMCW techaeifpr breathing monitoring, which

requires the system to seek the distance between the smaetphd the chest of the person.

10.3 Sonar Phase Analysis and Technical Challenges

10.3.1 Sonar Phase Analysis

We propose to use smartphones to monitor respiration signalutilizing an inaudible sound
signal, where the speaker and microphone of the smartphon&te an active sonar system. In
particular, the speaker transmits an inaudible sound kigtize frequency range of 18-22 KHz, in
the form of a CW signal a§'(t) = A cos(27 ft), whereA is the amplitude and is the frequency of
the sound. Then the signal is reflected by the chest of tegtctidnd received by the microphone.
One unique advantage of the smartphone based design ibebatjse the speaker and microphone
use the same frequency, there is no carrier frequency ¢ft$ed) errors between the sender and
receiver. Thus, we can exploit the phase of the receivedlibbusignal to accurately estimate the
vital sign.

To extract the phase of the CW signal, we need to design a aufeeector to down-convert
the received sound sign&l(¢) to I-component and Q-component of a baseband signal in Big. 1
I-component and Q-component of the baseband signal caeseqira complex vector, which can
be used to obtain the amplitude and phase information of #selmnd signal. For SonarBeat
system, we mainly exploit the phase information extractedhfl-component and Q-component
of the baseband signal, thus capturing the period signakechily the movement of the chest such
as inhaling and exhaling. The SonarBeat design is to first @i received sound signal into

two identical copies. Then, these two copies are multipligtth the transmitted signal’(¢) =
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Figure 10.1: I/Q demodulation for the received signal.

Acos(2r ft) and its phase shifted versia@r(t) = —Asin(27 ft). Finally, the corresponding In-
phase and Quadrature signals are obtained by using a Iasvfitas (LPF) to remove the high
frequency components.

We first present a simple analysis for the ideal case that ikero multipath effect (or, for the
high SNR regime, where the LOS component is the dominantgbdine received signal). Under
the assumption, the inaudible signal travels through aleipgth (i.e., from the speaker to the

chest, and then back to the microphone) and the propagatiay dan be modeled as

d(t) = (Do + D cos(2m fit))/c,

whereD, is the constant distance of the reflected pattgand f, are the amplitude and frequency
of the chest movements, respectively, arid the speed of sound. The received inaudible signal
from this path can be modeled &$t) = A, cos (27 ft — 2w fd(t) — 6), whereA, is the amplitude

of the received inaudible signal afids a constant phase offset due to the delay in audio recording
and playing. To estimate the phase of the inaudible sigrah&ed to remove the high frequency

components. Multiplying the received signal wittit) = A cos(27 ft), we have

A, cos(2mft — 2m fd(t) — 6) x Acos(27mft) (10.1)
A A

(cos (4 ft — 2m fd(t) — 0) + cos(—2mw fd(t) — 0)).
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Figure 10.2: Complex I/Q traces of the received audio signal.

The firstterm in (10.1) has a high frequency2gf which can be removed with a properly designed
low-pass filter. Thus, the I-component of the baseband iaeted ag = 44 cos (—2n fd(t) — 6).
With a similar approach (i.e., multiplying by’ (¢) and removing the high frequency component),
we can estimate the Q-component of the baseband sigr@l-as4z# sin (—2x fd(t) — ). We

then demodulate the phase of the inaudible signal data as

o(t) = arctan(Q/1) = —2n fd(t) — 0

= =21 f(Do+ D cos(27 fyt))/c — 6. (10.2)

Note the phase signal(t) has the same frequency as the respiration signal. In theajease, the
received inaudible signal is a complex signal, which inekidstatic componenand adynamic
componendue to the multipath effect in indoor environments. For eglanFig. 10.2 shows
complex 1/Q traces for the received audio signal, with tlistvector and dynamic vector in the
I-Q plane. To track the breathing rates, we need to demaglthatphase from the I/Q components
by removing the static vector. Fig. 10.3 shows the compl@xtiaces of the received audio signal
after removing static vector. It is noticed that the demathd phase is a good indicator of the

breathing caused chest movements.
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Figure 10.3: Complex I/Q traces of the received audio sigitat eemoving the static vector effect.
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Figure 10.4: lllustration of adapting to body movements laipiating the static vector.
10.3.2 Technical Challenges
Mitigate the Static Vector Effect

The main challenge for respiration monitoring with phasedolated data is to mitigate static
vector effect, which directly influences the sensitivitydatorrectness of the phase data. The
larger the stationary component, the larger the error irettteacted phase data. This is because
the SNR at the receiver will become low when there is a largigcstomponent, making it hard to
demodulate the phase data. In [155], the authors adopt¢hedrtreme value detection (LEVD) to
remove the stationary components for hand tracking. Howévis method may not be effective
for respiration monitoring, because the LEVD method needset an empirical threshold for

each different environment. In this chapter, we proposedapt/e median filter method to deal
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with this challenge, which is shown effectively for remayithe stationary component in different

scenarios.

