
Multi-objective Optimization for Establishing Geographical Boundaries and
Associations Using Evolutionary Algorithms and Collaborative and Adversarial

Intelligent Agents

by

Jonathan W. Lartigue

A dissertation submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Doctor of Philosophy

Auburn, Alabama
August 4, 2018

Keywords: Algorithms, Evolutionary Computing, Heuristic Search, Intelligent Agents,
Machine Intelligence, Genetic Algorithms

Copyright 2018 by Jonathan W. Lartigue

Approved by

Dr. Richard Chapman, Associate Professor of Software Engineering
Dr. Gerry Dozier, Professor of Software Engineering

Dr. Dean Hendrix, Associate Professor of Software Engineering

Abstract

Evolutionary Algorithms (EAs) are useful in solving prohibitively large search problems

in a limited amount of time. Where even the most efficient standard search algorithms can

become unwieldy as the solution space expands, such algorithms can provide a near-optimal

solution in a fraction of the time.

The application of both evolutionary and more traditional search algorithms to ge-

ographic districting problems is complicated both by the need to satisfy multiple, often

contradictory, quality heuristics and also by the need for geographic connectedness. Because

of this connectedness constraint, the ability of Evolutionary Algorithms to recombine, or

evolve, existing solutions with the aim of creating even better solutions is hampered by the

high likelihood of such changes producing an unconnected, and therefore invalid, solution.

This dissertation explores the difficulties involved in solving geographic districting prob-

lems with a contiguity constraint by first evaluating performance on real-world data for a

small municipal area. Next, two key sub-algorithms — called Neighborhood Mutation and

Local Repair — are introduced that can vastly reduce the incidence of invalid solutions in

the population, and these sub-algorithms are objectively evaluated in a sandbox environ-

ment. Then, the full Evolutionary Algorithm, including Neighborhood Mutation and Local

Repair, are executed on a statewide scale and its effectiveness is observed for independently

satisfying multiple quality heuristics.

Finally, we assess the efficacy of the Evolutionary Algorithm to solve districting problems

with multiple, sometime conflicting, quality heuristics. First, a traditional weighted multi-

objective heuristic function is evaluated. Next, the heuristic evaluation task is divided among

multiple, independent agents tailored for a specific quality attribute. These agents, which

ii

are formed into separate pools for each heuristic, then collaborative to produce an objective

value for the entire solution.

Results show that for districting problems with a geographic contiguity constraint,

a generic Evolutionary Algorithm can produce high-quality candidate solutions, but the

progress of such algorithms is hindered by the increasing percentage of invalid solutions that

are produced over time. We show that the Neighborhood Mutation and Local Repair algo-

rithms are each highly effective in independently preventing invalid solutions from entering

the population — and are even more effective when combined — in both sandbox and real-

world scenarios, thus allowing the Evolutionary Algorithm to converge toward more nearly

optimal solutions in a similar or even shorter amount of time.

Finally, we show that multiple, independent agents can separately evaluate the quality

of part of a multi-objective heuristic and then collaboratively combine those assessments into

a single fitness value that can perform comparably to a traditional, weighted multi-objective

heuristic function.

iii

Acknowledgments

The author expresses his sincere gratitude to Dr. Richard Chapman for his unwavering

support throughout the author’s graduate career. The author also thanks the members of

the committee, Dr. Paul A. Harris, Dr. David Umphress, Dr. James H. Cross II, and Dr.

Kate Lartigue.

For Courtney... without whose support this dissertation would not have been possible.

This dissertation was typeset using LATEX and the Texpad and BibDesk applications for

macOS. Statistical analysis and figures, unless otherwise indicated, are generated using

RStudio and the R programming language [143].

iv

Release and Disclaimer

Permission is granted to Auburn University to make copies of this dissertation at its

discretion, upon request of individuals or institutions and at their expense. The author re-

serves all publication rights.

This dissertation does not include proprietary or classified information.

v

Table of Contents

Abstract . ii

Acknowledgments . iv

List of Figures . x

List of Tables . xiii

List of Algorithms . xvi

1 Introduction . 1

1.1 Research Goals . 2

1.2 Hypotheses . 6

1.3 Research Overview . 8

2 Literature Review: Evolutionary Computing . 9

2.1 The Beginnings of Evolutionary Computation 9

2.1.1 Origin of Evolutionary Computation 10

2.1.2 General Evolutionary Computation Algorithms 16

2.2 Traditional Search Methods . 18

2.2.1 Hill Climbing and Gradient Ascent 20

2.2.2 Simulated Annealing . 22

2.2.3 Tabu Search . 23

2.2.4 Particle Swarm Optimization . 24

2.3 Evolutionary Computation Theory . 25

2.3.1 Schemata and the Building Blocks Theory 25

2.3.2 The Schema Theorem . 28

2.3.3 Price’s Covariance and Selection Theorem 30

2.4 Characteristics of a Genetic Algorithm . 31

vi

2.4.1 Fitness . 33

2.5 Evolution Strategies . 35

2.5.1 General Evolution Strategies . 35

2.5.2 Selection and Recombination Schemes 38

2.6 Genetic Operators . 41

2.6.1 Basic Nomenclature . 41

2.6.2 Selection . 41

2.6.3 Recombination and Crossover . 54

2.6.4 Mutation . 61

2.6.5 Inversion . 63

2.6.6 Loss of Diversity and Convergence . 64

3 Literature Review: Metahuristic Search in Geographic Districting Problems . . . 66

3.1 Optimized Search for Location and Districting Problems 68

3.2 Common Constraints on Districting Problems 72

3.2.1 Population Equality . 73

3.2.2 Socio-economic Homogeneity . 74

3.2.3 Similarity to Existing Plan . 74

3.2.4 Integrity of Communities . 74

3.3 Evolutionary Approaches to Partitioning and Districting Problems 76

4 Solving Districting Problems with Evolutionary Algorithms and Mitigating the

Effects of Contiguity Constraints . 84

4.1 Constructing an Evolutionary Algorithm to Solve Districting Problems . . . 84

4.1.1 Construction of Algorithm and Initial Population 85

4.1.2 Algorithm Implementation . 86

4.1.3 Results . 88

4.2 Controlled Testing of an Evolutionary Algorithm for Solving Districting Prob-

lems . 95

vii

4.2.1 Initial Zone Creation . 96

4.2.2 Effects of Population and Tournament Size Variation 97

4.3 Effects of Hard and Soft Contiguity Constraints on Populations 99

4.3.1 Fitness Penalization . 101

4.3.2 Neighborhood Mutation . 105

4.3.3 Local Repair . 107

4.4 Algorithm Performance on Statewide Analysis 109

4.4.1 Performance on Population Equality Heuristic 112

4.4.2 Performance on Minority Population Heuristic 118

4.4.3 Performance on District Compactness Heuristics 122

5 Evolutionary Algorithms in Multi-criteria Optimization Searchand the Use of

Agents in Heuristic Evaluation . 127

5.1 Implementing a Multi-Objective Heuristic for Districting Problems 127

5.2 Evolutionary Search Results with a Multi-objective Heuristic 133

5.3 Multi-objective Heuristic Evaluation by Independent Agents 139

5.3.1 Pools of Cooperating Agents . 143

5.4 Results of Heuristic Evaluation by Intelligent Agents 145

6 Conclusions and Future Work . 149

6.1 Conclusions on Evolutionary Solutions to Districting Problems with Contigu-

ity Constraints . 149

6.2 Conclusions on Multi-Objective Heuristic Evaluation of Evolutionary District-

ing Problems . 151

6.3 Future Work . 154

Glossary . 156

Acronyms . 164

Bibliography . 166

Appendices . 179

viii

A Additional Tables and Figures . 180

ix

List of Figures

2.1 Hypothetical two- and three-dimensional solution space 18

2.2 Fitness Distribution and Cumulative Fitness Distribution 34

4.1 Typical Generation-zero Map for a Contiguous Districting Problem 90

4.2 Highly Fit 10th and 50th Generation Maps for a Contiguous Districting Problem 92

4.3 Near-Optimal 500th Generation Map for Non-contiguous Districting Problem . 93

4.4 Comparison of Population Variation for Districting Problem GA 98

4.5 Comparison of Tournament Size Variation for Districting Problem GA 99

4.6 Percentage of Feasible, Contiguous Solutions for Varying Population Sizes . . . 100

4.7 Sample solution to 25x25 zone contiguous districting problem 102

4.8 Effects of Large Tournament Size on Fitness Convergence for Districting Problem

GA . 103

4.9 Illustration of Neighborhood Mutation Failure Scenario 106

4.10 Comparison of Best Fitness Value Found Over Time for a Contiguous Districting

Problem for the State of Alabama . 113

4.11 Near-Optimal Solution to Districting by Population for the State of Alabama . 114

x

4.12 Comparison of Percent of Valid Solutions in Population over time for a Contigu-

ous Districting Problem for the State of Alabama 115

4.13 Comparison of Mean Fitness over time for a Contiguous Districting Problem for

the State of Alabama . 116

4.14 Comparison of Three Near-Optimal Solutions to Districting by Population for

the State of Alabama . 117

4.15 Comparison of Standard Deviation of Fitness over time for a Contiguous Dis-

tricting Problem for the State of Alabama . 118

4.16 Comparison of Three Near-Optimal Solutions to Districting by Minority Popu-

lation for the State of Alabama . 119

4.17 Comparison of Mean Fitness and Percent of Contiguous Solutions with and with-

out Local Repair Algorithm . 120

4.18 Comparison of Minimum Fitness and Standard Deviation with and without Local

Repair Algorithm . 121

4.19 Comparison of Local Repair Effectiveness with District Compactness Heuristic . 123

4.20 Sample Solution to Districting with Compactness Heuristic for the State of Alabama125

4.21 Near-Optimal Solution to Districting with Compactness Heuristic for the State

of Alabama . 126

5.1 Three Possible Solutions for a Multi-Heuristic Districting Problem by Total Pop-

ulation Distribution for the State of Alabama 135

5.2 Three Possible Solutions for a Multi-Heuristic Districting Problem by Minority

Population Distribution for the State of Alabama 136

xi

5.3 Three Possible Solutions for a Multi-Heuristic Districting Problem by Balancing

both Total Population and Minority Population Distribution for the State of

Alabama . 138

5.4 Two Possible Solutions for a Multi-Heuristic Districting Problem Balancing Total

and Minority Population Distribution with District Compactness for the State of

Alabama . 140

5.5 Sample Likert Scale Heuristic for Quality Assessment by Agents 144

5.6 Near-Optimal Solutions for Districting the State of Alabama with a Multiple

Agent Heuristic . 146

5.7 Near-Optimal Solution for Districting the State of Alabama with a Four Collab-

orative Pools of Heuristic Agents . 148

A.1 Zip Codes Tabulations in Alabama . 186

A.2 Near-Optimal Solutions Districting the State of Alabama with Random Zone

Centers . 189

xii

List of Tables

4.1 District Population Distribution for Sample Generation Zero Candidate Solution 91

4.2 District Population Distribution for Sample 10th Generation Candidate Solution 91

4.3 District Population Distribution for Sample Near-Optimal Contiguous Solution 91

4.4 District Population Distribution for Sample Near-Optimal Unconnected Solution 93

5.1 Subjective Weighting Factors for Weighted Multi-Heuristic Search 134

A.1 Random Population Data for GA Testing on a 25x25 Grid Districting Problem . 181

A.2 Comparison of Invalid Solution Percentage in Population with Varying Popula-
tion Sizes . 182

A.3 Comparison of Varying Population Sizes on Algorithm Performance with Random
Mutation . 183

A.4 Comparison of Varying Population Sizes on Algorithm Performance with Neigh-
borhood Mutation . 184

A.5 Comparison of Varying Population Sizes on Algorithm Performance with Local
Repair . 185

A.6 Algorithm Performance with Neighborhood Mutation and Varying Mutation Rates,
Part 1 . 187

A.7 Algorithm Performance with Neighborhood Mutation and Varying Mutation Rates,
Part 2 . 188

A.8 Algorithm Performance with Local Repair with a Minority Population Equality
Heuristic, Part 1 . 190

A.9 Algorithm Performance with Local Repair with a Minority Population Equality
Heuristic, Part 2 . 191

A.10 Algorithm Performance with Average-Distance-From-Center Compactness Heuris-
tic, Part 1 . 192

xiii

A.11 Algorithm Performance with Average-Distance-From-Center Compactness Heuris-
tic, Part 2 . 193

A.12 Algorithm Performance With and Without Local Repair for a Sum-of-Distances
Compactness Heuristic . 194

A.13 Multi-Heuristic Performance for Total Population Distribution and District Com-
pactness, Part 1 . 195

A.14 Multi-Heuristic Performance for Total Population Distribution and District Com-
pactness, Part 2 . 196

A.15 Multi-Heuristic Performance for Minority Population and District Compactness,
Part 1 . 197

A.16 Multi-Heuristic Performance for Minority Population and District Compactness,
Part 2 . 198

A.17 Multi-Heuristic Performance for Total Population and Minority Population Dis-
tribution, Part 1 . 199

A.18 Multi-Heuristic Performance for Total Population and Minority Population Dis-
tribution, Part 2 . 200

A.19 Multi-Heuristic Performance for Total Population and Minority Population Dis-
tribution and District Compactness, Part 1 . 201

A.20 Multi-Heuristic Performance for Total Population and Minority Population Dis-
tribution and District Compactness, Part 2 . 202

A.21 Agent-Based Heuristic Performance for Total Population and Minority Popula-
tion Distribution . 203

A.22 Agent-Based Heuristic Performance for Total Population, Minority Population,
and District Compactness . 204

xiv

List of Algorithms

2.1 General Procedure for an Evolutionary Algorithm 17

2.2 A General “Steepest-Ascent” Hill-Climbing Algorithm 20

2.3 Simulated Annealing . 22

2.4 Tabu Search . 23

2.5 Particle Swarm Optimization . 24

2.6 Simplified Tournament Selection . 43

2.7 Truncated Selection . 45

2.8 Roulette Wheel (Fitness Proportionate) Selection 46

2.9 Linear Ranking Selection . 49

2.10 Exponential Ranking Selection . 50

2.11 Roulette Tournament Selection . 51

2.12 Single-Point Crossover . 56

2.13 Two-Point Crossover . 57

2.14 Uniform Crossover . 58

2.15 Parameterized Uniform Crossover . 59

2.16 Three-Parent Crossover . 60

3.1 Hess et al.’s Redistricting Algorithm . 70

3.2 Correa et al. Algorithm for Hypermutation 78

3.3 Bação et al. Genetic Algorithm for Zone Design 80

4.1 Pseudocode for Creating an Initial Population for Contiguous Districting Prob-

lems . 86

4.2 Geographically Contiguous Initial Population Construction 87

xv

4.3 Tournament Selection . 88

4.4 Single-Point Crossover and Random Mutation 89

4.5 Algorithm for Initial Construction of a Contiguous District Map 97

4.6 Neighborhood Mutation . 105

4.7 Local Repair of Discontiguity . 108

xvi

Chapter 1

Introduction

“Considering that we live in an era of evolutionary ev-

erything — evolutionary biology, evolutionary medicine,

evolutionary ecology, evolutionary psychology, evolution-

ary economics, evolutionary computing — it was surpris-

ing how rarely people thought in evolutionary terms.”

— Michael Crichton [51]

Evolutionary Computation (EC) in general, and Genetic Algorithms (GAs) in particu-

lar, are a “general, adaptable concept for problem solving” and are “especially well suited

for solving difficult optimization problems” involving prohibitively large search spaces and a

limited amount of time. [13, 15] Where even the most efficient standard search algorithms

can become unwieldy as the solution space expands, evolutionary algorithms can provide a

near-optimal solution in a fraction of the time.

The concept of Evolutionary Computation, and of Genetic Algorithms, stems from

observations that, in nature, the processes of selection, reproduction, and mutation not only

propagate a species from one generation to the next, but also improve the suitability, or

adaptation, of a species to its environment over time. It is theorized, but widely accepted as

axiom, that through this process the improvement and spread of desirable abilities or traits

within a species, and also speciation itself, occurs.

1

In computer science, these concepts are embraced in the field of EC, which has the

generalized aim of both effectively representing a problem within software and, over time,

recombining potential solutions to that problem in such a way as to promote the longevity,

or survival, of desirable solutions, or parts of solutions, to the problem. This is usually

accomplished by defining a heuristic function that quantifies the suitability of a solution to

the problem in such a way that it can be compared and ranked relative to other potential

solutions. This quantity, usually called a fitness measure, is used to allow the relatively

more-frequent selection of higher quality solutions as “parents” whose genetic makeup is

then recombined or altered in varying ways to produce a new “child” solution that, it is

hoped, will embody the more desirable parts of each parent and, therefore, become an even

more fit, or suitable, potential solution to the problem.

This process of recombining parents to produce children leads to a new set of potential

solutions, usually called a new generation, which then becomes the pool of available par-

ents for this to repeat for as many generations as desired or necessary. Evolutionary and

Genetic Algorithms typically continue to produce new generations until an arbitrary time

limit expires, until a set number of generations has been reached, until a certain threshold of

quality in potential solutions has been met, or until appreciable improvement in the quality

of potential solutions is no longer occurring in subsequent generations. Once an algorithm

terminates, the most suitable solution found is then returned as the best available solution

to the problem.

1.1 Research Goals

In this research, we wish to explore the ability of Evolutionary Computation, specifically

a modified genetic algorithm, to take a large geographic area and associated demographic

data for that area and produce a set of geographic districts comprised of multiple smaller

geographic parcels that are grouped according to any chosen criterion or criteria. This

type of problem, typically referred to as a districting problem, poses unique challenges both

2

in achieving multiple, often conflicting, attributes of quality as well as satisfying difficult

geographic constraints.

For example, given a data set consisting of small geographic areas (e.g. U.S. Postal

Service Zone Improvement Plan (ZIP) code parcels, census tracts, or similar small sections)

and an associated set of demographic or similar information for each of those areas, we

hope to show that Evolutionary Computation can generate any number of sets of districts

of associated parcels based upon the characteristics of any desired demographic criterion or

criteria. The criteria for these associations can be quite varied, and the manner of association

of parcels can be such that associated subsets may be either geographically contiguous or

separated.

The number of possible associations can quickly lead to an unrealistically large search

space, even for small physical areas. For example, the area of Jefferson County, Alabama

— excluding the surrounding metropolitan area — alone consists of 59 distinct zip codes.

If we desired to partition these zip codes into five sets, based on an any arbitrary criterion,

we would have a solution space of 559 possible solution sets if geographic contiguity is not

required, or more than 1.7 × 1041 possible solutions. If geographic continuity of a set is

necessary, the number of possible solutions is much smaller, but still unrealistic to search.

For an implementation with a statewide data set, a significantly larger number of zip codes

— more than 800 in Alabama — vastly increases the search space. To partition this set into

seven geographic regions would result in a search space of roughly 7811 and to partition it

into 105 districts would result in about 105811 possible combinations, both of which are as

near to infinity as practicable.

More accurately, the number of ways to partition a set of n elements into k non-empty

sets is shown in the Stirling number of the second kind: [8][12][177][49]

S2(n, k) =
1

k!

k∑
i=1

(−1)i
(k

(k − 1!i!)

)
(k − i)n (1.1)

3

The application of traditional and evolutionary algorithms to the solving of districting

problems is not new, but both traditional and evolutionary methods begin to degrade when

multiple, independent quality heuristics are addressed simultaneously. Performance is im-

pacted even more when geographic constraints such as district contiguity — which is difficult

to quantify in a manner other than binary — are considered.

There are general similarities between many traditional search algorithms, which typi-

cally start with a candidate solution and then repeatedly iterate through its “neighborhood”

by making small changes in hope of quality improvement, and evolutionary algorithms, which

likewise operate on a a pool of many candidate solutions, modifying them over and over in

hope of finding improved solutions. But both struggle with districting problems with conti-

guity constraints, where an otherwise good solution is considered invalid because of one or

more geographic units in a district that are disconnected from the rest. In fact, with such

a constraint in place, most random modifications to a valid solution would tend to produce

an invalid solution as a result.

We aim to implement two approaches to mitigate the effects of discontiguous solutions

in solving such districting problems with evolutionary algorithms. First, we intend to em-

ploy a preventative algorithm that uses an informed method of mutation that, compared to

purely stochastic mutation, is less likely to produce a new candidate solution that is invalid.

Secondly, we intend to create a remedial algorithm that will detect and attempt to correct

minor contiguity flaws in a candidate solution with the aim of rendering that solution valid

once again.

The problem of reconciling multiple independent quality heuristics is similar. In real-

world districting problems, many considerations such as population equality, geographic

compactness, preservation of communities, and socioeconomic equality, to name a few, must

each be addressed, despite in many cases being incompatible with each other.

4

We attempt to address this by utilizing multiple intelligent software agents, each with a

differing perspective of the simulated environment, to act as “stakeholders” for one or more

quality heuristics for the search.

Research has shown that the use of intelligent software agents in evolutionary algorithms

is becoming more common [156, 45], but many approaches to this regard the individuals in

the population as agents themselves, rather than a truly independent software component.

Agents, and multiple agent systems (MAS), have increasingly been associated with Evolu-

tionary Algorithms, and although there has been wider acceptance of agent-based modeling

in geospatial systems, limited research is available on the use of EAs in discovering geo-

graphic associations among discrete geographic units. There is even less research available

on the use of multiple intelligent heuristic agents in informing the fitness functions of Genetic

Algorithms.

Utilizing separate agents for independent evaluation of specific quality attributes allows

each to inform, individually, on the quality or suitability of a solution in terms of that specific

attribute and, collectively, on all attributes. Therefore, the quality measure of any candidate

solution will no longer be based upon a single calculation, but upon the collection of inde-

pendent calculations from multiple independent agents with different heuristics particular

to the interests of each agent. When considered together, the agents can produce a single

quality measure for each candidate solution that can be used for ranking purposes, which is

necessary in Evolutionary Algorithms during selection and reproduction operations. Thus,

the population as a whole will tend to evolve and produce candidate solutions with fitness

values that, on average, are increasingly suitable for most or all of the intelligent agents.

We further expand this this concept by implementing two or more “pools,” or “agencies,”

each of which is composed of a collection of agents that — within that pool, at least — have

similar perceptions of the simulated environment and quality goals for candidate solutions.

However, since each separate pool is concerned with its own quality metric, one pool’s

perceptions may conflict with another pool. Thus, when one pool would tend to find all

5

or part of a candidate solution appealing, the competing pool may not necessarily rate all

or part of that same solution as highly. The total quality of any candidate solution then

depends on the combined quality estimations of each of the agents.

When two or more separate pools of agents evaluate the quality of a candidate solution,

some of these quality measures will be adversarial in nature to the criteria favored by other

pools. But at the same time, the members within the same pool will share some in common a

set of similar, collaborative criteria. Therefore, any given candidate solution will be assigned

a quality value by competing pools of both collaborative and adversarial intelligent agents,

in which the separate pools may be adversarial in their goals, but the members within those

pools are collaborative in theirs.

The matter then becomes one of how to resolve the two competing fitness values assigned

by each pool. If we presume that the pools are adversarial in nature, then in many cases as

one pool would tend to assess a relatively high fitness value for a candidate solution, we would

expect the competing pool to assess that same candidate solution relatively lower. In this

situation, we hope to reduce these dual values to a single fitness score that reflects a measure

of agreement — or disagreement — between the two pools. Thus, the modified fitness value

that is used to order the candidate solutions in the population will come to reflect the degree

to which both pools of agents agree on the suitability of a solution. Through this approach,

we hope to show that the most mutually agreeable solutions rise to the top and propagate

into subsequent generations, eventually producing a candidate solution that both pools of

agents find to be the most nearly agreeable or, conversely, the least disagreeable.

1.2 Hypotheses

Hypothesis 1 Evolutionary Algorithms can successfully produce increasingly improving

solutions for districting problems with a geographic contiguity constraint and one or more

independent criteria for heuristic evaluation.

6

Hypothesis 2 The negative impact of a geographic contiguity constraint on an evolution-

ary algorithm can be mitigated by modification of destructive operations, such as recombi-

nation and mutation, to limit the likelihood of infeasible genetic characteristics entering the

population.

