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Abstract

There is a pressing need for thermal management in most electronic devices today, ranging

from portables to high-performance servers, and it poses barriers to the safe operations of data

centers. The goal of thermal management is to reduce thermal hotspots and non-uniform on-

chip temperatures that may impact the longevity of hardware. In this dissertation research, we

develop a thermal-aware job scheduling strategy called tDispatch tailored for MapReduce ap-

plications running on Hadoop clusters. The scheduling idea of tDispatch is motivated by a pro-

filing study of CPU-intensive and I/O-intensive jobs from the perspective of thermal efficiency.

We show that CPU-intensive and I/O-intensive jobs exhibit various thermal and performance

impacts on multicore processors and hard drives of Hadoop cluster nodes. After we quantify

the thermal behaviors of Hadoop jobs on the master and data nodes of a cluster, we propose

our scheduler that performs job-to-node mappings for CPU-intensive and I/O-intensive jobs.

We apply our strategy to several MapReduce applications with different resource consumption

profiles. Our experimental results show that tDispatch is conducive to creating opportunities to

cool down multicore processors and disks in Hadoop clusters deployed in modern data centers.

Our findings can be applied in other thermal-efficient job schedulers that are aware of thermal

behaviors of CPU-intensive and I/O-intensive applications submitted to Hadoop clusters.

Characterizing thermal profiles of cluster nodes is an integral part of any approach that

addresses thermal emergencies in a data center. As the power density of today’s data centers

grows, preventing thermal emergencies in data centers becomes one of the vital issues. Most

existing thermal models make use of CPU utilization to estimate power consumption, which

in turn facilitates outlet-temperature predictions. Such utilization-based thermal models may

introduce errors in predicting power usage due to inaccurate mappings from system utilization

to outlet temperatures. To address this concern in the existing models, we eliminate utilization

models as a middleman from the thermal model. In this dissertation, we propose a thermal

model, tModel, that projects outlet temperatures from inlet temperatures as well as directly
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measured multicore temperatures rather than deploying a utilization model. The proposed ther-

mal model estimates the outlet air temperature of the nodes for predicting cooling costs for

cluster nodes. We validate the accuracy of our model against data gathered by thermal sensors

in our cluster. Our results demonstrate that tModel estimates outlet temperatures of the cluster

nodes with much higher accuracy over CPU-utilization based models. We further show that

tModel is conducive to estimating the cooling cost of data centers using the predicted outlet

temperatures.

High energy efficiency of applications helps in reducing the operational costs of data cen-

ters. For a wide range of applications, the overall computational cost can be significantly

reduced if an exact solution is not required. Approximate computing is one such paradigm

leveraging the forgiving nature of many applications to improve the energy efficiency of clus-

ter nodes. We propose a framework called tHadoop2 for MapReduce applications running

on Hadoop clusters. To facilitate the development of tHadoop2, we incorporated an existing

thermal-aware workload placement module called tHadoop into our tHadoop2. Our frame-

work consists of three key components - tHadoop, a thermal monitoring and profiling module,

approximation-aware thermal manager. We investigated the thermal behavior of a MapRe-

duce application called Pi running on Hadoop clusters by varying the two input parameters -

the number of maps and the number of sampling points per map. Our profiling results show

that Pi exhibits inherent resilience in terms of the number of precision digits present in its

value. It is noteworthy that this result quality varies with the application type. Other MapRe-

duce applications can be scrutinized by exploring their characteristics and finding opportunities

for acceptable inexactness in outputs. Nevertheless, the proposed framework, coupled with ap-

proaches for making tradeoffs, is generally applicable to any MapReduce application.
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Chapter 1

Introduction

1.1 Motivations

Data centers house a large number of computer systems and components such as power sup-

plies, network cables, thermostats, security devices, and many more. Consequently, these com-

ponents generate substantial amounts of heat and consume enormous amounts of energy for

cooling purposes. According to National Renewable Energy Laboratory (NREL), a data center

consumes 10-100 times more energy than a regular office [1]. Growing number of data centers

are being deployed across the world in last decade. According to the EPA report, US data cen-

ters consumed approximately 2% of total U.S. energy consumption, with 24% increase in the

last five years [2]. This continuous increase in energy consumption by the data centers is an

effect of rapidly growing demand of computation and storage capacity. This demand has also

caused an increase in the power density of data centers. As the power density of data centers

grows, managing thermal emergencies in data centers becomes one of the vital issues. Gartner

predicts that by 2021, more than 90% of the data centers would have to revise their thermal

management strategies [3]. Thus, it is essential that we find solutions to enhance the thermal-

and energy-efficiency of these data centers.

Increasing energy-efficiency in cluster systems installed in data centers can help in reduc-

ing the energy consumption, excess heat, lower cooling costs and improve reliability of server

nodes in these data centers. Since energy efficiency is directly linked with power consumption,

several power management techniques have been used in the recent past to deal with excessive

heat buildup and cooling requirements in data centers. Two factors contributing to the power
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usage in data centers are new generation technologies and an inclination towards multicore ar-

chitectures. To increase a processor’s speed, manufacturers are increasing the number of cores

on each CPU chip. With a large number of cores in computing clusters, power consumption

and heat dissipation have become a big concern for data centers. Also, the next generation

architectures demand high power usage, which in turn translates into heat from processors. At

the same time, evidence shows that the thermal-aware architecture techniques have a direct cor-

relation with power-aware techniques [4]. While thermal and energy efficiency remain the most

important concerns in the operation of data centers, attention has also been paid to optimizing

(1) operational costs and (2) system reliability of these clusters [5].

With a dramatic increase in energy consumption of large-scale cluster computing sys-

tems, we must urgently address the energy efficiency issues. Strong evidence indicates that the

cooling cost is a significant contributor of a cluster’s operational cost [6] [7]. Under certain

circumstances, upto half of the total energy is attributed to cooling the data centers [8]. Ma-

jority of the cooling energy is used towards keeping hardware operating temperatures below

threshold (a.k.a, the redline) temperatures specified by the manufacturer of the hardware [8].

Variations in temperature accounts for more than 50% of electronic failures [9] and when a data

center’s temperature is over 21◦C, every 10◦C rise in temperature reduces hardware reliability

by 50% [10]. Therefore optimal temperatures look promising in improving the lifetime of hard-

ware deployed in data centers. Due to the rising power consumption levels and the need for

enhancing the energy efficiency of data centers, the need for data center cooling is only going to

grow in future. Prior studies confirmed that cutting cooling cost effectively improves the energy

efficiency of data centers [11] [12]. In one such study, intriguing workload placement strategies

were implemented for balancing the temperature distribution in data centers [11] [12]. Since

temperature is in direct co-relation with power output over time therefore, cutting down cooling

costs is of great signficance in designing data centers [4].

One way to monitor the cluster’s thermal behavior is to set up temperature sensors to

monitor the incoming (a.k.a, inlet) and outgoing (or outlet) air temperatures of cluster nodes in

data centers. Although deploying sensors is feasible for small clusters, it becomes an expensive

and tedious solution for large data centers housing thousands of server nodes. Further, sensors
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are also subjected to failures, which may lead to invalid or faulty data collection. Therefore,

it is important to use inexpensive models to estimate the inlet and outlet air temperature of

servers in cluster systems. A thermal model aims to predict internal temperatures of different

parts of data centers [13]. Thermal modeling is helpful especially when working with large

data centers, because installing sensors to individual nodes would be tedious. Thus, thermal

models are essential in predicting an overall thermal response of data centers. Thermal profiling

lays a solid foundation for thermal models. This observation motivates us to conduct a thermal

profiling study in the context of Hadoop jobs running on cluster systems. The profiling results

are envisioned as thermal-models that serve as building blocks for the next-generation data

centers.

Operating cluster nodes at high temperatures can lead to component failures in cluster

nodes. Thus, there is a pressing need to continuously monitor the thermal behavior of data cen-

ter to anticipate and proactively deal with thermal emergencies. Avoiding thermal emergencies

is very important in order to achieve high availability and avoid hardware failures. Number of

thermal models have been proposed in the past that calculate inlet temperatures of servers and

their impact on thermal profiles and cooling cost of servers in data centers. Most of these ther-

mal models rely on processor utilizations to predict outlet air temperatures of cluster nodes. In

this dissertation, we specifically investigate the impact of MapReduce workloads on the outlet

temperature of the nodes. We propose a thermal model to predict outlet air temperatures of

cluster nodes arranged in a traditional rack. With our thermal model in place, we estimate the

cooling costs for various Hadoop applications.

Modern day companies such as Amazon, Facebook, and Google regularly gather unprece-

dented amounts of data, often referred to as Big Data. As these companies expand their data

centers, Hadoop increasingly becomes a popular big-data processing framework running in a

distributed fashion on large clusters of commodity hardware. Hadoop accomplishes two goals,

namely, massive data storage and faster processing. Hadoop works well with both structured

and unstructured data. Many Hadoop clusters consist of enormous data sets that cannot be dig-

itally acquired. Hadoop supports MapReduce programs that spread over clusters of computers

to expedite the processing of big data. This parallel computing ability, moving computation to

3



data rather than moving data to computation, gives cost-effective Hadoop clusters an edge over

other existing platforms. The popularity of Hadoop motivates us to develop a thermal-aware

scheduler to improve the energy efficiency of Hadoop clusters.

The growth of Big Data and massive data sets has presented challenges in the cost and

density of hardware technologies, available power for processing it and the related energy foot-

print. There is an array of application domains, including Big Data analytics, that can tolerate

certain loss of fidelity when resources required to provide a precise answer are either expensive

or unavailable [14]. Studies repeatedly show that applications consist of both critical and non-

critical components [15][16]. Approximate computing works by identifying the non-critical

components in applications and by compromising the accuracy in the results to a certain extent,

approximate computing lays foundation for performance gains and energy savings in cluster

systems. Approximation strategies are required to be determined on a per-application basis due

to varying nature of applications. By applying a series of approximation heuristics, applica-

tions can trade off accuracy for more crucial resources like execution time and energy [17].

In this research work, we propose a framework running thermal-aware and approximation-

enabled MapReduce applications on Hadoop cluster. MapReduce has been a popular paradigm

for analyzing huge volumes of complex data on cluster systems. Thus, embedding approxima-

tion strategies in MapReduce framework can enhance the energy-efficiency of clusters running

MapReduce applications.

1.2 Contributions

To address the challenges of thermal-aware resource management in energy-efficient clusters,

our research investigates thermal-aware profiling of workloads and scheduling, thermal model-

ing of cluster nodes followed by per-application based approximation strategies that are capable

of achieving high energy-efficiency and reduced cooling costs in clusters systems. The main

contributions of this dissertation are the following:

• We provide detailed thermal evaluation of several Hadoop benchmarking applications.

The resource access patterns are identified for performing thermal-aware job scheduling.
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• We present a thermal-aware scheduling strategy, called tDispatch, which is conducive of

reducing the temperatures of multicore processors and disks of data nodes by altering the

order in which CPU-intensive and I/O-intensive jobs are executed in a batch manner. The

thermal efficiency and performance of tDispatch is compared with those of the other two

scheduler counterparts, namely, CPUF and IOF.

• We build a thermal model, called tModel, to estimate outlet air temperatures by char-

acterizing the relationship among inlet and outlet air temperatures as well as multicore

processor temperatures. In tModel, temperatures of multicore processors are modeled

as a function of system configurations and applications’ resources access patterns. Our

tModel is conducive of predicting outlet air temperatures with high accuracy without re-

lying on the power consumed by cluster nodes. Further, the average error of our model

stays below 5% with all three chosen applications As a use case of our model, we extend

tModel to predict cooling costs of a Hadoop cluster.

• We present a case study that focuses on applying approximation computation techniques

to Hadoop applications. We demonstrate that approximation strategies are conducive

of saving energy when exact solutions are not required, also ensuring that thermal con-

straints are not violated.

• We design a thermal-aware and approximation-aware framework, called tHadoop2. tHadoop2

orchestrates thermal-aware workload placement and applications resiliency to save en-

ergy in data centers. To facilitate the development of tHadoop2, we integrate an existing

thermal-aware workload placement module called tHadoop with our tHadoop2. Our

framework consists of three key components - tHadoop, a thermal monitoring and pro-

filing module and a approximation-aware thermal manager.

1.3 Dissertation Outline

This dissertation is organized as follows.
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Chapter 2 presents a brief review of existing research efforts in the area of thermal manage-

ment. Special attention has been paid to the state-of-the-art techniques in thermal management,

thermal modeling and job scheduling, and energy-efficiency for cluster systems.

Chapter 3 provides a background on the importance of thermal-aware job scheduling for

energy efficiency, examining the impacts of CPU-intensive and I/O-intensive workloads on pro-

cessors and disk. We develop a thermal-aware job scheduling strategy called tDispatch tailored

for MapReduce applications running on Hadoop clusters. The scheduling idea of tDispatch is

motivated by a profiling study of CPU-intensive and I/O-intensive jobs from the perspective of

thermal efficiency. More specifically, we investigate the thermal behaviors of different types

of workloads running on a Hadoop cluster by stress testing data nodes through extensive ex-

periments. We demonstrate that tDispatch is conducive of creating opportunities to cool down

multicore processors and disks in Hadoop clusters deployed in modern data centers.

Chapter 4 focuses on characterizing thermal profiles of cluster nodes - an integral part of

any approach that addresses thermal emergencies in data centers. We begin our discussion by

delineating a modeling framework. Then, we develop a baseline thermal model called tModel

that projects outlet air temperatures from inlet air temperatures as well as directly measured

multicore temperatures rather than deploying a CPU-utilization based model. We validate the

accuracy of our model against data gathered by thermal sensors installed on our cluster nodes.

Our results discussed in this chapter demonstrate that tModel estimates outlet air temperatures

of cluster nodes with much higher accuracy over CPU-utilization based models.

Chapter 5 presents an emerging paradigm for saving energy by identifying any inherent

resilience in applications. We present a case study on a Hadoop application where we apply

an approximation strategy to observe reductions in execution times and power consumption.

We design a thermal-aware approximate computing framework called tHadoop2 and discuss

the role of an existing module called tHadoop proposed in the past our research group. With

our tHadoop2 in place, we reckon that approximation strategies help in reducing the execu-

tion times of MapReduce applications as well as achieving thermal-efficiency with the aid of

thermal-aware data placement and thermal monitoring.
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Finally, Chapter 6 concludes the dissertation by summarizing the main contributions of

our research and suggests directions for future work.
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Chapter 2

Related Work

With a dramatic increase in energy consumption of large-scale cluster computing systems, we

must urgently address the energy efficiency issues. A variety of techniques have been proposed

for improving the energy efficiency of data centers. This chapter briefly presents prior ap-

proaches that are most relevant to our research from the perspectives of thermal management,

energy-efficient computing, thermal scheduling, and approximate computing.

2.1 Thermal Management

Recently, much attention has been paid to monitoring high temperatures inside data centers.

One of the major reasons is that data centers now consume over 2% of the electricity in the

United States as per an estimate by the Environmental Protection Agency (EPA). Various or-

ganizations are looking into ways of harnessing renewable sources of energy for cooling their

data centers. Cooling consumes electricity so thermal management is needed to reduce the

amount of electricity spent on cooling. The goal of thermal management is to reduce thermal

hotspots and non-uniform on-chip temperatures that may impact the longevity of hardware [18].

Tang et al. proposed a heat recirculation model and developed an algorithm called MPIT-TA

to reduce cooling costs by minimizing the peak inlet air temperature [19]. To reduce on-chip

temperatures, Chaparro et al. investigated the correlation between processor utilization and

temperature increase in processors [9]. Chaudhry et al. presented an array of thermal-aware

scheduling policies tailored for green data centers, where heat modeling, thermal-aware moni-

toring and profiling are integrated [20]. Our study is different from the aforementioned research
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Figure 2.1: A simplified taxonomy of the approaches to the thermal management studied in
this dissertation.

in essence that we focus on the thermal behaviors of both processors and disks in the realm of

cluster computing.

