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Abstract

With the rapid development of Internet of Things (IoT) techniques, RF sensing has found

wide applications for, e.g., indoor localization, activity recognition, and healthcare. In this disser-

tation, we investigate the problem of RF sensing for IoT usingchannel state information (CSI) and

machine learning techniques. In particular, our work mainly focuses on indoor localization using

deep learning and vital sign monitoring for RF sensing.

In this dissertation, we first study the problem of CSI based indoor localization. For first

three works, we exploit deep learning for three different indoor localization systems using CSI

amplitudes, CSI calibrated phases, and CSI bimodal data, respectively. Moreover, we study and

analyze CSI data, which is stable for indoor localization. Weconsider deep autoencoder net-

works to train CSI data, and employ the weights of the deep network to represent fingerprints. A

greedy learning algorithm is leveraged to train the weightslayer-by-layer to reduce computational

complexity, where a sub-network between two consecutive layers forms a Restricted Boltzmann

Machine (RBM). In the online stage, we use a probabilistic method for online location estimation.

Then, we exploit deep convolutional neural networks (DCNN) for indoor localization. Since

DCNN is a supervised method, it only requires to train one group of weights for all the training

data with related labels, which is different with our prior works that requires training weights for

every training location. Specially, we use estimated angleof arrival (AOA) images from CSI data

as input to the DCNN. By executing four convolutional and subsampling layers, the system can

automatically extract the features of the estimated AOA images, to obtain training weights. To

improve indoor localization accuracy, we propose deep residual sharing learning for training two

channels CSI tensor data. Moreover, we can stack many residual sharing blocks for adding the

depth of the deep network, thus achieving higher learning and representation ability for CSI tensor
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data. The proposed system can achieve decimeter level location accuracy, which is better than

other deep learning methods.

This dissertation also focuses on vital sign monitoring using CSI and machine learning tech-

niques. First, we consider CSI phase difference data to monitor breathing and heart beats with

commodity WiFi device. We implement data preprocessing forthe collected CSI phase difference

data to obtain the denoised breathing signal and the restructured heart signal. Moreover, we lever-

age the peak detection method for breathing rate estimationand FFT based method for heart signal

estimation. To estimate breathing rates for multiple persons with CSI data. We leverage the tensor

decomposition technique to handle the CSI phase difference data. This work first uses CSI phase

difference data to create CSI tensor data. Then Canonical Polyadic (CP) decomposition is applied

to obtain the desired breathing signals. A stable signal matching algorithm is developed to find the

decomposed signal pairs, and a peak detection method is applied to estimate the breathing rates

for multiple persons. To improve the robustness of breathing signs monitoring, we exploit bimodal

CSI data, including amplitude and phase difference, for realtime breathing monitoring. Then, we

implement the data preprocessing, adaptive signal selection, and breathing signal monitoring mod-

ules, and employ peak detection to estimate breathing rates.

The last work of this dissertation considers a phase based active sonar to monitor breathing

rates with smartphones. We implement several signal processing algorithms, including signal gen-

eration, data extraction, received signal preprocessing,and breathing rate estimation. Specially, we

propose an adaptive median filter approach to remove the static vector in the received signal, which

allows to effectively extract the inaudible phase information. Our experimental results validate the

superior performance in different indoor environment settings.
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Chapter 1

Introduction

With the fast advances in mobile devices and communication technologies, various machines and

devices are capable of interacting with each other within a network. This new generation of infor-

mation network is the Internet of Things (IoT), which is one of the most important areas of net-

working and attracts much attention from academia and industry [1, 2]. In the IoT, data generated

by sensors or devices is shared with others or stored in the cloud. With the powerful computation

capability of cloud servers, the data can be analyzed or processed much more efficiently than ever

before.

Many emerging applications benefit from the development of the IoT. In general, IoT based

applications consist of three layers: the sensing layer, the gateway layer, and the cloud layer. As

shown in Fig. 1.1, the left block represents thesensing layer. Sensed data is usually captured by

various sensors, such as accelerometer and gyroscope, in this layer. Recently, researchers also

utilize RF signals to capture events in the IoT environment (i.e., RF sensing). RF signals are

transmitted, reflected, blocked, and scattered by objects like walls, furniture, vehicles, or human

body. Thus, it is possible to extract useful information, such as position, movement direction,

speed, and vital signs of a human subject, from received RF signals. Unlike traditional hardware

sensors, RF sensing provides users with low-cost and unobtrusive services. Furthermore, due to

the broadcast nature of RF signals, RF sensing can be used not only to monitor multiple subjects,

but also to capture changes in the environment over a large area.

The gateway layerin Fig. 1.1 (the middle block) is to transfer sensed signals to thecloud

layer (the right block). Usually captured signals are analyzed inthe cloud layer with various signal
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Figure 1.1: The layered architecture for RF sensing in the IoT.

processing techniques or machine learning algorithms. Recently, there has been considerable inter-

est in applying deep learning techniques such as deep autoencoder, convolutional neural network

(CNN), and long short-term memory (LSTM) to RF sensing [3, 4]. Traditional machine learning

algorithms, such as support vector machine (SVM) and K-nearest neighbor (KNN) are effective

for small dataset and easy classification tasks. However, they cannot scale well with the increase

number of samples. Moreover, SVM and KNN need careful data preprocessing and parameters

selection to avoid over-fitting and under-fitting. For example, PCA is always used for feature

extraction for traditional machine learning. However, deep learning can handle the large dataset

and complex classification tasks, which can obtain higher classification accuracy. Moreover, deep

learning models can predict well, although being highly over-parametrized. Finally, deep learning

algorithms also have great potential to process high dimensional data that could not be handled by

shallow machine learning algorithms.
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1.1 General Deep Learning Framework for RF Sensing

1.1.1 The General Framework

In this section, we present a general framework to leverage deep learning techniques for RF sens-

ing applications. As shown in Fig. 1.2, various types of RF signals can be utilized as inputs to deep

learning algorithms, such as WiFi, RFID, UWB, and Acoustics. For RF signals, preprocessing is

an essential step before employing deep learning algorithms in the applications, which is only a

data preparation step. In other words, compared with traditional shallow machine learning tech-

niques such as SVM and KNN, feature extraction is not necessary in our framework, because deep

learning algorithms have an excellent capability to represent data and then extract features from

the data. In fact, pre-processing step needs to firstly obtain calibrated data for RF signals, which

should remove randomness errors from other factors such as the packet boundary detection (PBD)

error, the sampling frequency offset (SFO) and central frequency offset (CFO). For example, cal-

ibrated phase or phase difference between two antennas for RFsignals should be implemented in

preprocessing step. Then, for different deep network architectures including CNN, LSTM, and

autoencoder, the inputs for them are different in preprocessing step. For example, when CNN is

used, images can be constructed from the calibrated phases or amplitudes of signals in the data

preprocessing step [4]. When LSTM is employed, signals can bedivided into small time series in

this step before it is passed on to the LSTM. When autoencoder is exploited, signals can be directly

leveraged for the proposed deep learning framework.

The proposed framework consists of two stages: an offline training stage and an online predic-

tion stage. In the offline stage, training data is used to train the deep leaning model. For different

types of applications, the deep network models exhibit different potentials. For example, CNN

achieves outstanding performance in image classification and pattern recognition, since it emu-

lates the natural visual perception mechanism. On the otherhand, LSTM is effective at processing

variable-length inputs sequences, which makes it highly suited for time related applications. In the

online stage, the test data is fed into the well trained deep network to provide prediction results.
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Figure 1.2: A general deep learning framework for RF sensing.

In this stage, strategies such as Bayesian methods have been used to optimize the output of the

deep network (e.g., for indoor localization) [3]. Sometimes, the output of the deep network can be

directly used as prediction results, such as in some recognition or detection applications. On the

other hand, when the surrounding environment changes, the proposed framework can use transfer

learning for updating training weights with small measurement dataset. In other words, we can

fix weights for low layers and only train weights for the top layer with a classifier, which reduces

greatly training time and data collection time.

1.1.2 RF Sensing Techniques

Various wireless signals have been used for RF sensing, such as WiFi, RFID, UWB, and acoustics

signals.
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WiFi

WiFi is a technology that uses radio waves to provide networkconnectivity for devices based on

the 802.11 standards [5]. Over the years, a series of WiFi standards have been created by the IEEE

LAN/MAN Standards Committee (IEEE 802). Initially, the maximum data rate is 2 Mbps with a

range of 20 m, which has now been increased to 1.73 Gbps with a range of 35 m, as specified in

the IEEE 802.11ac standard [5]. WiFi usually uses the 2.4 GHzand 5.8 GHz bands (while IEEE

802.11ad uses the 60 GHz band). Compared with the 2.4 GHz band,the 5 GHz band provides

higher data rates and lower signal interferences, even though the longer wavelength of the 2.4 GHz

is beneficial to long-range transmissions.

WiFi has become the dominant data access technology for mobile users. WiFi access is ubiq-

uitous in many indoor and outdoor environments, which makesWiFi an ideal candidate for RF

sensing to capture changes in the environment. Compared withtraditional sensors, WiFi is capable

of monitoring a large and crowded area, but WiFi signals are susceptible to interferences.

RFID

RFID is a technique to automatically identify and track tags attached to objects using electromag-

netic fields. The technology has been widely used in almost all industrial sectors, such as storage,

retail stores, factories, and supply chain management [6].Similar to WiFi, RFID signals are also

affected by the surroundings. Features of RFID signals, suchas RSSI and phase obtained from a

reader, can also be utilized to monitor changes of environment.

There are two types of RFID systems, i.e., active and passive RFID systems. An active RFID

system depends on the internal power supply to reflect a response to the reader. Although longer

ranges can be achieved, active RFID systems usually have a higher cost and larger form factor.

Passive RFID tags draw much attention because of its smaller size, lower cost, and no need for

power sources. Passive tags also have great potential in privacy protection because they could only

be read from a specific direction and at a small distance. However, RFID is also limited by its
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extremely simple design. For instance, when a reader attempts to read multiple tags close to each

other, there will be collision among the response signals, which causes data loss.

UWB

UWB is a carrierless communication technology, which achieves high date rates by utilizing ultra-

short pulses with a duration less than 1 nanosecond [7]. To achieve a high data rate, the ultra-short

pulses are transmitted over a wide bandwidth, which is usually larger than 500 MHz. Due to the

ultra-short pulses, the power consumption of UWB is much lower than traditional communication

systems. Ultra-short pulses also mitigate the multipath effect and enable high precision Time of

Flight (TOF) estimation, which is beneficial to many RF sensing applications. UWB signals can

penetrate materials, and many through-wall imaging systems are proposed to exploit this feature.

Furthermore, because of its unique, wide spectrum, UWB signals are robust to interference from

other wireless sources. However, comparing to WiFi and RFID,UWB hardware is usually more

expensive.

Acoustic Signals

Acoustic signals attract researchers’ attention due to theextensive use of microphones and speakers

on mobile devices (i.e., smartphones). Considering the lower propagation speed and narrow band-

width of an acoustics signal, high speed resolution can be provided by acoustics signals, which

means that it is much easier for acoustic signals to capture the small movements of an object.

Acoustic signals have been exploited for activity recognition and speed detection based on ma-

chine learning and Doppler shift. However, comparing with other signals such as WiFi and RFID,

acoustics signals can be easily affected by other sound sources in adjacent frequencies. Acoustics

signals transmitted from smartphones also do not have a strong penetration ability. Thus appli-

cations with smartphone acoustic signals can only be deployed within small distances (e.g., in a

single room). If the acoustic signal is in the audible range,the sound would be annoying to users.
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1.1.3 Deep Learning Techniques

Deep learning is a branch of Machine Learning that achieves multiple levels of representation of

data using a general purpose learning procedure. Recently, there has been extraordinary interests

on applying deep learning to wireless systems, largely motivated by the huge success of deep

learning in a variety of areas, such as natural language processing, pattern recognition, image

classification, and gaming. We discuss the features of threewidely used deep learning models,

including autoencoder, CNN, and LSTM.

Autoencoder Neural Network

An autoencoder neural network is an unsupervised learning algorithm. Its aim is to generate the

output that is an approximation of the input [8]. The architecture of autoencoder is shown in

Fig. 1.3 (top). Generally, an autoencoder is composed with three parts: an input layer, one or more

hidden layers, and an output layer. To reconstruct its own input, the output layer has an identical

number of nodes as the input layer. On the other hand, the number of nodes in the hidden layers

is always smaller than the number of nodes in the input layer,so that a compressed representation

can be extracted from the input data.

There are three stages in the training process, including pretraining, unrolling, and fine-tuning.

In the pretraining stage, each neighboring set of two layersis modeled as a Restricted Boltzmann

Machines (RBM) to approximate a good solution. Then the deep network is unrolled to obtain

the reconstructed input with forward propagation. Next, the backpropagation technique is used

to fine-tune the results. Like PCA, the purpose of the autoencoder is to find low-dimensional

representations of the input data. Naturally, the autoencoder neural network is widely used in data

compression and signal denoising. With the proposed deep learning framework in Fig. 1.2, we can

also use deep autoencoder for activity recognition and health sensing.
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Figure 1.3: Three popular deep learning networks: CNN (top),Autoencoder (middle), LSTM
(bottom).

Convolutional Neural Network

CNN is a widely used deep learning technique, which is inspired by emulating the natural visual

perception mechanism of living creatures, and consequently, CNN has achieved a great success

in computer vision. In 1998, LeCun proposed LeNet-5 [9], which is one of the first architecture

of CNN. As shown in Fig. 1.3, the convolution and subsampling operations of LeNet-5 are first

applied to the input data in the computation units called convolutional layer and subsampling layer,

respectively. After two groups of such computation, the output of the higher layer is processed by

a fully connected traditional neural network, where the final classification results are improved.
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In 2015, a residual learning framework, called ResNet, was proposed by Microsoft Research [10].

A 152-layer residual network achieves an error rate of 3.57%on the ImageNet test set, and won

the 1st place in the ILSVRC 2015 classification competition. To solve the vanishing gradient prob-

lem caused by greatly increased depth of the network, the residual module creates a shortcut path

between the input and output, which implies an identity mapping.

The great performance of CNNs also attracts RF sensing researchers’ attention. For example,

ResLoc [4], an indoor localization system with commodity 5 GHz WiFi, uses bimodal CSI tensor

data to train adeep residual sharing learning. ResLoc has achieved superior performance of indoor

localization and outperformed several existing deep learning based methods.

Long Short-Term Memory

Recurrent neural networks (RNN) are developed to process variable-length input sequences, which

originated from conventional feedforward neural networks. With feedback loops in the recurrent

layer, long-term dependencies could be handled. However, the dependencies also make it hard to

train the RNN, because the gradient of the loss function tendsto either diminish or explode, which

makes gradient-based optimization methods ineffective.

The LSTM model, shown in Fig. 1.3, is proposed to address thisproblem [11]. Unlike the

traditional RNN where the input at each time-step affects every feedback loop, an LSTM unit

utilizes three gates to control the data flow. Aninput gatedecides if a new value could flow

into the memory; aforget gatecontrols if a value should remain in memory; and anoutput gate

determines if the value in memory could be used to compute theoutput of the unit. These gates

ensure that gradient-based optimization methods could be used to train the LSTM. LSTM has

been used widely for machine translation, speech recognition, and time-series prediction. More

and more applications based on LSTM have appeared in the areaof RF sensing.

In the work, we investigate the problem of RF sensing for IoT using CSI and machine learning

techniques. In particular, our work mainly focuses on indoor localization and vital sign monitor-

ing for RF sensing. For indoor localization, we consider different CSI features as fingerprints
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for indoor localization using different deep learning methods. On the other hand, for vital sign

monitoring, we consider breathing and heart rates monitoring for single person and multiple per-

sons using CSI phase differences. Moreover, we study the resilient breathing beats monitoring for

bad locations. In addition, we also exploit the acoustic signal for breathing rate estimation with

smartphones.

The contributions of our work is summarized as follows:

1. We present a novel deep learning based indoor fingerprinting system using CSI, which is

termed DeepFi. Based on three hypotheses on CSI, the DeepFi system architecture includes

an off-line training phase and an on-line localization phase. In the off-line training phase,

deep learning is utilized to train all the weights of a deep network as fingerprints. Moreover,

a greedy learning algorithm is used to train the weights layer-by-layer to reduce complexity.

In the on-line localization phase, we use a probabilistic method based on the radial basis

function to obtain the estimated location. Experimental results are presented to confirm that

DeepFi can effectively reduce location error compared withthree existing methods in two

representative indoor environments.

2. We propose PhaseFi, a fingerprinting system for indoor localization with calibrated CSI

phase information. In PhaseFi, the raw phase information isfirst extracted from the multi-

ple antennas and multiple subcarriers of the IEEE 802.11n network interface card (NIC) by

accessing the modified device driver. Then a linear transformation is applied to extract the

calibrated phase information, which we prove to have a bounded variance. For the offline

stage, we design a deep network with three hidden layers to train the calibrated phase data,

and employ the weights of the deep network to represent fingerprints. A greedy learning

algorithm is incorporated to train the weights layer-by-layer to reduce computational com-

plexity, where a sub-network between two consecutive layers forms a RBM. In the online

stage, we use a probabilistic method based on the radial basis function (RBF) for online
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location estimation. The proposed PhaseFi scheme is implemented and validated with ex-

tensive experiments in two representation indoor environments. It is shown to outperform

three benchmark schemes based on CSI or RSS in both scenarios.

3. We study fingerprinting based indoor localization in commodity 5GHz WiFi networks. We

first theoretically and experimentally validate three hypotheses on the CSI data of 5GHz

OFDM channels. We then propose BiLoc, bi-modality deep learning for indoor localization

using commodity WiFi devices. We develop a deep learning algorithm to exploit bi-modal

data, i.e., estimated angle of arrival (AOA) and average amplitude (which are calibrated

CSI data with several proposed techniques), in both the offline and online stages of indoor

fingerprinting. The proposed BiLoc system is implemented with commodity WiFi devices.

Its superior performance is validated with extensive experiments under three typical indoor

environments and through comparison with three benchmark schemes.

4. We propose CiFi, deep convolutional neural networks (DCNN)for indoor localization with

commodity 5GHz WiFi. First, by leveraging a modified device driver, we can extract phase

data of CSI, which is used to estimate AOA. We then create estimated AOA images as input

to the DCNN, to train the weights in the offline phase. The location of mobile device is

predicted based on the trained DCNN and new CSI AOA image. We implement the proposed

CiFi system with commodity Wi-Fi devices in the 5GHz band and verify its performance

with extensive experiments in two representative indoor environments.

5. We propose ResLoc, a deep residual sharing learning based system for indoor localization

with CSI tensor data. First, we introduce CSI data in wireless systems and discuss how to

build CSI tensor data for indoor localization. Then, we design the ResLoc system, which

employs two channels CSI tensor data to train the deep networkby using the proposed deep

residual sharing learning in the offline phase. For online test phase, we use newly received
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CSI tensor data to estimate the location of the mobile device based on the enhanced prob-

abilistic method. Finally, the experimental results show the proposed ResLoc system can

obtain the decimeter level localization accuracy.

6. We design PhaseBeat system to leverage CSI phase differencedata to monitor breathing and

heart beats with commodity WiFi device. First, we deeply analyze the measured phase errors

and prove the phase difference with the same frequency with breathing rate. Then, we imple-

ment data preprocessing for the collected CSI phase difference data to obtain the denoised

breathing signal and the restructured heart signal. Moreover, we leverage the peak detection

method for breathing rate estimation and FFT based method for heart signal estimation. Our

experimental results demonstrate that our PhaseBeat systemcan obtain better performances

in different environmental parameters.

7. We propose TensorBeat, a system to employ CSI phase difference data to intelligently es-

timate breathing rates for multiple persons with commodityWiFi devices. The main idea

is to leverage the tensor decomposition technique to handlethe CSI phase difference data.

The proposed TensorBeat scheme first obtains CSI phase difference data between pairs of

antennas at the WiFi receiver to create CSI tensor data. Then Canonical Polyadic (CP) de-

composition is applied to obtain the desired breathing signals. A stable signal matching

algorithm is developed to find the decomposed signal pairs, and a peak detection method is

applied to estimate the breathing rates for multiple persons. Our experimental study shows

that TensorBeat can achieve high accuracy under different environments for multi-person

breathing rate monitoring.

8. We present ResBeat, a commodity 5 GHz WiFi based system to exploit bimodal CSI in-

cluding amplitude and phase difference, for realtime, long-term, and contact-free breathing

monitoring. Specifically, we first present an analysis of breathing signal anomaly based on

bimodal CSI data. Then, we implement the data preprocessing,adaptive signal selection,
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and breathing signal monitoring modules of ResBeat, and employ peak detection to esti-

mate breathing rates. We conduct extensive experiments on breathing rate monitoring under

three different environments, where superior performanceover two alternative methods is

validated.

9. We present a SonarBeat system to leverage a phase based active sonar to monitor breathing

rates with smartphones. We design and implement the SonarBeat system, with components

including signal generation, data extraction, received signal preprocessing, and breathing

rate estimation, with Android smartphones. Our experimental results validate the superior

performance of SonarBeat in different indoor environment settings.
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Chapter 2

DeepFi: CSI Amplitude based Fingerprinting for Indoor Localization Using Deep Learning

2.1 Introduction

With the proliferation of mobile devices, indoor localization has become an increasingly important

problem. Unlike outdoor localization, such as the Global Positioning System (GPS), that has

line-of-sight (LOS) transmission paths, indoor localization faces a challenging radio propagation

environment, including multipath effect, shadowing, fading and delay distortion [12, 13, 14, 15].

In addition to the high accuracy requirement, an indoor positioning system should also have a low

complexity and short online process time for mobile devices. To this end, fingerprinting-based

indoor localization becomes an effective method to satisfythese requirements, where an enormous

amount of measurements are essential to build a database to facilitate real-time position estimation.

Fingerprinting based localization usually consists of twobasic phases: (i) the off-line phase,

which is also called the training phase, and (ii) the on-linephase, which is also called the test

phase [16]. The training phase is for database construction, when survey data related to the posi-

tion marks is collected and pre-processed. In the off-line training stage, machine learning methods

can be used to train fingerprints instead of storing all the received signal strength (RSS) data. Such

machine learning methods not only reduce the computationalcomplexity, but also obtain the core

features in the RSS for better localization performance. KNN, neural networks, and support vector

machine, as popular machine learning methods, have been applied for fingerprinting based indoor

localization. KNN uses the weighted average ofK nearest locations to determine an unknown

location with the inverse of the Euclidean distance betweenthe observed RSS measurement and
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itsK nearest training samples as weights [12]. A limitation of KNN is that it needs to store all the

RSS training values. Neural networks utilizes the back-propagation algorithm to train weights, but

it considers one hidden layer to avoid error propagation in the training phase and needs labeled data

as a supervised learning [17]. Support vector machine uses kernel functions to solve the random-

ness and incompleteness of the RSS values, but has high computing complexity [18]. In the on-line

phase, a mobile device records real time data and tests it using the database. The test output is then

used to estimate the position of the mobile device, by searching each training point to find the most

closely matched one as the target location. Besides such nearest estimation method, an alternative

matching algorithm is to identify several close points eachwith a maximum likelihood probability,

and to calculate the estimated position as the weighted average of the candidate positions.

Many existing indoor localization systems use RSS as fingerprints due to its simplicity and

low hardware requirements. For example, the Horus system uses a probabilistic method for loca-

tion estimation with RSS data [19]. Such RSS based methods havetwo disadvantages. First, RSS

values usually have a high variability over time for a fixed location, due to the multipath effects in

indoor environments. Such high variability can introduce large location error even for a stationary

device. Second, RSS values are coarse information, which does not exploit the many subcarriers

in an orthogonal frequency-division multiplexing (OFDM) for richer multipath information. It is

now possible to obtain CSI from some WiFi network interface cards (NIC), which can be used

as fingerprints to improve the performance of indoor localization [20, 21]. For instance, the FIFS

scheme uses the weighted average CSI values over multiple antennas [22]. In addition, the PinLoc

system also exploits CSI information, while considering1× 1 m2 spots for training data [23].

In this chapter, we propose a deep learning based fingerprinting scheme to mitigate the several

limitations of existing machine learning based methods. The deep learning based scheme can fully

explore the feature of wireless channel data and obtain the optimal weights as fingerprints. It

also incorporates a greedy learning algorithm to reduce computational complexity, which has been

successfully applied in image processing and voice recognition [24]. The proposed scheme is

based on CSI to obtain more fine-grained information about thewireless channel than RSS based
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schemes. The proposed scheme is also different from the existing CSI based schemes, in that it

incorporates 90 magnitudes of CSI values collected from the three antennas of the Intel’s IWL

5300 NIC to train the weights of a deep network with deep learning.

In particular, we present DeepFi, a deep learning based indoor fingerprinting scheme using

CSI. We first introduce the background of CSI and present three hypotheses on CSI. We then

present the DeepFi system architecture, which includes an off-line training phase and an on-line

localization phase. In the training phase, CSI information for all the subcarriers from three anten-

nas are collected from accessing the device driver and are analyzed with a deep network with four

hidden layers. We propose to use the weights in the deep network to represent fingerprints, and

to incorporate a greedy learning algorithm using a stack of RBMs to train the deep network in a

layer-by-layer manner to reduce the training complexity. The greedy algorithm first estimates the

parameters of the first layer RBM to model the input data. Then the parameters of the first layer are

frozen, and we obtain the samples from the conditional probability to train the second layer RBM

and so forth. Finally, we can obtain the parameters of the fourth layer RBM with the above greedy

learning algorithm. Moreover, for each layer RBM model, we usethe contrastive divergence with

1 step iteration (CD-1) method to update weights, which has lower time complexity than other

schemes such as Markov chain Monte Carlo (MCMC) [25]. In the on-line localization phase, a

probabilistic data fusion method based on radial basis function is developed for online location

estimation using multiply packets. To reduce the computational complexity for online localiza-

tion, packets are divided into several batches, each of which contains the same number of packets.

Because packets are processed in parallel in batches, we can significantly shorten the processing

time when dealing with a large amount of packets.

The proposed DeepFi scheme is validated with extensive experiments in two representative

indoor environments, i.e., a living room environment and a computer laboratory environment.

DeepFi is shown to outperform several existing RSSI and CSI based schemes in both experi-

ments. We also examine the effect of different DeepFi parameters on localization accuracy and

execution time, such as using different number of antennas,using different number of test packets,
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and different number of packets per batch. Finally, we investigate the effect of different propaga-

tion environments on the DeepFi performance, such as replaced obstacles, human mobility, and

the training grid size in our experimental study. Our experimental results confirm that DeepFi can

perform well in these scenarios.

The remainder of this chapter is organized as follows. We review related work in Section 2.2.

The background and hypotheses are presented in Section 2.3.The DeepFi system is presented in

Section 2.4 and evaluated in Section 2.5. Section 2.6 concludes this chapter.

2.2 Related Work

There has been a considerable literature on indoor localization [26]. Early indoor location service

systems include (i) Active Badge equipped mobiles with infrared transmitters and buildings with

several infrared receivers [27], (ii) the Bat system that hasa matrix of RF-ultrasound receivers

deployed on the ceiling [28], and (iii) the Cricket system that equipped buildings with combined

RF/ultrasound beacons [29]. All of these schemes achieve high localization accuracy due to the

dedicated infrastructure. Recently, considerable effortsare made on indoor localization systems

based on new hardware, with low cost, and high accuracy. These recent work mainly fall into

three categories: Fingerprinting-based, Ranging-based and AOA-based, which are discussed in

this chapter.

2.2.1 Fingerprinting-based Localization

Fingerprinting-based Localization requires a training phase to survey the floor plan and a test

phase to search for the most matched fingerprint for locationestimation [30, 31]. Recently, dif-

ferent forms of fingerprint have been explored, including WiFi [19], FM radio [32], RFID [33],

acoustic [34], GSM [35], light [36] and magnetism [37], where WiFi-based fingerprinting is the

dominant method because WiFi signal is ubiquitous in the indoor environments. The first work

based on WiFi is RADAR [16], which builds fingerprints of RSS using one or more access points.

It is a deterministic method using KNN for position estimation. Horus [19] is an RSS based
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scheme utilizing probabilistic techniques to improve localization accuracy, where the RSS from an

access point is modeled as a random variable over time and space. In addition to RSS, channel

impulse response of WiFi is considered as a location-related and stability signature, with which

the fine-grained characteristics of wireless channels can be exploited to achieve higher localiza-

tion accuracy. For example, FIFS [22] and PinLoc [23] use CSI obtained through the off-the-shelf

IWL 5300 NIC to build reliable fingerprints. Although these techniques achieve high localization

precision, they need a large amount of calibration to build the fingerprint database via war-driving,

as well as manually matching every test location with the corresponding fingerprint. Currently,

time-reversal based methods are proposed for obtaining centimeter-accuracy indoor localization

using a frequency hopping approach [38] and a multi-antennaapproach [39]. In fact, these meth-

ods require a large number of fingerprints collected in training phase and are implemented in a

small area.

Crowdsourcing is proposed to reduce the burden of war-driving by sharing the load to multi-

ple users. It consists of two main steps: (i) estimations of user trajectories, and (ii) construction of

a database mapping fingerprints to user locations [40]. Recently, Zee [41] uses the inertial sensors

and particle filtering to estimate a user’s walking trajectory, and to collect fingerprints with WiFi

data as crowd-sourced measurements for calibration. Similarly, LiFS [42] also uses user trajecto-

ries to obtain fingerprint values and then builds the mappingbetween the fingerprints and the floor

plan. Crowdsourcing can also be used to detect indoor contexts. For example, CrowdInside [43]

and Walkie-Markie [44] can detect the shape of the floor plan and build the pathway to obtain the

crowdsourced user’s fingerprints. Moreover, Jigsaw [45] and Travi-Navi [46] combine vision and

mobility obtained from a smartphone to build user trajectories. Although crowdsourcing does not

require a large amount of calibration effort, it obtains coarse-grained fingerprints, which leads to

low localization accuracy in general.
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2.2.2 Ranging-based Localization

Ranging-based localization computes distances to at least three access points and leverages geo-

metrical models for location estimation. These schemes aremainly classified into two categories:

power-based and time-based. For power-based approaches, the prevalent log-distance path loss

(LDPL) model is used to estimate distances based on RSS, wheresome measurements are utilized

to train the parameters of the LDPL model [47]. For example, EZ [48] is a configuration-free lo-

calization scheme, where a genetic algorithm is used for solving the RSS-distance equations. The

LDPL model and truncated singular value decomposition (SVD) are used to build a RSS-distance

map for localization, which is adaptive to indoor environmental dynamics [47]. CSI-based ranging

is proposed to overcome the instability of RSS in indoor environments. For instance, FILA exploits

CSI from the PHY Layer to mitigate the multipath effect in the time-domain, and then trains the

parameters of LDPL model to obtain the relationship betweenthe effective CSI and distance [49].

Acoustic-based ranging approaches are developed for improving indoor localization preci-

sion. H. Liuetal propose a peer assisted localization technique based on smartphones to compute

accurate distance estimation among peer smartphones with acoustic ranging [50]. Centour [51]

leverages a Bayesian framework combining WiFi measurementsand acoustic ranging, where two

new acoustic techniques are proposed for ranging under NLOSand locating a speaker-only device

based on estimating distance differences. Guoguo [52] is a smartphone-based indoor localization

system, which estimates a fine-grained time-of-arrival (TOA) using beacon signals and performs

NLOS identification and mitigation.

2.2.3 AOA-based Localization

Indoor localization based on AOA utilizes multiple antennas to estimate the incoming angles and

then uses geometric relationships to obtain the user location. This technique is not only with zero

start-up cost, but also achieves higher accuracy than othertechniques such as RF fingerprinting or

ranging-based systems. The challenge of this technique is how to improve the resolution of the

antenna array. The recently proposed CUPID system [53] adopts the off-the-shelf Atheros chipset
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with three antennas, and can obtain CSI to estimate AOA, achieving a mean error about 20 degrees

with the MUSIC algorithm. The relatively large error is mainly due to the low resolution of the

antenna array. For high localization accuracy, the Array-Track system [54] is implemented with

two WARP systems, which are FPGA-based software defined radios. It incorporates a rectangular

array of 16 antennas to compute the AOA, and then uses spatialsmoothing to suppress the effect of

multipath on AOA. However, Array-Track requires a large number of antennas, which is generally

not available for commodity mobile devices.

On the other hand, some systems, such as LTEye [55], Ubicarse[56], Wi-Vi [57], and PinIt [58],

use Synthetic Aperture Radar (SAR) to mimic an antenna array toimprove the resolution of angles.

the main idea of SAR is to use a moving antenna to obtain signalsnapshots as it moves along a

trajectory, and then to utilize these snapshots to mimic a large antenna array along the trajectory.

However, it requires accurate control of the speed and trajectory by using a moving antenna placed

on an iRobot Create robot.

2.3 Background and Hypotheses

2.3.1 Channel State Information

Thanks to the NICs, such as Intel’s IWL 5300, it is now easier to conduct channel state mea-

surements than in the past when one has to detect hardware records for physical layer (PHY)

information. Now CSI can be retrieved from a laptop by accessing the device drive. CSI records

the channel variation experienced during propagation. Transmitted from a source, a wireless sig-

nal may experience abundant impairments caused by, e.g., the multipath effect, fading, shadowing,

and delay distortion. Without CSI, it is hard to reveal the channel characteristics with the signal

power only.

Let ~X and~Y denote the transmitted and received signal vectors. We have

~Y = CSI · ~X + ~N, (2.1)
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where vector~N is the additive white Gaussian noise and CSI represents the channel’s frequency

response, which can be estimated from~X and~Y .

The WiFi channel at the 2.4 GHz band can be considered as a narrowband flat fading channel

for OFDM system. The Intel WiFi Link 5300 NIC implements an OFDM system with 56 subcarri-

ers, 30 out of which can be read for CSI information via the device driver. The channel frequency

response CSIi of subcarrieri is a complex value, which is defined by

CSIi = |CSIi| exp {j∠CSIi}. (2.2)

where|CSIi| and∠CSIi are the amplitude response and the phase response of subcarrier i, respec-

tively. In this chapter, the proposed DeepFi framework is based on these 30 subcarriers (or, CSI

values), which can reveal much richer channel properties than RSSI.

2.3.2 Hypotheses

We next present three hypotheses about the CSI data, which arevalidated with the statistical results

through our measurement study.

Hypothesis 1

CSI amplitude values exhibit great stability for continuously received packets at a fixed location,

compared with RSS values.

CSI amplitude values reflect channel properties in the frequency domain and exhibit great

stability over time for a given location. Fig. 2.1 plots the cumulative distribution function (CDF)

of the standard deviations of normalized CSI and RSS amplitudes for 150 sampled locations. At

each location, CSI and RSS values are measured from 50 receivedpackets with the three antennas

of Intel WiFi Link 5300 NIC. It can be seen that for CSI amplitudevalues, 90% of the standard

deviations are below 10% of the average value; for RSS values,however, 60% of the standard

deviations are below 10% of the average value. Therefore CSI is much more stable than RSS. Our
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Figure 2.1: CDF of the standard deviations of CSI and RSS amplitudes for 150 sampled locations.

measurements last a long period including both office hours and quiet hours. No obvious difference

in the stability of CSI for the same location is observed at different times. On the contrary, RSS

values exhibit large variations even at the same position. Therefore, CSI amplitude values are

leveraged as the feature of deep learning in the DeepFi system.

Hypothesis 2

Because of the multipath effect and channel fading indoor environment, the number of clusters of

CSI values over subcarriers varies at different locations.

CSI amplitude values reflect channel frequency responses with abundant multipath compo-

nents and channel fading. Our study of channel frequency responses shows that there are several

dominant clusters for CSI amplitude values, where each cluster consists of a subset of subcarri-

ers with similar CSI amplitudes values. To find the feature of clusters of CSI amplitudes values,

we draw the CDF and the two-dimensional (2D) contour of the number of clusters for CSI am-

plitude values for 50 different locations in the living roomenvironment in Fig. 2.2 and Fig. 2.3,

respectively. For every location, CSI values are measured from 50 received packets with the three

antennas of Intel WiFi Link 5300 NIC. Based on Fig. 2.2 and Fig. 2.3, we can see that the number

of clusters of CSI amplitude values varies at 50 different locations. Moreover, at most of locations,

CSI amplitude values exhibit two or three clusters. Some locations have one cluster because of
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Figure 2.2: CDF of the number of clusters of CSI amplitude values at 50 different locations.
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Figure 2.3: 2D contour of the number of clusters of CSI amplitude values at 50 different locations.

less reflection and diffusion. Some other locations with fewfive or six clusters may suffer from the

severe multipath effect.

To detect all possible numbers of clusters, we measure CSI amplitude values from received

packets for a long period at each location, which can be used for training weights in deep network.

In addition, more packet transmissions will be helpful to reveal the comprehensive properties at

each location. In our experiments, we consider 500 and 1000 packets for training in the living room

environment and the computer laboratory environment, respectively, more than the 60 packets used

in FIFS.
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Figure 2.4: Amplitudes of channel frequency response measured at the three antennas of the Intel
WiFi Link 5300 NIC (each is plotted in a different color) for 50 received packets.

Hypothesis 3

The three antennas of the Intel WiFi Link 5300 NIC have different CSI features, which can be

exploited to improve the diversity of training and test samples.

Intel WiFi Link 5300 is equipped with three antennas. We find that the channel frequency

responses of the three antennas are highly different, even for the same packet reception. In Fig. 2.4,

amplitudes of channel frequency response from the three antennas exhibit different properties. In

FIFS, CSI amplitude values from the three antennas are simplyaccumulated to produce an average

value. In contrast, DeepFi aims to utilize their variability to enhance the training and test process

in deep learning. The 30 subcarriers can be treated as 30 nodes and used as input data of visible

variability for deep learning. With the three antennas, there are 90 nodes that can be used as input

data for deep learning. The greatly increased number of nodes for input data can improve the

diversity of training and test samples, leading to better performance of localization if reasonable

parameters are chosen.
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Figure 2.5: The DeepFi architecture.

2.4 The DeepFi System

2.4.1 System Architecture

Fig. 2.5 shows the system architecture of DeepFi, which onlyrequires one access point and one

mobile device equipped with an Intel WiFi link 5300 NIC. At themobile device, raw CSI values

can be read from the modified chipset firmware for received packets. The Intel WiFi link 5300

NIC has three antennas, each of which can collect CSI data from30 different subcarriers. We

can thus obtain 90 raw CSI measurements for each packet reception. Unlike FIFS that averages

over multiple antennas to reduce the received noise, our system uses all CSI values from the three

antennas for indoor fingerprint to exploit diversity of the channel. Since it is hard to use the phases

of CSI for localization, we only consider the amplitude responses for fingerprinting In this chapter.

On the other hand, since the input values should be limited inthe range (0, 1) for effective deep

learning, we normalize the amplitudes of the 90 CSI values forboth the offline and online phases.
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In the offline training phase, DeepFi generates feature-based fingerprints, which are highly

different from traditional methods that directly store CSI values. Feature-based fingerprints utilize

a large number of weights obtained by deep learning for different locations, which effectively

describe the characteristics of CSI for each location and reduce noise. Meanwhile these weights

can indirectly extract the feature of clusters hidden in CSI values. The feature-based fingerprints

server can store the weights for different training locations. In the online localization phase, the

mobile device can estimate its position with a data fusion approach.

2.4.2 Weight Training with Deep Learning

Fig. 2.6 illustrates how to train weights based on deep learning. There are three stages in the

procedure, including pretraining, unrolling, and fine-tuning [8]. A deep network with four hidden

layers is adopted, where every hidden layer consists of a different number of neurons. In order to

reduce the dimension of CSI data, we assume that the number of neurons in a higher hidden layer

is more than that in a lower hidden layer. LetK1, K2, K3 andK4 denote the number of neurons in

the first, second, third, and fourth hidden layer, respectively. It follows thatK1 > K2 > K3 > K4.

In addition, we propose a new approach to represent fingerprints, i.e., using the weights be-

tween connected layers. DefineW1,W2,W3 andW4 as the weights between the normalized mag-

nitudes of CSI values and the first hidden layer, the first and second hidden layer, the second and

third hidden layer, and the third and fourth hidden layer, respectively. The key idea is that after

training the weights in the deep network, we can store them asfingerprints to facilitate localization

in the on-line test stage. Moreover, we definehi as the hidden variable at layeri, for i = 1, 2, 3, 4,

respectively, and letv denote the input data, i.e., the normalized CSI magnitudes.

We represent the deep network with four hidden layers with a probabilistic generative model,

which can be written as

Pr(v, h1, h2, h3, h4)

= Pr(v|h1) Pr(h1|h2) Pr(h2|h3) Pr(h3, h4). (2.3)
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Figure 2.6: Weight training with deep learning.

Since the nodes in the deep network are mutually independent,Pr(v|h1),Pr(h1|h2), andPr(h2|h3)

can be represented by





Pr(v|h1) =∏90
i=1 Pr(vi|h1)

Pr(h1|h2) =∏K1

i=1 Pr(h
1
i |h2)

Pr(h2|h3) =∏K2

i=1 Pr(h
2
i |h3).

(2.4)
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In (2.4),Pr(vi|h1), Pr(h1i |h2), andPr(h2i |h3) are described by the sigmoid belief network in the

deep network, as





Pr(vi|h1) = 1/
(
1 + exp (−b0i −

∑K1

j=1W
i,j
1 h1j)

)

Pr(h1i |h2) = 1/
(
1 + exp (−b1i −

∑K2

j=1W
i,j
2 h2j)

)

Pr(h2i |h3) = 1/
(
1 + exp (−b2i −

∑K3

j=1W
i,j
3 h3j)

)
(2.5)

whereb0i , b
1
i andb2i are the biases for uniti of input datav, unit i of layer 1, and uniti of layer 2,

respectively.

The joint distributionPr(h3, h4) can be expressed as a RBM [25] with a bipartite undirected

graphical model [25], which is given by

Pr(h3, h4) =
1

Z
exp(−E(h3, h4)), (2.6)

whereZ =
∑

h3

∑
h4 exp(−E(h3, h4)) andE(h3, h4) = −∑K3

i=1 b
3
ih

3
i−
∑K4

j=1 b
4
jh

3
j−
∑K3

i=1

∑K4

j=1W
i,j
4 h3ih

4
j .

In fact, since it is difficult to find the joint distributionPr(h3, h4), we use CD-1 method [25] to ap-

proximate it, which is given by





Pr(h3|h4) =∏K3

i=1 Pr(h
3
i |h4)

Pr(h4|h3) =∏K4

i=1 Pr(h
4
i |h3),

(2.7)

wherePr(h3i |h4), andPr(h4i |h3) are described by the sigmoid belief network, as





Pr(h3i |h4) = 1/
(
1 + exp (−b3i −

∑K4

j=1W
i,j
4 h4j)

)

Pr(h4i |h3) = 1/
(
1 + exp (−b4i −

∑K3

j=1W
i,j
4 h3j)

)
.

(2.8)

Finally, the marginal distribution of input data for the deep belief network is given by

Pr(v) =
∑

h1

∑

h2

∑

h3

∑

h4

Pr(v, h1, h2, h3, h4). (2.9)
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Due to the complex model structure with the large number of neurons and multiple hidden

layers in the deep belief network, it is difficult to obtain the weights using the given input data

with the maximum likelihood method. In DeepFi, we adopt a greedy learning algorithm using a

stack of RBMs to train the deep network in a layer-by-layer manner [25]. This greedy algorithm

first estimates the parameters{b0, b1,W1} of the first layer RBM to model the input data. Then the

parameters{b0,W1} of the first layer are frozen, and we obtain the samples from the conditional

probabilityPr(h1|v) to train the second layer RBM (i.e., to estimate the parameters{b1, b2,W2}),

and so forth. Finally, we can obtain the parameters{b3, b4,W4} of the fourth layer RBM with the

above greedy learning algorithm.

For the layeri RBM model, we use CD-1 method to update weightsWi. We first gethi based

on the samples from the conditional probabilityPr(hi|hi−1), and then obtain̂hi−1 based on the

samples from the conditional probabilityPr(hi−1|hi). Finally we obtain̂hi using the samples from

the conditional probabilityPr(hi|ĥi−1). Thus, we can update the parameters as follows.





Wi = Wi + α(hi−1hi − ĥi−1ĥi)

bi = bi + α(hi − ĥi)

bi−1 = bi−1 + α(hi−1 − ĥi−1),

(2.10)

whereα is the step size. After the pretraining stage, we need to unroll the deep network to obtain

the reconstructed datâv using the input data with forward propagation. The error between the

input datav and the reconstructed datav̂ can be used to adjust the weights at different layers with

the back-propagation algorithm. This procedure is called fine-tuning. By minimizing the error, we

can obtain the optimal weights to represent fingerprints, which are stored in a database for indoor

localization in the on-line stage.

The pseudocode for weight learning with multiply packets isgiven in Algorithm 1. We first

collectm packet receptions for each of theN training locations, each of which has 90 CSI values,

as input data. Letv(t) be the input data from packett. The output of the algorithm consists ofN

groups of fingerpirnts, each of which has eight weight matrices. In fact, we need to train a deep
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network for each of theN training locations. The training phase includes three steps: pretraining,

unrolling and fine-tuning. For pretraining, the deep network with four hidden layers is trained with

the greedy learning algorithm. The weight matrix and bias ofevery layer are initialized first, and

are then iteratively updated with the CD-1 method for obtaining a near optimal weight, wherem

packets are trained and iteratively become output as input of the next hidden layer (lines 4-21).

Once weight training is completed, the input data will be unrolled to obtain the reconstructed

data. First, we use the input data to computePr(hi|hi−1) based on the sigmoid with inputhi−1

to obtain the coding outputh4, which is a reduced dimension data (lines 23-26). Then, by com-

putingPr(ĥi−1|ĥi) based on the sigmoid with inputĥi, we can sample the reconstructed dataĥ0,

where the weights of the deep network are only transposed, thus reducing the time complexity

of weight learning (lines 27-31). Once the reconstructed data ĥ0 if obtained, the unsupervised

learning method for the deep network becomes a supervised learning problem as in the fine-tuning

phase. Thus, we compute the error between the input datav = h0 and reconstructed datâh0 to

successively update the weight matrix with the standard back-propagation algorithm (lines 33-34).