Hypothesis 3 The negative impact of a geographic contiguity constraint on an evolution-

ary algorithm can be mitigated by the implementation of a mechanism to detect and repair

infeasible portions of the genetic string.

Hypothesis 4 Independent Intelligent Agents, each with differing perceptions of the sim-

ulated environment and goals for candidate solutions, can work together to provide fitness

estimates that will allow the population to evolve increasingly more fit solutions.

Hypothesis 4-A A set of Independent Intelligent Agents can disagree in the relative

fitness of candidate solutions, yet cooperatively inform on the fitness to produce a

ranking measure that will allow an evolutionary algorithm to evolve the population

over time.

Hypothesis 4-B Given a set of Independent Intelligent Agents informing on the fit-

ness of candidate solutions in a genetic algorithm, the presence of candidate solutions

that are infeasible to one or more agents, but not all agents, can still prosper and

evolve into candidate solutions that are feasible to all agents.

Hypothesis 4-C Given two or more pools of independent agents, each of which is

comprised of a group of agents that have similar perceptions of the simulated environ-

ment and goals for candidate solutions, and each of which has differing perceptions

and goals from the other pools, these pools of agents can work collaboratively within

the pool and adversarially (i.e. externally) between pools to produce a ranking mea-

sure that will allow for the operations of an Evolutionary Algorithms to positively

evolve the population over time.

7

1.3 Research Overview

The first phase of this research focuses on a traditional Genetic Algorithm working with

a small set of geographic parcels — less than 60, representing a single county. This phase

centers on the construction of the Genetic Algorithm itself, the representation or encoding

of the geographic parcels in software, the development of a meaningful fitness measure, the

incorporation in the design of appropriate patterns to support later phases of research, and

establishing a baseline of performance for the algorithm and its heuristic measures.

Next, the research focuses on objectively evaluating the performance of a modified Ge-

netic Algorithm in a controlled, sandbox environment with simulated data that is of a large

enough size to contain a number of geographic parcels comparable to what would be found

when performing a districting problem on a typical U.S. state. The algorithm’s performance

is objectively assessed in terms of population size, selection method, recombination effective-

ness, and mutation effectiveness. Two algorithms are implemented for reducing the incidence

of invalid solutions in the population: a Neighborhood Mutation algorithm that attempts

to prevent the creation of invalid solutions; and a Local Repair algorithm that attempts to

correct small discontiguity errors that do occur. The effectiveness of these algorithms are

independently assessed using the sample data set and sandbox.

Third, the algorithm is tailored based upon previous results and employed on a state-

wide scale using real-world demographic and geospatial data for the state of Alabama —

Encompassing more than 640 geographic parcels — and tested with a number of differing

quality heuristics.

Finally, the algorithm’s performance is tested with a multi-objective heuristic function

and then using pools of software agents, each of which has its own quality criterion, to

together assess each of the quality criteria.

8

Chapter 2

Literature Review:

Evolutionary Computing

“(I resolved to) conduct my thoughts in such an order that,

by commencing with objects the simplest and easy to know,

I might ascend, little by little, and as it were, step by step,

to the knowledge of the more complex.”

— Rene Descartes [59]

2.1 The Beginnings of Evolutionary Computation

Through the processes of neo-Darwinism evolutionary theory — reproduction, mutation,

competition and selection — the best individuals in a population are presumed to persist

and bear offspring from generation to generation, thus preserving their traits and abilities,

and more importantly the genetic material that makes them stronger, better, or otherwise

superior to the rest of the population [53].

It can be presumed that, through attrition, those individuals that perform poorly are

eliminated from the population by either physical death or by genetic death (i.e., not repro-

ducing) and those that are fit and possess desirable characteristics survive and reproduce. It

is through this process that the population as a whole evolves its fitness and characteristics.

9

Fogel writes that Darwinian evolution is “intrinsically a robust search and optimization

mechanism” [68]. Artificial intelligence methods can leverage this premise to solve complex

problems [152]. Evolutionary Computation (EC), and more specifically Genetic Algorithms,

applies this biological theory to the solving of complex problems through simulated evolution.

When introducing Evolutionary Computation, Fogel succinctly describes evolution as a “two-

step process of random variation and selection” [66].

To accomplish this, a set of anthropomorphic or otherwise representative objects is

created to model, in software, a candidate solution to a complex, real-world problem. These

candidate solutions comprise the population and are considered to simulate some of the

capabilities of a biological organism, such as the ability to combine, or mate, with another

instance and, in doing so, exchange genetic material to produce a new instance: an offspring

or child [152].

The process of mating and reproduction allows the creation of any number of distinct,

subsequent generations. By selecting the individuals in the population that are deemed to be

the most desirable — and therefore are presumed, but not guaranteed, to possess the more

desirable traits — as parents for the next generation, it is hoped that the average quality

of the population can be improved over time [66]. The advantages of Evolutionary Com-

putation in solving difficult optimization problems include the simplicity of this approach,

the the ability of these algorithms to respond to changing circumstances, and flexibility in

representing different problems [68].

2.1.1 Origin of Evolutionary Computation

Modern implementations of Evolutionary Computation (EC), which now encompasses

the field of study concerning all types of evolutionary inspired algorithms, has its roots in

three very similar, but distinct and independently developed approaches: Genetic Algorithm

(GA)s, Evolutionary Programming (EP), and Evolutionary Strategies (ES) [13, 15][65][68].

10

A fourth related approach, called Genetic Programming, emerged later but is now considered

part of the domain of Evolutionary Computation [114].

The origins of these are variously attributed to several individuals, and particularly

among them George E. P. Box and Alex S. Fraser, both of whom published the initial

concepts that would later lead to the broader field of Evolutionary Computation in general

and Genetic Algorithms in particular [73] [27].

The inspiration for both of these efforts came, in part, from the much earlier work

of Sewall Wright, whose work in population genetics, specifically the relationship between

genotypes and pheontypes, would lead to his 1932 description of “adaptive landscapes” [183],

which are a metaphor to communicate the complexities of additive and epistatic effects on

fitness in a population [165]. He developed an early mathematical theory of evolution,

modeling how the frequencies of alleles in a population could vary based on “pressures” such

as natural selection, mutation, speciation, and migration [98].

The work in the late 1950s of Box on what was termed Evolutionary Operation (EVOP)

was one of the first attempts to introduce small changes to a problem or system and, over

time, determine which improvements tend to increase the suitability or quality of the prob-

lem or system being modified [27]. Box’s approach, which essentially consisted of a series of

successive experiments both in the laboratory and on the factory floor, envisioned a “yield

surface,” similar to Wright’s “adaptive landscapes,” in which the maximum yield of a chemi-

cal manufacturing process could be envisioned as a “maximum mound” on a two-dimensional

plot of time and percentage yield [28]. Box noted that the optimum conditions found exper-

imentally in the lab sometime differed from the optimum conditions for maximum yield in

large scale manufacturing, and he proposed small variations in the manufacturing parame-

ters that, while not significantly affecting the suitability of the final product, would allow the

investigation of neighboring areas of the “yield surface” to find improvements. Box wrote

that the two essential features of the evolutionary process were variation and selection of

‘favourable’ events [27, 84].

11

At about the same time, A.S. Fraser was conducting the first experiments simulating

genetic systems using digital computers and evaluating the effects of selection [73]. His early

efforts studied diploid organisms represented by binary strings, each bit of which represented

a specific dominant or recessive allele and explored simulated reproduction of organisms

using a multi-point crossover operation, both of which techniques would later form the core

concepts of Genetic Algorithms [67]. His works are notable, in particular, for introducing

the Monte Carlo method for selection of parents in genetic systems and for enumerating a

variety of techniques for manipulation of the performance of genetic simulations [67].

Evolutionary Programming (EP), pioneered by Lawrence Fogel, and refined by Bur-

gin, Atmar, his son David Fogel, and others, has its roots in early approaches to demon-

strate artificial intelligence by evolving finite state machines used in symbol prediction

[9][13][34][69][70][71]. The Evolutionary Programming concept matured into an approach

for solving optimization problems that incorporates a population of candidate solutions, the

replication and mutation of solutions into new candidate solutions, and the assessment of

the fitness of candidate solutions to determine if an individual solution is allowed to remain

in the population [35].

Unlike Genetic Algorithms, which will be described in depth below, Evolutionary Pro-

gramming typically does not restrict the manner of representation of the problem domain,

the number of offspring produced by each member of the population, or employ crossover of

genetic material from multiple parents to an offspring. Although a form of selection exists

in Evolutionary Programming, it is generally used not to determine which individuals will

be allowed to reproduce, but which offspring will be allowed to survive [35].

Evolutionary Strategies (ES) were introduced at the Technical University of Berlin by

Rechenberg, Schwefel, and others beginning in the early 1970s, again with the goal of ad-

dressing optimization problems “strategically” instead of with more traditional gradient or

hill-climbing strategies [145][158][159]. That was done by applying stochastic changes, fol-

lowing the example of mutation in the natural world, to the parameters of a shape problem.

12

As originally proposed, Evolutionary Strategies relied on a population of one and mutation

operations to conduct the search for other candidate solutions [117]. This approach was

augmented with a selection operation, and systematic testing of other Evolutionary Strate-

gies approaches was begun, experimenting with variations in the number of parents used

to produce offspring, the number of offspring produced by each parent, narrow and wide

variation through mutation, and other factors [36].

Evolutionary Strategies permitted some of the first detailed, empirical analysis of the

performance of Evolutionary Computation, with insights gained in population convergence,

desirable mutation ratios, and other areas [36]. The concepts of Evolutionary Strategies

would eventually spill over into other areas of Evolutionary Computation, and would partic-

ularly influence the broadening of Genetic Algorithms beyond their canonical form. Today,

Evolutionary Strategies and Genetic Algorithms share many features [117].

The subfield of Genetic Algorithms (GAs) was developed by John Holland, whose 1975

book “Adaptation in Natural and Artificial Systems” is generally considered to be among

the first definitive works on the subject and which and laid the foundation for most future

discussion and experimentation on GAs [126]. Holland’s book, which was the culmination

of his earlier work [89], arose from exploration of adaptation in nature and how it could be

used in computer systems. This work established much of the terminology and defined the

basic operations of traditional GAs, codifying the core concepts of crossover, mutation, and

inversion [92]. He presented the theoretical foundations of modern GAs, and also defined

the concept of a “schema,” or representations of genetic substrings that represent portions

of a chromosome.

Holland examines adaptation as it applied to any system, and suggests that adaption is

the “progressive modification of some structure or structures.” The precise mechanism by

which this is done is not as important as the concept that adaptation “designates any process

whereby a structure is progressively modified to give better performance in its environment”

[92].

13

He refers to an “adaptive plan” that consists of the structures in the system and the

mixture of operators acting upon it. The plan’s “domain of action” is the set of all structures

that can be obtained by applying all possible combinations of operator sequences repeatedly.

Furthermore, he states that it is the purpose of an adaptive plan to provide structures “which

perform well (i.e. are more ‘fit’) in the environment confronting it” [92].

Holland describes three major components in the adaptive process: the environment,

E, of the system undergoing adaptation; the adaptive plan, τ , by which the structures are

modified; and a fitness measure, µ, of the structure’s performance in its environment [91].

Initially, an adaptive plan has no knowledge of what constitutes a fit structure in its

environment. However, over time a plan tests the performance of many different structures in

the environment. Because one environment may differ from another, the current environment

E is a subset of all possible alternative environments E ∈ ε. For each different environment,

the measure of fitness may be different, so each environment has its own performance measure

µE [91].

Holland underscores the importance of evaluating the fitness of a structure and notes

that each problem domain for adaptive systems is “defined as much by its performance

measures as by its structures and operators.” The set of these operators, Ω, can be applied

successively in any order to produce a sequence of modifications to the set of structures, α,

over time. Holland summarizes the challenges of the adaptive process by stating “that the

organization of α, the effects of the operators Ω upon structures in α, and the form of the

performance measure µE all affect the difficulty of adaption” [91].

The obstacles to adaptation include the very large — and often impossibly large – set

α and the length and complexity of representative structures that obscure which specific

subcomponents of the structures are most relevant for good performance. Additionally, the

performance measure µE is often a complicated, non-linear function with multiple parame-

ters that results in an uneven landscape comprised of local optima and discontinuities [91].

14

Finally, performance measures can vary over time and location, so fit structures may only

be relevant at certain places and times.

There are biological analogues to underscore the difficulty of determining exactly which

part of a structure is most important for all or part of a high performance measure for

that structure. Holland points out that “every organism is an amalgam of characteristics

determined by the genes in its chromosomes” and that each of these genes has multiple

forms or alternatives, known as alleles. In vertebrate species there are approximately 10,000

genes, and if each gene has only two possible alleles, then the number of possible genetic

combinations is 210,000 [91].

Piglucci notes that the vastness of possible genetic combinations was apparent to Sewall

Wright [183]. “Wright quickly calculated that reasonable assumptions about the number

of allelomorphs possible even with (modest) figures was orders of magnitudes higher than

the number of particles in the universe” [137, 592].

However, in biology, a single gene is often not independent from others in affecting

characteristics of an organism. Instead, a single gene may have an impact on multiple

otherwise independent characteristics or, conversely, a single characteristic may depend on

the interactions of more than one gene. This phenomenon is referred to as epistasis and

demonstrates that the effect of one gene at a particular location in a chromosome is dependent

on the presence of one or more other genes. This tendency greatly increases the complexity

of the system and the presence of multiple alleles affecting the observed characteristics of

the system, known as the phenotype, depends on epistatic effects. Because of this, Holland

writes, “there is no simple way to apportion credit to individual alleles for the performance

of the resulting phenotype” [92].

Holland’s adaptive plans concept, and similar work by his students [38][93], was applied

to optimization problems by Kenneth De Jong in his 1975 doctoral dissertation under Hol-

land. De Jong assessed the performance of an adaptive algorithm versus stochastic search in

15

parameter optimization problems using a variety of functions of varying geometry, from sim-

ple three-dimensional parabolas to more complex surfaces with multiple maxima and minima

[57]. His work provided an empirical study of adaptive algorithms, assessing variations in

population size, mutation rate, crossover rate, and elitism. These same concepts are still

central to modern Genetic Algorithm theory and practice. He would also plant the seeds for

future work in GA theory, including multi-point crossover, diploid representations, and gene

dominance [57][58].

Today, despite the relatively independent development of Evolutionary Programming,

Evolutionary Strategies, and Genetic Algorithms, the distinctions between these different

representations and approaches have sufficiently blurred to the point that “it now makes

little sense...to speak of these originally different methods as being currently disparate” [68,

12].

2.1.2 General Evolutionary Computation Algorithms

All forms of Evolutionary Computation (EC) algorithms share the same general char-

acteristics. The first of these is a population of arbitrary size containing candidate solutions,

each of which is an encoding of the problem to be solved, and each of which has an ob-

jective function that quantifies the quality, desirability, fitness, or otherwise “goodness” of

an individual candidate solution. The second characteristic is a means of recombining the

characteristics, encoding, or genes of individuals in the population to either modify existing

individuals or to create new individuals. The final characteristic is a means of selection that

is typically used to determine either which individuals are chosen for recombination or which

children are allowed to enter the population and survive. Thus, over successive iterations of

each of these processes, it is hoped the overall quality of the population increases.

One can summarize this by defining a general formula for all evolutionary algorithms:

[63, 2-3][136]

pt+1 = s(v(pt)) (2.1)

16

Algorithm 2.1: A general procedure for an Evolutionary Algorithm. [184][185]

Data: Given an empty population G of candidate solutions at time, or generation, t
Result: A population G containing one or more highly fit candidate solutions

1 begin
2 t← 0
3 Initialize population G(t)
4 repeat
5 Evaluate each individual in G(t)
6 Select parent(s) from G(t) based on fitness
7 Apply evolutionary operators to parent(s) to produce offspring
8 t← t+ 1

9 until termination criteria satisfied ;

10 end

where pt is the population at any given time t, s(x) is the selection operation for choosing

individuals from the population for reproduction, and v(x) is the genetic variation operation,

which is responsible for recombination of genes from parents to produce offspring. This can

be expressed in pseudocode as shown in Algorithm 2.1.

Evolutionary Computation is merely one of many approaches for conducting optimized

heuristic search, and some might argue that they are a logical extension to existing non-

evolutionary optimization approaches. But they are not necessarily always the best type

of algorithm for solving such problems. The “No Free Lunch” theorem, offered by Wolpert

and Macready, holds that no single algorithm or method is a “silver bullet” in that it will

perform equally well on all types or classes of problems. That is, for any algorithm or method

that excels in solving one specific class of problem, there exists another, different class of

problems for which it will perform less optimally than other algorithms or methods [181].

17

Figure 2.1: A sample two-dimensional and three-dimensional rendering of hypothetical solu-
tion spaces depicting multiple maxima (peaks) and minima (valleys) that can pose difficulties
for some optimization algorithms.1

2.2 Traditional Search Methods

When discussing optimized search, a “search space” refers to the set of candidate solu-

tions to a problem which, when mapped into an n-dimensional space or hyperspace, can be

said to be separated from each other by some distance metric [126, 6]. This search space en-

compasses all possible solutions to a particular problem, and for most meaningful problems

would typically include a large number of independent variables; a search problem with n

independent variables would map to an n-dimensional search space.

For illustrative purposes, we can simplify this visualization as two- or three-dimensional

plot depicting a contiguous line or surface onto which all possible solutions are mapped

(see Figure 2.1). Although each of these usually has a single, globally maximum value

(represented by the tallest peak), we can also observe multiple local maxima (peaks) and

local minima (valleys) in the solution spaces.

The concept of a search space is similar to that of a “fitness landscape,” or an “adaptive

landscape,” originally described by Sewall Wright [183] in reference to biological genetics

and efforts to measure both the “distance” between two genotypes and the tendency of

1 Three-dimensional image courtesy of The MathWorks, Inc. [168]

18

natural selection to move a population over time to a “peak” of relatively high fitness in the

landscape [126]. Box refers to essentially the same concept as a “response surface” [26].

The distance between two individuals in a fitness landscape can be expressed in terms

of the number of differing genes between two genomes and the difference between their

relative fitnesses. Wright offers a two-dimensional plot of the fitness landscape to visualize

a population as “genotypes...packed side by side ... in such a way that each is surrounded

by genotypes that differ by one one gene replacement” [137].

For example, given two genomes of length l, and a real-valued fitness measure, a fitness

landscape can be envisioned as an l+1 dimensional space in which each gene value is plotted

along the first l axes and the fitness is plotted along the l+1th axis. The number of differing

genes, referred to as the Hamming distance for purely binary-coded chromosomes, is the

number of genes that have differing allele values between the two. Therefore, in the fitness

landscape, the distance between the two individuals is a vector combination of the number

of differing genes and the difference in the fitness values between the two individuals [126].

Wright illustrates that such landscapes form hills and valleys of relative high and low

fitness, respectively, and that the process of adaptation through natural selection tends to

move a population toward a nearby peak of relatively high fitness. But Wright, writing

in 1932, foresaw a problem that would prove to daunt early Evolutionary Computation

researchers, and which remains a challenge to this day: “The problem of evolution as I see

it is that of a mechanism by which the species may continually find its way from lower to

higher peaks in such a a field” [183, 358-359]. He writes further: ”.. there must be some sort

of trial and error mechanism on a grand scale by which the species may explore the region

surrounding the small portion of the field which it occupies. To evolve, the species must not

be under strict control of natural selection.” [183, 359]

There have been a large number of optimization algorithms — both domain-specific and

generalized — developed to find either the absolute maximum value or near-maximum value

in such search spaces. However, absent a brute force exhaustive search of all possibilities,

19

Algorithm 2.2: A generalized “steepest-ascent” hill-climbing algorithm [126, 96].

Data: A binary encoded problem with data length l
Result: The highest quality solution found

1 begin
2 C ← Random candidate solution
3 Cbest ← C
4 repeat
5 repeat
6 foreach bit i ∈ (0..l) do
7 Mutate bit i to produce C ′

8 Evaluate the fitness f(C ′)
9 if f(C ′) > f(Cbest) then

10 Cbest ← C ′

11 end

12 end

13 until Cbest is unchanged ;
14 C ← Random candidate solution

15 until termination criteria are met ;
16 return Cbest as the highest hilltop found

17 end

many of these algorithms generally start with a potential value or solution and then attempt

to explore nearby values iteratively in order to find increasingly better values or solutions.

Local maxima and minima can represent challenges to such algorithms, which can become

stuck at a locally high value that is inferior to globally optimum value.

2.2.1 Hill Climbing and Gradient Ascent

A common approach to optimization problems are greedy neighborhood-search algo-

rithms such as gradient ascent (or descent) and hill climbing, both of which attempt to

maximize (or minimize) a function or heuristic.

A typical hill climbing algorithm, also called an iterative improvement algorithm, at-

tempts to reach an optimum solution by iteratively improving a single solution with small

modifications to its parameters. Generally, it can be said that a hill climbing algorithm eval-

uates nearby solutions in the search space searching for a better solution than the current

one, selecting only non-declining values for the next move. In a three-dimensional context,

20

one can visualize a series of iterative improvements in a solutions that, over time, move

the solution up a slope one small step at a time until, eventually, reaching a peak. The

most common approach is known as steepest-ascent hill climbing (see Algorithm 2.2), in

which all neighbors are evaluated and the most-improved is selected, but variations exist

such as next-ascent hill climbing, in which the first neighbor found with improvement is

selected, and random-mutation hill climbing [126, 96-98]. There are many other approaches

to hill-climbing, including: exhaustive neighborhood evaluation before selecting the best

move; stochastic hill climbing, which selects randomly from all increasing moves; a “first

improvement” strategy, which chooses the first potential move that results in improvement;

neutral-move policies, which enable movement across relative flat landscapes; and others

[120][121].

Gradient ascent (or descent) algorithms are similar in concept to hill-climbing algorithms

with the caveat that gradient ascent (descent) always chooses the move with the steepest

ascent (descent) at any given moment. The movement in the solution space can be seen as

choosing the steepest ascent or descent along the slope of the curve at the current location.

In this manner, gradient descent always seeks the greatest immediate improvement from

one step to the next [45]. Gradient ascent (descent) algorithms are known to have difficulty

climbing ridges (or valleys), and such algorithms tend to slowly “zig-zag” along these ridges

or valleys in an attempt reach a maximum or minimum value [117].

Problems arise in both hill-climbing and gradient ascent (descent) algorithms when the

solution space contains multiple peaks or valleys. Depending on the starting location of the

algorithm, it can tend to climb to the top of the local peak or saddle point and stop, regardless

of whether that peak represents a global optimum or merely a local one [45][68]. Various

methods have been employed to mitigate this problem, including running such algorithms

multiple times with randomized starting locations, breakout functions which will allow the

algorithm to potentially jump from its hill to a nearby one, algorithms that allow temporarily

exploring an inferior solution, and other techniques.

21

Algorithm 2.3: A generalized simulated annealing algorithm [77].

Data: A random starting solution S, a constant cooling factor α = 0.9, a minimum
temperature Tmin = 0.00001, and a number k of neighbors to search before
“cooling” the algorithm.

Result: A lower-cost solution S ′

1 begin
2 Sold ← S
3 T ← 1.0
4 while T ≥ Tmin do
5 foreach i ∈ (1..k) do
6 Snew ← neighbor(Sold)

7 pa ← e
Snew−Sold

T

8 if pa ≥ randomInt(0..1) then
9 Sold ← Snew

10 end

11 end
12 T ← T × α
13 end
14 S ′ ← Sold
15 return S ′

16 end

2.2.2 Simulated Annealing

Search by simulated annealing is based on the metallurgical concept of annealing, in

which a metal is heated to a temperature that exceeds its recrystallization temperature and

then slowly cooled, thus allowing atoms in the structure to migrate, resulting in a change

in the malleability, ductility, or hardness of the metal [180]. The computational method of

simulated annealing employs this principle by defining a “heat” factor of the system in which

the search is being conducted. When the heat of the system is high, the solution or value is

allowed to fluctuate greatly between one iteration and the next, allowing the search to make

relatively large jumps from one potential solution to the next. When the heat of the system

is low, the solution is allowed much smaller perturbations [117][128].

Generally, such an algorithm starts off with a very high heat level, allowing wide jumps

around the search space and thus greater exploration of the search area. Then, as the system

22

Algorithm 2.4: A generalized Tabu search algorithm [31].