High temperatures inside data centers not only increase the operational cost, but also pe-

nalize the performance of various components of servers. Low thermal efficiency may risk

the overall safety of the data centers. In this dissertation, we pay particular attention to the

effects on processors temperatures by studying applications’ resource access patterns and the

combined effects of incoming, outgoing, and ambient air temperatures.

In the past, thermal management techniques were only designed to address the peak tem-

perature scenarios. Lately, much attention has been paid to processor temperatures and its

impact on energy consumption of cluster nodes [18]. With a growing need for reducing the

cooling costs, thermal management techniques must be employed in data centers to minimize

the operational as well as the cooling costs. For example, Jiang et al. built a thermal model
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to estimate the outgoing air temperature of a server node based on processor and disk utiliza-

tions [13]. This model estimates thermal impacts of various workloads on storage systems.

Chaparro et al. proposed a thermally efficient frontend to reduce the on-chip temperature by

(1) implementing a distributed rename and commit logic and (2) proposing a banked design

on trace cache. These two techniques reduce temperatures in various components of microar-

chitectures [9]. While the aforementioned thermal management approaches are applicable to

storage systems and microprocessors, our proposed scheme is tailored for thermal managers in

Hadoop clusters.

Traditionally, reactive thermal management strategies have been employed in data centers

to deal with thermal emergencies and hotspot prevention. In particular, CFD (i.e., Computa-

tional Fluids Dynamics) simulations that have been used to evaluate thermal performance of

data centers with a given configuration. A downside of CFD simulations is the elongated time

to obtain these simulation results. Since thermal emergencies should be dealt in a timely fash-

ion to safely operate data centers, researchers have been continuously looking into improving

thermal management.

Tang et al. developed a heat flow model that accelerates the thermal predictions as op-

posed to CFD to characterize hot air recirculation in data centers [21] . Tang’s heat flow model

relies on the use of sensors for gathering temperature data for their simulations-based study. To

manage thermal emergencies without significant performance degradation, Ramoz and Bian-

chini created an online future temperature prediction framework by combining DVFS, request

distribution, and request-admission control for Internet services [22].

In our research, we conduct experiments demonstrating that outlet air temperatures can

be modeled as a function of multicore temperatures and inlet temperatures without necessar-

ily relying on CPU utilization. Utilization-based thermal models may introduce errors due to

inaccurate mappings from system utilization to outlet temperatures. Our model addresses this

concern in the existing models by eliminating utilization models as a middle man.
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2.2 Energy-Efficient Computing

Energy-efficiency is directly linked to thermal-awareness in cluster systems; by reducing the

amount of heat in the system, energy-efficiency of cluster systems can be enhanced [5]. An

increasing number of energy-saving techniques have been designed to reduce the energy costs

of data centers. For example, a few common strategies adopted by modern data centers include

raising the supplied air temperature, using atmospheric air directly for cooling, turning off idle-

servers, and consolidating workloads to minimize the number of active nodes at a given time.

One way to improve energy efficiency is to develop thermal-aware job scheduling tech-

niques (see, for example, [23] [24] [25] [26] [27] [28]). Beloglazov et al. presented a com-

prehensive study on the energy-efficient techniques that can be deployed in data centers and

cloud environments [29]. Alsubaihi and Gaudiot developed PETS (i.e., Performance, Energy

and Thermal-Aware Scheduler) that considers various scheduling constraints like job schedul-

ing, core scaling, and thread allocation. PETS is able to improve execution time and energy

consumption under peak power [25]. Cao et al. proposed a cooling strategy optimizing job-to-

node mapping and reducing hotspot temperature by allocating power-hungry jobs to compute

nodes [23]. By estimating the power consumption of jobs, Varsamopoulos [30] devised a cool-

ing model applied in thermal-aware job scheduling algorithms that profiles the behavior of a

CRAC systems; Computer Room Air Conditioning (CRAC) unit is a device that monitors and

maintains the temperature, air distribution and humidity in a data center.

MapReduce-based computing frameworks like Yahoo!’s Hadoop or Amazon’s Elastic

MapReduce have been extensively used to process large-scale data and analysis. There are

two very popular and successful techniques for improving the energy efficiency of Hadoop

clusters. The first scheme is to allocate workload to only an appropriate number of nodes

and to place the rest of the nodes in the inactive power mode. The second technique deploys

the suitable nodes for a job by understanding its compute and storage features, thereby sav-

ing the energy from oversized components [31]. Acknowledging the architecture of Hadoop

that allows it to transition nodes to and from active mode to inactive power mode, Leverich et

al. designed an energy-efficient Hadoop cluster, in which a significant number of nodes are
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transitioned into the low-power sleep mode while keeping active nodes fully functional [31].

Kaushik and Bhandarkar developed GreenHDFS, where a Hadoop cluster is divided into Hot

and Cold zones [32]. A hot zone is a collection of nodes currently executing jobs, whereas a

cold zone has nodes sitting idle in low-power mode. A zone’s temperature is determined by

its power consumption and the data is placed onto a suitable temperature zone by using data

classification policies [32]. Our research is orthogonal to the above energy-efficient Hadoop

techniques. Incorporating our thermal job scheduler into the existing energy-efficient Hadoop

clusters can further improve the energy efficiency of data centers housing Hadoop clusters.

2.3 Job Scheduling

A large number of novel schedulers were proposed to optimize the energy and thermal ef-

ficiency of single machines [33][34]. Job schedulers play a vital role in improving energy

efficiency and performance of large-scale clusters [35][36][37][38]. In this subsection, we

summarize a list of existing job schedulers; we also compare our tDispatch with the existing

scheduling solutions (see details in Table 2.1).

Thermal-aware job scheduling techniques aim at keeping the temperatures of all compo-

nents of cluster nodes below a certain threshold while improving the energy-efficiency of the

nodes at the same time. Recently, an increasing number of novel schedulers have been pro-

posed to Hadoop clusters housed in data centers. For example, Pastorelli et al. designed a

job scheduler called HFSP for Hadoop clusters. HFSP implements a size-based preemptive

scheduling principle, which aims at reducing overall system response times and guaranteeing

fairness by building job size information using virtual time and aging as metrics [39]. Zaharia et

al. proposed a mechanism, Delay Scheduling, that achieves nearly 100% locality while slightly

relaxing fairness. The delay-scheduling idea was integrated into Hadoop’s fair scheduler to

improve the response time of small jobs by a factor of five (5) and to double throughput in

I/O-heavy workload [40]. Radheshyam et al. proposed a scheduling algorithm that involves

task selection and task assignment to choose the best task suitable for a particular data node.

Their algorithm applies heuristic and machine learning solutions to balance resources on clus-

ters to reduce overall runtime of submitted jobs [41]. Zaharia et al. also developed a scheduler,
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LATE, which uses estimated finish times to speculatively execute those tasks that degrade the

response time [42]. LATE outperforms Hadoop’s default speculative execution algorithm in

real workloads on Amazon’s Elastic Compute Cloud. Mashayekhy et al. proposed two energy-

efficient MapReduce scheduling algorithms (i.e., EMRSA) assigning map and reduce tasks to

appropriate nodes in order to minimize energy consumed in Hadoop clusters [43]. Mukherjee

et al. present a comprehensive study on thermal scheduling algorithms by using a set of three

heat models. The aim of their study is to minimize the maximum temperatures imposed by

different workloads on any machine [44].

To deal with thermal emergencies and the emergence of hotspots, it is imperative to study

the effects of individual applications on processor temperatures and leverage spatial job place-

ment on various cores on a processor chip to reduce the overall heat buildup inside a node [18].

We propose a thermal-aware scheduler that dispatches Hadoop jobs based on their profiled

thermal characteristics. While most of the existing Hadoop schedulers are improving overall

cluster performance, our tDispatch is conducive to optimizing thermal efficiency and reducing

cooling cost of Hadoop clusters in data centers. In particular, we strive to control the processor

temperatures, which in turn contributes to saving energy as well.

Job Scheduler Hadoop Cluster Energy-
efficient

Thermal-
efficient

I/O-
intensive

Fairness

tDispatch (Ours) 3 3 3 3 3 3

HFSP [39] 3 3 7 7 7 3

Delay Scheduler [40] 3 3 7 7 3 3

MRSched [41] 3 3 7 7 3 7

LATE [42] 3 3 7 7 7 3

EMRSA [43] [45] 3 3 3 7 7 7

Green Data Centers [35] 7 3 3 3 7 7

CLB [36], IOCM [37] 7 3 7 7 3 3

MILP [33] 7 7 3 7 7 3

TARS [34] 7 7 3 3 7 7

Table 2.1: Comparisons between our tDispatch and the existing job schedulers.
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2.4 Thermal Modeling

Like performance modeling that captures irregular resource usage patterns in clusters, thermal

modeling is beneficial to various energy-optimizing tasks. Thermal models are deployed in

energy-aware control algorithms for identifying cooling-efficient zones for computationally in-

tensive workloads. A few schemes (see, for example, [46]) offer system performance analysis

by modeling system behaviors. Thermal profiling was employed to examine an array of best

practices like air management, optimizing the size of data centers, and utilizing free cooling by

using chilled water.

A handful of thermal models tailored for thermal management in data centers have been

proposed in the past decade [22], [47], [48] [46] [49] and [50]. For instance, Li et al. con-

ducted a preliminary study on load distribution techniques, applying an analytical model for

minimizing computing and cooling energy collectively [47]. Parolini et al. presented a cyber-

physical system that takes advantage of thermal-aware file placement for data centers [51].

Similarly, Kaushik and Nahrstedt [52] investigated proactive, thermal-aware placement, which

saves cooling costs without performance degradation.

In a few studies, processor variation was incorporated to create effective thermal models

and schedulers. For example, owing to the variation in processor power efficiency, Rountree

et al. [53] studied processor performance under power clamping; their study demonstrated that

a power bound converts variation in processor power to variation in performance. Our tModel

aims to predict outlet air temperatures to estimate cooling costs for CRACs in data centers.

In the tModel research, we put thermal modeling of Hadoop clusters under a microscope. In

particular, we investigate how the workload would have impacts on the temperatures of multiple

cores in Hadoop applications, which in turn affect servers’ outlet air temperatures.

2.5 Approximate Computing

Energy-efficiency is the biggest challenge in exascale computing. Approximate Computing

(AC) has emerged as a design paradigm that enables energy savings and performance gains

by incorporating modest relaxations in otherwise strict computation instructions. It is worth
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mentioning that AC has gained a lot of attention in the last decade from the community of

researchers, including programming languages, architecture, circuits, and application develop-

ers. Even research shows that energy-efficient applications can enhance the energy efficiency

in cluster systems [5].

Recently, a few studies have shown that approximate computing techniques can be applied

at four different levels, namely, application, software, hardware, and circuit [54] [55] [56] [57].

Venkataramani et al. presented a comprehensive study on the principles of approximate com-

puting and a framework that integrates approximate computing techniques at various levels

of the computing stack, namely circuit, architecture, and software [16]. Where at circuit and

architecture levels, the attention is paid to reducing hardware complexity and employing ap-

proximate application-specific accelerators and programming processors respectively, at the

software level, applications are partitioned into resilient and sensitive parts and such resilient

parts are skipped during computations [16] [15]. A very similar framework designed by Chippa

et al. identifies potential resilient computations in various application domains such as recog-

nition, data mining, and search [15]. Goiri et al. designed a framework, ApproxHadoop, that

uses sampling-based approaches to compute error bounds for popular classes of MapReduce

programs. To achieve reductions in energy consumption and application execution time, Ap-

proxHadoop considers input data sampling, task dropping, and a user-defined error-bound at a

particular confidence level. Hui et al. designed a scheduling algorithm, Good Enough (GE),

that works by distributing power among the processor cores to save energy. GE is able to save

energy by working in two execution modes - (1) Aggressive Energy: low power mode used for

the majority of the experimentation and (2) Best Quality: used when user-specified quality falls

below a predefined quality [58]. Akturk et al. present a comprehensive study on the accuracy

metrics adopted for a wide variety of applications in the realm of approximate computing [59].

While these efforts are primarily concerned with error-resilient hardware, applications,

and circuits, our primary contribution is in the analysis and characterization of MapReduce

applications to find avenues for saving energy when exact results are not required. In this dis-

sertation, we propose an approximation-aware thermal framework calledtHadoop2. We assimi-

late an existing thermal-aware workload placement module called tHadoop with our tHadoop2.
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tHadoop2 aids in reducing execution times in MapReduce application and improving thermal-

efficiency thanks to thermal-aware data placement and continuous thermal monitoring.
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Chapter 3

Thermal-aware Job Scheduling

Thermal-aware job scheduling incorporates knowledge of the thermal impact (i.e. the effect

of the heat and temperature distribution) of a schedule on the cluster nodes. Thermal-aware

job scheduling aims to produce schedules that yield minimal cooling needs and therefore are

energy-efficient. Such schedules must not only increase energy-efficiency of systems without

comprising on their computing performance.

In this chapter, we develop a thermal-aware job scheduling strategy called tDispatch tai-

lored for MapReduce applications running on Hadoop clusters. The scheduling idea of tDis-

patch is motivated by a profiling study of CPU-intensive and I/O-intensive jobs from the per-

spective of thermal efficiency. More specifically, we investigate the thermal behaviors of these

two types of jobs running on a Hadoop cluster by stress testing data nodes through extensive

experiments. We show that CPU-intensive and I/O-intensive jobs exhibit various thermal and

performance impacts on multicore processors and hard drives of Hadoop cluster nodes. After

we quantify the thermal behaviors of Hadoop jobs on the master and data nodes of a clus-

ter, we propose our scheduler to alternatively dispatch CPU-intensive and I/O-intensive jobs.

We apply our strategy to several MapReduce applications with different resource consumption

profiles. Our experimental results show that tDispatch is conducive of creating opportunities to

cool down multicore processors and disks in Hadoop clusters deployed in modern data centers.

Our findings can be applied in other thermal-efficient job schedulers that are aware of thermal

behaviors of CPU-intensive and I/O-intensive applications submitted to Hadoop clusters.

The remainder of the chapter is organized as follows. Section 3.1 presents motivations for

our tDispatch scheduler. Section 3.2 describes the experimental setups followed by the analysis
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of the thermal behaviors of Hadoop applications. The description of the tDispatch scheduler

can be found in Section 3.3. Section 3.4 shows the comparisons of tDispatch and the two job

scheduler counterparts. Finally, Section 3.6 summarizes our results and concludes the chapter.

3.1 Motivations

Job schedulers play a vital role in improving energy efficiency and performance of large-scale

clusters [60][61][62]. To understand and develop a relationship among thermal impacts of

different types of jobs on a Hadoop cluster, we study the thermal behavior of master and data

nodes on a homogeneous Hadoop cluster, where all the nodes share an identical configuration.

After summarizing the experiment setups (see Section 3.2.1), we discuss the thermal behaviors

of various MapReduce benchmarks (see Section 3.2).

Current literature focuses on the thermal efficiency of data centers [63][64], but no prior

study investigated the impacts of Hadoop jobs on the overall heat buildup in a data center. In

this study, we propose a thermal-aware scheduler called tDispatch to improve energy efficiency

of Hadoop clusters and lowering cooling costs. We show that CPU-intensive and I/O-intensive

jobs exhibit distinct thermal behaviors on multicore processors and hard drives of Hadoop

clusters. We also demonstrate that one way to make Hadoop clusters thermal friendly is to

dispatch a mix of CPU-intensive and I/O-intensive jobs to Hadoop clusters.

Our tDispatch job scheduler facilitates an essential aid to data centers as tDispatch ensures

stable building plans and energy efficiency factors. The findings of this study help in designing

cost-effective cooling management solutions to modern data centers.

There are four main motivations for working toward thermal-aware job scheduling in

Hadoop clusters:

1. ability of Hadoop to manage big data.

2. augmenting cooling and electricity costs of data centers.

3. thermal profiles of Hadoop jobs running on clusters.