2.4.3 Location Estimation based on Data Fusion

After off-line training, we need to test it with positions that are different from those used in the

training stage. Because the probabilistic methods have better performance than deterministic ones,

we use the probability model based on Bayes’ law, which is given by

Pr(Li|v) =
Pr(Li) Pr(v|Li)∑N

i=1 Pr(Li) Pr(v|Li)
, (2.11)

whereLi is reference locationi, Pr(Li|v) is the posteriori probability,Pr(Li) is the prior prob-

ability that the mobile device is determined to be at reference locationi, andN is the number

of reference locations. In addition, we assume thatPr(Li) is uniformly distributed in the set
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Algorithm 1: Training for Weight Learning

1 Input: m packet receptions each with 90 CSI values for each of theN training locations;
2 Output: N groups of fingerprints each consisting of eight weight matrices;
3 for j = 1 : N do
4 // pretraining;
5 for i = 1 : 4 do
6 InitializeW i = 0.1 · randn, bi = 0, //randn is the standard Gaussian distribution

function;
7 for k = 1 : maxepochdo
8 for t = 1 : m do
9 h0 = v(t);

10 ComputePr(hi|hi−1) based on the sigmoid with inputhi−1;
11 Samplehi fromPr(hi|hi−1);
12 ComputePr(hi−1|hi) based on the sigmoid with inputhi;

13 Samplêhi−1 fromPr(hi−1|hi);
14 ComputePr(hi|ĥi−1) based on the sigmoid with inputĥi−1;

15 Samplêhi fromPr(hi|ĥi−1);

16 Wi = Wi + α(hi−1hi − ĥi−1ĥi);

17 bi = bi + α(hi − ĥi);

18 bi−1 = bi−1 + α(hi−1 − ĥi−1);
19 end
20 end
21 end
22 //unrolling;
23 for i = 1 : 4 do
24 ComputePr(hi|hi−1) based on the sigmoid with inputhi−1;
25 Samplehi fromPr(hi|hi−1);
26 end
27 Setĥi = hi;
28 for i = 4 : 1 do
29 ComputePr(ĥi−1|ĥi) based on the sigmoid with inputĥi;

30 Samplêhi−1 fromPr(ĥi−1|ĥi);
31 end
32 //fine-tuning;

33 Obtain the error between input datah0 and reconstructed datâh0 ;
34 Update the eight weights using the error with back-propagation;
35 end

{1, 2, · · · , N}, and thusPr(Li) = 1/N . It follows that

Pr(Li|v) =
Pr(v|Li)

1
N∑N

i=1 Pr(v|Li)
1
N

=
Pr(v|Li)∑N

i=1 Pr(v|Li)
. (2.12)
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Based on the deep network model, we definePr(v|Li) as the radial basis function (RBF) in

the form of a Gaussian function, which is formulated as

Pr(v|Li) = exp

(
−‖v − v̂‖

λσ

)
, (2.13)

wherev is the input data,̂v is the reconstructed input data,σ is the variance of input data,λ is the

coefficient of variation (CV) of input data. In fact, we use multiple packets to estimate the location

of a mobile device, thus improving the indoor localization accuracy. Forn packets, we need to

compute the average value of RBF, which is given by

Pr(v|Li) =
1

n

n∑

i=1

exp

(
−‖vi − v̂i‖

λσ

)
. (2.14)

Finally, the position of the mobile device can be estimated as a weighted average of all the

reference locations, as

L̂ =
N∑

i=1

Pr(Li|v)Li. (2.15)

The pseudocode for online location estimation with multiply packets is presented in Algo-

rithm 2. The input to the algorithm consists ofn packet receptions, each of which has 90 CSI

values, andN groups of fingerprints obtained in the off-line training phase, each of which has

eight weight matrices for each known training locations. First, we compute the variance of the 90

CSI values from each packet. We also group then packets intoa batches, each withb packets, for

accelerating the matching algorithm (lines 3-4). To obtainthe posterior probability for different lo-

cations, we need to compute the RBF as likelihood function based on the reconstructed CSI values

and input CSI values, where the reconstructed CSI values are obtained by recursively unrolling the

deep network using the input data with forward propagation.For batchj, the reconstructed CSI

valuesV̂j are obtained by iterating the input dataVj based on the eight weight matrices (lines 10-

12). Then the sum of the RBFs (i.e., thedj ’s) is obtained by summing over the 90 CSI values and
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Algorithm 2: Online Location Estimation

1 Input: n packet receptions each with 90 CSI values,N groups of fingerprints each with
eight weight matrices and the known training location;

2 Output: estimated location̂L;
3 Compute the variance of CSI valuesσ;
4 Group then packets intoa batches, each withb packets;
5 for i = 1 : N do
6 for j = 1 : a do
7 //compute the reconstructed CSIV̂j with b packets;

8 V̂j = Vj ;
9 //whereVj is the matrix with 90 rows andb columns;

10 for k = 1 : 8 do
11 V̂j = 1/(1 + exp(−V̂j ·Wk));
12 end

13 dj =
∑b

m=1 exp
(
− 1

λσ

∑90
t=1

√
(V tm

j − V̂ tm
j )2

)
;

14 //whereV tm
j is the element at rowt and columnm in matrixVj , V̂ tm

j is the element at row

t and columnm in matrix V̂j ;
15 end
16 Pi =

1
n

∑a
j=1 dj ;

17 end
18 // Obtain the posterior probability for different locations;
19 for i = 1 : N do
20 Pri = Pi/

∑N
i=1 Pi;

21 end
22 // Compute the estimated location;

23 L̂ =
∑N

i=1 PriLi ;

theb packets in each batch (line 13). In addition, the expected RBF is computed by averaging over

all then packets (line 16). Then, we compute the the posteriori probability Pri for every reference

location, thus obtaining the estimated position of the mobile device as the weighted average of all

the reference locations (lines 19-23).

2.5 Experiment Validation

2.5.1 Experiment Methodology

Our experiment testbed is implemented with two major components, the access point, which is a

TP Link router, and the mobile terminal, which is a Dell laptop equipped with the IWL 5300 NIC.
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At the mobile device, the IWL 5300 NIC receives wireless signals from the access point, and then

stores raw CSI values in the firmware. In order to read CSI valuesfrom the NIC driver, we install

the 32-bit Ubuntu Linux, version 10.04LTS of the Server Edition on a Dell laptop and modify the

kernel of the wireless driver. In the new kernel, raw CSI values can be transferred to the laptop and

can be conveniently read with a C program.

At the access point, the TL router is in charge of continuously transmitting packets to the

mobile device. Since the router needs to respond to a mobile device who requires localization

service, we use Ping to generate the request and response process between the laptop and the

router. Initially, the laptop Pings the router, and then therouter returns a packet to the laptop. In

our experiment, we design a Java program to implement continuous Pings at a rate of 20 times

per second. There are two reasons to select this rate. First,if we run Ping at a lower rate, no

enough packets will be available to estimate a mobile deviceposition. Second, if too many Pings

are sent, there may not be enough time for the laptop to process the received packets. Also, since

we need to continuously estimate the device position, it maycause buffer overflow and packet loss.

Numerically, we consider that the rate of 20 times per secondis the order of magnitude from 10

to 100. Because we need 100 packets for online localization, it takes few seconds to complete

the data collection. If we select the rate of 1 time per second, more than 1 minute are required to

collect data, which is not acceptable for online phase. On the other hand, if we choose the rate of

1000 times per second for online phase, huge data are obtained, which cannot obviously improve

the result of indoor localization. In addition, after the IWL5300 NIC receives a packet, the raw

CSI value will be recorded in the hardware in the form of CSI per packet reception. DeepFi can

obtain 90 raw CSI values for each packet reception, which are all used for fingerprinting or for

estimating the device position.

We experiment with DeepFi and examine both the training phase and the test phase. During

the training phase, CSI values collected at each location areutilized to learn features, which are

then stored as fingerprints. In the test phase, we need to use online data to match the closest

spot with the similar feature stored in the training phase. In fact, a major challenge in the feature
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matching is how to distinguish each spot without overlap or fuzziness. Although CSI features vary

for different propagation paths, two spots with a shorter distance and a similar propagation path

may have a similar feature. We examine the similarity of CSI feature along with spot interval in

Section 2.5.5, where more details are discussed. If the training spots we select are too sparse, it is

possible to cause fuzziness in the test phase, resulting in low localization accuracy. For example,

a measurement could hardly match any training spot with highsimilarity, as it in fact has strong

similarity with many random spots. On the other hand, if we choose dense training spots, it will

cost a lot of efforts on pre-training data collection. Based on our experiments, the distance between

two spots is set to 50 cm, which can maintain the balance between localization accuracy and pre-

process cost.

Since DeepFi fully explores all CSI features to search for themost matched spot, each packet

is able to fit its nearest training spot with high probability. Therefore, in our localization system,

only one access point is utilized to implement DeepFi, whichcan achieve similar precision as

other methods such as Horus and FIFS with two or more access points. Although DeepFi has high

accuracy with a single access point, it needs more time and computation in the offline training

phase in order to learn fine-grained features of the spots. Fortunately, the pre-training process will

be performed in the offline phase, while the online test phasecan estimate position quickly. We

design a data collection algorithm with two parts. In the training phase, we continuously collect

500–1000 packets at each spot and the measurement will lastsfor 1 min. When collecting packets

in our experiment, the laptop remains static on the floor, while all the test spots are at the same

height, which construct a 2D platform. Then all the packets collected at each spot are used in

DeepFi to calculate the weights of the deep network, which are stored as a spot feature. In the test

phase, since we match for the closest position with weights we have saved in the database, it is

unnecessary to group a lot of packets for complex learning processing. We thus use 100 packets to

estimate position, thus significantly reducing the operating complexity and cost.

We verify the performance of DeepFi in various scenarios andcompare the resulting location

errors in different environments with several benchmark schemes. We find that in an open room
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Figure 2.7: Layout of the living room for training/test positions.

where there are no obstacles around the center, the performance of indoor localization is better

than that in a complex environment where there are fewer LOS paths. We present the experimental

results from two typical indoor localization environments, as described in the following.

Living Room in a House

The living room we choose is almost empty, so that most of the measured locations have LOS

receptions. In this4 × 7 m2 room, the access point was placed on the floor, and so do all the

training and test points. As shown in Fig. 2.7, 50 positions are chosen uniformly scattered with

half meter spacing in the room. Only one access point is utilized in our experiment, which is

placed at one end (rather than the center) of the room to avoidisotropy. We arbitrarily choose 12

positions along two lines as test positions and use the remaining positions for training (in Fig. 2.7:

the training positions are marked in red and the test positions are marked in green). For each

position, we collect CSI data for nearly 500 packet receptions in 60 s. We choose a deep network

with structureK1 = 300, K2 = 150, K3 = 100, andK4 = 50 for the living room environment.

Computer Laboratory

The other test scenario is a computer laboratory in Broun Hallin the campus of Auburn University.

There are many tables and PCs crowded in the6× 9 m2 room, which block most of the LOS paths

and form a complex radio propagation environment. In this laboratory, 50 training positions and

30 test positions are selected, as shown in Fig. 2.8. The mobile device will also be put at these
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Figure 2.8: Layout of the laboratory for training/test positions.

locations on the floor, with LOS paths blocked by the tables and computers. To obtain fine-grained

characteristics of the subcarriers, CSI information from 1000 packet receptions are collected at

each training position. We choose a deep network with structureK1 = 500, K2 = 300, K3 = 150,

andK4 = 50 for the laboratory environment.

Benchmarks and Performance Metric

For comparison purpose, we implemented three existing methods, including FIFS [22], Horus [19],

and Maximum Likelihood (ML) [59]. FIFS and Horus are introduced. In ML, the maximum

likelihood probability is used for location estimation with RSS, where only one candidate location

is used for the estimation result. For a fair comparison, these schemes use the same measured

dataset as DeepFi to estimate the location of the mobile device.

The performance metric for the comparison of localization algorithms is the mean sum error

E . Assume the estimated location of an unknown useri is (x̂i, ŷi) and the actual position of the

user is(xi, yi). ForK locations, the mean sum error is computed as

E =
1

K

K∑

i=1

√
(x̂i − xi)2 + (ŷi − yi)2. (2.16)
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Table 2.1: Mean errors for the Living Room and and Laboratory Experiments

Living Room Laboratory

Method Mean error Std. dev. Mean error Std. dev.
(m) (m) (m) (m)

DeepFi 0.9425 0.5630 1.8081 1.3432
FIFS 1.2436 0.5705 2.3304 1.0219
Horus 1.5449 0.7024 2.5996 1.4573
ML 2.1615 1.0416 2.8478 1.5545

2.5.2 Localization Performance

We first evaluate the performance of DeepFi under the two representative scenarios. The mean and

standard deviation of the location errors are presented in Table 2.1. In the living room experiment,

the mean distance error is about 0.95 meter for DeepFi with a single access point. In the computer

laboratory scenario, where there exists abundant multipath and shadowing effect, the mean error is

about 1.8 m across 30 test points. DeepFi outperforms FIFS inboth scenarios; the latter has a mean

error of 1.2 m in the living room scenario and 2.3 m in the laboratory scenario. DeepFi achieves

a 20% improvement over FIFS, by exploiting the fine-grained properties of CSI subcarriers from

the three antennas. Both CSI fingerprinting schemes, i.e., DeepFi and FIFS, outperform the two

RSSI-based fingerprinting schemes, i.e., Horus and ML. The latter two have errors of 2.6 m and

2.8 m, respectively, in the laboratory experiment.

Fig. 2.9 presents the CDF of distance errors with the four methods in the living room experi-

ment. With DeepFi, about 60% of the test points have an error under 1 meter, while FIFS ensures

that about 25% of the test points have an error under 1 meter. In addition, most of the test points

have distance errors less than 1.5 m in FIFS, which is similarto DeepFi. On the other hand, both

RSSI methods, i.e., Horus and ML, do not perform as well as the CSI-based schemes. There are

only 80% of the points have an error under 2 m.

Fig. 2.10 plots the CDF of distance errors in the laboratory experiment. In this more complex

propagation environment, DeepFi can achieve a 1.7 m distance error for over 60% of the test points,

which is the most accurate one among the four schemes. Becausethe tables obstruct most LOS
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Figure 2.9: CDF of localization errors in the living room experiment.
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Figure 2.10: CDF of localization errors in the laboratory experiment.

paths and magnify the multipath effect, the correlation between signal strength and propagation

distance is weak in this scenario. The methods based on propagation properties, i.e., FIFS, Horus,

and ML all have degraded performance than in the living room scenario. In Fig. 2.10, it is noticed

that 70% of the test points have a 3 meters distance error withFIFS and Horus. Unlike FIFS,

DeepFi exploits various CSI subcarriers. It achieves higheraccuracy even with just a single access

point. It performs well in this NLOS environment.
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2.5.3 Effect of Different System Parameters

Impact of Different Antennas

In order to evaluate the effect of different antennas on DeepFi performance, we consider two

different versions of DeepFi: (i) DeepFi with 90 CSI values from the three antennas as input data

in both phases (3-antenna DeepFi); (ii) DeepFi with only the30 CSI values from one of the three

antennas in the training phase and estimating the position using 30 CSI values from the same

antenna in the test phase (single antenna DeepFi). In addition, we set all the other parameters the

same as that in the computer laboratory experiments.

In Fig. 2.11, we compare these two schemes with different antennas in the training and test

phases. According to the CDFs of estimation errors, more than60% of the test points in the 90-CSI

scheme have an estimated error under 1.5 m, while the other 30-CSI single antenna schemes have

an estimated error under 1.5 m for fewer than 40% of the test points. In fact, the single antenna

scheme has a mean distance error around 2.12 m, while the three-antenna scheme has reduced the

mean distance error to about 1.84 meters. Thus the 90-CSI scheme achieves better localization

accuracy than the 30-CSI schemes, because more environment property of every sampling spot is

exploited for location estimation in the test phase as the amount of CSI values is increased from

30 CSI values to 90 CSI values, thus improving the diversity of CSI samples. This experiment

validates our Hypothesis 3.

Even though the 3-antennas DeepFi scheme achieves a lower mean error, it takes more time

for processing the 90 CSI values as input data for each packet.We evaluate the average processing

time to estimate the device position in the test phase using 100 received packets. The processing

time is measured as the CPU occupation time for the Matlab program running on a laptop. In

Fig. 2.12, we can see that the single antenna schemes take 2.3s on average to estimate the device

position, while the 3-antenna scheme takes around 2.5 s for processing the 100 packets with 90 CSI

values per packet as input data to estimate the location. Thedifference is small, although the latter

processes three times input data than that in the single antenna scheme. Although the 3-antenna
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Figure 2.11: CDF of estimated errors for DeepFi with different number of antennas.
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Figure 2.12: The average execution time for DeepFi with different number of antennas.

DeepFi takes about 10 percent extra processing time, it can achieve a 15 percent improvement in

localization precision. The latter is generally more important for indoor localization. For 3-antenna

approach, it can obtain the most accurate estimation and theaverage execution time is acceptable

for indoor localization. Thus, we consider 3-antenna approach for our DeepFi system.

Impact of the Number of Test Packets

In order to study the impact of the number of test packets, we design a specific experiment by

utilizing different numbers of packets to evaluate their effect on both localization accuracy and

execution time. In DeepFi, the laptop requests packets fromthe wireless router every 50 ms, i.e.,

at a rate of 20 packets per second. In addition, we assume thata user randomly moves with the
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Figure 2.13: The expectation and standard deviation of estimated error for DeepFi using different
number of test packets.

speed of about 1 meter per second, then stays in a 1 meter square spot for 1 second, moves again,

and so forth. Thus 20 packets per second are received for eachtest location.

Fig. 2.13 shows the expectation and the standard deviation of localization error of 90 indepen-

dent experiments. As the number of test packets is increased, the mean localization error tends to

decrease. For example, the mean estimated localization error is about 1.83 meters for the case of

300 packets, which is better than the error of 1.93 meter for the case of 5 packets. This is because

a large number of test packets provide a stable estimation result, thus mitigating the influence of

environment noise on CSI values. Another trend is that the standard deviation of localization error

will decrease as the number of packets is increased. This is because that as more samples are avail-

able, the standard deviation of samples will be decreased. On the other hand, the characteristic of

clusters hidden in CSI values is revealed by increasing the number of packets, thus improving the

localization accuracy.

In the case of using 5 test packets, although it takes less than 1/4 s for collecting them, DeepFi

can still achieve a good performance of localization. Apartfrom reducing the collecting time,

DeepFi using 5 test packets also simplifies the process of averaging packets in the test phase, thus

significantly reducing the execution time for the online phase. We compare the average execution

time of position estimation for 90 independent experimentsbased on recorded CPU occupation

time for the cases of using different test packets. In Fig. 2.14, it can be seen that as the number
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Figure 2.14: The average execution time of position estimation for DeepFi using different number
of test packets.

of test packets is increased, the execution time also increases quickly. This is because DeepFi

estimates the error of every location by averaging errors ofall the test packets. For instance, the

execution time with 300 packets is around 4.2 s, which is about 2.5 times of that with 5 packets

(about 1.7 s). Therefore, even though more packets contributes to slightly improving the local-

ization precision, we prefer to reduce the number of packetsfor saving collecting and processing

time.

Impact of the Number of Packets per Batch

Since deep learning utilizesn packets in the test phase, how to pre-process these packets is impor-

tant for DeepFi to reduce the computation complexity. Beforethe test phase in DeepFi, packets are

divided into several batches, each of which contains a same number of packets. Because packets

are processed in parallel in batches, we can significantly shorten the processing time when dealing

with a large amount of packets. We analyze the impact of the number of packets per batch in this

section. We set 1, 3, 5, 10, 50 and 100 packets per batch in the test phase with 100 collected

packets. Again, we examine two main effects: the localization error and the test execution time.

Fig. 2.15 shows the expectation and the standard deviation of localization error with different

number of packets per batch. As expected, the six experiments maintain approximately the same

mean and standard deviation of errors, due to the fact that the parallel processing based on batches
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Figure 2.15: The expectation and the standard variation of estimation error for DeepFi with differ-
ent number of packets per batch.

1 3 5 10 50 100
1.5

2

2.5

3

3.5

4

Number of Packets per Batch

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
e 

(s
)

Figure 2.16: The average execution time of position estimation for DeepFi with different number
of packets per batch.

only averages the errors of 100 packets. In Fig. 2.16, it is noticed that as the number of packets

per batch is increased from 1 to 10, the average execution time decreases quickly. For continuing

increasing the number of packets from 10 to 100, we can find that the average computation time is

approximately from 2.28 s to 2.15 s, which has smaller change. In addition, we need to average the

errors over different batch data to improve the robustness of the localization results. For example,

if we consider 100 packets per batch, there is only 1 batch for100 packets, thus leading that we

cannot average the errors. Thus, we employ 10 packets per batch for our DeepFi system, which

not only has lower average computation time, but also higherlocalization results.
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2.5.4 Impact of Environment Variation

Since the CFR changes as the indoor propagation environment varies, we examine the effect of

varying propagation environment on CSI properties through two specific aspects: replaced obsta-

cles in the room and human mobility. First, because the relative distance between the transmitter

and the obstacle can affect the strength and direction of reflection of wireless signal, we consider

the impact of replaced obstacles at different relative distances. In the experiment, We place a lap-

top and a wireless router at two fixed positions, and then add obstacles at different distances to the

router, i.e., at 1 meter, 2 meters, and 3 meters locations. Then, we calculate and plot the CDF of

the correlation coefficient of (i) the 90 CSI values under thiscluttered environment and (ii) the 90

CSI values under the obstacle-free environment.

In Fig. 2.17, we can see that as the distance between the obstacle and the wireless router is

increased, the correlation between the two groups of 90 CSI values becomes stronger, which means

that the obstacle has less impact on wireless signal transmission when it is farther away. This is

due to the fact that when the obstacle is farther from the transmitter, there is lower possibility that

it distorts strong signals such as the LOS signal that the laptop receives. In addition, more than

80% of the test points have a correlation coefficient greaterthan 0.8 when the obstacle is 3 meters

away from the wireless router. The high correlation suggests that the obstacle placed more than 3

meter has no significant impact on the 90 CSI values the laptop receives. On the other hand, when

the obstacle is very close to the router, the 90 CSI values willslightly change. It leads to a smaller

correlation coefficient, which affects the precision of indoor localization in the test phase based on

such CSI properties. Therefore, when the obstacle arbitrarily moves in the room, its impact on CSI

properties is acceptable, and high localization precisioncan still be achieved with DeepFi.

In addition to static obstacles, human mobility is another problem we need to consider in prac-

tical localization. The experiment of human mobility consists of two scenarios: a user randomly

moves (i) near the LOS path, and (ii) near the NLOS path. To demonstrate the effect of human

interference on indoor localization, we also plot the CDF of the correlation coefficients between
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Figure 2.17: CDF of correlation coefficient between the 90 CSI values under cluttered environment
and the 90 CSI values measured without obstacles.

(i) the 90 CSI values when a user moves near the LOS path and (ii)the 90 CSI values when a user

moves near the NLOS path.

We then present the human mobility experiment results in Fig. 2.18. It can be seen that there

are only fewer than 20% of the test points with a correlation coefficient under 0.7, if a user moves

near the LOS path. On the other hand, when a user moves apart from the LOS path, approximately

20% of the test points has a correlation coefficient under 0.8. As we can see, the correlation of

the two groups of 90 CSI values if a user moves around the LOS path is weaker than that if a user

moves around the reflected path, which is about 2 meter away from the wireless router. In fact,

due to the stability of CSI values and high correlation coefficients for the above two scenarios,

the property of the 90 CSI values will not be significantly affected by human mobility. Therefore,

DeepFi can still achieve high localization accuracy even ina busy environment.

2.5.5 Impact of the Training Grid Size

With DeepFi, a mobile device in the test phase uses 90 CSI values it receives to search for the

most similar training position. Thus, it is preferable thateach training position possesses a unique

property for the 90 CSI values. Otherwise, if most of the positions have similar CSI properties,

it would be difficult to separate the matched positions from unmatched ones. As a result, these

unmatched positions, which randomly scatter in the coverage space, lead to reduced localization
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Figure 2.18: CDF of correlation coefficients between the 90 CSIvalues when a user moves around
the LOS path and the 90 CSI values when a user moves around the NLOS path.

accuracy. Therefore, in order to design a suitable traininggrid size for DeepFi, we study the

correlation coefficient of the 90 CSI values between two neighboring training positions as the

distance between them is increased. Our experiment recordsmany pairs of positions with different

distances, including 15 cm, 30 cm, 60 cm, and 120 cm. In order to mitigate the effect of the

direction of the router on the correlation coefficient of the90 CSI values, we equally place the

laptop at four directions facing north, south, west and east.

Figure 2.19 shows that as the grid size is increased, the correlation coefficient of the 90 CSI

values between two neighboring positions becomes weaker. In other words, their CSI properties

have less similarity due to the larger grid size. In fact, some positions even have low or negative

correlation coefficients, even when the grid size is small (i.e., when they are close to each other).

This is because the CFR will change as a user moves, as some multipath components may be

blocked at near positions and thus some of clusters in received CSI values may be lost. If the CSI

values cannot match the corresponding clusters, the correlation will obviously become low. From

Fig. 2.19, we find that the localization performance should be acceptable when the grid size is over

30 cm. i.e., most of the training positions can be separated by CSI with the 30 cm range. We thus

set the grid size at about 50 cm for the training positions, sothat a test position at the center of the

square formed by four neighboring training positions has a distance of50×
√
2/2 = 35 cm to the

nearest training position in the worst case. A larger grid size would fail to match highly similar
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Figure 2.19: CDF of correlation coefficient of the 90 CSI valuesbetween two adjacent training
positions.

positions because of the scarcity of matched positions, while a smaller grid size requires redundant

pre-training work.

2.6 Conclusion

In this chapter, we presented DeepFi, a deep learning based indoor fingerprinting scheme that

uses CSI information. In DeepFi, CSI information for all the subcarriers and all the antennas are

collected through the device driver and analyzed with a deepnetwork with four hidden layers.

Based on the three hypotheses on CSI, we proposed to use the weights in the deep network to

represent fingerprints, and incorporated a greedy learningalgorithm for weight training to reduce

complexity. In addition, a probabilistic data fusion method based on the RBF was developed

for online location estimation. The proposed DeepFi schemewas validated in two representative

indoor environments, and was found to outperform several existing RSS and CSI based schemes

in both experiments. We also examined the effect of different parameters and varying propagation

environments on DeepFi performance, and found that DeepFi can achieve good performance under

such scenarios.
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Chapter 3

PhaseFi: CSI Phase Fingerprinting for Indoor Localization with a Deep Learning Approach

3.1 Introduction

The proliferation of mobile terminals such as smartphones,tablets, and laptops has stimulated

enormous interests in indoor localization and location-based services [60, 61, 62, 63]. As one

of the popular schemes for indoor localization, a fingerprinting-based approach first establishes a

database with thorough measurements of the field and then infers the real-time location by com-

paring the new measurements with database data. It requiresno additional infrastructure support

and is thus amenable for indoor deployment.

By modifying the device driver, we can now obtain CSI from some advanced WiFi NIC, such

as the Intel WiFi Link 5300 NIC [20, 21]. CSI values provide subcarrier-level channel measure-

ments, which can be helpful for indoor fingerprinting. For example, FIFS [22] utilizes the weighted

average CSI values over multiple antennas to improve the performance of RSS-based method for

indoor fingerprinting. Another work, DeepFi [64] learns a large amount of CSI data from three an-

tennas for indoor localization based on a deep network. However, these schemes only consider the

amplitude of CSI, and the CSI phase information is ignored, which is largely due to the randomness

and unavailability of the raw phase information. To the bestof our knowledge, CSI-MIMO [65]

incorporates both magnitude and phase information of CSI from each sub-carrier for fingerprint-

ing, but the phase information is not calibrated. In fact, the calibrated phase information obtained

with a linear transformation is successfully used for LOS identification with WiFi [66] and passive
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human movement detection [67]. These two interesting worksmotivate us to explore calibrated

CSI phase information for indoor fingerprinting.

In this chapter, we present PhaseFi, an indoor fingerprinting system based on calibrated phase

information of CSI. In PhaseFi, the raw phase information is first extracted from the CSI values

from the 30 subcarriers of each of the three antennas of the Intel WiFi Link 5300 NIC (i.e., 90

in total), by accessing the modified device driver. Then, by implementing a linear transformation

to remove the phase offset, we obtain the calibrated phase information, which is shown in our

measurement study to be considerably more accurate than rawphases. We also provide a phase

calibration algorithm and prove an upper bound on the variance of the calibrated phase, which

clearly indicates its stability feature.

In the offline stage, unlike traditional shallow learning methods, we design a deep network

with three hidden layers to train the calibrated phase data,and use weights to represent finger-

prints, which can fully exploit the characteristic of the calibrated phase data. We also develop a

greedy learning algorithm to train the weights in a layer-by-layer manner to effectively reduce the

computational complexity. With this training approach, a sub-network between two consecutive

layers forms a RBM, which is solved by a CD-1 algorithm for sub-optimal solutions. Once the

fingerprint database is established, the online stage uses aBayes method based on the RBF for

location estimation.

We implement the PhaseFi system with a laptop computer and anAccess Point (AP), and

conduct extensive experiments to validate the performanceof the PhaseFi system under two repre-

sentative indoor environments, including a living room in ahouse and a computer laboratory that

is cluttered with metal tables and computers. We find that PhaseFi outperforms three benchmark

schemes that are either based on CSI or RSS in both scenarios.

In summary, the main contributions In this chapter include:

1. We propose to use CSI phase information for indoor fingerprinting. Specifically, we theoret-

ically prove and experimentally validate the feasibility of utilizing the calibrated CSI phase
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information for indoor localization. To the best of our knowledge, this is the first work to

leverage the calibrated CSI phase information for indoor fingerprinting.

2. We design a deep network with three hidden layers to train the calibrated phase data, and

utilize the weights of the deep network to represent fingerprints. We also develop a greedy

learning algorithm to effective reduce the computational overhead for training. Furthermore,

we present a Bayes method based on RBF for probabilistic location estimation.

3. We implement the PhaseFi system with commodity WiFi device and demonstrate its perfor-

mance in two representative indoor environments. Experimental results show that PhaseFi

outperforms several existing RSSI and CSI based schemes at only slightly increased execu-

tion time. PhaseFi satisfies the real-time localization requirement for indoor localization.

The remainder of this chapter is organized as follows. The preliminaries and phase sanitiza-

tion are introduced in Section 3.2. We present PhaseFi in Section 3.3 and our experimental study

in Section 3.4. Section 3.5 concludes this chapter.

3.2 Preliminaries and Phase Sanitization

3.2.1 Channel State Information

In modern digital wireless communication systems, OFDM is widely used (e.g., in WiFi standards

such as IEEE 802.11a/g/n) to combat frequency selective fading in multipath propagation environ-

ments. As shown in Fig. 3.1, at the OFDM transmitter, data is encoded and mapped into multiple

orthogonal subcarriers and then transmitted over the subcarriers. With inverse Fast Fourier Trans-

form (IFFT), the subcarriers are converted from the frequency domain to the time domain. To

reduce the inter-symbol interference (ISI), the cyclic prefix is added in the time domain. Then,

in-phase and quadrature (I-Q) modulation is used for transmission in the multi-path channel. The

digital data is converted into analog data with the Digital to Analog Converter (DAC). Finally, the

analog signal is up-converted and amplified by the high poweramplifier (HPA). At the OFDM

receiver, the signal is down-converted to the baseband. TheAutomatic Gain Controller (AGC) can
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Figure 3.1: The block diagram of an OFDM transceiver

compensate for the signal amplitude attenuation. The inverse process of that at the transmitter is

implemented for recovering the data at the receiver.

By modifying the device driver of off-the-shelf NICs, i.e., Intel’s IWL 5300, we are able to

obtain CSI as fine-grained PHY information, which representsthe subcarrier-level channel mea-

surements. In addition, CSI describes the channel properties experienced by the packet. For ex-

ample, a wireless signal in propagation may undergo considerable impairments due to shadowing,

multipath propagation, and distortion, which are reflectedin the CSI.

3.2.2 Phase Sanitization

Although the phase of CSI is available from the IWL 5300 NIC, theyhave not been exploited

for indoor localization yet. The problem is mainly due to thehardware imperfection, which leads

to measured phase errors. In fact, there are two main causes for the above errors for the system

in Fig. 3.1. The first one is CFO generated by the down-converter for receiver signal, because

the central frequencies between the receiver and the transmitter cannot be perfectly synchronized.

The other one is the SFO generated by the ADC, because of non-synchronized clocks. Moreover,
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for SFO, the measured phase errors are different for different subcarriers. Thus, the raw phase

information is of limited use for indoor localization.

In this chapter, we propose a simple yet effective approach to mitigate the random phase off-

sets by implementing a linear transformation. Let∠ĈSI i denote the measured phase of subcarrier

i. It can be written as

∠ĈSI i = ∠CSIi + 2π
mi

N
∆t+ β + Z, (3.1)

where∠CSIi is the genuine phase,∆t is the time lag due to SFO,mi is the subcarrier index of

the ith subcarrier,N is the FFT size,β is the unknown phase offset due to CFO, andZ is the

measurement noise. We can obtain the subcarrier indicesmi for i = 1 to 30, and the FFT size

N from the IEEE 802.11n specification [21]. In fact, because ofthe unknown∆t andβ, it is

impossible to obtain the genuine phase information. However, considering the phase across the

total frequency band, we can implement a linear transformation on the raw phases to remove the

∆t andβ terms [67].

Let k andb denote the slope of phase and the offset across the entire frequency band, respec-

tively. It is noticed that the phase error2πmi

N
∆t+ β is a linear function of the subcarrier indexmi.

We can estimate the slope of phasek and the offsetb with the following expressions.

k =
∠ĈSI30 − ∠ĈSI1

m30 −m1

(3.2)

b =
1

30

30∑

i=1

∠ĈSI i. (3.3)

Subtractingkmi+ b from the raw phase∠ĈSI i, we can obtain the calibrated phase∠C̃SI i, which

is given by

∠C̃SI i = ∠ĈSI i − kmi − b. (3.4)
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Figure 3.2: Measured phase values for three different antennas.

Although the above expression (3.4) can be used for calibrating phase information, the mea-

sured phase is folded due to the recurrence characteristic of phase. Thus, we need to transform the

measured phase into the true value. In Fig. 3.2, we plot the measured phase values of CSI for the

three antennas at the receiver. It is noticed that the measured phase of each of the three antennas is

folded with the increase of subcarrier index and the range ofthe phase is[−π π]. In order to obtain

the true measured phase, the folded phase can be recovered bysubtracting multiple2π. Thus, we

propose a new phase calibration algorithm in Algorithm 3. Inlines (8-13) of the algorithm, the

measured phase is compensated for multiple2π’s by judging whether the measured phase change

between the adjacent subcarriers is greater than the given threshold such asπ. In lines (14-18), the

calibrated phase is obtained based on the above phase calibration analysis.

Figure 3.3 presents the true measured phase values for threedifferent antennas. We can see

that with the increase of subcarrier index, the true measured phase gradually decreases for all the

three different antennas. Fig. 3.4 shows the calibrated phase values for three different antennas. It

is noticed that the range of the calibrated phase becomes much smaller than the measured phase

for three antennas. On the other hand, we present an upper bound on the variance of the calibrated

phase in the following theorem.

Theorem 1. When the indices of 30 subcarriers are symmetric (i.e., ranging from -28 to 28 as in

IEEE 802.11n) and the true phases of the 30 subcarriers are i.i.d., an upper bound of the variance
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Figure 3.3: True measured phase values for three different antennas.
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Figure 3.4: Calibrated phase values for three different antennas.

of the calibrated phase is given by

Var(∠C̃SI i) ≤
23

15
Var(∠CSI i). (3.5)

Proof. We can compute the slope of the phasek = ∠CSI30−∠CSI1
m30−m1

+ 2π
N
∆t, and the offset across

the total frequency bandb = 1
30

∑30
i=1 ∠CSIi +

2π∆t
30N

∑30
i=1mi + β + Z. Since the indices of

the 30 subcarriers are symmetric for IEEE 802.11n [67], we have
∑30

i=1mi = 0. It follows that

b = 1
30

∑30
i=1 ∠CSIi + β+Z. Substituting the slope of the phase,k, the offset,b, and the measured
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Algorithm 3: Phase Calibration

1 Input: measured phase valuesMP of 30 subcarriers;
2 Output: calibrated phase valuesCP of 30 subcarriers;
3 SetTP as a vector as the same size ofMP ;
4 Setm as a vector from -28 to 28;
5 Set diff= 0;
6 Setη = π;
7 SetTP (1)=MP (1);
8 for i = 2 : 30 do
9 if MP (i)−MP (i− 1) > η then

10 diff = diff + 1;
11 end
12 TP (i) = MP (i)− diff ∗ 2 ∗ π;
13 end

14 Computek = TP (30)−TP (1)
m(30)−m(1) ;

15 Computeb = sum{TP }/30;
16 for i = 1 : 30 do
17 CP (i) = TP (i)− k ∗m(i)− b;
18 end

phase of subcarrieri, ∠ĈSI i, into (3.4), the calibrated phase is given by

∠C̃SI i = ∠CSI i−
∠CSI30−∠CSI1

m30−m1

mi−
1

30

30∑

i=1

∠CSI i.

Note that the calibrated phase is a linear combination of thetrue phases, with the random offset

β and time lag∆t removed. Since the true phases of the 30 subcarriers are i.i.d., the variance of

the calibrated phase is Var(∠C̃SI i) = Var(∠CSI i) +
m2

i

(m30−m1)2
(Var(∠CSI30) +Var(∠CSI1)) +

Var( 1
30

∑30
i=1 ∠CSI i). Since the subcarrier indices are symmetric, we havemi ≤ m30 andm30 =

−m1, and it follows that m2
i

(m30−m1)2
≤ m2

30

(2m30)2
= 1

4
. Furthermore, since the true phases of the

30 subcarriers are i.i.d., we have Var( 1
30

∑30
i=1 ∠CSI i) = 1

30
Var(∠CSI i) and Var(∠CSI i) =

Var(∠CSI30) = Var(∠CSI1). We thus have Var(∠C̃SI i) ≤ 23
15

Var(∠CSI i), which completes

the proof.

Theorem 1 provides an upper bound on the variance of the calibrated phase, and indicates that

the calibrated phase is relatively more stable. In Fig. 3.5,we plot the raw phases (as blue crosses)

and the calibrated phases (as red dots) in the polar coordinate system for 100 CSI data units for the
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Figure 3.5: Raw phase and calibrated phase measurements.

8th subcarrier in the first antenna of the IWL 5300 NIC. It can be easily seen that the raw phases

scatter randomly over all feasible angles. This is why it is not useful for indoor localization.

However, the calibrated phases, after the proposed linear transformation, all concentrate into a

sector between 330◦ and 0◦. Thus, the proposed linear transform does remove the phase offset.

On the other hand, another characteristic of CSI phase is the great variability at different lo-

cations. Fig. 3.6 plots the calibrated phase for 100 packet receptions from three different positions,

from which we can observe that calibrated phases are different for three locations. The calibrated

phase not only is more stable in one given location, but also varies in different locations, which

can be very useful for indoor fingerprinting.
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Figure 3.6: Calibrated phase values for three different locations.

3.3 The PhaseFi System

3.3.1 System Architecture

The architecture of PhaseFi is presented in Fig. 3.7. In our design, PhaseFi requires one mobile

device equipped with an IWL 5300 NIC, which can read CSI data fromthe slight modified device

driver. The IWL 5300 NIC has three antennas, each of which receives from 30 subcarriers. Thus

we can collect 90 CSI data units for one packet reception. Since all the subcarriers are utilized,

PhaseFi can effectively improve the diversity of training samples in deep learning, and is thus ef-

fective in exploiting the location features for building the fingerprint database. Then, the calibrated

phases are obtained by implementing the proposed linear transformation on the the raw phases ex-

tracted from CSI data. PhaseFi considers the phase data for indoor fingerprinting for two reasons.

First, when a signal encounters obstacle blockages, the amplitude of the signal will be strongly

weakened, but the phase of the signal with the periodical change over the propagation distance

is relatively more robust. Second, the calibrated phase information is relatively more stable for a

given position.

The calibrated phases are then used for both offline trainingand online testing. In the offline

training stage, PhaseFi employs a deep network with three hidden layers to train the calibrated
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Figure 3.7: Architecture of the proposed PhaseFi system.

phases. It incorporates deep learning to generate feature-based fingerprints. This approach is dif-

ferent from the traditional methods that directly store themeasurement data as fingerprints, which

are easily influenced by the complex indoor propagation environment. In addition, a large number

of weights in the deep network are used as feature-based fingerprints, which effectively represent

the characteristics of the calibrated phases for each position. We create the fingerprint database

by training the weights of the deep networks with calibratedphases for different positions. In the

online test stage, a probabilistic data fusion approach is used to estimate the mobile device location

based on the fingerprint database and the new calibrated phase data from the mobile device.

3.3.2 Offline Training

In the offline training stage, PhaseFi incorporates deep learning to train weights and then stores

them as the feature-based fingerprint database. The training procedure consists of three stages:

pretraining, unrolling, and fine-tuning [8] as shown in Fig.3.8. In the pretraining stage, we use a

deep network with one input layer (withK0 inputs) and three hidden layers (each withKi nodes,
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k = 1, 2, 3). The final weight value mainly depends on input data and deepnetwork structure

including the number of hidden layers and the number of nodesin each hidden layer. For PhaseFi,

we employ three hidden layers to train and test CSI calibratedphase data. There are two reasons

for the chosen structure. First, the deep network with the three hidden layers can achieve near real-

time online localization performance, where the mean execution times are 0.3780 s and 0.3770 s

for living room and laboratory, respectively. If we use the deep network with four or more layers,

it leads to a higher time complexity for online localization, which is not traditionally effective for

systems with real-time requirement. Second, the deep network with the three hidden layers can

also achieve low localization errors, which are 1.0800 m and2.0134 m for the living room and

laboratory scenarios, respectively. If we use a network with less than or equal to two layers, the

deep network will become a shallow network, where deep learning may not be necessary for these

networks and the localization accuracy will become low. Lethi denote the hidden variable withKi

nodes at layeri, i = 1, 2, 3, andh0 denote the calibrated phase data. In addition, letW1, W2 and

W3 be the weights between the calibrated phase data and the firsthidden layer, the first and second

hidden layer, and the second and third hidden layer, respectively.

LetPr(h0, h1, h2, h3) denote the probabilistic generative model for the deep network with one

input layer and three hidden layers. To obtain the optimal weights in the pretraining stage, we need

to maximize the marginal distribution of the calibrated phase data for the deep network, which is

formulated by

max
{W1,W2,W3}

∑

h1

∑

h2

∑

h3

Pr(h0, h1, h2, h3). (3.6)

Due to the complex model structure with multiple hidden layers and a large number of nodes

in the deep network, it is challenging to obtain the optimal weights using the calibrated phase data

with the maximum likelihood method. In PhaseFi, we develop agreedy learning algorithm to train

the weights layer-by-layer by using a stack of RBMs to reduce complexity [25]. For the layeri

RBM model,i = 1, 2, 3, the joint distributionPr(hi−1, hi) is expressed by an RBM as a bipartite
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Figure 3.8: The training procedure of PhaseFi.

undirected graphical model [25], which is given by

Pr(hi−1, hi) =
exp(−E(hi−1, hi))∑

hi−1

∑
hi exp(−E(hi−1, hi))

, (3.7)

whereE(hi−1, hi) represents the free energy between layeri− 1 and layeri. E(hi−1, hi) is defined

as

E(hi−1, hi) = −bi−1hi−1 − bihi − hi−1Wih
i, (3.8)

wherebi−1 andbi are the biases for units of layeri−1 and units of layeri, respectively. In fact, since

it is difficult to find the joint distributionPr(hi−1, hi), we use the CD-1 algorithm to approximate

61



it as follows.





Pr(hi−1|hi) =∏Ki−1

j=1 Pr(hi−1
j |hi)

Pr(hi|hi−1) =
∏Ki

j=1 Pr(h
i
j|hi−1),

(3.9)

wherePr(hi−1
j |hi), andPr(hij|hi−1) are described by sigmoid belief network, that are





Pr(hi−1
j |hi) =

[
1 + exp (−bi−1

j −∑Ki

t=1W
j,t
i hit)

]−1

Pr(hij|hi−1) =
[
1 + exp (−bij −

∑Ki−1

t=1 W j,t
i hi−1

t )
]−1

.

(3.10)

We use the greedy algorithm to estimate the parameters of allweights for a stack of RBMs.

First, given the calibrated phase data, the parameters{b0, b1,W1} of the first layer RBM are es-

timated by using CD-1 method. Then we freeze the parameters{b0,W1} of the first layer, and

sample from the conditional probabilityPr(h1|h0) to train the parameters{b1, b2,W2} of the sec-

ond layer RBM. Next, the parameters{b0, b1,W1,W2} of the first and second layers are frozen,

and then we sample from the conditional probabilityPr(h2|h1) to train the parameters{b2, b3,W3}

of the third layer RBM.

To update the weights in each RBM, the CD-1 method is adopted to approximate them. For

the layeri RBM model, First,ĥi−1 is estimated by sampling from the conditional probability

Pr(hi−1|hi). Thenĥi is obtained by sampling from the conditional probabilityPr(hi|ĥi−1). Finally,

the parameters are updated as follows.





∆Wi = ǫ(hi−1hi − ĥi−1ĥi)

∆bi = ǫ(hi − ĥi)

∆bi−1 = ǫ(hi−1 − ĥi−1),

(3.11)

whereǫ is the step size.
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Once the pretraining stage is completed, we obtain the near-optimal weights for the deep

network. Then, in the unrolling stage, the reconstructed calibrated phase data are obtained by un-

rolling the deep network with forward propagation. Finally, we use the back-propagation algorithm

to train all weights in the deep network by computing the error between the input calibrated phase

data and the reconstructed calibrated phase data. In addition, the error can be used to iteratively

optimize the weights layer-by-layer based on the back-propagation algorithm. This stage is called

fine-tuning. After minimizing the error, the optimal weights are stored in the fingerprint database.

The pseudocode for weight training with multiple received packets is presented in Algo-

rithm 4. We first receiven packet for each of theN training positions, each of which has 90

CSI calibrated phase data units as input data. Letv(t) be the input data from packett. The output

of the training includesN groups of fingerpirnts, each of which owns six weight matrices. More-

over, a deep network for each of theN training locations should be trained. The training phase

consists of three steps: pretraining, unrolling and fine-tuning. For pretraining, the greedy learning

algorithm is used to train the deep network with three hiddenlayers. The weight matrix are ini-

tialized first, and are then iteratively updated with the CD-1method for obtaining initial weights,

wherem packets are learned and iteratively generate output as input of the next hidden layer (lines

4-21).