Data: A starting solution S and a maximum Tabu list size Tabumax
Result: The best solution Sbest found

1 begin
2 Sbest ← S
3 while Stopping conditions not reached do
4 Set of candidate solutions C ← ∅
5 foreach Scandidate ∈ Neighbors(Sbest) do
6 if Scandidate /∈ Tabu then
7 C ← C + Scandidate
8 end

9 end
10 Cbest ← max(C)
11 if Cost(Cbest) ≤ Cost(Sbest) then
12 Sbest ← Cbest
13 Tabu← Tabu+ Sbest
14 while Size(Tabu) ≥ Tabumax do
15 Tabu← Tabu−Oldest(Tabu)
16 end

17 end

18 end
19 return S ′

20 end

is slowly cooled, the magnitude of the jumps is reduced and the solution begins to oscillate

toward a maxima or minima that is hoped to be optimal or near-optimal (see Algorithm

2.3). The fluctuations throughout wide areas of the search space as the heat is relatively

high are the means by which simulated annealing attempts to overcome the problem of local

maxima and minima [2][74][106][128].

2.2.3 Tabu Search

Tabu Search (TS), first proposed by Fred Glover in 1977, derives its name from an

alternate form of the word “taboo,” is quite similar to hill-climbing or gradient descent

algorithms, with the exception that the algorithm is not deterministic [79]. Instead, the

algorithm maintains a “memory” of previous states or values and the relative desirability, or

more accurately the undesirability, of those states. This information is stored in a “tabu list”

23

Algorithm 2.5: A generalized particle swarm optimization algorithm [31][123].

Data: A population size n
Result: The best particle position found

1 begin
2 P ← ∅
3 Pglobal best ← ∅
4 foreach i ∈ (1..n) do
5 p← new Particle()
6 pvelocity ← randomVelocity()
7 pposition ← randomPosition()
8 ppos best ← pposition
9 Pi ← p

10 end
11 repeat
12 foreach p ∈ P do
13 pvelocity ← updateVelocity(pvelocity, Pglobal best, Pbest)
14 pposition ← updatePosition(pvelocity, Pglobal best, Pbest)
15 if f(p) > f(Pbest) then
16 Ppos best ← pposition
17 end

18 end
19 Pglobal best ← max(P)

20 until iteration ≥ iterationmax or quality threshold reached ;
21 return Pglobal best
22 end

of previous states in the local neighborhood [117]. As the search progresses, the algorithm

computes future states or values by taking into account previously searched undesirable states

or values (see Algorithm 2.4). The algorithm will generally endeavor to avoid previously

visited states and avoid undoing previous changes.

2.2.4 Particle Swarm Optimization

Particle Swarm Optimization, like Genetic Algorithms, is a multi-path search technique

that investigates many potential solutions simultaneously. Unlike Evolutionary Algorithms,

the particle swarm does not use selection and each solution in the population survives from

the start to end of the algorithm [105]. Like a GA, a population is initialized with a number

of random solutions, but each of these solutions is also imparted with a vector of randomized

24

velocity and direction through the multidimensional search space, called a hyperspace. As

the particles move through the space over time, the objective function of each solution

is continuously evaluated and the more nearly optimal solutions are retained as potential

solutions to the problem (see Algorithm 2.5) [104][117].

2.3 Evolutionary Computation Theory

Compared to traditional search methods, genetic algorithms are sometimes described

as a “global search method that does not rely on gradient information.” Unlike many other

approaches in the field of artificial intelligence, Evolutionary Computation (EC) algorithms

are considered “weak” methods because they do not heavily depend on detailed knowledge

of the problem domain. Weak methods are considered beneficial in that they can be applied

to solve a wider range of problems than more specialized approaches [113].

2.3.1 Schemata and the Building Blocks Theory

Genetic Algorithms (GAs) require a population of candidate solutions, and these indi-

viduals typically represent their potential solution to the problem space being searched as an

array or string of values. In the case of a canonical Genetic Algorithm, the string is binary

with each bit representing a gene with only two possible alleles. Less traditional GAs and

other Evolutionary Algorithms may use an array or string of either real values or non-binary

genes with an arbitrary number of alleles.

Regardless of the representation, these strings of values comprise the individual’s genome.

For a genome with l genes, we of course have a string of length l. Within this string, there

are a large number of substrings of varying length, each representing a portion of the genetic

code of the individual. If we consider these pieces of genetic code, it might be possible to

find certain pieces that are common among individuals with high fitness and, likewise, pieces

that are common in individuals with low fitness. In theory, if we could identify a sufficient

25

number of good pieces of genetic code, we could begin to form a picture of what a highly fit

candidate solution would look like.

This concept is central to the “building blocks” concept of Genetic Algorithms — that

desirable solutions are made up of good building blocks, each of which tends to contribute to

higher fitness in individuals in which they are present [126]. Holland’s concept of schemas,

or schemata, is based on this notion of desirable building blocks [92][91].

A schema, as originally proposed, is a template comprised of ones, zeros, and a “don’t

care” value, typically represented as an asterisk, that describes a set of all possible bit

strings that can be created that conform to the template. For example, a schema of the form

1 * * 0 1 would represent all possible strings that contain the value one in the first position,

the value zero in the fourth position, and the value one in the fifth position. The values con-

tained in the second and third position can be either zero or one. In this example, this schema

represents the following set of possible strings: 1 0 0 0 1, 1 0 1 0 1, 1 1 0 0 1, and

1 1 1 0 1 [81][126].

All schemata are different, and vary in both length and content. Some schema, with

fewer “don’t care” values, can be more specific than others, while those with many “don’t

care” values can be more general. In addition to the values of individual bits, or genes, in the

string, schemata have two important characteristics: an order, and a defining length. The

order of a schema H, which is written as o(H), is the number of fixed values (as opposed

to “don’t care” values) in the schema. The defining length of a schema, written as δ(H), is

the distance between the first and last specific value position. The defining length is not the

same as, and should not be confused with, the overall length of the schema. In the schema

1 0 0 * 1 * *, the order of the schema is four, the overall length is seven, but the defining

length is five. The schema 1 * * * * * *, for instance, has both an order and a defining

length of only one [81][91][126].

There are a large number of possible substrings for any given string or binary genome.

Given a specific individual genome of length l, we can calculate the number of possible

26

substrings of that single genome alone as n =
l × (l + 1)

2
. For a genome of length l, there

are 2l possible combinations of genes for that genome, if it is binary. If there are more

than two alleles per gene, the number of possible combinations is kl, where k is the number

of possible alleles for each gene. The number of schemata to represent all of the possible

substrings for a genome of length l is 3l if the genome is binary or (k + 1)l if there are more

than two alleles [126][92][81].

If each individual’s binary string can contain up to 3l schemata, then in a population

of n individuals, there are at most n × 3l unique schemata in the population, or n(k + 1)l

in the case of non-binary strings [81]. This represents a very large amount of information

available to the genetic or evolutionary algorithm. As the genetic or evolutionary algorithm

progresses, the operation of selection will tend to choose the more highly fit individuals

as parents. Thus, over time, the more highly fit individuals, and their presumably highly

fit schemata, will tend to increase in number in the population. In essence, above-average

schemata grow and below-average schemata die [81, 30].

But while selection and reproduction tend to increase the number of above-average

schemata, those operations alone only work with the genetic material, or the schemata, that

were present in the initial population. Without other operations to broaden the search be-

yond the genetic information that was already present, the selection would merely eliminate

below-average individuals and multiply above-average ones until the population becomes

comprised of many copies of a single individual. The operations of crossover, in which ge-

netic material from two parents is exchanged, and mutation, in which individual genes are

randomly altered, are the two primary means for injecting both new genes and new genetic

substrings, and therefore new schemata, into a population. But crossover, which splits a

genome into two parts, one of which is swapped with a second parent, can destroy an in-

stance of a highly desirable schema if the location of the split in the genome occurs within

the bounds of the defining length of that schema. Similarly, mutation can disrupt a desirable

schema if the location of a randomly changed bit occurs at a bit location within the schema

27

that is not a “don’t care” state. So, while selection tends to increase or decrease the presence

of a particular schema based on its relative fitness in the population, both crossover and mu-

tation can decrease the presence of a particular schema by disrupting individual instances

of it.

This building block hypothesis, represented by schemata, helps explain how genetic

algorithms perform. Generally, shorter schemata are less likely to be disrupted by crossover

than longer schemata. Over time, schemata that have a short defining length, a low order,

and are highly fit tend to be selected and recombined to form new strings of potentially higher

fitness, thus increasing the number of instances of that schema in the population [81, 32]. As

Goldberg writes, “instead of building high-performance strings by trying every conceivable

combination, we construct better and better strings from the best partial solutions of past

samplings” [81, 41].

2.3.2 The Schema Theorem

This observation gives rise to the Fundamental Theorem of Genetic Algorithms, also

called the Schema Theorem: Short, low-order schemata with above-average fitness increase

exponentially in frequency in successive generations [91][81, 33].

Holland’s classic Schema Theorem has been expressed using different notation and

nomenclature by multiple authors, but a generally accepted form can be expressed relatively

clearly [6][92][126].

Given a particular schema H where o(H) is the order of the schema and δ(H) is its

defining length, m(H, t) is the number of strings in the population belonging to schema H

at time, or generation, t. Let Û(H, t) be the fitness value of H at time t, or more precisely

the average of the fitnesses of all instances of H in the population at time t. We can

compute the expected number of instances of H in the next generation, or at time t+ 1, as

E(m(H, t+ 1)) =
Û(H, t)

f̄(t)
m(H, t).

28

But we must must take into account the probabilities that H might be destroyed by

either crossover or mutation. We let pc be the probability of crossover occurring and, based

on the length l of the genetic string and the defining length of the schema, set a lower bound,

Sc(H), for the survival of H after crossover as Sc(H) = 1−pc
(
δ(H)

l − 1

)
. With pm representing

the probability that any given gene will be mutated, the probability, Sm(H), that schema H

survives after the mutation is 1−pm for a single gene, but given a schema of order o(H) then

becomes Sm(H) = (1− pm)o(H). Thus, the total chance of survival, S(H), of the schema by

either crossover or mutation becomes S(H) = 1− pc
(
δ(H)

l − 1

)
[(1− pm)o(H)] [126].

This produces a Schema Theorem of the form: [81][92][126]

E(m(H, t+ 1)) ≥ Û(H, t)

f̄(t)
m(H, t)

(
1− pc

δ(H)

l − 1

)
[(1− pm)o(H)] (2.2)

The Schema Theorem is an inequality because of the small, but non-negligible, possibil-

ity that random mutation or crossover can create a new copy of the schema [6]. It represents

a lower bound on the number of instances of the schema after the potentially destructive

effects of mutation and crossover are taken into account [126, 23].

The Schema Theorem aims to describe the propagation of components of solutions in

a population [68, 12] The Schema Theorem is often cited — erroneously, according to some

— as an explanation for how and why a genetic algorithm is able to solve problems. Fogel

writes that the conventional wisdom, including the Schema Theorem, has been shown to be

“incomplete or incorrect” and that the foundations of evolutionary computation have been

reconsidered [68, 12]. Many researchers raise concern with the Schema Theorem’s limitations,

including its inability to reconcile GA performance against stochastic search, its omission of

the effects of recombination, its provision of only a lower bound for the expected number of

schemata, and other issues [6][63][62][140].

Altenberg writes that the mistake commonly made with the Schema Theorem is to

conclude that the growth of desirable schemata over time is related to or proof of the quality

of the search being conducted by the algorithm. Indeed, Altenberg notes that the Schema

29

Theorem holds true in purely stochastic cases in which a GA performs no better than a

random search, or in a “needle in a haystack” case in which there is one highly-fit solution

while all other solutions are equally poor [6].

2.3.3 Price’s Covariance and Selection Theorem

Altenberg notes that “it is the quality of the search that must be used to characterize

a Genetic Algorithm,” and suggests comparing a GA’s ability to create new, highly fit

individuals with the rate at which the same are produced by stochastic search [6].

He proposes that the Schema Theorem is an extension of Price’s Covariance and Selec-

tion Theorem on population genetics. The raison d’être of a genetic algorithm is that by

selecting highly fit parents and recombining them, the offspring are likely to reside in the

same general “neighborhood” as the parents and therefore, also be highly fit. Altenberg

maintains that this power of genetic algorithms is best seen through the covariance of the

fitness of the parents and the fitness of the offspring of those parents [6, 7]. That is, when

highly fit parents containing highly desirable schemata produce offspring that are also highly

fit, then there is positive covariance [142].

At its simplest, Price’s Theorem associates the change in frequency of a gene or genes

in a population from generation to generation to the covariance between its frequency in the

original population and the number of offspring produced by individuals in that population:

∆Q =
Cov(z, q)

z̄
, where Q is the frequency of a specific gene or sequence of genes, Cov(z, q)

is the covariance of the frequency of the gene in the initial population and the number of

offspring produced, and z̄ is the mean number of children produced [114, 28].

A more complete, but still simplified version of Price’s Theorem can be written as

∆Q =
Cov(z, q)

z̄
+

Σzi∆qi
Nz̄

, where N is the size of the initial population, zi is the number

of offspring produced by individual i, and qi is the number of copies of the gene or gene

sequence in individual i [114, 30].

30

Langdon writes that Price’s Theorem holds “for a single gene or for any linear combina-

tion of genes at any number of loci,” and also accounts for other variables: sexual or asexual

reproduction; random or non-random mating; diploid, haploid, or polyploid species; and

species with more than two sexes [141][114, 29]. Altenberg explicitly shows its application

to Genetic Algorithms [5].

2.4 Characteristics of a Genetic Algorithm

The original term “Genetic Algorithm” refers originally to the model introduced and

further improved by John Holland and his students in the mid 1970s. A wider interpre-

tation can be said to encompass any model that employs a population and selection and

recombination operators to create new representations of the search space [179].

In order to solve a problem, a canonical Genetic Algorithm is comprised of five distinct

components: [55]

• a binary-encoded, chromosomal, representation of solutions to the problem;

• a means to create an initial set, or population, of potential solutions;

• a evaluation function that allows the comparison and ranking of the quality of one

solution to another;

• genetic operators that alter the chromosome of child solutions during reproduction;

and

• parameters that further define the genetic algorithm, such as population size, mutation

and crossover rates, etc.

Rowe defines the concept of a “simple Genetic Algorithm” as consisting of a population

of candidate solutions, of a given population size, each of which is comprised of strings

of equal length that encode a discrete representation of the problem space [150]. This

representation is almost always represented as a vector or array of natural numbers of length

31

n such that
→
x ∈ Nn, when the the traits to be represented are either binary or comprise

a finite set of alleles. In cases where the traits are not represented by discrete values, the

vector or array of real numbers is described as
→
x ∈ Rn [85].

Rowe defines a “generation” as the state of the population at any given time-step during

the iterative operation of the algorithm [150].

The process of reproduction (i.e. producing a new candidate solution, called the “child”)

is usually accomplished by mating and consists of choosing two or more candidate solutions,

called the “parents”, from the general population and then combining portions of each of

the parents in such a way to produce a new, distinct candidate solution. Although two-

parent reproduction is the standard in a canonical Genetic Algorithm, and still remains

most common, single-parent reproduction and multi-parent reproduction (ρ � 2) are also

possible.

A traditional process of reproduction on a population of size n is repeated exactly

n times, resulting in a set of entirely new individuals in each subsequent generation and

preserving none of the individuals from the parental generation. Although this is a commonly

accepted approach, it can result in the loss of a superior candidate solution whose full genome

does not survive into subsequent generations [81][126]. There are many variations on basic

reproduction to counter this, including: cloning; probabilistic crossover; elitism; and steady-

state reproduction strategies that gradually improve a population rather than completely

replacing it each generation.

Rowe elaborates that the basic process of mating is typically built upon three distinct

“genetic operators” that act upon or create new individuals in the population: selection,

crossover, and mutation [151]. Several aspects of a genetic algorithm can be generalized and

reused from one problem domain to another. However, two main components — the problem

encoding and the evaluation function — are problem dependent and not easily generalizable

[179].

32

2.4.1 Fitness

Of critical importance to evolutionary algorithms is the ability to determine the de-

sirability of one potential solution compared to another. With a pool of many potential

solutions, such algorithms need the ability to rank solutions relative to each other, chose

parents from among the more desirable solutions, and recombine the genomes of those par-

ents to produce — hopefully — more desirable child solutions.

To determine the relative quality or acceptability of an individual in the population, a

computable quantity must be defined as a basis for comparison. The exact criteria that are

used to rank solutions relative to each other, although typically computed on a numerical

scale, is irrelevant as long as the ranking can occur. Fogel writes “within evolutionary algo-

rithms, any definable payoff function can be used to judge the appropriateness of alternative

behaviors. There is no restriction that the criteria be differentiable, smooth, or continuous”

[63, 5]. Fogel and Goldberg call these ranking measures “payoff values,” but the term is now

more commonly referred to as a “fitness value” [81].

Fogel relates fitness in evolutionary algorithms to the concept in biological evolution of

the ability to survive and reproduce in a specific environment [66]. This concept translates

directly to software simulation of evolution in Genetic Algorithms. Individuals have a fitness

quantity associated with them that is designed to indicate the acceptability of the individual

as a potential solution to the problem (i.e. environment) being explored. The fitness value

is also used in judging the acceptability of an individual as a parent during selection in the

mating process and in other areas as well.

Fitness can also be used to assess the overall quality of a population, as the population

of individuals can be considered to have evolved if the average fitness of the population

has increased. Since the intent and result of the genetic algorithm is to produce more fit

individuals through genetic recombination, with fitness as the measurable quantity, it is easy

to envision how a genetic algorithm accomplishes evolution by raising fitness levels over time

[63][24].

33

Figure 2.2: Fitness Distribution and Cumulative Fitness Distribution. A typical
fitness distribution curve for a population (left) and a cumulative fitness distribution curve
for the same population (right).

Given a population with µ individuals, the fitness distribution of all or part of the

population can be ordered such that f1 < f2 < ... < fn−1 < fn where n ≤ µ. In many

Genetic Algorithms, a population is typically comprised of a few highly fit individuals and a

majority of less fit individuals, and this distribution can be charted. The cumulative fitness

distribution can be used as a measure of what portion of a population is less than a certain

fitness value [23]. A typical fitness distribution curve and corresponding cumulative fitness

distribution curve are shown in Figure 2.2.

Developing a feasible fitness function for any given problem is, perhaps, the biggest chal-

lenge in correctly implementing evolutionary and Genetic Algorithms. Construction of the

fitness function is critical in Evolutionary Computation because “(i)nappropriate descrip-

tions of the performance index lead to generating the right answer to the wrong problem”

[68, 7]. Knowledge of the domain being modeled is essential to devising a reasonable fitness

function for real-world problems, Fogel writes: “Evolutionary algorithms offer a framework

such that it is comparably easy to incorporate such knowledge... Incorporating such infor-

mation focuses on the evolutionary search, yielding a more efficient exploration of the state

space of possible solutions” [63, 5].

34

However, the simplicity of the concept of a fitness function belies the difficulty, when

dealing with very complex evolutionary problems, of reducing a multivariate candidate solu-

tion to a single value that can be used for, assuming no two solutions can be equal, a binary

decision on inequality.

2.5 Evolution Strategies

Hansen et al. define an evolutionary strategy as “an iterative (generational) procedure”

where in “each generation, new individuals (offspring) are created from existing individuals

(parents)” [85, 874]. Various symbols, abbreviations, and notation methods have been cre-

ated to define different evolution strategies, but here we will use the nomenclature favored by

Beyer and Schwefel, Hansen et al. and others [22][84]. Notation for evolutionary strategies

and selection schemes is generally expressed here in the form (µ/ρ+, λ), which defines such

schemes in terms of the following symbols, which we will use henceforth: [22][84][167]

P (t), a set of individuals (i.e. the population) at generation t

→
a ∈ I, a single individual in the space of individuals I

µ ∈ N, the number of potential parents (i.e. the population size)

ρ ∈ N, ρ ≤ µ, the number of parents selected for recombination

λ ∈ N, the number of offspring (i.e. the offspring population size)

2.5.1 General Evolution Strategies

An evolution strategy is an implementation of one of various recombination techniques,

which are the act of combining information from multiple parents to generate a new offspring.

Although multi-recombination, which involves producing a single offspring from more than

two parents (ρ > 2), is not unusual, in the context of Genetic Algorithms recombination is

35

most commonly accomplished with exactly two parents (ρ = 2) producing a single offspring

[84, 7].

There are several recombination operators, or methods, possible to accomplish the act of

combining genetic information from multiple parents, and the nomenclature of each method

varies among authors. Tettamanzi and Tomassini classify these generally as either “discrete”

or “intermediate” recombination strategies [167, 24]. Hansen et al. also define these two

categories, but add a third category called “weighted” recombination [84, 7].

Discrete. Discrete recombination, sometimes called “dominant recombination” gen-

erally and as “uniform crossover” in the context of genetic algorithms, are those techniques

in which each atomic part of a child’s genome is copied exactly from one of the available

parents, often chosen stochastically. Given a genome that consists of l binary genes, discrete

recombination, in the simplest terms, can be envisioned as the creation of a child by iterating

through each locus in the genome and, for each position l, randomly selecting the lth gene

from one of the two or more available parents and copying it exactly to the child.

Intermediate. In intermediate recombination, each part of the child’s genome is a

linear combination of the corresponding parts from each of the parent individuals’ genomes.

Intermediate recombination can be envisioned — again, in an extremely simple example

— as a genome of l real values in the range 0..1 such that a child is created by iterating

through the each locus l such that the value of an individual gene kl =
(p1l + p2l + ...+ pnl

)

n
,

or kl =

n∑
1

pnl

n
, where pn is one of n parents and pnl

is the value of the gene at locus l of that

parent. In the case of recombination from a pair of parents, this is more simply expressed

as kl =
p1l + p2l

2
.

Weighted. Weighted recombination is a generalization of intermediate recombination

in which, instead of a simple average of all ρ parents, a weighted average is used. All parents

36

are ordered such that inferior parents are always weighted less than better parents and the

weight given to the gene of a specific parent is adjusted based on the ordering. In this way,

the genes of stronger parents exert more force in the recombination than the genes of weaker

parents.

Regardless of the means of recombining individual genes, recombination strategies vary

greatly depending on several factors: whether a single parent or multiple parents are required;

the method employed to select parents; the number of parents selected to form a breeding

pool; the number of children produced by each parent or parents; and the number of children

that are allowed to enter the subsequent generation.

Cloning

Among the simplest approaches for producing an offspring involves cloning, the process

of selecting a single, usually highly fit, parent and producing an exact copy of that parent.

Cloning, although simple, has particular value in recombination schemes that require the

complete replacement of the pool of candidate solutions with a new set of child solutions in

each generation. In such schemes, parents can only contribute part of their genetic material

to future generations through recombination in the form of a child. The parent’s entire

genome cannot be passed in its entirety and, thus, an exceptionally fit candidate solution

is potentially lost. Cloning provides a means for a parent to create an identical child and,

therefore, allows a desirable genome to propagate without alteration into subsequent gen-

erations. Cloning may be an distinct operation or it may occur as a result of probabilistic

crossover. “Pure crossover” is described as obtaining an identical individual, or clone, when

crossing an individual with itself [151].

Cloning may be used as a supplement to other recombination strategies, or it may be

used as the sole recombination strategy. When used as the only method for producing child

solutions, an additional means for injecting new genetic information into the population is

37

necessary, otherwise each subsequent generation would be essentially identical to the pre-

vious. Mutation is the method most commonly coupled with cloning to provide a means

for new traits to enter the population (see Section 2.6.4). In such a situation, the parents

selected for reproduction are cloned, and a mutation operator is applied that might mutate,

or change, a gene to a different allele, usually randomly and with a fairly low probability of

mutation occurring for any given gene.

Orgy

On the opposite side of the spectrum from cloning, in which a single parent produces

an identical or near-identical offspring, is the concept of orgy, in which all individuals in the

population are combined simultaneously to produce a new offspring [167, 24]. In an orgy,

the child’s gene for any given locus is chosen, usually at random, from among all the alleles

available among all individuals in the population. The probability that an allele is selected

from a specific parent may be based on an equal distribution, may be based on the frequency

of the allele’s occurrence, or it may be weighted in some manner based on the desirability

(i.e. fitness) of a specific parent.