4. lack of thermal-aware schedulers tailored for both CPU-intensive and I/O-intensive jobs.
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3.2 Thermal Behaviors of the Benchmarks

In this section, we study the thermal behaviors of four MapReduce benchmarks applications,

namely, WordCount, Sort, PageRank, and TeraSort.

3.2.1 Experimental Testbed

Hadoop Server

In this group of experiments, we observe thermal behavior of a homogeneous cluster com-

prising of 15 nodes (labeled as backend-1-0 to backend-1-16) that are placed on a rack in our

HPC room (backend-1-4 and backend-1-5 were not available for this experiment). The room

temperature is set to 20◦C. Table 3.1 describes the configuration of these nodes.

Hardware

Computer SuperMicro Model 825-7
CPU Intel (R) Xeon (R) X5650@2.67GHz (cores: 24 with 2 H/W threads each)
Memory 24 GB DDR3 SDRAM at 1066 MHz
Network controller GigaBit Ethernet and 20 GB InfiniBand
Disks 500 GB

Software

Operating System Cent OS 7.2 64-bit
Hadoop Release 2.7.3
Linux Kernel 3.10.0

Table 3.1: Hardware and software configurations of the experimental testbed

MapReduce is a framework for processing parallelizable problems across a multitude of

computing nodes, collectively referred to as a cluster (if all nodes are on the same local network

and use similar hardware) or a grid (if the nodes are shared across geographically and admin-

istratively distributed systems, and use more heterogenous hardware) [65]. Furthermore, many

MapReduce applications show significant variation in resources (CPU/disks/DRAM) consump-

tion during their execution. An I/O-intensive application spends a significant portion of the time

processing I/O operations rather than computing tasks. A CPU-intensive application, in con-

trast, infrequently generates I/O requests while spending a vast majority of time doing com-

putations [66]. MapReduce applications range from CPU-intensive to I/O-intensive, and the
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HiBench Input Size Wordcount TeraSort Sort PageRank
no of pages

Tiny 3200 3200 32000 50
Small 320000000 320000 3200000 500
Large 3200000000 32000000 320000000 500000
Huge 32000000000 320000000 3200000000 5000000
Gigantic 320000000000 3200000000 32000000000 50000000
Big Data 1600000000000 6000000000 300000000000 30000000

Table 3.2: Various HiBench inputs sizes and corresponding sizes in Megabytes (MB)

workload of each subtask is either CPU-bound or I/O-bound. To investigate the variation in the

behaviors of MapReduce applications as per their characteristics (I/O-bound or CPU-bound),

we run a mix of I/O-intensive and CPU-intensive Hadoop applications on a homogeneous clus-

ter. We choose a few micro benchmarks from a popular MapReduce benchmark suite by Intel

called HiBench [67].

We choose four popular Hadoop benchmarks, namely, WordCount, PageRank, Sort, and

TeraSort and we vary the input data sizes (tiny, small, large, huge, and gigantic) for each of

these four benchmarks as available with HiBench benchmark suite [67]. To measure processor

temperatures, we use a Linux utility program called lm-sensors; we apply another utility called

hddtemp to monitor internal hard drive temperatures; we make use of the iostat tool to measure

CPU and disk utilization. CPU utilization represents the computing load across all the four

cores, whereas disk utilization represents I/O load imposed by tested Hadoop applications.

Further, we use Ganglia, a monitoring system for high-performance computing systems (e.g.,

clusters). We use the elapsed wall clock time as execution time. We emphasize here that our

work is comprised of measuring actual execution time, CPU/disk temperatures, and utilization

of the aforementioned MapReduce applications without relying on any simulation data.

The following factors inspire us to investigate thermal behaviors of homogeneous clusters

without addressing the air re-circulation and node placement issues.

• In this study, we focus on homogeneous clusters, because nodes in a brand new cluster

are typically homogeneous in nature. It is worth mentioning that our thermal profiling

research can be extended to heterogeneous clusters.
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• For the purpose of measurements, the evaluated nodes are placed in a traditional rack.

The node placement in a rack, of course, can affect air re-circulation in a data center;

air re-circulation is beyond the scope of this study. Our thermal profiling results can be

incorporated into a data center’s thermal model, where air re-circulation is taken into

account.

In the following sections, we will analyze the thermal behavior of our cluster running Hadoop

with the aid of graphs obtained from Ganglia.

3.2.2 WordCount

The tested WordCount is a MapReduce application running on a Hadoop cluster, where text

files are loaded and the frequency of each word in the files is counted. The input to Wordcount

is text file(s), and output is also a text file containing words followed by number of times they

occur. By the nature of it, WordCount is a CPU-bound application as it spends most of its time

in computing.

The purpose of using WordCount is to study the thermal properties of the processors of

the Hadoop cluster’s nodes by keeping CPU extremely busy. We make WordCount process a

huge-sized data (i.e., 32 GB) available through HiBench in order to make the experiment run

for a long duration of time, which helps us to better understand of the cluster’s behavior.

Fig. 3.1(a) shows the CPU utilization of all the cores residing in the master node. We

observe that CPU utilization of the master node change insignificantly; the disk temperature

stays almost as a constant (not presented here). This thermal trend is expected, because the

master node is simply responsible for dispatching MapReduce jobs to the data nodes without

dealing with any CPU-bound or I/O-bound tasks. For example, Fig. 3.2(a) confirms that the

CPU temperature of the master node is extremely low.

We measure and collect thermal trends of the data node(s) that ran the Wordcount. Due to

space limitation and the similar trends of all the data nodes, we only present the thermal results

of the two nodes in Figs. 3.2(b) and 3.2(c), each of which depicts the temperatures of the twelve

cores as functions of time. Figs. 3.2(b) and 3.2(c) show that the temperatures of all the cores

increase gradually. Not surprisingly, the data nodes’ CPU temperatures are much higher than
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(a) CPU Utilization (%) of the master node

(b) CPU Utilization (%) of a data node

(c) CPU Utilization (%) of another data node

Figure 3.1: Figures show the CPU utilization (%) of WordCount application running on data
nodes in our cluster.

those of the master node (see also Fig. 3.2(a)), because most of the work is allocated to the

data nodes. Moreover, we noticed in our results that there is not much deviation in CPU core

temperatures inside the same chip. The average CPU temperature of all the multiple cores in
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(a) CPU temperature of all cores on the master node

(b) CPU temperature of all cores on a data node

(c) CPU temperature of all cores on another data node

Figure 3.2: Average CPU temperatures of the master and two data nodes collected during the
execution of Wordcount application.
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one data node (see Fig. 3.2(b)) is 28.5◦C. The CPU temperatures start diminishing towards the

end of the experiments on all the data nodes.

We observed that compared to the processor temperatures, disk temperatures are insensi-

tive to the WordCount workload. More specifically, the disk temperatures rise very slowly as

the experiment proceeded. It takes around 15-20 minutes for the disks to heat up by 3◦C on

the slave nodes. Since the disks are not as thermally sensitive to workload as processors, no

cooling down phase of the disks is observed immediately at the end of the experiments. For

the same reason, we do not present the disk temperature here and thus, focusing only on CPU

temperatures.

Figs. 3.1(a), 3.1(b), and 3.1(c) show the CPU utilization patterns on master and data nodes

of our cluster running WordCount. We observe that for a slight increase in CPU utilization on

slave nodes, the CPU temperature shoots up significantly (see Figs. 3.2(b) and 3.2(c)).

3.2.3 TeraSort

We make use of TeraSort - a MapReduce benchmark - to measure the execution time spent in

sorting terabytes of data on a Hadoop cluster. The performance of TeraSort depends on the

amount of available resources on the cluster. Unlike WordCount, TeraSort spends a significant

amount of time performing input-output operations; we classify TeraSort as an I/O-intensive

application.

We make TeraSort process a large-sized data available with HiBench benchmark suite

(i.e., 32 GB). Unsurprisingly, we observe similar trends in CPU temperature among all the

data nodes and; therefore, we select the data node which was deployed to run TeraSort and

the results are shown in this subsection. We have represented CPU utilization and temperature

trends here.

The input data of TeraSort is partitioned equally among the available cores; therefore, all

the cores on each node exhibit identical heat patterns. We observe interesting heat patterns dur-

ing the execution of TeraSort. We present the CPU utilization patterns for the master node (see

fig. 3.4(a)) and two representative data nodes (see fig. 3.4(b) and fig. 3.4(b)). We observe that
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(a) CPU Utilization (%) of the master node (b) CPU Utilization (%) of a data node

(c) CPU Utilization (%) of another data node

(d) CPU Core temperatures of the master node (e) CPU Core temperatures of a data node

(f) CPU Core temperatures of another data node

Figure 3.3: Average CPU utilization and temperatures of all twelve CPU cores of the master
and two data nodes of the Hadoop cluster running TeraSort benchmark.
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(a) CPU utilization (%) of the master node (b) CPU utilization (%) of a data node

(c) CPU utilization (%) of another data node

(d) CPU temperature of the master node (e) CPU temperature of a data node

(f) CPU temperature of another data node

Figure 3.4: Average CPU utilization and temperatures of all cores of the master and two data
nodes of the Hadoop cluster running PageRank
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the CPU utilization is significantly low for disk-intensive jobs. Fig. 3.3(d) shows the tempera-

ture of the twelve cores and on the master node. Because the master node allocates a majority

of the work to the data nodes, the CPU utilization remains at a low level on the master. As such,

the corresponding temperatures are also remain low. As the data nodes starts processing the

job assigned to them by the master node, the disk temperatures on the slave nodes start rising

due to the extensive disk usage. The CPU temperature rises occasionally but remains steady

for most of the time (see Figs. 3.3(e) and 3.3(f)).

Similar trends for Sort are observed but in the interest of space, the figures are not rep-

resented here. The CPU utilization as well as the CPU temperatures stay very minimal with

running huge-sized Sort.

3.2.4 PageRank

Now we test PageRank, which is a open source implementation of page-rank algorithm and is

used in web search engines that calculate the ranks of web pages according to the numbers of

references links [67]. This is helpful in finding the most relevant information for the searched

keyword(s). Page ranking in Hadoop involves parsing, calculating, and ordering.

PageRank spends considerable amount of time on iterating small jobs and most of these

jobs are CPU bound, with some memory and disk I/O consumption. The goal of this group of

experiments is to study PageRank’s behaviors. Compared to its counterparts (i.e., WordCount,

Sort, and TeraSort), PageRank has the longest execution time given the same size of input data.

Thus, it is an ideal candidate to examine the thermal behaviors of the cluster in a long interval.

We set the PageRank’s input data size to 32 GB (which is categorized as huge as per HiBench’s

default configuration) and run PageRank on this data set for ten time to understand the behavior

clearly. Similar to the previous experiments, we only present the results of the three data nodes;

disk utilization trends are omitted in this subsection.

Figs. 3.4(a), 3.4(b), and 3.4(c) show the CPU utilization of the master and two data nodes.

Fig. 3.4(d) shows the temperatures of all 12 cores residing on the master node. The CPU

thermal trends are expected, because the role of the master node is to dispatch all the tasks to

the data nodes.
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Figs. 3.4(e) and 3.4(f) demonstrate the behavior of PageRank on the data nodes, where

we observe an interesting pattern of the CPU temperatures. The CPU temperatures start rising

as the experiment progresses and remain considerable high throughout the experiment. The

maximum CPU core temperature on one of the data nodes is 39◦C (see Fig. 3.4(e)) while the

maximum disk temperature on another data node is 38◦C (see Fig. 3.4(f)).

3.3 A Thermal-aware Job Scheduler

In this section, we propose tDispatch - a thermal-aware job scheduler aiming to reduce the CPU

and disk temperatures of Hadoop clusters.

During the process of designing tDispatch, we answer the following two questions:

• How should we classify Hadoop jobs into CPU-intensive and I/O-intensive categories?

(see Section 3.3.1)

• How do we make use of these two job categories to improve thermal management of

Hadoop clusters? (see Section 3.3.2)

3.3.1 Job Profiling

We run and profile WordCount and TeraSort on a Hadoop cluster. We only run one job at a

time and collect the CPU and disk temperatures of the cluster nodes.

Using the results of our prior experiments, we identify the access patterns of MapReduce

applications by taking resource utilization of subtasks into account. Since each subtask issues

either computation or I/O requests, we can categorize these benchmarks in one of the two

categories: CPU-Intensive or I/O-intensive.

• CPU-intensive Jobs: A submitted application is called a CPU-intensive job, if its CPU

load dominates the overall workload of the job. A CPU-intensive job spends more time

in computation than processing disk or network I/Os.

• I/O-intensive Jobs: We refer to a submitted application as an I/O-intensive job when

disk or network I/O activities dominate the job’s load. Unlike CPU-intensive jobs, I/O-

intensive ones spend a significant amount of time processing disk for network I/Os. In
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this study, we pay particular attention to disk-intensive jobs. Nevertheless, the scheduler

is also applicable to network-intensive jobs.

We classify Hadoop jobs into the CPU-intensive and I/O-intensive ones, because CPU and

disk temperatures are highly sensitive to CPU and disk utilization, respectively. I/O-intensive

jobs have the property of performing only a small amount of computation before performing

I/O. Such jobs typically do not use up their entire CPU allocation. CPU-intensive jobs, on the

other hand, use their entire CPU allocation without performing any blocking I/O operations.

In what follows, we show how to rely on profiling information to determine if a job is a CPU-

intensive or I/O-intensive one. The tDispatch makes use of this information to dispatch jobs in

a thermal-friendly way. We also show that CPU-intensive jobs have significant thermal impacts

on multicore processors, whereas I/O-intensive jobs noticeably increase disk temperatures of

Hadoop clusters.

3.3.2 Job Scheduler Design

In this part of the study, we design a thermal-aware job scheduling strategy aimed to keep

CPU and disk temperatures of cluster nodes as low as possible. We design tDispatch - a job

scheduler tailored for big-data applications running on large-scale Hadoop clusters deployed

in data centers. Hadoop’s fair scheduling policy assigns a fair share of CPU resources to all

running jobs with minimum starvation. tDispatch addresses the downside of the existing job

schedulers that overlook thermal efficiency, the improvement of which has become a critical

concern for data centers.

3.3.3 Two Modules

Our job scheduling mechanism consists of two key components, namely, tQueue and tDis-

patch(Fig. 3.5). The tQueue module is responsible for maintaining two dedicated queues - one

for CPU-intensive jobs (i.e., Qc) and one for I/O-intensive jobs (i.e., Qd). The master node

receives incoming jobs through clients. The received jobs are appended to one of the two

queues based on their types. If a job is CPU-intensive, it is queued up into Qc; otherwise, the

I/O-intensive job is queued up in Qd.
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Figure 3.5: Flow chart diagram of two modules, tQueue and tDispatch, of our proposed sched-
uler.

Algorithm 1 presents the pseudocode of tQueue. It is noteworthy that tQueue has high ex-

tensibility, because tQueue can be readily extended by managing additional queues for memory-

intensive jobs or jobs with other types of characteristics.

Algorithm 1: tQueue. Input: Job Ji; Output: Qc, Qd.
1: if Ji.type = I/O − intensive then
2: Qd.enqueue(Ji);
3: else
4: Qc.enqueue(Ji); /*job j is CPU-intensive*/
5: end if

We design tDispatch (see Algorithm 2) to allocate resources of a Hadoop cluster to one of

the jobs in queues Qc and Qd, which are managed by tQueue. After a running job finishes its

execution, tDispatch thermal-efficiently picks another candidate job from Qc and Qd to run on

the cluster. In our design, the interface between tQueue and tDispatch are Qc and Qd.
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3.3.4 Fairness and Starvation Avoidance

One novelty of our design is that tDispatch allows CPU and disk temperatures to cool by dis-

patching two types of jobs - I/O-intensive and CPU-intensive respectively. To avoid starvation

and guarantee fairness between these two types of jobs, we ensure that the number of consecu-

tive runs of the same type of jobs is always below an upper bound (see S in Lines 6 and 15 of

Algorithm 2). In doing so, no job will be starved in the queues. This fairness-maintaining idea

is implemented by introducing two counters Wc and Wd (see Line 1 of Algorithm 2), which

keep track of the number of times one type of jobs’ execution has been postponed. For exam-

ple, if the scheduler repeatedly dispatches CPU-intensive jobs from queue Qc to reduce disk

temperatures, then counterWd is increased by 1 after each CPU-intensive job is dispatched (see

Lines 6-9 of Algorithm 2). When counter Wd reaches the upperbound S, an I/O-intensive job

must be dispatched regardless of disk temperatures (see Lines 10-13 of Algorithm 2). In this

case, counter Wd is reset to 0 after the I/O-intensive job starts its execution, thereby offering

additional opportunities to continue cooling down disks.