Adapt to Body Movements and Environment Noise

The second challenge for tracking breathing signals istadapdy movements and environment
noise. Body movement is unavoidable in the monitoring phasg, during sleep, and its impact
should be mitigated. The FMCW based scheme in [154] requiresstimate the distance be-
tween the smartphone and chest before respiration mamgtokVhen the body suddenly moves,
the system needs to seek the new distance, thus leadingyeotiare complexity. The proposed
sonar phase based approach is effective on adapting to bodyments. For example, Fig. 10.4
illustrates the idea of adapting to body movements by ektnig the static vector in SonarBeat.
When there is an unexpected small body movement, the magrofute breathing signal becomes
larger, leading to a smaller SNR. After eliminating the stagctor, we can mitigate the effect of
body movement, and still obtain a neat respiration sigrsagh@wn in the lower part of Fig. 10.4.
Furthermore, consider the case of multiple persons in gtengeenvironment. Not only their
movements cause interference to the reflected respiratiomals but also the background noise
could be high (e.g., when they are talking). We employ cattel/€® demodulation in SonarBeat

to remove the environmental noise from external audio ssurc

Realtime Monitoring with Lower Delay

For a vital sign monitoring system to be really useful, it sldowork in realtime, with good in-
teractions with the user. Realtime monitoring is challeggimce most smartphones have a high
sampling rate of 48 KHz, which leads to 96,000 multiplicataperations per second for the coher-
ent detector to down convert the received sound signal tbake band. To address this challenge,
we perform down-sampling for I/Q demodulation, which caduee the computation complexity

while still capturing the breathing rate.
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For better interaction with the user, SonarBeat operatdg@etstages. In the first stage of 15
s, it performs respiration monitoring in realtime witholtFbased breathing rate estimation. In
the second stage of 15 s, SonarBeat analyzes the data abliectel 5-second sliding window to
extract the respiration signal, and plots the respiratignas on the screen to give the user some
preliminary testing results. In the final stage, after 30m®)&Beat applies FFT to all the captured

phase data to achieve an accurate breathing rate estimation

10.4 The SonarBeat System

10.4.1 SonarBeat System Architecture

According to the sonar phase analysis, SonarBeat can g#bcexploit sonar phase informa-
tion to monitor respiration signals. First, the phase infation can track the periodic breathing
rates with a high accuracy, and the phase information isitsen the small breathing induced
chest movements. Second, compared with other traditioe#thods, such as Doppler shift and
FMCW [110], the phase based approach has a lower latency anglexty. Finally, the sonar
phase data is robust to different orientations, differéstiahces, different cloth thickness, and dif-
ferent breathing rates of different persons. It is also sblbw large body movements, which only
leads to a change of the stationary component of the phaagvdaith can be effectively removed
with the proposed adaptive median filter method.

Fig. 10.5 presents the SonarBeat system architecture, witkides four basic modules: (i)
Signal Generation, (ii) Data Extraction, (iii) Received 1&g Preprocessing, and (iv) Breathing
Rate Estimation. Thé&ignal Generatiormodule mainly implements a Pulse-code Modulation
(PCM) of the inaudible signal, where a CW signal at 18 KHz to 2ZKdgenerated and modulated
with the PCM technique. Theata Extractionmodule is to detect the audio signal, which employs
a Short-Time Fourier transform (STFT) for audio signal dets. A threshold based method is
proposed for detecting the beginning part of the receivaddible signal. Thd&keceived Signal
Preprocessingnodule consists of (i) I/Q demodulation, which implemeraesdsampling followed

by a coherent phase detector; (ii) static vector effecte¢gdn, which implements the proposed
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Figure 10.5: The SonarBeat system architecture.

adaptive median filter method to remove the static vectohefih-phase and Quadrature signals;
(iif) phase extraction, where the sonar phase informasaxtracted and calibrated; and (iv) data
calibration, where a median filter is applied as a simple LassHinite impulse response (FIR)
filter to remove noise. ThBreathing Rate Estimatiomodule employs an FFT based method to

estimate the breathing rate.

10.4.2 Signal Generation

The signal generation module uses one speaker of the sroag@s transmitter, to produce the
inaudible signal. We implement the signal generation me@sl a PCM based modulator on the
Android platform. Specifically, the speaker generates andible sound signal in the frequency
range of 18—22 KHz in the form of a CW signal, i.€'(t) = A cos(27 ft). We produce the sampled
analogy signal and then use PCM to digitally represent thepsthTCW signal. To generate a
PCM stream, the amplitude of the analog CW signal is sampledi#drm intervals, where each
sampled value is quantized. The PCM based inaudible signdiifation is implemented with the

AudioTrack class.
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Figure 10.6: STFT based method for audio signal detection.
10.4.3 Data Extraction

We use the microphone of the smartphone to receive the ibieusignal reflected from the chest
with a sampling rate of 48 KHz. The microphone will recordetlsound signals with different
frequencies from the surrounding environment as well. Welément an audio signal detection
method to identify the beginning of the desired signal aleve.

The proposed audio signal detection method is based on SAtRle beginning of of the
signal, there will be a drastic of power at the carrier fregue A threshold based method is used
to detect the beginning of the inaudible signal. Fig. 10Gstrates the STFT based method for
audio signal detection, where the carrier frequency is 2@ KWe can see that before 0.25 s, the
microphone only receives audio frequencies from the sadimg environment. After 0.25 s, the
microphone detects the inaudible signal, since the madmiti the 20 KHz spectrum becomes
much stronger than other audio frequencies (see the brailloiny horizontal strip at 20 KHz). We
adopt a window size of 512 in STFT for estimating the spectritoreover, we set a threshold of
200 for the power change to detect the beginning of the indeidignal. In fact, if we detect the
power change with the threshold method, the beginning ofrthedible signal can be set as the

end of the STFT chirp.
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10.4.4 Received Signal Preprocessing

We describe the four components of the Received Signal Rregsong module in this section, in-

cluding I/Q Demodulation, Static Vector Effect ReductiohaBe Extraction, and Data Calibration.