2.5.2 Selection and Recombination Schemes

Generational versus Steady-state Reproduction

Central to selection and recombination strategies are the number and method of select-

ing parents for reproduction, the number of offspring produced per parent, and how many

children are allow to persist into the subsequent generation. Therefore, many evolutionary

schemes can be defined in terms of the number of parents in each generation and the number

of children produced prior to each new generation. This is most commonly expressed with

µ, also often referred to as simply n, representing the number of parents in the population

and λ, or m, denoting the number of children within one generation. Other authors, such as

Schwefel, use different symbols than described here [159].

38

Generational approaches to reproduction select parents from the population, recombine

or mate those parents to produce a number of offspring equal to the size of the population,

and then replace the entire population with the set of newly created children. In such

approaches, the entire population live and dies in a single generation and is replaced by an

entirely new, but genetically similar, population [150].

In steady-state approaches to reproduction, once the search algorithm finds a relatively

good candidate solution and places it into the population, that individual remains in the

population until replaced by a better one. Whitley observes that “this means that the

algorithm is less prone to ‘wander’ in the search space and will maintain an emphasis on

the best schemata found so far” [178]. Steady-state reproduction also removes the need

for probabilistic crossover, which is a technique used to allow parents to produce identical

children and, therefore, sometimes propagate their genome into subsequent generations [178].

Yet other approaches blur the lines between steady-state and generational approaches

and allow a significant portion of parents to remain while discarding many less-fit children

to keep the population size constant.

Selection and Recombination Scheme Notation

A general notation for expressing selection and recombination schemes in evolutionary

strategies is in the form (µ/ρ+, λ), where µ, ρ, and λ are as described above and the +,

symbol signifies either of two general methods for determining which individuals are allowed

to enter subsequent generations. In the case of the comma symbol, the entire population is

replaced by the new offspring in each subsequent generation, and selection is applied to the

offspring to determine which are allowed to survive [36]. In the plus notation, parents do not

automatically die out, or “age,” and the µ best in the combined set of all parents, P , and

offspring, λ, are chosen, or selected, to survive and become the next generation. The details

of exactly how many parents survive and how many children live can vary, but most “plus”

39

schemes employ some form of elitism, whether strict or loose, which seeks to guarantee a

monotonically increasing population fitness [14][84].

A subscript may be added to ρ to indicate the type of recombination, such as ρI or

ρW for intermediate or weighted recombination [84]. In casual notation, ρ is more often

omitted entirely and recombination notation is simplified to the form (µ+, λ). Sometimes the

notation is expanded to include the value κ, which represents the maximum age permitted

for any individual, and the strategy’s notation becomes (µ, κ, λ), where a pure ‘plus’ scheme

is equivalent to κ =∞ and a pure ‘comma’ scheme is equivalent to κ = 1 [84].

A description of several general evolution strategies follows:

(1 + 1)(1 + 1)(1 + 1)-EC and (1+, λ)(1+, λ)(1+, λ)-EC. The (1 + 1) strategy is an extraordinarily simple one in

which the population may consist of only a single individual that is cloned, usually with a

mutation operator being applied to the child. Elitism is employed, either between the parent

and mutant child or amongst the set of all parents and mutants combined. In (1 + 1)-EC,

or its multiple-child variant (1 + λ)-EC, the mutant(s) are compared to the parent and the

single best of the these is retained. In the (1, λ)-EC, the µ most fit of all parents and mutants

are allowed to enter the next generation while the remainder perish.

(µ, λ)(µ, λ)(µ, λ)-EC. Another relatively simple scheme in which a number of children, λ, are

produced from a set of parents. Traditionally, the terms “population” and µ are consid-

ered interchangeable, but it is possible for different implementations to designate a separate

“parental pool” that may not include all individuals in the population or may contain mul-

tiple copies of some individuals.

The number of children may equal or exceed the number of individuals in the population,

such that µ ≤ λ < ∞, but the µ most fit of the children are chosen to enter the new

generation. The entire population perishes after every generation and an entirely new, but

presumably genetically similar, population of children replaces it [84][159].

40

(µ+ λ)(µ+ λ)(µ+ λ)-EC. This is a minor variation on (µ, λ)-EC that allows parents the opportunity

to persist from generation to generation. In this scheme, instead of just the children, the

combined set of all parents and offspring, (µ∪λ) or more simply (µ+λ), become the source

individuals to be included in the next generation. The µ strongest individuals, based on

fitness, are chosen, permitting strong parents to survive but allowing weaker parents to

make room for more-fit children [28][84][159].

2.6 Genetic Operators

2.6.1 Basic Nomenclature

Early researchers identified four core operations that, when performed repeatedly and in

various combinations, allow evolutionary and Genetic Algorithms to converge toward more

optimal solutions. Holland first defined the three operations of simple crossover, simple in-

version, and mutation [92, 121]. The additional operation of selection, while not explicitly

listed as an independent operation by Holland, is fundamental to the function of a Genetic

Algorithm. The term crossover is sometimes considered synonymous with the term recom-

bination, and is often used in literature in place of it, but recombination is more broad and

includes additional methods of genetic transfer than offered by crossover alone. Inversion,

although one of the operators originally proposed by Holland, is seldom seen in GAs today.

2.6.2 Selection

Selection is the process by which individuals in the population are chosen to become

parents and, through mating, produce a child that survives into the subsequent generation.

Selection is often considered the central concept to evolution in that as new characteristics

are produced through mating their value can only be assessed through competitive selection

and, if not found wanting, those new characteristics can enter and spread through the pop-

ulation. Fogel summarizes selection’s role by paraphrasing Darwin: “Useful variations have

41

the best chance of being preserved in the struggle for life, leading to a process of continual

improvement” [64][53, 130].

Blickle and Thiele note that many selection methods are probabilistic in nature and

make use of the inherent distribution of fitness values in a population. They define a se-

lection operator Ω “as a function that transforms a fitness distribution into another fitness

distribution” s′ such that s′ = Ω(s, pars), where pars is an optional set of parameters to the

selection function [23, 7].

Fogel explicitly explains selection as a means to increase the fitness of a population [66].

There are a large number of accepted methods for selection, the most common of which

include Binary Tournament Selection (BTS) and Fitness Proportionate Selection (FPS).

In a general selection operation, a pair of the — ideally — more-desirable instances

in the population is selected for recombination. They are then mated to produce a new

instance, the “offspring” or “child.” It is hoped that the child will have a higher fitness

than at least some of the individuals already in the population. Depending on the evolution

strategy, the child may automatically enter the next generation or, if it is strong enough, the

child can enter the population and the least fit member of the population dies off to make

room for it.

There are two general categories of selection schemes for mating in genetic algorithms:

fitness-independent selection and fitness-based selection.

Fitness-independent. In a fitness-independent scheme, the fitness of individuals in the

population does not affect their likelihood of selection for mating nor the transfer of their

genome during recombination [84]. In such schemes, some other method or methods are

needed to ensure more-fit individuals persist and propagate their genetic material, so that

over time the overall fitness of the population increases [85].

Fitness-Based. In a fitness-based selection scheme, individuals in the population are in

some way ranked according to their relative fitness, and the choosing of parents is done in a

42

Algorithm 2.6: A simplified tournament selection algorithm with tournament size
t, where 1 ≤ t ≤ µ. [23, 14]

Data: The population P (τ) and tournament size k ∈ {1, 2, ...,m}
Result: The population after selection P (τ)′

1 tournament(k, J1, ..., Jn):
2 begin
3 for i← 1 to N do
4 J ′i ← best fit individual out of k randomly picked individuals from {J1, ..., Jn}
5 end
6 return {J ′1, ..., J ′n}
7 end

proportional or otherwise biased manner such that more-fit individuals tend to be selected

more often. In such schemes, it is usually through selection alone that more-fit solutions

tend to propagate into subsequent generations and that the overall fitness of the population

increases over time [84].

Many experts, including Rowe, favor fitness-based, proportional or ranked, selection

methods: “We usually require a selection operator to assign a higher probability to elements

that have a higher fitness” [151, 921].

There are many differing selection algorithms that have been proposed. These can be

divided into several categories, the first of which include weighted, or fitness-based, selection

methods such as: Tournament Selection, or Binary Tournament Selection (BTS); Truncated

Selection; Roulette Wheel Selection (RWS) or Fitness Proportionate Selection (FPS); Linear

Ranking Selection; Exponential Ranking Selection; and Elitist Exponential Ranking Selec-

tion. A second category is comprised of fitness-independent methods and includes Stochastic

Universal Sampling. Finally, a third category of hybrid methods includes Roulette Tourna-

ment Selection (RTS) and Queen Bee Selection.

43

Tournament Selection

Although there are many variants, Tournament Selection is considered almost univer-

sally to be the simplest of selection algorithms, both in ease of understanding and in imple-

mentation. A specific number, k, of individuals are chosen stochastically from the population

and from these the most-fit individual is selected and copied into the the pool (see Algorithm

2.6). This is repeated m times, with m representing the desired number of parents (usu-

ally two). The value k is termed the “tournament size,” and tournament selection schemes

are generally described a “k = n tournament selection,” where n is the number of compet-

ing individuals in each tournament. When tournaments are held between two individuals,

k = 2, it is called a “binary tournament” and this specific method is referred to as Binary

Tournament Selection (BTS).

A consequence of tournament selection, which can be mathematically derived, is that

individuals with the lowest fitness values have a reproduction rate of almost zero which leads

to a phenomenon known as “loss of diversity” [23, 19]. As the tournament size increases, a

certain proportion of the least-fit individuals in the population are lost from one generation

to the next. The proportion of loss is not linear with respect to the tournament size. That

is, the number of individuals lost increases greatly with the size of the tournament. As much

as half of the population can be lost with a tournament size of only 5 [23, 19].

Truncated Selection

Truncation selection is a method in which, given an ordered population and a truncation

threshold T , only the T best individuals can be selected. Those individuals that fall beneath

the truncation threshold have a probability of selection of zero and the individuals above the

threshold all have an equal probability of selection. Put simply, truncated selection forms

a pool of potential parents based on individual fitness such that an arbitrary number or

arbitrary percentage of the more-fit candidate solutions are allowed mate and the remainder

44

Algorithm 2.7: A simplified truncated selection algorithm. [23, 23]

Data: The population P (τ) and truncation threshold T ∈ [0, 1]
Result: The population after selection P (τ)′

1 truncation(T , J1, ..., Jn):
2 begin
3 J̄ ← population J , sorted by increasing fitness
4 for i← 1 to N do
5 r ← random{[(1− T)N], ..., N}
6 J ′i ← J̄r
7 end
8 return {J ′1, ..., J ′n}
9 end

are not (see Algorithm 2.7). Given all available solutions, the n highest ranked individuals

are chosen to form the parental pool [84][52].

Truncated selection is directly related to selective breeding techniques in animal popula-

tions [33][52], and was introduced as the Breeder Genetic Algorithm (BGA) by Mühlenbein

and Schlierkamp-Voosen in 1993 [130].

Because a significant percentage of the population is eliminated from potential selec-

tion, in order to keep the population size constant, this has the effect of increasing the

selection chances of the remaining individuals by a multiplication factor of
1

T
, and there is

subsequently a high loss of diversity pd(T) = 1− T .

Roulette Wheel Selection

Roulette Wheel Selection (RWS), also known as Fitness Proportionate Selection (FPS),

is considered the first selection method proposed for use in genetic algorithms [90][92]. In a

proportional scheme, parents are selected based on a probability value that varies depending

on the relative fitness of one individual to another, such that more fit individuals tend

to get selected more often. This method depends on non-negative fitness values and the

probability of selection of an individual is proportionate to its fitness value: pi =
fi
µ∑
j=1

fj

,

45

Algorithm 2.8: A roulette wheel (fitness proportionate) selection algorithm [23, 40].
(Reverse bracket notation indicates excluded endpoint(s) for the given interval.)

Data: The population P (τ)
Result: The population after selection P (τ)′

1 proportionate(J1, ..., Jn):
2 begin
3 s0 ← 0
4 for i← 1 to N do

5 si ← si−1 + fi
M

6 end
7 for i← 1 to N do
8 r ← random[0, sN [
9 J ′i ← J̄l such that sl−1 ≤ r < sl

10 end
11 return {J ′1, ..., J ′n}
12 end

which is sometimes expressed as pi =
fi
µM

, where M is the average fitness of the population

[23, 40][84].

Roulette Wheel Selection, because of the nature of the algorithm, is considered most

suitable for maximization problems and unsuitable for minimization problems. However,

some minimization problems, especially those with a known upper bound, may still employ

RWS by simply using a modified fitness value such as boundupper − f(x) to reverse the slope

of the curve.

A simplified implementation of the RWS algorithm is accomplished by first calculating

the sum of the fitness values of all individuals in the population, S =
µ∑
1

f(x). A random

value r is then generated in the range 0...S. Finally, iterate through the population, which is

sorted by either increasing or decreasing fitness, examining the fitness value of each individual

and adding that to a running sum of the fitness values seen so far. When the running sum

exceeds r, then the current individual is selected (see Algorithm 2.8) [155].

The slope of the fitness distribution curve in Roulette Wheel Selection may be either

steep or shallow, depending on how closely or how widely the fitness values of the individuals

in the population vary from one another. The presence of a “super individual” with fitness

46

vastly higher than the rest of the population can dominate proportionate selection [15].

When all individuals in the population have nearly identical fitness values, there is little

difference between RWS and a completely stochastic selection method.

The scaling of the fitness values heavily influences the rate of selection of individuals in

the population. Blickle and Thiele illustrate this with the example of a population of ten

individuals whose fitness values vary from 1 to a maximum of 11. The selection probability for

the best individual can be calculated as pb ≈ 16.6% and for the worst individual pw ≈ 1.5%

[23, 40]. However, taking the same population and multiplying the fitness values by a factor

of 100 produces a probability of selecting the best individual with p′b ≈ 10.4% and the worst

individual with p′w ≈ 9.5%, which results in little difference between the selection rate of the

best and worst individuals in the population [23, 41].

Mitchell calls this “pressure convergence” [126, 125] and Whitley similarly describes

this phenomenon in terms of selective pressure [178]. Consider the same scenario in which a

population’s fitness ranges from 100 to 1100, with an average of 550. The selective pressure

of the top-ranked individual is SP = 1100/550 = 2.0. However, as the population improves

over time, imagine a later generation with fitnesses ranging from 1000 to 1200 with an

average of 1100. The selective pressure of the top individual is now SP = 1200/1100 = 1.09,

which may not be adequate to keep the search progressing [178, 2]. This situation becomes

more acute as the the population becomes more homogenous or there is less variation in the

fitness of individuals.

Fitness Proportionate Selection can suffer from two drawbacks: a search can stagnate if

there is insufficient selective pressure, and a search can prematurely converge at an inferior

solution because selection narrows the available genotypes too quickly [178, 2][126, 125].

Scaling Methods. Because of the tendency described above, proportionate selection

is said to be translation variant, and a number of scaling methods have been proposed (e.g.

47

linear static scaling, linear dynamic scaling, exponential and logarithmic scaling, sigma trun-

cation or sigma scaling) [16][23][30][81][82][122][126]. An alternative method to compensate

for this is “overselection” of a certain percentage of the best individuals [23][108][109]. This

type of scaling is considered essential, and not just an optimization, to proportionate selection

algorithms [23][131]. Blickle and Thiele consider the abundance of undesirable properties in

fitness proportionate selection and conclude that it is a very unsuitable selection scheme [23,

42].

Ranked Selection Methods

Linear Ranking Selection. For ranking selection, the population is ordered according

to increasing fitness such that the probability of selection is linearly proportionate to their

ranking. Whitley describes ranking succinctly: “Ranking acts as a function transformation

that assigns a new fitness value to a genotype based on its performance relative to other

genotypes” [178].

A typical probability function for selection is pi =
1

N
(η− + (η+ − η−)

i− 1

N − 1
); i ∈

{1, ..., N} [23, 27] With this, the probability that the worst individual will be selected

is
n−

N
and the probability that the best will be selected is

n+

N
(see Algorithm 2.9). No two

items are ranked identically, and in the case of multiple individuals with identical fitness,

they are arbitrarily ranked respective to each other.

For this reason, ranking selection has been suggested as a resolution for problems that

can arise in proportionate selection methods, particularly early convergence caused by “super

individuals” and reduced selective pressure as populations become more homogenous [40,

138][82][178].

Linear Ranking has been shown to provide a more even chance of individuals being

selected, or what Razali and Geraghty describe as “constant pressure,” than proportionate

selection. This is especially true when the fitness values in the population vary greatly, as

48

Algorithm 2.9: A linear ranking selection algorithm [23, 28].
(Reverse bracket notation indicates excluded endpoint(s) for the given interval.)

Data: The population P (τ) and the reproduction rate of the worst individual
n− ∈ [0, 1]

Result: The population after selection P (τ)′

1 linear ranking(n−, J1, ..., Jn):
2 begin
3 J̄ ← population J , sorted by increasing fitness
4 s0 ← 0
5 for i← 1 to N do
6 si ← si−1 + pi
7 end
8 for i← 1 to N do
9 r ← random[0, sN [

10 J ′i ← J̄l such that sl−1 ≤ r < sl
11 end
12 return {J ′1, ..., J ′n}
13 end

the effects of “super individuals” that might otherwise dominate a proportionate selection

scheme are mitigated [127].

Often in rank-basked selection, a selective pressure factor can be used to scale the

ranking of individuals. A typical approach is to select a selective pressure value, SP , such

that 1 ≤ SP ≤ 2. The ranking (f ′(x)) of individuals is then scaled according to the following

function: f ′(i) = 2−SP + (2(SP − 1)
i− 1

µ− 1
). This function results in a scaled ranking such

that that the sum of the maximum rank value and the minimum rank value equal two:

f ′max + f ′min = 2.

The selective pressure can be small (e.g. SP = 1.1), resulting in a maximum and

minimum scaled ranking of 1.1 and 0.9 respectively, or it can be large (e.g. SP = 2.0),

resulting in a maximum and minimum scaled ranking of 2.0 and 0.0 respectively. A selective

pressure of 1.5 implies that the top ranked individual is 1.5 times more likely to reproduce

than the the median individual in each generational cycle [178]. A selection pressure of 1

represents no pressure and reduces the equation to a constant, resulting in uniform random

selection [40][127].

49

Algorithm 2.10: An exponential ranking selection algorithm. [23, 35]
(Reverse bracket notation indicates excluded endpoint(s) for the given interval.)

Data: The population P (τ) and the ranking base c ∈ [0, 1]
Result: The population after selection P (τ)′

1 exponential ranking(c, J1, ..., Jn):
2 begin
3 J̄ ← population J , sorted by increasing fitness
4 s0 ← 0
5 for i← 1 to N do
6 si ← si−1 + pi
7 end
8 for i← 1 to N do
9 r ← random[0, sN [J ′i ← J̄l such that sl−1 ≤ r < sl

10 end
11 return {J ′1, ..., J ′n}
12 end

However, the principle of selective pressure can be frustrated by the presence of dupli-

cates of an individual in the population, in both proportionate selection and other methods.

It is easy to conceive of a situation in which two identical individuals with mediocre fitness

together can exert more influence than the most-fit individual by itself [178].

Once rank scaling have been accomplished, the selection can proceed as with roulette

wheel selection, but with the scaled ranks in lieu of actual fitness values.

Exponential Ranking Selection. Exponential ranking is substantially similar to linear

ranking with the exception that the probability of selection of an individual is exponentially

weighted. The base of the exponent, 0 < c < 1, is a parameter of the selection function

such that the closer c is to 1 then the lower the growth of the exponential calculation in the

method [23, 34]. Given a population ordered by increasing fitness, the probability of selection

becomes pi =
cN−i

N∑
j=1

cN−j
; i ∈ {1, ..., N}, which can be simplified to pi =

c− 1

cN − 1
cN−i; i ∈

{1, ..., N} (see Algorithm 2.10) [23, 34].

50

Algorithm 2.11: A roulette tournament selection algorithm [23][84][144].
(Reverse bracket notation indicates excluded endpoint(s) for the given interval.)

Data: The population P (τ)
Result: The population after selection P (τ)′

1 proportionate tournament(K1, ..., Kn): begin
2 s0 ← 0
3 for i← 1 to N do

4 si ← si−1 + fi
M

5 end
6 for i← 1 to N do
7 for j ← 1 to t do
8 r ← random[0, sN [
9 J ′t ← J̄l such that sl−1 ≤ r < sl

10 end
11 J ′′i ← the more fit of {J ′1, ..., J ′t}
12 end
13 return {J ′′1 , ..., J ′′n}
14 end

Elitist Exponential Ranking. Selection can be accomplished in an elitist fashion using

an exponential ranking scheme that vastly favors more-fit solutions without eliminating the

possibility of the worst-fit solution being selected. In such a scheme, the probability of any

given solution in a ranked population being selected follows a exponentially decreasing curve,

such that the probability of the kth individual in the ranked population will be selected at a

frequency inversely proportional to 2k, or such that P (k) =
1

2k
[167, 187].

Hybrid Methods

Roulette Tournament Selection. One of the more interesting hybridizations of fitness-

based and fitness-independent techniques combines both the proportionate selection seen in

Roulette Wheel Selection (RWS) and the randomized approach seen in Binary Tournament

Selection (BTS). Roulette Wheel Selection uses a weighted selection that has a higher prob-

ability of selecting fit individuals, but there still remains a significant chance of selecting an

inferior individual.

51

By performing RWS twice, and then employing Binary Tournament Selection (BTS) to

chose the best of the two, the chances of ending up with an inferior individual as a parent are

lessened. We call this two-phase selection method Roulette Tournament Selection (RTS),

and it has been studied by Hansen et al., Rahman et al., and others [84][144].

Queen Bee Selection. Queen Bee selection combines both random selection and elitist

(ranked) selection into a single operator. The name is derived from the concept of a queen

bee, which is usually the only sexually mature female and mother to most or all of the

bees in the hive [149]. The queen mates with available drones in the hive, such that all

descendants come from the single queen but from one of many drones. In queen bee selection,

the most-fit individual in the population, according to fitness, is always selected as one

parent. The other parent is usually chosen at random. This randomly selected, second

parent may be chosen for recombination with the queen for all genes during mating, or a

second random parent may be chosen for each individual gene in the genome. In either case,

recombination of each gene between the queen and the second parent is usually a random

coin toss [11][101][102][103][144].

Reducing Population Size

After selection, recombination, and mutation are completed, many EC algorithms em-

ploy additional pruning operations to either modify the pool of child solutions before it

enters the population or to cull individuals from the pool of children or the population it-

self. For instance, it may be desirable to take steps to ensure certain highly fit individuals

survive from one generation to the next. Or it may be desirable for algorithms to prevent

extremely unfit individuals from entering the population at all. Additionally, many forms

of EC algorithms, whether generational or steady-state, come to a point at which there are

more potential individuals in the population than the population size limit, µ, allows. This

may occur when a mating and recombination method produces more than µ children each

52

generation, or it may result from algorithms that combine children and parents into a sin-

gle pool, but the algorithm must choose from among the available individuals to determine

which shall survive.

Environmental Selection. Environmental selection is the general name given to the se-

lection operation used in Evolutionary Computation algorithms that must limit the number

of individuals allowed to enter subsequent generations. It is generally applied after recom-

bination and mutation have been completed and reduces the population size to the desired

population size limit, µ [42]. The criteria for environmental selection can vary and may be

as simple as a fitness-based truncation selection [85], or it may be more sophisticated and

choose a set of individuals with good distribution and convergence performance [42, 595].

Cheng et al. show that employing an environmental selection algorithm that combines both a

directional density function and favorable convergence function provides continued selective

pressure in a multi-objective optimized search problem.

Elitism Elitism is a similar operation that can be applied alone or in addition to environ-

mental selection to force the Evolutionary Computation algorithm to retain some number of

the best individuals — the “elite” members of the population — by copying them directly

into the subsequent generation [57]. Otherwise such highly fit individuals could potentially

be lost if they are not selected to reproduce. Similarly, important parts of highly fit indi-

viduals’ genomes could be lost or corrupted during the crossover or mutation operations.

Several researchers have found that elitism significantly improves the Genetic Algorithm’s

performance [126].