3.3.5 Thermal Awareness

During the process of choosing the best job candidate from the queue Qc and Qd, algorithm

tDispatch checks if the average CPU and disk temperatures of the Hadoop cluster are well be-

low redline temperatures, which are recommended by manufacturers to safely operate devices.

Here we denoteRc andRd as the threshold temperatures of CPUs and disks. When the cluster’s

average CPU temperature exceeds the threshold Rc, tDispatch starts running I/O-intensive jobs

rather than CPU-intensive ones to lower CPU temperatures.

tDispatch makes an effort to keep CPU and disk temperatures below thresholds Rc and

Rd. tDispatch achieves this goal by taking advantage of the fact that a CPU-intensive jobs tend

to further raise the CPU temperatures whereas an I/O-intensive job inevitably augment the disk

temperature. Therefore, when the CPU temperature is nearly equal to temperature threshold

Rc, tDispatch postpones the execution of any CPU-intensive job by dispatching I/O-intensive
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Algorithm 2: tDispatch. Input: Qc, Qd.
1: Initialize Wc ← 0, Wd ← 0
2: while a job finishes its execution do
3: if i.tc < Rc then
4: if i.td < Rd then
5: dispatch a job from Qc and Qd using FIFO;
6: else if i.td > Rd and Wd < S then
7: dispatch a job from Qc to node i;
8: Wc ← 0;
9: Wd ← Wd + 1;

10: else
11: dispatch a job from Qd to node i;
12: Wd ← 0
13: end if
14: else if i.tc > Rc then
15: if Wc < S then
16: dispatch a job from Qd;
17: Wd ← 0;
18: Wc ← Wc + 1;
19: else
20: dispatch a job from Qc;
21: Wc ← 0;
22: end if
23: else
24: dispatch a job from Qc and Qd using FIFO;
25: end if
26: end while
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jobs in queue Qd. Consequently, tDispatch keeps the overall CPU temperature low (see Lines

14-20 of Algorithm 2).

Similarly, tDispatch attempts to reduce overall disk temperatures (see Lines 6-9 of Algo-

rithm 2). Specifically, if the cluster’s average disk temperature goes beyond threshold Rd, then

CPU-intensive jobs rather than I/O-intensive ones are dispatched to the cluster.

3.3.6 Two Extreme Scenarios

If both average CPU and disk temperatures are below threshold temperatures Rc and Rd, then

our tDispatch scheduler follows the FIFO policy to pick a job with the earliest arrival time

from queues Qc and Qd, and dispatches the chosen job to the Hadoop cluster for execution (see

Lines 3-5 of Algorithm 2).

Under heavy workload conditions, both CPU and disk temperatures are likely to exceed

threshold Rc and Rd. In this extreme case, tDispatch applies FIFO to schedule jobs in queues

Qc and Qd (see Line 24 of Algorithm 2).

3.3.7 Extensibility

Since our cluster is homogeneous in nature, the CPU and disk threshold temperatures (i.e.,

Rc and Rd) are identical across all the nodes. Nevertheless, our algorithm can be extended

to handle the heterogeneous case where multiple nodes have various CPU and disk redline

temperatures. When it comes to heterogeneous clusters, we replace threshold temperatures Rc

and Rd with two threshold vectors R̂c and R̂d, where different nodes have distinct threshold

temperatures maintained in the two vectors.

In the aforementioned two extreme scenarios (i.e., very light or heavy load, see Sec-

tion 3.3.6), tDispatch applies the FIFO policy. Our algorithm tDispatch is extensible in a

way that FIFO can be readily substituted by any other policy that optimizes overall system per-

formance. For example, if we adopt tDispatch to deal with real-time jobs, a good scheduling

policy to replace FIFO is the earliest deadline first or EDF.
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3.4 Results and Discussions

In this section, we evaluate the thermal efficiency and performance of our proposed thermal-

aware job scheduling strategy (i.e., tDispatch). The goal of our experiments is to demonstrate

that the tDispatch scheduler is capable of improving thermal efficiency of Hadoop clusters by

the virtue of its thermal awareness.

3.4.1 CPU-intensive and I/O-intensive Jobs

We are focusing on two popular types of Hadoop jobs, namely, CPU-intensive and I/O-intensive

jobs. The tested Hadoop jobs were implemented using the MapReduce programming model,

where each MapReduce application comprises of a large number of mapper and reducer tasks

running on clusters. These mappers and reducers may be either CPU-bound, I/O-bound, or

network bound. CPU-bound tasks tend to increase processor temperatures, whereas I/O-bound

jobs noticeably affect disk temperatures. We choose WordCount and PageRank as the CPU-

intensive jobs; we also run TeraSort and Sort as representatives of I/O-intensive jobs.

For fair comparison, we set the size of data for each job, regardless of its type, to be

HiBench-large. The duration of these jobs is short and this short execution time resembles

real-world cloud computing environments where a time-sharing policy is enforced.

With our scheduler in place, system administrators can easily maintain the overall temper-

ature of a Hadoop cluster below a specified redline temperature by lowering the supplied power

of a cooling system’s. Hence, our thermal-aware scheduler offers an energy-saving capability

through improving the cooling system’s energy efficiency.

3.4.2 Baseline Schedulers

To demonstrate the thermal awareness of tDispatch, we compare our tDispatch with two base-

line schedulers. The first one called IOF (i.e., I/O-intensive job first) gives high priority to

I/O-intensive jobs; the second scheduler named CPUF (i.e., CPU-intensive job first) chooses
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CPU-intensive jobs to be executed prior to any I/O-intensive ones. These two schedulers fa-

vor different types of Hadoop jobs submitted in a queue of the evaluated Hadoop cluster. We

compare the thermal effectiveness of our tDispatch with those of IOF and CPUF.

In addition to evaluating the thermal behavior of tDispatch, we investigate whether favor-

ing CPU-intensive jobs is more thermal friendly than favoring I/O-intensive jobs on Hadoop

clusters or vice versa. In one of our future studies, we will compare tDispatch other candidate

schedulers including fair scheduler and FIFO.

(a) CPU utilization (%) of a data node with CPUF (b) CPU utilization (%) of a data node with IOF

(c) CPU utilization (%) of a data node with tDis-
patch

(d) Disk utilization (%) of a data node with CPUF

(e) Disk utilization (%) of a data node with IOF (f) Disk utilization (%) of a data node with tDis-
patch

Figure 3.6: Average CPU and disk utilizations of the master and data nodes on a Hadoop cluster
running Terasort, WordCount, PageRank, and Sort with three different schedulers: CPUF, IOF,
and tDispatch.
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3.4.3 Experiment Methodology

In each test, we submit a total of 20 HiBench-large sized CPU- and I/O-intensive jobs to our

Hadoop cluster, where a dispatch queue (a.k.a., batch queue) maintains all the submitted jobs.

In our experiments, two CPU-intensive jobs are WordCount and PageRank; two I/O-intensive

jobs including Terasort and Sort. After all the jobs are submitted to the batch queue, our

scheduler picks an appropriate job to be launched on the Hadoop cluster. When a job completes

its execution, the scheduler chooses the next most appropriate job to be executed on the cluster

nodes.

We keep track of the CPU and disk temperatures of the master and data nodes in the

Hadoop cluster. The temperature measurements allow us to quantitatively assess the thermal-

efficiency improvement offered by tDispatch from the perspective of both CPU and disk re-

sources.

In addition to collecting CPU and disk temperatures, we monitor CPU and disk utilization

during the course of running the submitted jobs. In the interest of space, we did not present disk

temperatures since disks take a considerable amount of time to heat up and thus do not show

interesting trends. We intend to show that tDispatch is conducive of reducing temperatures of

system components without making any adverse impact on the performance of Hadoop clusters.

3.4.4 Master Node

In the first group of experiments, we measure the CPU and disk temperatures of the master

node governed by the three schedulers. We observe that the schedulers have little impact on the

thermal efficiency of the master node. Comparing Fig. 3.7 with Figs. 3.1(a) and 3.3(a) found in

Section 3.2, we conclude that both Hadoop jobs and the scheduler make no noticeable thermal

impact on the master node. Because the master node is not a thermal-efficiency bottleneck, the

results suggest that we should pay attention to improve the thermal efficiency of data nodes

rather than a master node.
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(a) CPU core temperature of a data node with CPUF

(b) CPU core temperatures of a data node with IOF

(c) CPU core temperatures of a data node with tDispatch

Figure 3.7: Average CPU temperatures of the master and data nodes node on a Hadoop cluster
running Terasort, WordCount, PageRank, and Sort with different schedulers: PUF, IOF, and
tDispatch.
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3.4.5 Data Nodes

In this group of experiments, we compare the thermal impacts of the three tested schedulers

on the Hadoop cluster from the perspective of data nodes. All the data nodes share a similar

thermal-efficiency trend and; therefore, we pick one data node as a representative to demon-

strate the thermal behaviors of all the data nodes.

Figs. 3.6(a), 3.6(b), and 3.6(c) show the CPU and disk utilization of the nodes when the

jobs are running with these three scheduling policies. We observe that the average CPU uti-

lization for the representative nodes with both CPUF and IOF remain considerably high during

the execution of the jobs; tDispatch manages to reduce the overall average of CPU utilization

(see 3.6(c)). CPU utilization is in direct correlation with the power consumption; tDispatch is

conducive of saving energy. We observe that the disk utilization is considerably reduced with

tDispatch (Fig:3.6(f)) as opposed to CPUF and IOF (figs. 3.6(d) and 3.6(e)).

Figs. 3.7(a), 3.7(b), and 3.7(c) keep track of the temperatures of all twelve cores in the data

node for our three chosen schedulers. We measure the average CPU temperature of each node

during the course of the experiments. Instead of calculating the average temperatures across

all the data nodes, we focus on the CPU utilization and the peak temperature reached since the

three experiments last for a different duration in time. Instead of using average disk utilization,

we observe the rise in disk utilization for all the three cases.

Our tDispatch is able to bring down the peak temperature of these nodes. The disk tem-

peratures in all the three scheduler cases remain flat mainly because of the relatively low I/O

load and short observation time period. Nevertheless, tDispatch noticeably reduces the average

disk temperatures of CPUF and IOF approximately by 1◦C.

3.5 Reduction in Peak Temperature and Energy-efficiency

When it comes to CPU thermal efficiency, tDispatch is superior to CPUF and IOF as it can

prevent hotspots by demonstrating the maximum difference in temperature that any core had

from the average temperature at each iteration is lower and optimizing the peak temperature

to reduce the overall power consumption. For example, the peak CPU temperature of the
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Figure 3.8: Energy consumption of various Hadoop applications running with CPUF, IOF, and
tDispatch schedulers and three different input sizes. The duration of three experiments are 3
minutes, 6 minutes, and 20 minutes.

representative node is governed by tDispatch is 36.2◦C (see fig. 3.7(a)), whereas the average

CPU temperatures of the same node through CPUF and IOF are 41◦C and 34.7◦C, respectively.

To estimate the energy efficiency of our scheduler, we used network power distribution unit

(PDU) installed in our HPC room to collect the energy consumption by our nodes. An HPC

application’s power and energy consumption can vary during the lifetime of the application due

to the nature of application itself. We use the mean power to compute energy consumption for

four different jobs with each of our schedulers. We ran three sets of experiments by varying the

input data size for our four chosen applications; the experiments finished at almost the same

time and this helps us with a fair comparison among all three schedulers in each size category.

Figure 3.8 shows the results of our experiments.

We notice that the energy consumption of very small jobs (labeled as tiny in HiBench)

is relatively high when compared with other two job sizes. Out of the three cases, the energy

consumption is minimal with small size input for the four applications. Regardless of the job

size, tDispatch is able to mitigate the energy consumption for these jobs. From the energy

consumption, we can derive the cooling cost of the data centers running these jobs.
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3.6 Summary

Recognizing that improving thermal efficiency of clusters helps in reducing the operational

cost of data centers, we developed a thermal-aware job scheduling strategy called tDispatch

for MapReduce applications running on Hadoop clusters. To facilitate the development of

tDispatch, we conducted a profiling study of CPU-intensive and I/O-intensive jobs from the

perspective of thermal efficiency. We investigated the thermal behaviors of CPU-intensive and

I/O-intensive applications running on Hadoop clusters by stress testing data nodes through

extensive experiments. Our profiling results show that CPU-intensive and I/O-intensive jobs

impose distinctive thermal and performance impacts on multicore processors and hard drives

of Hadoop clusters.

After we offered detailed analysis on the thermal profiles of the Hadoop applications, we

elaborated the design of the tDispatch scheduler, which judiciously dispatches CPU-intensive

and I/O-intensive jobs to Hadoop clusters in a way to minimize CPU and disk temperatures.

Our scheduler consists of two key components - tQueue and tDispatch. The tQueue mod-

ule is responsible for maintaining a CPU-intensive-job and I/O-intensive-job queues. We im-

plemented tDispatch to allocate resources of a Hadoop cluster to one of the jobs in these two

queues. After a running job finishes its execution, tDispatch thermal-efficiently picks another

candidate job from the job queues to run on the cluster. Our scheduler alternatively chooses

CPU-intensive and I/O-intensive jobs from the two queues to run on a Hadoop cluster, offering

ample opportunities for multicore processors and disks to cool down.

We conducted an empirical study to compare the thermal and energy performance of tDis-

patch with two scheduler counterparts, namely, CPUF and IOF. Specifically, we measured the

CPU and disk temperatures of the master node and data nodes governed by the three schedulers.

At all times, we strive to control the processor temperature as it is directly related to the power

consumption in nodes and therefore, reducing the processors temperatures shows reduction in

energy consumption by our nodes. Our findings suggest that the schedulers make little impact

on the thermal efficiency of the master node. More importantly, our experimental results show
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that tDispatch is superior to CPUF and IOF in terms of improving thermal efficiency of data

nodes.
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Chapter 4

Thermal-aware Benchmarking and Modeling

Thermal-aware designs are important to maximize thermal uniformity without degrading the

performance of computing servers. This chapter is focused on characterizing thermal profiles

of cluster nodes - an integral part of many approaches that address thermal emergencies in

data centers. Most existing thermal models make use of CPU utilization to estimate power

consumption, which in turn facilitates outlet-temperature predictions. Such utilization-based

thermal models may introduce errors due to inaccurate mappings from system utilization to

outlet temperatures. To address this concern, we eliminate utilization models as a middleman

from the existing thermal models. In this chapter, we propose a thermal model, tModel, that

projects outlet temperatures from inlet temperatures as well as directly measured multicore

temperatures rather than deploying a utilization model. In the first phase of this work, we

perform extensive experimentation by varying applications types, their input data sizes, and

cluster size. Simultaneously, we collect inlet, outlet, and multicore temperatures of cluster

nodes running these diverse Big data applications. The proposed thermal model estimates the

outlet air temperature of the nodes to predict cooling costs. We validate the accuracy of our

model against data gathered by thermal sensors in our cluster. Our results discussed in this

chapter demonstrate that tModel estimates outlet temperatures of the cluster nodes with much

higher accuracy over CPU-utilization based models. We further show that tModel is conducive

of estimating the cooling cost of data centers using the predicted outlet temperatures.

We start this chapter by delineating a modeling framework (Sec. 4.2). Then, we develop

a baseline thermal model to estimate outlet temperatures of Hadoop clusters (Sec. 4.2.1). The

rest of this chapter is organized as follows. Section 4.3 introduces our proposed model’s design
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and an essential modeling parameter, K. Section 4.4 provides the thermal profiling evaluations.