After weights training is finished, the input data will be unrolled to get the reconstructed

data. First, we utilize the input data to computePr(hi|hi−1) based on the sigmoid with input

hi−1 to get the coding outputh3, which is a reduced dimension data (lines 23-26). Then, by

computingPr(ĥi−1|ĥi) based on the sigmoid with inputĥi, the reconstructed datâh0 is sampled,

where the weights of the deep network are only transposed, thus reducing the time complexity of

weights training (lines 27-31). Once the reconstructed data ĥ0 is obtained, a supervised learning

method based on back-propagation algorithm is used for the deep network as in the fine-tuning

phase. Thus, we compute the error between the input datav = h0 and reconstructed datâh0 to

successively update the weight matrix (lines 33-34).
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Algorithm 4: Weights Training

1 Input: n packet receptions each with 90 CSI calibrated phase values for each of theN
training locations;

2 Output: N groups of fingerprints each consisting of six weight matrices;
3 for j = 1 : N do
4 // pretraining;
5 for i = 1 : 3 do
6 initializeW i = 0, bi = 0;
7 for k = 1 : maxepochdo
8 for t = 1 : n do
9 h0 = v(t);

10 ComputePr(hi|hi−1) based on the sigmoid with inputhi−1;
11 Samplehi fromPr(hi|hi−1);
12 ComputePr(hi−1|hi) based on the sigmoid with inputhi;

13 Samplêhi−1 fromPr(hi−1|hi);
14 ComputePr(hi|ĥi−1) based on the sigmoid with inputĥi−1;

15 Samplêhi fromPr(hi|ĥi−1);

16 Wi = Wi + α(hi−1hi − ĥi−1ĥi);

17 bi = bi + α(hi − ĥi);

18 bi−1 = bi−1 + α(hi−1 − ĥi−1);
19 end
20 end
21 end
22 //unrolling;
23 for i = 1 : 3 do
24 ComputePr(hi|hi−1) based on the sigmoid with inputhi−1;
25 Samplehi fromPr(hi|hi−1);
26 end
27 Setĥi = hi;
28 for i = 3 : 1 do
29 ComputePr(ĥi−1|ĥi) based on the sigmoid with inputĥi;

30 Samplêhi−1 fromPr(ĥi−1|ĥi);
31 end
32 //fine-tuning;

33 Obtain the error between input datah0 and reconstructed datâh0;
34 Update the six weights using the error with back-propagation;
35 end

3.3.3 Position Algorithm

In the online test stage, a probabilistic method is developed to estimate the location of the mobile

device based on the fingerprint database and new calibrated phase data. We compute the posteriori
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probabilityPr(li|h0) based on Bayes’ law, which is given by

Pr(li|h0) =
Pr(li) Pr(h

0|li)∑N

i=1 Pr(li) Pr(h
0|li)

, (3.12)

whereN is the number of reference locations,li is reference locationi in the fingerprint database,

Pr(li) is the prior probability that the mobile device is determined to locate at the reference location

li. We assume thatPr(li) follows an uniformly distribution, and then the posterioriprobability

Pr(li|h0) can be simplified as follows.

Pr(li|h0) =
Pr(h0|li)∑N

i=1 Pr(h
0|li)

. (3.13)

Based on the deep network model, we considerPr(h0|li) as the RBF in the form of a Gaussian

function to measure the degree of similarity between the reconstructed calibrated phase dataĥ0

and the input calibrated phase datah0, which is given by

Pr(h0|li) = exp

(
− 1

λσ

∥∥∥h0 − ĥ0
∥∥∥
)
, (3.14)

whereσ is the variance andλ is the parameter of the variance of the input calibrated phase data. Fi-

nally, the position of the mobile device can be computed as a weighted average of all the reference

locations, as

l̂ =
N∑

i=1

Pr(li|h0)li. (3.15)

3.4 Experimental Validation

3.4.1 Experiment Methodology

We examine the performance of PhaseFi with extensive experiments. In our experiments, a TP

Link router serves as AP and the mobile device is a Dell laptopequipped with an Intel WiFi Link
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Figure 3.9: Layout of the living room for training/test positions.

5300 NIC. We also modify the NIC’s device driver to read CSI values that are recorded in the

hardware in the form of CSI for each packet reception. The phase data are extracted from the CSI

and calibrated for training and testing.

At the access point, the router needs to respond to a mobile device for the localization service.

Thus, the Ping command is employed to implement the request and response process between the

laptop and the router. The laptop Pings the router, and then the router returns packets to the laptop.

In our localization experiment, we write a Java program to implement continuous Pings at a rate

of 20 times per second. There are two reasons to choose this rate. First, if we run Ping at a lower

rate, no enough packets will be available to determine a mobile device position. The rate of 20

times per second is proper for the online phase in PhaseFi. Second, if too many Pings are run, it

is difficult for the laptop to process the received packets with the short time. Also, because we

need to continuously determine the mobile device position,it may cause packet loss and buffer

overflow. Moreover, once the IWL 5300 NIC receives a packet, the CSI value will be recorded

in the hardware in the form of CSI per packet reception. PhaseFi can obtain 90 CSI values and

calibrate them for each packet reception, which are all usedfor weights training or for determining

the mobile device position.

In this section, we validate the performance of PhaseFi in two representative indoor envi-

ronments as follows. First, we conduct experiments in a4 × 7 m2 living room where there are

no outstanding obstacles around the center so that most of the measured locations can have LOS

receptions. Fig. 3.9 shows the layout of the living room as well as the training/test points. The
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Figure 3.10: Layout of the laboratory for training/test positions.

AP is placed at one end (rather than the center) of the living room on the floor to avoid isotropy.

We set 38 points as training points (in red) and 12 points as test points (in green). In addition,

we collect CSI data for 400 packet receptions for each training point, and 20 packet receptions for

each test point. A deep network with structure 90 inputs,K1 = 60, K2 = 30, andK3 = 15 is

used for the living room environment. We use a deep network with structure 90 inputs, K1 = 60,

K2= 30, and K3 = 15 for both the living room and laboratory environments. The main reason is

that for PhaseFi, we need to satisfy the near real-time requirement for indoor localization so that

the number of nodes should be not be very large. Compared with the deep network structure, we

also tried other structures, such as K1 = 150, K2 = 100, K3 = 50.We found that although the mean

execution time varies from 0.37s to 0.65s, the indoor localization errors do not change much, i.e.,

around 1m and 2m for living room and laboratory environments, respectively. Thus, we choose

the deep network structure with the smaller mean execution time.

Second, we chose a computer laboratory in Broun Hall in the campus of Auburn University.

In this 6 × 9 m2 laboratory, there are PCs and many desks crowded in the room such that most of

the LOS paths are blocked, thus leading to a complex radio propagation environment. Fig. 3.10

shows the layout of the laboratory, where we select 50 training points and 30 test points. The AP

is placed on the left bottom corner. To obtain integrated characteristics of the subcarriers, we read

CSI data for 800 packet receptions for each training point, and 20 packet receptions for each test
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Table 3.1: Mean errors and execution time (Living Room)

Algorithm Mean error (m) Std. dev. (m) Mean exe. time (s)

PhaseFi 1.0800 0.4046 0.3780
FIFS 1.2436 0.5705 0.2362
Horus 1.5449 0.7024 0.2297
ML 2.1615 1.0416 0.2290

Table 3.2: Mean errors and execution time (Laboratory)

Algorithm Mean error (m) Std. dev. (m) Mean exe. time (s)

PhaseFi 2.0134 1.0139 0.3770
FIFS 2.3304 1.0219 0.2439
Horus 2.5996 1.4573 0.2214
ML 2.8478 1.5545 0.2220

point. The structure of the deep network in the laboratory environment is the same as that in the

living room environment.

For comparison purpose, we implement three existing methods, including FIFS [22], Ho-

rus [19], and ML [59]. FIFS and Horus are discussed in introduction. In ML, based on RSS

measurements, only one reference location with maximum posterior probability is considered as

the estimated result. For a fair comparison, all schemes usethe same measured data set to estimate

the position of the mobile device.

3.4.2 Localization Performance

Tables 3.1 and 3.2 present the mean location errors, the standard deviations, and the average ex-

ecution time of the living room and the laboratory experiments, respectively. In the living room

environment, we find PhaseFi to achieve a mean location errorof 1.08 m and a standard deviation

of 0.4046 m for the 12 test points. In the laboratory scenario, the error is higher due to abundant

multipath and shadowing effect. Our system achieves a mean error of 2.0134 m and a standard

deviation of 1.0139 m for the 30 test points. For indoor localization accuracy, PhaseFi based on

calibrated phases outperforms all the other schemes (i.e.,FIFS, Horus and ML) that are based on

amplitudes. PhaseFi also demonstrates robust performancefor different locations with the smallest
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Figure 3.11: CDF of localization errors of the living room experiments.

standard deviation. We also examine the computational complexity of the schemes. Although the

mean execution time for PhaseFi is higher than the benchmarkschemes, the 0.38 s average exe-

cution time of PhaseFi for both scenarios still satisfies thereal-time requirement for most indoor

localization applications. In fact, by optimizing the parameters and reducing the number of nodes

in the deep network, the average execution time of PhaseFi can be further reduced.

Fig. 3.11 shows the CDF of distance errors with the four schemes in the living room scenario.

For PhaseFi, more than 50% of the test points have an error under 0.9 m using one AP, while the

other schemes guarantee that 30% of the test points have an error under 0.9 m. Moreover, PhaseFi

and FIFS have approximate 80% of the test points with mean location errors under 1.5 m, while

Horus and ML have the same test points with mean error under 2.0 m and 3.0 m, respectively. The

CSI-based schemes such as PhaseFi and FIFS can utilize the fined-grained subcarrier information,

and are thus more stable than the RSS-based schemes.

Fig. 3.12 presents the CDFs of distance errors achieved with the four schemes in the laboratory

environment. In this more complex propagation environment, for PhaseFi, about 60% of the test

points have a distance error under 2 m, while the other schemes have the same portion of test

points with error under 2.7 m. We find PhaseFi to be the most accurate among the four schemes,

because the phase of the signal periodically changes over the propagation distance, which is more

robust than amplitude, especially in cluttered propagation environments. The signal amplitude is
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Figure 3.12: CDF of localization errors of the laboratory experiments.

usually more vulnerable to transmission impairments, and the correlation between signal strength

and propagation distance is usually weak in indoor scenarios. Thus PhaseFi outperforms the three

amplitude based schemes (based on either CSI or RSS).

Fig. 3.13 shows the mean localization errors versus different number of packets in the labo-

ratory and living room experiments. In both experiments, the distance error is decreased as more

packets are used. In particular, the mean distance error is decreased from 1.21 m to 1.03 m in the

living room experiment, and from 2.23 m to 1.98 m in the laboratory experiment, when the number

of packets is increased from 5 to 50. Only small reduction in localization error is achieved when

the number of packets is increased for 10 times. Thus, we use 20 packets for online test in PhaseFi,

which achieves not only a good localization accuracy, but also a low computational complexity for

real-time localization applications.

3.5 Conclusion

In this chapter, we proposed PhaseFi, a phase fingerprintingsystem for indoor localization. In the

system, the phase information was first extracted and calibrated from the three antennas of the Intel

WiFi Link 5300 NIC by accessing the modified device driver. Inthe offline stage, we designed a

deep network with three hidden layers to train the calibrated phase data, and used weights to

represent fingerprints. To reduce complexity, a greedy learning algorithm was incorporated to
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Figure 3.13: Mean localization errors for different numberof packets in the laboratory and living
room experiments.

train the weights layer-by-layer, where a sub-network between two consecutive layers formed an

RBM approximately and solved by a CD-1 algorithm. In the online stage, a Bayes method based

on RBF was used for location estimation. The proposed PhaseFi scheme was validated in two

representative indoor environments, and was shown to outperform three benchmark schemes based

on either CSI or RSS in both scenarios.
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Chapter 4

BiLoc: Bi-modal Deep Learning for Indoor Localization with Commodity 5GHz WiFi

4.1 Introduction

The proliferation of mobile devices has fostered great interest in indoor location-based services,

such as indoor navigation [68, 69, 70, 71, 72], robot tracking in the factories [73], locating work-

ers in construction sites [74], and activity recognition [75], all requiring accurately identifying

locations of mobile devices indoors. The indoor environment poses a complex radio propagation

channel, including multipath propagation, blockage, and shadow fading, and stimulates great re-

search efforts on indoor localization theory and systems [12]. Among various indoor localization

schemes,WiFi-based fingerprintingis probably one of the most widely used techniques. With fin-

gerprinting, a database is first built with data collected from a thorough measurement of the field

in the offline training stage. Then, the position of a mobile user can be estimated by matching the

newly received data in the pre-built database. A unique advantage of this approach is that no extra

infrastructure needs to be deployed.

Recently, for the Intel 5300 NIC in 2.4GHz, two effective methods are proposed to remove the

randomness in raw CSI phase data. In [67], the measured phasesfrom 30 subcarriers are processed

with a linear transformation to mitigate the randomness in CSI phase, which is then employed for

passive human movement detection. In [66], in addition to the linear transformation, the difference

of the sanitized phases of two antennas is obtained and used for LOS identification. Although both

approaches can stabilize the phase information, the mean value of phase will be zero (i.e., lost)

after such processing. This is actually caused by the firmware design of the Intel 5300 NIC when
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operating on the 2.4GHz band [76]. To address this issue, Phaser [76] is the first to exploit CSI

phase in 5GHz WiFi. Phaser constructs an AOA pseudospectrumfor phase calibration in single

Intel 5300 NIC. Motivated the above works, we explorer effectively cleansed phase data for indoor

localization with commodity 5GHz WiFi.

In this chapter, we consider the problem of fingerprinting-based indoor localization with com-

modity 5GHz WiFi. We first present three hypotheses on CSI amplitude and phase information for

5GHz OFDM channels.First, the average amplitude over two antennas is more stable thanthat

from a single antenna as well as RSS.Second, CSI phase difference values from two antennas

in 5GHz are highly stable. Due to the firmware design of Intel 5300 NIC, the phase differences

of consecutively received packets form four clusters when operating in 2.4GHz. Such ambiguity

makes measured phase difference unusable. However, we find this phenomenon does not exit in the

5Ghz band, where all the phase differences concentrate around one value. We further design a sim-

ple multi-radio hardware for phase calibration which is greatly different from the technique [76]

that uses AOA pseudospectrum searching with high computation complexity to calibrate phase in

single Intel 5300 NIC. As a result, the randomness from the frequency and time difference between

the receiver and transmitter, and the unknown phase offset can all be removed; and stable phase

information can be obtained.Third, the calibrated phase difference in 5GHz can be translated

into AOA with considerable accuracy when there is a strong LOS component. We validate these

hypotheses with both extensive experiments and simple analysis.

We then design BiLoc,Bi-modal deep learning for indoorlocalization using commodity WiFi

devices, to incorporate the three hypotheses in an indoor fingerprinting system. In BiLoc, we

first extract raw amplitude and phase data from the three antennas, each with 30 subcarriers, with

a modified firmware. We then obtain bi-modal data, including average amplitudes over pairs of

antennas and estimated AOAs, with the calibration procedure discussed above. In the training

phase, we adopt a deep autoencoder network to extract the unique channel features hidden in the

bi-modal data, and leverage the weights of the deep autoencoder network as the extracted features

(i.e., fingerprints). To reduce the computational complexity, a greedy learning scheme is leveraged
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to train the deep autoencoder network using a RBM model. In the test phase, bi-modal test data is

first collected from a mobile device. Based on the RBF, a Bayesian probability model is employed

to estimating position.

The main contributions of this chapter are summarized below.

• We theoretically and experimentally validate the feasibility of using bi-modal CSI data for

indoor localization. In particular, we deeply analyze the measured phase errors and design a

multi-radio hardware for calibrating the unknown phase offset difference in single Intel 5300

NIC. To the best of our knowledge, we are the first to employ bothaverage amplitudes and

estimated AOAs for indoor fingerprinting in commodity 5GHz WiFi networks.

• We propose a deep learning approach for indoor fingerprinting. In particular, we leverage

a deep autoencoder network to extract OFDM channel featureshidden in the rich CSI bi-

modal data, and use weights to build the bi-modal fingerprintdatabase. Further, we propose

a probability fusion method for accurately estimating position with bi-modal test data.

• We implement the BiLoc system with commodity 5GHz WiFi and show its superior perfor-

mance in three typical indoor scenarios with extensive experiments. Our test results demon-

strate that BiLoc outperforms three representative existing schemes on localization accuracy.

In the rest of this chapter, the preliminaries and hypotheses are given in Section 4.2. We

present the BiLoc system in Section 4.3 and validate its performance in Section 4.4. Section 4.5

summarizes this chapter.

4.2 Preliminaries and Hypotheses

4.2.1 Distribution of Amplitude and Phase

In general bothIi andQi can be modeled as i.i.d. AWGN of varianceσ2. The amplitude re-

sponse is|CSIi| =
√
I2i +Q2

i , which follows a Rician distribution when there is a strong LOS

component [77]. The probability distribution function (PDF) of the amplitude response is defined
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by

f(|CSIi|) =
|CSIi|
σ2

exp

(
−|CSIi|2 + |CSI0|2

2σ2

)
×

I0

( |CSIi| · |CSI0|
σ2

)
, (4.1)

where|CSI0| is the amplitude response without noise,I0(·) is the zeroth order modified Bessel

function of the first kind. When the signal to noise ratio (SNR) is high, the PDFf(|CSIi|) will

converge to the Gaussian distribution asN (
√
|CSI0|2 + σ2, σ2) [77].

The phase response of subcarrieri is computed by∠CSIi = arctan(Qi/Ii) [77]. The phase

PDF is given by

f(∠CSIi)

=
1

2π
exp

(
−|CSI0|2

2σ2

)(
1 +
|CSI0|
σ

√
2π cos(∠CSIi)×

exp

( |CSI0|2 cos2(∠CSIi)
2σ2

)(
1−Q

( |CSI0| cos(∠CSIi)
σ

)))
,

whereQ(·) is the Q-function. In the high SNR regime, the PDFf(∠CSIi) also converges to a

Gaussian distribution asN (0, (σ/|CSI0|)2) [77]. The distribution of amplitude and phase of the

subcarriers would be useful to guide the design of localization algorithms.

4.2.2 Hypotheses

We consider three important hypotheses about the 5GHz CSI data, which are demonstrated and

tested with our measurement study and theoretical analysis.

Hypothesis 1

The average CSI amplitude value over two adjacent antennas forthe 5GHz OFDM channel is

highly stable at a fixed location.
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We find CSI amplitude values exhibit great stability for continuously received packets at a

given location. Fig. 4.1 presents the CDF of the standard deviations (STD) of (i) the normalized

CSI amplitude averaged over two adjacent antennas, (ii) the normalized CSI amplitude from a

single antenna, and (iii) the normalized RSS amplitude from asingle antenna, for 90 positions.

At each position, 50 consecutive packets are received by theIntel 5300 NIC operating on the

5GHz band. It can be seen that 90% of the testing positions areblow 10% of the STD in the

case of averaged CSI amplitudes, while the percentage is 80% for the case of single antenna CSI

and 70% for the case of single antenna RSS. Thus, averaging over two adjacent antennas can

make CSI amplitude highly stable for a fixed location with 5GHzOFDM channels. We conduct

the measurements over a long period of time, including midnight hours and business hours. No

obvious difference in the stability of CSI is observed over different times, while RSS values exhibit

large variations even for the same position. This finding motives us to use average CSI amplitudes

of two adjacent antennas as one of the features of deep learning in the BiLoc design.

Recall that the PDF of the amplitude response of a single antenna is Gaussian in the high

SNR regime. Assuming that the CSI values of the two antennas are i.i.d. (true when two adjacent

antennas are more than a half wavelength apart [66]), the average CSI amplitudes also follow

the Gaussian distribution, asN (
√
|CSI0|2 + σ2, σ2/2), but with a smaller variance. This proves

that stability can be improved by averaging CSI amplitudes over two antennas [78](as observed in

Fig. 4.1). On the other hand, we consider the average CSI amplitudes over two antennas instead

of three antennas or only one antenna, because BiLoc system employs a bi-model data, such as

estimated AOAs and average amplitudes. This requires that we use the same number of nodes as

the input for a deep autoencoder network.

Hypothesis 2

The difference of CSI phase values between two antennas of the 5GHz OFDM channel is highly

stable, compared to that of the 2.4GHz OFDM channel.
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Figure 4.1: CDF of the standard deviations of average CSI amplitude, a single CSI amplitude, and
a single RSS in the 5GHz OFDM channel for 90 positions.

Although the CSI phase information is also available from theIntel 5300 NIC, it is highly

random and cannot be directly used for localization, due to noise and the unsynchronized time

and frequency of the transmitter and receiver. Recently, twouseful algorithms are used to remove

the randomness in CSI phase. The first approach is to make a linear transform of the phase values

measured from the 30 subcarriers [67, 79]. The other one is toexploit the phase difference between

two antennas in 2.4GHz and then remove the measured average [66]. Although both methods can

stabilize the CSI phase in consecutive packets, the average phase value they produce is always near

zero, which is different from the real phase value of the received signal.

Switching to the 5GHz band, we find the phase difference becomes highly stable. Fig. 4.2

shows the measured phase differences of the 30 subcarriers between two antennas for 200 consec-

utively received packets in the 5GHz (in blue) and 2.4GHz (inred) bands. The phase difference

of the 5GHz channel varies between [0.5, 1.8], which is considerably more stable than that of the

2.4GHz channel (varies between[−π, π]). To further illustrate this finding, we plot the measured

phase differences between the 5th subcarrier of two antennas using polar coordinates in Fig. 4.4.

We find that all the 5GHz measurements concentrate around 30◦, while the 2.4GHz measurements

form four clusters around 0◦, 90◦, 180◦, and 270◦. It is because of the firmware design of the Intel

5300 NIC when operating on the 2.4GHz band, which reports thephase of channel moduloπ/2

77



0 50 100 150 200
−4

−3

−2

−1

0

1

2

3

4

Number of Packets

P
ha

se
 D

iff
er

en
ce

 

 

5GHz

2.4GHz

Figure 4.2: The measured phase differences of the 30 subcarriers between two antennas for 200
consecutively received packets in the 5GHz (blue) and 2.4GHz (red) bands.

rather than2π on the 5GHz band [76]. Comparing to the ambiguity in the 2.4GHzband, the highly

stable phase difference in the 5GHz band could be very usefulfor indoor localization.

As in Hypothesis 1, we also provide an analysis to validate the observation from experiments.

Let∠ĈSI i denote the measured phase of subcarrieri, which is given by [80, 81]

∠ĈSI i = ∠CSIi + (λp + λs)mi + λc + β + Z, (4.2)

where∠CSIi is the true phase from wireless propagation,Z is the measurement noise,β is the

initial phase offset because of the phase-locked loop (PLL),mi is the subcarrier index of subcarrier

i, λp, λs andλc are phase errors from PBD, SFO and CFO, respectively [80], which are expressed

by





λp = 2π∆t
N

λs = 2π(T
′−T
T

) Ts

Tu
n

λc = 2π∆fTsn,

(4.3)

where∆t is the packet boundary detection delay,N is the FFT size,T ′ andT are the sampling

periods from the receiver and the transmitter, respectively, Ts is the total length of the data symbol

and the guard interval,Tu is the length of the data symbol,n is the sampling time offset for current
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packet,∆f is the center frequency difference between the transmitterand receiver. It is noticed

that we cannot obtain the exact values about∆t, T ′−T
T

, n, ∆f , andβ. Moreover,λp, λs andλc vary

for different packets with different∆t andn. Thus, the true phase∠CSIi cannot be derived from

the measured phase value.

However, note that the three antennas of the Intel 5300 NIC use the same clock and the

same down-converter frequency. Consequently, the measuredphases of subcarrieri from two

antennas have identical packet detection delay, sampling periods and frequency differences (and

the samemi) [76]. Thus the measured phase difference on subcarrieri between two antennas can

be approximated as

∆∠ĈSI i = ∆∠CSIi +∆β +∆Z, (4.4)

where∆∠CSIi is the true phase difference of subcarrieri, ∆β is the unknown difference in phase

offsets, which is in fact a constant [76], and∆Z is the noise difference. We can find that∆∠ĈSI i

is stable for different packets because of the above equation (4.4) without∆t andn.

In the high SNR regime, the PDF of the phase response of subcarrier i for each of the anten-

nas isN (0, (σ/|CSI0|)2). Due to the independent phase responses, the measured phasedifference

of subcarrieri is also Gaussian withN (∆β, 2σ2(1 + 1/|CSI0|2)). Note that although the vari-

ance is higher comparing to the true phase response, the uncertainty from the time and frequency

differences is removed, leading to much more stable measurements (as shown in Fig. (4.4)).

Hypothesis 3

The calibrated phase difference in 5GHz can be translated into the AOA with considerable accu-

racy when there is a strong LOS component.
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The measured phase difference on subscriberi can be translated into an estimation of AOA,

as

θ = arcsin

(
∆∠ĈSI iλ

2πd

)
, (4.5)

whereλ is the wavelength andd is the distance between the two antennas (set tod = 0.5λ in our

experiments). Although the measured phase difference∆∠ĈSI i is highly stable, we still wish to

remove the unknown phase offset difference∆β to further reduce the error of AOA estimation.

For commodity WiFi devices, the existing approach for a single NIC is to search for∆β within an

AOA pseudospectrum in the range of[−π, π], which, however, has a high time complexity [76].

For the proposed Biloc system, we design a simple method to remove the unknown phase

offset difference∆β using two Intel 5300 NICs. As in Fig. 4.3, we use one Intel 5300 NIC as

transmitter and the other as receiver, while asignal splitteris used to route signal from antenna

1 of the transmitter to antennas 1 and 2 of the receiver through cables of the same length. Since

the two antennas receive the same signal, the true phase difference∆∠CSIi of subcarrieri is zero.

We can thus obtain∆β as the measured phase offset difference between antennas 1 and 2 of the

receiver. We also use the same method to calibrate antennas 2and 3 of the receiver, to obtain the

unknown phase offset difference between them as well. We notice that the unknown phase offset

difference is relatively stable over time.

After calibrating the unknown phase offset differences forthe three antennas, we then use

the MUSIC algorithm for AOA estimation [82]. In Fig. 4.5, theAOA estimation using MUSIC

with the calibrated phase information for the 30 subcarriers is plotted for a high SNR signal with a

known incoming direction of 14◦. We can see that the peak occurs at around 20◦ in Fig. 4.5, indi-

cating an AOA estimation error of about 6◦. In fact, there are multiple paths indoor environments.

Thus, only using three antennas cannot still obtain accurate angle estimation. Moreover, we im-

plemented more experiments for angles estimation by using MUSIC indoor environments; we find

that the estimated angles are changing for different locations because of NLOS paths. Although
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Figure 4.3: The multi-radio hardware design for calibrating the unknown phase offset difference
∆β.

the calibrated phase differences are not available for estimating angles by using three antennas, we

believe that the new phase calibrated method can be used for future WiFi systems such as IEEE

802.11 ac that has more than three antennas.

We can obtain the true incoming angle with MUSIC when the LOS component is strong.

To deal with the case with strong NLOS paths (typical in indoor environments), we adopt a deep

autoencoder network to learn the estimated AOAs and the average amplitudes of adjacent antenna

pairs as fingerprints for indoor localization. As input to the deep network, the estimated AOA is

obtained as follows.

θ = arcsin

((
∆∠ĈSI i −∆β

) λ

2πd

)
+
π

2
, (4.6)

where∆β is measured with the proposed multi-radio hardware experiment. The estimated AOA

is in the range of[0, π].

4.3 The BiLoc System

4.3.1 BiLoc System Architecture

The overall architecture of BiLoc is illustrated in Fig. 4.6.The BiLoc design uses one mobile

device and one access point, each equipped with an Intel 5300NIC, servicing as receiver and

transmitter, respectively [83, 84]. All the communications are on the 5GHz band. Based on the

Intel 5300 NIC with three antennas, we can collect 90 CSI data for every received packet. We then

81



  200

  400

  600

  800

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4.4: The measured phase differences of the 5th subcarrier between two antennas for 200
consecutively received packets in the 5GHz (blue dots) and 2.4GHz (red crosses) bands.
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Figure 4.5: The estimated AOAs from the 30 subcarriers usingthe MUSIC algorithm, while the
real AOA is 14◦.

calibrate the phase information of the received CSI data using our multi-radio hardware design

(see Fig. 4.3). Both the estimated AOAs and average amplitudes of two adjacent antennas are used

as location feature for building the fingerprint database.

A unique feature of BiLoc is its bi-modal design. With the three receiving antennas, we can

obtain two groups of data: (i) 30 estimated AOAs and 30 average amplitudes from antennas 1 and

2, and (ii) that from antennas 2 and 3. BiLoc utilizes estimated AOAs and average amplitudes for

indoor fingerprinting for two main reasons. First, these twotypes of CSI data are highly stable

for any given position. Second, they are usually complementary to each other under some indoor

circumstances. For example, when a signal is blocked, the average amplitude of the wireless signal

will be significantly reduced; but the estimated AOA becomesmore effective. On the other hand,
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Figure 4.6: The BiLoc system architecture.

when the NLOS components are stronger than the LOS component, the average amplitude will

help to improve the localization accuracy.

Another unique characteristic of BiLoc is the use of deep learning to produce feature-based

fingerprints from the bi-modal data in the offline training stage, which is quite different from the

traditional approach of storing the measured raw data as fingerprints. Specifically, we leverage the

weights in the deep autoencoder network as the features-based fingerprints for every position. By

obtaining the optimal weights with the bi-modal data on estimated AOAs and average amplitudes,

we can establish a bi-modal fingerprint database for the training positions. The third feature of

BiLoc is the probabilistic data fusion approach for locationestimation based on received bi-modal

data in the online test stage.

4.3.2 Offline Training for Bi-Modal Fingerprint Database

In the offline stage, BiLoc leverages deep learning to train and store the weights to build a bi-modal

fingerprint database, which is a deep autoencoder network that involves three phases: pretraining,
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unrolling, and fine-tuning [8, 64]. In the pretraining phase, a deep autoencoder network with three

hidden layers and one input layer is used to learn the bi-modal data. We denotehi as the hidden

variable withKi nodes at layeri, i = 1, 2, 3, andh0 as the input data withK0 nodes at the input

layer. Let the average amplitude data bev1 and the estimated AOA data bev2. To build the bi-

modal fingerprint database, we seth0 = v1 andh0 = v2 for database 1 and 2, respectively, each of

which is a set of optimal weights. We denoteW1, W2 andW3 as the weights between input data

and the first hidden layer, the first and second hidden layer, and the second and third hidden layer,

respectively.

To reduce the computational complexity for obtaining training weights, a greedy learning

algorithm for the proposed BiLoc system is developed to learnthe weightslayer by layerbased on

a stack of RBMs [25]. We develop a greedy algorithm to train the weights and biases for a stack

of RBMs, which is the same scheme in PhaseFi system [85]. To train the weights and biases of

each RBM, we use the CD-1 approach to solve them. For the layeri RBM model, we estimate

ĥi−1 by sampling from the conditional probabilityPr(hi−1|hi); by sampling from the conditional

probabilityPr(hi|ĥi−1), we can estimatêhi.

After the pretraining phase, we then unroll the deep autoencoder network usingforward prop-

agation to obtain the reconstructed input data in the unrolling phase. Finally, in the fine-tuning

phase, thebackpropagationalgorithm is used to train the weights in the deep autoencoder network

according to the error between the reconstructed data and the input data. The optimal weights are

obtained by minimizing the error. In BiLoc, we use estimated AOAs and average amplitudes as

input data, and obtain two sets of optimal weights for the bi-modal fingerprint database.

4.3.3 Online Data Fusion for Position Estimation

In the online phase, we adopt a probabilistic approach to location estimation using the bi-modal

fingerprint database and the bi-modal test data. We derive the posteriori probabilityPr(li|v1, v2)
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using Bayes’ law as

Pr(li|v1, v2) =
Pr(li) Pr(v

1, v2|li)∑N

i=1 Pr(li) Pr(v
1, v2|li)

, (4.7)

whereli is theith reference location in the bi-modal fingerprint database,N is the number of refer-

ence positions, andPr(li) is the prior probability, which is uniformly distributed for any reference

positionli [85]. The posteriori probabilityPr(li|v1, v2) becomes

Pr(li|v1, v2) =
Pr(v1, v2|li)∑N

i=1 Pr(v
1, v2|li)

. (4.8)

In BiLoc, we approximatePr(v1, v2|li) with an RBF to consider the degree of similarity

between the reconstructed bi-modal data and the test bi-modal data, given by

Pr(v1, v2|li) = exp

(
−(1− ρ)‖v

1 − v̂1‖
η1σ1

− ρ‖v
2 − v̂2‖
η2σ2

)
, (4.9)

wherev̂1 andv̂2 are the reconstructed average amplitude and reconstructedAOA, respectively;σ1

andσ2 are the variance of the average amplitude and estimated AOA,respectively;η1 andη2 are

the parameters of the variance of the average amplitude and estimated AOA, respectively; andρ is

the ratio for the bi-modal data.

For the Eq. (4.9), the average amplitudesv̂1 and the estimated AOAŝv2 are as the input of

the deep autoencoder network, where the different nodes of the input can express the different

CSI channels. Then, by employing the test datav̂1 andv̂2, we compute the reconstructed average

amplitudev̂1 and reconstructed AOÂv2 based on database 1 and database 2, respectively, which is

used to compute the likelihood functionPr(v1, v2|li).

The location of the device is finally determined as a weightedaverage of all the reference

positions, that is

l̂ =
N∑

i=1

Pr(li|v1, v2) · li. (4.10)
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4.4 Experimental Study

4.4.1 Test Configuration

We present our experimental study with BiLoc in the 5GHz band in this section. In the experi-

ments, we use a Dell laptop as a mobile device and a desktop computer as an access point, both of

which are equipped with an Intel 5300 NIC. In fact, we use the desktop computer instead of the

commodity routers that are not equipped with the Intel 5300 NIC nowadays. Our implementation

of BiLoc is executed on the Ubuntu desktop 14.04 LTS OS for boththe access point and mobile

device. We use QPSK modulation and a 1/2 coding rate for the OFDM system. For the access

point, it is set in monitor model and the distance between twoadjacent antennas isd = 2.68 cm.

It is half of a wavelength for the 5GHz band. For the mobile device, it transmits packets at 100

packets per second using only one antenna in injection mode.5GHz CSI data can be obtained by

using packet injection technique based on LORCON version 1. Then, we extract bi-modal data for

training and test stages as described in Section 5.3.2.

We implement three representative schemes from the literature, i.e., Horus [19], FIFS [22],

and DeepFi [64]. Moreover, all the schemes employ the same dataset captured in the 5GHz band

for a fair comparison. Moreover, we can find that the three methods do not leverage phase dif-

ference information. We conduct extensive experiments with the schemes in the following three

representative indoor environments.

Computer Laboratory: This is a6×9 m2 computer laboratory, a cluttered environment with metal

tables, chairs, and desktop computers, blocking most of theLOS paths. The floor plan is shown

in Fig. 4.7, with 15 chosen training positions (marked as redsquares) and 15 chosen test positions

(marked as green dots). The distance between two adjacent training positions is 1.8 m. The single

access point is put close to the center of the room. We collectbi-modal data from 1000 packets for

each training position, and from 25 packets for each test position. The deep autoencoder network

used for this scenario is configured as{K1 = 150, K2 = 100, K3 = 50}. Also, the ratioρ for the

bi-modal data is set as 0.5.
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Figure 4.7: Layout of the computer laboratory: training positions are marked as red squares and
testing positions are marked as green dots.

Corridor: This is a2.4×24 m2 corridor, as shown in Fig. 4.8. In this scenario, the AP is placed at

the left end of the corridor and there are plenty of LOS paths.Ten training positions (red squares)

and 10 test positions (green dots) are arranged along a straight line. The distance between two

adjacent training positions is also 1.8 m. We also collect bi-modal data from 1000 packets for

each training position and from 25 packets for each test position. The deep network used for this

scenario is configured as{K1 = 150,K2 = 100,K3 = 50}. Also, the ratioρ for the bi-modal data

is set as 0.1.

Two Corridors: These are a2.4×24 m2 corridor and a2.4×20 m2 corridor, as shown in Fig. 4.9.

In this scenario, six APs are placed two corridors and there also are enormous LOS paths. Eighteen

training positions (red squares) are arranged along two corridors. And plenty of test positions are

randomly in the two corridors, which are not shown in Fig. 4.9. The distance between two adjacent

training positions is also 1.8 m. We also measure bi-modal data from 1000 packets for each training

position and from 25 packets for each test position. Other parameters in deep network are set as

the same with the above one corridor. For the deployment, we only leverage it to study the impact

of the number of APs on indoor localization results for different schemes.
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Figure 4.8: Layout of the corridor: training positions are marked as red squares and testing posi-
tions are marked as green dots.

Figure 4.9: Layout of the two corridors: training positionsare marked as red squares.

4.4.2 Accuracy of Location Estimation

Tables 4.1 and 4.2 show the mean and STD of localization errors, and the execution time of the

four schemes for the two scenarios, respectively. In the laboratory environment, BiLoc achieves a

mean error of 1.5743 m and an STD error of 0.8312 m across the 15test points. In the corridor

experiment, because only one access point is used for this larger space, BiLoc achieves a mean

error of 2.1501 m and an STD error of 1.5420 m across the 10 testpoints. BiLoc outperforms the

other three benchmark schemes with the smallest mean error,as well as with the smallest STD

error, i.e., being the most stable scheme in both scenarios.We also compare the online test time

of all the schemes. Due to the use of bi-modal data and the deepnetwork, the mean executing

time of BiLoc is the highest among the four schemes. However, the mean execution time is 0.6653
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Table 4.1: Mean/STD error and execution time of the laboratory experiment

Algorithm Mean error Std. dev. Mean execution time
(m) (m) (s)

BiLoc 1.5743 0.8312 0.6653
DeepFi 2.0411 1.3804 0.3340
FIFS 2.7151 1.0805 0.2918
Horus 3.0537 1.0623 0.2849

Table 4.2: Mean/STD errors and execution time of the corridor experiment

Algorithm Mean error Std. dev. Mean execution time
(m) (m) (s)

BiLoc 2.1501 1.5420 0.5440
DeepFi 2.8953 2.5665 0.3707
FIFS 4.4296 3.4256 0.2535
Horus 4.8000 3.5242 0.2505

s for the laboratory case and 0.5440 s for the corridor case, which are sufficient for most indoor

localization applications.

Fig. 4.10 shows the CDF of distance errors of the four methods in the laboratory scenario. In

this complex propagation environment, BiLoc has 100% of the test positions with an error under

2.8 m, while DeepFi, FIFS, and Horus have about 72%, 52%, and 45% of the test positions with

an error under 2.8 m, respectively. For a much smaller error of 1.5 m, the percentage of test

positions having a smaller error are 60%, 45%, 15%, and 5% forBiLoc, DeepFi, FIFS, and Horus,

respectively. BiLoc achieves the highest precision among the four schemes, due to the use of bi-

modal CSI data (i.e., average amplitudes and estimated AOAs). In fact, when the amplitude of a

signal is strongly influenced in the laboratory environment, the estimated AOA can be utilized to

mitigate this effect by BiLoc. However, the other methods based solely on CSI or RSS amplitudes

will be affected.

Fig. 4.11 presents the CDF of distance errors of the four schemes for the corridor scenario.

Only one access point is used at one end for this 24 m long corridor, making it hard to determine

the position of the mobile device. For BiLoc, more than 90% of the test positions have an error

under 4 m, while DeepFi, FIFS, and Horus have about 70%, 60%, and 50% of the test positions
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Figure 4.10: CDF of localization errors in 5GHz for the laboratory experiment.
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Figure 4.11: CDF of localization errors in 5GHz for the corridor experiment.

with an error under 4 m, respectively. For a tighter 2 m error threshold, BiLoc has 60% of the test

positions with an error below this threshold, while it is 40%for the other three schemes. For the

corridor scenario, BiLoc mainly utilizes the average amplitudes of CSI data, because the estimated

AOAs are similar for all the training/test positions (recall that they are aligned along a straight line

with the access point at one end). This is a challenging scenario for differentiating different test

points and the BiLoc mean error is 0.5758 m higher than that of the laboratory scenario.
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Figure 4.12: CDF of localization errors in 5GHz and 2.4GHz forthe laboratory experiment.
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Figure 4.13:Mean localization errors versus parameterρ for the laboratory and corridor experiments.
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Figure 4.14:Mean localization errors versus the number of packets used in the online test stage for the laboratory
and corridor experiments.
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Figure 4.15:Mean localization errors versus the number of nodes in deep networks for the laboratory and corridor
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Figure 4.16: Mean localization errors versus the number of APs for two corridors experiment.

4.4.3 2.4GHz versus 5GHz

We also compare the 2.4GHz channel and 5GHz channel with the BiLoc scheme. For a fair com-

parison, we conduct the experiments at night, because the 2.4GHz band is much more crowded

than the 5GHz band during the day.

Fig. 4.14 presents the CDF of localization errors in the 2.4GHz and 5GHz band in the labo-

ratory environment, where both average amplitudes and estimated AOAs are effectively used by

BiLoc for indoor localization. We can see that for BiLoc, about70% of the test positions have an

error under 2 m in 5GHz, while 50% of the test positions have anerror under 2 m in 2.4GHz. In
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addition, the maximum errors in 2.4GHz and 5GHz are 6.4 m and 2.8 m, respectively. Therefore,

the proposed BiLoc scheme achieves much better performance in 5GHz than 2.4GHz. In fact, the

phase difference between two antennas in 2.4GHz exhibits great variations, which lead to lower

localization accuracy. This experiment also validates ourHypothesis 2.

4.4.4 Impact of Parameterρ

Recall that the parameterρ is used to trade off the impacts of average amplitudes and estimated

AOAs in location estimation as in (4.9). We consider the impact of ρ on localization accuracy

under the two environments. With BiLoc, we use bi-modal data for online testing, andρ directly

influences the likelihood probabilityPr(v1, v2|li) (4.9), which in turn influences the localization

accuracy.

Fig. 4.13 presents the mean localization errors for increasing ρ for the laboratory and corridor

experiments. In the laboratory experiment, whenρ is increased from 0 to 0.3, the mean error de-

creases from 2.6 m to 1.5 m. Furthermore, the mean error remains around 1.5 m forρ ∈ [0.3, 0.7],

and then increases from 1.5 m to 2 m whenρ is increased from 0.6 to 1. Therefore, BiLoc achieves

its minimum mean error forρ ∈ [0.3, 0.7], indicating that both average amplitudes and estimated

AOAs are useful for accurate location estimation. Moreover, BiLoc has higher localization accu-

racy with the mean error of 1.5m, compared with individual modality such as the estimated AOAs

with that of 2.6m or the average amplitudes with that of 2.0m.

In the corridor experiment, we can see that the mean error remains around 2.1 m whenρ

is increased from 0 to 0.1. Whenρ is further increased from 0.1 to 1, the mean error keeps on

increasing from 2.1 m to about 4.3 m. Clearly, in the corridor experiment, the estimated AOAs

provide similar characteristics for deep learning, and arenot useful for distinguishing the posi-

tions. Therefore BiLoc should mainly use the average amplitudes of CSI data for better accuracy.

These experiments provide some useful guidelines on setting theρ value for different indoor envi-

ronments.
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4.4.5 Impact of the Number of Packets

We study the impact of the number of packets used in the onlinetest stage of BiLoc. In this

experiment, we estimate the location of the mobile device using different number of packets for

the two indoor environments. Although 1000 test packets arereceived for each position, we only

use 25, 50, 100, and 300 of them in the online test for locationestimation. We also randomly select

the parameterρ value to guarantee the consistency of localization resultsobtained with different

number of packets.

In Fig. 4.14, we plot the mean localization errors for different number of packets in the cor-

ridor and laboratory experiments. We can see that the mean distance error in the laboratory ex-

periment is lower than that in the corridor experiment for different packets. Moreover, with the

increase of packets, the mean distance error for both experiments is decreased. Also, we can find

that the maximum distance errors for the laboratory and corridor experiments are 1.7 m and 2.3

m, respectively, while the minimum distance errors for the laboratory and corridor experiments

are 1.58 m and 2.1 m, respectively. In fact, with the increaseof the packets, the decrease of mean

distance error is small for both experiments. Therefore, wechoose 25 packets for the test phase

in the proposed BiLoc system, which can obtain a lower computational complexity and a good

localization performance.

4.4.6 Impact of the Number of Nodes in Deep Network

We study the impact of the number of nodes in deep network on localization results of our BiLoc

system. Although there are lots of values we can set for the parametersK1,K2 andK3, the number

of all nodes (K1 + K2 + K3) in deep network is considered. In addition, we set the number of

nodes as 200, 300 and 400, respectively, for the two indoor environments.

Fig. 4.15 presents the mean distance errors for increasing number of nodes in deep network

for the laboratory and corridor experiments. We can see thatthe mean distance error is decreased

with the increasing number of nodes in deep network for both experiments. It is noticed that

the difference of the mean errors is small for different number of nodes, where the mean error is
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from 1.8 m to 1.5 m in the laboratory experiment, and that is from 2.2 m to 2.1 m in the corridor

experiment. This demonstrates that our BiLoc is robust for different number of nodes in deep

network. Thus, we select the proper number of nodes with 300 that isK1 = 150, K2 = 100 and

K3 = 50, thus obtaining the lower cost.

4.4.7 Impact of the Number of APs

Finally, we study the impact of the number of APs on localization results for different methods,

where we consider the two corridors deployment with six APs.For multiple APs, we consider the

online localization scheme by multiplying equation (4.8) for all APs to obtain the fusion likelihood

function for every location [22]. Moreover, we implement the proposed BiLoc system without cal-

ibration for indoor localization. Also, we consider the transmitter device can access the maximum

three APs.

Fig. 4.16 presents the mean distance errors for increasing number of APs based on five differ-

ent schemes in the two corridors environment. It is noticed that, the mean error is decreased with

the increasing number of APs for all schemes. Moreover, for BiLoc system, we can see that with

the increase of the number of APs from 1 to 3, the distance error is decreased from approximate

2.4 m to 1.8 m, which can improve the localization accuracy. However, we can see that compared

with other traditional methods such as Horus and FIFS, the improvement for localization accuracy

is small. Moreover, we can find that the proposed method with single AP can even obtain higher

accuracy than other methods. Furthermore, we also find that the BiLoc system has better local-

ization performance than BiLoc system without calibration.Thus, we consider one AP for BiLoc

system based on the proposed method, which reaches the lowerlocalization error and device cost.