Infant Mortality Infant mortality is another related concept that attempts to prevent

poor quality individuals from entering the population at all. The concept of infant mortality

in Genetic Algorithms is based upon the assumption that a very unfit or weak offspring

53

solution would not survive long in nature [3][115]. A simple implementation of infant mor-

tality in GAs is to merely prevent a very unfit child solution from entering the subsequent

generation based on a fitness limit. This threshold may be a fixed, proportionate, or variable

value. To keep population levels consistent, extra children may be produced from the pool

of available parents through normal selection and recombination, or a highly fit parent may

be granted longevity and allowed to survive into the subsequent generation.

Overaging. Overaging is an approach to limit the longevity of highly fit individuals that

may persist from generation to generation for Evolutionary Computation algorithms that

allow parents to survive into subsequent generations. With overaging, individuals that exceed

a certain maximum age, κ where 1 ≤ κ ≤ ∞, are removed from the population. Overaging

can be useful to slow the takeover of the population by one or more highly fit individuals.

Evolutionary Strategies (ES) are an example of algorithms that employ the extremes of

overaging, with (µ/ρ, λ) strategies representing overaging with κ = 1 and (µ/ρ+λ) strategies

representing overaging with κ = ∞ [85]. Overaging can also be addressed as a step in an

environmental selection algorithm [84, 5].

2.6.3 Recombination and Crossover

More than any other, the recombination operator exerts great influence on the perfor-

mance of a genetic algorithm in terms of speed and the quality of the solutions returned.

Recombination forms half of the “exploration versus exploitation” dynamic, with the other

half being mutation, that makes genetic algorithms succeed. “Mutation serves to create

random diversity in the population,” writes Spears, “while (recombination) serves as an ac-

celerator that promotes emergent behavior from components” [163]. That is, while mutation,

discussed below, can add new genetic material to a population, recombination attempts to

exploit the existing genetic material to create higher quality combinations of genes. The

distinction between recombination and crossover is subtle, and Muhlenbein et al. explain

54

that recombination refers to the mixing of variables, or genes, between parents and crossover

is the mixing of the values of a variable, or gene [129].

Crossover is a specific, and the most common, method of accomplishing recombination

and involves copying a number of genes from each of two or more parents to produce a

chromosome representing a child.

The child receives genetic material from two or more parents in some proportion, which

is usually an equal chance for all parents. In nature the percentage of genetic material

contributed by each parent is sometimes referred to as the crossover rate. In mammals, this

is sometimes as much as 30 percent higher for females than males [66]. In Evolutionary

Computation (EC) algorithms, many approaches to crossover have been suggested, but the

two simplest — and most common — approaches are single-point crossover and uniform

crossover [17].

Single Point Crossover. One of the simplest implementations of crossover — both

conceptually and programmatically — is single point crossover, in which a locus, or position,

along the genome is randomly selected in the range of (1..n−1) as a crossover point. During

recombination, a simple copying of the portion of the genome up to and including the

crossover point from the first parent and then the remaining portion from the second parent

is all that is needed (see Algorithm 2.12).

Single-point and other crossover methods can be implemented to produce one child at

a time or to produce a pair by repeating the algorithm with an inversion of the ordering of

the parents to produce two children such that the entire genomes of both parents are fully

represented between the two children.

Single-point crossover has the benefit of preserving many contiguous substrings, or

schema, into subsequent generations [92]. But its disadvantages are also readily apparent,

such as the tendency of this method to break longer schemata, which are disrupted at the

crossover point. If the crossover point occurs at a locus in the middle of a highly desirable

55

Algorithm 2.12: An algorithm implementing single-point crossover at a randomly
selected point, or locus, along the chromosome.

Data: A pair of parent individuals P1 and P2 with chromosomes of length n
Result: A pair of individuals C1 and C2 with chromosomes of length n representing

the new children
1 begin
2 C1, C2 ← ∅
3 crossoverPoint← randomInt(0..n− 2)
4 foreach locus ∈ (0..n− 1) do
5 if locus ≤ crossoverPoint then
6 C1[locus]← P1[locus]
7 C2[locus]← P2[locus]

8 else
9 C1[locus]← P2[locus]

10 C2[locus]← P1[locus]

11 end

12 end
13 return C

14 end

schema in the first parent, then that schema will likely be corrupted when genes are copied

to the child from the second parent, overwriting that portion of the schema that occurs after

the crossover point. This “positional bias” therefore favors short, low-order schemata as

building blocks over longer ones [5][61]. The tendency for bit positions to affect the preser-

vation of desirable schemata, and the desire to free specific genes from a fixed location or

to allow functionally related bits to be more closely located, was one of the reasons for the

proposal of an inversion operator by Holland [90].

Similarly, single-point crossover suffers from an endpoint bias in that the crossover

point always allows the one endpoint of each parent to remain unaltered: specifically, the

first endpoint gene for the first parent and the last endpoint gene for the second parent [126,

128-129].

Multi-point Crossover. To combat some of these undesirable effects of crossover,

two-part and multi-part crossover came into use. In two-part crossover, an additional

crossover point is selected and the genes from the second parent that occur between the

56

Algorithm 2.13: An algorithm implementing two-point crossover at randomly se-
lected points, or loci, along the chromosome.

Data: A pair of parent individuals P1 and P2 with chromosomes of length n
Result: A pair of individuals C1 and C2 with chromosomes of length n representing

the new children
1 begin
2 C1, C2 ← ∅
3 L1 ← randomInt(0..n− 3)
4 L2 ← randomInt(L1..n− 2)
5 foreach locus ∈ (0..n− 1) do
6 if locus ≤ L1 then
7 C1[locus]← P1[locus]
8 C2[locus]← P2[locus]

9 else if locus ≤ L2 then
10 C1[locus]← P2[locus]
11 C2[locus]← P1[locus]

12 else
13 C1[locus]← P1[locus]
14 C2[locus]← P2[locus]

15 end

16 end
17 return C

18 end

crossover points are copied to the child (see Algorithm 2.13). Or, as Beasley et al. describe,

one can envision the chromosome as a circle of genes with the crossover points defining an arc

along which the genes of the second parent are copied [19]. Mitchell suggests that two-point

crossover is less likely to disrupt longer schemata [126, 129].

Multi-point crossover is conceptually similar, with merely a larger number of crossover

points selected. The number of crossover points can vary, with a common approach being

to increase the number of points as the length of the genome increases.

Uniform Crossover. In uniform crossover, sometime referred to as random crossover,

a coin toss determines from which parent each gene will be copied. A probability factor

determines the likelihood that a gene will come from one parent or another. When the

probability factor is 0.5, there is an equal chance of any given gene being contributed by

57

Algorithm 2.14: An algorithm implementing pure uniform crossover, giving equal
probability of any given gene coming from either parent.

Data: A pair of parent individuals P1 and P2 with chromosomes of length n
Result: A pair of individuals C1 and C2 with chromosomes of length n representing

the new children
1 begin
2 C1, C2 ← ∅
3 foreach locus ∈ (0..n− 1) do
4 cointoss← randomBoolean()
5 if cointoss then
6 C1[locus]← P1[locus]
7 C2[locus]← P2[locus]

8 else
9 C1[locus]← P2[locus]

10 C2[locus]← P1[locus]

11 end

12 end
13 return C1, C2

14 end

either parent and this is referred to as pure uniform crossover (see Algorithm 2.14). Because

of the equal probability that no two adjacent genes in any parent will be chosen to be copied

to the child, pure uniform crossover tends to destroy valuable schemata in genomes with

some structure or relationship between adjacent or nearby genes [164].

There is some argument, however, that uniform crossover, which by its nature tends to

result in a more diverse exploration of the search space, is a better alternative to single- and

multi-point crossover approaches which tend to better preserve longer schemata [41].

Half-Uniform Crossover. Half-uniform crossover (HUX) is a variation, usually ap-

plied to binary genomes, in which exactly half of the non-matching genes between the parents

are selected for crossover. This is accomplished by computing the Hamming distance [83],

which is the number of differing bits between the two binary genomes, and then dividing

that by two. This becomes the number of differing bits that are selected for crossover, and

then a coin toss is usually used to determine from which parent each selected gene is taken

[21].

58

Algorithm 2.15: An algorithm implementing parameterized uniform crossover with
a probability factor, p0, as an argument biasing the probability of any given gene
being chosen from one parent instead of the other.

Data: A pair of parent individuals P1 and P2 with chromosomes of length n and a
probability p0 of any gene coming from parent P1

Result: A pair of individuals C1 and C2 with chromosomes of length n representing
the new children

1 begin
2 C1, C2 ← ∅
3 foreach locus ∈ (0..n− 1) do
4 rand← randomDouble(0..1)
5 if rand ≤ p0 then
6 C1[locus]← P1[locus]
7 C2[locus]← P2[locus]

8 else
9 C1[locus]← P2[locus]

10 C2[locus]← P1[locus]

11 end

12 end
13 return C1, C2

14 end

Parameterized Uniform Crossover. Parameterized uniform crossover, as proposed

by Spears and De Jong, extends the concept of uniform crossover by introducing a probability

parameter, P0, that denotes the probability of swapping the alleles of the two parents [164].

A typical probability of swapping is in the range 0.5 ≤ p0 ≤ 0.8 [126]. The probability

argument allows control over the rate of swapping and, therefore, allows selection of rates

that would tend to be less disruptive than pure uniform crossover (see Algorithm 2.15) [164].

Three-Parent Crossover. Three-parent crossover is usually applied to binary genomes

and requires the selection of three individuals, usually randomly, as parents. During crossover,

for any given locus the values of the first two parents’ gene are compared and, if they are

identical, then that gene is copied to the child. If the first two parent’s genes differ, then the

third individual’s gene for that locus is used. This results in a child individual where each

gene has the value that occurs most often among the three parents (see Algorithm 2.16).

59

Algorithm 2.16: An algorithm implementing three-parent crossover, in which any
given gene in the child has the value that occurs most often among the same genes in
the three parents.

Data: A triplet of parent individuals P1, P2, and P3 with binary chromosomes of
length n

Result: An individual C with chromosomes of length n representing the new child
1 begin
2 C ← ∅
3 foreach locus ∈ (0..n− 1) do
4 if P1[locus] = P2[locus] then
5 C[locus]← P1[locus]
6 else
7 C[locus]← P3[locus]
8 end

9 end
10 return C

11 end

Probabilistic Crossover. Probabilistic Crossover, not to be confused with Param-

eterized Uniform Crossover above, is another approach that establishes a threshold to be

exceeded by a randomized value below which no crossover at all would occur, providing a

method for parents to essentially clone themselves and preserve their genome in the next

generation. Whitely describes the same technique, which he terms “probabilistic crossover”

to allow some genomes to remain intact from generation to generation [178]. In this approach

a mating pool is filled with suitable individuals and one or more are selected at random for

reproduction. In order to reduce the possibility that an especially highly fit parent’s geno-

type might be eliminated through recombination and crossover, a stochastic value function

and probability threshold, Pc, is used that, when exceeded, will allow crossover to occur.

If the threshold is not met, each parent then produces a child identical to itself, with no

crossover occurring, thus preserving the parents’ genotypes in the subsequent generation.

Mitchell suggests that an appropriate probability threshold for crossover is Pc < 0.7 [126,

9]. Probabilistic crossover may not always be desirable, and it can sometimes lead to faster

convergence [178].

60

Although parents’ genes have a high likelihood of persisting from one generation to the

next, over time this becomes less and less probable. As a result, it is possible that the most

highly fit individual encountered during the course of the algorithm’s run may not survive

until the end .

By this repeated process of selection and crossover, it is hoped that, over time, the

overall fitness of the population will increase and after many generations a very fit solution

can be returned.

2.6.4 Mutation

The final component of Neo-Darwinism is mutation, which accounts for the introduction

of new genetic material into a population, or the reintroduction of old genetic material that

may have been lost over time through selection and recombination. Mutation is the most

common method for introducing new information and for preventing loss of diversity at a

given gene [92][126, 23][178, 5].

During crossover and other recombination operations, all the genetic information that

an offspring can possess must come from one or more of the parents. Because of this, the

amount of genetic diversity in a population can never be greater than what existed in the

initial population unless some other process exists that allows new traits and characteristics

to enter.

In fact, over time, without a process for creating new information, the population gen-

erally becomes less and less diverse due to the convergence effects of most selection methods.

Goldberg writes that “...reproduction alone does nothing to promote exploration of new

regions of the search space, since no new points are searched” [81, 31]. He observes that

selection and crossover “may become overzealous and lose some potentially useful genetic

material” and that mutation “protects against unrecoverable loss” of important genes or

gene sequences [81, 14].

61

In a genetic algorithm, mutation can be incorporated by allowing the possibility that

during reproduction individual genes inherited by an offspring can be altered, or replaced

with another gene. For example, when a gene is inherited, the value of a stochastic function

can be compared against a probability of mutation, called the mutation factor. If a probabil-

ity threshold is exceeded, that gene can be replaced with another allele, chosen from the set

of available alleles [153]. Hansen writes that mutation is an “unbiased” method for injecting

new information into the population [85, 873].

Mutation should be applied only occasionally, as high mutation rates can in many cases

be detrimental and little better than random search. Holland defines a probability factor Pm

that determines the frequency with which mutation is applied to a specific gene and suggests

this value should be relatively low [91]. Indeed, Holland writes that mutation “generally has

a background role” of “supplying new alleles or new instances of lost alleles” [91, 97].

Mitchell suggests that an appropriate probability threshold, Pm, for mutation to occur

is Pm < 0.001 [126, 9]. This threshold is supported by Goldberg, who suggested a good

mutation rate “on the order of one mutation per thousand bit (position) transfers” [81, 14].

However, higher mutation rates, such as Pm < 0.0333, have also been suggested by Goldberg

[81, 71].

The value of Pm can be misleading, as the exact implementation of the mutation opera-

tion plays a factor in the true mutation rate. For instance, with a mutation rate Pm = 0.001,

we can expect that, on average, one in every 1,000 genes is mutated. If the mutation op-

eration stochastically assigns one of any valid alleles of the gene, then the actual rate of

mutation will vary. If binary gene is chosen for mutation, then the mutation operation has

an equal chance of assigning a one or zero to that gene. In half the cases, the mutation

operation will randomly assign the gene the same value it had previously. The effective

mutation rate is only half of value of Pm. If the gene is non-binary and has k alleles, then

the mutation operation has a
1

k
chance of assigning the same gene, resulting in an effective

mutation rate of
k − 1

k
Pm.

62

This can be overcome for binary genes by eliminating the coin-toss when selecting the

new value and merely applying an inversion or binary NOT operation. For genes with

multiple alleles, the mutation operation can be designed to never assign a gene the same

value it had previously. In both of these cases, the effective mutation rate then becomes

equal to Pm.

2.6.5 Inversion

Inversion is a primitive genetic operation defined by Holland that allows the reshuf-

fling of the order of alleles in a chromosome [92]. Understanding the inversion operation

requires comprehending Holland’s concept of Schemata, which encode representations of

portions of a chromosome. A fundamental point in Holland’s treatment of Schemata is that

longer Schemata are more likely to be broken or disrupted during crossover or other genetic

operations. [92]

The presumed value of inversion is that the position of individual bits, or genes, asso-

ciated with a positive outcome can be shifted in the chromosome so that bits that are most

valuable in producing a highly fit solution are located more closely together. This results in

shorter positive schemata that are, presumably, less likely to be disrupted through crossover

and therefore more likely to persist from generation to generation.

Inversion is usually implemented by selecting a segment of the chromosome, typically

of both random location and length, and then inverting the ordering of the genes in that

segment. This may require some modification of the chromosome such that each bit, or

gene, is also associated with a value indicating its unaltered position in the chromosome.

Performing inversion on a typical bit array, without preserving the position information

in the original bits, “is nothing more than large scale mutation” [179]. Holland defines a

probability factor Pi that determines the frequency with which inversion is applied to a

specific individual. [91, 121]

63

To accomplish the preservation of gene position, each gene or bit is often encoded as a

tuple (a, b) such that the first parameter represents the bit’s original position and the second

its value. Consider the following equivalent representations of a 10-bit genome:

1 0 1 1 0 1 0 0 1 0

(1,1) (2,0) (3,1) (4,1) (5,0) (6,1) (7,0) (8,0) (9,1) (10,0)

(7,0) (3,1) (9,1) (2,0) (6,1) (10,0) (1,1) (5,0) (8,0) (4,1)

This encoding permits bits to be reshuffled in any order without losing the original

position, and therefore the meaning, of each bit. It is trivial with this method to decode the

tuples to recover a properly ordered bit string.

2.6.6 Loss of Diversity and Convergence

Each generation in a genetic algorithm operates by selecting better individuals, at the

expense of poorer individuals, and mating those better individuals to produce the next

generation. As a consequence, individuals have differing reproduction rates, and a reasonable

selection method should result in good individuals having a reproduction rate R̄(f) > 1 and

poor individuals having a reproduction rate R̄(f) < 1 [24].

Therefore, in each succeeding generation, a certain amount of genetic material from

poorer individuals is lost. Blickle and Thiele term this phenomenon “loss of diversity,” and

quantify it as the proportion of individuals not selected during the selection phase, which he

terms pd [23]. Baker describes a similar calculation, which he calls the reproduction rate, or

the percentage of individuals that are selected, as RR = 100(1 − pd). The loss of diversity

should be kept as low as possible, Blickle and Thiele write, because a higher loss of diversity

increases the risk of premature convergence [24].

Convergence refers to the phenomenon of a population in an Evolutionary Algorithm

approaching a homogenous solution that is, usually, not the global optimum [40, 135]. It is

generally characterized by most or all of the population being composed of identical or nearly

identical solutions such that there is little genetic diversity remaining in the population.

64

Convergence occurs quickly in EAs that use selection methods with an inherently high loss

of diversity, such as tournament selection, truncation selection, and others.

65

Chapter 3

Literature Review:

Metahuristic Search in Geographic Districting Problems

“There is a popular cliche ... which says that you cannot

get out of computers any more than you put in. Other

versions are that computers only do exactly what you tell

them to, and that therefore computers are never creative.

The cliche is true only in the crashingly trivial sense, the

same sense in which Shakespeare never wrote anything ex-

cept what his first schoolteacher taught him to write —

words.”

— Richard Dawkins, The Blind Watchmaker [56]

The challenges of geographical optimization problems are many, and include the physi-

cal, demographic, social, and political. Typical geographical optimization problems encom-

pass the obvious domains — transportation, defining sales or delivery regions, drawing of

political constituencies, school board boundaries, or similar governmental applications —

and the less apparent, such as natural resource management, healthcare system boundaries,

epidemiological analysis, emergency services areas, logistics and supply, and others [184].

Two general types of geographic optimization problems are those that require the par-

titioning of an area or region and those that require selection of a subset of geographic

66

units. For each of these, there are two subtypes, depending on whether the problem does

or does not have spatial constraints [184]. “Spatial constrains” means the imposition of an

additional geographic requirement on a solution, such as the necessity for selected entities

to be physically connected (i.e. contiguous), or that they not be adjacent. Other geographic

constraints may include the requirement for a specific subunit to be included in a particular

district, or the respect or ignoring of natural boundaries.

Geographic districting problems — which are also known as zone design, territory design,

or commercial territory design problems — have been described as an extension of the well-

known knapsack problem or traditional clustering problems [12][44, 1072]. In particular,

the general constraints are observed to be similar to that of a clustering problem with a

set of small geographic units X = x1, x2, ..., xn and number of desired zones k in which to

apportion each unit xi. Zi is the set of units that belong to zone i, then: [12]

Zi 6= ∅, for i = 1, ..., k, (3.1)

Zi ∩ Zj = ∅, for i 6= j, (a)

∪ki=1Zi = X (b)

In districting problems, the aim is to partition a geographic region into districts, or

zones, that satisfy one or more additional constraints that define a desirable zone or set

of zones. In political and governmental districting problems, a number of constraints are

readily apparent, many of which center on the concept of equity. However, equity can

be quantified in a number of ways, many of which can be mutually exclusive: population

equality, socioeconomic homogeneity, racial and ethnic homo- or heterogeneity, ethnic and

cultural integrity, and others [29].

67

Regardless of the criteria used to define a desirable zone, districting problems can be

described as a multiple-criteria optimized search. There are a large number of potential solu-

tions to this kind of searching problem, including by Tabu Search (TS), simulated annealing,

and using Genetic Algorithms.

Bação et al. summarize solutions to districting problems as falling into one of three

general categories. The first is those solutions that build zones individually and then attempt

to combine them into an aggregate solution. The second includes approaches that take an

existing districting plan and modify it by moving small units between districts. The final

type includes solutions that generate an entire districting plan at once by allocating all

geographic units to a specific zone [12].

Geographic optimization problems are computationally expensive, and many problems

in this area fall into the category of NP-complete or NP-hard problems, for which there is

no known way to assure the achievement of an optimal solution in reasonable time [12][50].

Therefore, heuristic search techniques would seem to be the best means for obtaining ac-

ceptable solutions within a feasible computational time limit [7]. But Altman cautions that

heuristic techniques “provide no guarantee of convergence to the optimal district plan in a

finite amount of time. At best, they merely good guesses” [7, 91-92].

3.1 Optimized Search for Location and Districting Problems

Early work in location problems, particularly central facilities location, would prove

influential in later extrapolations of location problems to districting problems.

Typical location problems are variations on the well-known Weber problem and involve

locating one or more warehouses, plants, or other facilities at ideal locations such that the

facilities service the surrounding population as efficiently as possible [175]. Specifically, the

central facilities location problem consists of determining a subset m of a set of n communities

to serve as central locations from which all communities are served in such a way that total

travel distances or times are minimized. Typically this is measured as the average of all

68

travel times or distances for the population such that s̄ =

n∑
i=1

aisi

n∑
i=1

ai

, where ai is the population

of community i and si is the cost (i.e. miles or minutes) that individuals in community i

must travel to the nearest center [146].

Leon Cooper and Kulin and Kuenne each explored minimum cost solutions to such

location problems using a type of gradient descent algorithm, or successive approximations,

to converge at an optimum or near-optimum solution [49][112]. Revelle and Swain adopt a

similar approach, representing the problem as a matrix of costs between communities and

centers that can be solved as a linear programming problem with repeated iterations with

the optimal solution found in a small fraction of the time compared to an exhaustive search

[146].

In 1965, Hess et al. proposed a method for computer algorithms to provide “a rapid and

nonpartisan method...to develop districting plans to meet pre-specified criteria” [86, 998].

They note that the political districting problem is analogous to the “warehouse location”

problem described by Baumol and Wolfe in 1958 [18], Keuhn and Hamburger in 1963 [111],

and others, but with more complicated constraints. Essentially, a predetermined number of

warehouses must be located such that, collectively, they adequately cover all customers in

the population with roughly equal apportionment of customers to each warehouse.

The heuristic used in Hess et al.’s approach centered on three criteria: equal population,

contiguity, and compactness. Contiguity means, quite simply, that the district be comprised

of a single land parcel. Compactness was generally accepted to mean geographically consol-

idated rather than spread out, although at the time “no geometric measure of compactness

(had) been widely accepted” [86]. Population equality was included as a numeric measure

equal to the sum of squared distances from each person to the district’s center.

Hess et al. employed U.S. Census enumeration districts, an area designed to be covered

by a single census taker, as a predefined population unit from which to construct a solution.

Among the benefits of using Census enumeration districts are that they already take into

69

Algorithm 3.1: A Redistricting algorithm proposed by Hess et al. [86, 999-1001]

Data: Given k desired districts and n Census enumeration districts (EDs)
Result: Allocation of n Census EDs equally among k districts

1 begin
2 repeat
3 Randomly guess k district centers
4 repeat
5 Assign population equally to centers by minimum-cost transportation

algorithm
6 Adjust assignments so each Census ED is contained entirely in a single

district
7 Compute district centroids and use as improved district centers

8 until District centers converge;

9 until Until Desired Outcome Reached ;

10 end

account natural and manmade barriers, such as rivers, highways, railroads, and other features

that tend to be desirable for legislative districts [86, 999]. The Hess et al. study focused on

the very small state of Delaware, in which districts were comprised of roughly 12,000 people

and Census enumeration districts contained typically 1,000 people. But they write that,

especially for larger states, census tracts and entire counties could be acceptable base units

[86].