Finally, Section 4.5 concludes our study by summarizing our findings.

4.1 Towards Thermal Modeling

Thermal profile of a data center has a significant impact on its cooling cost. As mentioned

earlier, thermal models are used to characterize the thermal profile of data centers. Number

of thermal models have been proposed in the past that calculate the inlet temperatures of the

nodes and their impact on the thermal profile and cooling cost of data centers. Most of the

thermal models rely on processor utilizations to predict outlet temperatures of cluster nodes.

In this study, we specifically investigate the impact of MapReduce workloads on the outlet

temperature of the nodes. We propose a thermal model to predict outlet air temperatures of the

nodes housed in a data center. With our thermal model in place and workload characterization,

we estimate the cooling costs for various Hadoop applications.

There is a growing demand to build thermal-prediction models for high-performance clus-

ters. We design a systematic approach to developing thermal models for Hadoop applications

deployed in data centers. The thermal model proposed in this study immediately benefits usage

cases. First, outlet temperatures of server blades are applied to estimate cooling costs [26],

which depends on outlet temperatures and heat dissipated by the servers. Second, temperatures

captured in our thermal model paves a way to investigate heat re-circulation model [68] [21],

which is affected by cross-interference coefficients.

There are three contributions in this work. First, we conduct a thermal profiling study of a

cluster on which various Hadoop applications are investigated. When the applications process

various data size under different number of nodes, we profile our server nodes to monitor

multicore CPU temperatures. Second, we build a thermal model to estimate temperatures using

inlet temperatures and CPU core temperatures. Third, as a use case of our model, we extend

the model to predict the cooling cost of a Hadoop cluster.
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Figure 4.1: The system framework of our thermal models.

4.2 The Modeling Framework

Fig. 4.1 outlines our thermal-modeling framework, which consists of two key components: the

outlet-temperature model and the multicore model.

The input data of tModel includes application profiles (e.g., application type, data size),

heights of servers in racks, and inlet temperatures. It is worth noting that all these input pa-

rameters are directly fed into the multicore model which generates temperatures of multicore

processors (Sec. 4.3.2). The multicore-processor temperatures are assimilated into the outlet

temperature model (Sec. 4.3) to estimate outlet temperatures of any given computing node.

Thus, the outlet-temperature model builds up the correlations between inlet and outlet temper-

atures by incorporating multicore temperatures residing in computing nodes.

Recall that tModel relies on inlet temperatures monitored by sensors, which tend be ex-

pensive for large-scale data centers. To reduce such hefty costs, we only install temperature

sensors on a few selected blade servers (a.k.a., nodes) equidistant from each other in the rack

(e.g., 4 out of 12); one sensor each on the topmost and bottom-most node and two sensors in

between these nodes at different heights. We also may use the inlet temperatures measured on

one rack to speculate inlet temperatures of nodes mounted on another rack.
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Outlet temperatures produced by tModel benefits applications like cooling cost models

(i.e., the COP model [11]) and heat recirculation models. The COP model computes cool-

ing costs by taking into account outlet temperatures offered by the outlet-temperature model

in tModel. The main strengths of the tModel framework are three-fold. First, temperatures

of multicore processors are modeled as a function of system configurations and applications’

resource access patterns. Second, a thermal model characterizes the relationship among inlet

and outlet temperatures as well as multicore processor temperatures. Third, tModel opens an

avenue for data center designers to investigate heat recirculation and cooling costs.

4.2.1 A Baseline Thermal Model

To predict outlet temperatures for nodes in a Hadoop cluster, we construct a baseline thermal

model speculating outlet temperatures derived from inlet temperatures, multicore temperatures,

input data size, and height of servers placed in racks. In a data center equipped with cooling

systems, the inlet temperatures of the servers are affected by the supplied room temperature

mixed with recirculated hot air. Given a set of nodes, we denote T ini as the inlet temperature

of the ith node. It is worth noting that T ini can be directly and accurately monitored by a

temperature sensor. Alternatively, T ini can be estimated using monitored temperatures from

neighboring servers.

Our baseline thermal model is inspired by the T* thermal model proposed by Kaushik et

al. [52]. The T*-model predicts servers’ outlet temperatures to estimate the cooling cost for

data centers.

Let T outi,t be the outlet temperature of the ith server at a given time t. T outi,t depends on (a)

server i’s power consumption Pi,t at time t, (b) server temperature Ti,t, and (c) heat exchange

rate θi. Thus, we have

T outi,t = Ti,t −
Pi,t
θi
. (4.1)
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For simplicity, we consider in this study statistical temperature measures rather than tem-

perature in a specific time. After removing t from (4.1), we obtain

T outi = Ti −
Pi
θi
, (4.2)

where Pi is server i’s average power consumption in a given monitoring period.

According to the law of energy conservation and the fact that dissipation of power is

mostly in the form of heat, the relation between power consumption Pi of a server node i and

its inlet/outlet temperatures is given as [26]

Pi = ρfiCp(T
out
i − T ini ) (4.3)

where, Cp is the specific heat of the air, fi is the flow rate of the air, and ρ is the air density.

Substituting (4.3) for the power consumption on the right-hand side of (4.2), we obtain the

outlet temperature T outi of server i as

T outi =
θi ∗ Ti + ρfiCp ∗ T ini

θi + ρfiCp
(4.4)

Let ρfiCp be αi; outlet temperature modeled in (4.4) can be rewritten as

T outi =
θi
αi
∗ Ti + T ini
θi
αi

+ 1
(4.5)

To further simplify the above expression, we denote ratio θi/αi as βi. The outlet tempera-

ture model (4.5) can be expressed in form of parameters θ and α. Thus, we have

T outi =
βi ∗ Ti + T ini

βi + 1
(4.6)

The above thermal model (4.6) indicates that server i’s outlet temperature can be derived

using its inlet temperature T ini as well as system parameter βi, which is affected by the server’s

workload as well as airflow (i.e., heat recirculation). Given a server (e.g., the ith server) in a
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cluster, we can estimate the server’s outlet temperatures from the corresponding inlet tempera-

ture and its critical parameter βi. This observation motivates us to focus on a way of modeling

parameter βi as

βi =
T outi − T ini
Ti − T outi

(4.7)

We apply the non-linear regression model to investigate the β parameter in (4.7), which is a

driving force behind the baseline thermal model. To model parameter β for each server running

a Hadoop application, we conduct a profiling analysis to study the correlations between β and

thermal data (i.e., inlet/outlet temperatures, multicore temperatures) when a relatively small

data is processed by a target application. One hypothesis is that parameter β, affected by

application access patterns and server locations (e.g., height), is independent of datasize for

data-intensive applications.

4.3 tModel: Modeling Outlet Temperatures

In this section, we develop a thermal model that aims at predicting outlet temperatures by

considering the impacts of inlet air temperature and CPU core temperatures on the outlet tem-

peratures (Sec. 4.3.1). Next, we discuss the role of our multicore model in predicting outlet air

temperatures (Sec. 4.3.2). We also demonstrate a sample usage of tModel in Sec. 4.3.3).

4.3.1 A Simple Yet Efficient Model

The model proposed in Sec. 4.2.1 relies on power consumption and other factors. In this part of

the study, we intend to construct a simple yet effective thermal model to predict outlet temper-

atures without explicitly using power consumption. We show in Sec. 4.4.3 that the simplified

model described in this section is more accurate than the complicated baseline model.

The goal of our simplified thermal model is to predict outlet temperatures for Hadoop

cluster nodes from (a) inlet temperatures and (b) multicore temperatures without relying on

any other parameters. Most existing thermal models make use of CPU utilization to estimate

power consumption, which in turn facilitates outlet-temperature predictions. Such utilization-

based thermal models may introduce errors due to inaccurate mappings from system utilization
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to outlet temperatures. Rather than deploying a utilization model, our tModel projects outlet

temperatures from inlet temperatures as well as directly measured multicore temperatures by

leveraging on-processor sensors. Again, to cut cost of maintaining an excessive number of

sensors monitoring inlet temperatures, we mount sensors on a small percentage of nodes; inlet

temperatures of the other nodes can be modeled from their neighboring nodes due to the fact

that the heat measured at each sensor is the combination of heat generated by the workload and

the heat from the ambient air at the server’s inlet air grill. Thereby, we also eliminate another

middleman, the ambient temperature.

The outlet temperature T outi of the ith node is modeled from its inlet temperature T ini and

the average multicore temperature of the node. Thus, we express temperature T outi as

T outi = T ini +Ki ×
∑m

j=1 T
core
ij

m
. (4.8)

where Tij is the j core in node i, and
∑m

j=1 Tij

m
is the average core temperature in node i. Here, n

denotes the total number of active nodes in the cluster; m is the number of cores in each node.

Let T corei be the average core temperature. Thus, we have

T corei =

∑m
j=1 T

core
ij

m
. (4.9)

Applying (4.9) to (4.8), we simply temperature T outi as

T outi = T ini +Ki × T corei . (4.10)

K is a modeling parameter that is determined through benchmarking. This K is employed

to predict outlet temperature for determining the overall cooling costs for data centers. Sec-

tion 4.4.3 discusses the methodology for obtaining K for various benchmarking applications.

4.3.2 The Multicore Model

Our proposed thermal model, tModel, constitutes two essential components - a multicore model

and an outlet temperature model. The multicore model is responsible for measuring the average
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Figure 4.2: CPU core temperatures for three benchmarking applications - DFSIO, KMeans,
and PageRank - running on one server node.
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core temperature for a running job. For predicting core temperatures, our multicore model takes

into account application types, inlet temperatures, heights of computing nodes in a rack, input

data size, and number of active data nodes. Recall that we rule out ambient temperatures as a

middleman, because the inlet temperatures of the nodes can be modeled from their neighboring

nodes. We factor in server heights, which may be used to project inlet air temperatures in case

when there is no sensor mounted in front of the servers.

We update the multicore model to include workload information as a proxy for the amount

of heat injected into a Hadoop system, because various applications may exhibit different re-

source access patterns (e.g., CPU-intensive, I/O-intensive, memory-intensive, or other types)

and owing to their nature. The thermal impacts of different applications on various server com-

ponents would be diverse as well. It is indispensable to consider data sizes along with the

application behaviors as large data sizes would have a direct impact on CPU and disk tempera-

tures. Disks take a considerable amount of time to heat up, and therefore disk temperatures are

not addressed in tModel.

Let T ini be the inlet air temperature of ith node, D be the input size of application A. Mul-

ticore temperature T core denotes the average temperature of all cores of ith node; temperature

T core depends on T ini , D, and A. Thus, the multicore temperature model can be expressed as:

T corei (D,A) = f(T ini , D,A). (4.11)

Our multicore model is motivated by the resource-access patterns of big-data applications,

which often exhibit iterative characteristics. To capture CPU thermal behavior of parallel and

big-data applications, we run representative applications on a single server node. Based on

the benchmarking results, we notice some common characteristics in the thermal behavior of

the chosen applications. The thermal behavior of multicore processors running an application

can be modeled by a series of working sets, each of which is comprised of multiple intervals

sharing a very similar behavior (Fig. 4.2). We also refer to this multicore model as the working-

set model. It is worth noting that different applications may have an array of working sets of

varied lengths.
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Figure 4.3: Working sets in the multicore model capture thermal patterns the DFSIO application
running on a Hadoop cluster.

We make use of the working-set model to represent an application’s thermal signature.

Suppose an application has a total of m working sets, which are denoted as a m-dimensional

vector ~φ = [φ1, φ2, ..., φm]. The ith working set phii is a vector φi = (πi, λi, µi, γi), where πi is

the number of phases repeatedly executed in the working set, lamdbai and µi are the maximum

and minimum core temperatures in the working set, and γi is the length of each phase.

The multicore model captures the phase signatures of each working set to present the

average temperature of the working set, where temperature patterns repeat during the running

time of an application. The average CPU temperatures obtained from the multicore model are

fed into the outlet temperature model to estimate outlet air temperature.

The multicore model elaborated in this section is focused on one application at a time.

Nevertheless, the model is applicable for multiple applications currently running on a time-

sharing environment. In such a case, we may build an aggregated multicore model by combin-

ing the working sets of individual Hadoop applications with probability distribution functions,

thereby resembling the mixture of the applications.
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4.3.3 A Sample Usage

Now we show how to apply the multicore model (Sec. 4.3.2) through a sample usage, where the

well-known COP model (a.k.a., the Coefficient Of Performance model [11]) is incorporated.

COP is defined as the ratio of heat removed to the energy cost of the cooling system for heat

removal. A large COP value implies that a data center’s energy efficiency is high and vice

versa.

In this usage case, we make use of our model coupled with the COP model to estimate the

cooling cost of a data center. After our tModel sheds light on outlet temperatures, we plug the

temperature into the following equation (Eq. 4.12) to obtain a value of the COP parameter.

COP (T ) = 0.0068 ∗ T 2 + 0.0008 ∗ T + 0.458. (4.12)

Let PAC be cooling cost in terms of power consumed by the cooling system. We calculate

cooling power PAC from (1) the CRAC’s supply temperature T and (2) power consumption PC

of the computing infrastructure. Thus, we have

PAC =
PC

COP (T )
(4.13)

where the cooling cost is inversely proportional to the COP value. It is worth noting that PAC

is a metric quantifying the data center’s energy efficiency.

4.4 Experimental Evaluation

We implemented tModel on a testbed of one traditional rack consisting of 14 SuperMicro Model

825-7 servers with Intel (R) Xeon (R) X5650@2.67GHz processors (Fig. 4.4). The computer

rack is located in Auburn University’s High-Performance Computing Lab. The cooling unit

supplies cool air from the ceiling and the room temperature is set to 63F. We allocate 16 GB

RAM for Hadoop leaving 8 GB for operating system processors. Each map is allowed 4 GB

RAM and each reducer is allocated a minimum of 8 GB RAM. This way, Hadoop can run up to

4 mappers and 2 reducers per node. To measure processor temperatures, we use a Linux utility
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program called lm-sensors [69]. We deploy APC environment sensors placed to the back and

front of the cluster nodes. We measure execution time in terms of elapsed wall clock time. It is

worth mentioning that throughout this study, we measure actual execution times, CPU temper-

atures, inlet and outlet temperatures of the aforementioned MapReduce applications without

relying on any simulation data. Further, our evidence shows that it takes approximately 30

minutes to heat up a disk under heavy I/O workload conditions. To minimize impacts of one

experiment on its subsequent one, we ensured that the minimal interval between two subsequent

experiments is at least one hour.

(a) (b)

Figure 4.4: Environmental sensors attached to the front and back of cluster nodes placed in a
traditional rack.

In the following section, we evaluate the effectiveness of the proposed thermal model,

tModel, in accurately estimating the outlet temperatures of the servers. The purpose of profil-

ing is to understand the trends among inlet and multicore temperatures which can be used in

calculating K used in our modeling equation. This K is employed to predict outlet temperature

for determining the overall cooling costs for data centers.
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Application DFSIO PageRank KMeans
Parameters No. of files read,

file size MB, No.
of files written,
file size MB

Pages, No. of
iterations, block,
block width

No. of clusters, dimensions, No. of
samples, samples per input, max-
imum iterations, k, converge dis-
tance

Small 32, 10, 32, 10 5000, 3, 0, 16 5, 20, 3000000, 600000, 5, 10, 0.5
Large 64, 10, 64,10 50000, 3, 0, 16 5, 20, 20000000, 4000000, 5, 10,

0.5
Huge 256, 100, 256,

100
5000000,3,0,16 5, 20, 100000000, 20000000,5 10,

0.5
Gigantic 2048, 1000,

2048, 1000
50000000, 3, 0,
16

5, 20, 2*108, 4*106, 5, 10, 0.5

Table 4.1: Summary of input parameters for three benchmarks, DFSIO, PageRank, and
KMeans in HiBench, including their data size configurations and input parameters.