4.5 Conclusions

We proposed BiLoc, a bi-modal deep learning system for fingerprinting-based indoor localization

with 5GHz commodity WiFi NICs. In BiLoc, we first extracted and calibrated CSI data to obtain

bi-modal CSI data, including average amplitudes and estimated AOAs, which were used in both
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the offline and online stages. In the training phase, we leveraged a deep autoencoder network to

train the bi-modal data, and the weights were used to represent the bi-modal fingerprints. In the test

phase, a Bayesian approach based probability model was employed for estimating position with

bi-model test data. We evaluated the performance of BiLoc with extensive experiments under three

representative indoor environments. The experimental results validated the superior performance

of BiLoc over several benchmark schemes.
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Chapter 5

CiFi: Deep Convolutional Neural Networks for Indoor Localization with CSI Images

5.1 Introduction

The rapid development of mobile devices and wireless techniques has promoted location-based

services for internet of things, such as indoor tracking, robot navigation in the industry, health

sensing, and activity recognition [86, 87, 88, 89, 90]. These applications require accurately de-

termining the location of a mobile device indoors. Because ofthe complex wireless propagation

in indoor environments, due to shadow fading, multipath propagation, and blockage, indoor lo-

calization with wireless signals is a challenging problem that has attracted considerable research

effects. Recently, indoor fingerprinting based on Wi-Fi signals has become a research hot-spot,

which first builds a database with a large amount of Wi-Fi measurements in the offline phase, and

then determines the location of a mobile device by matching the newly received Wi-Fi data with

that in the database.

In this chapter, phase difference data with 5 GHz Wi-Fi is used to estimate AOA, which can

be useful for indoor localization. Estimated AOA values fora given location are relatively more

stable due to the stability of phase difference data. Thus AOA estimation is robust for complexity

indoor environments. For example, when Wi-Fi signal is blocked by, e.g., chairs or computers,

the CSI amplitudes will be strongly weakened. However, the estimated AOA remains the same

when the transmitter location is not changed. Furthermore,we employ the DCNN [91] to train

the AOA data from all the training locations as a supervised learning. DCNN is a powerful deep

learning technique that has been successfully applied for image recognition [24], human activity
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recognition based on sensors [92, 93] and social networks [94]. Specifically, we create AOA im-

ages based on a large number of received packets as input to the DCNN. The proposed method is

to exploit the time-frequency feature of AOA data for improving localization performance. More-

over, since DCNN is a supervised method,it only requires to train one group of weights for all

the training data with related labels, which is different with our prior work DeepFi that requires

training weights for every training location [64, 3]. Thus,the proposed method can greatly reduce

the storage requirement.

In particular, we present CiFi, a deepConvolutional neural networks (DCNN) based scheme

for indoor localization with commodity 5 GHz WiFi. In CiFi, we first obtain 90 CSI data from

the three antennas for every received packet from the modified Intel 5300 firmware, and extract all

phase information. Then, we compute two sets of CSI data, eachincluding 30 phase differences,

from antennas 1 and 2, and from antennas 2 and 3, respectively. The phase difference data is used

to estimate AOA. Next, CiFi uses the estimated AOA values from960 received packets to construct

16 images with size60×60. These images are then used as input to the DCNN. For offline training,

we use all the constructed images from all training locations to train the DCNN, which consists

of a convolutional layer, a subsampling layer, and a fully-connected layer. For the convolutional

layer, we obtain the feature map and extract the time-space feature for AOA images. The mean

pooling function is implemented in the subsampling layer toreduce training time. We use the

squared error loss function based on back propagation (BP) totrain the convolutional weights. In

the online stage, we propose a probabilistic method to predict the location of the mobile device

based on the trained DCNN and the new CSI AOA images received from the device.

The main contributions of this chapter are summarized below.

• We theoretically and experimentally verify the feasibility of exploiting AOA values of CSI

data for indoor localization. In particular, we derive a model for measured phase and analyze

phase errors. We prove that phase difference is stable, and can be used to estimate AOA.

• This is also the first work to employ DCNN for indoor localization with Wi-Fi. We use

estimated AOA image from CSI data as input to the DCNN. By executing four convolutional
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Figure 5.1:CSI images for three different locations: (a) CSI image for location 1, (b) CSI image for location 2, (c)
CSI image for location 3.

and subsampling layers, CiFi can automatically extract the features of the estimated AOA

image, to obtain training weights with the BP algorithm. Furthermore, we implement DCNN

training algorithm for CSI images. In the online phase, we present a probability method for

location estimation.

• We implement the proposed CiFi system with commodity 5 GHz Wi-Fi, and verify its per-

formance in two representative indoor environments with extensive experiments. The results

show that CiFi achieves better location accuracy than three existing schemes. Moreover, we

consider the impact of various system parameters on localization performance.

In the remainder of the chapter, we provide the preliminaries in Section 5.2. We present the

CiFi design in Section 5.3 and performance evaluation in Section 5.4. Section 5.5 concludes this

chapter.

5.2 Preliminaries

The Intel 5300 NIC provides readings from 90 subcarriers from the three antennas. Then, we

compute two sets of CSI data, including 30 phase differences from antennas 1 and 2, and 30 phase

differences from antennas 2 and 3. Thus, 60 estimated AOA values for each received packet can

be obtained using (4.5). We take 960 packet samples for everytraining location, and construct 16
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images with size 60× 60 based on the estimated AOA values. Each image consists of 60 packets

(x-axis) and the corresponding 60 estimated AOA values for each packet (y-axis). For example,

Fig. 5.1 shows CSI images for three different locations. It isnoticed that three CSI images have

different data distribution, which can be used as fingerprints for indoor localization. For CiFi

system, the constructed images will then be used to train theDCNN.

5.3 The CiFi System

5.3.1 CiFi System Architecture

Figure 5.2 shows the CiFi system architecture. The CiFi systemuses one mobile device and one

access point as Wi-Fi transmitter and receiver, respectively, both equipped with the Intel 5300

NIC. Using the packet injection technique, the transmitter and receiver are set to the injection

and monitor modes, respectively. The 5 GHz band is used for improving channel stability. CiFi

exploits the constructed images for two reasons. First, theestimated AOA values are highly stable

and robust for each given location. When the Wi-Fi signal is blocked by a wall or chair, the

CSI amplitudes will be strongly weakened, which influence thelocalization accuracy. However,

the estimated AOA values are more robust if the transmissiondistance is not changed. Second,

the constructed image can leverage all subcarrier information from all received packets, which

contains rich time and frequency features of the CSI data.

The CiFi procedure includes two stages: offline training and online location predication. In

the offline phase, the constructed images from all locationsare used to train the DCNN. This

method is quite different from traditional fingerprinting based methods, where a database is es-

tablished for every training location, and either the measured raw data or leant features are stored

as fingerprints. However,our CiFi system only trains one group of weights for all the training

locations, which is analogous to a classification or regression problem in machine learning. This

proposed method can not only decrease the amount of stored data, but also improve the robustness

of the system. In the online phase, we employ an enhanced probabilistic approach for location

estimation based on the constructed images of newly received CSI data.
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Figure 5.2: The CiFi system architecture.

5.3.2 Offline Training

The DCNN incorporates several convolutional and subsampling layers as well as one or more fully

connected layers. It can exploit local correlations by sharing the same weights between neurons

of adjacent layers, thus reducing the training time. DCNN canalso obtain the local dependency

and scale invariant feature from input data. More importantly, it can extract more abstract rep-

resentation of the input image data from the lower layers to the higher layers in the hierarchical

architecture of DCNN, which can strengthen the feature extraction of CSI AOA data for indoor

localization. We introduce three main components of DCNN in the following.

The convolutional layer can extract feature maps within local regions in the previous layer’s

feature maps with linear convolutional filters followed by nonlinear activation functions. Denote

θli as theith feature map in layerl of the DCNN, which is defined as

θli = σ


 ∑

m∈Sl−1

wl
im ∗ θl−1

m + bli


 , (5.1)
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Figure 5.3: CSI data training based on deep convolutional neural networks (C. and S. are short for
convolutional and subsampling, respectively).

whereσ(t) = 1
1+exp (−t)

is the sigmoid function,bli is the bias of theith feature map in layerl,

Si−1 is the set of feature maps in layer(i − 1) connected to the current feature map,wl
im is the

convolutional kernel to generate theith feature map in layerl, which is the same for differentm

due to local weights sharing. The convolution operation canobtain the shift-invariance of input

data and extract robust features. Then, the activation functionσ(t) is used to avoid obtaining trivial

linear combinations of input data.

The subsampling layer or the pooling layer can reduce the resolution of the feature maps by

downsampling over a local neighborhood in the feature maps of the previous layer. It is invariant

to distortions on the inputs. The feature maps in the previous layer are pooled over a local temporal

neighborhood by the mean pooling function, as

θl+1
ij =

1∣∣Gl
j

∣∣
∑

k∈Gl
j

θlik, (5.2)

whereGl
j is the set of pooling region for thejth value in theith feature map in layerl,

∣∣M l
j

∣∣ is the

number of elements in setGl
j, θ

l
ik is thekth value of theith feature map in layerl. Other methods

such as the sum or max pooling function can be also used in thisstage for reducing the training

time.
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For the fully-connected layer, we utilize a basic neural network with one hidden layer to train

the output data after all the convolutional and subsamplinglayers. Moreover, the loss function is

employed to measure the difference between the true location label and the output data of DCNN.

By minimizing the values of the loss function with the BP algorithm, we can update the convo-

lutional weights with the stochastic gradient descent method. In the proposed DCNN, we use the

squared error loss function for training these parameters,which is defined as

E =
1

2K

K∑

i=1

(yi − oi)2, (5.3)

whereK is the number of training locations,yi is the true label for theith location, andoi is the

DCNN output for theith location.

Fig. 5.3 illustrates CSI data training for the DCNN. To obtain the input AOA images, we

first estimate AOA values from 960 received packets as in (4.5). Then, we construct 16 images

with size60 × 60 out of the 960 AOA values. The images are convenient for DCNN toprocess

in its convolution and subsampling layers. For each input image in the first convolutional and

subsampling layer, we employ 32 convolutional filters with size 5× 5 to obtain the same number

of feature maps with size 56× 56, which can extract different characteristics. To reducetraining

data and guarantee the invariance of feature maps, the same number of feature maps with size 28

× 28 can be obtained by executing the subsampling with size 2× 2. Then, by implementing other

three convolutional and subsampling layers as in Fig. 5.3, we can obtain 16 feature maps with

size 1× 1, which can be fully-connected in the next layer. Finally, we can obtain the forward

output results and then combine the label of training data, which can be used to update the training

weights such as the convolutional filers based on the loss function with the BP algorithm.

The pseudocode for offline training of CiFi is presented in Algorithm 5 and Algorithm 6. The

inputs to the Algorithm 5 are CSI images from all training locations, location labels, Maxepoch

and learning rate. First, we randomly initiate all weights and biases (step 3). Then, for each epoch,

we randomly select a mini-batch from CSI images from all training locations, which are passed
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into DCNN defined by the network architecture (step 5). In the proposed CiFi system, the first

layer and the last layer are used as the input layer and the output layer respectively. From the

second layer, the input data are processed by the convolutional layer and down sampling layer in

sequence (step 8-16). The outputs of the last third layer arecompressed as the inputs of fully-

connected layer (step 18-19). Based on the outputs of fully-connected layer and location labels,

loss function is used to measure the difference between the true location label and the output data

of DCNN (step 21). After the forward propagation, the errors between network outputs and labels

are used as inputs of BP algorithm to train DCNN.

The pseudocode for DCNN BP Algorithm is given in Algorithm 6. For DCNN BP algorithm,

we calculate the values of delta for every layer and convolutional kernel, which are used to update

weights and biases. First, the errors for the output layer are calculated with the difference between

outputs of neural network and labels, which are employed forobtaining the values of delta in the

L− 1 layer using step 2. Because inputs of the fully connected layer are compressed data from the

previous layer in the forward propagation, its shape shouldbe restored in DCNN BP algorithm,

which is implemented by step 4. Furthermore, to obtain the values of delta for current layer, if

the current layer is a sub-sampling layer, the weights of thelater layer are rotated 180 degrees

and convoluted with values of delta from later layer (step 10). Significantly, connected to the

feature maps in the current layer, only kernels from the later layer are calculated in this step. When

the current layer is a convolutional layer, the values of delta for the later layer are upsampled by

Kronecker product (step 15). Then, the values of delta for the current layer are obtained by the

element-wise product between the upsampled delta values and derivatives of sigmoid function (step

18). We define the values of scale as the quotient of the size offeature maps in the previous layer

and the current layer. Depending on delta values for each layer, the training weights are updated

(step 22-37). The learning rateα controls the speed of adjusting the weights of the DCNN. We

will discuss it in the experimental section. It is noticed that the mean gradient over the mini-batch

is calculated because a random mini-batch from CSI images from all training locations is passed

into DCNN for each epoch.
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5.3.3 Online Algorithm

In the online test phase, we adopt a probabilistic method to predict the location of the mobile device

based on the trained DCNN and newly received CSI AOA images fromthe test location. LetM

denote the number of images from one location, andoij be the prediction output of the DCNN for

the ith location using thejth image. We can obtain a matrixO as the output of the DCNN forK

training locations by usingM images, which is given by

O =




o11 o12 o13 . . . o1M

o21 o22 o23 . . . o2M
...

...
...

. ..
...

oK1 oK2 oK3 . . . oKM



. (5.4)

With matrix O, we propose a greedy method to selectR candidate locations and compute

a weighted average of these locations as the estimated location for the mobile device. We first

select location indexes of theR largest outputs from the DCNN for every column of matrixO,

thus producing a new matrixS with sizeR×M as

S =




s11 s12 . . . s1j . . . s1M

s21 s22 . . . s2j . . . s2M
...

...
...

...
. . .

...

sR1 sR2 . . . sRj . . . sRM



, (5.5)

wheresij is the location index of theith largest output for thejth image. Every element of matrix

S belongs to the set of location indexes{1, 2, . . . , K}. TheR largest location indexes are obtained

by computing the frequencies of all location indexes in matrix S. Moreover, the weight of theith

location index can be computed by averaging all the selectedoutputs for theith location index,

which is denoted aspi.
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Algorithm 5: Weights Training of CiFi System

1 Input: CSI images from all training locations, location labels, network architecture,
Max epoch, and learning rateα ;

2 Output: Trained weightsw andb;
3 Randomly initializew andb;
4 while epoch < Max epoch do
5 Randomly select a mini-batch from inputs;
6 //Forward propagation;
7 // L is the number of layers for DCNN;
8 for l = 2 : L− 2 do
9 if the current layer is a convolution layerthen

10 θli = σ
(∑

m∈Sl−1
wl
im ∗ θl−1

m + bli

)
;

11 end
12 else
13 //The current layer is a subsampling layer layer;
14 θl+1

ij = 1

|Gl
j|
∑

k∈Gl
j
θlik;

15 end
16 end
17 // The last layer is a fully-connected layer;
18 v = Dense(θL−1);
19 o = σ(wL × v + bL);
20 //Loss function;

21 E = 1
2K

∑K
i=1(yi − oi)

2;
22 Call DCNN BP algorithm;
23 end

Finally, the position of the mobile device can be estimated as a weighted average of theR

selected locations, as

L̂ =
R∑

i=1

li ×
pi∑R

i=1 pi
, (5.6)

where li is the ith training location. In our experiment, we setR = 2 for better localization

performance.
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Algorithm 6: DCNN BP Algorithm

1 //ComputeδL−1 as the delta value of theL− 1 layer;

2 δL−1 =
(
wL
)T × (o− y)⊙ (o⊙ (1− o)) ;

3 // ⊙ is used to denote the element-wise product;
4 δLi = Reshape

(
δL−1

)
;

5 //ReshapeδL−1 into feature map style,i is the index of feature maps inL− 1 layer ;
6 for l = L− 2 : 2 do
7 if the current layer is a subsampling layer layerthen
8 for i = 1 : Ml do
9 // Ml is the number of feature maps in the layerl ;

10 δli =
∑

m∈Sl
δl+1
m ∗ rot180

(
wl+1
i,m

)
;

11 end
12 end
13 else
14 for i = 1 : Ml do
15 Upsampling(δl+1

i ) = δl+1
i ⊗ ϕ;

16 // ϕ is an all-ones matrix with the size of scale× scale;
17 // ⊗ is denoted as the Kronecker product ;
18 δli = Upsampling(δl+1

i )⊙ σ′(θli);
19 end
20 end
21 end
22 // Update weights;
23 for l = 2 : L− 1 do
24 if the current layer is a convolution layerthen
25 for j = 1 : Ml do
26 while i ∈ Sj do
27 wl

i,j = wl
i,j − α× (Mean{mini−batch}(rot180(θ

l−1
i ) ∗ δlj));

28 //Mean{mini−batch} means the average of the results over mini-batch data;
29 end
30 blj = blj − α× (Mean{mini−batch}(δ

l
j));

31 end
32 end
33 else
34 wl = wl − α×Mean{mini−batch}(E ⊙ (o⊙ (1− o)× vT );
35 bl = bl − α×Mean{mini−batch}(E ⊙ (o⊙ (1− o)));
36 end
37 end

5.4 Experimental Study

5.4.1 Experiment Configuration

We implement CiFi with 5 GHz commodity Wi-Fi devices and carryout extensive experiments to

valid its performance. In particular, we utilize a desktop computer and a Dell laptop as access point107



and mobile device, respectively. Both devices are equipped with an Intel 5300 NIC. The operating

system is Ubuntu desktop 14.04 LTS OS. We set the PHY parameters as QPSK modulation and 1/2

coding rate for the OFDM system. We set the access point in themonitor model and the distance

between its two adjacent antennas isd = 2.68 cm, i.e., a half wavelength for 5.58 GHz Wi-Fi on

channel 116. The mobile device is set in the injection model with one antenna. Using the packet

injection technique with LORCON version 1, we can extract 5 GHzCSI data at the receiver.

We compare CiFi with three representative approaches, including DeepFi [64, 3], FIFS [22],

and Horus [19]. To guarantee a fair comparison, we implementthese three methods with the same

CSI dataset in the 5 GHz band for estimating the position of themobile device. We experiment

with the four schemes in the following two indoor environments.

Computer Laboratory: This is a 6× 9 m2 computer laboratory in the Broun Hall in the Auburn

University campus. The indoor space is a cluttered environment with many desktop computers,

chairs, metal tables, which block most of the LOS paths. The floor plan is shown in Fig. 5.4. We

use 15 training locations (marked as red squares) and 15 testlocations (marked as green dots). The

access point is put at the center of the room. We set the distance between two adjacent training

locations to 1.8 m, and obtain CSI data from 1000 packets for each training position and test

position.

Corridor: This is a long corridor in Broun Hall with dimension about 2.4× 24 m2. As in Fig. 5.5,

we place the access point at one end on the floor to measure 5 GHzCSI data. There are main LOS

paths in this scenario. We use 10 training locations (red squares) and 10 test locations (green dots)

along a straight line. The distance between two adjacent training locations is also 1.8 m. We extract

5 GHz CSI data from 1000 packets for each training and test location.

5.4.2 Accuracy of Location Estimation

Figure 5.6 presents the training errors over iterations of the DCNN, for the laboratory and corridor

experiments. We set the threshold of training error to 0.06 to guarantee successful training and

to avoid overfitting for input AOA images. Moreover, the iterations indicate the times of training
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Figure 5.4: Layout of the computer laboratory: training locations are marked as red squares and
testing locations are marked as green dots.
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Figure 5.5: Layout of the corridor: training locations are marked as red squares and testing loca-
tions are marked as green dots.

input AOA images with the DCNN. For the laboratory experiments, the training error curve starts

to converge after1.48 × 104 iterations, which finally reaches the preset threshold withabout 0.06

training error after4.85 × 104 iterations. For the corridor experiments, the training error curve

begins to converge after3.33 × 104 iterations, which is slower and eventually reaches the preset

threshold after4.86× 104 iterations.

Tables 5.1 and 5.2 present the mean and STD of localization errors, as well as the execution

time for the four schemes in the two indoor environments. In the laboratory experiments, the

proposed CiFi scheme achieves a mean error of 1.7882 and an STDerror of 1.2489 m. For the

corridor environment, CiFi achieves a mean error of 2.3863 m and an STD error of 1.4575 m

for the 10 test locations. It is noticed that the performanceof CiFi is better than the other three

schemes. This is because the CiFi system utilizes the AOA estimations, which is more stable

and robust in complexity indoor environments, compared to other RSS or CSI amplitude based
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Figure 5.6:Training errors for the laboratory and corridor experiments.

Table 5.1: Localization Error And Execution Time (laboratory)

Algorithm Mean error Std. dev. Mean execution time
(m) (m) (s)

CiFi 1.7882 1.2489 0.5496
DeepFi 2.0411 1.3804 0.3340
FIFS 2.7151 1.0805 0.2918
Horus 3.0537 1.0623 0.2849

Table 5.2: Localization Error And Execution Time (Corridor)

Algorithm Mean error Std. dev. Mean execution time
(m) (m) (s)

CiFi 2.3863 1.4575 0.6484
DeepFi 2.8953 2.5665 0.3707
FIFS 4.4296 3.4256 0.2535
Horus 4.8000 3.5242 0.2505

methods. Since more test packets are used to construct the AOA images in the online phase, the

mean execution time of CiFi is the highest among all the schemes. The mean execution time of

CiFi for the computer laboratory and corridor cases are 0.5496 s and 0.6484 s, respectively, which,

however, are still quite sufficient for realtime indoor localization.

Figure 5.7 presents the CDF of distance errors of four schemesin the computer laboratory

case. For this environment with the complex multipaths, CiFican utilize the unique multiple path
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Figure 5.7:CDF of localization errors for the laboratory experiment.

feature for location estimation, which is different for different locations. CiFi has 40% of the test

locations having an error less than or equal to 1 m, while thatfor the other schemes is 30%. We

also find that about 87% of the test locations for CiFi have an error under 3 m, while the percentage

of test locations having a smaller error than 3 m are 73%, 60%,and 52% for DeepFi, FIFS, and

Horus, respectively. Thus, CiFi achieves the best performance in this experiment. This is because,

when the magnitude of wireless signal is always influenced byobstacles such as computers in the

laboratory environment, the estimated AOA values of CiFi aremore robust to the indoor multipath

environment, which results in smaller localization errors.

Figure 5.8 presents the CDF of localization errors of all the scheme in the corridor environ-

ment. We can see that the maximum error for CiFi is 4.8 m, while that for the other schemes is

more than 8 m. This validates that the CiFi system is more robust than the other three schemes.

Moreover, about 60% of the test locations for CiFi and DeepFi have an error under 3 m, while it

is 40% for FIFS and Horus. This result shows that the CiFi system achieves a close localization

performance to that of DeepFi, while both outperform the other two schemes. However, different

from DeepFi, the proposed CiFi system does not require to build up a database for every training

location, thus greatly reducing the storage requirement.
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Figure 5.8:CDF of localization errors for the corridor experiment.
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Figure 5.9:Mean localization errors for different number of packets inthe laboratory and corridor experiments.

5.4.3 Impact of Various System Parameters

Impact of the number of training packets

To evaluate the effect of different training packets on indoor localization, we construct training

CSI images with different numbers of packets. For each CSI packet, it contains 30 phase values

extracted from 30 subcarriers of each antenna. In the proposed CiFi system, the size of an image

used as inputs of DCNN is considered as 60x60, which means AoA values estimated by two

antenna pairs compose y-axis and 60 packets compose x-axis.60 packets from 2 antenna pairs

could generate input image with the size of 60x60 perfectly.When the number of packets is fewer
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Figure 5.10:Mean localization errors for different number of images in the laboratory and corridor experiments.
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Figure 5.11:Mean localization errors for different antenna pairs in thelaboratory and corridor experiments.

than 60, AoA values estimated by packets are duplicated in sequence until the image size is 60x60.

For example, to generate a 60x60 input image with 40 packets,the image with a size of 60x40 is

produced firstly, and then the image constructed by first 20 packets is duplicated and concatenated

with previous 60x40 image. Thus, different training imagescontain different AoA information,

even though the sizes of all images are identical.

Figure 5.9 shows mean localization errors for different number of packets in the laboratory and

corridor experiments, respectively. In two indoor environments, we evaluate the performance of

CiFi, respectively, with 5 training datasets that contain training images constructed by a different

number of packets. As we can see the distance error will decrease with the number of packets
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Figure 5.12:Mean localization errors for increasingα in the laboratory and corridor experiments.
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Figure 5.13:Mean localization errors for increasingR in the laboratory and corridor experiments.

increases in both scenarios. The minimum distance errors, 2.386m in the corridor and 1.788m in

the lab, are reached when 60 packets are used to generate a training image. Therefore, more AoA

information contributes to improving the localization precision.

Impact of the number of images per training location

To study the impact of the number of training images, we build5 datasets, which contain different

numbers of images for each training location, in two indoor environments respectively. For the
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sake of fairness, images in all datasets are generated by 60 AoA values estimated from two an-

tenna pairs. We set the packet transmit rate as 1000Hz, whichguarantees that 16 images could be

generated within 1 second.

Figure 5.11 illustrates mean localization errors for different number of images in the labora-

tory and corridor experiments, respectively. With the decrease of the number of images for one

training location, the mean localization error will increase. When 16 images are generated for

one training location, mean distance errors reach 1.788m and 2.386m in two indoor environments,

respectively. As we can see, the highest distance errors are2.781m and 3.282m in the lab and

the corridor respectively, which are acceptable for these two scenarios. In other words, our CiFi

system could not only achieve a better performance with a larger input dataset but also obtains an

acceptable localization precision with a limited number oftraining images.

Impact of antenna pairs

Since Intel Wi-Fi Wireless Link 5300 has three antennas and the CSI data could be collected

from all three antennas simultaneously, we construct threedatasets to study the impact of different

antenna pairs. For each packet, 30 AoA values could be estimated from 30 subcarriers of each

antenna pair. Similar with the method about the impact of thenumber of training packets, we also

construct a training image with the size of 60x60. If only oneantenna pair is used to estimate AoA

values, the image generated by AoA values is duplicated and concatenated together i.e., a 30x60

image is generated firstly with 60 packets collected from an antenna pair and then the image is

duplicated and concatenated with itself to generate a 60x60image.

Figure 5.10 presents mean localization errors for different antenna pairs in the laboratory and

corridor experiments, respectively. It is obvious that thebest localization precisions with 2.386m

in the corridor and 1.788m in the lab are reached, respectively, when CSI AoA values from all

antennas are leveraged to construct training images. Furthermore, we notice that our CiFi system

performs well even input images are produced by one antenna pair. The highest distance errors in
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the lab and corridor are 2.507m and 2.972m, respectively, where antenna 2 and 3 are leveraged to

generate training images.

Impact of different learning rateα

To study the effect of different learning rate, we design a specific experiment by setting different

learning rates to evaluate their effect on localization precision. In the experiment, the number of

epoch is set in 1200 to guarantee the fairness.

Figure 5.12 illustrates mean localization errors for increasingα in the laboratory and corridor

experiments, respectively. As the learning rate increasesfrom 0.1 to 0.5, the minimum distance er-

rors for two scenarios are obtained when the learning rate is0.5. After that, the mean distance error

goes up with the increase of the learning rate. Basically, a low learning rate induces that DCNN

could not achieve the convergence within 1200 epochs. However, for a higher leaning rate such as

0.7 or 0.9, DCNN could not reach the best convergence point because the BP algorithm hops back

and forth over the valley repeatedly. For our CiFi system, training time does not jeopardize user

experience in the offline stage. Thus, in order to reach the lowest distance error, the learning rate

is set as 0.5 for two scenarios.

Impact of different value ofR

In the proposed CiFi system, we propose a greedy method to selectR candidate locations to com-

pute a weighted average of these locations as the estimated location. In our experience, we find that

most of correct location predictions are always included inthe top five outputs of DCNN. Thus,

to improve the localization precision, only the top five outputs are leveraged to calculate location

estimation in the proposed CiFi system.

Figure 5.13 shows mean localization errors for increasingR in the laboratory and corridor

experiments, respectively. As we can see, when the value ofR is 2, the distance errors reach the

lowest values for two scenarios. Thus, we setR as 2 in the CiFi system. Furthermore, with the
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value ofR increases, the mean distance error rises slightly, which means that our CiFi system is

robust to different values ofR.

5.5 Conclusions

In this chapter, we proposed CiFi, a DCNN based fingerprinting system for indoor localization with

5 GHz Wi-Fi. We theoretically and experimentally verified the feasibility of using AOA values for

indoor localization. We then presented the CiFi system, which first formed AOA images to train the

DCNN, and then used newly received AOA images to estimate the location of the mobile device.

Through extensive experiments, we demonstrated the superior performance of the proposed CiFi

system.
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Chapter 6

ResLoc: Deep residual sharing learning for indoor localization with CSI tensors

6.1 Introduction

With the remarkable development in mobile devices and wireless techniques [95, 96, 97, 98, 99],

location-based services for internet of things, like activity recognition and health sensing, has

been enhanced significantly [100, 54, 75]. To fulfill the requirement of these applications, a high

precision location information is indispensable. Considering the fact that the wireless propagation

is much more complex in the indoor environment, indoor localization with wireless signals faces

lots of unsolved issues, which draw so much attention from researchers. Lately, fingerprinting-

based indoor localization has become a research hot-spot, which builds a database with a large

amount of Wi-Fi measurements in the offline phase, and then computes the position of a mobile

device by comparing the newly received Wi-Fi data with that in the database.

Recently, several 802.11n measurement and experimentationtools are released, such as Intel

Wi-Fi Link 5300 NIC [21] and the Atheros AR9580 chipset [81], which can extract CSI from re-

ceived packets by the modified firmware. Comparing with RSS, CSI is the fine-grained channel

information, including subcarrier-level channel measurements in OFDM systems. Moreover, CSI

is much more stable than RSS for a given location [23]. Based on the CSI information, several

fingerprinting systems exhibit better localization performance. FIFS exploits the weighted aver-

age of CSI amplitudes over three antennas to achieve fine-grained localization [22]. In addition,

CSI amplitudes and calibrated phases information are leveraged by DeepFi [3] and PhaseFi [85],

respectively. These two schemes collect CSI from all the subcarriers at all the three antennas and
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generate fingerprinting with deep autoencoder networks. Moreover, to improve the localization

accuracy, BiLoc system is proposed based on average CSI amplitude and phase difference infor-

mation for indoor localization by using bimodal deep autoencoder network [101]. Although these

three localization systems based on deep network can obtainbetter localization performance, they

need to build a database to store training feature as fingerprints for every training location, which

increases the training time and storage space.

In this chapter, we consider bimodal CSI tensor data including estimated AOA and amplitude

information that are obtained from the 5GHz band. Firstly, AOA and amplitude information are

stable, which can be effective features for fingerprinting based indoor localization. Moreover, AOA

and amplitude information are complementary to each other under different indoor environments.

For example, when LOS component for wireless signal is weaker than other AOAs, the amplitude

information is useful for improving the localization performance. On the other hand, once the

signal is blocked by objects such as wall, the estimated AOA values will help to strengthen the lo-

calization accuracy because the amplitude information is greatly weakened. Moreover, we present

a new deep residual sharing learning for improving the training capacity with two channels CSI

tensor data. The proposed method is different from the original deep residual unit without shar-

ing the residual function. Moreover, we can stack many residual blocks for adding the depth of

the deep network, thus achieving higher learning and representation ability. The residual learning

method has been successfully applied for image recognition[24, 10, 102]. The proposed method

only requires for training one group of weights in deep residual network for all training locations as

a classification problem in statistical learning, thus significantly reducing the amount of the stored

data.

In particular, we present ResLoc, a deepResidual sharing learning for indoorLocalization

with CSI Tensor. In ResLoc, we first construct a CSI tensor including three images, each of which

has the same size with 30× 30 based on the estimated AoA values and the CSI amplitude values.

For CSI tensor, we consider two images from estimated AoA values between antenna 1 and 2, and

antenna 2 and 3. Another image is from the amplitude values from one antenna. Thus, by using
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990 packets, we can obtain 33 CSI tensor data for one training location. Moreover, we consider

two channels CSI tensor data, where the difference between two CSI tensor data is that they have

different amplitude information from different antennas for creating the third image in CSI tensor.

In ResLoc system, we consider the amplitude information fromantenna 1 and antenna 2 for two

channel CSI tensor data. For offline training phase, all the constructed two channels CSI tensor

data from all training locations are leveraged to train the weights of the deep network based on the

proposed deep residual sharing learning, which includes the input block, the residual block and the

output block. The new idea for the residual block is that the proposed scheme shares the residual

functions for two channels, which can effectively exploit the CSI tensor data. Moreover, we also

analyze the proposed deep residual sharing learning for forwarding and backward propagation.

For the online stage, we use newly received CSI tensor data to compute the location of the mobile

device based on the probabilistic method.

The main contributions of this chapter are summarized below.

• This is the first work to use CSI tensor data for indoor localization, which can exploit the

rich frequency and time features of the CSI data including theamplitude and phase difference

information.

• We propose deep residual sharing learning for training two channels CSI tensor data. More-

over, we can stack many residual sharing blocks for adding the depth of the deep network,

thus achieving higher learning and representation abilityfor CSI tensor data. Moreover, the

proposed scheme is analyzed for forwarding and backward propagation. In the online test,

we consider a probability method for location prediction.

• We implement the proposed ResLoc system with commodity 5 GHz Wi-Fi in two representa-

tive indoor environments with extensive experiments. The results show that ResLoc achieves

decimeter level location accuracy, which is better than other deep learning methods.
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6.2 Layout

In the remainder of the chapter, we introduce the preliminaries and CSI tensor in Chapter 6.3. We

design the ResLoc design in Chapter 6.4 and performance evaluation in Chapter 6.5. Chapter 6.6

summaries this chapter.

6.3 CSI Tensor

To build CSI tensor as the input of the ResLoc system, we computebimodal CSI data including

estimated AOAs and amplitude information that are obtainedfrom the 5GHz band. Besides the

amplitude information from three antennas, it is also easy to estimate the corresponding AoA

values between two adjacent antennas from each subcarrier and each received packet by using the

same method in BiLoc system [101]. Then, for every 30 packets(x-axis) with 30 subcarriers (y-

axis), we can construct a CSI tensor including three images, each of which has the same size with

30× 30 based on the estimated AoA values and the CSI amplitude values. For CSI tensor, we

consider two images from estimated AoA values between antenna 1 and 2, and antenna 2 and 3;

Another image is formed from extracted amplitude values from one antenna. Thus, by using 1500

packets, we can obtain 50 CSI tensor data for one training location or one test location. For ResLoc

system, we consider two channels CSI tensor data, where the difference between two CSI tensor

data is that they have different amplitude information fromdifferent antennas for creating the third

image in CSI tensor. In ResLoc system, we consider the amplitude information from antenna 1

and antenna 2 for two channel CSI tensor data.

There are three reasons for using the CSI tensor as the input ofResLoc. First, by using CSI

tensor with three dimensional data it can strengthen the performance of deep network for classifica-

tion problem with indoor localization. Moreover, all subcarrier information from all packet sample

are exploited by three images in CSI tensor, which contains rich frequency and time features of the

CSI data. We can thus extract more effective features from CSI tensor. Third, we leverage bimodal
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CSI data including the estimated AoA values and the CSI amplitude values for indoor localization,

which are complementary to each other under different indoor environments [4].

6.4 The ResLoc System

6.4.1 ResLoc System Architecture

In Figure 6.1, the ResLoc system is composed by one transmitter, which is a mobile device, and

one receiver, which is an access point. Both devices are equipped with the Intel 5300 NIC. To

collect the CSI data, the transmitter is set to the injection mode, and the receiver works in the

monitor mode. The Intel 5300 NIC reports CSI from 30 groups of subcarriers from each antenna.

After CSI data collection, we can build two channels CSI tensorbased on estimated AOAs and

amplitude information. ResLoc system employs the fingerprinting based method, which includes

the offline training and online location prediction. For training data with two channels CSI tensor

in the offline phase, we propose a deep residual sharing learning for obtaining the optimal weights

of deep residual network. For online location prediction, we utilize newly received CSI tensor data

to compute the location of the mobile device based on an enhanced probabilistic approach. Our

ResLoc system is totally different from traditional fingerprinting based methods, which build the

database for every training location based on raw data or training features as the fingerprints. In

fact, ResLoc system only requires for training one group of weights in deep residual network for

all training locations like the regression or classification problem in statistical learning. Appar-

ently, this method reduces the amount of the stored data significantly. On the other hand, it also

contributes to the improvement of the robustness for indoorlocalization based on the proposed

deep residual sharing learning, which can effectively represent the features of CSI data.

6.4.2 Offline Training

We propose a deep residual shared learning for training the deep network with bi-modal CSI tensor,

which includes the input block, the residual block, and the output block in Fig. 6.2.
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Figure 6.1: The ResLoc system architecture.

Input Block

For the input block, the bi-modal CSI tensor data can be trained by four different layers with the

Convolution2D layer, batch normalization layer, activation layer and max pooling layer, respec-

tively. It can obtain the local dependency and scale invariant feature from bi-modal CSI tensor.

Furthermore, Input block can exploit more abstract representation of the input CSI tensor data

from the lower layers to the higher layers, which can improvethe feature extraction of CSI tensor

data for indoor localization. We discuss four different layers for the input block.

The Convolution2D layer is to obtain feature maps within local regions in input CSI tensor or

the previous layer’s feature maps with several convolutionkernels. In fact, each data of a feature

map is connected with the local data in the previous layer. Moreover, by using different convolution

kernels we can obtain all produced feature maps. Letθli denote as theith feature map in layerl,
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which is defined as

θli =
∑

m∈Sl−1

wl
im ∗ θl−1

m + bli, (6.1)

wherewl
im is the convolutional kernel to generate theith feature map in layerl, bli is the bias of the

ith feature map in layerl, Sl−1 is the set of feature maps in layer(l − 1) connected to the current

feature map, which is the same for differentm due to local weights sharing. The convolution

operation with weights sharing scheme can improve the efficiency for training deep network.

The batch normalization layer can adjust the input distribution for different layers and thus

alleviate the problem of Internal Covariance Shift that is asthe data flow propagates for differ-

ent layers in deep network, the distribution of input will beshifted, thus reducing the learning

capacity[103]. In batch normalization layer, the input data are normalized such that it can satisfy a

zero mean and a unit standard deviation, where the estimation of mean and variance are obtained

by each mini-batch. Then, to improve the representation ability in deep network, the normalized

data is shifted and scaled. Thus, the batch normalization for thekth input dataxk is formulated by

yk = γ
xk − uB√
σ2
B + ǫ

+ β (6.2)

whereuB andσ2
B are the the mean and variance of mini-batch, respectively,ǫ is the small constant

value to avoid numerical problems in batch normalization,γ andβ are the scaled and shifted pa-

rameters, which are learned from training. By using batch normalization, it can instead of Dropout

for avoiding overfitting in training.

The activation layer can be employed to avoid obtaining trivial linear combinations of input

data, which can detect nonlinear features. Traditional nonlinear activation functions mainly ex-

ploit sigmoidσ(x) = 1
1+exp( −x)

and tanhtanh(x) = 2σ(x) − 1 functions in neural networks. In

ResLoc system, we leverage rectified linear unit (ReLU) as the activation function with the expres-

sionReLu(x) = max(x, 0), which can stay the positive part and suppress the total negative part
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to zero [104]. For training in deep convolution neural networks, ReLU function has faster train-

ing than that for traditional sigmoid and tanh functions. Moreover, it can also exploit the sparse

representations in the hidden units and can have effectively training without pre-training.

The max pooling layer can reduce the resolution of the feature maps by downsampling over a

local neighborhood in the feature maps of the previous layer. It is invariant to distortions and small

shifts on the inputs. Moreover, it also improves the robustness of the deep network. The feature

maps in the previous layer are pooled over a local temporal neighborhood by the max pooling

function, as

θl+1
ij = max

k∈Gl
j

θlik, (6.3)

whereGl
j is the set of pooling region for thejth value in theith feature map in layerl, θlik is thekth

value of theith feature map in layerl. Other methods such as the mean or sum pooling function

can be also used in this stage for reducing the training time.

Residual Block

For the residual block, we propose a new deep residual sharing learning for improving the training

capacity with two channels CSI tensor data. The proposed method is different from the original

deep residual unit without sharing the residual function. Moreover, we can stack many residual

blocks for adding the depth of the deep network, thus achieving higher learning and representation

ability. For residual learning [10, 102], the idea is that instead of learning the underlying mapping

H(x) by using a few stacked layers, we can learn the residual function F (x) = H(x) − x. Thus,

the original mapping can becomeF (x) + x, wherex is implemented by identity mapping with

the shortcut connection. Thus, it is easy for training very deep network by using residual learn-

ing. Moreover, we implement the proposed deep residual sharing learning by sharing the residual

functions for two channels input data in Figure 6.2. On the other hand, the residual function in-

cludes two layers convolution operations, each of which includes the batch normalization layer,

the activation layer, and the convolution2D layers. They are implemented as the same as the input

block.
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Figure 6.2: Deep residual sharing learning for offline training

For analyzing deep residual sharing learning for forwarding and backward propagation, we

denote thex1k andx2k as the input data with channel 1 and channel 2 for thekth residual block,

respectively. LetR denote the residual function with two3 × 3 convolution layers. Based on

Figure 6.2, we havex1k+1 = x1k + R(x1k) + R(x2k) andx2k+1 = x2k + R(x2k) + R(x1k) for thekth

residual block at channel 1 and channel 2, respectively. Thus, we can recursively obtain thex1K
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andx2K for theKth residual block at channel 1 and channel 2, which is formulated by

x1K = x1k +
∑K−1

i=k R(x1i ) +
∑K−1

i=k R(x2i )

x2K = x2k +
∑K−1

i=k R(x2i ) +
∑K−1

i=k R(x1i )
(6.4)

Based on the above equations about forward propagation, we can find that the outputx1K and

x2K shares the same residual function, which can be representedby the summation of preceding

residual functions adding inputx1i or x2i , respectively. This reduces the error of the gradient prop-

agation. Moreover, it is easier to train the sharing residual functions, which are pushed into zeros

when the identity mapping are optimal. On the other hand, we consider the loss function asL for

the backward propagation. Based on the chain rule of backpropagation, we can obtain:

∂L
∂x1

k

= ∂L
∂x1

K

(1 + ∂
∂x1

k

(
∑K−1

i=k (R(x1i ) +R(x2i ))))

∂L
∂x2

k

= ∂L
∂x2

K

(1 + ∂
∂x2

k

(
∑K−1

i=k (R(x2i ) +R(x1i ))))
(6.5)

By the the above equations about backward propagation, we cansee that the gradients∂L
∂x1

K

and

∂L
∂x2

K

are directly propagated back to the any shallower inputx1k and x2k, respectively. More-

over, because the gradients for the sharing residual functions ∂
∂x1

k

(
∑K−1

i=k (R(x1i ) + R(x2i ))) and

∂
∂x2

k

(
∑K−1

i=k (R(x2i ) + R(x1i ))) are not always -1, the gradients∂L
∂x1

K

and ∂L
∂x2

K

cannot be canceled for

the mini-batch with SGD to avoid the problem of the vanishingof gradient. Thus, the proposed

deep residual sharing learning can increase the learning capacity and leverage two channels CSI

tensor data.

Output Block

For the output block, we first merge two channel data into single channel. Then, we implement

basic data operations for the merged data including batch normalization, activation with ReLU,

and max pooling. Moreover, the main operation in the output block is the fully-connected layer,

which employs a basic neural network with one hidden layer totrain the output data based on

softmax classifier. We consider the input data for the softmax function as theR dimensional vector
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z = [z1, z2, ..., zR], whereR is the number of clusters. Then, the softmax function can maptheR

dimensional vector to the normalized datap = [p1, p2, ..., pR], that is

pi =
ezi∑R

r=1 e
zr

for i = 1, 2, ...R. (6.6)

In addition, we define the loss function as the cross-entropyto measure the difference between the

output normalized data and the true label data, that is

E = −
R∑

r=1

y(r)log(pr), (6.7)

wherey(r) means the true label data for therth location. Then, we can train the parameters in deep

network with the stochastic gradient descent method by minimizing the values of the loss function.

Weight Training with Deep Learning

The pseudocode for offline training with two input tensors ispresented in Algorithm 7 and Algo-

rithm 8. The inputs to the algorithm 7 are two bimodal CSI tensors, For one input tensor, it includes

two phase difference slices and an amplitude slice. Each of slices has the same size with 30 times

30 based on the estimated AoA values and the CSI amplitude values for every 30 packets(x-axis)

with 30 subcarriers (y-axis). The input datasets are spit into mini batches to train the network.

First, batches are processed by the input block, which consists of a convolution layer, a batch nor-

malization layer, an activation layer and a pooling layer. To obtain the output of the input block,

batches are dealt by the layers sequentially (lines 10-18).Because of our two-channel framework,

two input tensors pass two channels parallel based on tensorflow. The outputs of the input block

are processed by residual blocks.Then the outputs of residual blocks are delivered into the out-

put block. Similarly, the output block consists of a batch normalization layer, an activation layer,

a convolution layer and a pooling layer as well. What the difference in the output block is two

special layers, a merge layer and a fully-connected layer. Before the input tensors pass the merge

layer, they are passed into two-channel framework parallelly. Namely, two inputs of the output
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block are dealt by the batch normalization layer, the activation layer and the convolution layer par-

allel (line22-29). After the two-channel framework mergestogether at the merge layer, the output

of the merge layer is processed by a batch normalization layer, an activation layer, a pooling layer

and a fully connected layer sequentially (line 32-45). Oncethe output of the fully-connected layer

is obtained, we could compute cross entropy between the prediction result of the network and the

desired labels. Then, the weights and biases are updated using the error with back-propagation al-

gorithm. Finally, we need to update all batches, which is implemented for 50 epochs in the offline

training algorithm.

The pseudocode for residual blocks is given in Algorithm 8. The inputs to the algorithm

are the number of repetitions for residual blocksKand two output tensors of input blocksI1 and

I2. The repetition defines the number of residual blocks that are stacked to form a residual part.