I/Q Demodulation

Before 1/Q Demodulation, we need to down-sample the recedigoll R(t) = A, cos(27 ft —
2rfd(t) — 0) for reducing computation complexity, which is necessany riEaltime monitor-
ing. The original system with sampling frequency of 48 KHzesguce to 480 Hz with a down-
sampling ratio of 100. Then, we implement the 1/Q demodafatd obtain the I-component and
Q-component of the baseband signal using a coherent det@ti design is to split the received
audio signal into two identical copies. Due to the down-slamgpratio of 100, these two copies
should be multiplied with the signal cos(27r%t) and its phase shifted versionA Sin(ZW%t)

to obtain the I-component and Q-component of the basebgndlsrespectively. Because we use
phase modulation for breathing monitoring, down-samptinly reduce the number of samples of
the amplitude of breathing signal, rather than the phasenmition.

Finally, a LPF is employed to obtain the corresponding lagghand Quadrature signals,
which has a cutoff frequency of 1 Hz, a sampling rate of 480atizl, a resonance of 2. This setting
has been shown to be effective for removing the high freque&oenponents and environment
noises. In Figs. 10.7 and 10.8, we plot the raw I-componedt@tomponent of the baseband

signal, respectively, after the LPF (the dashed curvesjclwtnowever, still include their static

vectors.

Static Vector Effect Reduction

As discussed, the performance of SonarBeat largely depenksve the effect of the static vector
is mitigated in multipath environments. This is becausealigiihe static vector is much stronger
than the dynamic vector that representing the small chesements. It is difficult to detect the

weak breathing signal if we directly use the received soligmks. Recently, there are two methods
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Figure 10.8: The adaptive median filter for removing theistaector in the baseband Q-
component.

proposed for static vector effect mitigation. The DualfBiéntial Background Removal approach
is used for hand tracking with 60 GHz mmWave signals [173].e Tieethod is susceptible to
environment noise and has large latency, which is not efe@dr realtime respiration monitoring.
The second scheme, termed LEVD [155], is also developeddgking hand movements. The
method requires an empirical threshold for detecting tldicsvector, which is not robust for

different environments and different test subjects.
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In Algorithm 12, we present an adaptive median filter metradémoving the static vector,
which has a low latency and is robust to different environteenhe idea is to use a window to ob-
tain the median for estimating the static vector. The onhapeeter is window size, which is ro-
bust for different environments. For baseband signal cevaptd (n) or Q(n),n =0,1,..., N — 1,
we partition it into multiple non-overlapping sublistscealenoted byl'[1, 2, ..., w]) with window
sizew, and a single sublis®|[1, 2, ..., r] with window sizer < w, wherer is the number of remain-
ing elements of (n) or Q(n) not included in the previoud” sublists. The sublistd/’[1, 2, ..., w]
and sublist?[1, 2, ..., r] are used to estimate the medians for the fist- 1 windows and the last
window, respectively, where,, = | N/w|. Finally, the outpuO(n), n = 0,1,..., N — 1, can be
obtained as in Steps 14 and 21 by removing the static vecha.pfoposed method is simple and
robust for realtime processing of received data in diffessivironments with a low delay.

Fig. 10.7 and Fig. 10.8 illustrate how the adaptive mediaarfinethod removes the static
vectors in the baseband signal components. We can see ¢hadtimated static vector can repre-
sent well the average amplitude information of the baseBaghl components. After the adaptive
median filter, the componenisand @ are roughly centered at zero; the improved SNR makes it

easier for extracting the breathing signal they carry.
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Algorithm 12: The Adaptive Median Filter Method

1 Input: One baseband signal componektin), n = 0, 1,..., N — 1, and the window size
w,

2 Output: The baseband signal component with static vector remavéd),
n=20,1,...N—1;

3 /lInitialization

4 n,,. number of windows ;

5 r: number of remaining elements &f(n), which cannot form a full window of size ;

6 WJ1,2,...,w]: sublists with window sizev ;

7 R[1,2,...,r]: sublist with the remaining elements ;

8 //[Find the median for each window

9 fori=0:n,do

10 if (i +1)*w) <= N then

11 WI1,2, .. w) + X((w=xi)to((i +1)xw—1));
12 M < the median ofV[1,2, ..., w];

13 forj=w=xi:(i+1)*wdo

14 | 0()=X() - M;

15 end

16 end

17 else ifr # 0 then

18 R[1,2,..,r] + X(w*i)to(wxi+7r—1));
19 M <« the median of?[1,2, ..., 7] ;

20 forj=w=xi:(i+1)+xwdo

21 | 0()=R(G)—M;

22 end

23 end

24 end

25 ReturnO(n),n =0,1,...,N —1;

Phase Extraction

After removing the static vector, we next extract the phasa ¢h the I-Q plane, which only in-
cludes the dynamic breathing component. Qett) andO,(t) denote the outputs of Algorithm 12.

The phase of the inaudible signal can be computed with (1tha&)is

©(t) = arctan <(())i2—(<;)>> : (10.3)

With (10.2) and (10.3), we find the phase valug) for the respiration signal reflected from

the chest. Although the reflected respiration signal mdlytsive multipath components, these
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multipath signals have the same breathing frequency butdiffterent phase shifts, each of which
is a constant. Thus, the breathing rate will not be affeciethb dynamic multipath effect. This

is different from hand tracking, which requires only onehpfiom the smartphone and the hand.
Thus, our SonarBeat can estimate the breathing rate usimgle subcarrier rather than multiple

subcarriers.