4.4.1 Profiling

To facilitate the development of our tModel, we benchmark three Big Data applications, namely

DFSIO, KMeans, and PageRank. KMeans is a well-known clustering algorithm for knowledge

discovery and data mining. KMeans performs clustering on a given set of points by running

algorithms to minimize Euclidean distances among the points in every group. Since for each

input, the nearest centroid has to be calculated and the minimum distance between a data point

to the cluster centroid needs to be searched, KMeans is computation-heavy in nature. DFSIO,

on the other hand, attempts to measure HDFS’ capacity for reading and writing bulk data. It

has been used to measure the average I/O and throughput of a cluster, and therefore is classified

as I/O intensive one. PageRank is comprised of both CPU-intensive and I/O-intensive phases

owing to its iterative nature. PageRank consists of a large number of computations and spends

some I/O-waiting CPU time due to large input data sizes. The MapReduce implementation

and various input data sizes for these applications can be found in the HiBench benchmarking

suite [67]. Developed by the Intel Labs, HiBench provides a collection of real-world Hadoop

applications. HiBench enables a clear understanding of benchmark characteristics by running

an actual Hadoop-implemented code of the applications on our cluster as opposed to other

trace-based workloads. Table 4.1 summarizes the data size configurations and input parameters

for three chosen benchmarks, DFSIO, PageRank, and KMeans.
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Figure 4.5: Average multicore processor temperatures of one worker node executing KMeans,
PageRank, and DFSIO benchmarking applications on a cluster comprising of 4, 6, 8, and 12
nodes respectively.

We conduct extensive experiments in three phases to estimate an accurate value of K pro-

posed in our model. In Phase I, we submit a large-sized input for these benchmarks running on

our cluster and observe the thermal behavior of our cluster nodes. In Phase II, we pick a repre-

sentative benchmark to process different input data sizes available in the HiBench benchmark

suite. In Phase III, keeping the same representative benchmark and the input data size, we vary

the number of running nodes (i.e., 4, 6, 8, and 12) to further enhance of understanding of the

variability in K of the applications on the cluster.

In each phase, we measure CPU core temperatures, inlet and outlet air temperatures of

the master and data nodes in the Hadoop cluster every 10 seconds. The real-time thermal data

allows us to (1) quantitatively assess our thermal model and (2) perform validations with a high

degree of confidence. Fig. 4.5 shows the multicore processor temperatures of one representative

cluster node running KMeans, DFSIO, and PageRank applications. The four sub-figures in
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Fig. 4.5 show thermal results for four different cluster sizes made up of (a) 4 nodes, (b) 6

nodes, (c) 8 nodes and (d) 12 nodes. Thanks to the fair sharing of data by Hadoop default

scheduler among all the cores, all the cores share the same temperature trends; and therefore,

we choose to present only one out of 12 cores in these figures.

It must be noted that the execution time needed for processing a given data set with dif-

ferent number of nodes takes different time; we present the results keeping the execution of

shortest job in each of the three cases. It is worth noting that the peak CPU temperature for

KMeans is much higher than its counterparts - PageRank and DFSIO - owing to the nature

of KMeans as being a CPU-intensive one. The trend is similar given a fixed input data size

and different number of nodes in a cluster. This type of profiling helps our multicore model in

predicting an average multicore temperature, which is fed into the outlet-temperature module

of tModel (Fig. 4.1).

4.4.2 Issues with Power-based Models

To deal with thermal emergencies, a growing number of predictive techniques have been de-

veloped in the past. These techniques utilize CPU utilization and power consumption of server

nodes in order to estimate outlet air temperatures. Our approach, on the other hand, elimi-

nates these two parameters, which are applied to predict outlet temperatures with the insight of

multicore temperatures. In this subsection, we provide insights on the background of existing

power-based models, which are summarized as follows. Further, the baseline thermal model

(a.k.a, β-model) discussed in Section 4.2.1 has also been inspired by the following idea.

Heath et al. discussed the law of conservation of energy and Newton’s law of cooling in

their study [70]. According to concepts in physics, the temperature of an object is an indicator

of the object’s internal energy; the object’s temperature is affected by heat exchanging between

itself and it’s environment. Cluster nodes draw power from power distribution units and con-

vert the power into heat. This heat enables the functioning of the node’s various components

including processors, RAM, storage devices, graphic cards, motherboard, fans and networking

interconnects. Processors consume the most power, followed by main memory. As per thermo-

dynamics, the heat (Q) produced by these components correspond is equivalent to their energy
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consumption, which is defined as:

Qcomponent = P (µ)× t. (4.14)

where t is time interval and P (µ) represents the average power consumed by the component

over a given interval of time; this power is a function of its utilization.

Heath et al. formulated a linear relationship between component utilization and power

consumption to estimate the real power consumed by a component of a server. This relationship

entails the power consumption of a component at idle state (Pbase = 0%) and fully utilized state

(Pmax = 100%); these two hardware-specific parameters are generally provided by component

manufacturers.

P (µ) = Pbase + µ× (Pmax − Pbase). (4.15)

In specific, for processors equipped with a total of n cores, the average power consumption

is estimated using the following formula [71]:

Pn = (Pmax − Pidle)×
n

100
+ Pidle. (4.16)

It is arguably true that estimating the power consumption of processors using utilization

information may not be adequate for modern processors due to three reasons. First, the power

estimated in Eq. 4.16 with the aid of CPU utilization introduces prediction errors at a rate of

5%-7% [71]. Second, power is consumed not only by the processors, but also by memory,

disk, and motherboard in non-trivial amounts. It is unfair and inaccurate to focus on CPUs

while overlooking other components (e.g., memory and disks) that are significant consumers

of power. Third, server utilization may change instantaneously, but it takes time for temper-

ature distribution to adjust. Hence, involving multicore temperatures in our thermal model

tends to be more accurate than the existing power-based thermal models. We show a quantita-

tive comparison between our model and the existing β-model (Sec. 4.2.1) in the next section

(Sec. 4.4.3).
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Figure 4.6: Performance comparisons between tModel and its alternative β-model in terms
of outlet-temperature prediction. The measured temperature is obtained using physical sensors
attached to each node in the rack.s The benchmark used in this group of experiments is KMeans.

4.4.3 Improving Accuracy

Through our preliminary profiling experiments (Sec. 4.4.1), we observe and analyze the value

ofKi introduced earlier in Section 4.3 using various applications and data sizes. This estimation

is important in terms of costs of temperature sensors. The tModel has to be tailored for each

application, because applications may have diverse behaviors and access patterns. For the

same reason, our system framework (Fig. 4.1) provides the application type as an input to the

multicore model. In this section, we used one of our representative applications, KMeans, to

fine-tune and validate the tModel. It is worth noting that our modeling methodology is very

generic. We believe that a diverse set of applications, ranging from CPU-intensive to I/O-

intensive to memory-intensive, can be tuned in the same way. Because application type is an

important determinant of core temperatures in tModel, different type of application would have

to be profiled separately. Our findings suggest that outlet temperatures vary with application

types.

We begin by profiling every core of the processors installed in each server of our cluster.

Then, we employ a non-linear regression model to estimate the value of Ki, which drives the

estimation of outlet temperatures. For profiling Ki initially, we use outlet temperatures to train
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Figure 4.7: Performance comparisons between tModel and its alternative β-model in terms of
outlet-temperature prediction. The benchmark used in this group of experiments is PageRank.

the model (i.e., obtain the Ki value). Next, we make use of the Ki value to predict the future

outlet temperatures.

Fig. 4.6 shows the comparisons of our tModel and the existing β-model (Sec. 4.2.1).

Fig. 4.6 reveals outlet temperatures predicted by the two models as well as the measured ones

for model validation purpose. We use the average power consumption and K values gen-

erated by running one application to predict the outlet temperatures for another application

without changing the input data sizes. The experimental results indicate that tModel is con-

ducive to estimating outlet temperatures with a higher accuracy than the β model for KMeans,

a CPU-intensive application. In another experiment, we collected profiling data in terms of

K- and β-values on twelve worker nodes and used these values to predict outlet temperatures

of PageRank and DFSIO running on a smaller number of the total worker nodes. Our tModel

performs with higher accuracy than β-model; although β-model performs prediction of outlet

temperatures much better with PageRank and DFSIO when compared to its performance in

previous case of KMeans.

The outlet temperatures predicted by tModel are highly accurate when compared with the

temperatures recorded by the installed sensors (Fig. 4.6 and Fig. 4.7). The training parameter,

K, needs to be trained for different applications for the first execution of a novel application

and later, can be used for predicting outlet temperatures in the most accurate manner without
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Figure 4.8: Performance comparisons between tModel and its alternative β-model in terms of
outlet-temperature prediction. The benchmark used in this group of experiments is DFSIO.

relying on temperature sensors. The reason for more accuracy of β-model in PageRank than

KMeans owes to the nature of the applications; KMeans is a CPU-intensive application and

its thermal impacts on CPU and disk are much more intense than PageRank, which has both

CPU-intensive and I/O-intensive phases (Fig. 4.5). tModel benefits CPU-intensive applications

more than I/O-intensive applications (Fig. 4.8) since CPU-intensive applications increase the

CPU-temperatures at a much faster rate than an I/O-intensive one; I/O-intensive application

performs disk I/O frequently and thus, minimizing their impacts on CPU temperatures. We

must acknowledge that CPU temperatures are fed into the multicore model for the estimating

of outlet temperatures and I/O-intensive applications impose minimal thermal impacts on CPU

temperatures.

The experimental results shown in the previous subsection indicate that outlet temper-

atures are affected by the inlet as well as the multicore temperatures and these vary greatly

among nodes. Our tModel is conducive of predicting outlet temperatures with high accuracy

without relying on the power consumed by the running nodes. Further, the average error of

our model stays below 5% with all three chosen applications. On the other hand, the β-model

model fails in accurately predicting outlet temperatures in majority of the cases.
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4.5 Summary

We proposed a thermal model called tModel aiming to predict outlet temperatures of servers in

Hadoop clusters running Big Data applications. tModel eliminates a pressing need to estimate

power consumed by Hadoop nodes prior to speculating their outlet temperatures. tModel makes

use of a vital parameter Ki to resemble correlation between outlet and inlet temperatures of

the ith node. Parameter Ki is obtained through profiling in the sampling phase. We apply

the procured values for each individual core i to predict the thermal behaviors of Big Data

applications processing various data sizes. tModel is more accurate than traditional models

that rely on power consumption and CPU utilization, because modeling core temperatures from

CPU utilization is likely to introduce prediction errors.

Our thermal model offers two compelling benefits. First, tModel makes it possible to cut

back thermal monitoring cost by immensely reducing the number of physical sensors needed for

large-scale clusters. Monitoring temperatures is a vital issue for safely operating data centers;

however, it is prohibitively expensive to acquire and set up a large number of sensors in a large

data center. Second, tModel enables data center designers to evaluate thermal management

strategies during the center design phase.

We made use of KMeans, DFSIO, and PageRank as three benchmarks to validate our

proposed tModel. Apart from investigating the KMeans, DFSIO, and PageRank benchmarks,

we intend to study tModel in the context of streaming applications. Prior to such a model

validation process, we will profile the thermal behaviors of an array of streaming benchmarks

running on a Spark cluster.

We also compared our tModel with an existing β model, which is more complicated than

tModel. The experimental results demonstrate that tModel improves the accuracy of β-model

with an average of 3% in KMeans application. This trend was similar with other applica-

tions and data sizes. Further, CPU-intensive applications benefit more from tModel than I/O-

intensive applications.
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Chapter 5

Energy-Efficiency in MapReduce using Approximate Computing

There is an ongoing search for finding energy-efficient solutions in multi-core computing plat-

forms. Approximate computing is one such solution leveraging the forgiving nature of appli-

cations to improve the energy efficiency at different layers of the computing platform ranging

from applications to hardware. In this part of the dissertation, we are interested in under-

standing the benefits of approximate computing in the realm of Apache Hadoop [72] and its

applications.

A few mechanisms for introducing approximation in programming models include sam-

pling input data, skipping selective computations, relaxing synchronization, and user-defined

quality-levels [55] [16]. We believe that it is straightforward to apply the aforementioned mech-

anisms to conserve energy in Hadoop clusters as well. The emerging trend of approximate com-

puting motivates us to systematically investigate thermal profiling of approximate computing

strategies in this dissertation research. In particular, we design a thermal-aware approximate

computing framework called tHadoop2, which is an extension of tHadoop proposed by Chavan

et al. [73] in the year 2017.

This chapter is organized as follows. We summarize some preliminaries in Section 5.1.

We propose a framework to apply approximation strategies in Hadoop applications which is

discussed in Section 5.2. A case study on a MapReduce application is presented in Section 5.3.

Finally, we conclude this chapter in Section 5.4.
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5.1 Preliminaries

There is an array of application domains that can tolerate loss of accuracy when the resources

required to provide a precise answer are either expensive or unavailable. Owing to varying

characteristics of applications, approximation strategies are determined on a per-application

basis when computing resources are limited [74] [59]. For instance, applications in domains

like machine learning, image recognition, social-network based recommendations, sensor data

analysis already assimilate imprecision in their algorithm designs [17]. Approximate Com-

puting has potential to benefit a wide range of applications and frameworks, including but not

limited to, data analytics, scientific computing, multimedia and signal processing, machine

learning, and MapReduce programming [54].

The U.S. Department of Energy (DOE) has identified energy-efficiency as one of the

biggest challenges of the exascale computing era [75]. The DOE has also set a goal of 20

MW for exascale (1018 flops) supercomputers. Improving resource utilization and energy ef-

ficiency at all levels of a system hierarchy is imperative to achieve the goals of exascale com-

puting. Further, research has established that energy-efficient applications have the potential to

enhance the energy efficiency in cluster systems [5].

Some of the state-of-the-art works in resource management for thermal-aware cluster com-

puting are categorized in Table 5.1. TIGER performs thermal-aware file placement using the

disk utilization of worker nodes and heat-circulation among them [76]. tDispatch is a thermal-

aware job scheduler that can be deployed on top of Hadoop’s default scheduler and it uses ap-

plications’ characteristics and resource usage pattern for its scheduling decisions [77]. Another

thermal-aware job scheduler, tHadoop, reduces the power consumption of nodes by capping

the number of tasks that can be executed on nodes. It achieves the same by minimizing the

heat re-circulation using a cross interference matrix and calculates an appropriate number of

tasks that must be run on a given cluster node [73]. Approximate computing techniques exploit

the inherent resilience in applications to realize improvements in energy consumption and their

execution time without paying attention to thermal impacts on system resources [16] [15].
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In this part of the dissertation, we seek a novel approach for enhancing the energy-efficiency

of Hadoop clusters through approximate computing techniques and thermal-awareness of the

cluster nodes. The next section delineates the design of a thermal-aware computing framework

called tHadoop2, which incorporates approximate computing to conserve energy in Hadoop

clusters.

Technologies MapReduce Error
Bounds

File
Place-
ment

Thermal-
awareness

Tune
number
of tasks

Scalability

Approximate
Comput-
ing [55] [15]

7 3 7 7 7 7

TIGER [73] 7 7 3 3 7 7

tDispatch [77] 3 7 7 3 3 7

tHadoop [73] 3 7 3 3 7 7

tHadoop2
(ours)

3 3 3 3 3 3

Table 5.1: Comparisons between our tHadoop2 and the existing energy-efficient techniques.

5.2 Framework Design

We start this section by explaining the tHadoop2 system framework (see Section 5.2.1), which

offers a high-level design from the perspective of approximation in Hadoop applications. Next,

we shed light on the responsibilities of various modules in tHadoop2 (see Section 5.2.2).

5.2.1 The tHadoop2 Platform

In this section, we propose tHadoop2, a thermal-aware framework that incorporates approx-

imation techniques for MapReduce applications. In what follows, we outline the interfacing

between tHadoop and our proposed framework, tHadoop2, followed by the descriptions of the

various modules in tHadoop2.