Typically, the repetition is a one-dimensional array, whose length is the number of residual blocks

with different size convolution layers. And the element of the array defines the number of residual

blocks with same size convolution layers. The total amount of residual blocks is defined by the

sum of elements in the repetition vector. The basic residualblock is composed by a two-channel

framework, which includes two convolution layers, a batch normalization layer and an activation

layer in each channel. The stacking sequence of these layersis as shown (line10-17). It is note-

worthy that there is a sharing layer at the end of residual block. The output of previous layer and

the residual output of the blocks are sum up in the sharing layer as the new output and the new

residual output of the block.

6.4.3 Test Phase

For the test phase, a probabilistic method is leveraged to estimate the position of the mobile device

by using the newly received CSI tensor data from the test points based on the trained deep network.

Let T denote the number of CSI tensor from one position, andpij denote as the output result of the

deep network with thejth CSI tensor for theith location. The matrixP as the prediction output

of the deep network withT CSI tensor data forR training locations, that is
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Algorithm 7: Weights Training

1 Input: Input tensor datasetT1 and input tensor datasetT2, number of repetitions for
residual blocksK ;

2 Output: : Trained weightW , b;
3 Divide input datasetsT1 andT1 into a batches that containsq CSI tensors;
4 c denotes as channel index;
5 while epoch < 50 do
6 for d = 1 : a do
7 θ1 = Ma

1 ;
8 θ2 = Ma

2 ;
9 //M denotes as CSI tensor batch;

10 for c = 1 : 2 do
11 θc = Convolution(θc);
12 //Calculate outputs of the convolution layer
13 θc = γc

θc−uBc√
σ2
Bc

+ǫc
+ βc;

14 //Calculate outputs of the batch normalization layer
15 θc = ReLU(θc);
16 //Calculate outputs of the activation layer
17 θc = pool(θc);
18 //Calculate outputs of the pooling layer
19 end
20 do Residual blocks;
21 for c = 1 : 2 do
22 θc = Xc;
23 //Xc is the output of the residual block
24 θc = γc

θc−uBc√
σ2
Bc

+ǫc
+ βc;

25 //Calculate outputs of the batch normalization layer
26 θc = ReLU(θc);
27 //Calculate outputs of the activation layer
28 θc = Convolution(θc);
29 //Calculate outputs of the convolution layer
30 end
31 S = θ1 + θ2; //Calculate outputs of the merge layer
32 S = γ S−uBs√

σ2
Bs

+ǫs
+ βs; //Calculate outputs of the batch normalization layer

33 S = ReLU(S); //Calculate outputs of the activation layer
34 S = pool(S); //Calculate outputs of the pooling layer
35 q = softmax(W ∗ flattened(S) + b);
36 //Fully-connected Layer
37 Loss functionL = −∑r yr log (qr);
38 Update weights and bias using the error with back-propagation;
39 end
40 end
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Algorithm 8: Pseudocode for residual blocks

1 Input: two outputs of input blocks,I1 andI2, and number of repetitions for residual
blocksK;

2 Output: : two outputs of residual blocks,X1 andX2;
3 c denotes as channel index;
4 for k = 1 : K do
5 if k == 1 then
6 X1 = I1;
7 X2 = I2;
8 end
9 for c = 1 : 2 do

10 θc = Convolution(Xc);
11 //Calculate outputs of the convolution layer
12 θc = γc

θc−uBc√
σ2
Bc

+ǫc
+ βc;

13 //Calculate outputs of the batch normalization layer
14 θc = ReLU(θc);
15 //Calculate outputs of the activation layer
16 θc = Convolution(θc);
17 //Calculate outputs of the convolution layer
18 end
19 X1 = θ1 + θ2 +X1;
20 X2 = θ1 + θ2 +X2;
21 //Calculate outputs of residual blocks
22 end
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P =




p11 p12 p13 . . . p1T

p21 p22 p23 . . . p2T
...

...
...

.. .
...

pR1 pR2 pR3 . . . pRT



. (6.8)

To reduce the variance of the output results,T output data for every location are averaged.

Thus, we can obtain the vector̄P = [p̄1, p̄2, ..., p̄R], wherep̄i is the mean for the output vector

[pi1, pi2, ..., piT ] in theith row.

Finally, we can compute the location of the mobile device as aweighted average of allR

locations, that is

L̂ =
R∑

i=1

li × p̄i, (6.9)

whereli is theith training location.

6.5 Experimental Study

6.5.1 Experiment Configuration

To evaluate the performance of the ResLoc, we implement it with 5GHz WiFi devices. In order to

collect CSI data, a desktop computer and a Dell laptop are usedas access point and mobile device.

Both computers are equipped with an Intel 5300 network card, running Ubuntu desktop 14.04 LTS

system. To transmit the data to the desktop, the Dell laptop with one antenna works in the injection

mode. The monitor mode is executed in the desktop to receive data. The distance between two

adjacent antennas on the Desktop is set as 2.68 cm, which is a half wave length for 5.58GHz WiFi

signal. Moreover, the PHY is the IEEE 802.11n OFDM system with QPSK modulation and 1/2

coding rate. To accelerate the training process, we employ the offline stage of the ResLoc in Keras

with tensorflow backend on a PC with Intel(R) Core(TM) i7-6700KCPU, and an Nvidia GTX1070

GPU [105].
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Figure 6.3: Layout of the computer laboratory: training locations are marked as red squares and
testing locations are marked as green dots.

ResLoc are compared with two typical deep learning localization approaches, BiLoc [101]

and DeepFi [3], to evaluate its performance. Moreover, we also consider the localization perfor-

mance for ResLoc with the single channel. For the sake of fairness, the same CSI training dataset

and testing dataset are leveraged in all four approaches. Weexamine them in two experimental

environments including a computer laboratory and a corridor.

Computer Laboratory

Computer Laboratory: We set up the first testbed in a 6× 9 m2 computer laboratory in the Borun

Hall in the Auburn University campus. This laboratory is a crammed environment. The furniture

and appliances block the most of LOS paths. 15 training locations are shown as red squares in

Figure 6.3, while the other 15 green dots are testing locations. The distance between two adjacent

training locations is 1.8 m. Our receiver is fixed on the table. We collect 1000 CSI packets from

every training location and testing location to accumulateCSI data. Moreover, we set the number

of layers for the proposed deep network as 34, which has higher localization accuracy and smaller

training time.

Corridor:
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Figure 6.4: Layout of the corridor: training locations are marked as red squares and testing loca-
tions are marked as green dots.

Corridor in Broun Hall

We set up the second testbed in a long corridor in Borun hall, which is 9× 25 m2. filled with no

furniture and appliance. In this scenario, LOS path is majority. We employ 15 training location

and 15 testing location in a straight line. The distance between two adjacent training locations is

1 m. The red squares are training locations and the rest greendots are testing locations. We set

the receiver in the middle of the corridor. 1000 packets are obtained from every training location

and testing location to collect 5GHz CSI data. The number of layers in the deep network in the

corridor is the same as that in the computer laboratory.

Accuracy of Location Estimation

Figure 6.5 depicts the training loss over epoches of the ResLoc for the laboratory and corridor

scenarios. To prevent overfitting for the training CSI tensordata set and reduce training time, the

epoch is set as 50. As illustrated in Fig.3, the train loss forthe corridor curve reaches about 0.3

and the training loss for the lab scenario stops at about 0.5.Moreover, based on Nvidia GTX1070

GPU, we can obtain the smaller training time for the laboratory and corridor scenarios, which are

608.14 s and 619.35 s, respectively. Also, the test time for the laboratory and corridor scenarios

are 0.587 s and 0.647 s, which can be accepted for indoor localization.

Figure 6.6 shows the CDF of distance error across the 15 positions in the laboratory. Unlike

the corridor scenario that the LOS is majority, the furniture and appliances block most of LOS

paths in this environment. As we can see, the maximum distance errors for ResLoc with two
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Figure 6.5: Training errors for the laboratory and corridorexperiments.
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Figure 6.6: CDF of localization errors for the laboratory experiment.

channels and single channel are about 2.5 m, which is less than DeepFi and BiLoc. In addition,

the median of distance errors for ResLoc with two channels andsingle channel are about 0.89 m,

which also outperforms BiLoc and DeepFi by 0.51 m and 0.89 m, respectively. For ResLoc with

two channels, the distance error of over 30% testing data is less than 0.3 m. However, there is

no data falling within this error range for DeepFi and BiLoc. In summary, based on the proposed
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Figure 6.7: CDF of localization errors for the corridor experiment.

deep residual sharing learning, ResLoc with two channels exhibits the best performance in this rich

multipath scenario.

Figure 6.7 plots the CDF of localization error in the corridorscenario. As shown in Figure 6.7,

the maximum distance error for ResLoc with two channels and single channel are 3.14 m and 3.95

m, respectively, which are significantly less than that of other two schemes, DeepFi and BiLoc. It

shows that the ResLoc has a better stability than DeepFi and BiLoc. In addition, the median of

distance errors for ResLoc with two channels and single channel, BiLoc and DeepFi are about 0.98

m, 1.24 m, 1.68 m, and 1.75 m, respectively. Thus, ResLoc with two channels achieves the best

performance in this scenario. Besides the better performance, the proposed ResLoc system only

requires one set of weights for all training locations to achieve localization, which means that it is

not necessary for ResLoc to store fingerprints for every training location like BiLoc and DeepFi.

Furthermore, ResLoc does not need a ratio for the bi-modal data to obtain a better localization

performance.
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Figure 6.8: The average distance error for different size ofpictures.
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Figure 6.9: The average testing time for different size of pictures.

Effect of Different Parameters

To determine how image size impacts the accuracy of the indoor localization, we test ResLoc with

images sized to 30x20, 30x25, 30x30, 30x35 and 30x40. For fairness, 50 images are constructed

for every training position. Epoch and batch size are set to 50 and 10, respectively. As is shown

in Figure 6.8, distance errors for both scenarios decrease slightly as the image size increases from

30x20 to 30x30, then rise as the image size increases from 30x30 to 30x40. However, the distance

errors are stable in these two scenarios. The errors in the lobby and the lab are about 1.2 m and 1.13

m, respectively. This result indicates that the localization performance of Resloc is robust enough
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Figure 6.10: The average distance error for different number of pictures.

to the image size. Even though the size of images is changed, Resloc could achieve localization

with high precision.

As discussed previously, the image size does not show a significant effect on localization

accuracy. To select the best size for training and testing the network, we also compare the testing

time with different image sizes.As is shown in Figure 6.9, itis apparent for both scenarios that the

testing time rises with the increment of the image size. Theoretically, with the same image size, the

testing time should be identical in these two scenarios. However, there is a 0.1 s gap between the

lab and the lobby. We find that this gap is resulted from the computer performance. Considering

the testing time and the distance error, the image size of 30x30 is the best choice for training and

testing because of its lowest distance error and acceptabletesting time in two scenarios.

To further explore how many the number of pictures affects the distance error, we build 5

datasets with different number of pictures in every position. As is shown in Figure 6.10, the

distance error declines with the increase of the number of pictures. The lowest distance errors,

1.0869 m for the lab and 1.1819 m for the lobby, are obtained when the number of pictures is 130.

This result indicates that the number of pictures is relatedto the localization accuracy positively.

Furthermore, the distance error in the lobby is more sensitive to the number of pictures. We also
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Figure 6.11: The average training time for different numberof pictures.

notice that all distance errors for the lab are smaller than 1.2 m and distance errors for the lobby are

lower than 1.3 m when the number of pictures is greater than 90. It also shows that the performance

of ResLoc is robust to the change of the number of pictures.

Figure 6.11 shows the training time across all datasets withdifferent number of pictures. It

is intuitive to show that the training time is directly proportional to the number of pictures. For

the same number of pictures, the training time for the lobby is slightly longer than the training

time for the lab. Considering that the training process is a part of offline stage, namely the training

time does not compromise user experience. Thus, we choose the dataset with 130 pictures in every

training point as the input of ResLoc because of the lowest distance error.

Impact of Bimodality

To evaluate the performance of our proposed bimodal input, we also deploy our ResLoc model

with different kind of input datasets, the amplitude dataset, the phase difference dataset and the

bimodal dataset. We compare the performance of these three datasets in two indoor environments,

a computer laboratory and a long corridor. We know that CSI amplitude values reflects channel

frequency responses with abundant multipath components and channel fading. In other words, the

performance of amplitude dataset is degraded by the indoor environments. The computer lab is a

cluttered environment. The furniture, computers, and appliances block most of the LOS paths and
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Figure 6.12: The average distance error for different inputdataset with two channel model.
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Figure 6.13: The average distance error for different inputdataset with one channel model.

generate lots of multipath. As is shown in Figure 6.12, the worst performance is achieved by the

amplitude dataset in the lab. Comparing with the amplitude values, the phase values of the signal

with the periodical change over the propagation distance isrelatively more robust. According to

Figure 6.12, we have a lower distance error with the phase difference dataset. The bimodal tensor

shows the lowest distance error among three datasets. Due tothe use of bi-modal CSI tensor, the

phase difference values can be utilized to mitigate the influence of the complex indoor environment.

The mean distance errors are 1.0869 m and 1.819 m in the lab andthe corridor, respectively.
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Figure 6.14: The average distance error for different network depth.

We also implement the single channel version ResLoc on these three datasets to investigate

the performance difference between the two channel ResLoc and the single channel ResLoc. Fig-

ure 6.13 shows a similar trend to previous two channel ResLoc,which means that the complexity of

the indoor environment is a dominant effect to the localization performance. However, it is noticed

that all distance errors showed in Fig. 6.13 are larger than corresponding distance errors slightly.

The distance error that is obtained by the amplitude datasetin the lab is over 2 m. For the single

channel ResLoc, the lowest distance error, 1.2027 m, that is obtained by bimodal dataset is still

higher than the corresponding distance error, 1.0869 m, which is the best result of the two channel

ResLoc. According to Figure 6.12 and Figure 6.13, it is obvious to reveal that the two-channel

architecture enhances the performance of the ResLoc system.

We now show the impact of different number of layers on the proposed ResLoc system. All

convolutional kernels in residual blocks are sized to 3x3. There are four sizes of residual blocks.

For each convolutional layer, the number of feature maps in the first block, second block, third

block, forth block are 64, 128, 256 and 512 respectively. Moreover, two convolutional layers

are stacked up to form a basic residual block. To evaluate howthe depth of network affects the

performance of the network, four basic residual blocks are repeated twice, three times, four times,

five times and six times, respectively. Theoretically, increasing layers may reduce the distance

error. However, Figure 6.14 shows that the distance error reaches lowest point when the network
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Figure 6.15: The average distance error for different batchsize.
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Figure 6.16: The average training time for different batch size.

scheme is 3-3-3-3. After that the distance error rises as thenetwork goes deep. We believe that

all schemes are deep enough to solve indoor localization problem. All distance errors are about

1.2 m, which means the distance error is robust when the network is designed as deep as we did.

We choose 3-3-3-3 scheme as the best scheme to train the network, because of the lowest distance

error and a relatively simple scheme.

Batch size defines number of samples that can be propagated through the network. We study

the impact of batch size on localization accuracy under the two environments. Figure 6.15 illus-

trates the mean distance errors for increasing batch size inthe lab and lobby scenarios. As we can

see, there is no relation between the value of batch sizes andthe mean distance error. For the lab
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Figure 6.17: The average distance error for different epoch.

scenario, the highest mean error is 1.0869 m and the lowest mean error is 1.0579 m. The difference

between the maximum and minimum of mean error is 0.029 m, which means the mean distance

error is robust enough to the change of the batch size. Similarly, the difference between the max-

imum and minimum of the mean error is only 0.0613 m for the lobby scenario. It also shows that

the mean distance error is independent to the value of batch size.

Figure 6.16 depicts the training time for different batch sizes. Typically, networks trains

faster with mini-batches. We observe that the training timegets shorter with increasing batch size.

According to the Figure 6.16, we know the longest training times are 1744 s and 1581 s in the

lobby and the lab, and the shortest training times are 1081 s and 1017 s in the lobby and the lab.

To improve the accuracy of ResLoc, we adjust the value of epoch. The impact of epoch on

localization accuracy is shown in Figure 6.17. In both indoor environments, the lab and the lobby,

the highest distance error is obtained when the value of epoch is 30. Along with the growth of

the value of epoch, the distance error keeps decreasing. Andit maintains at about 1.1 m from 50

epochs. Intuitively, the network does not converge before 50 epochs. When the network reaches

convergence, the distance error remains at same level. It isnoticed that the lowest distance errors

in the lab and the lobby are obtained at 50 epochs.

Figure 6.18 depicts the training time against the value of epoch. As is shown, the training time

increases as the value of the epoch increases in both scenarios. It is consistent with our intuitive
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Figure 6.18: The average training time for different epoch.

result that the more epoch loops the more time is consumed. Toreach the lowest distance error, we

spend about 1344 s and 1256 s to train the network in the lobby and the lab respectively.

6.6 Conclusions and Future Work

In this chapter, we presented ResLoc, a deep residual sharinglearning based system for indoor

localization with two channels CSI tensor data. We introduced CSI in WiFi network with OFDM

system and discussed how to build CSI tensor data for indoor localization. Then, we designed the

ResLoc system, which leverages two channels CSI tensor data totrain the deep network by using

the proposed deep residual sharing learning. For online test, we used newly received CSI tensor

data to compute the location of the mobile device based on theprobabilistic method. Finally, the

experimental results showed the superior performance of the proposed ResLoc system.
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Chapter 7

PhaseBeat: Phase Information for Tracking Vital Signs with Commodity WiFi Device

7.1 Introduction

It is evaluated that 100 million Americans have chronic health conditions such as lung disorders

and heart disease, which require three-fourths of total US healthcare costs to treat these condi-

tions [106]. This causes an increasing demand for long-termhealth monitoring in indoor envi-

ronments. Tracking vital signs such as breathing and heart rates can be leveraged to estimate the

humans physical health and offer the important clues for medical problems. For example, monitor-

ing vital signs can help a patient to find the sleep disorders or anomalies, and reduce sudden infant

death syndrome (SIDS) for sleeping infants [107]. The traditional methods for vital monitoring

are required a person to wear special devices such as a capnometer [108] to detect breath rate or a

pulse oximeter [109] on the finger to measure the heart rate. These technologies are inconvenient

and uncomfortable. Thus, an alternative solution is required to offer a contact-free and long-term

vital signs monitoring.

Recently, RF based vital sings monitoring systems have attracted more attention, which em-

ploys wireless signal to extract the breathing-induced chest change of a person. Vital-Radio system

leverages frequency modulated continuous wave (FMCW) radar to estimate breathing and heart

rates, even for multiple person subjects in parallel [110].But the system requires a custom hard-

ware with a large bandwidth from 5.46 GHz to 7.25 GHz. Some techniques such as the Doppler

radar [111, 112] and the ultra-wideband radar [113] are alsoused to monitor vital signs, which re-

quire the dedicated hardware with high frequency and the high cost. mmVital system [114] can use
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60 GHz millimeter wave (mmWave) signal based on RSS for breathing and heart rates estimation

with the larger bandwidth about 7GHz, which also requires the custom hardware with a mechan-

ical rotator. Moreover, UbiBreathe system only monitors thebreathing signal by leveraging WiFi

RSS with the coarse channel information [115]. This system isrequired that the device is placed

in the line of sight path between the transmitter and the receiver, which limits the RF monitoring

range in the deployment environment.

CSI provides fine-grained channel information, which can nowbe obtained from several off-

the-shelf WiFi NIC, e.g., Intel WiFi Link 5300 NIC [21], and the Atheros AR9580 chipset [81].

Also, CSI represents both amplitude and phase information ofsubcarrier-level measurements of

OFDM channels. It is a more stable representation of channelcharacteristics than RSS. Recently,

the authors leverage the amplitudes of CSI data of WiFi to track vital signs. This system is mainly

to monitor the vital signs when a person is sleeping [116]. However, the collected phase informa-

tion of CSI data is not directly usable for vital monitoring because of large phase fluctuation from

the noise and the unsynchronized time and frequency of the transmitter and receiver.

In this chapter, we leverage CSI phase difference data between two antennas to monitor the

breathing and heart rate. First, CSI phase difference data isstable because the randomness of raw

CSI phase is removed at the subtraction in the WiFi NIC, which has the same sampling clock and

the same down-converter frequency for each of three antennas. Moreover, for different distances

and orientations between the transmitter and the receiver,CSI phase difference is more robust

than the amplitude based method, which has large attenuation due to obstacles and long distances.

On the other hand, our work is the first to prove that for indoormutipaths environments with the

small scale signal fading, the CSI phase difference data at the receiver is a periodic signal with

the same frequency as the breathing signal when the wirelesssignal is reflected from the chest of

one person. Moreover, we also prove that leveraging directional antenna to improve the power of

the transmitter can boost the magnitude of CSI phase difference data, which can be exploited to

monitor the minute heart beating signal.
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In this chapter, we then design PhaseBeat, CSI phase difference data for monitoring breathing

and heart beats with commodity WiFi device. First, PhaseBeatsystem employs CSI phase differ-

ence data to extract the periodic signal from the change in the chest of a person such as inhaling

and exhaling. Then, we implement data preprocessing for thecollected phase difference data,

which includes environment detection, data calibration, subcarrier selection and discrete wavelet

transform. For environment detection, we need to detect thestationary person such sitting, stand-

ing and sleeping with the threshold method. Then, effectivephase difference data is calibrated

by removing direct current (DC) component and high frequencynoise, and by implementing the

downsampling for the processed data. Due to frequency diversity, the most sensitized subcarrier is

selected for implementing the discrete wavelet transform to obtain the denoised breathing signal

and the reconstructed heart signal. Finally, we leverage the peak detection method for breathing

signal detection and FFT based method for heart signal estimation.

We implement PhaseBeat on the commodity WiFi devices and evaluate its performance with

four persons over three months in different indoor environments such as a computer laboratory,

a through-wall scenario and a long corridor. The results demonstrate that our PhaseBeat system

can achieve high estimated accuracy of breathing rate with the medium error about 0.25 bpm.

Moreover, the medium error for the heart rate estimation is about 1 bpm by using directional

antennas at the transmitter. We also extensively evaluate the robustness of PhaseBeat for breathing

rate estimation under varying environmental parameters.

The main contributions of this chapter are summarized below.

• We theoretically and experimentally validate the feasibility of using CSI phase difference

for vital signs monitoring. In particular, we deeply analyze the measured phase errors and

prove the phase difference with the same frequency with breathing rate. To the best of our

knowledge, we are the first to leverage CSI phase difference for breathing rate and heart rate

estimation.
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• We implement several signal processing algorithms in data preprocessing for the collected

CSI phase difference data, which can obtain the denoised breathing signal and the restruc-

tured heart signal. Then, we leverage the peak detection method for breathing rate estimata-

tion and FFT based method for heart signal estimation.

• We prototype the PhaseBeat system with commodity WiFi devices and validate its superior

performance in different indoor environments with extensive experiments. Our experimen-

tal results demonstrate that our PhaseBeat system can obtainbetter performance than the

amplitude based method for breathing rate estimation.

In the rest of this chapter, the preliminaries and phase difference information are provided in

Section 7.2. We propose the PhaseBeat system in Section 7.3 and demonstrate its performance in

Section 7.4. Section 7.5 reviews related work and Section 7.6 concludes this chapter.

7.2 Phase Difference Analysis

In this section, we show that the difference of CSI phase values between two antennas for contin-

uous packets of the 5GHz OFDM channel is highly stable. Although the CSI phase information

is also available from the Intel 5300 NIC, it is highly random and cannot be directly used for vital

signs monitoring, due to noise and the unsynchronized time and frequency of the transmitter and

receiver. Recently, two useful algorithms are used to removethe randomness in CSI phase. The

first approach is to make a linear transform of the phase values measured from the 30 subcarri-

ers [67, 79]. The other one is to exploit the phase differencebetween two antennas in 2.4GHz and

then remove the measured average [66]. Although both methods can stabilize the CSI phase in

consecutive packets, the average phase value they produce is always near zero, which is different

from the real phase value of the received signal.

We provide an analysis to validate the stability from the measurement phase difference. Let

∠ĈSI i denote the measured phase of subcarrieri, which is given by [80, 81]

∠ĈSI i = ∠CSIi + (λp + λs)mi + λc + β + Z, (7.1)
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where∠CSIi is the true phase from wireless propagation,Z is the measurement noise that is as-

sumed as the AWGN of varianceσ2, β is the initial phase offset because of the phase-locked

loop (PLL),mi is the subcarrier index of subcarrieri, λp, λs andλc are phase errors from the

packet boundary detection (PBD), the sampling frequency offset (SFO) and central frequency off-

set (CFO), respectively [80], which are expressed by





λp = 2π∆t
N

λs = 2π(T
′−T
T

) Ts

Tu
n

λc = 2π∆fTsn,

(7.2)

where∆t is the packet boundary detection delay,N is the FFT size,T ′ andT are the sampling

periods from the receiver and the transmitter, respectively, Tu is the length of the data symbol,Ts is

the total length of the data symbol and the guard interval,n is the sampling time offset for current

packet,∆f is the center frequency difference between the transmitterand receiver. It is noticed that

we cannot obtain the exact values about∆t, T ′−T
T

, n, ∆f , andβ in (7.1) and (7.2). Moreover,λp,

λs andλc vary for different packets with different∆t andn. Thus, the true phase∠CSIi cannot be

derived from the measured phase value. Fortunately, the measured phase difference on subcarrier

i can be leveraged as the following theorem.

Theorem 2. The measured phase difference on subcarrieri between two antennas is stable, and

its mean and variation are expressed by

E(∆∠ĈSI i) = E(∆∠CSIi) + ∆β, (7.3)

V ar(∆∠ĈSI i) = V ar(∆∠CSIi) + 2σ2. (7.4)

Proof. Note that the three antennas of the Intel 5300 NIC use the sameclock and the same

down-converter frequency. Consequently, the measured phases of subcarrieri from two anten-

nas have identical packet detection delay, sampling periods and frequency differences (and the

samemi) [76]. Thus the measured phase difference on subcarrieri between two antennas can be
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Figure 7.1: The comparison between the single antenna phases (as blue crosses) and the phase
differences (as red dots) of the5th subcarrier in the polar coordinate system for 600 continuing
packets

approximated as

∆∠ĈSI i = ∆∠CSIi +∆β +∆Z, (7.5)

where∆∠CSIi is the true phase difference of subcarrieri, ∆β is the unknown difference in phase

offsets, which is in fact a constant [76], and∆Z is the noise difference with the variance2σ2. We

can find that∆∠ĈSI i is stable for different packets because of the above equation (7.5) without

∆t,∆f andn. For the above equation (7.5), we have the results about the mean and variation of the

measured phase difference on subcarrieri asE(∆∠ĈSI i) = E(∆∠CSIi)+∆β, V ar(∆∠ĈSI i) =

V ar(∆∠CSIi) + 2σ2. Thus, we proof the theorem 2.

We can see that the difference between the mean of the measured and the mean of true phase

differences on subcarrieri is constant, which would not change the estimation frequency of vital

signals, although its variation becomes larger. Fig. 7.1 shows the comparison between the single
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antenna phases (as blue crosses) and the phase differences (as red dots) of the5th subcarrier in the

polar coordinate system for 600 continuing packets. We can see that the single antenna phase of the

5th subcarrier is nearly uniform distribution between 0 and 360degree, which is greatly unstable.

However, all phase difference data of the5th subcarrier concentrate into a sector between 190 and

210 degree, which supports the theorem 2. On the other hand, we provide the theorem of phase

difference information with periodic as the following.

Lemma 1. When the wireless signal is reflected from the chest of one person with the breathing

frequencyfb, the true phase of the refection signal at any antenna of the receiver is a periodic

signal with the frequencyfr, that is

fr = fb. (7.6)

Proof. Because the wireless signal for subcarrieri is a plane wave, its true phase at the receiver is

related with the propagation distance with the signal, thatis

∠CSIi =
2πd(t)

λi
. (7.7)

whered(t) is the propagation distance at thet time,λi is the wavelength of the subcarrieri. When

the chest of a person periodically inhales and exhales with the frequencyfb, the propagation dis-

tanced(t) for the reflection signal can be updated by

d(t) = D + A · cos(2πfbt) (7.8)

whereD is the constant distance for the reflection path,A is the amplitude of the periodic signal.

Thus, its true phase of the reflection signal at the receiver is∠CSIi =
2π(D+A·cos(2πfbt))

λi
. It is noticed

that the true phase at the receiver is a period signal with thesame the frequencyfb. Thus, we prove

the lemma withfr = fb.
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Theorem 3. For indoor environments with mutipaths, when the wireless signal is reflected from the

chest of one person with the breathing frequencyfb, the true phase at any antenna of the receiver

is also a periodic signal with the frequencyfd as the following

P (|fd − fb| < ǫ) = 1, for anyǫ > 0. (7.9)

Proof. Based on Lemma 1, we can find that the true phase of the reflectionsignal at the receiver

with ∠CSIi =
2π(D+A·cos(2πfbt))

λi
is a periodic signal with the frequencyfb. We mark the reflection

signal as the dynamic component, while LOS and other mutipath as static component. Then, we

can update the equation 2.2 as

CSIi =
K∑

k=0

rk · e−j2πfiτk

=
K∑

k=0,k 6=d

rk · e−j2πfiτk + rd · e−j2πfiτd

= CSIsi + CSIdi .

= |CSIsi | exp (j∠CSIsi ) + |CSIdi | exp
(
j∠CSIdi

)
(7.10)

where CSIsi is the static component that is represented as
∑K

k=0,k 6=d rk · e−j2πfiτk and CSIdi is

the dynamic component that is represented asrd · e−j2πfiτd, |CSIsi | and∠CSIsi is the amplitude

and phase of CSIs
i , |CSIdi |and∠CSIdi is the amplitude and phase of CSId

i . Moreover,∠CSIdi =

2π(D+A·cos(2πfbt))
λi

is a periodic signal with the frequencyfb. And |CSIsi |, ∠CSIsi and |CSIdi | are

considered as constant.

To obtain the phase of CSIi, we need to build the geometric relationship among the static

component CSIsi , the dynamic component CSId
i and the total component CSIi using anin-phase-

quadrature(I-Q) plot in Fig. 7.2. Based the geometric relationship in Fig. 7.2, we can easily obtain

the angle∠DST= ∠CSIsi − ∠CSIdi and the lengthOT = |CSIdi | · cos(∠CSIsi − ∠CSIdi ) + |CSIsi |,

and the lengthTD = |CSIdi | · sin(∠CSIsi − ∠CSIdi ). Thus, the phase of the total component CSIi
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is computed by

∠CSIi = ∠CSIsi

− arctan
|CSIdi | · sin(∠CSIsi − ∠CSIdi )

|CSIdi | · cos(∠CSIsi − ∠CSIdi ) + |CSIsi |
. (7.11)

Because the∠CSIdi = 2π(D+A·cos(2πfbt))
λi

is a periodic signal, the∠CSIi is also a periodic signal.

Then, to prove the frequency of the total phase∠CSIi with fb, we make the derivation of the

equation 7.11 zero, that isd∠CSIi
d∠CSIdi

= 0. Then, we can obtain

cos(∠CSIsi − ∠CSIdi ) = −
|CSIdi |
|CSIsi |

, (7.12)

which has the solutions that are the∠CSIdi = ∠CSIsi + π − arccos(|CSIdi |/|CSIsi |) with node D2

or ∠CSIdi = ∠CSIsi + π + arccos(|CSIdi |/|CSIsi |) with node D1 in Fig. 7.2. We can find, when the

phase∠CSIdi ∈ (∠CSIsi + π + arccos(|CSIdi |/|CSIsi |)− 2π, ∠CSIsi + π − arccos(|CSIdi |/|CSIsi |)),

the equation 7.11 is increasing function; otherwise, it is decreasing function. Thus, unless the only

two nodes D1 and D2, the phase of the total component CSIi is periodic signal with the frequency

fb. Also, because the true phase CSIi is continuing, the probability of the true phase CSIi at node

D1 or node D2 equals zero. Thus, we proves the theorem 3.

On the other hand, considering another antenna with the sameanalysis, we can obtain the

similar expression (7.11), which is also a periodic signal with the frequencyfb . However, its the

static component CSIs
i and the dynamic component CSId

i for on subcarrieri are different, because

different positions of two antennas produces different wireless channels. In fact, the phases of

the total component CSIi for any two antennas have different phase difference while the same

frequency. Thus, we can obtain the true phase difference between any two antennas is also a

periodic signal with the frequencyfb.

Based on theorem 2 and equation 7.5, we can easily find that the measured phase difference on

subcarrieri between two antennas is also a stable periodic signal with the frequencyfb, although
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Figure 7.2: The geometric relationship among the static component CSIsi with the green vector
~OS, the dynamic component CSId

i with the red vector~SD and the total component CSIi with the
blue vector ~OD in I-Q plot

the waveform of the signal is attenuated due to the increasing noise. To improve the signal wave-

form, directional antennas is always used as the transmitter, which can strengthen the power of the

reflection signal from the body of one person. In our system PhaseBeat, we use the directional

antennas as the transmitter to estimate the heart rate, because of this greatly weak signal power. To

see the function of directional antennas, we derive the following the corollary based on theorem 3

and equation 7.11.

Corollary 3.1. When the ratio is|CSIdi |/|CSIsi | → ∞, the true phase of subcarrieri at the one

antennas is a periodic signal with the frequencyfb, and has the following result:

∠CSIi = ∠CSIdi . (7.13)
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Proof. Base on the equation 7.11, we can easily obtain∠CSIi = ∠CSIdi when the ratio is|CSIdi |/|CSIsi | →

∞. Moreover,∠CSIdi is a periodic signal with the frequencyfb, and thus we can proof the corollary

3.1.

Corollary 3.2. When the ratio is|CSIdi |/|CSIsi | → 0, the true phase of subcarrieri at the one

antennas is not a periodic signal, and has the following result:

∠CSIi = ∠CSIsi . (7.14)

Proof. Base on the equation 7.11, we can also easily obtain∠CSIi = ∠CSIsi when the ratio is

|CSIdi |/|CSIsi | → 0. Moreover,∠CSIsi is not a periodic signal, which proves the corollary 3.2.

Based on corollary 3.1 and corollary 3.2, we can find that when the reflection from the chest

of one person becomes strong, the waveform of the received signal is periodic with high signal-to-

noise ratio (SNR); when the reflection from the chest of one person becomes weak, the waveform of

the received signal is periodic with low SNR, even it is not periodic. Thus, to estimate the breathing

rate and heart rate, it is still challenging because of wireless multipaths and low SNR of reflection

signal such as the long distance between the person and the receiver or several obstacles. Thus,

we design the PhaseBeat system to overcome the above challenge for estimating the breathing rate

and heart rate, even for several persons.

7.3 The PhaseBeat System

7.3.1 PhaseBeat System Architecture

The core idea of our PhaseBeat system is to monitor the vital signs such as breathing and heart

beating of a person by leveraging CSI phase difference data with the commodity WiFi device. In

fact, PhaseBeat system employs CSI phase difference data to extract the periodic signal from the

change in the chest of a person such as inhaling and exhaling.Based on the above theorem 2

and theorem 3, PhaseBeat system exploits CSI phase differencedata to monitor the vital signs for
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Figure 7.3: PhaseBeat system flow

three reasons. First, CSI phase difference data is relatively stable for continued packets at station-

ary environments such as sitting, standing or sleeping, which is thus effective for monitoring vital

signs. Second, CSI phase difference data includes the periodic signal with the same frequency with

breathing signal. Finally, the CSI phase difference data is robust, where the change of phase dif-

ference data is small for different distances or different orientations, compared with the amplitude

based method for monitoring vital signs.

Fig. 7.3 shows PhaseBeat system flow. It includes four basic modules: Data Extraction, Data

Preprocessing, Breathing Rate Estimation and Heart Rate Estimation. For Data Extraction module,

the PhaseBeat system can extract CSI phase difference data between two antennas at the receiver

with an off-the-shelf WiFi device. Then, Data Preprocessing module is implemented, which con-

sists of environment detection, data calibration, subcarrier selection and discrete wavelet transform.

For environment detection, we leverage a threshold method to determine the stationary situations
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with a person such as sitting, standing or sleeping for tracking vital signs. For data calibration, we

need to remove direct current component and high frequency noise, and to implement the down-

sampling for the processed data. Then, subcarrier selection can be used to improve the reliability

of CSI phase difference data. For discrete wavelet transform, It can obtain the denoised breathing

signal with approximation coefficient for level 4 and the restructured heart signal with the sum

of detail coefficients for level 3 and level 4. For Breathing Rate Estimation module, we leverage

peak detection for single persons and FFT method for multiple persons. For Heart Rate Estimation

module, we use FFT method based for heart signal estimation.

7.3.2 Data Preprocessing

Environment Detection

After CSI phase difference extraction based on equation (7.5), we need to determine whether one

person is in stationary environment or not. If one person is moving such walking, running, jumping

or gesture moving indoor environment, even there is no person, our PhaseBeat needs to continu-

ously detect. Only if the person is determined at stationarysuch as sitting, standing, or sleeping,

PhaseBeat system is leveraged to estimate the breathing rateand heart rate. In fact, a threshold-

based method is used to identify whether a segment of CSI phasedifference data is in stationary

environment or not by computing the absolute deviation of the CSI phase difference data in a short

moving window. We defineV as the sum of absolute deviations of all CSI phase difference data in

the moving window as the following

V =
1

|W |
i=30∑

i=1

∑

k∈W

|∆∠ĈSI i(k)− E(∆∠ĈSI i(k))|, (7.15)

where∆∠ĈSI i(k) is the measured phase difference in subcarrieri for the packetk, W is the

index set of the packets in the moving window,|W | is the length of the moving window. Because

the other movement events lead to the larger change of CSI phase difference data than that from

the minute movements of breathing and heart signals, the threshold-based approach by using the
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Figure 7.4: Environment detection

absolute deviation of CSI phase difference data in the movingwindow can be used to detect the

large movements. In our PhaseBeat system, we set the threshold between 0.25 and 6 as the useful

data for vital signs monitoring. Fig. 7.4 shows environmentdetection results for different situa-

tions. We can notice that in sitting situation the phase difference data presents a sinusoidal-like

periodic signal over the time data; in no person situation the data seems a line with small fluctua-

tion; in standing up and walking situations, the data has larger fluctuation. Thus, we can leverage

the threshold to obtain the stationary situations with person such sitting, standing and sleeping.

Data Calibration

To obtain the robust CSI phase difference data, data calibration is leveraged to remove DC compo-

nent and high frequency noise, and to implement the downsampling for the processed data. Firstly,

because the DC component influences subcarrier selection, peak detection performance and FFT

frequency estimation results, our PhaseBeat system needs toremove it based on the Hampel Fil-

ter. Different from traditional data calibration method that is to only remove the high noise, we

firstly use the Hampel Filter for detrending of the original CSI phase difference data to remove DC

component. The Hampel Filter is utilized to obtain the basictrend of original data, which is set

as a large moving sliding window with 2000 samples and a smallthreshold with 0.01. Then, the
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Figure 7.5: Data calibration

detrending data is obtained from the basic trend data subtracted from the original data. In addi-

tion, we also leverage the Hampel Filter to reduce the high frequency noise by using the sliding

window with 50 samples and the same threshold with 0.01. On the other hand, because PhaseBeat

system employs 400 Hz for data sampling, we need to implementdownsampling for reducing the

computation complexity of breathing rate and heart rate estimation. Thus, we use the 20 sampling

interval to obtain the low frequency CSI phase difference data, that is identical to sampling with

20 Hz.

Fig. 7.5 shows data calibration for original phase difference. It is noticed that the original

phase differences of all subcarriers have the DC component and high frequency noise. By imple-

menting the our data calibration scheme, we can see that the DC component is removed and all

subcarriers show a sinusoidal-like periodic signal over the packets with low noise as well as the

number of packets is decreased from 10000 to 500, which is effectively leveraged for implementing

other signal processing methods.

Subcarrier Selection

Subcarrier selection can be leveraged to boost the reliability of CSI phase difference data, because

different subcarriers have different wavelengths, leading to the different sensitivity for breathing
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Figure 7.6: CSI phase difference series patterns after data calibration
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and heart signals. We utilize the absolute deviation of CSI phase difference data for every sub-

carrier to measure its sensitivity. In fact, it is noticed that the larger absolute deviation, the higher

sensitivity. Thus, we first choosek maximum absolute deviations of CSI phase difference data.

To improve much more robustness of subcarriers to avoid the fact that some large absolute devia-

tions are from higher noise. Then, we leverage the medium ofk absolute deviations of CSI phase

difference data to select the final subcarrier. Fig. 7.6 shows CSI phase difference series patterns

after data calibration. We can see that the neighboring of subcarrier 20 have higher sensitivity for

breathing signals. Then, as shown in Fig. 7.7, the absolute deviation of CSI phase difference data
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Figure 7.8: Discrete wavelet transform

of subcarrier 19 is the maximum. In our PhaseBeat system, we set thek = 3 as the default value,

where subcarrier 19, 18 and 2 are thus selected. Based on our scheme, the subcarrier 18 is the final

subcarrier, which can reflect the high sensitivity based on in Fig. 7.7.

Discrete Wavelet Transform

Different from FFT and short time Fourier transform (STFT),discrete wavelet transform (DWT)

can implement a time-frequency representation of data, which not only provide the optimal resolu-

tion both the time and frequency domains but also obtain multiscale analysis of the data. Based on

DWT, the phase difference data after the subcarrier selection can be decomposed into an approx-

imation coefficient vector with low-pass filter and a detail coefficient vector with high-pass filter.

In fact, the approximation coefficient vector represents the basic shape of the input signal with the

large scale characteristic, while the detail coefficient vector describes the high frequency noise and

the detail information with the small scale characteristic. In wavelet decomposition, the following

steps recursively split the previous approximation coefficient and detail coefficient into two new

coefficients based on the same scheme [117]. AfterL steps, the DWT can obtain an approxima-

tion coefficientαL and a sequence of detail coefficientsβ1, β2, ...βL. We can compute the DWT
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coefficients as the following,

α
(L)
k =

∑

n∈Z

∆∠C̃SI(n)φ
(L)

n−2Lk
L ∈ Z (7.16)

β
(l)
k =

∑

n∈Z

∆∠C̃SI(n)ψl
n−2lk l ∈ {1, 2, ...L} (7.17)

where∆∠C̃SI(n) is the phase difference data after the subcarrier selection, Z is the integer set,

φ,s andψ,s are the wavelet basis functions, which are traditionally orthogonal to each other. The

phase difference data∆∠C̃SI(n) can be approximated by using inverse DWT,

∆∠C̃SI(n) =
∑

k∈Z

α
(L)
k φ

(L)

n−2Lk
+

L∑

l=1

∑

k∈Z

β
(l)
k ψ

l
n−2lk, (7.18)

In our PhaseBeat system, the DWT is leveraged to remove high frequency noise from the

collected CSI phase difference data. Moreover, the approximation coefficientαL is used to extract

the breathing rate, while the sum of detail coefficientsβL−1+βL is employed to estimate the heart

rate, whereL is set as 4 in our system. As shown in Fig. 7.8, for the originalsignal, we first

implement the DWT based decomposition recursively by four levels with Daubechies(db) wavelet

filter. Because we obtain 20 Hz sampling rate after the data calibration and the sampling rate is

halved for every step decomposition, the detail coefficientβ1 and the approximation coefficientα1

have the frequency range from10 Hz to 5 Hz and 0 Hz to 5Hz. Then, the approximation coefficient

α4 has the frequency is 0 Hz to 0.625 Hz to obtain the denoised breathing signal, while the sum of

detail coefficientsβ3 + β4 has the range from 0.625 Hz to 2.5 Hz to restructured the heartsignal;

7.3.3 Breathing Rate Estimation

Peak Detection for Single Person

As breathing signal is a small periodic movement of inhalingand exhaling, the phase difference

data can extract the periodic change. Although FFT based method can be used to effectively

estimate the breathing rate, its peak cannot obtain the accurate frequency estimate, because the
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frequency resolution depends on the window size of FFT. It isnoticed that if the window size

becomes larger, the estimated accuracy is improved, but it leads to a lower time domain resolution.

Thus, our PhaseBeat system leverages the peak detection to estimate the breathing rate based on

the approximation coefficientαL for improving the estimated accuracy.

However, we find that the approximation coefficientαL still includes the fake peak that is not

the true peak but it has larger values than its two neighboring samples. To avoid the fake peak,

we leverage the moving window method to obtain the true peak,where the window size is set as

51 samples based on humans maximum breathing periodic [116]. Then, we can find all peaks by

identifying whether the medium of all samples in the window is the maximum value or not. After

peak detection, all peak-to-peak intervals are averaged toobtain the final periodic of breathing

signal this time, which is defined asP . Thus, the estimated breathing rate can be computed by

60/P bpm.

FFT for Multiple Persons

Breathing rate estimation for multiple persons becomes challenging based on the approximation

coefficientαL, because the reflection components of the received signal are from multiple inde-

pendent movements of the breathing chests. Thus, the peak-to-peak detection method cannot be

available for the approximation coefficientαL, which is not a clear periodic signal. Thus, we can

leverage FFT based method to transfer the approximate the approximation coefficientαL in the

time domain to the frequency domain to estimate the breathing frequencies from multiple per-

sons. Fig. 7.9 shows breathing rate estimation for two persons. We can notice that two estimated

frequencies are 0.2 Hz and 0.3 Hz, respectively, which are approximately the ground truths. It

demonstrates our method for PhaseBeat system is effective for multiple estimation.
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Figure 7.9: Breathing rate estimation for two persons
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Figure 7.10: Heart rate estimation based on FFT

7.3.4 Heart Rate Estimation

FFT Scheme based Heart Rate Estimation

Heart rate can express the person’s health condition and vital sign. Similar to breathing signal, the

heart signal is also periodic, but its magnitude is greatly weak. Traditionally, breathing signal is

orders of magnitude larger than the heart signal because of the small change of blood vessels from

heart beating such as diastole and systole. Thus, the minuteheart signal detection is challenging.

Moreover, due to the stronger breathing signal, its frequency can leak to nearby frequencies, which
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will mask the heart signal. Also, the harmonic wave of breathing signal will influence the heart

rate detection.