Hess et al.’s method was designed to iteratively guess potential district centers, allocate

population to the closest center, and compute the resulting centroid for use as a new district

center (see Algorithm 3.1). In evaluating the resulting districts, any non-contiguous dis-

tricts were rejected outright and solutions that exhibited both compactness and population

equality, if available, were favored or, if not, the most compact solution within a population

deviation limit was selected. Hess et al. observe that while the algorithm does not guarantee

convergence, in practice convergence occurred within 10 iterations [86].

Hess et al.’s algorithm can be expressed mathematically, as refined by Bozkaya et al.,

such that I represents the set of all population units, J is the set of units used as seeds, or

district centers, and the cost cij of assigning unit i to j is a function of the distance between

the center of j and the center of i. The number of districts to be created is k. The population

70

of a unit i is pi and must fall within the interval [a, b]. The binary variable xij is equal to

1 iff (if and only if) unit i is assigned to district center j. This nomenclature allows us to

model the problem as follows: [29][86]

minimize
∑
i∈I

∑
j∈J

cijxij (3.2)

subject to
∑
j∈J

xij = 1 (i ∈ I), (a)

∑
j∈J

xjj = k, (b)

xij 6 xjj (i ∈ I, j ∈ J), (c)

a 6
∑
i∈I

pixij 6 b (j ∈ J), (d)

xij = 0 or 1 (i ∈ I, j ∈ J). (e)

The objective function (3.2) calculates the compactness of a district as the sum of the

distances from the district center of each unit that is part of that district. The constraint

that each unit can be assigned to one and only one district is shown by (a). The constraint

that the total number of districts equal k is shown in (b). Population equality is calculated

in (d) as the sum of the populations of all units included in the district, such that the total

must fall between the bounds of a and b [29][86].

The general approach and calculations presented by Hess et al. have been reused and

modified in many subsequent studies and algorithms addressing districting problems.

A similar formula, presented by Garfinkel and Nemhauser, defines a binary coefficient

aij equal to 1 iff unit i belongs to district j. The cost cj is assigned to district j and a binary

71

variable xj is 1 iff district j is selected. This gives a similar expression as follows: [29][75]

minimize
∑
j∈J

cjxj (3.3)

subject to
∑
j∈J

aijxj = 1 (i ∈ I), (a)

∑
j∈J

xj = k, (b)

xj = 0 or 1 (j ∈ J). (c)

3.2 Common Constraints on Districting Problems

Another approach to heuristic search for political districting utilizes a variation of Tabu

Search (TS) that is coupled with a multi-variable optimization function comprised of both

hard and soft, weighted constraints.

Commonly used criteria in defining political districts include: geographic continuity;

compactness; respect for natural boundaries, such as rivers and bodies of water; population

equality; alignment with existing political or administrative boundaries, such as townships

and housing subdivisions; socio-economic homogeneity or, conversely, heterogeneity; similar-

ity to existing district boundaries; preservation of community integrity; and equal probability

of representation for minority groups [29].

Bozkaya et al. address the common districting constraints described above, but treat

some as hard constraints and others as soft ones. In their study, geographic contiguity is

a hard constraint while others are soft constraints that are quantified through a weighted,

additive multi-criteria function, F (x) =
∑
r

αrfr(x), where ar is a weight for a particular

criteria and fr(x) is the value of the objective function for criteria r [29].

72

3.2.1 Population Equality

Bozkaya et al. define population equality in terms of the population Pj(x) of district

j ∈ J where J is the set of all possible districts. The average district population is P̄ =∑
j∈J

Pj(x)

k
. The population of each district must fall within a percentage tolerance ±β of the

average population, which is shown by the bound [(1 − β)P̄ , (1 + β)P̄], where 0 ≤ β < 1.

This gives a population equality function as follows: [29]

fpop(x) =

∑
j∈J

max
{
Pj(x)− (1 + β)P̄ , (1− β)P̄ − Pj(x), 0

}
P̄

(3.4)

This equation results in a value of zero if all district populations fall within the tolerance of

the average population size, otherwise it returns the sum of the infeasible districts.

Compactness Bozkaya et al. adopt one of two straightforward metrics for measuring

district compactness while acknowledging that no metric is perfect. The first is based on

total length of all boundary lengths between districts, where Rj(x) is the perimeter of district

j and R is the perimeter of the entire territory, which is excluded. The divisor R is used for

scaling, and gives the formula: [29]

fcomp1(x) =

(∑
j∈J

Rj(x)−R

)
2R

(3.5)

A second approach compares the perimeter of a district to the circumference of a circle of

the same area, where Aj(x) is the area of district j:

fcomp2(x) =

∑
j∈J

(
1−

2π
√
Aj(x)/π

Rj(x)

)
k

(3.6)

73

3.2.2 Socio-economic Homogeneity

Socio-economic homogeneity is the degree to which the preferences of individuals in a

society tend to be alike, and can be measured by personal income, home ownership, or many

other criteria. [76] Bozkaya et al. quantify this as the attempt to minimize the sum, across

each district, of the standard deviation Sj(x) of income, which is then divided by the avarage

income S̄ to provide a dimensionless value: [29]

fsoc(x) =
∑
j∈J

Sj(x)

S̄
(3.7)

3.2.3 Similarity to Existing Plan

Similarity to existing plan can be a desirable metric because incumbent representatives,

and their constituents, typically prefer not to have large changes to district boundaries such

that a representative no longer represents his or her previously served community. This sim-

ilarity can be calculated, Bozkaya et al. suggest, using an overlay of the previous boundaries

of a district on top of the proposed boundaries for the same district and calculating the areas

of those portions that do not overlap: [29, 15]

fsim(x) = 1−
∑
j∈J

Oj(x)/A (3.8)

where A is the entire area and Oj(x) is the largest overlay with a district contained in the

new solution x. The authors contend that this approach can be used even if the number of

old and new districts differs.

3.2.4 Integrity of Communities

Community integrity is a subjective term, but is generally considered to mean the

preservation of a group of individuals who form a “community of interest,” whether on

the basis of race, religion, socioeconomic status, or some other criteria. How to preserve

74

communities of interest is also arbitrary, but could be based on “rural/urban divides, shared

cultural background, economic interest, ethnic background, demographic similarity, political

boundaries, geographic boundaries, and on and on” [95].

To measure integrity of communities, Bozkaya et al. suggest an overlay concept which

relies on the minimization of a function calculating the proportion of a community population

in respect to the total population of the district: [29, 16]

fint(x) = 1−

∑
j∈J

Gj(x)∑
j∈J

Pj(x)
(3.9)

where Gj(x) is the largest population of a given community in district j.

Bozkaya et al. apply each of these metrics as soft, weighted constraints through an

objective function F (x) = αpopfpop(x)+αcompfcomp(x)+αsocfsoc(x)+αsimfsim(x)+αintfint(x)

where αr is a weighting factor and fr(x) is the value function for criterion r. The weighting

multipliers are user-defined, with the exception of αpop, which the authors set initially to 1

and allow to vary during the search to allow some latitude in population equality [29, 16].

Tabu Search (TS) was used as the primary optimization algorithm, in conjunction with

an adaptive memory procedure, to iteratively search solutions in the neighborhood of the

current solution. Cycling was limited by declaring certain solutions as tabu for a number of

iterations, and the search was terminated whenever preset stopping conditions were met.

Bozkaya et al. found that Tabu Search was able to produce solutions that preserve

community integrity better than existing plans and maps that are 27% more compact while

maintaining populating equality [29].

Another application of Tabu Search to a districting problem involving the monthly as-

signment of nurses to patients focused on a multi-heuristic approach that factors in workload

minimization and continuity of care. Tran et al. partitioned a neighborhood using a Voronoi

diagram [10][119] to determine the geographic areas or cells belonging to each patient, giving

75

a set of sites I such that patient i ∈ I is at the center of his or her own cell. The role of the

algorithm then becomes allocating the I patients among a set of K available nurses [169].

Their modified Tabu Search algorithm was compared against both a traditional Tabu

Search algorithm and a simulated annealing algorithm on both real-world and randomly

generated data. Tran et al. conclude that their application of Tabu Search can, in most

cases, allocate nurses to maintain workload equilibrium with smaller workload differences

than the comparison algorithms [169].

3.3 Evolutionary Approaches to Partitioning and Districting Problems

Bação et al. write that Genetic Algorithms (GAs) remain largely unexplored in the field

of districting problems [12, 342]. However, GAs have been applied extensively in related

problems, such as the P-Median problem, cluster analysis, pattern recognition, and other

fields. One such approach by Correa et al. explored the use of GAs in solving the P-

Median problem, a typical facility location problem that consists of locating p facilities, called

medians, which satisfy the needs of n demand points, such that the total cost of serving those

demand points is minimized. P-Median problems can be either non-capacitated, such that a

facility can service an unlimited number of demand points, or they can be capacitated [50].

The P-Median problem can be represented as an undirected graph, G = (V,E), where V

is a set of vertices and E is the set of edges. The problem attempts to find a set of vertices,

Vp ⊂ V, known as the median set, with cardinality p such that the sum of distances between

76

each vertex in the demand set {V− Vp} and its nearest vertex in Vp be minimized: [50]

minimize
n∑
i=1

n∑
j−1

aidijxij (3.10)

subject to
n∑
j=1

xij = 1, i = 1, 2, ..., n (a)

xij ≤ yj, i, j = 1, 2, ...n (b)

n∑
j=1

yj = p (c)

xij, yj ∈ {0, 1}, i, j = 1, 2, ..., n (d)

where ai is the demand of vertex j, dij is the distance or cost from vertex i to vertex j, xij

returns 1 iff vertex i is assigned to facility j, and yj returns 1 iff vertex j is designated as

one of the p medians.

Correa et al. propose a Genetic Algorithm for solving a P-Median problem with a

chromosome of length p that encodes the unique ID number of each of the p vertices selected

as medians. The fitness is measured by the objective function described in Equation 3.10.

Selection was accomplished by a variation on Roulette Wheel Selection (RWS), and elitism

ensures only highly fit individuals enter the population. Crossover is accomplished unusually,

with two exchange vectors computed for each pair of parents, such that all medians unique

to one parent are placed in the exchange vector of the other parent. Then, a random value

determines how many of the available medians in each exchange vector are to be swapped

between the two parents, producing two new unique offspring. Traditional mutation is

accomplished by replacing the mutated gene with any available vertex not already in the

current genome [50].

Correa et al. introduce a variation on mutation they term “heuristic hypermutation”

that is applied after generation of the initial population and at a probability of 0.05 for each

iteration of the running algorithm. Their hypermutation operation consists of selecting a

77

Algorithm 3.2: An algorithm for “hypermutation” proposed by Correa et al. as part
of a solution for the P-Medians problem using genetic algorithms [50].

Data: Given a population P
Result: The most fit mutation of each individual X in a subset P ′ ∈ P

1 begin
2 Randomly select P ′ as 10% of the population P
3 foreach individual X in P ′ do
4 Let H be the set of facilities not in X
5 foreach facility fi in H do
6 Best← X
7 foreach gene gj in X do
8 y ← new individual such that {X − gj} ∪ {fi}
9 if (fitness(Y) < fitness(Best)) then Best← Y

10 end
11 if fitness(Best) < fitness(X) then X ← Best

12 end
13 Insert the new X in the population, replacing the old X.

14 end

15 end

portion of the population (e.g., 10%) and attempting to improve the fitness of each individual

by iterating through all genes in the chromosome, exhaustively replacing that gene with

each of the alleles not already in the genome, and then evaluating the resulting fitness for

improvement. Each possible allele not already in the genome is tried in each position in

the genome, and the allele and position that most improves the fitness is chosen as the

replacement. If no mutation results in improvement, then no replacement occurs. This

approach is quite similar to that of the traditional steepest-ascent hill-climbing algorithm.

The process continues for each individual selected for hypermutation (see Algorithm 3.2)

[50].

The results of this algorithm were evaluated both with and without hypermutation

and compared against a conventional Tabu Search (TS) algorithm. Results shows that the

Genetic Algorithm achieves comparable results when compared with Tabu Search in terms of

run time, distance or cost minimization, and number of potential solutions evaluated before

termination. The GA performs slightly better with hypermutation enabled [50].

78

Bação et al. explore in a 2005 study the application of Genetic Algorithms to a districting

problem, which they term zone design. Citing desirable characteristics in such problems,

they also identify population equality, contiguity, and geographical compactness as primary

criteria, with the goal of generating solutions that satisfy all three.

To achieve population equality, they employ a minimization function min
∑

j |Pj − µ|,

where Pj represents the population of the jth zone and µ (previously expressed as P̄ above)

is the average population per zone. Compactness is addressed with the presupposition that

zones should be as close in shape as possible to a circle. Therefore, a function seeking the

minimum of the sums of the distance from the center of each unit to the zone center is used:

min
∑
j

(
|Pj − µ|+

∑
i=∈Zj

dij

)
(3.11)

where dij is the distance from the center of unit i to the center of zone j. An alternative

measure of compactness is suggested as the product of all distances and the population

difference within each zone, which gives an alternative function:

min
∑
j

(
|Pj − µ| ×

∑
i=∈Zj

dij

)
(3.12)

Finally, they offer a third measure of compactness termed “circumferential compactness”

as the sum of the ratios between the square of the perimeter of a zone and its area
∑
j

pr2j
aj

,

where prj is the perimeter of zone j and aj is the area of that zone [12, 342-343].

Contiguity is a binary state that is evaluated by a separate algorithm. Contiguity is

treated not as an absolute but as a “quasi-hard” constraint by “strongly penalizing non-

contiguous solutions, which in practice excludes them” [12].

Bação et al. employed a Genetic Algorithm to solve their zone design problem with one

of two encodings, the first of which centers each zone, or district, at the centroid of one of

the geographic units that comprise the zone. The second encoding allows zone centers to be

placed at any point in the region. Their approach employed ten parallel populations with 25

79

Algorithm 3.3: A genetic algorithm devised by Bação et al. for solving the zone
design problem by repeatedly evolving strings of zone center points. [12, 344]

Data: Given k desired zones, and n geographic units
Result: The most-fit string Pbest comprising center points for k zones

1 begin
2 Generate p sets of k center points
3 repeat
4 foreach unit 1..n do
5 Find closest zone center closest and assign unit n to Zclosest
6 Evaluate fitness of each string P and its assigned units
7 Apply selection, crossover, and mutation operators to create new

population
8 end

9 until Generations with no Improvement ≥ 5000 ;

10 end

individuals, or strings, per population. Duplicate strings were not allowed, and a very small

chance of migration, 0.001, of a string from one population to another was provided for. The

optimization functions in Equation 3.11 and Equation 3.12 were used as the heuristic [12,

343-344].

Their final algorithm employed tournament selection; uniform crossover with a proba-

bility, Pc, of 0.95; and mutation with a probability, Pm, of 0.001 (see Algorithm 3.3). Elitism

was employed to ensure the best individual(s) propagate into subsequent generations, and

the stopping criteria was defined as 5,000 generations without further improvement [12,

344]. Results showed that the Genetic Algorithm yielded better results than other heuris-

tic approaches, but results were strongly affected by encoding and optimization functions.

Adopting a more flexible encoding of zone centers allowed the algorithm to perform better

than co-locating zone centers with geographic unit centers [12, 347].

Graph partitioning problems are closely related to districting problems, in that given

a graph of connected nodes, each node can be considered to represent one geographic unit

and the partitioning of the graph into subgraphs containing nodes is conceptually similar to

partitioning a region into districts composed of individual geographic units.

80

A graph G = (V,E), where V = {1, 2, ..., n} is a set of n vertices or nodes and E =

{eij|i, j = 1, 2, ..., n; i 6= j} is the set of edges with eij representing a connection between

nodes i and j. Edges connecting nodes have a weight, wij, which typically quantifies some

cost or distance for the connection between the nodes. The graph G is “directed” if wij 6=

wji, (i 6= j), otherwise it is “undirected” [54].

Partitioning a graph G means grouping its n nodes into k non-empty, disjoint sets such

that the set of nodes in each set satisfies one or more constraints or objective functions

that define a desirable set. Typically, graph partitioning problems employ multiple criteria

simultaneously and are therefore considered a multi-objective optimization problem that is

NP-complete for k ≥ 2 [54].

Datta et al. explore the ability of a modified, Non-Dominated Sorting Genetic Algorithm,

a type of multi-objective Evolutionary Algorithm, to address the graph partitioning problem.

Their approach, which accommodates multiple objective functions simultaneously, shows

preliminary success in three out of four test cases. Three criteria for the objective functions

are used, including: minimizing the new loss in edge values when considering two nodes for

inclusion in the same zone; ensuring similar zone size by minimizing the difference in number

of nodes between zones; and promoting compactness by minimizing the spread of a zone in

any single direction [54, 626-627]. Other constraints considered by the authors include: an

integrity constraint ensuring each node is assigned to one and only one zone; contiguity or

connectedness of all nodes within a zone; that the number of zones falls with a predefined

range kmin ≤ k ≤ kmax; and ensuring that the size of a zone falls within a certain range

nkmin
≤ nk ≤ nkmax .

Initial zone creation is accomplished by first selecting a single node to include in a

zone and then expanding it to include neighbors that are not already part of another zone.

Crossover is accomplished by generating a new child chromosome by selecting an arbitrary

zone from parent A and inserting that zone into the chromosome of parent B to produce a

new offspring, after reallocating any overlapping zones or orphaned nodes as a result of the

81

crossover. Mutation randomly shifts the boundary of a zone by allocating one of its nodes

to a neighboring zone, thus preserving the integrity constraint described above [54]. The

authors conclude that in limited test cases the algorithm is able to find optimal, if known,

or near optimal solutions for partitioning test graphs.

Chou et al. used a combination of an evolutionary algorithm and human assistance to

subjectively develop and refine an objective function in order to solve a redistricting problem

involving political wards in Philadelphia. Their approach investigated the ability of a novel

genetic algorithm to partition ten council districts out of the city’s 66 wards, each of which

is further subdivided for a total of more than 1,300 geographic subunits. Their algorithm

employed an objective function to calculate district compactness and employed mutation

only, with no recombination of parents at all, to produce offspring [44].

The objective function gauges compactness as a minimization of intra-district distance

between subunits and the center of the district. Contiguity and population size are treated

as soft constraints that, if violated, result in a penalty to the fitness function. Population size

was allowed to vary within an adjustable “slack” range of 5% without penalty. The penalty

for breaking the contiguity constraint was harsh, effectively preventing non-contiguous solu-

tions from entering subsequent generations [44].

Chou et al. ignore recombination completely and employ only mutation to explore the

solution space. Their approach, which they term neighborhood mutation, involves random

mutation of a gene representing a ward’s district assignment by replacing it with an allele

from the set of wards adjacent to the current district. This approach allows mutation to

generate child solutions that are much less likely to violate the contiguity constraint. Two

mutation rates are employed, with each member of the current generation being mutated a

number of times, typically six, to produce multiple offspring. For half of these offspring, a

standard rate of pm1−2 = 0.01 per locus is used, but for the other half a much higher rate

of pm3 = 0.15 is set. The resulting pool of parents and children, which is seven times the

normal population size, is then evaluated for fitness and culled [44].

82

The algorithm was run for 100 iterations with 2,000 generations for each iteration,

which resulted in the discovery of 116 valid districting solutions. These solutions were then

presented to a number of subjects who were presented with pairs of potential districting

plans and subjectively rated or voted on the more desirable of the pair. Chou et al. call

this approach, which has the goal of using subjective human input to inform on the fitness

of potential solutions Interactive Evolutionary Computation (IEC). The goal of IEC is to

incorporate human input in order to devise or test a potential fitness function that can, in

future trials, be used in place of further human input.

IEC algorithms “characteristically (rely) on the judgements of subjects to assess the

fitnesses of the solutions encountered in runs of an evolutionary algorithm,” they write, and

can be valuable in “affording discovery of designs and solutions by evolutionary processes

that otherwise could not be well directed for lack of calculable fitness functions” [44, 1074].

A drawback of IEC is that it is labor intensive, requiring humans to evaluate alter-

natives, essentially performing manual fitness computations. Takagi suggests that 10 to 20

generations of evaluations is usually the most a person can handle [166]. The fatigue problem

associated with using human labor in IEC algorithms may be mitigated, Chou et al. write,

by using subjective judgements to develop or test a computational fitness function. This

function, once validated, could then be used in place of a conventional fitness function in an

evolutionary algorithm. Chou et al. call this a validated surrogate fitness (VSF) function

[44].

83

Chapter 4

Solving Districting Problems with Evolutionary Algorithms and Mitigating the Effects of

Contiguity Constraints

“Despite how it’s portrayed in books and movies, artifi-

cial intelligence is not a synthetic brain floating in a case

of blue liquid somewhere. It is an algorithm – a mathe-

matical equation that tells a computer what functions to

perform...”

— Jeff Goodell [80]

4.1 Constructing an Evolutionary Algorithm to Solve Districting Problems

To evaluate the ability of Evolutionary Algorithms (EAs) to solve real-world districting

problems, we first constructed a sample data set consisting of United States Census Data for

portions of the State of Alabama. Specifically, we chose sample data to mimic United States

Zone Improvement Program areas (i.e. “ZIP” codes) that are fully or partially contained

within Jefferson County, Alabama. This area, which comprises much of the downtown and

metropolitan Birmingham area, consists of 59 ZIP code zones and is sufficiently large to

provide a suitable test set but also still of manageable size. However, census data does not

84

address ZIP codes in a one-to-one manner, especially for rural areas, so ZIP Code Tabulation

Areas (ZCTAs), which closely approximate zip codes, were substituted.

Each element in the data set is comprised of the following data points: ZIP Code number;

county; municipality (if any); population; and a Keyhole Markup Language (KML) fragment

representing the polygon or polygons that define the physical boundaries of the individual

parcel. An extensive list of demographic, socioeconomic, and other data is available to be

associated with each of these data elements, but have been omitted for the purposes of the

preliminary research.

Defining the borders of neighboring zip code parcels could theoretically be accomplished

computationally by exhaustively comparing the edges contained in the KML fragments that

define the boundaries of each parcel, but for the purposes of this preliminary research, an

adjacency matrix has been manually constructed that enumerates for each ZIP code parcel

the set of all adjoining parcels.

4.1.1 Construction of Algorithm and Initial Population

The construction of the initial population is trivial and can be accomplished randomly

if the geographic contiguity of each district is not required. However, if contiguity is nec-

essary, then the initial, random assignment of parcels to districts would result in a starting

population composed entirely, or almost entirely, of invalid candidate solutions.

Therefore, in order to seed the initial population with a set of valid candidate solutions,

an algorithm for creating entirely contiguous districts while still maintaining an element of

randomness in the composition of those districts is necessary.

If the algorithm for generating a structured, but still randomized, initial candidate

solution can be well-constructed, we do not see a problem with using such an algorithm to

seed the generation zero population. Hofstadter pointed out that purely random combination

is not analogous to nature, where the “chance is infinitesimal that a random combination

... will survive” [88, 662]. Recall also that Fogel stated that it is indeed “reasonable to

85

Algorithm 4.1: A generalized pseudocode describing the construction of a geograph-
ically contiguous initial candidate solution.

1 For each n desired initial solutions
2 Select m unique parcels at random and assign each to a district numbered 1..m.
3 While there are still unassigned districts
4 For each district 1..m
5 Select at random an unallocated parcel that adjoins the parcels in the district
6 Add the selected unallocated parcel to the district
7 Add the resulting district map to the population
8 Return the initial population with n members

incorporate domain-specific knowledge into an algorithm” when constructing a specialized

evolutionary algorithm [63, 5].

To accomplish seeding the initial population with entirely valid candidate solutions for

problems that require contiguity, a constructor algorithm was been designed that selects n

unique initial parcels to serve as center points around which the n desired districts are to

be assembled. Next, in a round-robin fashion, for each of the n districts an unallocated,

adjoining parcel is added to the district until there are no remaining unallocated parcels. In

the case that no unallocated parcels can be added to a particular district, then that district

is skipped. This approach is expressed as generalized pseudocode in Algorithm 4.1 and is

depicted algorithmically in Algorithm 4.2.