Fig. 10.10 presents the respiration curve obtained fronptfase data with removing static
vectors. Itis noticed that the magnitude of the breathiggaiis large, which is periodic if we can
remove the sudden phase changes. Thus, we need to implemhatat @alibration scheme for the

demodulated phase data with better periodicity.

Data Calibration

We implement a phase unwrapping scheme for recovering theatphase values, as well as
a median filter for reducing the environment noise. To ederhaeathing rates, we need to obtain
the right breathing curve for phase data. Because the phase wdl have a change dir for
every wavelength distance, we implement a phase unwragpimgme to process the demodulated

phase data.
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Figure 10.12: Respiration curve for unwrapped phase datathai# median filter method.

Fig. 10.11 shows the respiration curve obtained from the@ldata after phase unwrapping.
It is a clear breathing signal, but still with smaller envineent noises. Moreover, we adopt the
median filter method to remove the environment noise, whezdilter window size is set to 300.
Fig. 10.12 presents the respiration curve for the unwrappede data after the median filter, which

is next used for accurate breathing rate estimation.

10.4.5 Breathing Rate Estimation

SonarBeat operates in three stages for breathing monitdangetter interactions with the user.

In the first stage of 15 s, we cannot effectively estimate tteathing rate but just record the
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Figure 10.13: Respiration rate estimation based on FFT.

extracted respiration signal, because the phase data imdwican continually change when new
data arrive. In the second stage of 15 s, we analyze the tmdl@base data in a 15-second sliding
window to extract the breathing signal and plot it on the dptame screen. In the final stage, after
30 s, we use all the collected phase data for breathing rateag®n with FFT, which can achieve
a higher estimation accuracy (since more data is availatMg.nin fact, the frequency resolution
depends on the window size of FFT. If the window size becoraggel, the estimation accuracy
will be higher, but a larger window size also leads to a lovietdomain resolution. Thus, for
online breathing rate estimation, we use the same windosvaszhat of the STFT based method.
It balances the tradeoff between the frequency domainutsnland the time domain resolution.
Fig. 10.13 illustrates the FFT based respiration rate ediom. \We can see that the estimated
frequency is 0.23 Hz, which is approximately the same asrtieelireathing rate measured by the

NEULOG Respiration Monitor Belt Logger Sensor during the expent.

10.5 Experimental Study

10.5.1 Experiment Configuration

We prototype the SonarBeat system on the Android platformaym &nd the Android SDK, as

an smartphone App. The first edition of SonarBeat is implestnith the minimum version of
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Android 5.1.1 OS (API 21). So it works with all the more recéntdroid systems such as Android
6.0 and Android 7.0. The App is evaluated with Samsung Gakfgnd Samsung Galaxy S7 Edge
smartphones. For respiration monitoring, we use one sp@akkone microphone to transmit and
receive the inaudible audio data, respectively, while therophone and speaker are fixed at the
bottom of the smartphone. Furthermore, we use the AudiiTekss to play inaudible sound and
the AudioRecord class to record sound. The buffer of the diegrthread is set to 1920 points
with a sampling rate of 48 KHz. Therefore, we set the realtsigmal processing unit to 1920
points, which is about 40 ms.

We conduct extensive experiments with SonarBeat with fiveqrex over three months. The
test scenarios include an office, a bedroom and a movie theate officeis a4.5 x 8.8 m?
room. The room is crowed with tables and PCs, which form a cerptopagation environment.
In this office environment, we test SonarBeat under diffeparameters settings. The second
environment is dedroomof 3.9 x 6 m?, where we test breathing monitoring for a single person.
The third setup is anovie theateof a large27 x 40 m? area, where many peoples are watching a
movie, with strong audio interference from the movie anceotteople. The office and bedroom
scenarios are implemented over longer periods with meltiphes in different days as compared
to the movie cinema that is tested in one hour for watching aienoMoreover, the proposed
system mainly focuses on estimating the breathing rate foeraon, where we consider other
persons have above 60 cm distance away from the smartphoneofparison purpose, we use
the NEULOG Respiration Monitor Belt Logger Sensor to recoeldlound truth of the breathing
rate (see Fig. 10.17).

For breathing rate estimation each time, we use all the celtedata for breathing rate esti-
mation with FFT for 30 s. Moreover, we use CDF of breathingmsres the measurement metric,
which can be employed to evaluate the total performanceeoptbposed system. Moreover, we
also consider the mean estimation error as another evaugetric for measuring the impact of

various environmental factors and the impact of variousesygparameter.
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Figure 10.14: Experimental setup in tb#ficescenario.
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Flgure 10.15: Expenmental setup in thedroomscenario.

Figure 10.16: Experimental setup in thovie theatescenario.
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Figure 10.17: The office experiment, where the NEULOG Respmdonitor Belt Logger Sensor
records the ground truth (shown on the laptop screen).

10.5.2 Performance of Breathing Rate Estimation

Fig. 10.18 presents the CDFs of estimation errors in bregtfaite estimation with SonarBeat. For
comparison purpose, we also develop an LEVD based systehj, [Mbere the LEVD method
is used for estimating the static vector and all other sigmatessing methods are the same as
in SonarBeat. We find that SonarBeat and the LEVD based methelaca median error of 0.2
bpm and 0.3 bpm, respectively. This illustrates that botitesyis can effectively estimate breathing
rates. However, it is worth noting that for SonarBeat, 95%hef test results have an estimated
error under 0.5 bpm, while only 60% of the test results with tiEVD based method have an
estimated error under 0.5 bpm. Moreover, the maximum estmarror of SonarBeat and the
LEVD based method are 2.4 bpm and 5 bpm, respectively. Thisdause the LEVD based method
requires setting the empirical threshold based on the atdrdkviation of the baseband signal in
a static environment. It is not robust in varying environtsenhere the same threshold will not
work. However, SonarBeat leverages the adaptive medianrfik¢hod, and is thus more robust to
changes in the environment. Thus SonarBeat can achieve ertdagh more stable breathing rate
estimation accuracy than LEVD.