Fig. 5.1 shows the design of our framework. tHadoop2 is an incremental version of

tHadoop - a thermal-aware scheduling framework minimizing the heat re-circulation through
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Figure 5.1: The tHadoop2 framework demonstrating execution flow of a MapReduce job.

controlling the power consumption of nodes. For deciding thermal-aware workload placement,

tHadoop constraints the number of tasks that are allowed to run on cluster nodes [73]. In-

stead of determining which tasks to schedule on nodes, tHadoop decides the number of tasks

to schedule on cluster nodes.

The incoming jobs are fed into tHadoop which performs thermal-aware data placement by

spreading the jobs’ data across worker nodes. It is worth noting that tHadoop determines the

number of tasks that can be executed on a node to conserve energy. The goals of thermal-aware

task placement is to minimize peak incoming air temperatures resulting in reduced cooling

costs [29]. For the purpose of data placement, it employs a heat-recirculation model to under-

stand the heat flow among nodes and contribution of individual nodes towards heat buildup.
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Once the data is placed across the worker nodes, tHadoop2 ensures that the thermal stability

of the nodes and surrounding environment through a thermal monitoring module. The sole

responsibility of thermal monitoring module in tHadoop2 is to collect real-time thermal data

from the sensors installed on the nodes, ensuring that thermal constraints are not violated. It

is essential that incoming air temperatures for nodes are kept low to prevent the formation of

hotspots which can lead to harware failure in the long run [44]. If the required cooling is not

delivered to these hotspots, the performance can be throttled down to reduce power [78]. Also,

cooling energy reduction is best guaranteed when thermal-aware job scheduling is coordinated

with thermal data obtained via Computer Room Air Conditioners (CRACs) [8]. This is the

primary goal of incorporating tHadoop in tHadoop2 framework.

5.2.2 The tHadoop2 Design

tHadoop2 is a thermal-aware resource management system orchestrating thermal-aware work-

load placement and applications resiliency to save energy in data centers. Thermal-aware work-

load placement is inevitable because in its absence, increasing temperatures may affect circuit

reliability and life of hardware in a long term resulting in high cooling costs and energy in-

efficiency [78]. For this reason, tHadoop2 depicted in Figure 5.1 seamlessly integrates two

modules, namely approximate computing (see item 4 in Figure 5.1) and thermal-aware data

placement (see tHadoop in Figure 5.1)

The tHadoop2 consists of the following three modules:

• The thermal profiling and monitoring module (see the light blue box in Figure 5.1).

• The approximation-aware thermal manager or ATM (see item 4 in Figure 5.1).

• The tHadoop subsystem (see tHadoop in Figure 5.1).

The above three modules in the proposed framework communicate with the environment

sensors through the thermal monitor module, which maintains rich thermal data in the thermal

database residing in the tHadoop subsystem.

The main strengths of the tHadoop2 framework are three-fold. First, temperatures of clus-

ter nodes are modeled as a function of system configurations and applications’ resource access
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patterns. Second, a thermal model gathers per-application thermal data and cluster’s tempera-

tures including cross-interference, processor temperatures, and inlet/outlet air temperatures to

assists ATM with thermal-aware scheduling decisions. The constructed models are managed

in the ATM module. Third, tHadoop2 opens an avenue for data center designers and appli-

cation developers to investigate heat recirculation and cooling costs along with applications’

resiliency.

In what follows, we outline the contributions of the tHadoop system in the tHadoop2

framework, followed by the descriptions of the other primary modules in tHadoop2. The func-

tionalities of the three core modules of tHadoop2 are summarized in the list below:

• tHadoop. tHadoop [73] is responsible for capturing the spatial cross-interference - a

phenomenon with which the heat generated by running jobs on a server not only raises

a server’s temperature but the temperatures of surrounding nodes due to air recircula-

tion. tHadoop constitutes two important components, (1) a cross-interference matrix and

(2) a scheduler. The cross-inferences matrix stores the fraction of outlet heat of each

node contributing towards the inlet heat of every other node. The scheduler accesses

the cross-interference matrix to assess a node’s contribution towards heat re-circulation

and modifies the number of tasks assigned to the Hadoop TaskTracker(s) running on the

node.

• Thermal Monitoring and Profiling. This module initiates an automated thermal pro-

filing process that captures nodes’ inlet, outlet, ambient, and CPU core temperatures in

real time. The acquired thermal data is then placed in the database of tHadoop. With the

assistance of the gathered thermal data and identified resilience in applications, the profil-

ing module initiates the modeling procedure to construct thermal models maintained by

the approximation-aware thermal manager (see the item below). The thermal models are

infused into the approximate-aware thermal manager to make judicious thermal-aware

scheduling decisions. Please note that approximation-computing strategies are applied

on a per-application basis, meaning that the monitoring and profiling module is obligated
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to build a model for individual applications. The approximation-aware profiler may em-

ploy a variety of techniques ranging from scaling input data to using a predetermined

quality metric to produce good-enough results. Performing proactive thermal manage-

ment by fetching temperature measurements directly from on-chip sensors is ideal for

constructing thermal models. Such thermal models help in making scheduling decisions

by predicting future temperatures.

• Approximation-Aware Thermal Manager (ATM). ATM is a thermal manager that per-

forms static scheduling of applications to meet predefined thermal goals. ATM is con-

ducive of making job scheduling decisions while keeping thermal constraints in check.

These scheduling decisions are forwarded to the YARN, which in turn requests for a set

of containers expressing the amount of computer resources required for launching each

container, as well as locality constraints for the containers [65]. Once the containers are

allocated, a Hadoop job can be executed on cluster nodes in a thermal-conscious manner.

5.3 Empirical Study Results

In this section, we present a case study focusing on correlations between performance and

accuracy when we evaluate the Pi estimator as an approximate computing application on a

Hadoop cluster. More importantly, we show the thermal behavior and energy efficiency of the

Pi estimator when we attempt to tune the computing accuracy.

After presenting the experimental testbed in Section 5.3.1, we outline the Pi evaluation

method in Section 5.3.2. The single-node profiling and multiple-node profiling results can be

found in Section 5.3.3 and Section 5.3.4, respectively.

5.3.1 Experimental Testbed

Before presenting the results of the Pi estimator, let us briefly summarize the testbed configu-

ration as well as the setups of the three experiments.

Our testbed consists of one traditional rack consisting of 14 SuperMicro Model 825-7

servers with Intel Xeon X5650@2.67GHz processors; out of these 14 nodes, we use a subset of
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these servers act as master and workers. The computer rack is located in Auburn University’s

High-Performance Computing Lab. The cooling unit supplies cool air from the ceiling and

the room temperature is fixed at 63F. A Linux utility program called lm-sensors [69] is used

to collect processor temperatures during the execution of Hadoop applications. The execution

time for the experiments is measured in terms of elapsed wall clock time. To minimize thermal

impacts of one test on its subsequent one, we ensured that the minimal interval between two

subsequent tests is at least one hour. This strategy allows the testbed to cool down prior to the

next round testing.

We conduct three sets of experiments by varying the number of worker nodes. In every

experiment, we chose two configurable parameters, namely, number of maps and number of

samples per map.

5.3.2 The Pi Evaluation Method

We observe the thermal behaviors of a popular Hadoop application, Pi estimator, which is used

to estimate the mathematical value of π (i.e., 3.142857142857143...). We pay attention to the

Pi estimator as a case study owing to the following facts. First, the Pi estimator can endure an

approximated output value. Second, it is straightforward to observe and assess the accuracy of

the computing results.

There are a few distinctive ways of implementing the Pi estimator. Among all the can-

didate approaches, we choose to test the Monte Carlo (MC) implementation of Pi. We don’t

imply by any means that the MC method is more optimal than other implementations of the Pi

estimator. We sense that the other algorithms of the Pi estimator are likely to share a similar

patterns as the MC method investigated in this study.

The MapReduce implementation of the Pi estimator employs Monte Carlo (MC) simula-

tion for generating random samples to estimate the result. The MC method works by randomly

generating points in a unit square plane where each point can be identified as either being in-

side or outside of the circle. Further, each sample is a 2-dimensional point (x,y) in a Halton

sequence H(i) [79].
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The value of π can be estimated by calculating the ratio of the number of points in the cir-

cle (i.e., numInside) versus in the square (i.e., numTotal); the area of unit square is 1 and the

area of the inscribed circle is π/4. Then, Pi’s estimated value is 4 ∗ (numInside/numTotal).

Each mapper is responsible for generating points in a unit square and counting the points in-

side/outside of the inscribed circle of the square; each generated point (x, y) falls in the range

[−1, 1]. Every reducer, on the other hand, accumulates points from the mappers, where each

qualifying point, satisfying
√
(x2 + y2) < 1, is used in the calculation of Pi.

Let’s summarize the functionality of the mappers and reducers below.

• Mapper: Each mapper generates points in a unit square and then count points inside/outside

of the inscribed circle of the square.

• Reducer: Each reducer accumulates inside/outside results from the mappers.

• Estimating Pi: The value of π can be estimated by calculating the ratio of the number of

points in the circle (i.e., numInside) versus those in the square (i.e., numTotal).

When it comes to the Pi calculation, we can specify two parameters, namely, (1) sampling

points and (2) the number of mappers, to estimate the value of Pi. Intuitively, a high precision

can be obtained by specifying a large number of points, more iterations, or a combination of

both. A variety of inputs must be considered for assessing the relationship between accuracy

and energy efficiency and thus, we use an array of sampling points ranging from 100,000 to

1,000,000,000, where an iteration of each sampling point has 50 samples serving as a small

input [59]. Similarly, we use the same range of sampling points, and one iteration each with

100 samples as a large input.

5.3.3 Single-Node Profiling

In this section, we focus on the profiling results collected from a single-node Hadoop server. In

the next section (see Section 5.3.4), we will test the Pi estimator on a multiple-node Hadoop

cluster.

The output of the Hadoop-based Pi estimator is an approximated value of π with varying

precision. Before finding an appropriate approximation technique for Pi, we conduct a group
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of experiments and record the number of precision digits, execution time, and average CPU

temperatures of the worker nodes running these experiments.

Tables 5.2 and 5.3 show a detailed analysis of Pi running 50 and 100 mappers respectively,

on a single server node. It is worth noting that the execution time increases in proportion with

the number of sampling points. Our goal is to determine that optimal point beyond which there

is no significant improvement in the quality of results and a tradeoff between computing quality

and thermal constraints can be observed.

Observation 1: A General Trend Table 5.2 shows the correlation between sampling

points and the estimated value of π. The results summarized in Table 5.2 suggests that in-

creasing the number of sampling points is a way of improving the precision (i.e., an increased

number of digits). For instance, in order to achieve one extra digit in the π result, we have

to increase the number of samples by a factor of 10. Recall that these π values are generated

using the Monte Carlo method discussed in Section 5.3.2. The error% is calculated using the

experimental value (see column 2 in Tables 5.2 and 5.3) and the theoretical value of π (i.e.,

3.142857142857143...). With very minute error, the Monte Carlo method is able to produce

quite accurate value of π. Although the number of digits in the value of π increases with an

increasing number of sampling points per map, there are diminishing improvements in terms

of error% beyond a certain point (see row 3 in Tables 5.2 and 5.3). This trend is peculiar in

Monte Carlo simulations since the results generated from running the Monte Carlo simulations

follow a similar trend as 1/sqrt(x) plot.

Observation 2: Samples/Map vs. Execution Time. Although the number of digits in

π goes up by adding more number of sampling points, such a precision improvement comes

at an expense of elongated execution time. Evidence from our experimental results indicates

that execution time is directly and strongly linked to power consumption of the nodes; thus,

the longer an application executes on server nodes, the more electricity it consumes. The

execution time gradually increases until the number of sampling points become 100,000,000.

Beyond this point, the execution time becomes fivefold with both 50 and 100 mappers (see rows

4 and 5 in Tables 5.2 and 5.3). We speculate that the execution time increases multifold due to

the limited availability of system resources on the cluster nodes for the Hadoop mappers and

71



reducers. Keeping thermal constraints, we are specifically interested in determining such an

optimal point beyond which the execution time for an application increases multifold without

any significant improvements in the quality of the results. For instance, in Fig. 5.4, the ideal

number of sampling points for the calculation of Pi is 106. At this optimal point, the error% in

the value of Pi as well as execution time is minimal.

Observation 3: Value/Error% vs. Energy Consumption. Let us pay attention to the

correlation between number of sampling points and the energy consumed by the cluster node

running the Pi estimator. Since the total amount of energy consumed in a cluster system over

a given time interval is a product of average power consumed in the same time interval, energy

and power are directly proportional to each other. Under a constant power supply like in power-

capped systems, the energy consumption will increase linearly with time. In our example, the

energy consumption with 1 billion sampling points will be the maximum and minimum with

100,000 samples owing to their execution times.

The implication behind this observation is that we can conserve energy consumption by

immediately terminating the π calculation once the application produces a reasonably good

result in terms of precision. Unsurprisingly, such an early termination leads to a reduction in

overall execution time of the application as well as the energy consumption.

Observation 4: Thermal Trends An unexpected finding is that there is no interplay be-

tween the number of sampling points and processor temperatures. Recall that the number

of mappers determines the number of threads launched by the π estimator for computing the

value of π. The number of mappers is fixed to 50 and 100, respectively (see Tables 5.2 and

5.3). Further, the average processor temperature with 50 mappers is much less than that with

100 mappers (see the last column of Tables 5.2 and 5.3). We infer that since the number of

mappers and the number of threads remain unchanged, there are no significant variations in the

processors temperatures within each group (i.e, 50 mappers and 100 mappers). Minor fluctu-

ations in the temperature measurements are due to the varying execution times for each set of

experiments in Tables 5.2 and 5.3.
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Sampling points Calculated π Error (%) Execution Time (sec) Avg. CPU Temp. (◦C)
100000 3.1415728 0.04086 64.52 29.99
1000000 3.14159448 0.04017 64.502 31.26
10000000 3.141593128 0.04021 64.512 30.62
100000000 3.1415927992 0.04023 114.693 30.79
1000000000 3.14159266896 0.04023 552.98 31.43

Table 5.2: Performance and accuracy of Pi under various number of sampling points. The
number of mappers is fixed to 50.

Samples per map Calculated π Error (%) Execution Time (sec) Avg. CPU Temp. (◦C)
100000 3.1415844 0.0405 114.65 31.33
1000000 3.14159256 0.04024 114.672 31.83
10000000 3.141592736 0.04023 119.128 32.82
100000000 3.1415926492 0.04023 214.03 31.91
1000000000 3.1415926568 0.04023 1090.482 31.84

Table 5.3: Performance of Pi running on a single server node running 100 mappers. The
number of samples per map are varied for every experiment and the performance and accuracy
is recorded.

5.3.4 Scaling Out

To further enhance our understanding of Pi and its thermal effects on cluster nodes, we conduct

a group of experiments on a cluster comprising of one master node and two worker nodes.

Adding more resources to a cluster does not necessary improve performance and therefore,

scaling out our existing cluster will help us determine the resources that are just enough to

produce a quality output for the tested applications. Since we have acquired a fair idea on the

execution time of Pi with a variety of sampling points and number of mappers, we restrict the

number of mappers to only 25, 50, and 100; the number of sampling points ranges between

100,000,000 (i.e., 108) and 1,000,000,000 ((or 109)). Figures. 5.2 and 5.3 show the average

processor temperature and energy consumption of two data nodes running 25, 50, and 100

mappers with 108 and 109 sampling points per map.

We observe similar trends in terms of average processor temperatures and energy con-

sumption on both data nodes thanks to Hadoop’s fair load balancing. It is interesting to note

that irrespective of the sampling points and execution time, the average processor temperature

is minimum when the number of mappers is set to 50. This observation motivates us to look
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Figure 5.2: Average CPU core temperatures and energy consumption of two server nodes run-
ning 25, 50, and 100 mappers with 100,000,000 sampling points. The execution times for
running Pi with 25, 50, and 100 mappers are 66, 67, and 130 seconds, respectively.

into minimizing thermal impacts on the nodes by tuning the number of mappers launched with

the applications. We also believe that the number of nodes chosen to run an application can be

tuned to further conserve energy. The deviation in average CPU temperatures is larger in case

of 109 sampling points than 108 sampling points due to the elongated duration of the experi-

mental time. In the first case (see Fig. 5.2, the experiments do not run long enough to heat up

the processor cores to the same extent as in the second case (see Fig. 5.3). Further, for a given

number of mappers, there is a narrow gap in the processor temperatures between the two data

nodes; this behavior prevails due to several complex factors like heat redistribution and height

of server nodes in the rack.