4.1.2 Algorithm Implementation

The algorithm employed can support a varying population size, with a typical population

size of between 50 - 250 candidate solutions. The mating process consists of the operation

of selection, followed by crossover, with a random chance of mutation occurring during

crossover. The selection operation is performed through k = 2 tournament selection, which

requires that two different competitors are chosen at random from the population, and the

competitor with the higher fitness value is designated as the winner of the competition and

therefore becomes a parent. This process is repeated twice, resulting in two parents, and is

depicted in Algorithm 4.3.

86

Algorithm 4.2: An algorithm depicting the construction of an initial population of
size n consisting of solutions to a districting problem with a geographic contiguity
constraint.

Data: A set of geographic parcels D
Result: A set P containing n geographically contiguous candidate solutions

1 begin
2 P (τ)← ∅
3 foreach 1..n desired initial solutions do
4 foreach 1..m desired districts do
5 Dm ← a unique parcel as district center
6 end
7 repeat
8 foreach district Dm in (1..m) do
9 P ′ ← a random unallocated parcel that adjoins Dm

10 Dm ← Dm + P ′

11 end

12 until no unassigned districts remain;
13 P ′ ←

∑
1..mDm

14 P (τ)← P (τ) + P ′

15 end
16 return P (τ)

17 end

In this case, there is a provision to prevent the selection of the same candidate solution

as a competitor in both tournaments (which will happen with a frequency of roughly 1/n,

where n is the size of the population). However, it is arguably just as acceptable to implement

the algorithm in a manner such that if a parent is highly fit and is selected twice, it can then

mate with itself, resulting in an identical clone in the subsequent generation.

Genetic exchange during mating is accomplished through single-point crossover with a

randomized crossover point anywhere along the genome such that the resulting child receives

the entire portion of one parent’s genome prior to and including the crossover point and the

portion of the other parent’s genome after the crossover point. This process is depicted in

Algorithm 4.4.

Mutation is incorporated in the mating process with a randomized likelihood of a genetic

mutation occurring once out of every 1,000 gene transcriptions, or pm = 0.001. In the case of

87

Algorithm 4.3: A simple algorithm for selection of ρ parents employing tournament
selection with tournament size k. The algorithm explicitly prevents the selection of a
single individual as a parent more than once.

Data: A population P of size µ, a desired number of parents ρ, and a tournament
size k

Result: A subset P ′ containing ρ unique parents selected for recombination
1 begin
2 P ′ ← ∅
3 foreach i ∈ (1..ρ) do
4 T ← ∅
5 foreach j ∈ (1..k) do
6 T ′ ← ∅
7 while T already contains T ′ do
8 rand← randomInt(0..µ)
9 T ′ ← Prand

10 end
11 Tj ← T ′

12 end
13 P ′i ← max(T)

14 end
15 return P ′

16 end

a mutation, the gene being copied is randomly assigned one of the possible alleles between a1

and amax. No provision is made to prevent a gene selected for mutation from being randomly

assigned the value it originally had, which will happen with frequency
1

amax
. This process is

also depicted in Algorithm 4.4.

4.1.3 Results

The algorithm described above was executed repeatedly with a varying combination of

parameters to assess the feasibility and performance of the main genetic algorithm and its

fitness function. For these tests, only a population demographic was used, and the algorithm

was designed to partition the sample area into five districts of as nearly equal population as

possible. The fitness of a candidate solution was measured, therefore, as the maximum of

88

Algorithm 4.4: An algorithm employing single-point crossover and incorporating
random mutation with a frequency of pm for each transcribed gene. In the case of a
mutation, the transcribed gene is randomly assigned the value of a valid allele in the
range of 1..amax, where amax represents the maximum value of an allele.

Data: A pair of parents P1 and P2 with an integer array of length n representing
genes with valid alleles in the range 1..amax

Result: A child C with an integer array of length n
1 begin
2 C ← ∅
3 crossoverPoint← randomInt(1..n− 2)
4 foreach locus ∈ (0..n− 1) do
5 p← randomDouble(0..1)
6 if p < pm then
7 allele← randomInt(1..amax)
8 C[locus]← allele

9 else if locus ≤ crossoverPoint then
10 C[locus]← P1[locus]
11 else
12 C[locus]← P2[locus]
13 end

14 end
15 return C

16 end

the difference between each district’s population and the average population for all districts

in the solution.

In those trials requiring geographic contiguity, candidate solutions with one or more non-

contiguous districts were assigned a specific fitness value to represent an invalid solution. The

invalid fitness value is such that no valid candidate solution could ever rank lower than an

invalid solution. Because of the requirement for geographic continuity in these cases, it is

necessary to ensure that the initial population is composed entirely of valid solutions. To

accomplish this, Algorithm 4.2 was used. An example generation zero candidate solution

created by this algorithm is depicted in Table 4.1 and geographically by the map shown in

Figure 4.1.

The precise configurations under which the algorithm was tested include:

89

Figure 4.1: A typical map depicting a generation zero, or starting, candidate solution for a
simple genetic algorithm to allocate zip code parcels into five contiguous groups, based upon
population. Note that each starting group is nearly equal in the number of zip codes each
contains, and all zip codes in each group are contiguous.

• Five contiguous districts with k = 2 tournament selection, single-point crossover, and

random mutation (pm = 0.001).

• Five contiguous districts with k = 2 tournament selection, stochastic uniform crossover,

and random mutation (pm = 0.001).

• Five non-contiguous districts with k = 2 tournament selection, single-point crossover,

and random mutation (pm = 0.001).

• with Five non-contiguous districts with k = 2 tournament selection, stochastic uniform

crossover, and random mutation (pm = 0.001).

Results were consistent over dozens of iterations, with a high similarity among the fitness

value of the returned solutions in all cases.

In the case of the two trials requiring contiguous districts, the fitness value of the

returned solution usually varied between 650 and 980 individuals. The most-fit solution was

90

District Population Fitness Zip Count
1 117874 51340 14
2 101432 66782 11
3 169214 66782 12
4 158943 57511 10
5 143852 42240 6

Table 4.1: District populations, fitness value, and number of zip codes in each district for the
example generation zero candidate solution depicted in Figure 4.1. Note the wide disparity
in population sizes between the zones.

District Population Fitness Zip Count
1 132881 11279 13
2 132797 11363 14
3 144160 11363 12
4 137625 6227 8
5 143852 11055 6

Table 4.2: District populations, fitness value, and number of zip codes in each district for
the example 10th generation candidate solution depicted in Figure 4.2. Algorithm variables:
k = 2 tournament selection, uniform crossover, pm = 0.001.

usually found by the 50th generation, and little, if any, improvement in overall fitness of

the population occurred after this. An example 10th generation candidate solution, with a

relatively inferior quality solution, is depicted in Table 4.2 and geographically in the map

shown in Figure 4.2.

A typical near-optimal solution for contiguous districts, returned by the 50th generation,

is depicted in Table 4.3 and geographically in the map shown in Figure 4.2.

District Population Fitness Zip Count
1 137690 1564 15
2 139055 1365 13
3 139254 199 10
4 138438 748 9
5 139221 1531 8

Table 4.3: District populations, fitness value, and number of zip codes in each district for the
example near-optimal contiguous candidate solution depicted in Figure 4.3. This solution
was repeatedly discovered during multiple runs by the 50th generation. Algorithm variables:
population size 10000, k = 2 tournament selection, uniform crossover, pm = 0.001.

91

Figure 4.2: A map depicting a much improved candidate solution after only 10 generations,
left, and after 50 generations, right, in which zip code parcels are distributed in five districts
of contiguous parcels. Each district is created with the goal of having a total population
that is as close as possible to the populations of each of the other districts. Note that the
number of zip codes in each district varies greatly.

For those trials not requiring geographic contiguity for all zones in each district, the

quality of the final solution varied more widely. These trials were typically allowed to run

much longer than the trials above, since the requirements for geographic contiguity above

quickly eliminated a large number of schemata from the population. In the non-contiguous

trials, the quality of candidate solutions often continued to improve even past 100 genera-

tions, with some runs still showing improvement near the 300th generation.

For the non-contiguous trials, some returned solutions showed fitness values as high as

250, but a more typical value would fall between 50-95. However, in one extraordinary case,

a near-optimal solution was returned with a fitness value of only 3.2, representing an average

population difference of less than four individuals between all five districts. Any solution

with such a negligible difference between its result and the theoretically perfect result of

zero population difference between districts would be deemed a success and, although it is

impossible to prove whether any single solution provided by a genetic algorithm is optimal,

92

Figure 4.3: A map depicting a near-optimal unconnected candidate solution after 500 gener-
ations, in which zip code parcels are apportioned into five districts of non-contiguous parcels.
Each district is created with the goal of having a total population that is as close as possible
to the populations of each of the other districts. Note that the number of zip codes in each
district varies.

it would be foolish to continue searching for a more fit solution once such a solution has been

found.

A more typical example solution, with an average population difference in the 70s, is

depicted in Table 4.4 and geographically in the map shown in Figure 4.3.

Data from multiple executions with varying population sizes and run (generation)

lengths shows that when using k = 2 tournament selection there is a very rapid tendency for

District Population Fitness Zip Count
1 138768 88 14
2 138680 88 11
3 138750 70 12
4 138763 83 9
5 138697 71 9

Table 4.4: District populations, fitness value, and number of zip codes in each district for the
example 500th generation near-optimal candidate solution depicted in Figure 4.3. Algorithm
variables: k = 2 tournament selection, uniform crossover, pm = 0.001.

93

the population to become homogenous, with only random mutation remaining as a factor

for introducing new genetic material. Regardless of population size, the population quickly

becomes filled with clones of the same solution after only a few score of generations. This

results in a quick degradation in the usefulness of subsequent generations. The candidate

solution returned is usually good, but the optimization of the returned candidate solution

varies widely from run to run. When considering recombination, single-point crossover seems

to converge to a better fitness solution faster than stochastic uniform crossover.

Another observation is that increasing the mutation rate above 0.001 produces worse

results over time for some trials, most notably those requiring geographic contiguity. Muta-

tion rates as high as pm = 0.1 showed almost no improvement in the population after only a

couple dozen generations. Mutation rates of zero allowed the population to rapidly converge

on a near-optimal solution, but only if the initial population size was sufficiently large.

The observed results suggest that stochastic mutation, especially in GAs with non-

binary alleles, can be a hindrance when used on problems that have an additional structure

or relationship between individual genes that would render an otherwise fit solution invalid.

Therefore, we conducted additional, controlled testing of a genetic algorithm on a sandbox

districting problem to evaluate the effects of contiguity constraints on populations in GAs.

94

4.2 Controlled Testing of an Evolutionary Algorithm for Solving Districting

Problems

To provide a controlled environment in which to refine and evaluate the performance

of the genetic algorithm on geographic districting problems, a 25 x 25 grid was constructed

with each of the 525 zones randomly seeded with a simulated population in the range of

(200, 25000). The sample population data for each zone was generated only once and was

kept constant for all subsequent trails, with the simulated data having a minimum population

value of 202, a maximum value of 24,985, a mean of 14,317.7, and a total population of

7,516,798 for all zones (see Table A.1).

Other random demographic values were similarly generated for use, if needed, in trails

involving a mutli-objective heuristic. The size of the grid was selected to approximate the

number of zip codes or ZCTAs in a typical U.S. state.

Two implementations of a 25 x 25 grid were implemented, one which enforced a conti-

guity requirement for all zones assigned to a district and one which allowed assignment of

zones to a district without regard to geographic distance or contiguity. The objective func-

tion (i.e. fitness function) of the GA attempts a variation on Wald’s “maximin” model [174]

to equalize population by minimizing the maximum, or worst, of the differences between the

population of a district and the average of the populations of all districts:

minimize max
j∈J

(∣∣P (j)− P̄
∣∣) (4.1)

subject to
∑
j∈J

xij = 1 (i ∈ I), (a)

xij = 0 or 1 (i ∈ I, j ∈ J), (b)

where P (j) =
∑
i∈I

pixij (j ∈ J), (c)

P̄ =

∑
j∈J

∑
i∈I

pixij

k
(d)

95

where P (j) is the sum of the population in district j indicated by (c), P̄ is the average of

the populations of all districts indicated by (d), xij in (a) is a constraint function that each

zone is assigned to one and only one district, and (b) is a constraint function that is equal

to one iff zone i is assigned to district j. This objective function is similar in concept to the

algorithm described by Hess et al. in Equation 3.2.

The genetic algorithm was encoded as a 25 x 25 array of integers with values for each

index ranging from 0..k, where 0 indicates the zone represented by the index is unassigned

and the values 1..k indicating assignment of that zone to the district of the same value.

Therefore, each gene in the genome has a set of possible alleles in the range of 1..k. The

value zero is used only during the initialization of the array and is not a valid allele.

4.2.1 Initial Zone Creation

For problems with no requirement for connectedness of districts, initial population con-

struction is implemented by random assignment of the values 1..k to each gene, where k is

the number of districts in which to partition available geographic units. If fixed district “cen-

ters” are required, then the correct district value for zones designated as centers is written

after random assignment is accomplished.

Construction of the initial population for problems with a contiguity constraint is ac-

complished in a manner similar to that proposed by Datta et al. in their work on employing

Genetic Algorithms in solving graph partitioning problems [54]. For these cases, an algo-

rithm was constructed that designates k district centers, either arbitrarily or as pre-assigned,

and then constructs contiguous districts by iteratively assigning a zone to each district from

the set of its unassigned neighbors until there are no remaining unassigned zones. For each

district center and its already connected zones, the algorithm determines a set of unassigned

zones adjacent to the district and then chooses one arbitrarily to add to the district. This

process is completed iteratively for each district, resulting in the addition of one zone to a

district during each iteration. If a district has no adjacent, unallocated zones that it can

96

Algorithm 4.5: An algorithm for randomly constructing a map containing K con-
tiguous districts.

Data: A set of Z zones to be divided into K contiguous districts
Result: A set of K districts D1, D2, ..., DK such that all zones in each district are

contiguous
1 begin
2 foreach k in (1..K) do
3 Select a zone Z as a district center
4 Dk ← Dk + Z

5 end
6 k ← 1
7 while No unallocated zones remain do
8 set of neighbors N ← ∅
9 foreach zone Z in district Dk do

10 N ← set of unallocated zones adjacent to Z
11 end
12 Z ′ ← random zone from N
13 if Z ′ 6= ∅ then
14 Dk ← Dk + Z ′

15 end
16 if k ≥ K then
17 k ← 1
18 else
19 k ← k + 1
20 end

21 end

22 end

add, then the algorithm continues to the next district. This process continues until there

are no remaining unallocated districts (see Algorithm 4.5). The algorithm ensures that the

initial population is comprised only of contiguous, feasible candidate solutions that contain

roughly the same number of zones, but are not guaranteed to do so.

4.2.2 Effects of Population and Tournament Size Variation

The performance of the Evolutionary Algorithm was measured with a combination of

population and selection tournament sizes to assess the effects of population and tournament

size on overall fitness of the population as well as the rate of convergence. In a series of trials,

97

Figure 4.4: Population fitness variation over 100 generations for a 25x25 zone districting
problem partitioned into four districts using a population equality heuristic, no geographical
contiguity requirement, k = 2 tournament selection, single-point crossover, and mutation
with probability pm = 0.001. Population sizes, from left, of µ = 20, µ = 50, µ = 100, and
µ = 1000 individuals demonstrate that as the population size increases the overall fitness of
the population, and therefore the rate of convergence, decreases.

the genetic algorithm was executed with population sizes of µ = 20, µ = 50, µ = 100, and

µ = 1000 individuals on a districting problem with no requirement for geographic contiguity.

In each trial, a tournament size of k = 2, mutation with probability pm = 0.001, and single

point crossover was used. Over the course of 100 generations, the fitness of the population

was recorded at regular intervals.

A typical trial series is shown in Figure 4.4 and depicts the overall fitness of the pop-

ulation at intervals of every 10 generations. The median value for each measurement is

represented by the horizontal line, the upper and lower quartiles are depicted by the bound-

aries of the boxes above and below the median, and the upper and lower fences are shown

by the length of the whiskers. Outliers are depicted individually by dots above or below the

fences.

As shown here, increasing the size of the population while keeping the tournament size

constant reduces the rate of convergence of the population significantly, leading to less-fit

solutions in the same number of generations. With larger population sizes (µ > 100), it may

be necessary to increase the tournament size to maintain an acceptable rate of convergence.

98

Figure 4.5: Population fitness variation over 100 generations for a 25x25 zone districting
problem partitioned into four districts using a population equality heuristic, no geographical
contiguity requirement, population size µ = 500, single-point crossover, and mutation with
probability pm = 0.001. Tournament size, from left, of k = 2, k = 3, k = 4, and k = 5
demonstrate that, for larger populations, an increase in tournament size can improve the
overall fitness improvement of the population, and therefore the rate of convergence, from
generation to generation.

Figure 4.5 depicts a typical trial series in which the population is kept constant at

µ = 500, but the size of the selection tournament is varied from k = 2 to k = 5. As shown

here, the increase of the tournament size allows sufficient chance of selection of highly-

fit individuals and elimination of poorly fit individuals; at a minimum, the k − 1 worst

individuals are guaranteed to not be selected each generation. This allows the population

to again show a reasonable rate of convergence. However, as k increases, convergence can

occur too rapidly. A reasonable tournament size for large populations (µ = 500 or µ = 1000)

would seem to be k = 3 or k = 4.

4.3 Effects of Hard and Soft Contiguity Constraints on Populations

One of the challenges of districting problems is in determining in which manner to

address contiguity constraints, and more specifically, how to handle candidate solutions that

violate that constraint. If contiguity is a hard constraint, any candidate solution whose

districts are not wholly contiguous is, therefore, infeasible, no matter how well the solution

99

Figure 4.6: Percentage of feasible (i.e. contiguous) candidate solutions in the population
over 100 generations for a 25x25 zone districting problem partitioned into four districts with
single-point crossover, no mutation, tournament size k = 4, population sizes of µ = 10,
µ = 50, µ = 100, and µ = 500.

satisfies other, softer constraints. The high incidence of invalid candidate solutions when

using an Evolutionary Algorithm to solve a districting problem with a contiguity constraint

is demonstrated in Figure 4.6, in which the number of valid, contiguous solutions is shown

as a percentage of the overall population for an algorithm employing only mutation to create

child solutions.

However, it is wasteful to simply discard a candidate solution that is infeasible because

of one or a few zones that violate the contiguity constraint. It is easy to imagine an otherwise

highly fit candidate solution that, were a single contiguity error corrected, might already be

or could later evolve into the most-fit solution found. Several approaches to addressing

contiguity challenges were discussed in Chapter 3, including discarding invalid solution,

fitness penalization, and preventative measures.

In fact, there are four generally accepted approaches for dealing with constraints: [47][107]

1. Discarding infeasible solutions entirely, sometimes called the “death penalty.”

2. Employing a penalty function that increases or decreases the fitness value of infeasible

solutions.

100

3. Designing genetic operators to produce only solutions that are feasible.

4. Editing all or part of an infeasible solution’s chromosome (i.e. “repair” it).

Here, we implement and compare the performance of three of these methods for address-

ing candidate solutions with contiguity constraint violations. We consider these methods to

fall into three categories: punitive, preventive, and remedial. That is, first we detect and

handicap infeasible solutions by assessing a fitness penalty. Next, we design and implement

an algorithm for Neighborhood Mutation to reduce the incidence of infeasible solutions.

Finally, we design and implement a Local Repair algorithm to detect and correct district

contiguity errors.

Each of these three approaches was exercised for 100 trials of an evolutionary algorithm

running for 300 generations using a fixed data set. The algorithms employed tournament

selection with k = 2 to select a single parent and applied no recombination or crossover

operation, relying instead exclusively on mutation for generation of new child solutions with

a fixed probability of mutation of any given gene of pm = 0.001. This was repeated for each

approach using three different population sizes of µ = 50, µ = 100, and µ = 500. In total,

90,000 generations of computations were conducted, involving the creation and heuristic

evaluation of 58,500,000 candidate solutions. A sample, highly fit solution is depicted in

Figure 4.7.

4.3.1 Fitness Penalization

Fitness penalization is a common tactic in evolutionary algorithms, especially those

with multi-objective, weighted heuristic functions [17][47]. In using Genetic Algorithms

to solve districting problems with a contiguity constraint, Bação et al. and Chou et al.

addressed discontiguous solutions by assessing a fitness penalty that “in practice excludes

them” [12][44].

We chose a similar approach and implemented a contiguity detection algorithm that as-

signs a binary value to each solution determining its adherence to the contiguity constraint

101

Figure 4.7: A highly fit solution to a districting problem for a problem space of 525 geographic
units partitioned into four districts with fixed district centers using a population equality
heuristic and a geographic contiguity constraint. The depicted solution was reached after
300 generations with a population size of µ = 100, k = 4 tournament selection, single-point
crossover, and no mutation. The solution contains a per-district variation from the average
population of 125 or less based on a simulated population of more than 7,500,000 among all
districts.

(true) or its violation of it (false). In cases that violate the contiguity constraint, the fit-

ness function increases the fitness value of the solution by a fixed value of 50,000, which is

significantly higher than any feasible solution in all but the earliest generations of execution.

It is necessary to note that purely random mutation is highly destructive to chromosomes

in a districting problem with a contiguity constraint. For subdivision of the 25x25 grid

problem into four districts, as done here, a worst case scenario would be a solution in which

the area is equally divided into four quadrants, each representing a district. This would result

in a solution containing 429 zones that border only zones in the same district. Mutation of

the gene for any of these zones would result in an infeasible solution. For the remaining 96

zones, each of which borders at least one zone assigned to another district, any mutation

102

Figure 4.8: Population fitness variation over 100 generations for a 25x25 zone districting
problem partitioned into four districts with single-point crossover, no mutation, tournament
size k = 4, population sizes of µ = 10, µ = 50, µ = 100, and µ = 500, and a population
equality heuristic and a geographical contiguity requirement with a fixed fitness penalization
for constraint violation of 50,000. The horizontal median bars and small bottom quartile
boxes indicate that many highly fit solutions exist in the population, but the large upper
quartile boxes reflect the skewing effects of the fixed fitness penalty for a smaller number of
infeasible, discontiguous solutions.

would have up to a 50% probability of resulting in an infeasible solution. With a mutation

probability of pm = 0.001 and a problem with genome of length 525, there is approximately

a 41% chance of each solution undergoing mutation (p = 1 −
(
1 − 0.001

)525
= 0.4086).

For mutation rates higher than pm = 0.001, which would be expected in a mutation-only

evolutionary algorithm, the chance of producing an infeasible solution increases accordingly.

For example, Figure 4.8 shows the effects of a fitness penalty on the distribution of

candidate solution fitness by generation for various population sizes. We can see that the

upper quartile, indicated by the white rectangles above the horizontal median line, show a

wide range of fitness variation due to the fitness penalty. In contrast, the small or barely

noticeable lower quartile box, shown below the median line, demonstrates the tight fitness

clustering of those candidate solutions that are contiguous and which incur no penalty. It is

worth noting that, even with the skewing caused by large numbers of discontiguous solutions,

there is still convergence in the algorithm overall, which is demonstrated by the decreasing

value of the median line from generation to generation.

103

The high tendency of mutation to produce infeasible solutions, and thus incur the severe

fitness penalty for violating the contiguity constraint, should not be surprising, and indeed

has parallels in biology. Considering the enormous number of combinations of alleles in even a

simple organism’s chromosomes, it is unsurprising that the vast number of mutations possible

in nature are detrimental and only the occasional mutation is of benefit to the organism and

the species [88]. In pointing out this natural comparison, Holland writes that “in realistic

cases, the overwhelming proportion of possible variants (all possible allele combinations, not

just those observed) are incapable of surviving to produce offspring in the environments

encountered” [91, 12]. Hofstadter similarly writes that the “chance is infinitesimal that a

random combination of pieces of DNA will code for anything that will survive — something

like the chance that a random combination of words from two books will make another book”

[88, 662].

Evaluation of algorithm performance with random mutation with probability pm = 0.001

demonstrates that the vast percentage of solutions produced are infeasible (see Table A.3).