Fig. 10.19 presents the mean estimation errors for the thifeeent scenarios, which are 0.22

bpm, 0.11 bpm, and 0.33 bpm for the office, bedroom and moeatén scenarios, respectively.
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Figure 10.18: CDFs of estimation errors in breathing ratenagion.

We plot the 95% confidence intervals as error bars. The mesnag®n error of the bedroom case
is the minimum, because the bedroom is a better environmatit:smaller noise and no sound
interference from other persons. This shows that SonarBesatiiable for breathing monitoring
during sleeping, which helps to detect apnea or other siggpoblems. For breathing monitoring
in the office, the performance is worse than the bedroom. iEHi®cause the propagation envi-
ronment is more complex and there is interference from qikeple. Furthermore, higher noises
from computers, air conditioner, and other equipment indbealso influence the received inaudi-
ble signal. The movie theater test has the largest mean anbwrariance because of the more
complex environment and stronger noises. In fact, bregtimanitoring in the theater is still quite
accurate given the extremely adverse environment. Thgseriexents validate that SonarBeat is

highly accurate and robust in different scenarios.

10.5.3 Impact of Various Environmental Factors

Fig. 10.20 shows the impact of different persons in the offimenario. In the experiment, we test
five persons including three men and two women. Every voemtears the NEULOG Respiration
unit to record the ground truth for breathing data. From Ei@20, we can see that Persons 3
and 5 have a relatively lower mean error. This is because Wi out quite often and have

a stronger respiration, leading to stronger breathingadggynOn the other hand, the other three

251



Mean Estimation Error (bpm)

Office Bedroom Cinema
Different Test Scenarios

Figure 10.19: Mean estimation error for three differentnsec®s: office, bedroom, and movie

theater.
0.35

0.3}

0.25F T

0.2 1

0151 T

0.1f 1

0.05 1
0

Personl Person2 Person3 Person4 Personb
Impact of Different Persons

Mean Estimation Error (bpm)

Figure 10.20: Breathing rate results for five different passo

persons have weaker breathing magnitudes, but their d@&imerrors are still under 0.5 bpm,
which is acceptable. Thus, we can see that SonarBeat is eel&qmtidifferent persons.

Fig. 10.21 shows the impact of different breathing ratesendffice scenario, where the test
subject controls his/her breathing at a slow, normal, astifeeathing rates, which are in the rangs
from 6 bpm to 10 bpm, 13 bpm to 18 bpm, and above 30 bpm, respsctlt is noticed that with
the increase of breathing rate, the mean estimation ertbb&increased. The reason is that with
higher breathing rate, the stability of the breathing sigpeaomes weaker. In other words, with fast

breathing, the chest movements are more irregular, thdgig#o large variations in the captured
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Figure 10.21: Impact of different breathing rates.

breathing curve. Moreover, we adopt the FFT based breagéstigation. When there are multiple
breathing frequencies embedded in the captured breatignglsFFT does not produced good
frequency estimation. Nevertheless, SonarBeat can salttfely capture the different breathing
rates with a mean error a little over 0.4 bpm in the fast biagtbase.

Fig. 10.22 shows the impact of the distance between the ahdghe smartphone. When the
distance is increased, the accuracy of breathing estimagcomes lower. Particularly, we can
see that for a distance of 55 cm, the mean estimation erranbes 1 bpm with a large variance.
In this experiment, we find that the ultrasound wave in 18 Kbl22 KHz experiences a large
attenuation, and the microphone will receive a lower pow@nfthe chest reflection if the distance
is increased. Moreover, breathing rate estimation witha#®eat depends on 1/Q demodulation.
The magnitude of the I/Q components becomes weaker whendtasmce is increased, leading to
higher errors. To improve the measurement distance, wedgeehe parameter resonance of the
low-pass filter to strengthen the amplitude of the inauddiimal near the cutoff frequency, thus
improving the magnitudes of the I/Q components. In the arpant, we set the cutoff frequency
to 40 Hz for the sampling rate of 48 KHz. We can see that undenb(he proposed system can
achieve very good accuracy.

Fig. 10.23 presents the breathing rate errors when the ghwae is held in hand or put on a

desk. We find the error is low in both cases, which are 0.22 biwervihe smartphone is held in
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Figure 10.23: Breathing rate results when the smartphoneldsitn hand or put on a desk.

hand and 0.16 bpm when it is put on a desk. Moreover, the @iahbreathing rate estimation
errors with a hand held smartphone is larger. This is beddéwgsemall hand movements will affect
the reflected signal. Although the small hand movements donflaence the basic estimation
accuracy, it still causes a larger variance of the estimatroor. On the other hand, because we use
the adaptive median filter to effectively remove the stagictar, the mean breathing rate estimation
results can be guaranteed for both cases.

Fig. 10.24 shows the impact of cloth thickness. In the expeni, the test subject wears
clothes of different types and thickness. The distance &etvthe user and the smartphone is kept

between 10 cm to 15 cm. It is noticed that, with the increaseath thickness, the mean error
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Figure 10.25: Impact of user orientation relative to the dpiene.

becomes larger. This is because the ultrasound wave at 18t&KH2 KHz experiences larger

attenuation when the clothes gets thicker, which leads tllenreceived breathing signal and a
lower SNR. In fact, the maximum breathing estimation err@tisut 0.37 bpm in this experiment,

which is still acceptable.