5.3.5 Estimating Accuracy

For a wide range of applications, the overall computational cost can be significantly reduced if

an exact solution is not required. In the previous section (see Section 5.3.3, we perform a de-

tailed analysis of a Hadoop application, Pi, that employs Monte Carlo algorithm to determine

the precision digits of π. In this section, we pay special attention to applying an approximation

strategy called early termination to Pi by identifying a tradeoff point.
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Figure 5.3: Average CPU core temperatures and energy consumption of two server nodes run-
ning 25, 50, and 100 mappers with 1,000,000,000 sampling points. The execution times for
running Pi with 25, 50, and 100 mappers are 165, 300, and 600 seconds respectively.

It is evident that there is no one-solution-fits-all approximation technique for every Hadoop

application, which exhibits a domain-specific notion of "quality". Thus, a per-application pro-

filing must be performed to identify resiliency for the purpose of approximation [59]. After

having identified elements of an application that can tolerate error and the extent to which er-

rors can be tolerated, instructions of applications are executed for energy savings [80]. The

preliminary results from running Pi show that trading off the accuracy for the computations to

save energy is worth investigating.

In the case of Pi, the accuracy can be determined in several ways. To determine the

tradeoff point when a user predetermines a quality level, we can define a tolerance level eps > 0

(where eps is the error-per-step) and declare that the error has leveled off if

d

dx
(

1

sqrt(x)
) < eps (5.1)

For instance, Fig. 5.4 illustrates that the output quality (in terms of error %) does not

improve after a certain point (106 sampling points). This saturation point is often referred to as

an optimal point or tradeoff point. Our preliminary findings suggests that there is no significant

improvement in the quality of the results beyond the optimal point. It must be noted that the
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Figure 5.4: Calculated error % in the accuracy of digits in Pi with 50 and 100 mappers. The
number of worker nodes is fixed at two.

execution time and energy dissipation continue increasing beyond the optimal point. Since a

varying number of mappers exhibit similar trends in terms of energy consumption and CPU

temperatures, we focus on the number of sampling points to determine an optimal point for the

Pi estimator while overlooking the number of mappers in case when a user-defined tolerance

level is not available.

To achieve energy-efficiency in the execution of Pi, we endeavor to find a tradeoff point

(a.k.a., optimal point) that results in minimal degradation of result quality while keeping thermal-

efficiency in consideration. To determine the right extent to which inherent resilience in each

application can be exploited is through evaluating the impacts of an array of approximation

techniques on the application output quality.

5.4 Summary

Recognizing that high energy efficiency of applications helps in reducing the operational cost of

data centers, we proposed a framework called tHadoop2 for MapReduce applications running

on Hadoop clusters. To facilitate the development of tHadoop2, we incorporated an existing

thermal-aware workload placement module called tHadoop into our tHadoop2. Our framework

consists of three key components - tHadoop, a thermal monitoring and profiling module and a

approximation-aware thermal manager. tHadoop performs thermal-aware data placement by
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distributing applications’ data across worker nodes. The thermal monitoring and profiling mod-

ule is used to collect real-time thermal data from sensors installed on cluster nodes, ensuring

that thermal constraints are not violated. The approximation-aware thermal manager or ATM

helps in improving the energy efficiency of cluster nodes by applying approximation strategies

on a per-application basis.

We investigated the thermal behavior of a MapReduce application called Pi running on

Hadoop clusters by varying two input parameters - number of maps and number of sampling

points per map. Our profiling results show that Pi exhibits inherent resilience in terms of

number of precision digits present in its value. It is noteworthy that approximation-computing

strategies are applied on a per-application basis. Other MapReduce applications can be scruti-

nized by exploring their characteristics and finding opportunities for acceptable inexactness in

output. Nevertheless, the proposed framework coupled with approaches for making tradeoffs

is generally applicable to any MapReduce application.

After we offered detailed analysis on the Pi running on one server, we scaled up our

cluster running the Pi estimator, where we varied the number of maps and sampling points. We

observed similar trends in terms of average processor temperatures and energy consumption on

the data nodes. Regardless of the sampling points and execution time, the average processor

temperature and energy consumption is minimum when the number of mappers is set to 50 in

our experiments. We expect that the number of nodes chosen to run applications should be

tuned to further conserve energy.

We avoid the discussion on heat redistribution, height of server nodes, and ambient tem-

peratures in this part of study. Nevertheless, heat redistribution and ambient temperatures in

the context of Hadoop have been investigated in the tHadoop project [73]. In our future work,

we will extend tHadoop2 to address these challenges.
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Chapter 6

Conclusion and Future Work

The focus of this dissertation research was on designing thermal-aware resource management

solutions to achieve high energy efficiency of data centers. Most of our work can be deployed

in large-scale data centers to mitigate the heat build-up and rising cooling costs.

Growing number of data centers are being set up across the world in the last decade. Ac-

cording to the EPA report, US data centers consumed approximately 2% of total U.S. energy

consumption, with 24% increase in the last five years. This continuous increase in energy

consumption has motivated researchers to design low-cost solutions for operating data centers.

Strong evidence indicates that cooling cost and computing power are the most significant con-

tributors of a data center’s operational cost. Prior studies confirmed that cutting cooling cost

effectively improves the energy efficiency of data centers.

6.1 Past and Current Work

In this research, our focus has been on the design and development of software solutions that

broadly explore thermal-aware resource management issues with particular attention to im-

proving thermal-efficiency and energy-efficiency for the clusters housed in data centers. This

dissertation research contributions span:
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6.1.1 Thermal-Profiling and Thermal-Aware Job Scheduling

Characterizing thermal profiles of cluster nodes is an integral part of any approach that ad-

dresses thermal emergencies in a data center. We proposed a thermal-aware scheduler, tDis-

patch which is conducive of improving the energy efficiency of Hadoop clusters. The schedul-

ing idea of tDispatch is motivated by a profiling study of CPU-intensive and I/O-intensive jobs

from the perspective of thermal efficiency. We investigated the thermal behaviors of CPU-

intensive and I/O-intensive applications running on Hadoop clusters by stress testing the data

nodes through extensive experiments. Our findings show that CPU-intensive and I/O-intensive

jobs exhibit distinct thermal behaviors on multicore processors and hard drives of Hadoop clus-

ters. Our study suggests that one way to make Hadoop clusters thermal friendly is to dispatch

CPU-intensive and I/O-intensive jobs to the cluster nodes where CPUs and disks are running at

a lower temperature; we implemented this idea with the aid of two job scheduling algorithms,

tQueue and tDispatch. The experimental results confirm that tDispatch improves the overall

thermal efficiency of the data nodes in the tested Hadoop cluster.

6.1.2 Thermal-Modeling

Thermal models are used to characterize the thermal profile of a data center. We proposed a

thermal model called tModel aiming to predict outlet temperatures of servers in Hadoop clusters

running big-data applications. tModel eliminates a pressing need to estimate power consumed

by Hadoop nodes prior to speculating their outlet temperatures. tModel makes use of a vital

parameter Ki to resemble correlation between outlet and inlet temperatures of the ith node.

Parameter Ki is obtained through profiling in the sampling phase. We studied various metrics

like CPU temperature, inlet/outlet temperatures, height of the node in a rack, air recirculation

to develop a prediction model for outlet temperatures. This model can be used as an input

to the popular COP model, developed at the Intel Labs, which estimates the cooling costs for

data centers. Our overall goal is to investigate a thermal modeling approach to estimate outlet

temperatures of server nodes on Hadoop cluster without relying on the power consumption

models of the nodes. It is noteworthy that conventional thermal models are built on top of
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power consumption models. We intend to eliminate the power consumption models as a middle

man in the existing thermal models.

There are three contributions in this work. First, we conduct a thermal profiling study of a

cluster on which various Hadoop applications are investigated. When the applications process

various data size under different number of nodes, we profile our server nodes to monitor

multicore CPU temperatures. Second, we build a thermal model to estimate temperatures using

inlet temperatures and CPU core temperatures. Third, as a use case of our model, we extend

the model to predict the cooling cost of a Hadoop cluster.

6.1.3 Thermal-aware Approximate Computing for MapReduce Applications

Recognizing that high energy efficiency of applications helps in reducing the operational cost of

data centers, we proposed a framework called tHadoop2 for MapReduce applications running

on Hadoop clusters. To facilitate the development of tHadoop2, we incorporated an existing

thermal-aware workload placement module called tHadoop into our tHadoop2. Our framework

consists of three key components - tHadoop, a thermal monitoring and profiling module and

a approximation-aware thermal manager. tHadoop performs thermal-aware data placement

by spreading jobs’ data across cluster nodes. The thermal monitoring and profiling module

is used to collect real-time thermal data from sensors installed on cluster nodes, ensuring that

thermal constraints are not violated. The approximation-aware thermal manager or ATM helps

in improving the energy efficiency of the cluster nodes by applying approximation strategies

on a per-application basis.

We investigated the thermal behaviors of a MapReduce application called Pi running on

Hadoop clusters by varying the two input parameters - number of maps and number of sam-

pling points per map. Our profiling results show that Pi exhibits inherent resilience in terms

of number of precision digits present in its output. It is noteworthy that this result quality is

application-specific. Other MapReduce applications can be scrutinized for exploring their char-

acteristics and finding opportunities for acceptable inexactness in output. The proposed frame-

work coupled with the approach to making tradeoffs is generally applicable to any MapReduce

application.
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6.2 Future Directions

As a short-term plan, we will concentrate on the following two directions to extend our past

and current research on energy-efficient and thermal-aware computing in high-performance

clusters.

6.2.1 Efficient Data Availability in CFS

Data availability and data redundancy are used for dealing with failures in clustered file systems

(CFSes). Two redundancy schemes commonly employed in CFSes are replication and era-

sure coding. Replication schemes create identical replicas for each data block; erasure-coding

schemes store additional information as parity blocks. Lately, there has been an inclination

towards adopting erasure coding technique in CFSes, because erasure coding is more storage

efficient than replication techniques. We plan to conduct a study to investigate the thermal-

efficiency of both replication and erasure-coding schemes. Further, we will be focusing on

energy consumed in creating and repairing erasure codes to enhance the thermal-awareness in

our design. Experiments will be conducted on a Hadoop cluster, because the Hadoop Data

File System (HDFS) employs disk-based data replication strategy. We intend to discover if

erasure-coding can improve data storage and energy consumption costs for HDFS over the

default 3x-replication technique in Hadoop.

Data availability in Hadoop becomes a bigger challenge in geo-distributed data centers.

The traditional MapReduce programming model, which comprises of two phases - Map (local

computation) and Reduce (all-to-all communication), is not optimized for deployment across

data centers. This problem is caused by the need to aggregate data, produced by mappers, for

centralized processing in Reduce phase. To further enrich our dissertation research, we plan to

delve into thermally-efficient and cost-optimized data availability for processing big-data using

the MapReduce programming framework in geo-distributed data centers.
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6.2.2 Modeling in HPC Applications

Batch-oriented and stream-oriented data processing are two popular paradigms used for pro-

cessing jobs in high-performance clusters (HPC). The latency issues in batching and perfor-

mance issues in erasure-coding have gained attention lately. We observe that the thermal im-

pacts of the batching and streaming scheduling paradigms are still in their infancy. With these

two data processing strategies in place, we plan to investigate their thermal impacts on Hadoop

and Spark clusters using the workloads available in TPC-HS benchmark suite. We will build

a model to resemble thermal behaviors of schedulers that manages resources for Hadoop and

Spark applications. Our models will incorporate access patterns of multicore processors, mem-

ory, as well as data storage.

Energy-Efficiency in Data Stream Processing: Streaming applications are character-

ized by unpredictable execution scenarios owing to their variable arrival rates, deadlines, data

size, latency-sensitivity and the like. It is an intriguing project to model resource allocations

in streaming applications running on Spark clusters governed by the dynamic voltage and fre-

quency scaling technique or DVFS. Our novel model will enable us to project the operational

costs of streaming applications running on energy-efficient Spark equipped with DVFS. More

often than not, data streaming applications are latency-sensitive in nature. After the develop-

ment of this model, we will identify bottlenecks with respect to energy consumption for a group

of data streaming applications running on high-performance Spark clusters.

6.2.3 Energy-Efficient High-Performance Computing

Limited power budgets will be one of the grand challenges for deploying future exascale su-

percomputers. The path to future large-scale HPC system development is mitigating the power

and energy requirements for reaching new levels of performance. The DOE has stated a goal

of achieving exascale levels of performance on a power budget of 20 MegaWatts, which is

significantly beyond the capabilities seen on systems today [81]. To achieve this goal, system

architects, runtime software designers, and application developers must take a holistic approach
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to designing energy-efficient systems, including examining novel technologies and software ap-

proaches. As an example, data movement is envisioned to be a major consumer of power within

large-scale HPC systems [82]. Reducing the overall data movement will help to reduce power

consumption, although this may present other challenges in terms of load distribution and ideal

load balance across the system.

In the course of this research, we will be exploring the impact of novel technologies on

HPC workload power consumption and will be developing tools and techniques for the mea-

surement of power and energy consumption. In addition, we will be exploring the intersection

between power consumption, performance, and thermal characteristics on state-of-the-art HPC

hardware, including the potential development of energy reduction techniques and intelligent

software.

6.3 Conclusion

Characterizing thermal profiles of cluster nodes is an integral part of many approaches that

addresses thermal emergencies in a data center. Thermal models are used to characterize the

thermal profile of a data center. We developed a thermal model, tModel, that projects outlet

temperatures using inlet temperatures and multicore temperatures procured from processor core

sensors. For validating our model, we picked several big-data applications from a popular

benchmarking suite, HiBench, to study the impact of real-life workloads on cluster nodes. We

studied various metrics like CPU temperature, inlet/outlet temperatures, height of the node in a

rack and air recirculation to develop a prediction model for outlet temperatures. This model can

be used as an input to the popular COP model, developed at the Intel Labs, which estimates the

cooling costs for data centers. Our thermal model offers two compelling benefits. First, tModel

makes it possible to cut back thermal monitoring cost by immensely reducing the number of

physical sensors needed for large-scale clusters. Monitoring temperatures is a vital issue for

safely operating data centers. However, it is prohibitively expensive to acquire and set up a

large number of sensors in a large data center. Second, tModel enables data center designers to

evaluate thermal management strategies during the center design phase.
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Recognizing that improving thermal efficiency of clusters helps in reducing the operational

cost of data centers, we developed a thermal-aware job scheduling strategy called tDispatch for

MapReduce applications running on Hadoop clusters. To facilitate the development of tDis-

patch, we investigated the thermal behaviors of CPU-intensive and I/O-intensive applications

running on Hadoop clusters by stress testing the data nodes through extensive experiments.

Our findings show that CPU-intensive and I/O-intensive jobs exhibit distinct thermal and per-

formance impacts on multicore processors and hard drives of Hadoop clusters. Our study

suggests that one way to make Hadoop clusters thermal friendly is to dispatch CPU-intensive

and I/O-intensive jobs to the cluster nodes where CPUs and disks are running at a lower tem-

perature. We implemented this idea with the aid of two job scheduling algorithms, tQueue and

tDispatch. We conducted an empirical study to compare the thermal and energy performance of

tDispatch with two scheduler counterparts, namely, CPUF and IOF. Specifically, we measured

the CPU and disk temperatures of the master node and data nodes governed by the three sched-

ulers. Our findings suggest that the schedulers make little impact on the thermal efficiency of

the master node. More importantly, our experimental results show that tDispatch is superior to

CPUF and IOF in terms of improving thermal efficiency of data nodes.
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