In our PhaseBeat system, we need to leverage directional antenna as the transmitter to im-

prove the power of the reflection signal, and then the sum of detail coefficientsβL−1 + βL based

on wavelet decomposition is employed to estimate the heart rate. When the level of decomposition

is L = 4, the frequency range is between 0.625 Hz and 2.5 Hz, which filters out the breathing fre-

quency range that is about between 0.17 Hz and 0.62 Hz and higher noise. Finally, we can leverage

FFT based method to transform the sum of detail coefficientsβL−1 + βL to the frequency domain

for estimating the heart rate. To improve the frequency resolution, we leverage the method [110]

to estimate the heart rate. After finding the peak of FFT, we use the three bins including the peak

bin and its two adjacent bins, where an inverse FFT is leveraged to obtain a complex time-domain

signal. The heart rate is estimated by computing the phase ofthe signal. Fig. 7.10 shows the heart

rate estimation based on FFT. We can see that the estimated frequency is 1.07 Hz, while the ground

truth is 1.06 Hz from the measurements of commercial fingertip pulse sensor for 30 s. The heart

rate estimated error is 0.01 Hz, that is 0.6 bpm. It demonstrates that my method can obtain the

higher accuracy of heart rate estimation.

7.4 Experimental Study

7.4.1 Test Configuration

In this section, we implement the experimental study with PhaseBeat in the 5GHz band. In the

experiments, we leverage a desktop computer as an access point and a Lenovo laptop as a mobile

device, both equipped with an Intel 5300 NIC. In fact, we employ the desktop computer instead of

the commodity routers that are not equipped with the Intel 5300 NIC nowadays. Our PhaseBeat

system is implemented on the Ubuntu desktop 14.04 LTS OS for both the access point and the

mobile device. For the access point, it is set in monitor model and the distance between two

adjacent antennas is d = 2.68 cm, which is half of a wavelengthfor the 5GHz band. For the mobile

device, it is set in injection model, which transmits packets at 400 packets per second using only
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Figure 7.11: Experimental setup

one antenna. Then, we extract CSI phase difference data between two adjacent antennas at the

receiver for vital signals estimation.

We implement our experiments with the total of four persons over three months. The test

scenarios include a computer laboratory and a corridor in Fig. 7.11. We have three setups for the

two environments. The first setup is within the laboratory with 4.5× 8.8m2 room. Also, there

are many tables and PCs crowded, which block parts of the LOS paths and form a complex radio

propagation environment. The second setup is through-wallscenario, where the person is on the

transmitter side. The final setup is the long corridor with the length 20 m, where we set the longest

distance as 11 m for locating the the receiver and the transmitter. We use omnidirectional antennas

for the receiver and the transmitter for breathing estimation at all setup scenarios. However, due

to the minute signal change of heart signals, we leverage thedirectional antennas to increase the

power of the transmitter for the first setup scenario to estimate the heart signal. Moreover, we

leverage the NEULOG Respiration and a fingertip pulse oximeter to record the ground truths of

the breathing and heart rates.
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7.4.2 Performance of Breathing and Heart Rate Estimation

Fig. 7.12 shows the CDF of estimation error for the performance of breathing rate estimation. We

use the amplitude based method [116] as the benchmark to compare with our PhaseBeat system.

We can see that two systems have same medium estimate error about 0.25 bpm. However, we can

see that for PhaseBeat, 90% of the test data have an estimated error under 0.5 bpm, while 70% of

the test data for the amplitude based method have an estimated error under 0.5 bpm. Moreover,

the maximum estimation errors for PhaseBeat and the amplitude based method are 0.85 bpm and

1.7 bpm, respectively. Therefore, our PhaseBeat system obtains much better performance than the

amplitude based method for breathing rate estimation.

Fig. 7.13 shows the CDF of estimation error for the performance of heart rate estimation. For

heart signal detection, we need to leverage the directionalantenna at the transmitter to improve the

power. Based on corollary 3.1, we can notice that the change ofCSI phase difference data becomes

larger, while the change of CSI amplitude data is small, even we cannot observe the periodic signal.

Thus, we only show the phase difference data for heart signalestimation. In Fig. 7.13, we can find

that PhaseBeat system has the medium estimate error about 1 bpm, while 80% of the test data

have an estimated error under 2.5 bpm. Moreover, the maximumestimation errors for PhaseBeat

is about 10 bpm. We notice that the estimated accuracy of heart rate is lower than the breathing

rate estimation because of minute heart signal and the harmonic wave of breathing signal.

Fig. 7.14 shows the accuracy of breathing and heart rates estimation for different sampling

frequencies. For data calibration part, we leverage 400 Hz sampling frequency to estimate the

vital signs, which aims to accurately detect the heart signal. As is shown in the Fig. 7.14, we

can find that the breathing rate estimation have the similar high accuracy about 98% for different

sampling frequencies. However, the accuracy of the heart rate estimation is only 88% for sampling

frequency with 20 Hz, while it can obtain 95% for 400 Hz sampling. Thus, we choose the 400

Hz sampling for PhaseBeat system, which is used for the following extensively experimental data

with breathing rate estimation for different factors.
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Figure 7.12: Performance of breathing rate estimation
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Figure 7.14: Accuracy of breathing and heart rates estimation for different sampling frequency
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Figure 7.15: Impact of the distance between the transmitterand the receiver for the long corridor
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Figure 7.16: Impact of the distance between the transmitterand the receiver for through-wall
scenario

7.4.3 Impact of Various Factors

Impact of the Distance between the Transmitter and the Receiver

Fig. 7.15 and Fig. 7.16 show the impact of the distance between the transmitter and the receiver

for the long corridor and through-wall scenario, respectively. It is noticed that with the increase

of the distance between the transmitter and the receiver, mean estimation error is also increased.

This is because the reflection signal is reduced for long distance between the transmitter and the

receiver, which influences the change of phase difference data. Moreover, we can see that the mean

estimation error with the same distance for through-wall scenario is larger than that for the long
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Figure 7.17: Impact of the distance between the user and the receiver
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Figure 7.18: The impact of user orientation relative to the receiver
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Figure 7.19: Impact of different poses
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corridor. For example, when the distance is 7m, the mean estimation errors for the long corridor

and the through-wall scenario are 0.3 bpm and 0.52 bpm, respectively. It is because the signal for

the through-wall scenario has larger attenuation than thatfor the long corridor.

Impact of the Distance between User and the Receiver

Fig. 7.17 shows the distance between the user and the receiver for the long corridor. We can notice

that when the user locates in the middle of the transmitter and the receiver, the mean estimation

error is the maximum with about 0.52 bpm. In addition, when the user is in the side of transmitter

or the receiver, the estimation error is the minimum values with about 0.1 bpm and 0.15 bpm in the

sides of transmitter and the receiver, respectively. When the user is far away with WiFi devices,

the reflection signal from the transmitter is greatly weaken, which influences the phase difference

data.

Impact of User Orientation Relative to the Receiver

Fig. 7.18 shows the impact of user orientation relative to the receiver within the laboratory. We

consider four cases including front (0 degree), 45 degree, 90 degree and back (180 degree). As is

shown in the Fig. 7.14, we can see that for 90 degree, mean estimation error is the maximal value

with 0.3 bpm, while for the front orientation relative to thereceiver, we can obtain the minimum

value with 0.14 bpm. When the user orientation relative to thereceiver is the front or the back, the

reflection component of the wireless signal can mainly capture the movement chest of body such

as inhaling or exhaling. Thus, we can obtain low mean estimation errors.

Impact of Different Poses

Fig. 7.19 shows the impact of different poses within the laboratory. We consider three common

poses for a stationary person such as sitting, standing and lying. As is shown in the Fig. 7.19, for

standing pose, mean estimation error with 0.31 bpm is largerthan other cases such as sitting with
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0.22 bpm and lying with 0.26 bpm. This is because the chest of the person will have less reflection

from the wireless signal for standing pose.

7.5 Related Work

This work is closely related to two categories of vital signsmonitoring, i.e., sensor based and RF

signal based, which are discussed in the following.

Sensor based systems for vital signs monitoring leverages the special hardware attached to

the person body. Typically, the special devices, such as thecapnometer that can measure carbon

dioxide (CO2) concentrations in respired gases, are leveraged to monitor patients breathing rate

in hospital [108]. However, they are uncomforted for the patient wearing them, which are mainly

used in clinical environments. Photoplethysmography (PPG) is an optical technique to measure

the blood volume changes in the tissues by detecting light absorption changes, which requires

the sensors attached to persons finger such as pulse oximeters [109]. Moreover, smartphone can

utilize the camera to measure light changes from the video frames. Then, the pixel of the frame

is transformed into RGB components, which can extract the PPGsignal to estimate the heart

rate [118]. Recently, the smartphones can measure the breathing rate by leveraging the built-in

accelerometer, gyroscope [119] and microphone [120], which require persons to place smartphones

near-by and wear sensors in the monitoring environment. These techniques, however, leverage

attached sensors, which cannot be applied for remote monitoring vital signs.

RF based systems for vital signs monitoring leverages wireless signal to extract the breathing-

induced chest change of a person, which is mainly based on radar and WiFi techniques. For radar

based vital signs monitoring, some techniques such as the Doppler radar [111, 112] and the ultra-

wideband radar [113] are leveraged to monitor vital signs, which require the special hardware with

high frequency and the high cost. Recent work leverages frequency modulated continuous wave

(FMCW) radar to estimate breathing and heart rates, even for multiple person subjects in paral-

lel [110]. But the system requires a custom hardware with a large bandwidth from 5.46 GHz to 7.25
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GHz. For WiFi based vital signs monitoring, UbiBreathe system leverages WiFi RSS for breath-

ing rate estimation, which, however, requires the device placed in the line of sight path between

the transmitter and the receiver for monitoring the breathing signal [115]. Furthermore, based on

RSS, mmVital can use 60 GHz millimeter wave (mmWave) signal for breathing and heart rates

estimation with the larger bandwidth about 7GHz citeMillimeter. Its techniques cannot monitor

the longer distance and require high gain directional antennas for the transmitter and the receiver.

Recently, the authors leverage the amplitudes of CSI data of WiFi to track vital signs [116]. This

work is mainly to monitor the vital signs when a person is sleeping.

The PhaseBeat system is motivated by these interesting priorworks. To the best of our knowl-

edge, it is the first to leverage CSI phase difference data to monitor the breathing and heart rates

with commodity WiFi devices, which can obtain the higher estimated accuracy of vital signs. And

this work analyzes and proves the phase difference data is periodic and has the same frequency as

the the breathing signal.

7.6 Conclusions

In this chapter, we presented PhaseBeat, CSI phase differencedata to monitor breathing and heart

beats with commodity WiFi device. PhaseBeat system leveraged CSI phase difference data to

extract the periodic signal from the change in the chest of a person such as inhaling and exhal-

ing. Then, We implemented data preprocessing including environment detection, data calibration,

subcarrier selection and discrete wavelet transform. Moreover, we employed the peak detection

approach for breathing rate estimation and FFT based methodfor heart rate estimation. We con-

ducted with the experiments with three setups such as the laboratory, through-wall scenario and

the long corridor. The results showed that the PhaseBeat system can obtain better performance

than the amplitude based method. In the future, we will research how to use the omnidirectional

antennas as the transmitter to detect the minute heart signal by leveraging phase difference data.
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Chapter 8

TensorBeat: Tensor Decomposition for Monitoring Multi-Person Breathing Beats with
Commodity WiFi

8.1 Introduction

Recently, the authors in [116] use the CSI amplitude data to monitor breathing and heart signals,

which requires the person to remain in the sleeping mode. However, the measured CSI phase

data has not been fully exploited in prior works, largely dueto random phase fluctuation resulting

from asynchronous times and frequencies of the transmitterand receiver. For multiple person

breathing monitoring, because the reflected components in the received signal are from the chests

of multiple persons, each moves slightly due to breathing and the movements are independent.

Thus, vital signs monitoring and estimation for multiple persons still remains a challenging and

open problem.

In this chapter, we propose to utilize CSI phase difference data between antenna pairs to mon-

itor the breathing rates of multiple persons. First, we showthat when the person is in a stationary

state, such as standing, sitting, or sleeping, the CSI phase difference data is highly stable in consec-

utively received packets, which can be leveraged for extracting the small, periodic breathing signal

hidden in the received WiFi signal. In fact, phase difference is more robust than amplitude, which

usually exhibits large fluctuations because of the attenuation over the link distance, obstacles, and

the multipath effect. Moreover, the phase difference data captures and preserves the periodicity

of breathing, when the wireless signal is reflected from the patients’ chests. To extract the weak
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breathing signal, and more important, to distinguish amongmultiple persons, we propose to em-

ploy a tensor decomposition method to handle the phase difference data [121, 122, 123]. We create

the CSI tensor data by increasing the dimension of CSI data fromone to three, which can be used

to effectively separate different breathing signals in different clusters.

We present a system termedTensorBeat, Tensordecomposition for estimating multiple per-

sons breathingBeats, by exploiting CSI phase difference data. TensorBeat operates as follows.

First, it obtains 60 CSI phase difference data from antenna pairs 1 and 2, and 2 and 3, at the re-

ceiver. Next, a data preprocessing procedure is applied to the measured phase difference data,

including data calibration and Hankelization. In the data calibration phase, the DC component and

high frequency noises are removed. In the Hankelization phase, a two dimensional Hankel matrix

is created based on the calibrated phase difference data from every subcarrier, and the rank of the

Hankel matrix is analyzed. Then, we adopt Canonical Polyadic(CP) decomposition for estimating

multiple persons breathing signs, and prove the uniquenessof the proposed CSI tensor. After CP

decomposition, we obtain twice amount of breathing signals, which, however, are randomly in-

dexed. We thus design a stable signal matching algorithm (for the stable roommate problem [124])

to identify the decomposed signal pairs for each person. Finally, we combine the decomposed

signals in each pair and employ a peak detection method to estimate the breathing rate for each

person.

We implement TensorBeat on commodity 5 GHz WiFi devices and verify its performance

with five persons over six months in different indoor environments, such as a computer laboratory,

a through-wall scenario, and a long corridor. The results show that the proposed TensorBeat system

can achieve high accuracy and high success rates for multiple persons breathing rates estimation.

Moreover, we demonstrate the robustness of the proposed TensorBeat system for monitoring mul-

tiple persons’ breathing beats under a wide range of environmental parameters.

The main contributions of this chapter are summarized as follows.

1. We theoretically and experimentally verify the feasibility of leveraging CSI phase difference

for breathing monitoring. In particular, we analyze the measured phase errors in detail and
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demonstrate that phase difference data is stable and can be used to extract breathing signs. To

the best of our knowledge, we are the first to leverage phase difference for multiple persons

breathing rate estimation.

2. We are also the first to apply tensor decomposition for RF sensing based vital signs moni-

toring. We use the phase difference data to create a CSI tensorfor all subcarrier at the three

antennas of the WiFi receiver. We then incorporate CP decomposition to obtain the desired

breathing signals. A stable signal matching algorithm is developed to match the decomposed

signals for each person, while a peak detection method is used to estimate multiple persons’

breathing rates.

3. We prototype the TensorBeat system with commodity 5 GHz WiFi devices and demonstrate

its superior performance in different indoor environmentswith extensive experiments. The

results show that the proposed TensorBeat system can achievevery high accuracy and high

success rates for multiple persons breathing rate estimation.

The remainder of this chapter is organized as follows. The preliminaries and phase difference

analysis are provided in Section 8.2. We present the TensorBeat system design and performance

analysis in Section 8.3 and verify its performance with extensive experiments in Section 8.4. We

provide the related work in Section 8.5. Section 8.6 concludes this chapter.

8.2 Preliminaries and Phase Difference Information

8.2.1 Tensor Decomposition Preliminaries

A tensor is considered as a multidimensional array [125]. The dimensions of the tensor are called

as modes, and the order of the tensor is the number of the modes. For example, theN -order tensor

is aN -mode tensor. Moreover, It is noticed that a first-order tensor is a vector, a second-order

tensor is a matrix, and a third-order tensor is a cubic structure. Higher-order tensors with(N ≥ 3)

have a wide range of applications such as data mining, brain data analysis, recommendation sys-

tems, wireless communications, computer vision, and healthcare and medical applications [121].
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For higher-order tensors, they face various computationalchallenging because of the exponential

increase in time and space complexity with the orders increase of tensors. This leads to the curse of

dimensionality. Fortunately, tensor decomposition as onepowerful tool is leveraged for alleviating

the curve by decomposing high-order tensors into a limited number of factors. Also, it can ob-

tain hidden feature components, thus extracting physical insight of higher-order tensors. Two main

tensor decompositions are tucker decomposition and CP decomposition [125]. We consider CP de-

composition for multiple persons breathing rate estimation because it can easily obtain the unique

solution [125]. On the other hand, we will provide some necessary definitions and equations of

tensor decomposition, which can be used for our proposed algorithm.

Definition 1. (Frobenius Norm of a Tensor). The Frobenius norm of a tensorχ ∈ K
I1×I2×···×IN is

the square root of the sum of the squares of all its elements, which is defined by

‖χ‖F =

√√√√
I1∑

i1=1

I2∑

i2=1

· · ·
IN∑

iN=1

x2i1,i2···iN . (8.1)

whereK stands forR orC.

Definition 2. (Kronecker Product). The Kronecker product of matricsA ∈ K
I×J andB ∈ K

M×N

is denoted asA⊗B. The result is an(IM)× (JN) matrix, which is defined by

A⊗B =




a11B a12B . . . a1JB

a21B a22B . . . a2JB

...
...

...
...

aI1B aI2B . . . aIJB



. (8.2)

Definition 3. (Khatri-Rao Product). The Khatri-Rao product ofA ∈ K
I×J andB ∈ K

M×J is

denoted asA ⊙ B. It is the column-wise Kronecker product with the size(IM) × J , which is

defined by

A⊙B = [a1 ⊗ b1,a2 ⊗ b2, · · · ,aJ ⊗ bJ ]. (8.3)
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Definition 4. (Hadamard product). The Hadamard product ofA ∈ K
I×J and B ∈ K

I×J is

denoted asA ∗B. It is the elementwise matrix product with the sizeI × J , which is defined by

A ∗B =




a11b11 a12b12 . . . a1Jb1J

a21b21 a22b22 . . . a2Jb2J
...

...
...

...

aI1bI1 aI2bI2 . . . aIJbIJ



. (8.4)

8.2.2 Phase Difference Information for Multiple Breathing Monitoring

Breathing rate estimation for multiple persons is a challenging problem, because the reflected

components in the received signal are from the chests of multiple persons, each moves slightly

due to breathing and the movements are independent. Thus, the peak-to-peak detection method

cannot be effective for detecting the multiple breathing signals from the received signal. The

aggregated breathing signal from multiple persons is not a clearly periodic signal anymore. Fig. 8.1

shows the detected breathing signals for one person (the upper plot) and three persons (the lower

plot). We can see that for one person, the breathing signal exhibits a noticeable periodicity. So

the breathing rate can be estimated by peak detection after removing the noise. However, the

aggregated breathing signal of three persons does not show noticeable periodicity for packet 400

to 600. Traditional FFT based methods can transform the received signal from the time domain to

the frequency domain to estimate the breathing frequenciesfrom multiple persons. Fig. 8.2 shows

the breathing rate estimation for one person (the upper plot) and three persons (the lower plot) with

the FFT method. We can see that the estimated frequency for one person is 0.2 Hz, which is almost

the same as the true breathing rate. However, for three-person breathing rate estimation, the FFT

curve only has two peaks, and the estimated breathing rates are much less accurate. In particular,

the third peak cannot be estimated. This is because FFT basedmethods require a larger window

size to improve the frequency resolution. We show that the proposed tensor decomposition based

method is highly effective for multi-person breathing rateestimation in the following section.
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Figure 8.1: Detected breathing signals for one person (the upper plot) and three persons (the lower
plot).
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Figure 8.2: Breathing rate estimation for one person (the upper plot) and three persons (the lower
plot) based on FFT.
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8.3 The TensorBeat System

8.3.1 TensorBeat System Architecture

The main idea of the proposed TensorBeat system is to estimatemulti-person breathing rates by

employing a tensor decomposition method. To obtain CSI tensor data, we first create a two di-

mensional Hankel matrix with phase difference data from back-to-back received packets extracted

from each subcarrier at each antenna. Then, by leveraging the phase differences from the 60 sub-

carriers, i.e., that between antennas 1 and 2, and between antennas 2 and 3, we can construct the

third dimension of the CSI tensor data. The TensorBeat system will then leverage the created

CSI tensor to estimate multi-person breathing signs. Our approach is motivated by two observa-

tions. First, for stationary modes of a person, such as standing, sitting, or sleeping, CSI phase

difference from consecutively received packets is highly stable. It can thus be useful for extracting

the periodic breathing signals. Second, the tensor decomposition method can effectively estimate

multi-person breathing beats. We create the CSI tensor data by increasing the dimension of CSI

data, from one dimension to three dimensions. The higher dimension CSI data is helpful to effec-

tively separate different breathing signals by forming different clusters. This strategy is similar to

the kernel method in traditional machine learning, such as SVM [18] or multiple hidden layers in

deep learning [91, 64, 3].

As shown in Fig. 8.3, the TensorBeat system consists of four main modules: Data Extraction,

Data Preprocessing, CP Decomposition, Signal Matching, andBreathing Rate Estimation. For

Data Extraction, TensorBeat obtains 60 CSI phase difference data, 30 between antennas 1 and 2,

and 30 between antennas 2 and 3, at the receiver with an off-the-shelf WiFi device. The Data Pre-

processing module includes data calibration and Hankelization. Data calibration is implemented to

remove the DC component and high frequency noises. Hankelization is to create a two dimensional

Hankel matrix with phase difference data from each subcarrier for back-to-back received packets.

The rank of the constructed Hankel matrix is then analyzed. We next apply CP decomposition to

estimate multiple persons’ breathing signals, and prove the uniqueness of the proposed CSI tensor.

180



 !"#$%&'(#)*++(,(-.(#

/01,&.1*2-

)&1&#/01,&.1*2-)&1&#$,(3,2.(''*-4

)&1&# &5*6,&1*2-

7&-8(5*9&1*2-

 $#)(.2:32'*1*2-

';
6.
&,
,*(
,'

<
<

7&-8(5#

:&1,*0

=# =

!> !?@

<
<
<

';
6.
&,
,*(
,'

3&.8(1'

!>

!?@

+>

+@

A;12.2,,(5&1*2-

!1&65(#@22::&1(#

B&1.%*-4

!*4-&5#C;'*2-

$(&8#)(1(.1*2-

!*4-&5#B&1.%*-4#A542,*1%: D,(&1%*-4#/'1*:&1*2-

Figure 8.3: The TensorBeat system architecture.

For Signal Matching, we first compute the autocorrelation function of the decomposed signals,

and incorporate a stable roommate matching algorithm to identify the decomposed signal pairs for

each person, where a preference list is computed with the dynamic time warping (DTW) values of

the autocorrelation signals. For Breathing Rate Estimation,we combine the decomposed signals

in each pair and use the peak detection method to compute the breathing rate for each person.

In the remainder of this section, we present the design and analysis of each module of the

TensorBeat system in detail.

8.3.2 Data Preprocessing

Data Calibration

We use a 20 Hz sampling rate to obtain 60 CSI phase difference data, 30 between antennas 1 and

2, and 30 between antennas 2 and 3, at the receiver with an off-the-shelf WiFi device at 5 GHz for
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Figure 8.4: Data calibration: an example.

data extraction. Then, data calibration is applied to remove the DC component and high frequency

noises. Because the DC component is also considered as a kind of signal, which may affect CSI

tensor decomposition, TensorBeat adopts the Hampel filter toremove the DC component. Un-

like traditional data calibration approaches that only remove the high frequency noise, we use the

Hampel Filter for detrending the original CSI phase difference data to remove DC component. In

fact, the Hampel Filter, which is set as a large sliding window with 150 samples wide and a small

threshold of 0.001, is firstly used to extract the basic trendof the original data. Then, the detrended

data is generated by subtracting the basic trend data from the original data. We also utilize the

Hampel Filter to reduce the high frequency noise by using a sliding window of 6 samples wide and

a threshold of 0.01.

Fig. 8.4 presents an example of data calibration. We can see that the original phase differences

of all the subcarriers have both a DC component and high frequency noises. With the proposed

data calibration approach, it can be seen that the DC components are readily removed and all the

subcarriers demonstrate a similar calibrated signal over the 600 packet range with low noise. Such

calibrated signal will then be used for estimating the breathing rates of multiple persons.

Hankelization

After data calibration, we obtain the CSI phase difference data matrix with a dimension of (number

of packets× number of subcarriers). We then employ a Hankelization method to transform the
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large CSI matrix into a CSI tensor by expanding the packets intoan additional dimension [126].

Specifically, we rearrange the signals of each subcarrier into a 2-D Hankel matrix, so that the

signals from all the 60 subcarriers can be considered as a 3-Dimensional tensor. DefineHr as the

constructed Hankel matrix with the sizeI × J for subcarrierr, which is created by mappingN

packets onto the Hankel matrix withN = I + J − 1. We consider the Hankel matrix with size

I = J = N+1
2

. We thus obtain the Hankel matrixHr for subcarrierr, as

Hr =




hr(0) hr(1) . . . hr(
N+1
2
− 1)

hr(1) hr(2) . . . hr(
N+1
2

)

...
...

...
...

hr(
N+1
2
− 1) hr(

N+1
2

) . . . hr(N − 1)



, (8.5)

wherehr(i) is the calibrated phase difference data from subcarrierr for packeti. In our experi-

ments, we setN = 599 andI = J = 300. To determine the number of components needed for

CSI tensor decomposition, we provide the following theorem for estimatingR breathing signals.

Theorem 4. If there areR breathing signals in an indoor monitoring environment, theconstructed

Hankel matrixHr for subcarrierr has a rank of2R when noise is negligible.

Proof. When analyzing signal data structure, we assume the noise is negligible. Moreover, let

the ith breathing signal be represented asSi(t) = Ai cos(wit + ϕi). The observed signal from a

subcarrier can be represented by [127]

Y (t) =
i=R∑

i=1

KiSi(t) =
i=R∑

i=1

K̂i cos(wit+ ϕi), (8.6)
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whereKi is the coefficient for breathing signali and the new coefficient̂Ki = KiAi. The ith

component ofY (t), K̂i cos(wit+ ϕi), can be decomposed using Euler’s formula. We have

K̂i cos(wit+ ϕi) =
K̂i

2
exp(j(wit+ ϕi)) +

K̂i

2
exp(j(−wit− ϕi))

=
K̂i

2
exp(jϕi) exp(jwit) +

K̂i

2
exp(−jϕi) exp(−jwit). (8.7)

Each breathing signal can be separated into two exponentialsignals with different coefficients.

Combining all theR breathing signals, we have

Y (t) =
R∑

i=1

(
K̂i

2
exp(jϕi) exp(jwit) +

K̂i

2
exp(−jϕi) exp(−jwit)

)

=
2R∑

i=1

K̃iZ
t
i , (8.8)

where the updated signalZt
i is denoted asZt

i = exp(±jwit), and K̃i = K̂i

2
exp(±jϕi) is its

coefficient. For packets received at discrete times, we represent the received signal asY (n) =
∑2R

i=1 K̃iZ
n
i . Note that the combined signal can be considered as an exponential polynomial with

2R different exponential terms. Map signalY (n) for n = 1, 2, · · · , N into a Hankel matrix with

sizeI = J = N+1
2

, we have

Hr =




∑2R
i=1 K̃iZ

0
i

∑2R
i=1 K̃iZ

1
i · · · ∑2R

i=1 K̃iZ
N+1

2
−1

i

∑2R
i=1 K̃iZ

1
i

∑2R
i=1 K̃iZ

2
i · · · ∑2R

i=1 K̃iZ
N+1

2
i

...
... · · · ...

∑2R
i=1 K̃iZ

N+1
2

−1

i

∑2R
i=1 K̃iZ

N+1
2

i · · · ∑2R
i=1 K̃iZ

N−1
i



. (8.9)

We can see that the Hankel matrix can be decomposed with Vandermonde decomposition [126], as

Hr = Vr · diag(K̃1, K̃1, · · · , K̃2R) · Ṽ T
r , (8.10)
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where the Vandermode matricesVr ∈ K
N+1

2
×2R andṼr ∈ K

N+1
2

×2R are given by

Vr = Ṽr =




1 1 · · · 1

Z1 Z2 · · · Z2R

...
... · · · ...

Z
N+1

2
−1

1 Z
N+1

2
−1

2 · · · Z
N+1

2
−1

2R



. (8.11)

Because a Vandermode matrix is full rank, which is obtained bydifferent poles, the rank of the

Hankel matrix generated byR breathing signals is2R.

According to Theorem 4,2R signal components is required to separate theR breathing sig-

nals.

Next we consider the influence of measurement noise on the Hankel matrixHr. Because of

noise, the Hankel matrixHr is actually a full-rank matrix. However, Theorem 4 shows that the

rank of the combined breathing signal is2R, meaning that the first2R weighted decomposed com-

ponents are much stronger than the remaining ones as long as the signal to noise ratio (SNR) is not

very low. This shows that the Hankel matrix structure can be used to effectively separate breathing

signals from white noise. Actually, the different signals will be well denoised and separated by

using tensor decomposition, as to be discussed in Section 8.3.3.

8.3.3 Canonical Polyadic Decomposition

Once the CSI tensor is ready, we apply CP decomposition to estimate multiple persons’ breathing

signals. With CP decomposition, the CSI tensor data can be approximated as the sum of2R rank-

one tensors according to Theorem 4. Denoteχ ∈ K
I×J×K as a third-order CSI tensor, which can

be obtained by the sum of three-way outer products as [125, 121]

χ ≈
2R∑

r=1

ar ◦ br ◦ cr, (8.12)
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wherear, br, cr are the vectors at therth position for the first, second, and third dimension, re-

spectively, and2R is the number of decomposition components, which is the approximation rank

of the tensor based on CP decomposition [128, 129]. Their outer product is defined by

(ar ◦ br ◦ cr)(i, j, k) = ar(i)br(j)cr(k), for all i, j, k. (8.13)

We consider factor matricesA = [a1, a2, · · · , a2R] ∈ K
I×2R, B = [b1, b2, · · · , b2R] ∈ K

J×2R,

andC = [c1, c2, · · · , c2R] ∈ K
K×2R as the combination of vectors from rank-one components.

Moreover, defineX(1) ∈ K
I×JK , X(2) ∈ K

J×IK , andX(3) ∈ K
K×IJ as 1-mode, 2-mode, and

3-mode matricization of CSI tensorχ ∈ K
I×J×K , respectively, which are obtained by fixing one

mode and arranging the slices of the rest of the modes into a long matrix [125]. Then, we can write

the three matricized forms as

X(1) ≈ A(C ⊙B)T , (8.14)

X(2) ≈ B(C ⊙A)T , (8.15)

X(3) ≈ C(B ⊙A)T , (8.16)

where⊙ denotes the Khatri-Rao product.

When the number of components2R is given, we apply the Alternating Least Squares (ALS)

algorithm, the most widely used algorithm for CP decomposition [125]. To decompose the CSI

tensor, we minimize the square sum of the differences between the CSI tensorχ and the estimated

tensor.

min
A,B,C

∥∥∥∥∥χ−
2R∑

r=1

ar ◦ br ◦ cr
∥∥∥∥∥

2

F

. (8.17)

Note that (8.17) is not convex. However, the ALS algorithm can effectively solve the problem by

fixing two of the factor matrices, to reduce the problem to a linear least squares problem with the
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third factor matrix as variable. If we fixB andC, we can rewrite problem (8.17) as

min
A

∥∥X(1) −A(C ⊙B)T
∥∥2
F
. (8.18)

We can derive the optimal solution to problem (8.18) asA = X(1)[(C ⊙ B)T ]†. Applying the

property of pseudoinverse of the Khatri-Rao product, it follows that

A = X(1)(C ⊙B)(CT
C ∗BT

B)†, (8.19)

where∗ denotes the Hadamard product. This equation only requires computing the pseudoinverse

of a 2R × 2R matrix rather than aJK × 2R matrix. Note thatR is much smaller thanJ and

K, thus the computing complexity can be greatly reduced. Similarly, we can obtain the optimal

solutions forB andC as

B = X(2)(C ⊙A)(CT
C ∗AT

A)† (8.20)

C = X(3)(B ⊙A)(BT
B ∗AT

A)†. (8.21)

Applying ALS to CP decomposition, we obtain matricesA, B, andC. To guarantee the effective-

ness of the decomposed components, we next examine the uniqueness of CP decomposition. The

basic theorem on the uniqueness of CP decomposition is given in [125], which is provided in the

following.

Fact 1. For tensorχ with rankL, if kA + kB + kC ≥ 2L + 2, then the CP decomposition ofχ is

unique, wherekA, kB, andkC denote thek-rank of matrixA, B, C, respectively. Herek-rank

means the maximum valuek such that anyk columns are linearly independent [125].

Based on Fact 1, we have the following theorem for the CSI tensor.

Theorem 5. For the proposed CSI tensorχ with rank2R, the CP decomposition ofχ is unique.

187



Packet Index

Signal Index

6

5

4-0.2
0 3

100 2
200

1300

0

0.2

Figure 8.5: CP decomposition results for a CSI tensor of three persons.

Proof. The proposed CSI tensorχ is created byK Hankel matrix, where therth Hankel matrix

Hr is rank-2R according to Theorem 4. Thus, for thek-rank of the matricesA andB, we have

kA = 2R andkB = 2R. On the other hand, because phase differences of subcarriers between

antennas 1 and 2, and antennas 2 and 3 are independent, thek-rank of matrixC haskC ≥ 2. Thus,

the expression iskA + kB + kC ≥ 2R + 2R + 2 = 2(2R) + 2, which satisfies the conditions in

Theorem 1. This proofs the theorem.

Theorem 5 indicates that the CP decomposition of the created CSI tensor is unique, which can

be used to effectively estimate multiple breathing rates. In the proposed TensorBeat system, we

leverages the matrixA = [a1, a2, · · · , a2R] as decomposed signalsS1, S2, · · · , S2R. For example,

Fig. 8.5 shows the results of CP decomposition for CSI tensor data from three persons (R = 3).

We can see that there are six signals. Moreover, signals 1 and2 are similar, signals 3 and 5 are

similar, and signals 4 and 6 are similar. This is because CP decomposition cannot guarantee that

similar signals are located in adjacent locations (i.e., the output signals are randomly indexed).

Thus, we need to identify the signal pairs among the decomposed signals for each person, which

will be addressed in Section 8.3.4.
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Figure 8.6: Autocorrelation of the decomposed breathing signals.

8.3.4 Signal Matching Algorithm

The CP decomposition of CSI tensor data yields2R decomposed signals, i.e.,S1, S2, · · · , S2R,

which, however, are randomly indexed. In this section, we propose a signal matching algorithm

to pair the two similar decomposed signals that belong to thesame person. The main idea is

to leverage the autocorrelation to strengthen the periodicity of decomposed signals and use the

Dynamic Time Warping (DTW) method to compute the similarity value for any pair of signals.

Finally, we apply the stable-roommate matching algorithm to pair the decomposed signals for

each person, using the DTW values as the closeness metric. Weintroduce the proposed signal

matching algorithm in the following.

Autocorrelation and Dynamic Time Warping

After CP decomposition of CSI tensor data, we first compute the autocorrelation function of the2R

decomposed signals to strengthen their periodicity. We evaluate the autocorrelation function of the

decomposed signals for two reasons. The first is that the autocorrelation of a decomposed signal

can increase the data length, which helps to improve the accuracy of the peak detection. Second,

because the decomposed signals have phase shift and nonalignment, using the autocorrelation

of decomposed signals can reduce such shifts and strengthenthe periodicity of the decomposed

signals. Fig. 8.6 shows the autocorrelation of the decomposed breathing signals produced by CP
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decomposition. We can see that each autocorrelation signalexhibits a more obvious periodicity

than that of the original decomposition signals. Moreover,the data length is increased from 300 to

600.

Furthermore, we employ the DTW approach to measure the distance between any pair of

autocorrelation signals, which is different from the Euclidean distance method that computes the

sum of distances from each value on one curve to the corresponding value on the other curve.

Moreover, the Euclidean distance method believes that two autocorrelation signals with the same

length are different as long as one of them has a small shift. However, DTW can automatically

identify these shifts and provide the similar distance measurement between two autocorrelation

signals by aligning the corresponding time series, thus overcoming the limitation of the Euclidean

distance method.

With the autocorrelation signals, we design the DTW method for measuring their pairwise

distance. Given two autocorrelation signals and a cost function, the DTW method seeks an align-

ment by matching each point in the first autocorrelation signal to one or more points in the second

signal, thus minimizing the cost function for all points [57, 130, 131]. To reduce the compu-

tational complexity of DTW, we apply downsampling to the twoautocorrelation signals, which

leads to a reduced number of packetsN ′. Then, consider two downsampled autocorrelation sig-

nalsPi = [Pi(0), Pi(1), · · · , Pi(N
′−1)] andPj = [Pj(0), Pj(1), · · · , Pj(N

′−1)], we need to find

a warping pathW = [w1, w2, · · · , wL], whereL is the length of the path, and thelth element of

the warping path iswl = (ml, nl), wherem andn are the packet index for the two downsampled

autocorrelation signals. The objective is to minimize the total cost function by implementing the

non-linear mapping between two downsampled autocorrelation signalsPi andPj. The formulated
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problem is given by

min
L∑

l=1

‖Pi(ml)− Pj(nl)‖ (8.22)

s.t. (m1, n1) = (0, 0) (8.23)

(mL, nL) = (N ′ − 1, N ′ − 1) (8.24)

ml ≤ ml+1 ≤ ml + 1 (8.25)

nl ≤ nl+1 ≤ nl + 1. (8.26)

The objection function is to minimize the distance between two downsampled autocorrelation

signals. The first and second constraints are boundary constraints, which require that the warping

path starts atPi(0) andPj(0) and ends atPi(N
′ − 1) andPj(N

′ − 1). This can guarantee all

points of the two downsampled autocorrelation signals are used for measuring their distance, thus

avoiding to use only local data. Furthermore, the third and fourth constraints are monotonic and

marching constraints, which require that there be no cyclesfor wi andwj in the warping path and

the path is increased with the maximum 1 at each step.

We apply dynamic programming to solve problem (8.22), to obtain the minimum distance

warping path between two downsampled autocorrelation signals. We consider a two-dimensional

cost matrixC with sizeN ′ × N ′, whose elementC(ml, nl) is the minimum distance warping

path for two downsampled autocorrelation signalsPi = [Pi(0), Pi(1), · · · , Pi(ml)] andPj =

[Pj(0), Pj(1), · · · , Pj(nl)]. We design the recurrence equation in dynamic programming as fol-

lows.

C(ml, nl) = ‖Pi(ml)− Pj(nl)‖+min [C(ml − 1, nl), C(ml, nl − 1), C(ml − 1, nl − 1)]. (8.27)

By filling all elements of the cost matrixC, the valueC(N ′−1, N ′−1) can be computed as the DTW

value between the two downsampled autocorrelation signals. The time complexity isO(N ′2).

Fig. 8.7 shows the DTW results for downsampled autocorrelation signals 4 and 6 (the upper plot),
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Figure 8.7: DTW results for downsampled autocorrelation signals 4 and 6 (the upper plot), and
downsampled autocorrelation signal 4 and 3 (the lower plot), respectively.

and downsampled autocorrelation signals 4 and 3 (the lower plot), where we set the downsampling

number of packets asN ′ = N
10

= 60. It can be seen that downsampled autocorrelation signals

4 and 6 have a smaller DTW value (i.e., 3.65) than downsampledautocorrelation signals 4 and 3

(i.e., 13.7). That is, signals 4 and 6 are more similar, and more likely to belong to the same person.

We also find that the downsampled autocorrelation signals have a high similarity in the center than

that on the boundary, and it can reduce the phase shift values. Thus, the DTW value is a good

measure of the distance between two downsampled autocorrelation signals. We need to compute

the DTW values for all the downsampled autocorrelation signal pairs, which are then used in stable

roommate matching.

Stable Roommate Matching

Since the CP decomposed signals are randomly indexed (see Fig. 8.6), we need to identify the pair

for each person. With the DTW values for all downsampled autocorrelation signal pairs, we can

model this problem as a stable roommate matching problem [124, 132, 133]. There are a group of

2R signals, and each signal maintains a preference list of all other signals in the group, where the

preference value for another signal is the inverse of the corresponding DTW value (i.e., distance).

The problem is to pair the signals, such that there is no such apair of signals that both of them have
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a more desired selection than their current selection, i.e., to find a stable matching [124, 132, 133].

The proposed signal matching algorithm is presented in Algorithm 9.

We first compute the autocorrelation of all decomposed signals. Then each autocorrelation

signal populates its preference list with other autocorrelation signals according to the DTW values.

The stable roommate matching algorithm is executed in two steps. In step 1, each signal proposes

to other signals according to its preference list. If a signal m receives a proposal from another signal

n, we implement the following strategy: (i) signalm rejects signaln if it has a better proposal from

another signal; (ii) signalm accepts signaln’s proposal if it is better than all other proposals that

signalm currently holds. Moreover, signaln stops to propose when its proposal is accepted, while

it needs to continue to propose to other signals if being rejected. This strategy is implemented in

step 1 of the signal matching algorithm, where we usefinish flag to mark whether the current

signal num is accepted or not. Moreover, variablesaccept num andpropose num are used to

record the current signal’s proposed number and proposing number, respectively. Also, variable

scan num is used to record the current scanning signal number. After completing step 1, every

signal holds a proposal or one signal has been rejected by other signals (this case hardly happens in

TensorBeat, because the CP decomposition produces two very similar signals with high probability

for each person). Then, we need to delete some elements in allthe preference lists based on the

following method, which is that if signalm is the first on signaln’s list , then signaln is the last

on signalm’s list. For the proposed algorithm, every signal can rejectsignals that have less than

accept num in its preference list symmetrically (reject each other).

An example is shown in Fig. 8.5. According to the DTW values, signals 1, 2, 3, 4, 5, and 6

have their preference lists as (2, 3, 5, 6, 4), (1, 3, 5, 6, 4), (5, 1, 2, 6, 4), (6, 5, 3, 2, 1), (3, 2, 1, 4,

6), and (4, 5, 3, 2, 1), respectively. When step 1 is executed, we have: Signal 1 proposes to 2, and

signal 2 holds 1; Signal 2 proposes 1, and signal 1 holds; Signal 3 proposes to signal 5, and signal

5 holds; Signal 4 proposes to signal 6, and signal 6 holds; Signal 5 proposes to signal 3, and signal

3 holds; Signal 6 proposes to signal 4, and signal 4 holds. It is easy to find three pairs (1,2), (3,5),

and (4,6).
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Although most of decomposed signals are paired in step 1, step 2 will still be necessary for

the more challenging cases of much more breathing signals and NLOS environments. In step

2, we consider the reduced preference lists, where some of the lists have more than one signals.

By implementing step 2, we can reduce the preference lists such that each signal only holds one

proposal. The main idea is that we need to find some all-or-nothing cycles and symmetrically

delete signals in the cycle sequence by rejecting the first and last choice pairs. The signal in the

cycle accepts the secondary choice, thus obtaining a stableroommate matching. To find all-or-

nothing cycles, letp1 be a signal with a preference list that contains more than oneelement, and

generate the sequences such thatqi = the second preference ofpi’s current list, andpi+1 = the last

preference ofqi’s current list. After the cycle sequence generation, denote ps as the first element

in thep sequence to be repeated. Then, we reject matching(qs + i − 2, ps + i − 1) for i = 1 to

r symmetrically, wherer is the length of the cycle. Finally, we can obtain signal matching pairs

based on all processed preference lists. The computationalcomplexity of Algorithm 9 isO(R2),

because steps 1 and 2 each has a complexity ofO(R2), respectively.

8.3.5 Breathing Rate Estimation

Signal Fusion and Autocorrelation

After obtaining the outcomes of the signal matching algorithm, TensorBeat next applies peak de-

tection to estimate the breathing rates for multiple persons. Comparing to the FFT method, a higher

resolution in the time domain can be achieved. To implement peak detection, we first need to com-

bine the decomposed signal pairs for each person into a single signal, by taking the average of the

signal pairs. Averaging can decrease the variance of the decomposed signals while preserving the

same period. For example, Fig. 8.8 shows the fusion results based on the outcome of the signal

matching algorithm, where three smoothly decomposed signals with different periods are obtained.

To strengthen the accuracy of peak detection, we compute theautocorrelation function again for

every fused signal. Fig. 8.9 shows the autocorrelation of the three fused signals. It can be seen that
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Figure 8.8: Fusion results based on the outcomes of the signal matching algorithm.
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Figure 8.9: Autocorrelation of fused signals.

the length of data is increased from 300 to 600 and the number of peaks of every signal are also

increased, which help to improve the estimation accuracy.

Peak Detection

Although breathing signal is generated by the small periodic chest movement of inhaling and exhal-

ing, the phase difference data can effectively capture the breathing rate. Traditionally, estimation

of breathing rates is achieved with FFT based methods. However, the FFT approach may have lim-

ited accuracy, because the frequency resolution of breathing signals is based on the window size

of FFT. When the window size becomes larger, the accuracy willbe higher, but the time domain

resolution will be reduced. Also see Figs. 8.1 and 8.2 for thelimitation of the FFT based approach
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for the multi-person scenario. Therefore, we leverage peakdetection instead in TensorBeat system

to achieve accurate breathing rate estimation for each of autocorrelations of fused signals.

For peak detection, the traditional method based on amplitude needs to detect the fake peak,

which is not a real peak but has larger values than its two immediate neighboring points. To avoid

the fake peak, a large moving window can be used to identify the real peak based on the maximum

breathing periodicity. This method is not robust, which requires adjusting the window size. In

TensorBeat, we only consider a smaller moving window of 7 samples wide. This is because we

leverage the Hankel matrix and CP decomposition to smooth outthe breathing curves, which hardly

contains any fake peaks. Then, for theith autocorrelation curve of fused signal, we seek all the

peaks by determining whether or not the medium of the 7 samples in the moving window is the

maximum value. Finally, we consider the median of all peak-to-peak intervals as the final period

of the ith breathing signal, which is denoted asTi. Finally, the estimated breathing rates can be

computed asfi = 60/Ti, for i = 1 toR.

8.4 Experimental Study

8.4.1 Experiment Configuration

In this section, we validate the TensorBeat performance withan implementation with 5 GHz Wi-

Fi devices. To obtain 5 GHz CSI data, we use a desktop computer and a Dell laptop as access

point and mobile device, respectively, both of which are equipped with an Intel 5300 NIC. We use

the desktop computer instead of the commodity routers, because none is equipped with the Intel

5300 NIC. The operating system is Ubuntu destop 14.04 LTS OS for both the access point and

the mobile device. The PHY is the IEEE 802.11n OFDM system with QPSK modulation and 1/2

coding rate. Moreover, the access point is set in the monitormodel and the distance between its two

adjacent antennas is approximately 2.68 cm, which is half ofthe wavelength of 5GHz WiFi. Also,

the mobile device is set in the injection model and uses one antenna to transmit data. Moreover,

we use omnidirectional antennas for both the receiver and transmitter to estimate breathing signs
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beats. With the packet injection technique with LORCON version 1, we can obtain 5 GHz CSI

data from the three antennas of the receiver.