Fig. 10.25 shows the impact of chest orientation relativilhéosmartphone in the office sce-
nario, where we consider three cases 9f4% and 90. It is noticed that at Odirection with the
front orientation relative to the smartphone, we can obtéminimum mean estimation error,
which is about 0.22 bpm. At the 9@irection, the maximum mean estimation error becomes 0.39

bpm. The received inaudible signal is the strongest whepéehson faces the smartphone speaker.
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Fig. 10.26 shows the impact of different poses includintypgjt standing, and sleeping in the
bedroom scenario. For sitting case, the smartphone is patdask and the distance between the
smartphone and the person is under 15 cm. For standing t&spetson holds the smartphone
with the same distance. For sleeping case, the person weaght-clothes is laying in the bed,
who faces the smartphone on the desk with the same distareeeaN\see that for poses with the
sitting and standing, the mean estimation errors are snthbe that with the sleeping. This is
because the strength of the received signal in the sleepemnpso is smaller than the other two

cases.

10.5.4 Impact of Various System Parameters

We evaluate the impact of various system parameters in dugoss. Fig. 10.27 presents the
estimation errors with a Samsung Galaxy S6 with Android &@ a Samsung Galaxy S7 Edge
working with the lasted Version Android 7.0. The speaker amncrophone are on the bottom of
both smartphones. We can see that Samsung Galaxy S7 Edgeihakaperformance as Sam-
sung Galaxy S6, with mean error of 0.21 bpm and 0.22 bpm, céigply. We find that Samsung

Galaxy S7 Edge has stronger processing power, and thusdtixtaim better realtime performance

than Samsung Galaxy S6.
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Fig. 10.28 shows the impact of different frequencies for@w signal, including 18 KHz,
20 KHz, and 22 KHz. With the increase of frequency, the meaorerso gets slightly larger.
The maximum mean estimation error is 0.22 bpm, while the mmn mean estimation error is
0.17 bpm. This shows that SonarBeat is robust to differemjuieacies. On the other hand, we
also know that for ultrasound signals propagating in theestiansmission medium, the power
attenuate becomes larger for higher signal frequencissltieg in smaller SNR for the received
breathing signal. Thus, the higher the frequency, the tattgee mean breathing rate estimation

error.
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Fig. 10.29 shows the impact of different down-samplingsat®¥hen the down-sampling rate
is increased from 60 to 100, the mean breathing rate estmatror will be increased from 0.19
bpm to 0.23 bpm, a small increase. Thus, we choose a downlisgmate of 100 for SonarBeat.
Because SonarBeat uses a sampling frequency of 48 KHz, we daceré to 480 Hz by down-
sampling rate of 100. As shown before, the down-samplingaijma does not affect the breathing
rate embedded in the phase modulated signal. Thus, dowplisgithe | and Q components with
a rate of 100 can not only reduce the computational complésatrealtime breathing monitoring
with the smartphones, but also achieve a high accuracy.

Fig. 10.30 presents the results with different window sipeshe adaptive median filter. Re-
call that the window size is used in the static vector effeitigation stage. Breathing rate estima-
tion with SonarBeat mainly depends on reduction of the statitor effect. The only parameter of
the proposed adaptive median filter approach is the windosy sihich should be robust for differ-
ent tests. From Fig. 10.30, we can see that, when the windmssincreased from 7400 to 7700,
the mean breathing rate estimation error is only increakgltly from 0.21 bpm to 0.26 bpm.
Moreover, the larger window sizes from 7400 to 7700 are alrhal of the signal points, which
is effective for removing the static vector. Thus, we chamsgndow size of 7500 for SonarBeat,

which can achieve the best breathing estimation accuracy.
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Fig. 10.31 shows the impact of different median filter windsizes on the mean error, which is
used in the data calibration stage of SonarBeat. We find thahwie median filter window size is
set to 100 or 300, similar mean error of 0.21 bpm are achie®edhe other hand, when the median
filter window size is increased from 600 to 1000, the meamegton error is increased from 0.25
bpm to 0.38 bpm. This is because a smaller window size carepsate local breathing curve,
to effectively remove the environment noise. On the otherdha larger median filter window
size omits the local breathing noise, thus causing a higher. d8ased on this experiment, we set
the median filter window size to 300, which can not only acliaevhigher breathing estimation

accuracy, but also lead to the better breathing curves &dtimee breathing monitoring.
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10.6 Conclusion

In this chapter, we presented SonarBeat, a system that eqphzise based sonar to monitor breath-
ing rates with smartphones. We first provided a rigoroussphase analysis and proved the sonar
phase based method can obtain breathing signals. Also, seestied the technical challenges
for breathing estimation based on active sonar signaludicet removing the static vector ef-
fect, adaption for body movements and environment noisgtpardine breathing monitoring with
lower delay. We then described the SonarBeat design in deteliiding signal generation, data
extraction, received signal preprocessing, and breatiaitegestimation. Finally, we implemented
SonarBeat with two different smartphones, and conductedkeamgve experimental study with
three setups. The experimental results validated thatrBeaacan achieve superior performance

on breathing rate estimation for different factors and pegizrs.
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Chapter 11

Conclusions and Future Work

11.1 Conclusion

In this dissertation work, we investigate the problem of Rftsggg for 10T using CSI and machine
learning techniques. In particular, our work mainly focus@ indoor localization and vital sign
monitoring for RF sensing. For indoor localization, we coesidifferent CSI features as finger-
prints for indoor localization using different deep leagimethods. On the other hand, for vital
sign monitoring, we consider breathing and heart rates toong for single person and multiple
persons using CSI phase differences. Moreover, we stude#ileent breathing beats monitoring
for bad locations. In addition, we also exploit the acousigmal for breathing rate estimation with
smartphones.