Our experimental study is with up to five persons over a periodof six months. The experi-

mental scenarios include a computer laboratory, a through-wall scenario, and a corridor, as shown

in Fig. 8.10. The first scenario is within a 4.5× 8.8m2 laboratory, where both single person and

multi-person breathing rate estimation experiments are conducted. There are lots of tables and

desktop computers crowded in the laboratory, which block parts of the LOS paths and form a com-

plexity radio propagation environment. The second setup isa through-wall environment, where

single person breathing rate estimation is tested due to therelatively weaker signal reception. The

person is on the transmitter side, and the receiver is behinda wall in this experiment. The third

scenario is a long corridor of 20 m, where the maximum distance between the receiver and trans-

mitter is 11 m in the experiment. This scenario is still considered for single person breathing rate

monitoring. We use a NEULOG Respiration to record the ground truths for single person breath-

ing rates. The single person breathing rates estimation canbe easily implemented by removing

the signal matching algorithm, because there are only two decomposed signals after CP decom-

position in this case. For muti-person breathing rate estimation in the first scenario, all persons

participating in the experiment record their breathing rates by using a metronome smartphone ap-

plication with 1 bpm accuracy at the same time. We consider five persons are stationary for LOS

and NLOS environments for breathing monitoring. Moreover,there are no other persons in the

breathing measurement area.

For multi-person breathing rate estimation, we need to define a proper metric for evaluating

TensorBeat’s performance. ForR estimated breathing rates [f1, f2, ...fR], the ith breathing rate

estimation error,Ei, is defined as

Ei =
∣∣∣fi − f̂i

∣∣∣ , for i = 1, 2, · · · , R, (8.28)
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Figure 8.10: Experimental setup: computer laboratory, through-wall, and long corridor scenarios.

wheref̂i is the ground truth of theith breathing rate. We also define a new metric termed success

rate, denoted asSR, which is defined as

SR =
N{maxi {Ei} < 2bpm}

N{E} × 100%, (8.29)

whereN{maxi {Ei} < 2bpm} means the number of repeated experiments of the maximum

breathing rate error less than 2 bpm, andN{E} is the number of repeated experiments. We adopt

the success rate metric because there are weak signals for multi-person experiments in indoor

experiments at different locations, and sometimes a breathing signal may not be successfully de-

tected [134].

8.4.2 Performance of Breathing Estimation

In Fig. 8.11, we present the CDF of the estimation errors for single person breathing rate detection

for three different experiment scenarios. We can see that for TensorBeat, high estimation accuracy

of breathing rates can be achieved in all the three scenarios. The maximum estimation error is less

than 0.9 bpm. Moreover, it is noticed that 50% of the tests forthe computer laboratory experiment
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Figure 8.11: Performance of single person breathing rate estimation in the computer laboratory,
through-wall, and long corridor scenarios.

have errors less than aboout 0.19 bpm, while the tests for thecorridor and through-wall scenarios

have errors less than approximately 0.25 bpm and 0.35 bpm, respectively. Thus, the performances

in the laboratory setting is better than that in the corridorand through-wall scenarios. This is

because the laboratory has a smaller space and the breathingsignal is stronger than that of other

two cases with larger attenuation due to the long distance and the wall.

Fig. 8.12 presents the performance of breathing rate estimation for different number of per-

sons. It is noticed that higher accuracy is achieved for the single person test, where approximately

96% of the test data have an estimation error less than 0.5 bpm. The five-person test has the worse

performance, where approximately 62% of the test data have an estimation error less than 0.5 bpm.

Moreover, we fine that the performances of the two-person andthree-person tests are similar, both

of which can have an error smaller than 0.5 bpm for 93% of the test data. Generally, when the

number of persons is increased, the performance of breathing rate estimation gets worse. In fact,

when the number of breathing signals is increased, the distortion of the mixed received signal will

become larger, thus leading to high estimation errors.

Fig. 8.13 plots the success rates for different number of persons. We find that although the

success rate for one person is the highest, there are still few of test data that cannot obtain high

accuracy breathing rates estimation. These test data should come from different locations in the

indoor environments, where parts of the received signals are severely distorted. In fact, we find
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Figure 8.12: Performance of breathing rate estimation for different number of persons (computer
laboratory).

1 2 3 4 5

The Number of Persons

0

20

40

60

80

100

S
uc

ce
ss

 R
at

e 
(%

)

Figure 8.13: Success rates for different number of persons (computer laboratory).

that low phase difference usually occurs when the SNR is low.On the other hand, we can see

that breathing rate estimation for two persons also has a high success rate, because the probability

for two persons to have exactly the same breathing rate is very low. When the number of persons

is increased, the chance of getting two close breathing rates becomes higher. Even in this case,

TensorBeat can still effectively separate them with a high success probability. With the increase of

the number of persons, the success rate for TensorBeat systemdecreases. The reason is that each

breathing rate is more likely to cover each other and the strength of the received signal becomes

lower. From Fig. 8.13, we can see that the success rate is about 82.4% when the number of persons

is five.
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Figure 8.14: Success rates for different sampling rates (computer laboratory).

Fig. 8.14 shows the success rate for different sampling rates. In this experiment, there are four

persons and the window size is set to 30 s. From Fig. 8.14, we can see that with the increase of the

number of sampling rates, the success rate is also increased. It is noticed that the success rates for 5

Hz and 30 Hz are approximately 70% and 90%, respectively. As the sampling rate is increased, the

length of the data for CP decomposition is increased for the 30s window size case, which helps

to improve the estimation accuracy. Furthermore, we find that the performance becomes stable

when the sampling rate exceeds 20 Hz, indicating that a sampling rate of 20 Hz is sufficient for CP

decomposition. Thus, we set the sampling rate to 20 Hz for theTensorBeat experiments.

Fig. 8.15 plots the success rates for different window sizes. This experiment is for the com-

puter laboratory scenario with four persons and the sampling rate is set to 20 Hz. From Fig. 8.15,

we can see that the success rate is greatly increased by increasing the window size of the Hankel

matrix from 15 s to 30 s. This is because Hankelizaiton will take half of the data to smooth the

phase difference signal, which reduces the resolution in the time domain. Thus, we need to in-

crease the window size to improve the estimation accuracy. Furthermore, the change of success

rate is small for window sizes from 30 s to 45 s. Thus, we selectthe window size of 30 s for the

TensorBeat experiments.

Finally we examine the impact of LOS and NLOS scenarios. The success rates are plotted in

Fig. 8.16. In this experiment, we consider the challenge condition of the NLOS scenario, where
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Figure 8.15: Success rates for different window sizes (computer laboratory).
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Figure 8.16: Success rates for (i) when multiple persons form a line in the LOS path between the
transmitter and receiver; (ii) when multiple persons are inscattered around (computer laboratory).

all the persons stay on the LOS path between the transmitter and receiver, i.e., they form a straight

line and block each other. From Fig. 8.14, we find that the performances for LOS and NLOS

are nearly the same for the cases of two or three persons, where high estimation accuracy can

be achieved. This is due to the WiFi multipath effect, which is regarded harmful in general but

becomes helpful in breathing rate estimation when tensor decomposition is used. The breathing

signal of every person can still be captured at the receiver from the phase difference data. However,

when the number of the persons is further increased, the success rate will decrease quickly. In fact,

the strength of the breathing signals for some persons will become too weak to be detected when

there are too many people blocking each other.
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8.5 Related Work

This work is closely related to RF signal based vital signs monitoring, as well as CSI based indoor

localization and human activity recognition, which are discussed in the following.

RF based systems for vital signs monitoring use wireless signals to track the breathing-

induced chest change of a person, which are mainly based on radar and WiFi techniques. For

radar based vital signals monitoring, Vital-Radio employs FMCW radar to estimate breathing and

heart rates, even for two person subjects in parallel [110].But the system requires a custom hard-

ware with a large bandwidth from 5.46 GHz to 7.25 GHz. For WiFibased vital signs monitoring,

UbiBreathe system employ WiFi RSS for breathing rate monitoring, which, however, requires

the device placed in the line of sight path between the transmitter and the receiver for estimat-

ing the breathing rate [115]. Moreover mmVital based on RSS can use 60 GHz millimeter wave

(mmWave) signal for breathing and heart rates monitoring with the larger bandwidth about 7GHz,

which cannot monitor the longer distance and require high gain directional antennas for the trans-

mitter and the receiver [114][135]. Recently, the authors leverage the amplitudes of CSI data to

monitoring vital signs [116]. This work is mainly to track the vital signs when a person is sleeping,

which is limited for monitoring a maximum of two persons at the same time.

In additional to vital signs monitoring, recently, CSI basedsensing systems have also been

used for indoor localization and human activity recognition [136]. CSI-based fingerprinting sys-

tems have been proposed to obtain high localization accuracy. FIFS is the first work to uses the

weighted average of CSI amplitude values over multiple antennas for indoor localization [22]. To

exploit the diversity among the multiple antennas and subcarriers, DeepFi leverage 90 CSI ampli-

tude data from the three antennas with a deep autoencoder network for indoor localization [64].

Also, PhaseFi leverages calibrated CSI phase data for indoorlocalization based on deep learn-

ing [79]. Different from CSI-based fingerprinting techniques, SpotFi system leverages a super-

resolution algorithm to estimate the AOA of multipath components for indoor localization based
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on CSI data from three antennas [137]. On the other hand, E-eyes system leverages CSI ampli-

tude values for recognizing household activities such as washing dishes and taking a shower [75].

WiHear system employs specialized directional antennas tomeasure CSI changes from lip move-

ment for determining spoken words [138]. CARM system considers a CSI based speed model

and a CSI based activity model to build the correlation between CSI data dynamics and a given

human activity [139]. Although CSI based sensing are effective for indoor localization and activity

recognitions, there are few works for using CSI phase difference data to detect multiple persons

behaviors at the same time.

The TensorBeat system is motivated by these interesting prior works. To the best of our

knowledge, we are the first to leverage CSI phase difference data for multiple persons breathing rate

estimation. We are also the first to employ tensor decomposition for RF sensing based vital signs

monitoring, which can be also employed for indoor localization and human activity recognition.

8.6 Conclusions

In this chapter, we proposed TensorBeat, tensor decomposition for estimating multiple persons

breathing beats with commodity WiFi. The proposed TensorBeat system employed CSI phase dif-

ference data to obtain the periodic signals from the movements of multiple breathing chests by

leveraging tensor decomposition. We implemented several signal processing methods including

data preprocessing, CP decomposition, signal matching algorithm, and peak detection in Tensor-

Beat. We validate the performance of TensorBeat with extensive experiments under three indoor

environments. Our analysis and experimental study demonstrated that the proposed TensorBeat

system can achieve satisfactory performance for multiple persons breathing estimation.
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Algorithm 9: Signal Matching Algorithm
Input : Decomposed signals:S1, S2, · · · , S2R.
Output : Matched signal pairs.

1 Compute autocorrelation of all decomposed signals;
2 Compute the DTW values for every pair of autocorrelation signals;
3 Each autocorrelation signal sets its preference list usingthe DTW values;
4 for signal num = 1 : 2R do
5 Setfinish flag = 0;
6 Setscan num = signal num;
7 while finish flag = 0 do
8 if the proposal is the first onethen
9 Proposing signal’spropose num=the current choice;

10 Setfinish flag = 1;
11 Proposed signal’saccept num = scan num;
12 else
13 if the signal prefers the former proposalthen
14 Reject the current proposal symmetrically;
15 Propose to the next choice;
16 else
17 Accept the current proposal;
18 Reject the former proposal symmetrically;
19 scan num = proposed signal’saccept num;
20 Propose to the next choice;
21 end
22 end
23 end
24 end
25 for signal num = 1 : 2R do
26 Reject signals that have less thanaccept num in every preference list symmetrically;
27 end
28 signal num = 1;
29 while signal num < 2R + 1 do
30 if propose num = accept num then
31 signal num=signal num+1;
32 else
33 Let p1 be a signal whose preference list contains more than one element;
34 while p sequence is not cyclicdo
35 qi = the second preference ofpi’s current list;
36 pi+1 = the last preference ofqi’s current list;
37 end
38 Denoteps as the first element in thep sequence to be repeated andr as the length

of the circle;
39 for i = 1 : r do
40 Reject matching(qs+i−2, ps+i−1) symmetrically;
41 end
42 signal num = 1;
43 end
44 end
45 Obtain signal matching pairs based on all processed preference lists;
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Chapter 9

ResBeat: Resilient Breathing Beats Monitoring with Realtime Bimodal CSI Data

9.1 Introduction

Vital signs can provide useful clues to many diseases such asheart disease, lung disorder, and di-

abetes, which cost considerable expenses for treatment [140, 106]. Effective solutions are in great

demand for realtime, long-term, and contact-free breathing signal monitoring [141, 142]. Recently,

CSI amplitude based method is proposed for monitoring breathing and heart beats when a person

is sleeping [116]. In addition, our recent works PhaseBeat [143] and TensorBeat [144] leverage

CSI phase difference data to monitor a single person’s vital signals and multiple persons’ breath-

ing signals, respectively. However, these works are not effective in detecting the weak breathing

signals at some special locations [134], which motivates usto use bimodal CSI data for resilient

breathing monitoring.

In this chapter, we employ CSI amplitude and phase differencebimodal data to detect and

monitor breathing beats with commodity 5GHz WiFi devices. For indoor environments under

small-scale fading, we consider the chest reflected signal as adynamic component, while lumping

the LOS and all other multipath signals together as astatic component. We model the amplitude

and phase response of the CSI subcarriers with the dynamic andstatic component approach, and

prove that CSI amplitude and phase information carry the breathing information with the same

rate. Moreover, we present an analysis of breathing signal anomaly with CSI amplitude and phase

information, and show that the breathing signals can be weakat some monitoring locations. Thus,

we propose to use bimodal CSI data for resilient breathing monitoring, due to the fact that CSI
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amplitude and phase difference data in consecutively received packets are stable, and they are

complementary to each other with respect to mitigating the anomalous breathing signals at some

bad locations. The bimodal data is also robust to environment interferences and body movements

for breathing signal monitoring.

We present the design of ResBeat, i.e.,Resilient realtime breathingBeat monitoring with

bimodal CSI amplitude and phase difference data with commodity WiFi devices. The ResBeat

system consists of data preprocessing, adaptive signal selection, and breathing signal monitoring

modules. For data preprocessing, we calibrate CSI data with an exponentially weighted moving

average(EWMA) method to extract the static, or environment, component and the dynamic, or

breathing, component. For adaptive signal selection, we propose a signal selection algorithm based

on signal energy detection and movement detection, to select the most sensitive signal group, which

can successfully mitigate the effect of anomalous breathing signals. Finally, the peak detection

method is used to estimate breathing rates in realtime CSI data.

We implement ResBeat with commodity 5GHz WiFi devices and evaluate its performance

with four persons over three months in different indoor environments, such as a computer labo-

ratory, a through-wall scenario, and a long corridor. The results validate that the ResBeat system

can achieve high estimation accuracy of breathing rate witha median error of 0.25 bpm (beats per

minute), and has a higher success rate of 90% for breathing rate detection at different locations.

The main contributions of this chapter are summarized below.

• We theoretically demonstrate the feasibility of using bimodal CSI data for breathing beats

monitoring. In particular, we provide the breathing signalanomaly analysis for CSI ampli-

tude and phase information. To the best of our knowledge, we are the first to leverage online

CSI amplitude and phase difference data for breathing rate estimation.

• We implement data preprocessing, adaptive signal selection and breathing signal monitoring

for the collected bimodal CSI data in ResBeat system. We employ the EWMA method for

obtain environment component and breathing component in data calibration. Moreover, we

utilize the peak detection method for breathing rate estimation.
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Figure 9.1: The geometric relationship of the static and dynamic components for breathing signal
anomaly analysis.

• We prototype the ResBeat system with commodity 5 GHz WiFi devices and validate its

superior performance in three different indoor environments with extensive experiments.

The results show that our ResBeat system can achieve higher success rates than the amplitude

based method and phase difference based method for breathing detection.

In the rest of this chapter, the preliminaries and breathingsignal anomaly analysis are intro-

duced in Section 9.2. We design the ResBeat system in Section 9.3 and validate its performance in

Section 9.4. Section 9.5 summaries this chapter.

9.2 Breathing Signal Anomaly Analysis

We consider indoor environments with NLOS components [100], where the chest reflected signal

is regarded as thedynamic component, and the sum of the LOS and all other mutipath signals is

regarded as astatic component. Thus, the channel frequency response of subcarrieri, denoted by
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Hi, can be written as

Hi =
K∑

k=0,k 6=d

rk · e−j2πfiτk + rd · e−j2πfiτd = Hs
i + Hd

i

= |Hs
i | exp (j∠Hs

i ) + |Hd
i | exp

(
j∠Hd

i

)
, (9.1)

whereK is the number of multipaths,rk andτk are the attenuation and propagation delay of the

kth path, respectively; Hsi =
∑K

k=0,k 6=d rk · e−j2πfiτk is the static component and Hdi = rd · e−j2πfiτd

is the dynamic component,|Hs
i | and∠Hs

i are the amplitude and phase of Hs
i , respectively, and|Hd

i |

and∠Hd
i are the amplitude and phase of Hd

i , respectively.

The amplitude response of subcarrieri can be computed as

|Hi| =
√
|Hs

i |2 + |Hd
i |2 + 2|Hs

i ||Hd
i | cos

(
∠Hs

i − ∠Hd
i

)
. (9.2)

In (9.2), the amplitude and phase of the static component Hs
i are regarded as constants, and the

amplitude of the dynamic component Hd
i is also assumed to be constant. Moreover, the phase of

the dynamic component Hdi can be modeled as∠Hd
i = 2πL/λi, whereλi is the wavelength of

subcarrieri andL is the distance of the dynamic path going through the chest. Note that the phase

of the dynamic component Hdi is periodic because the dynamic path distanceL is periodic due to

chest movements (i.e., it gets slightly longer when exhaling and shorter when inhaling). Thus, the

amplitude response of subcarrieri, |Hi|, is also periodic. In most cases, the CSI amplitude can

effectively capture the breathing signal. However, at somemonitoring locations, when the phase

difference between the static component Hs
i and the dynamic component Hdi is nearly zero, the

variations of the CSI amplitude will be small, leading to highmonitoring errors.

This is illustrated in Fig 9.1, where the geometric relationship of the static and dynamic com-

ponents is presented. The dynamic components are
−→
SDi, i = 1, 2, 3, 4, and the static component
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is
−→
OS. We can see that when the dynamic vector oscillates between

−→
SD1 and

−→
SD2, the CSI am-

plitude varies between|−−→OD1| and|−−→OD2|, with very small variations. Such small variations in the

CSI amplitude leads to a weak breathing signal and high detection error.

On the other hand, let’s consider the phase response of subcarrier i,∠Hi, which can be written

as [143]

∠Hi = ∠Hs
i − arctan

{
|Hd

i |·sin(∠Hs

i−∠Hd

i )

|Hd

i |·cos(∠Hs

i−∠Hd

i )+|Hs

i |

}
. (9.3)

Note that the phase response of subcarrieri is also periodic, which can be used to detect breathing

rate. However, there are also some cases where the phase information is not effective for monitor-

ing breathing signals. As shown in Fig 9.1, when the dynamic vector oscillates between
−→
SD3 and

−→
SD4, the phase value changes slightly between∠

−−→
OD3 and∠

−−→
OD4. Such negligible variations in

phase value makes it hard to detect the breathing rate with phase information in this situation.

Fortunately, we can see that in the first example, when the variation in CSI amplitude is small,

the change in CSI phase is between∠
−−→
OD1 and∠

−−→
OD2, which is quite large. On the other hand,

in the second example when the variation in CSI phase is small,the change in CSI amplitude is

between|−−→OD3| and|−−→OD4|, which is also quite large. This observation motivates us toleverage bi-

modal CSI data, including CSI amplitude and phase difference,for resilient breathing monitoring.

Fig. 9.2 and Fig. 9.3 show the all calculated amplitude and phase difference from CSI values

for position 1 and 2, respectively. In our experiment, thereare three antennas used for receiving

data, and each antenna can collect CSI values from all 30 subcarriers using Intel 5300 NIC. Thus,

we can totally get 90 amplitudes and 90 phases from a single packet. In the experiment, we can

consider 30 rows data as a group. For example, the first group of CSI amplitude values represents

first 30 rows data, which are collected by antenna 1 from all 30subcarriers, while the second and

third group data are collected from antenna 2 and antenna 3, respectively. When it comes to phase

data, the first group of CSI phase difference is collected fromantenna 1 and antenna 2, while the

second group and the third group of data are collected from antenna 2 and 3, antenna 1 and 3,
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Figure 9.2: Colormap for breathing signals using CSI amplitude and phase difference in position
1.
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Figure 9.3: Colormap for breathing signals using CSI amplitude and phase difference in position
2.

respectively. The color of the data means the strength of thebreathing signal, where red means the

signal is strong, while blue means the signal is weak. Based onthe colormap, we can easily find

out some periodic signals from Fig. 9.2 and Fig. 9.3, which can stand for the breathing signals. As

illustrated in Fig. 9.2, the first and the second group of phase difference can effectively capture the

breathing signal, as well as the second group of the amplitude data. However, when the user moves

to another position, the signal strength is totally different. Fig. 9.3 shows that the phase difference

can barely capture the breathing signal effectively exceptsome subcarriers in the second group, and
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the second group of the amplitude values become weak as well.In order to continuously monitor

human breathing, we should better leverage the third group of amplitude data and the second group

of phase difference for breathing monitoring, thus avoiding the weak breathing signals because of

the diversity of locations.

9.3 The ResBeat System

9.3.1 ResBeat System Architecture

The main idea of the proposed ResBeat system is to monitor breathing signals using realtime bi-

modal CSI data from 5GHz WiFi devices. We propose an adaptive signal selection method to select

the most sensitive CSI data, i.e., amplitude or phase difference, to mitigate the anomalous breath-

ing signals, as shown in Fig. 9.1. The ResBeat system can effectively exploit realtime bimodal CSI

data to monitor breathing beats for three reasons. First, CSIamplitude and phase difference data

are quite stable for consecutive packets in a stationary environment, both of which can effectively

capture the breathing beats. Second, CSI amplitude and phasedifference data are complementary

to each other with respect to their resilience to the two anomalous cases shown in Fig. 9.1. Using

the bimodal data can effectively deal with anomalous breathing signals. Third, ResBeat is robust

to environment interference and body movements by using thebimodal CSI data.

Fig. 9.4 shows ResBeat system flow, which consists of three mainmodules: Data Prepro-

cessing, Adaptive Signal Selection, and Breathing Signal Monitoring. Data Preprocessing module

mainly includes CSI data extraction and data calibration, respectively. For CSI data extraction,

we can obtain 90 CSI amplitude values and 90 phase difference values from three antennas for

each received packet by using the modified Intel 5300 NIC driver. For data calibration, we employ

the EWMA method to obtain the environment component, and the breathing component can be

extracted by subtracting the environment component from the denoised CSI data. Adaptive Sig-

nal Selection module includes signal energy detection, movement detection and signal selection.

We can use the normalized breathing component to compute signal energy for 30 subcarriers data

from CSI amplitude or phase difference data. Then, we implement the counting method for three
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Figure 9.4: The ResBeat system architecture.

CSI phase difference groups for movement detection. Moreover, we develop the signal selection

algorithm to boost the reliability of bimodal CSI data for breathing signal monitoring by select-

ing the most sensitive signal group from CSI amplitude and phase difference data groups. For

Breathing Signal Monitoring module, peak detection is employed for breathing beat monitoring

with real-time CSI data.

9.3.2 Data Preprocessing

CSI Data Extraction

We collect 90 CSI values for every received packet from the three antennas of the IEEE 802.11n

NIC, each of which provide CSI values from 30 subcarriers (i.e., 90 CSI amplitude and phase

values). We employ three groups of CSI amplitude values from antennas 1, 2, and 3, respectively.

We also use (7.5) to obtain three groups of CSI phase difference values from antennas 1 and 2,

antennas 2 and 3, and antennas 3 and 1, respectively. Each group includes 30 values, which will

be processed in the next step.
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Data Calibration

Data calibration is to partition the original CSI amplitude and phase difference data into the static

component (or, theenvironment component) and the dynamic component (or, thebreathing com-

ponent). The environment component can represent the change of wireless channel from the sur-

rounding environment such as reflection from walls, desks and stationary body of a person. On

the other hand, the breathing component can represent the change of wireless signal due to chest

movements when inhaling and exhaling.

In ResBeat, the environment component can be extracted using the EWMA method, which

is based on a first-order autoregressive model [145]. LetYt be the realtime CSI data (i.e., CSI

amplitude or phase difference), andMt be its local mean. We have

Mt = ρ · Yt + (1− ρ) ·Mt−1, for t = 1, 2, ..., n, (9.4)

whereρ is a parameter that determines the relative weights of the recent sample value and historical

values, andn is the number of observed samples. In our experiments, we setρ = 0.1 to obtain the

environment component.

We propose the EWMA method for extracting the environment component for three reasons.

First, the EWMA method does not require a large data buffer andis suitable for realtime breathing

monitoring. Second, as the moving average (MA) method, the EWMA method can effectively

extract the outline of realtime data, from which the breathing signal can be filtered. Last but not

least, compared with MA, EWMA is more sensitive to the more recent sample data. When the

body moves, EWMA will capture a large change inMt and thus can have a more rapid response,

which is beneficial for detecting environmental changes.

After obtaining the environment component, we first apply the MA method to the original CSI

data to remove high frequency noises, where the window size is set to 3. Then, the breathing com-

ponent can be extracted by subtracting the environment component from the denoised CSI data.

Fig. 9.5 illustrates calibration of the original phase difference. We can see in the top plot that the
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Figure 9.5: Data calibration results.

original phase difference values, for subcarrier 5 betweenantennas 1 and 2, have a DC component

as well as high frequency noises. Applying the EWMA method, wecan obtain the environment

component, which is the outline of the original phase difference. Then, the breathing component

can be extracted by de-noising the CSI phase difference data and removing the environment com-

ponent, which exhibits a sinusoidal-like periodicity overthe received packets with low noise (see

the bottom plot).

9.3.3 Adaptive Signal Selection

For adaptive signal selection module, we will implement signal energy detection and movement

detection to select the most sensitive signal group from three CSI amplitude groups and three

CSI phase difference groups, because there are different sensitivities for CSI amplitude and phase

difference information.

Signal Energy Detection

For signal energy detection module, we consider the energy values of breathing components to

measure the sensitivity of CSI amplitude and phase difference information, where one CSI data

group includes 30 values with the every received packet for CSI amplitude and phase difference

information. Moreover, we consider the window size of online CSI data as 20 to compute the local
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Algorithm 10: Movement Detection

1 Input: current average of the environment components of all phase difference (An), and
the averages in the 2 last states (An−1) and (An−2);

2 Output: moveflag;
3 //Initialize ;
4 setmove flag = 0 ;
5 setcount num = 0 ;
6 //Movement detection;
7 if count num < 9 then
8 if (An > 1.05An−1 andAn−1 > 1.05An−2) or (An < 0.95An−1 andAn−1 < 0.95An−2)

then
9 count num = count num+ 1;

10 end
11 else
12 count num = 0
13 end
14 end
15 else
16 setmove flag = 1 ;
17 setcount num = 0 ;
18 returnmove flag ;
19 end

energy value of thejth CSI data group,Ej(t) which is formulated by

Ej(t) =
i=30∑

i=1

t=k∑

t=k−19

∣∣Y d
ij(t)

∣∣2 (9.5)

wherek is the current data point,Y d
ij(t) is the normalized breathing component data for theith

subcarrier of thejth CSI data group at thetth time. Compared with other advanced method such as

FFT based method, the signal energy detection method can leverage smaller data points to measure

the sensitivity of CSI amplitude and phase difference information, which can reach the real-time

processing requirement. Signal energy values for six CSI groups are leveraged for signal selection

module.
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Movement Detection

In this module, we make use of the environment component in the phase difference data to detect

body movement. We choose phase difference data because it has a fixed range between−π andπ,

while CSI amplitude data has a variable range. We first computethe average of the environment

components of all the phase difference data over the 30 subcarriers, which can be used to detect

body movement by comparing with adjacent average values. Infact, the phase difference data can

increase or decrease due to body movement. Thus, a body movement is detected if the current

average value is lower than 0.95 times or larger than 1.05 times of the previous average value.

Furthermore, we find that small movements of the body or movements from nearby persons

may also cause large changes in the average of the environment component. We propose a counting

method to deal with such small body movements and environmental interference. The counting

method is designed in algorithm 10 by the following steps. First, the count is initialized to 0.

Then, the count will be increased by 1 when the current average value of phase difference data

is lower than 0.95 times or larger than 1.05 times of the last average value. However, once the

above condition is violated, the count will be reset to 0. A movement is detected if and only if the

count reaches 10. In ResBeat, we implement the counting methodthat uses the three CSI phase

difference data groups for movement detection. If a movement is detected in one of the CSI phase

difference data groups, ResBeat will execute the following signal selection algorithm.

Signal Selection

This module is to select the most sensitive group from the sixbimodal CSI data groups, for accurate

breathing signal monitoring. The procedure is presented inAlgorithm 12. The input parameters

include the movement detection flag (mov flag) and the local energy of each signal group (E1,

E2, ...,E6) computed as in (9.5). The output is the index of the most sensitive CSI data group.

In the beginning, we use 30 phase difference data from antennas 1 and 2 to implement the

signal selection no matter whether a movement is detected ornot. After the initialization, we use

the above movement detection module based on the counting method to determine whether the
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environment has a large change. When a movement is detected, we run the signal selection again.

First, the system will wait for 2 s so that the environment components based on EWMA can return

to stable values (recovers from the movement). Then, the system sorts the signal groups (i.e.,1–6)

in descending order of the local energy of the CSI data groups (i.e.,E1, E2, ...,E6). If a group

is ranked top 1 for three consecutive times, it will be selected as the most sensitive data group. If

the top-ranked group is changed before theselect count reaches 3, the counting number will be

reset to zero. Moreover, if there is a new movement detected,the signal selection will be restarted.

ResBeat can keep on using the previously selected data group tomonitor breathing beats until the

next most sensitive data group is selected. The proposed signal selection algorithm is robust to

environment interference and small movements of the body. Moreover, with the signal selection

module, ResBeat can rapidly recover for large body movements.

9.3.4 Breathing Signal Monitoring

Although both of CSI amplitude and phase difference data can extract the breathing beats with

small movement such as inhaling and exhaling, the most sensitive signal group we select can be

effectively to avoid the anonymous breathing signal in somelocations. Traditionally, FFT based

method can estimate the breathing frequency with the largermoving window size to improve the

estimated accuracy. However, it cannot achieve real-time breathing rates estimation for ResBeat

system. Thus, the proposed ResBeat system employs the peak detection to compute the breathing

rate online.

We leverage peak detection to estimate the breathing rates based on the breathing components

in the selected signal group. However, the breathing components still include the fake peak, which

is not the true peak but its value is larger than two neighboring points. Fig. 9.6 shows the calibrated

breathing signal for 30 s, which contains five times respiration. We can see that, there is a fake peak

located inside the second respiration. Even though the phase difference of the fake peak is higher

than its two adjacent values, it should not be considered as abreathing signal peak. To avoid the

fake peak, we employ a moving window approach with the windowsize as 6 samples to get the all
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Algorithm 11: Signal Selection Algorithm

1 Input: movement detection flag (mov flag) and the local energy of each data group (E1,
E2, ...,E6);

2 Output: index of the most sensitive data group;
3 Setinitialize flag = 1 ;
4 Setselect num = 1 ;
5 if mov flag == 1 then
6 Wait for 2 seconds ;
7 Setmov flag = 0 ;
8 Setselect count = 0 ;
9 while mov flag == 0 or initialize flag == 1 do

10 Sort the data groups (1-6) in descending order of (E1, E2, ...,E6);
11 if New first group index equals to the former first group indexthen
12 select count++;
13 if select count == 3 then
14 Choose the first data group;
15 Setinitialize flag = 0 ;
16 Setselect count = 0 ;
17 Break ;
18 end
19 end
20 else
21 Setselect count = 0 ;
22 end
23 end
24 end
25 Return the index of the most sensitive data group ;

0 5 10 15 20 25 30

Time (s)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

P
ha

se
 D

iff
er

en
ce

Figure 9.6: Calibrated breathing signal with the fake peak.
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true peaks in a buffer with 100 points, which can be detected by determining whether the median of

all points in the window is the maximum value or not. Then, we can compute the breathing period

t by averaging all peak-to-peak intervals. Because the bufferdata can be updated for real-time,

we build a small buffer with 20 points to store 20 estimated breathing periodic values. Then, the

final period of breathing signal can be computed byT = 1
20

∑i=20
i=1 ti. Therefore, we can obtain the

estimated breathing frequency with60/T bpm.

9.4 Experimental Study

9.4.1 Test Configuration

In our experiments, ResBeat operates in the 5GHz ISM band. Our ResBeat system is executed

on the Ubuntu Desktop 14.04 LTS OS for both the transmitter and receiver, each of which is

equipped with an Intel 5300 NIC. The transmitter is a Lenovo laptop set in the injection model,

which transmits 10 packets per second using one antenna. Thereceiver is an Acer laptop working

in the monitoring mode for collecting CSI data, where the three antennas are placed in a row with

an interval of 2.68 cm. The ResBeat system collects realtime CSIamplitude and phase difference

data from the three antennas for breathing beats monitoring.

We implement our Resbeat system in three different environments with the same floor in Fig.

9.7. In the first environment, both the transmitter and the receiver are placed in a Laboratory

with the area of 4.5× 8.8m2, where the person can stay at anywhere in the office. The second

scenario is the through-wall scenario to test the performance of the ResBeat system for the received

weak wireless signal because of large signal attenuation. The third scenario is implemented in the

corridor to validate the influence of the long distance between the transmitter and the receiver

for breathing rates estimation. On the other hand, we leverage omnidirectional antennas for the

transmitter and the receiver at all three scenarios. In addition, NEULOG Respiration is used to

measure the ground truths of the breathing rates.

The breathing signal could be extremely weak at certain measurement locations, which is

hard to detect [134]. To measure the resilience of breathingrate monitoring methods, we define a
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Figure 9.7: Configuration of the ResBeat experiments.

success rateperformance metric, denoted byη, as

η =
1

N

N∑

i=1

(
sgn(2− ei) + 1

2

)
, (9.6)

whereei is the breathing estimation error in bpm for theith location, sgn(·) is thesign function,

andN is the total number of different locations tested in the experiment. The success rate repre-

sents the ratio of the number of locations having an error less than 2 bpm to the total number of

locations.

9.4.2 Performance of Breathing Rate Estimation

Fig. 9.8 plots the CDF of estimation errors of breathing rate in the computer laboratory, through-

wall, and long corridor scenarios. We find that ResBeat achieves lower breathing beats estimation

errors, where the maximum error is less than 1.75 bpm. Moreover, it can be seen that for ResBeat,

the median errors are 0.25 bpm, 0.25 bpm, and 0.3 bpm for the computer laboratory, long corridor,

and through-wall cases, respectively. The breathing estimation errors in the laboratory and long
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Figure 9.8: Performance of breathing rate estimation in thecomputer laboratory, through-wall, and
long corridor scenarios.

corridor scenarios are lower than that in the through-wall scenario. This is because the breathing

signal in the through-wall scenario is much weaker. In fact,the accuracy for the through-wall

scenario is still high and acceptable. We conclude that the proposed ResBeat system is robust in

different scenarios.

Fig. 9.9 presents the success rates for three different schemes in the computer laboratory,

through-wall, and long corridor scenarios. In this experiment, We use the amplitude based method [116]

and PhaseBeat [143] as benchmarks for success rate comparison. We find that the proposed Res-

Beat system achieves high success rates about 90% in the laboratory and long corridor scenarios,

and about 86% in the through-wall scenario. This means that stronger breathing signals can help

to achieve higher breathing beat estimation accuracy. On the other hand, the success rate of the

proposed ResBeat is higher than that of the other two schemes inall the three environments. This

is because ResBeat employs bimodal CSI data and the adaptive signal selection method to select

the most sensitive data group, which can effectively mitigate the effect of anomalous breathing

signals at certain locations.
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Figure 9.9: Success rates for three different schemes in thecomputer laboratory, through-wall, and
long corridor scenarios.

9.4.3 Impact of Environments and Parameters

Fig. 9.12 shows the success rates for different orientations. The transmitter and the receiver are

placed besides each other in this experiment in A part of Fig.9.10. 0 degree means the user faces

directly to the devices, and 180 degree means the back is directly to the devices. The results show

that when the user directly faces to the devices, the successrate achieves the maximum, which

is about 95%, while the minimum success is about 80% with the human back is directly to the

antennas. We can also find out that the success rate decreasesas the user turns back to the devices.

It is because the reflected signal strength is the highest when the user faces the transmitter. As

the user turns around, the wireless signal can be rarely transmitted to the human chest directly.

Although the signal can still reach the human chest by reflecting from surroundings, the strength

of the signal is much more weaker than the direct transmittedsignal.

Fig. 9.11 shows the success rates for different distances between the user and devices. In this

scenario, the transmitter and the receiver are all placed close to each other in the laboratory in B

part of Fig. 9.10. As Fig. 9.11 shows, when the distance between the user and devices increases,

the success rate of the ResBeat system is reduced because of theloss of reflected signal strength.

Moreover, we can see that the success rate is higher than 90% when the distance increases from 1 m

to 3 m, while the success rate drops significantly as the distance is larger than 4 m. This is because
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when the user is not so far from the transmitter, the most of reflected signal from surroundings

can reach human chest. These signals can also help to increase the strength of the reflected signal

from the human chest. However, when the user is too far away from the transmitter, only a few

wireless signals can be reflected by the human chest. Thus, the success rate of the system decreases

significantly with long distance from the user to the devices.

To prove the robustness of the ResBeat system, we evaluate our system in five different posi-

tions in the laboratory in Fig. 9.13. Different positions mean different deployments for the trans-

mitter, the receiver, and the user. The wireless channel between the transmitter and the receiver is

independent for each position, so the success rates for these five locations are statically indepen-

dent. We notice that the minimum success rate is achieved in position 4 which is about 85%, while

the highest success rate achieved in position 1 is about 95%.Fig. 9.13 shows that success rates for

all five different positions are all higher than 85%, and three of them are higher than 90%. The re-

sults demonstrate that the the proposed ResBeat system is robust for monitoring human breathing

rate in different environments.

We also test the impact of different EWMA parameters on the success rate of the ResBeat

system in Fig. 9.14. As we mention, EWMA algorithm is used to extract environment component

from the raw received signal. From the equation 9.4, we find out that if the parameterρ is too small,

the EWMA will hardly capture the real-time change of human body. However, if the parameter

ρ is too large, the EWMA result will be too sensitive to the instant movement so the environment

component is hardly to be extracted. To find out the appropriate parameterρ for EWMA, we test

the success rates for differentρ. Fig. 9.14 represents the success rate with different parameterρ in

EWMA algorithm. we can see that, the success rate achieves themaximum when theρ equals to

0.1. The success rate decreases significantly when the parameterρ is smaller than 0.05 or larger

than 0.25. As a result, we choose 0.1 as the parameter used in the EWMA algorithm.
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Figure 9.11: Success rates for different distances.

9.5 Conclusions

In this chapter, we proposed ResBeat system, resilient breathing beats monitoring by using on-

line CSI amplitude and phase difference data in the commodityWiFi devices. We developed the

ResBeat system including data preprocessing, adaptive signal selection and breathing signal mon-

itoring. For data preprocessing, we implemented the data extraction and calibration to obtain the

breathing component and environment component. For the adaptive signal selection, we proposed

the signal selection algorithm based on signal energy detection and movement detection for se-

lecting the most sensitive signal group. Then, we leveragedpeak detection to estimate breathing
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Figure 9.12: Success rates for different orientations.
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Figure 9.13: Success rates for different positions in the laboratory.

rates. We implemented with the experiments with three different scenarios. The results validated

the effectiveness of the proposed ResBeat system.
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Figure 9.14: Success rates for different EWMA parameters.
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Chapter 10

SonarBeat: Sonar Phase for Contactless Breathing Beats Monitoring with Smartphones

10.1 Introduction

With the rapid development of mobile techniques and the growth in the living standard, healthcare

has become one of the main application areas for IoT [146, 2, 147]. The healthcare IoT architecture

mainly consists of three layers: (i) the sensing layer for monitoring vital signals, such as body

temperature, heart rate, respiration rate, and blood pressure; (ii) the gateway layer for collecting

data from the sensing layer, and transmitting them to the third layer, the cloud layer [148]; (iii)

the cloud layer consisting of data centers in the cloud to store, process, and analyze multi-modal

medical datasets [149, 150, 151, 152, 153], and deliver the analysis results to medical centers.

Particularly, the respiration signal is one of the key vitalsigns to be collected in the first layer,

which is indispensable for physical health monitoring, since such vital signals can offer important

information for personal health problems such as SIDS [107]. Traditional systems in the sensing

layer require a person to wear special devices, such as a pulse oximeter [109] or a capnometer [108]

to monitor breathing rates, which are not convenient for monitoring vital signals for the elders

and infants, and are hard to be used for an extended period of time. Thus, technologies that can

enable contact-free, easy deployment, and long-term vitalsign monitoring are highly desirable for

healthcare provisioning.

Existing vital signal monitoring systems are mainly focused on radio frequency (RF) based

techniques, which leverage RF signals to capture breathing and heart movements. The existing

techniques can be classified into (i) radar based and (ii) WiFi based approaches. Examples of radar
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based vital sign monitoring include Doppler radar [111, 112], ultra-wideband radar [113], FMCW

radar [110], all of which require a piece of customized hardware working on high frequency. With

the development of wireless techniques, WiFi based methodsinclude UbiBreathe [115] and mmVi-

tal [114], which exploit the RSS of 2.4 GHz WiFi and 60 GHz mmWave signals (i.e., 802.11ad),

respectively. Recently, the authors in [116] employ the amplitude of WiFi CSI data to track vital

signs for a sleeping person, while our prior works PhaseBeat [143] and TensorBeat [144] exploit

the CSI phase difference data for vital sign monitoring for single and multiple persons, respectively.

Although RF based techniques work over a relatively long distance, they could be susceptible to

environmental change, such as the movements of other persons nearby.

To this end, the smartphone can serve as an excellent platform for vial sign monitoring, by

exploiting its built-in sensors, such as accelerometer, gyroscope [119], and microphone [120].

Usually the smartphone should be placed near the body, or theperson needs to wear special types

of sensors that connect to the smartphone. The device-free and contact-free monitoring techniques

aim to relieve the burden of attached sensors. In a recent work [154], the authors propose to use an

active sonar built in the smartphone by leveraging the FMCW technique for respiration monitoring.

The scheme is shown to work well, but the FMCW based technique requires an accurate estimation

of the distance between the smartphone and the chest. When thebody suddenly moves (e.g.,

rolling over in bed), the system needs to detect the new smartphone-chest distance, thus leading to

a large time complexity. Alternatively, the Low-Latency Acoustic Phase (LLAP) system employs

a continuous-wave (CW) radar to measure distance and achievesdevice-free hand tracking using

sonar phase information [155]; while [156] uses the phase ofacoustic OFDM signals for finger

tracking.

Motivated by these interesting studies, we employ sonar phase data with a smartphone imple-

mentation to monitor the periodic signal caused by the risesand falls of the chest (i.e., inhaling

and exhaling). We find that the sonar phase information can effectively track the periodic signal of

breathing rate with a high accuracy. Compared with other existing systems such as Doppler shift

and FMCW [154], the sonar phase based scheme has a lower latency and complexity. In addition,
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the sonar phase data is highly robust to different orientations, distances, and respiration rates of

different persons.

Specifically, we first present a rigorous sonar phase analysis, which proves that the sonar

phase information can accurately capture the breathing rate with the same frequency. Built upon

analysis, we design SonarBeat, an activeSonar phase forBreathing rate monitoring system with

a smartphone. The SonarBeat system consists of four modules,including signal generation, data

extraction, received signal preprocessing, and breathingrate estimation. First, it transmits an in-

audible sound signal in the frequency range of 18-22 KHz fromthe smartphone speaker, which

serves as a CW radar. Then, the reflected signal from the chest of the monitored subject is received

by the microphone of the same smartphone. The received signal is then calibrated and the breath-

ing signal will be recovered. We implement SonarBeat with a Android smartphone and validate

its performance with extensive experiments that involve five persons over a period of three months

in three different environments, including an office scenario, a bedroom scenario, and a movie

theater scenario. The experimental results show that SonarBeat can achieve a low estimation error

for breathing rate estimation, with a medium error of0.2 bpm in most experiments. We also find

that SonarBeat is highly robust to different experimental parameters and settings.

The main contributions of this chapter include the follows.

• Through analysis and experiments, we validate the feasibility of leveraging the active sonar

phase information for breathing rate estimation. To the best of our knowledge, this is the first

work to employ active sonar phase information for breathingmonitoring with smartphones.

• We design SonarBeat based on the analysis and address the technical challenges on using

active sonar phase. We implement several signal processingalgorithms, including signal

generation, data extraction, received signal preprocessing, and breathing rate estimation.

Specially, we propose an adaptive median filter approach to remove the static vector in the

received signal, which allows to effectively extract the inaudible phase information.
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• We prototype the SonarBeat system with Android smartphones and validate its superior per-

formance with comparison with an existing scheme in three different indoor scenarios. Our

extensive experimental results demonstrate the superior performance of SonarBeat under

different environment factors and different experimentalparameters.

In the remainder of this chapter, Section 10.2 reviews related work. Then, we present the

sonar phase analysis and technical challenges in Section 10.3. We describe the SonarBeat design

in Section 10.4 and validate its performance in Section 10.5. Section 11 concludes this chapter.

10.2 Related Work

The work is related to the prior works on sensing systems and mobile health systems based on

audible signal with smartphones. We review the key related works in this section.

Mobile sensing systems with audible signals have attractedgreat attention [157, 158]. Such

systems are increasingly convenient for people’s life and healthcare. In the meantime, by using

mobile audible sensing systems with smartphones, people donot need to pay extra money for

new devices. Traditionally, mobile audible sensing systems can be classified into two categories,

including passive and active sensing systems. First, the passive audible sensing systems mainly

focus on how to leverage the microphone to sense and recognize the surround audible signal [159].

The recent work AAmouse leverages an inaudible sound pulse at different frequencies to trans-

form a mobile device into a mouse by exploiting the Doppler shift, speed, and distance estima-

tion [160]. Moreover, the CAT system implements a distributed FMCW for tracking devices, such

as VR/AR headsets. This work mainly is focused on synchronizing two smartphones and using

the microphone as a mouse, which can interact with VR/AR headsets for more accurate localiza-

tion [161]. In addition, audible based sensing technique isalso used for wireless virtual keyboard

with smartphones. Keystroke snooping [162] and Ubik systems [163] can obtain the sound sig-

nal with a smartphone’s single or dual microphones, and leverage the time-difference-of-arrival

(TDOA) measurements to monitor finger stroke on the table. Then, the strokes are transformed

into related alphabets in the same position as a computer keyboard. SilentWhistle is a light-weight
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indoor localization system using acoustic sensing for obtaining users’ locations [164]. Another

work Dhwani builds an acoustics-based NFC system with smartphones, using a technology Jam-

Secure. It can provide a secure communication channel between devices, which is an OFDM

channel for audible signals [165].

On the other hand, active inaudible sensing systems transfer a smartphone to an active sonar

using ultrasonic sound waves at 18 KHz to 22 KHz, which is closely related to the proposed Sonar-

Beat system [166]. OFDM based sensing systems such as FingerIO can track the finger movement

in a 2-D domain through tracking echoes from the finger that are received by the microphone,

to measure the finger position [156]. BatMapper employs an acoustic sensing based system for

fast and accurate floor plan construction using commodity smartphones [167]. Moreover, LLAP

leverages the principal of CW radar to measure distance and implement device-free hand track-

ing [155]. This work is closely related to SonarBeat, becauseboth system use the phased based

CW signal to sense movements. The difference between the two systems is that SonarBeat is more

robust to different environments with the adaptive median filter technique. On the other hand, the

AudioGest system employs a pair of built-in speaker and microphone to send inaudible sound and

leverage the echos to sense the hand movement [168]. Our SonarBeat system is motivated by the

active inaudible sensing systems to transform a smartphoneinto an active sonar with ultrasonic

sound waves.

Mobile health applications and research have become an important part of the IoT [169].

Smartphones and other wearable devices can provide people with a more convenient way to mon-

itor their health conditions without the need of professional equipment [170]. The recently work

Burnout leverages accelerometers to sense skeletal muscle vibrations, which does not require to

wear a suit embedded with sensors [171]. The authors in [172]propose to capture the depth video

of a human subject with Kinect 2.0 to monitor heart rate and rhythm. Moreover, wearable devices

for monitoring exercise and body are widely available. For example, the FEMO system achieves an

integrated free-weight exercise monitoring service with RFID tags on the dumbbells and leverages

the Doppler shift for recognition and assessment of free-weight exercise [171]. For vital signal
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monitoring, fine-grained sleep monitoring using a microphone in the earphone can record human

breathing sound to monitor people’s heath signal when they are sleeping [120], which adopts a

passive audible method. The Apnea system uses an active sonar with smartphone to monitor the

breathing signal [154]. This work leverages the FMCW technique for breathing monitoring, which

requires the system to seek the distance between the smartphone and the chest of the person.

10.3 Sonar Phase Analysis and Technical Challenges

10.3.1 Sonar Phase Analysis

We propose to use smartphones to monitor respiration signals by utilizing an inaudible sound

signal, where the speaker and microphone of the smartphone emulate an active sonar system. In

particular, the speaker transmits an inaudible sound signal in the frequency range of 18–22 KHz, in

the form of a CW signal asC(t) = A cos(2πft), whereA is the amplitude andf is the frequency of

the sound. Then the signal is reflected by the chest of test subject and received by the microphone.

One unique advantage of the smartphone based design is that,because the speaker and microphone

use the same frequency, there is no carrier frequency offset(CFO) errors between the sender and

receiver. Thus, we can exploit the phase of the received inaudible signal to accurately estimate the

vital sign.

To extract the phase of the CW signal, we need to design a coherent detector to down-convert

the received sound signalR(t) to I-component and Q-component of a baseband signal in Fig. 10.1.

I-component and Q-component of the baseband signal can represent a complex vector, which can

be used to obtain the amplitude and phase information of the baseband signal. For SonarBeat

system, we mainly exploit the phase information extracted from I-component and Q-component

of the baseband signal, thus capturing the period signal caused by the movement of the chest such

as inhaling and exhaling. The SonarBeat design is to first split the received sound signal into

two identical copies. Then, these two copies are multipliedwith the transmitted signalC(t) =
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Figure 10.1: I/Q demodulation for the received signal.

A cos(2πft) and its phase shifted versionC ′(t) = −A sin(2πft). Finally, the corresponding In-

phase and Quadrature signals are obtained by using a low-pass filter (LPF) to remove the high

frequency components.

We first present a simple analysis for the ideal case that there is no multipath effect (or, for the

high SNR regime, where the LOS component is the dominant partof the received signal). Under

the assumption, the inaudible signal travels through a single path (i.e., from the speaker to the

chest, and then back to the microphone) and the propagation delay can be modeled as

d(t) = (D0 +D cos(2πfbt))/c,

whereD0 is the constant distance of the reflected path,D andfb are the amplitude and frequency

of the chest movements, respectively, andc is the speed of sound. The received inaudible signal

from this path can be modeled asR(t) = Ar cos (2πft− 2πfd(t)− θ), whereAr is the amplitude

of the received inaudible signal andθ is a constant phase offset due to the delay in audio recording

and playing. To estimate the phase of the inaudible signal, we need to remove the high frequency

components. Multiplying the received signal withC(t) = A cos(2πft), we have

Ar cos(2πft− 2πfd(t)− θ)× A cos(2πft) (10.1)

=
ArA

2
(cos (4πft− 2πfd(t)− θ) + cos(−2πfd(t)− θ)).
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Figure 10.2: Complex I/Q traces of the received audio signal.

The first term in (10.1) has a high frequency of2f , which can be removed with a properly designed

low-pass filter. Thus, the I-component of the baseband is extracted asI = ArA
2

cos (−2πfd(t)− θ).

With a similar approach (i.e., multiplying byC ′(t) and removing the high frequency component),

we can estimate the Q-component of the baseband signal asQ = ArA
2

sin (−2πfd(t)− θ). We

then demodulate the phase of the inaudible signal data as

ϕ(t) = arctan(Q/I) = −2πfd(t)− θ

= −2πf(D0 +D cos(2πfbt))/c− θ. (10.2)

Note the phase signalϕ(t) has the same frequency as the respiration signal. In the general case, the

received inaudible signal is a complex signal, which includes astatic componentand adynamic

componentdue to the multipath effect in indoor environments. For example, Fig. 10.2 shows

complex I/Q traces for the received audio signal, with the static vector and dynamic vector in the

I-Q plane. To track the breathing rates, we need to demodulate the phase from the I/Q components

by removing the static vector. Fig. 10.3 shows the complex I/Q traces of the received audio signal

after removing static vector. It is noticed that the demodulated phase is a good indicator of the

breathing caused chest movements.
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Figure 10.3: Complex I/Q traces of the received audio signal after removing the static vector effect.
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Figure 10.4: Illustration of adapting to body movements by eliminating the static vector.

10.3.2 Technical Challenges

Mitigate the Static Vector Effect

The main challenge for respiration monitoring with phase modulated data is to mitigate static

vector effect, which directly influences the sensitivity and correctness of the phase data. The

larger the stationary component, the larger the error in theextracted phase data. This is because

the SNR at the receiver will become low when there is a large static component, making it hard to

demodulate the phase data. In [155], the authors adopt the local extreme value detection (LEVD) to

remove the stationary components for hand tracking. However, this method may not be effective

for respiration monitoring, because the LEVD method needs to set an empirical threshold for

each different environment. In this chapter, we propose an adaptive median filter method to deal
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with this challenge, which is shown effectively for removing the stationary component in different

scenarios.

Adapt to Body Movements and Environment Noise

The second challenge for tracking breathing signals is adapt to body movements and environment

noise. Body movement is unavoidable in the monitoring phase,e.g., during sleep, and its impact

should be mitigated. The FMCW based scheme in [154] requires to estimate the distance be-

tween the smartphone and chest before respiration monitoring. When the body suddenly moves,

the system needs to seek the new distance, thus leading to large time complexity. The proposed

sonar phase based approach is effective on adapting to body movements. For example, Fig. 10.4

illustrates the idea of adapting to body movements by eliminating the static vector in SonarBeat.

When there is an unexpected small body movement, the magnitude of the breathing signal becomes

larger, leading to a smaller SNR. After eliminating the static vector, we can mitigate the effect of

body movement, and still obtain a neat respiration signal, as shown in the lower part of Fig. 10.4.

Furthermore, consider the case of multiple persons in the testing environment. Not only their

movements cause interference to the reflected respiration signal, but also the background noise

could be high (e.g., when they are talking). We employ coherent I/Q demodulation in SonarBeat

to remove the environmental noise from external audio sources.

Realtime Monitoring with Lower Delay

For a vital sign monitoring system to be really useful, it should work in realtime, with good in-

teractions with the user. Realtime monitoring is challenging since most smartphones have a high

sampling rate of 48 KHz, which leads to 96,000 multiplication operations per second for the coher-

ent detector to down convert the received sound signal to thebase band. To address this challenge,

we perform down-sampling for I/Q demodulation, which can reduce the computation complexity

while still capturing the breathing rate.
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For better interaction with the user, SonarBeat operates in three stages. In the first stage of 15

s, it performs respiration monitoring in realtime without FFT based breathing rate estimation. In

the second stage of 15 s, SonarBeat analyzes the data collected in a 15-second sliding window to

extract the respiration signal, and plots the respiration signal on the screen to give the user some

preliminary testing results. In the final stage, after 30 s, SonarBeat applies FFT to all the captured

phase data to achieve an accurate breathing rate estimation.

10.4 The SonarBeat System

10.4.1 SonarBeat System Architecture

According to the sonar phase analysis, SonarBeat can effectively exploit sonar phase informa-

tion to monitor respiration signals. First, the phase information can track the periodic breathing

rates with a high accuracy, and the phase information is sensitive to the small breathing induced

chest movements. Second, compared with other traditional methods, such as Doppler shift and

FMCW [110], the phase based approach has a lower latency and complexity. Finally, the sonar

phase data is robust to different orientations, different distances, different cloth thickness, and dif-

ferent breathing rates of different persons. It is also robust to large body movements, which only

leads to a change of the stationary component of the phase data, which can be effectively removed

with the proposed adaptive median filter method.

Fig. 10.5 presents the SonarBeat system architecture, whichincludes four basic modules: (i)

Signal Generation, (ii) Data Extraction, (iii) Received Signal Preprocessing, and (iv) Breathing

Rate Estimation. TheSignal Generationmodule mainly implements a Pulse-code Modulation

(PCM) of the inaudible signal, where a CW signal at 18 KHz to 22 KHz is generated and modulated

with the PCM technique. TheData Extractionmodule is to detect the audio signal, which employs

a Short-Time Fourier transform (STFT) for audio signal detection. A threshold based method is

proposed for detecting the beginning part of the received inaudible signal. TheReceived Signal

Preprocessingmodule consists of (i) I/Q demodulation, which implements downsampling followed

by a coherent phase detector; (ii) static vector effect reduction, which implements the proposed
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Figure 10.5: The SonarBeat system architecture.

adaptive median filter method to remove the static vector of the In-phase and Quadrature signals;

(iii) phase extraction, where the sonar phase information is extracted and calibrated; and (iv) data

calibration, where a median filter is applied as a simple Low Pass finite impulse response (FIR)

filter to remove noise. TheBreathing Rate Estimationmodule employs an FFT based method to

estimate the breathing rate.

10.4.2 Signal Generation

The signal generation module uses one speaker of the smartphone as transmitter, to produce the

inaudible signal. We implement the signal generation module as a PCM based modulator on the

Android platform. Specifically, the speaker generates an inaudible sound signal in the frequency

range of 18–22 KHz in the form of a CW signal, i.e.,C(t) = A cos(2πft). We produce the sampled

analogy signal and then use PCM to digitally represent the sampled CW signal. To generate a

PCM stream, the amplitude of the analog CW signal is sampled at uniform intervals, where each

sampled value is quantized. The PCM based inaudible signal modulation is implemented with the

AudioTrack class.
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Figure 10.6: STFT based method for audio signal detection.

10.4.3 Data Extraction

We use the microphone of the smartphone to receive the inaudible signal reflected from the chest

with a sampling rate of 48 KHz. The microphone will record other sound signals with different

frequencies from the surrounding environment as well. We implement an audio signal detection

method to identify the beginning of the desired signal as follows.

The proposed audio signal detection method is based on STFT.At the beginning of of the

signal, there will be a drastic of power at the carrier frequency. A threshold based method is used

to detect the beginning of the inaudible signal. Fig. 10.6 illustrates the STFT based method for

audio signal detection, where the carrier frequency is 20 KHz. We can see that before 0.25 s, the

microphone only receives audio frequencies from the surrounding environment. After 0.25 s, the

microphone detects the inaudible signal, since the magnitude of the 20 KHz spectrum becomes

much stronger than other audio frequencies (see the bright yellow, horizontal strip at 20 KHz). We

adopt a window size of 512 in STFT for estimating the spectrum. Moreover, we set a threshold of

200 for the power change to detect the beginning of the inaudible signal. In fact, if we detect the

power change with the threshold method, the beginning of theinaudible signal can be set as the

end of the STFT chirp.
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10.4.4 Received Signal Preprocessing

We describe the four components of the Received Signal Preprocessing module in this section, in-

cluding I/Q Demodulation, Static Vector Effect Reduction, Phase Extraction, and Data Calibration.

I/Q Demodulation

Before I/Q Demodulation, we need to down-sample the receivedsignalR(t) = Ar cos(2πft −

2πfd(t) − θ) for reducing computation complexity, which is necessary for realtime monitor-

ing. The original system with sampling frequency of 48 KHz isreduce to 480 Hz with a down-

sampling ratio of 100. Then, we implement the I/Q demodulation to obtain the I-component and

Q-component of the baseband signal using a coherent detector. The design is to split the received

audio signal into two identical copies. Due to the down-sampling ratio of 100, these two copies

should be multiplied with the signalA cos(2π f

100
t) and its phase shifted version−A sin(2π f

100
t)

to obtain the I-component and Q-component of the baseband signal, respectively. Because we use

phase modulation for breathing monitoring, down-samplingonly reduce the number of samples of

the amplitude of breathing signal, rather than the phase information.

Finally, a LPF is employed to obtain the corresponding In-phase and Quadrature signals,

which has a cutoff frequency of 1 Hz, a sampling rate of 480 Hz,and a resonance of 2. This setting

has been shown to be effective for removing the high frequency components and environment

noises. In Figs. 10.7 and 10.8, we plot the raw I-component and Q-component of the baseband

signal, respectively, after the LPF (the dashed curves), which, however, still include their static

vectors.

Static Vector Effect Reduction

As discussed, the performance of SonarBeat largely depends on how the effect of the static vector

is mitigated in multipath environments. This is because usually the static vector is much stronger

than the dynamic vector that representing the small chest movements. It is difficult to detect the

weak breathing signal if we directly use the received sound signal. Recently, there are two methods
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Figure 10.7: The adaptive median filter for removing the static vector in the baseband I-component.
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Figure 10.8: The adaptive median filter for removing the static vector in the baseband Q-
component.

proposed for static vector effect mitigation. The Dual-Differential Background Removal approach

is used for hand tracking with 60 GHz mmWave signals [173]. The method is susceptible to

environment noise and has large latency, which is not effective for realtime respiration monitoring.

The second scheme, termed LEVD [155], is also developed for tracking hand movements. The

method requires an empirical threshold for detecting the static vector, which is not robust for

different environments and different test subjects.

242



0 5000 10000 15000

Time (milliseconds)

-150

-100

-50

0

50

100

150

200

B
re

at
hi

ng
 S

ig
na

l

Figure 10.9: Respiration curve for phase data without removing static vector effect.

In Algorithm 12, we present an adaptive median filter method for removing the static vector,

which has a low latency and is robust to different environments. The idea is to use a window to ob-

tain the median for estimating the static vector. The only parameter is window sizew, which is ro-

bust for different environments. For baseband signal componentI(n) orQ(n), n = 0, 1, ..., N −1,

we partition it into multiple non-overlapping sublists, each denoted byW [1, 2, ..., w]) with window

sizew, and a single sublistR[1, 2, ..., r] with window sizer < w, wherer is the number of remain-

ing elements ofI(n) orQ(n) not included in the previousW sublists. The sublistsW [1, 2, ..., w]

and sublistR[1, 2, ..., r] are used to estimate the medians for the firstnw − 1 windows and the last

window, respectively, wherenw = ⌊N/w⌋. Finally, the outputO(n), n = 0, 1, ..., N − 1, can be

obtained as in Steps 14 and 21 by removing the static vector. The proposed method is simple and

robust for realtime processing of received data in different environments with a low delay.

Fig. 10.7 and Fig. 10.8 illustrate how the adaptive median filter method removes the static

vectors in the baseband signal components. We can see that the estimated static vector can repre-

sent well the average amplitude information of the basebandsignal components. After the adaptive

median filter, the componentsI andQ are roughly centered at zero; the improved SNR makes it

easier for extracting the breathing signal they carry.
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Algorithm 12: The Adaptive Median Filter Method

1 Input: One baseband signal component:X(n), n = 0, 1, ..., N − 1, and the window size
w ;

2 Output: The baseband signal component with static vector removed:O(n),
n = 0, 1, ..., N − 1 ;

3 //Initialization
4 nw: number of windows ;
5 r: number of remaining elements ofX(n), which cannot form a full window of sizew ;
6 W [1, 2, ..., w]: sublists with window sizew ;
7 R[1, 2, ..., r]: sublist with the remainingr elements ;
8 //Find the median for each window
9 for i = 0 : nw do

10 if ((i+ 1) ∗ w) <= N then
11 W [1, 2, ..., w]← X((w ∗ i) to ((i+ 1) ∗ w − 1)) ;
12 M ← the median ofW [1, 2, ..., w] ;
13 for j = w ∗ i : (i+ 1) ∗ w do
14 O(j) = X(j)−M ;
15 end
16 end
17 else ifr 6= 0 then
18 R[1, 2, ..., r]← X((w ∗ i) to (w ∗ i+ r − 1)) ;
19 M ← the median ofR[1, 2, ..., r] ;
20 for j = w ∗ i : (i+ 1) ∗ w do
21 O(j) = R(j)−M ;
22 end
23 end
24 end
25 ReturnO(n), n = 0, 1, ..., N − 1 ;

Phase Extraction

After removing the static vector, we next extract the phase data in the I-Q plane, which only in-

cludes the dynamic breathing component. LetOI(t) andOQ(t) denote the outputs of Algorithm 12.

The phase of the inaudible signal can be computed with (10.2), that is

ϕ(t) = arctan

(
OQ(t)

OI(t)

)
. (10.3)

With (10.2) and (10.3), we find the phase valueϕ(t) for the respiration signal reflected from

the chest. Although the reflected respiration signal may still have multipath components, these
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Figure 10.10: Respiration curve for phase data with removingstatic vector effect.

multipath signals have the same breathing frequency but with different phase shifts, each of which

is a constant. Thus, the breathing rate will not be affected by the dynamic multipath effect. This

is different from hand tracking, which requires only one path from the smartphone and the hand.

Thus, our SonarBeat can estimate the breathing rate using a single subcarrier rather than multiple

subcarriers.

Fig. 10.10 presents the respiration curve obtained from thephase data with removing static

vectors. It is noticed that the magnitude of the breathing signal is large, which is periodic if we can

remove the sudden phase changes. Thus, we need to implement adata calibration scheme for the

demodulated phase data with better periodicity.

Data Calibration

-

We implement a phase unwrapping scheme for recovering the correct phase values, as well as

a median filter for reducing the environment noise. To estimate breathing rates, we need to obtain

the right breathing curve for phase data. Because the phase value will have a change of2π for

every wavelength distance, we implement a phase unwrappingscheme to process the demodulated

phase data.
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Figure 10.11: Respiration curve for phase data after unwrapping the phase data.
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Figure 10.12: Respiration curve for unwrapped phase data after the median filter method.

Fig. 10.11 shows the respiration curve obtained from the phase data after phase unwrapping.

It is a clear breathing signal, but still with smaller environment noises. Moreover, we adopt the

median filter method to remove the environment noise, where the filter window size is set to 300.

Fig. 10.12 presents the respiration curve for the unwrappedphase data after the median filter, which

is next used for accurate breathing rate estimation.

10.4.5 Breathing Rate Estimation

SonarBeat operates in three stages for breathing monitoring, for better interactions with the user.

In the first stage of 15 s, we cannot effectively estimate the breathing rate but just record the
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Figure 10.13: Respiration rate estimation based on FFT.

extracted respiration signal, because the phase data in a window can continually change when new

data arrive. In the second stage of 15 s, we analyze the collected phase data in a 15-second sliding

window to extract the breathing signal and plot it on the smartphone screen. In the final stage, after

30 s, we use all the collected phase data for breathing rate estimation with FFT, which can achieve

a higher estimation accuracy (since more data is available now). In fact, the frequency resolution

depends on the window size of FFT. If the window size becomes larger, the estimation accuracy

will be higher, but a larger window size also leads to a lower time domain resolution. Thus, for

online breathing rate estimation, we use the same window size as that of the STFT based method.

It balances the tradeoff between the frequency domain resolution and the time domain resolution.

Fig. 10.13 illustrates the FFT based respiration rate estimation. We can see that the estimated

frequency is 0.23 Hz, which is approximately the same as the true breathing rate measured by the

NEULOG Respiration Monitor Belt Logger Sensor during the experiment.

10.5 Experimental Study

10.5.1 Experiment Configuration

We prototype the SonarBeat system on the Android platform in Java and the Android SDK, as

an smartphone App. The first edition of SonarBeat is implemented with the minimum version of
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Android 5.1.1 OS (API 21). So it works with all the more recentAndroid systems such as Android

6.0 and Android 7.0. The App is evaluated with Samsung GalaxyS6 and Samsung Galaxy S7 Edge

smartphones. For respiration monitoring, we use one speaker and one microphone to transmit and

receive the inaudible audio data, respectively, while the microphone and speaker are fixed at the

bottom of the smartphone. Furthermore, we use the AudioTrack class to play inaudible sound and

the AudioRecord class to record sound. The buffer of the recording thread is set to 1920 points

with a sampling rate of 48 KHz. Therefore, we set the realtimesignal processing unit to 1920

points, which is about 40 ms.

We conduct extensive experiments with SonarBeat with five persons over three months. The

test scenarios include an office, a bedroom and a movie theater. The office is a 4.5 × 8.8 m2

room. The room is crowed with tables and PCs, which form a complex propagation environment.

In this office environment, we test SonarBeat under differentparameters settings. The second

environment is abedroomof 3.9 × 6 m2, where we test breathing monitoring for a single person.

The third setup is amovie theaterof a large27× 40 m2 area, where many peoples are watching a

movie, with strong audio interference from the movie and other people. The office and bedroom

scenarios are implemented over longer periods with multiple times in different days as compared

to the movie cinema that is tested in one hour for watching a movie. Moreover, the proposed

system mainly focuses on estimating the breathing rate for aperson, where we consider other

persons have above 60 cm distance away from the smartphone. For comparison purpose, we use

the NEULOG Respiration Monitor Belt Logger Sensor to record the ground truth of the breathing

rate (see Fig. 10.17).

For breathing rate estimation each time, we use all the collected data for breathing rate esti-

mation with FFT for 30 s. Moreover, we use CDF of breathing errors as the measurement metric,

which can be employed to evaluate the total performance of the proposed system. Moreover, we

also consider the mean estimation error as another evaluation metric for measuring the impact of

various environmental factors and the impact of various system parameter.
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Figure 10.14: Experimental setup in theofficescenario.

Figure 10.15: Experimental setup in thebedroomscenario.
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Figure 10.16: Experimental setup in themovie theaterscenario.
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Figure 10.17: The office experiment, where the NEULOG Respiration Monitor Belt Logger Sensor
records the ground truth (shown on the laptop screen).

10.5.2 Performance of Breathing Rate Estimation

Fig. 10.18 presents the CDFs of estimation errors in breathing rate estimation with SonarBeat. For

comparison purpose, we also develop an LEVD based system [155], where the LEVD method

is used for estimating the static vector and all other signalprocessing methods are the same as

in SonarBeat. We find that SonarBeat and the LEVD based method achieve a median error of 0.2

bpm and 0.3 bpm, respectively. This illustrates that both systems can effectively estimate breathing

rates. However, it is worth noting that for SonarBeat, 95% of the test results have an estimated

error under 0.5 bpm, while only 60% of the test results with the LEVD based method have an

estimated error under 0.5 bpm. Moreover, the maximum estimation error of SonarBeat and the

LEVD based method are 2.4 bpm and 5 bpm, respectively. This isbecause the LEVD based method

requires setting the empirical threshold based on the standard deviation of the baseband signal in

a static environment. It is not robust in varying environments where the same threshold will not

work. However, SonarBeat leverages the adaptive median filter method, and is thus more robust to

changes in the environment. Thus SonarBeat can achieve a higher and more stable breathing rate

estimation accuracy than LEVD.

Fig. 10.19 presents the mean estimation errors for the threedifferent scenarios, which are 0.22

bpm, 0.11 bpm, and 0.33 bpm for the office, bedroom and movie theater scenarios, respectively.
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Figure 10.18: CDFs of estimation errors in breathing rate estimation.

We plot the 95% confidence intervals as error bars. The mean estimation error of the bedroom case

is the minimum, because the bedroom is a better environment:with smaller noise and no sound

interference from other persons. This shows that SonarBeat is suitable for breathing monitoring

during sleeping, which helps to detect apnea or other sleeping problems. For breathing monitoring

in the office, the performance is worse than the bedroom. Thisis because the propagation envi-

ronment is more complex and there is interference from otherpeople. Furthermore, higher noises

from computers, air conditioner, and other equipment in thelab also influence the received inaudi-

ble signal. The movie theater test has the largest mean errorand variance because of the more

complex environment and stronger noises. In fact, breathing monitoring in the theater is still quite

accurate given the extremely adverse environment. These experiments validate that SonarBeat is

highly accurate and robust in different scenarios.

10.5.3 Impact of Various Environmental Factors

Fig. 10.20 shows the impact of different persons in the officescenario. In the experiment, we test

five persons including three men and two women. Every volunteer wears the NEULOG Respiration

unit to record the ground truth for breathing data. From Fig.10.20, we can see that Persons 3

and 5 have a relatively lower mean error. This is because theywork out quite often and have

a stronger respiration, leading to stronger breathing signals. On the other hand, the other three
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Figure 10.19: Mean estimation error for three different scenarios: office, bedroom, and movie
theater.
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Figure 10.20: Breathing rate results for five different persons.

persons have weaker breathing magnitudes, but their estimation errors are still under 0.5 bpm,

which is acceptable. Thus, we can see that SonarBeat is adaptive for different persons.

Fig. 10.21 shows the impact of different breathing rates in the office scenario, where the test

subject controls his/her breathing at a slow, normal, and fast breathing rates, which are in the rangs

from 6 bpm to 10 bpm, 13 bpm to 18 bpm, and above 30 bpm, respectively. It is noticed that with

the increase of breathing rate, the mean estimation error will be increased. The reason is that with

higher breathing rate, the stability of the breathing signal becomes weaker. In other words, with fast

breathing, the chest movements are more irregular, thus leading to large variations in the captured
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Figure 10.21: Impact of different breathing rates.

breathing curve. Moreover, we adopt the FFT based breathingestimation. When there are multiple

breathing frequencies embedded in the captured breathing signal, FFT does not produced good

frequency estimation. Nevertheless, SonarBeat can still effectively capture the different breathing

rates with a mean error a little over 0.4 bpm in the fast breathing case.

Fig. 10.22 shows the impact of the distance between the chestand the smartphone. When the

distance is increased, the accuracy of breathing estimation becomes lower. Particularly, we can

see that for a distance of 55 cm, the mean estimation error becomes 1 bpm with a large variance.

In this experiment, we find that the ultrasound wave in 18 KHz to 22 KHz experiences a large

attenuation, and the microphone will receive a lower power from the chest reflection if the distance

is increased. Moreover, breathing rate estimation with SonarBeat depends on I/Q demodulation.

The magnitude of the I/Q components becomes weaker when the distance is increased, leading to

higher errors. To improve the measurement distance, we leverage the parameter resonance of the

low-pass filter to strengthen the amplitude of the inaudiblesignal near the cutoff frequency, thus

improving the magnitudes of the I/Q components. In the experiment, we set the cutoff frequency

to 40 Hz for the sampling rate of 48 KHz. We can see that under 50cm, the proposed system can

achieve very good accuracy.

Fig. 10.23 presents the breathing rate errors when the smartphone is held in hand or put on a

desk. We find the error is low in both cases, which are 0.22 bpm when the smartphone is held in
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Figure 10.22: Impact of the distance between the test subject and the smartphone.
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Figure 10.23: Breathing rate results when the smartphone is held in hand or put on a desk.

hand and 0.16 bpm when it is put on a desk. Moreover, the variance of breathing rate estimation

errors with a hand held smartphone is larger. This is becausethe small hand movements will affect

the reflected signal. Although the small hand movements do not influence the basic estimation

accuracy, it still causes a larger variance of the estimation error. On the other hand, because we use

the adaptive median filter to effectively remove the static vector, the mean breathing rate estimation

results can be guaranteed for both cases.

Fig. 10.24 shows the impact of cloth thickness. In the experiment, the test subject wears

clothes of different types and thickness. The distance between the user and the smartphone is kept

between 10 cm to 15 cm. It is noticed that, with the increase ofcloth thickness, the mean error
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Figure 10.24: Impact of cloth thickness.
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Figure 10.25: Impact of user orientation relative to the smartphone.

becomes larger. This is because the ultrasound wave at 18 KHzto 22 KHz experiences larger

attenuation when the clothes gets thicker, which leads to smaller received breathing signal and a

lower SNR. In fact, the maximum breathing estimation error isabout 0.37 bpm in this experiment,

which is still acceptable.

Fig. 10.25 shows the impact of chest orientation relative tothe smartphone in the office sce-

nario, where we consider three cases of 0◦, 45◦ and 90◦. It is noticed that at 0◦ direction with the

front orientation relative to the smartphone, we can obtainthe minimum mean estimation error,

which is about 0.22 bpm. At the 90◦ direction, the maximum mean estimation error becomes 0.39

bpm. The received inaudible signal is the strongest when theperson faces the smartphone speaker.

255



sitting standing sleeping

Different Poses

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

M
ea

n 
E

st
im

at
io

n 
E

rr
or

 (
bp

m
)

Figure 10.26: Impact of different poses.

Fig. 10.26 shows the impact of different poses including sitting, standing, and sleeping in the

bedroom scenario. For sitting case, the smartphone is put ona desk and the distance between the

smartphone and the person is under 15 cm. For standing case, the person holds the smartphone

with the same distance. For sleeping case, the person wearing night-clothes is laying in the bed,

who faces the smartphone on the desk with the same distance. We can see that for poses with the

sitting and standing, the mean estimation errors are smaller than that with the sleeping. This is

because the strength of the received signal in the sleeping scenario is smaller than the other two

cases.

10.5.4 Impact of Various System Parameters

We evaluate the impact of various system parameters in this sections. Fig. 10.27 presents the

estimation errors with a Samsung Galaxy S6 with Android 6.0 and a Samsung Galaxy S7 Edge

working with the lasted Version Android 7.0. The speaker andmicrophone are on the bottom of

both smartphones. We can see that Samsung Galaxy S7 Edge has asimilar performance as Sam-

sung Galaxy S6, with mean error of 0.21 bpm and 0.22 bpm, respectively. We find that Samsung

Galaxy S7 Edge has stronger processing power, and thus it canobtain better realtime performance

than Samsung Galaxy S6.
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Figure 10.27: Estimation error results with two different smartphone platforms.
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Figure 10.28: Impact of the frequency of the inaudible acoustic signal.

Fig. 10.28 shows the impact of different frequencies for theCW signal, including 18 KHz,

20 KHz, and 22 KHz. With the increase of frequency, the mean error also gets slightly larger.

The maximum mean estimation error is 0.22 bpm, while the minimum mean estimation error is

0.17 bpm. This shows that SonarBeat is robust to different frequencies. On the other hand, we

also know that for ultrasound signals propagating in the same transmission medium, the power

attenuate becomes larger for higher signal frequencies, resulting in smaller SNR for the received

breathing signal. Thus, the higher the frequency, the larger the mean breathing rate estimation

error.
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Figure 10.29: Impact of different downsampling rates.

Fig. 10.29 shows the impact of different down-sampling rates. When the down-sampling rate

is increased from 60 to 100, the mean breathing rate estimation error will be increased from 0.19

bpm to 0.23 bpm, a small increase. Thus, we choose a down-sampling rate of 100 for SonarBeat.

Because SonarBeat uses a sampling frequency of 48 KHz, we can reduce it to 480 Hz by down-

sampling rate of 100. As shown before, the down-sampling operation does not affect the breathing

rate embedded in the phase modulated signal. Thus, down-sampling the I and Q components with

a rate of 100 can not only reduce the computational complexity for realtime breathing monitoring

with the smartphones, but also achieve a high accuracy.

Fig. 10.30 presents the results with different window sizesfor the adaptive median filter. Re-

call that the window size is used in the static vector effect mitigation stage. Breathing rate estima-

tion with SonarBeat mainly depends on reduction of the staticvector effect. The only parameter of

the proposed adaptive median filter approach is the window size, which should be robust for differ-

ent tests. From Fig. 10.30, we can see that, when the window size is increased from 7400 to 7700,

the mean breathing rate estimation error is only increased slightly from 0.21 bpm to 0.26 bpm.

Moreover, the larger window sizes from 7400 to 7700 are almost half of the signal points, which

is effective for removing the static vector. Thus, we choosea window size of 7500 for SonarBeat,

which can achieve the best breathing estimation accuracy.
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Figure 10.30: Impact of different window sizes of the adaptive median filter.
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Figure 10.31: Impact of different sizes of the median filter window.

Fig. 10.31 shows the impact of different median filter windowsizes on the mean error, which is

used in the data calibration stage of SonarBeat. We find that when the median filter window size is

set to 100 or 300, similar mean error of 0.21 bpm are achieved.On the other hand, when the median

filter window size is increased from 600 to 1000, the mean estimation error is increased from 0.25

bpm to 0.38 bpm. This is because a smaller window size can process the local breathing curve,

to effectively remove the environment noise. On the other hand, a larger median filter window

size omits the local breathing noise, thus causing a higher error. Based on this experiment, we set

the median filter window size to 300, which can not only achieve a higher breathing estimation

accuracy, but also lead to the better breathing curves for realtime breathing monitoring.
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10.6 Conclusion

In this chapter, we presented SonarBeat, a system that exploits phase based sonar to monitor breath-

ing rates with smartphones. We first provided a rigorous sonar phase analysis and proved the sonar

phase based method can obtain breathing signals. Also, we discussed the technical challenges

for breathing estimation based on active sonar signal, including removing the static vector ef-

fect, adaption for body movements and environment noise, and on-line breathing monitoring with

lower delay. We then described the SonarBeat design in detail, including signal generation, data

extraction, received signal preprocessing, and breathingrate estimation. Finally, we implemented

SonarBeat with two different smartphones, and conducted an extensive experimental study with

three setups. The experimental results validated that SonarBeat can achieve superior performance

on breathing rate estimation for different factors and parameters.
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Chapter 11

Conclusions and Future Work

11.1 Conclusion

In this dissertation work, we investigate the problem of RF sensing for IoT using CSI and machine

learning techniques. In particular, our work mainly focuses on indoor localization and vital sign

monitoring for RF sensing. For indoor localization, we consider different CSI features as finger-

prints for indoor localization using different deep learning methods. On the other hand, for vital

sign monitoring, we consider breathing and heart rates monitoring for single person and multiple

persons using CSI phase differences. Moreover, we study the resilient breathing beats monitoring

for bad locations. In addition, we also exploit the acousticsignal for breathing rate estimation with

smartphones.

In chapter 2, we proposed DeepFi, a deep learning based indoor localization using CSI am-

plitude information. In DeepFi, CSI information for all the subcarriers and all the antennas are

collected through the device driver and analyzed with a deepnetwork with four hidden layers.

Based on the three hypotheses on CSI, we considered the weightsin the deep network to represent

fingerprints, and incorporated a greedy learning algorithmfor weight training to reduce complexity.

Moreover, a probabilistic data fusion method based on the RBF was exploited for online location

estimation. The proposed DeepFi scheme was validated in tworepresentative indoor environments,

and was found to outperform several existing RSS and CSI based methods in both experiments.

In chapter 3, we proposed PhaseFi, a deep learning based indoor localization using CSI phase

information. In PhaseFi, the phase information was first extracted and calibrated from the three
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antennas of the Intel WiFi Link 5300 NIC by accessing the modified device driver. In the offline

stage, we considered a deep network with three hidden layersto train the calibrated phase data,

and used weights to represent fingerprints. To reduce complexity, a greedy learning algorithm was

incorporated to train the weights layer-by-layer, where a sub-network between two consecutive lay-

ers formed an RBM approximately and solved by a CD-1 algorithm. In the online stage, a Bayes

method based on RBF was used for location estimation. The proposed PhaseFi scheme was val-

idated in two representative indoor environments, and was shown to outperform three benchmark

schemes based on either CSI or RSS in both scenarios.

In chapter 4, We presented BiLoc, a bi-modal deep learning system for fingerprinting-based

indoor localization with 5GHz commodity WiFi NICs. In BiLoc, we first extracted and calibrated

CSI data to obtain bi-modal CSI data, including average amplitudes and estimated AOAs, which

were used in both the offline and online stages. In the training phase, we leveraged a deep au-

toencoder network to train the bi-modal data, and the weights were used to represent the bi-modal

fingerprints. In the test phase, a Bayesian approach based probability model was employed for es-

timating position with bi-model test data. We evaluated theperformance of BiLoc with extensive

experiments under three representative indoor environments. The experimental results validated

the superior performance of BiLoc over several benchmark schemes.

In chapter 5, we proposed CiFi, a DCNN based fingerprinting system for indoor localization

with 5 GHz Wi-Fi. We theoretically and experimentally verified the feasibility of using AOA

values for indoor localization. We then presented the CiFi system, which first formed AOA images

to train the DCNN, and then used newly received AOA images to estimate the location of the

mobile device. Through extensive experiments, we demonstrated the superior performance of the

proposed CiFi system under two representative indoor environments.

In chapter 6, we presented ResLoc, a deep residual sharing learning based system for indoor

localization with two channels CSI tensor data. We discussedhow to build CSI tensor data for

indoor localization. Then, we designed the ResLoc system, which leverages two channels CSI ten-

sor data to train the deep network by using the proposed deep residual sharing learning. For online
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test, we used newly received CSI tensor data to compute the location of the mobile device based

on the probabilistic method. Finally, the experimental results showed the superior performance of

the proposed ResLoc system.

In chapter 7, we proposed PhaseBeat, CSI phase difference datato monitor breathing and

heart beats with commodity WiFi device. PhaseBeat system leveraged CSI phase difference data

to extract the periodic signal from the change in the chest ofa person such as inhaling and exhal-

ing. Then, We implemented data preprocessing including environment detection, data calibration,

subcarrier selection and discrete wavelet transform. Moreover, we employed the peak detection

approach for breathing rate estimation and FFT based methodfor heart rate estimation. We con-

ducted with the experiments with three setups such as the laboratory, through-wall scenario and the

long corridor. The results showed that the PhaseBeat system can obtain better performance than

the amplitude based method.

In chapter 8, we presented TensorBeat, tensor decompositionfor estimating multiple persons

breathing beats with commodity WiFi. The proposed TensorBeat system employed CSI phase dif-

ference data to obtain the periodic signals from the movements of multiple breathing chests by

leveraging tensor decomposition. We implemented several signal processing methods including

data preprocessing, CP decomposition, signal matching algorithm, and peak detection in Tensor-

Beat. We validate the performance of TensorBeat with extensive experiments under three indoor

environments. Our analysis and experimental study demonstrated that the proposed TensorBeat

system can achieve satisfactory performance for multiple persons breathing estimation.

In chapter 9, we proposed ResBeat, resilient breathing beats monitoring by using online CSI

amplitude and phase difference data in the commodity WiFi devices. We developed the ResBeat

system including data preprocessing, adaptive signal selection and breathing signal monitoring.

For data preprocessing, we implemented the data extractionand calibration to obtain the breath-

ing component and environment component. For the adaptive signal selection, we proposed the

signal selection algorithm based on signal energy detection and movement detection for selecting

the most sensitive signal group. Then, we leveraged peak detection to estimate breathing rates.
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We implemented with the experiments with three different scenarios. The results validated the

effectiveness of the proposed ResBeat system.

In chapter 10, we presented SonarBeat, a system that exploitsphase based sonar to monitor

breathing rates with smartphones. We first provided a rigorous sonar phase analysis and proved

the sonar phase based method can obtain breathing signals. Also, we discussed the technical chal-

lenges for breathing estimation based on active sonar signal, including removing the static vector

effect, adaption for body movements and environment noise,and on-line breathing monitoring with

lower delay. We then described the SonarBeat design in detail, including signal generation, data

extraction, received signal preprocessing, and breathingrate estimation. Finally, we implemented

SonarBeat with two different smartphones, and conducted an extensive experimental study with

three setups. The experimental results validated that SonarBeat can achieve superior performance

on breathing rate estimation for different factors and parameters.

11.2 Future work

In the future, we will focus on four research directions as the following [2].

11.2.1 Fusion of Multiple Data Sources

Bimodal or even multimodal data can be exploited for better RF sensing performance. For ex-

ample, WiFi and light sensors are both available on smartphones and can be integrated for indoor

localization, where WiFi and light signals are complementary to each other. For example, the RSS

of WiFi signals do not perform well at close locations, whilethe light intensities at such locations

could be quite different. Using bimodal data of WiFi RSS and light intensity can increase data

diversity, which results in higher location accuracy.

The key to exploit multimodal data is how to effectively fusevarious data. The deep learning

framework can be trained with different data sizes with the same deep network structure. One

solution to train multimodal data is to adopt a multi-channel deep network architecture, one for

each data source [4]. Signals from different channels can befused at intermediate layers and/or
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at the output layer [4]. Other deep networks such as deep reinforcement learning and generative

adversarial networks can also be incorporated for fusion ofmultiple data sources to improve sens-

ing accuracy or reduce cost with small training data. For effective data fusion, the input data from

different sources should be normalized, and data samples from different sources should be aligned.

11.2.2 Exploring New Spectrum for RF Sensing

With the fast growth of 5G technologies, signals from new spectra, such as the low-bands (below

1 GHz), mid-bands (1 GHz to 6 GHz), and high-bands (above 24 GHz, i.e., mmWave), should

be leveraged for RF sensing in the IoT. Specifically, the low-bands spectrum can be utilized for

massive IoT and mobile broadband; the mid-band spectrum provides wider bandwidths and can

be employed for mission-critical applications and enhanced Mobile Broadband (eMBB); the high-

band spectrum provides a huge amount of bandwidth and is usually used for high throughput

communications. In the literature, mmWave massive MIMO hasbeen applied for fingerprinting

with a deep learning approach. Moreover, narrow band (NB) IoTtechnologies, such as LoRaWAN

and SIGFOX with low power and long range, can also be leveraged for detecting multiple objects.

It is expected that channel estimation based on deep learning could become an interesting

research topic, where deep learning can be used to learn CSI information. Then, some key pa-

rameters, such as amplitude, AOA, and TOA from the multipaths can be predicted from training

data with deep learning techniques for RF sensing. By applyingdeep learning techniques to new

signals from 5G spectra, RF sensing could be greatly enhancedwith a stronger data representa-

tion ability, not only for personal IoT applications such asindoor localization, activity recognition,

and healthcare, but also for other IoT applications such as smart city, manufacturing, supply chain

management, precision agriculture, and animal tracking.

11.2.3 From Cloud to Edge and Mobile Devices

Although deep learning models have achieved superior performance for recognition tasks, deep

learning models are usually computation intensive and require large storage space. For image and
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speech recognition applications, usually the programs areexecuted at a server or in the cloud. For

RF sensing applications, it would be more appealing to execute the deep learning models at the

edge or mobile devices to avoid large delay for better user experience. It is thus important to move

deep learning models from the cloud to the edge or mobile devices, for reduced cost and delay and

enhanced privacy [174].

The challenge is how to execute deep learning models at the relatively more resource con-

strained edge or mobile devices; How to reduce deep model parameters and accelerate compu-

tations. To this end, compressed deep network can be utilized for RF sensing on edge devices.

Methods for compressing weights by utilizing the sparse features of data can be developed, to re-

duce storage demand of weights. Moreover, parallel and distributed deep learning are suitable for

execution on edge and mobile devices to reduce the training time, to jointly learn the parameters

for RF recognition tasks. Finally, GPU and FPGA-acceleratedhardware can be used at the edge

or mobile devices to greatly accelerate the computation of deep learning models for RF sensing

applications.

11.2.4 Security and Privacy Preserving

Deep Learning can learn the features of RF signs, which is useful user information for security

and privacy protection. By leveraging features of multi-path RF signals, deep learning can be used

to classify eavesdropping, DoS attack, and bad data injection. The proposed deep learning based

RF sensing frame work can be used for intrusion detection in smart homes. Specifically, deep

LSTM networks can be used for realtime intrusion detection with commodity wireless devices.

Moreover, RF sensing can be incorporated for user authentication with different RF signals such

as WiFi, RFID, acoustics, and UWB, where implicit authentication can be used.

Deep learning security has become a hot research topic recently. The main challenge is how

to recognize adversarial data and clean data; deep learningcould perform poorly with adversarial

data, which can be created by introducing small noises to clean data. In fact, an attacker can easily

inject noise or jamming signals to RF sensing signals. Such adversarial data should be recognized
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in the beginning stage for guaranteeing the recognition performance of deep learning. Another

challenge is how to preserve user privacy in deep learning based RF sensing applications. While

RF signals mostly propagate in all directions, it is important to prevent an illegitimate user from

detecting a user’s location or monitoring a patient’s vitalsigns.
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