In chapter 2, we proposed DeepFi, a deep learning basedrifmtmdization using CSI am-
plitude information. In DeepFi, CSI information for all thetsarriers and all the antennas are
collected through the device driver and analyzed with a despork with four hidden layers.
Based on the three hypotheses on CSI, we considered the weidgihesdeep network to represent
fingerprints, and incorporated a greedy learning algorfibmweight training to reduce complexity.
Moreover, a probabilistic data fusion method based on the R&axploited for online location
estimation. The proposed DeepFi scheme was validated irefgvesentative indoor environments,
and was found to outperform several existing RSS and CSI bas#tbas in both experiments.

In chapter 3, we proposed PhaseFi, a deep learning baseat liodalization using CSI phase

information. In PhaseFi, the phase information was firstaetéd and calibrated from the three
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antennas of the Intel WiFi Link 5300 NIC by accessing the rfiedidevice driver. In the offline
stage, we considered a deep network with three hidden lagdrain the calibrated phase data,
and used weights to represent fingerprints. To reduce coutpla greedy learning algorithm was
incorporated to train the weights layer-by-layer, wherelasetwork between two consecutive lay-
ers formed an RBM approximately and solved by a CD-1 algorithmthé online stage, a Bayes
method based on RBF was used for location estimation. The pedp@haseFi scheme was val-
idated in two representative indoor environments, and \waw/s to outperform three benchmark
schemes based on either CSl or RSS in both scenarios.

In chapter 4, We presented BiLoc, a bi-modal deep learningsy$or fingerprinting-based
indoor localization with 5GHz commaodity WiFi NICs. In BiLoc,enfirst extracted and calibrated
CSI data to obtain bi-modal CSI data, including average ang#g and estimated AOAs, which
were used in both the offline and online stages. In the trgipimase, we leveraged a deep au-
toencoder network to train the bi-modal data, and the weigletre used to represent the bi-modal
fingerprints. In the test phase, a Bayesian approach baskdlplity model was employed for es-
timating position with bi-model test data. We evaluatedgbgormance of BiLoc with extensive
experiments under three representative indoor envirotsnérhe experimental results validated
the superior performance of BiLoc over several benchmar&reels.

In chapter 5, we proposed CiFi, a DCNN based fingerprintingesygor indoor localization
with 5 GHz Wi-Fi. We theoretically and experimentally veedi the feasibility of using AOA
values for indoor localization. We then presented the CiBieay, which first formed AOA images
to train the DCNN, and then used newly received AOA images timnase the location of the
mobile device. Through extensive experiments, we dematestithe superior performance of the
proposed CiFi system under two representative indoor emviemts.

In chapter 6, we presented ResLoc, a deep residual sharimgrigdased system for indoor
localization with two channels CSI tensor data. We discussed to build CSI tensor data for
indoor localization. Then, we designed the ResLoc systenthwaverages two channels CSI ten-

sor data to train the deep network by using the proposed @s&pual sharing learning. For online
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test, we used newly received CSI tensor data to compute thédacof the mobile device based
on the probabilistic method. Finally, the experimentautessshowed the superior performance of
the proposed ResLoc system.

In chapter 7, we proposed PhaseBeat, CSI phase differenceéodatanitor breathing and
heart beats with commodity WiFi device. PhaseBeat systeerdged CSI phase difference data
to extract the periodic signal from the change in the chesatmérson such as inhaling and exhal-
ing. Then, We implemented data preprocessing including@mment detection, data calibration,
subcarrier selection and discrete wavelet transform. blae we employed the peak detection
approach for breathing rate estimation and FFT based mdtindatart rate estimation. We con-
ducted with the experiments with three setups such as tledtdry, through-wall scenario and the
long corridor. The results showed that the PhaseBeat systamltain better performance than
the amplitude based method.

In chapter 8, we presented TensorBeat, tensor decompofitiestimating multiple persons
breathing beats with commodity WiFi. The proposed TensarBgstem employed CSI phase dif-
ference data to obtain the periodic signals from the moveésneihmultiple breathing chests by
leveraging tensor decomposition. We implemented sevayahkprocessing methods including
data preprocessing, CP decomposition, signal matchingitdlgg and peak detection in Tensor-
Beat. We validate the performance of TensorBeat with exterestperiments under three indoor
environments. Our analysis and experimental study demaiedtthat the proposed TensorBeat
system can achieve satisfactory performance for multiptegns breathing estimation.

In chapter 9, we proposed ResBeat, resilient breathing beatganng by using online CSI
amplitude and phase difference data in the commodity Wikicds. We developed the ResBeat
system including data preprocessing, adaptive signatts@teand breathing signal monitoring.
For data preprocessing, we implemented the data extraatidrcalibration to obtain the breath-
ing component and environment component. For the adapgvalsselection, we proposed the
signal selection algorithm based on signal energy deteetiml movement detection for selecting

the most sensitive signal group. Then, we leveraged peactilmt to estimate breathing rates.
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We implemented with the experiments with three differer@nseios. The results validated the
effectiveness of the proposed ResBeat system.

In chapter 10, we presented SonarBeat, a system that explaite based sonar to monitor
breathing rates with smartphones. We first provided a rigospnar phase analysis and proved
the sonar phase based method can obtain breathing sigrsts we discussed the technical chal-
lenges for breathing estimation based on active sonarlsigieciuding removing the static vector
effect, adaption for body movements and environment naisg pn-line breathing monitoring with
lower delay. We then described the SonarBeat design in deteliding signal generation, data
extraction, received signal preprocessing, and breatiaitegestimation. Finally, we implemented
SonarBeat with two different smartphones, and conductekamg&ive experimental study with
three setups. The experimental results validated thatrBeaacan achieve superior performance

on breathing rate estimation for different factors and peaters.

11.2 Future work

In the future, we will focus on four research directions asftillowing [2].

11.2.1 Fusion of Multiple Data Sources

Bimodal or even multimodal data can be exploited for better B#smg performance. For ex-
ample, WiFi and light sensors are both available on smartph@and can be integrated for indoor
localization, where WiFi and light signals are complementa each other. For example, the RSS
of WiFi signals do not perform well at close locations, wtithe light intensities at such locations
could be quite different. Using bimodal data of WiFi RSS amghtiintensity can increase data
diversity, which results in higher location accuracy.

The key to exploit multimodal data is how to effectively fusgious data. The deep learning
framework can be trained with different data sizes with tame deep network structure. One
solution to train multimodal data is to adopt a multi-chdneep network architecture, one for

each data source [4]. Signals from different channels cafuded at intermediate layers and/or
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at the output layer [4]. Other deep networks such as deeforeement learning and generative
adversarial networks can also be incorporated for fusianufiple data sources to improve sens-
ing accuracy or reduce cost with small training data. Faraiffe data fusion, the input data from

different sources should be normalized, and data sampesdifferent sources should be aligned.

11.2.2 Exploring New Spectrum for RF Sensing

With the fast growth of 5G technologies, signals from newcsge such as the low-bands (below
1 GHz), mid-bands (1 GHz to 6 GHz), and high-bands (above 24,&GH., mmWave), should
be leveraged for RF sensing in the l0T. Specifically, the lamds spectrum can be utilized for
massive 10T and mobile broadband; the mid-band spectruvide® wider bandwidths and can
be employed for mission-critical applications and enhdridebile Broadband (eMBB); the high-
band spectrum provides a huge amount of bandwidth and idlysiseed for high throughput
communications. In the literature, mmWave massive MIMO Ihesn applied for fingerprinting
with a deep learning approach. Moreover, narrow band (NB}éghnologies, such as LoRaWAN
and SIGFOX with low power and long range, can also be lever&myedetecting multiple objects.
It is expected that channel estimation based on deep Igaoanld become an interesting
research topic, where deep learning can be used to learn @®ination. Then, some key pa-
rameters, such as amplitude, AOA, and TOA from the multipatim be predicted from training
data with deep learning techniques for RF sensing. By applyéep learning techniques to new
signals from 5G spectra, RF sensing could be greatly enhamitbd stronger data representa-
tion ability, not only for personal I0T applications suchiadoor localization, activity recognition,
and healthcare, but also for other I0T applications suchastscity, manufacturing, supply chain

management, precision agriculture, and animal tracking.

11.2.3 From Cloud to Edge and Mobile Devices

Although deep learning models have achieved superior padoce for recognition tasks, deep

learning models are usually computation intensive andiredgrge storage space. For image and
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speech recognition applications, usually the programgxeeuted at a server or in the cloud. For
RF sensing applications, it would be more appealing to exeitig deep learning models at the
edge or mobile devices to avoid large delay for better useemsnce. It is thus important to move

deep learning models from the cloud to the edge or mobilecdsyior reduced cost and delay and
enhanced privacy [174].

The challenge is how to execute deep learning models at thtvedy more resource con-
strained edge or mobile devices; How to reduce deep modehpers and accelerate compu-
tations. To this end, compressed deep network can be dtifa@eRF sensing on edge devices.
Methods for compressing weights by utilizing the sparséufes of data can be developed, to re-
duce storage demand of weights. Moreover, parallel andlalistd deep learning are suitable for
execution on edge and mobile devices to reduce the traimmg to jointly learn the parameters
for RF recognition tasks. Finally, GPU and FPGA-accelerfi@dlware can be used at the edge
or mobile devices to greatly accelerate the computationeepdearning models for RF sensing

applications.

11.2.4 Security and Privacy Preserving

Deep Learning can learn the features of RF signs, which isulissér information for security
and privacy protection. By leveraging features of multipp@E signals, deep learning can be used
to classify eavesdropping, DoS attack, and bad data injeclihe proposed deep learning based
RF sensing frame work can be used for intrusion detection iarshromes. Specifically, deep
LSTM networks can be used for realtime intrusion detectiatihh wommodity wireless devices.
Moreover, RF sensing can be incorporated for user authéioticaith different RF signals such
as WiFi, RFID, acoustics, and UWB, where implicit authentmattan be used.

Deep learning security has become a hot research topicthec€he main challenge is how
to recognize adversarial data and clean data; deep learairg perform poorly with adversarial
data, which can be created by introducing small noises endlata. In fact, an attacker can easily

inject noise or jamming signals to RF sensing signals. Sughradrial data should be recognized
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in the beginning stage for guaranteeing the recognitiofopaance of deep learning. Another
challenge is how to preserve user privacy in deep learnisg®&F sensing applications. While
RF signals mostly propagate in all directions, it is impott@nprevent an illegitimate user from

detecting a user’s location or monitoring a patient’s \sighs.
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