Over the course of 300 generations, the percent of contiguous solutions in the population

falls as low as 17.1% with a population size µ = 50 and has a maximum of 44.51% with

population size µ = 500, discounting the first few generations during which the population is

still stabilizing. More importantly, the mean fitness values for each generation remain very

high compared to the best solution found, demonstrating the skewing of the overall popu-

lation fitness by the large number of infeasible, penalized solutions. Similarly, the standard

deviation among the mean fitness values for each of the 100 trials is high and remains high

for population sizes µ = 50 and µ = 100, showing that there is little improvement in the

wide range between mean fitness values over the trials. Only with the largest population

size, µ = 500, do we begin to see a steady downward trend in the mean fitness value for each

generation over time and a similar decrease in the standard deviation between mean fitness

values, indicating a greater tendency of agreement in mean fitness values over the 100 trials.

104

Algorithm 4.6: A Neighborhood Mutation algorithm for preserving contiguity when
mutating values in a contiguous districting problem.

Data: A set of zones X and a mutation probability pm
Result: A set of zones X with each zone’s district assignment having been changed

to that of a neighboring zone with a probability pm
1 begin
2 foreach district Xi ∈ X do
3 p← randomDouble(0..1)
4 if p ≤ pm then
5 Set of alleles A← ∅
6 foreach adjacent neighbor Nj of Xi do
7 if Nj.value /∈ A then
8 A← A+Nj.value
9 end

10 end
11 r ← randomInt(0..Size(A))
12 Xi ← Ar
13 end

14 end
15 return X

16 end

However, despite the large percentage of discontiguous solutions, the algorithm still

shows convergence for all populations sizes, and returns a best solution, across all 100 trials,

with fitness values of 1,444, 653, and 100 for populations sizes µ = 50, µ = 100, and µ = 500,

respectively. This would suggest that, despite the presence of a majority of infeasible solu-

tions, there are a sufficient number of valid candidate solutions in the population, especially

for the larger population size, to allow the genetic algorithm to sufficiently explore the search

space and find near optimal solutions.

4.3.2 Neighborhood Mutation

To reduce the likelihood of mutation resulting in an infeasible solution, Chou et al.

proposed the concept of Neighborhood Mutation, in which genes selected for mutation are

randomly assigned the value of an allele from an adjacent zone, rather than from all possible

alleles [44]. This approach greatly reduces, but doesn’t eliminate, the chances of producing

105

Figure 4.9: An illustration of how iterative Neighborhood Mutation can still produce a
non-contiguous map. Cell [1,1] is mutated in Step 1 to the value of its bottom neighbor,
resulting in the map shown in Step 2. Next, cell [2,1] is mutated in Step 3 to the value of
its right neighbor, resulting in the map shown in Step 4 and isolating cell [1,1], causing the
discontiguity.

a non-contiguous solution. The Neighborhood Mutation method depicted in Algorithm 4.6

was implemented and evaluated.

Neighborhood Mutation, however, is not perfect. Even with Neighborhood Mutation

ensuring that no gene is mutated to an allele that is not among the alleles of adjacent

districts, there is still the potential for Neighborhood Mutation to create an infeasible, non-

contiguous map. For instance, consider the possibility of a particular cell being mutated to

a neighboring district’s value such that the new cell forms the tip of a “finger” protruding

from the center of its new district. If another cell along the length of that finger is then

mutated to a neighboring district value, this can essentially amputate the tip of the finger,

forming a discontiguous cell or group of cells that are now isolated from their former district.

An example of this process is illustrated in Figure 4.9.

Evaluation of Neighborhood Mutation performance with mutation probability pm =

0.001 demonstrates that the vast percentage of solutions produced — more than 99% in

all trials — are contiguous and, therefore, valid (see Table A.4). Over the course of 300

generations, the percent of contiguous solutions in the population was not observed to fall

below 99.06%, regardless of population size. This produced both a vastly greater rate of

improvement in mean fitness over time compared to random mutation but also the discovery

106

of a higher quality solution over the course of each of the three 100-trial runs. Convergence

was observed to occur rapidly, with highly fit solutions being reached in 40-60 generations

for the larger population sizes, while the trial with population size µ = 50 did not discover its

best solution until almost the 200th generation. The overall quality of the most-fit solutions

returned were, in increasing order of population size, 122, 42, and 60.

The standard deviation among the mean fitness values quickly became very tight and

grew tighter the larger the population size — barely over 1,000 for µ = 50 and just over 400 for

µ = 500. The range of variation among the mean fitness values encountered in each trial was

observed to initially vary greatly, but then tighten quickly and within about 50 generations

for large populations — or 100 generation for small populations — to reach a stable range.

Compared to random mutation, the mean fitness values produced by Neighborhood Mutation

over the 100 trials, as shown by these standard deviation values, demonstrates about 1/10th

the variation for any given generation as seen in random mutation.

4.3.3 Local Repair

While Neighborhood Mutation is preventative in its approach, we also investigated a

remedial method to correct discontiguous solutions once they had occurred. This approach,

which we call Local Repair, is applied after the typical genetic operators of selection, recom-

bination/crossover, and mutation have occurred (although, as stated, no recombination or

crossover was used in this instance). This approach, very simply, first evaluates the candidate

solution for contiguity and assigns the solution a boolean attribute indicating its adherence

to the contiguity constraint. If the solution is invalid, the repair mechanism is applied and

attempts to evaluate each zone by first determining how many adjacent zones are assigned to

the same district. If that number is less than 1, then the zone is deemed to be discontiguous

and the repair mechanism will assign it the allele that is most prevalent among its adjacent

neighbors. In the event of two alleles being equally prevalent, then the value chosen will

107

Algorithm 4.7: An algorithm for Local Repair of district contiguity problems by
detecting a geographically discontiguous zone and changing its allele to the most
prominent allele value in its immediate neighborhood.

Data: A set of zones X
Result: A set of zones X with any discontiguous zone’s district assignment changed

to the value most common among its neighbors
1 begin
2 foreach district Xi ∈ X do
3 neighbors← ∅
4 connectedNeighbors← ∅
5 foreach adjacent neighbor Nj of Xi do
6 neighbors← neighbors+Nj

7 if Nj = Xi then
8 connectedNeighbors← connectedNeighbors+Nj

9 end

10 end
11 if Size(connectedNeighbors) < 1 then
12 Nj ←Mode(neighbors)
13 end

14 end
15 return X

16 end

depend on the particular implementation of the Mode function. This method is illustrated

in Algorithm 4.7.

Although even more reliable than Neighborhood Mutation in producing contiguous so-

lutions, there remains a very small chance that a solution, such as one with simultaneous,

destructive mutations of several adjacent zones, cannot be repaired by this algorithm.

The Local Repair algorithm performs exceptionally well in correcting discontiguous so-

lutions produced by random mutation with probability pm = 0.001, producing valid solutions

with very high frequency. In fact, over all trials, the average percentage of contiguous, valid

solutions was observed to range as high as 99.96% and never lower than 99.80% (see Table

A.5). This represents a reduction in the number of infeasible solutions per generation, on

average, to merely 16% of that seen in the already efficient Neighborhood Mutation algo-

rithm.

108

Local Repair also produced a rate of improvement in mean fitness much greater than ran-

dom mutation and comparable to that of Neighborhood Mutation. The quality of solutions

returned were similarly superior to random mutation and again comparable to Neighbor-

hood Mutation. Convergence was observed to occur rapidly, with highly fit solutions being

reached in about 100 generation for all population sizes. The overall quality of the most-fit

solutions returned were, in increasing order of population size, 221, 49, and 66.

The standard deviation among the mean fitness values quickly grew tight for all popu-

lation sizes, but was observed to do so at a slightly slower rate than seen with Neighborhood

Mutation, again settling within about 50 generations for large populations and slightly slower

for smaller populations. Compared to random mutation, the mean fitness values produced

by Local Repair over the 100 trials, as again shown by these standard deviation values,

demonstrates slightly less variation than seen in Neighborhood Mutation and, again, about

1/10th the variation for any given generation as seen in stochastic mutation.

4.4 Algorithm Performance on Statewide Analysis

Algorithm performance on real-world, state-wide data was conducted using the state of

Alabama and demographic and geographic information from the decennial census [39]. The

smallest geographic unit employed is the ZIP Code Tabulation Area (ZCTA), a census unit

closely approximating a U.S. Postal Service Zone Improvement Program (ZIP) Code service

area [171][172]. There are 642 ZCTAs that are wholly contained within the state of Alabama

and account for the vast majority of its land area. Only very small portions of the state

are omitted from ZCTA coverage, mostly unpopulated tidal wetlands, national forests or

preserves, military reservations, or small tracts that are part of ZCTAs primarily contained

within neighboring states. A mapping of Alabama ZCTAs is shown in Figure A.1.

In constructing the framework for the algorithm, geographic data defining the borders of

ZCTAs were obtained from the U.S. Census Bureau and extracted as one or more polygons

or multi-geometry Keyhole Markup Language (KML) segments for each ZCTA. Although

109

the nature of the geographic polygons would theoretically allow the dynamic evaluation of

adjacency between one ZCTA and another, the computational complexity would have signif-

icantly increased the execution time of each algorithmic run. Because the ZCTA adjacencies

are unchanging and need only be computed once, an adjacency table was manually created

that catalogs each zone and its immediate neighbors. The adjacency list is expressed in a

similar manner to what would be expected for the representation of a simple, bidirectional

graph. The average connectedness of all ZCTAs is 5.52 connections, with a maximum of 16

connections, a median of 6 connections, and a minimum of 1 connection for a handful of

small zones completely contained within other zones.

Other geographic units than ZCTAss are available with associated demographic data

and could be utilized in lieu of ZCTAs by the algorithm. The most notable among these

alternatives are Census Tracts, which are small units encompassing from 1,200 to 8,000

people with an optimum size of 4,000 [170]. The size of a census tract can vary greatly

according to the population density of the area being considered. In comparison, Alabama’s

ZCTAs have an average population of 7444.8 persons, with a maximum population of 50,268,

a minimum of 7, and a median of 4028. The choice between census tracts and ZCTAs

is considered functionally equivalent. A 1965 study by Hess et al. utilized U.S. Census

enumeration districts, a geographic area since replaced by census tracts, that was intended

to be covered by a single census worker and contained approximately 1,000 people [173]. The

Hess et al. study utilized enumeration districts because it was conducted within the state of

Deleware, which is the second smallest state with an area of only 1,981 square miles, and the

smaller units were presumably desirable. Hess et al. explicitly write that, for larger states,

larger census units and even counties could be utilized in lieu of enumeration districts [86].

The structure of the evolutionary algorithm was strongly influenced by earlier results

obtained with a limited set of ZCTA data and on the sandbox experiments using a 25x25

grid with simulated demographic data. The initial experiments on a small set of ZCTA data

confirmed the efficacy of a basic algorithm to create and improve successive generations of

110

candidate solutions on both unconnected and connected districting problems. Later con-

trolled experiments using the 25x25 grid sandbox and simulated data explored the effects of

variation of population size, tournament selection size, recombination, and mutation on the

performance of the algorithm.

Observed results suggest desirable values for population size of µ = 100 and tournament

selection size of k = 3. The effects of stochastic mutation on the feasibility of candidate

solutions — that is, geographic contiguity or discontiguity — show that even typically low

levels of mutation (pm = 0.001) can be destructive to a large portion of the population from

generation to generation. Although the number of contiguous, and therefore valid, solutions

does increase in the population over time, the percentage of valid solutions hovers around

60% with little additional improvement. Therefore, the implementation of Neighborhood

Mutation and Local Repair algorithms were employed to prevent and mitigate these effects.

Each is able to achieve geographic contiguity in more than 99% of all candidate solutions.

Although the Local Repair algorithm is more effective than Neighborhood Mutation, the

high reliability of each independently suggests eliminating the need to consider using both

together. The effects of various crossover methods are even more destructive. Uniform

random crossover is disastrous in almost every instance and single-point and multi-point

crossover fare little better, producing such a high percentage of infeasible solutions that

further consideration is unwarranted.

In light of these findings, a mutation-only algorithm which employs no crossover, single-

parent tournament selection with tournament size k = 3, and a population size µ = 100 was

used. Neighborhood Mutation was employed in lieu of stochastic mutation, and, in most

cases, Local Repair was omitted. The algorithm is designed such that district centers can

be either fixed for all iterations or determined randomly at the start of each iteration, but

were allowed to randomly float for all iterations and trials. A soft-contiguity constraint,

similar to that proposed by Bação et al., Chou et al., and others, was implemented to allow

discontiguous solutions into the population, but with a severe fitness penalty.

111

The algorithm was executed for 100 iterations with a limit of 500 generations in each

iteration. In most cases, four separate trials were conducted, each with a varying mutation

rate (pm = {0.001, 0.0025, 0.005, 0.010}), resulting in the generation and heuristic evaluation

of 20 million candidate solutions for each assessment of the algorithm.

4.4.1 Performance on Population Equality Heuristic

First, the algorithm was evaluated on a districting problem using a population equality

heuristic for fitness evaluation and a soft contiguity constraint that penalizes discontiguous

solutions with the addition of a fixed fitness increase of 50,000.

The algorithm is shown in this case to be effective in obtaining near-optimal solutions on

the statewide data set for two-criteria optimized search with a population-based heuristic and

a soft contiguity constraint. In each of the four trials, the algorithm produced a reasonable

and acceptable solution for districting Alabama’s 642 ZCTAs into seven contiguous districts

of nearly equal population (see Figure 4.11). Variation in mutation rates between the four

trials shows that for all trials the algorithm show a rapid improvement in discovery of highly

fit solutions. The observed rate of improvement in both the minimum fitness value (see

Figure 4.10) and the mean fitness value (see Figure 4.13) is most rapid with a mutation rate

of pm = 0.005, only slightly faster than with a rate of pm = 0.0025, but performance falters

with mutation rates of pm = 0.010 and higher, which alter more positions simultaneously in

a child solution’s genome.

In each of the four trials, the maximum divergence of any given district’s population

from the average for all districts is extremely low, with the divergences in the three best trials

of only 66, 72, and 78 persons (see Figure 4.14). Only the trial with the highest mutation rate

produced a significantly worse divergence from the average per district, finding a candidate

solution with a minimum fitness value of 853 persons or less.

112

Figure 4.10: Minimum fitness value found during each iteration, by generation, for 100
iterations of evolutionary search for solving a contiguous districting problem dividing
the state of Alabama into seven districts. The algorithm employed a population size
µ = 100, no recombination or crossover, single-parent tournament selection with tourna-
ment size k = 3, and Neighborhood Mutation with varying mutation rates over four trials
(pm = {0.001, 0.0025, 0.005, 0.010}).

113

Figure 4.11: A sample near-optimal solution for districting the state of Alabama into seven
contiguous zones comprised of ZIP Code Tabulation Areas (ZCTAs) based on population
equality. The algorithm ran for 500 generations with a population size µ = 100, neighborhood
mutation with pm = 0.0025, no recombination or crossover, a selection tournament size k = 3,
and a soft contiguity constraint. The above solution represents a population inequality of at
most 66 persons between all districts.

114

Figure 4.12: Percent of feasible (i.e. contiguous) solutions in the population, by generation,
for 100 iterations of evolutionary search for solving a contiguous districting problem dividing
the state of Alabama into seven districts. The algorithm employed a population size µ =
100, no crossover or recombination, single-parent tournament selection with tournament size
k = 3, and Neighborhood Mutation with varying mutation rates over four trials (pm =
{0.001, 0.0025, 0.005, 0.010}).

The observation of poorer performance for the higher mutation rate is correlated with

the increase in discontiguous, or infeasible, solutions that enter the population as the muta-

tion rate increases. With higher mutation rates, such as pm = 0.010, the ability of selective

pressure to eliminate the occasional infeasible solution is overcome by the rate of introduc-

tion of new infeasible solutions, leading to a continuing decrease in the percentage of valid

solutions in subsequent generations (see Figure 4.12).

This can also be observed in the standard deviation of the population fitness over time,

which shows a continued decrease and then stabilization at a relatively low level for the first

115

Figure 4.13: Mean fitness value, by generation, for 100 iterations of evolutionary search for
solving a contiguous districting problem dividing the state of Alabama into seven districts.
The algorithm employed a population size µ = 100, no crossover or recombination, single-
parent tournament selection with tournament size k = 3, and Neighborhood Mutation with
varying mutation rates over four trials (pm = {0.001, 0.0025, 0.005, 0.010}).

three trials (see Figure 4.15). However, for the fourth trial, we see that the standard devi-

ation remains high over time, mainly due to the presence of a large percentage of infeasible

solutions, which incur a significant fitness penalty and therefore widen the range between

fit, valid solutions and these. Application of the Local Repair algorithm, in addition to

Neighborhood Mutation, may prove of value in mitigating this effect, but was not explored

because of the highly fit results already obtained with lower mutation rates.

This algorithm can be repeated with randomly assigned district centers rather than fixed

centers to produce similar results in terms of population distribution but more variation in

district shape (see Figure A.2).

116

F
ig

u
re

4.
14

:
T

h
re

e
n
ea

r-
op

ti
m

al
so

lu
ti

on
s

fo
r

d
is

tr
ic

ti
n
g

th
e

st
at

e
of

A
la

b
am

a
in

to
se

ve
n

co
n
ti

gu
ou

s
d
is

tr
ic

ts
b
as

ed
on

p
op

u
la

ti
on

eq
u
al

it
y.

E
ac

h
so

lu
ti

on
re

p
re

se
n
ts

th
e

m
os

t-
fi
t

so
lu

ti
on

fo
u
n
d

af
te

r
10

0
it

er
at

io
n
s

of
an

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

th
at

ra
n

fo
r

50
0

ge
n
er

at
io

n
s

w
it

h
a

p
op

u
la

ti
on

si
ze

µ
=

10
0,

n
o

re
co

m
b
in

at
io

n
or

cr
os

so
ve

r,
a

se
le

ct
io

n
to

u
rn

am
en

t
si

ze
k

=
3,

an
d

a
so

ft
co

n
ti

gu
it

y
co

n
st

ra
in

t.
N

ei
gh

b
or

h
o
o
d

M
u
ta

ti
on

w
as

u
se

d
w

it
h

va
ry

in
g

m
u
ta

ti
on

ra
te

s,
fr

om
le

ft
,

of
p m

=
{0
.0

05
,0
.0

02
5,

0.
00

1}
.

T
h
e

so
lu

ti
on

s
re

tu
rn

ed
re

p
re

se
n
t

a
p

op
u
la

ti
on

in
eq

u
al

it
y,

fr
om

le
ft

,
of

at
m

os
t

78
,

66
,

an
d

72
p

er
so

n
s,

re
sp

ec
ti

ve
ly

,
b

et
w

ee
n

al
l

d
is

tr
ic

ts
.

117

Figure 4.15: The standard deviation between fitness values in the population, by generation,
for 100 iterations of evolutionary search for solving a contiguous districting problem dividing
the state of Alabama into seven districts. The algorithm employed a population size µ =
100, no crossover or recombination, single-parent tournament selection with tournament size
k = 3, and Neighborhood Mutation with varying mutation rates over four trials (pm =
{0.001, 0.0025, 0.005, 0.010}).

4.4.2 Performance on Minority Population Heuristic

The previous trials were repeated, this time with implementation of both the Neighbor-

hood Mutation and the Local Repair algorithms, using an identical fitness heuristic method

based on equal distribution of minority population between districts. The results show that

the addition of the Local Repair algorithm to Neighborhood Mutation can be of benefit when

mutation rates are increased (see Tables A.8 and A.9).

The algorithm was able to produce extremely high quality solutions in all trials, with

near-optimal solutions successfully districting the state of Alabama into seven districts based

upon equality of minority population distribution with a deviation between any two districts

118

F
ig

u
re

4.
16

:
T

h
re

e
n
ea

r-
op

ti
m

al
so

lu
ti

on
s

fo
r

d
is

tr
ic

ti
n
g

th
e

st
at

e
of

A
la

b
am

a
in

to
se

ve
n

co
n
ti

gu
ou

s
d
is

tr
ic

ts
b
as

ed
on

m
in

or
it

y
p

op
u
la

ti
on

eq
u
al

it
y.

E
ac

h
so

lu
ti

on
re

p
re

se
n
ts

th
e

m
os

t-
fi
t

so
lu

ti
on

fo
u
n
d

af
te

r
10

0
it

er
at

io
n
s

of
an

ev
ol

u
ti

on
ar

y
al

go
ri

th
m

th
at

ra
n

fo
r

50
0

ge
n
er

at
io

n
s

w
it

h
a

p
op

u
la

ti
on

si
ze

µ
=

10
0,

n
o

re
co

m
b
in

at
io

n
or

cr
os

so
ve

r,
a

se
le

ct
io

n
to

u
rn

am
en

t
si

ze
k

=
3,

an
d

a
so

ft
co

n
ti

gu
it

y
co

n
st

ra
in

t.
N

ei
gh

b
or

h
o
o
d

M
u
ta

ti
on

w
as

u
se

d
w

it
h

va
ry

in
g

m
u
ta

ti
on

ra
te

s,
fr

om
le

ft
,

of
p m

=
{0
.0

01
,0
.0

02
5,

0.
00

5}
.

T
h
e

so
lu

ti
on

s
re

tu
rn

ed
re

p
re

se
n
t

a
p

op
u
la

ti
on

d
iff

er
en

ce
,

fr
om

le
ft

,
of

at
m

os
t

30
,

10
,

an
d

17
m

in
or

it
y

p
er

so
n
s,

re
sp

ec
ti

ve
ly

,
b

et
w

ee
n

an
y

gi
ve

n
d
is

tr
ic

ts
.

119

Figure 4.17: The mean fitness, top, and percentage of contiguous (i.e. valid) solutions, bot-
tom, for all individuals in the population, by generation, for two series of a population equal-
ity heuristic with varying mutation rates over four trials (pm = {0.001, 0.0025, 0.005, 0.010}).
The series indicated by the red line depicts an algorithm with Neighborhood Mutation only;
the series with the blue line depicts a trial with Neighborhood Mutation combined with
Local Repair.

120

Figure 4.18: The minimum fitness, top, and fitness standard deviation, bottom, for all
individuals in the population, by generation, for two series of a population equality heuristic
with varying mutation rates over four trials (pm = {0.001, 0.0025, 0.005, 0.010}). The series
indicated by the red line depicts an algorithm with Neighborhood Mutation only; the series
with the blue line depicts an algorithm with both Neighborhood Mutation and Local Repair.

121

of no more than 10 minority persons in the best case, and a deviation of 17 and 30 persons

in two other cases (see Figure 4.16).

The Local Repair algorithm is especially effective in mitigating the number of infeasible

solutions that begin to dominate the population as mutation rates increase to a point where

Neighborhood Mutation cannot prevent infeasible solutions from being generated faster than

selection pressure can eliminate them. This rate has been observed to be about one in ev-

ery 100 gene transcriptions, or pm = 0.010. At or above this level, Local Repair is able to

significantly increase the number of valid solutions in the population. Specifically, in trials

with a mutation rate of pm = 0.010, the percentage of contiguous, valid solutions in the

population was observed to fall to as low as 13.51% in later generations with Neighborhood

Mutation only. But with Neighborhood Mutation combined with Local Repair the percent-

age of contiguous, valid solutions in the populations never fell below 58.41% (see Tables A.4

and A.9 and Figure 4.17). Similarly, the Local Repair algorithm was effective in curtailing

the tendency of both the standard deviation of fitness and the minimum fitness value in the

population to both increase over time for higher mutation rates (see Figure 4.18).

4.4.3 Performance on District Compactness Heuristics

The algorithm was also evaluated with two district compactness heuristics, which are

modeled on the distance minimization heuristics employed by Correa et al. in their solution

of the P-Median problem [50] and Bação et al. [12]. In the first trial, district compactness

is assessed as the sum of the distances from the centroid of each zone in the district to

the centroid of that district center’s own centroid. This is calculated using the half-versed

sine, or haversine, formula for determining great-circle distance, which although it assumes

a perfectly spherical Earth has negligible error for distances at this scale [32, 161-169]. The

maximum of the sum of distances for each district, or the worst of the districts in the solution,

is selected as the overall fitness for the entire solution. Specifically, this “sum of distances”

122

Figure 4.19: The minimum fitness, left, and percentage of contiguous (valid) solutions, right,
for all individuals in the population, by generation, for 100 trials of a “sum of distances”
district compactness heuristic for an evolutionary algorithms with population size µ = 100,
no recombination or crossover, single-parent selection with tournament size k = 3, and
neighborhood mutation with rate pm = 0.005. The series indicated by the red line depicts
an algorithm with Neighborhood Mutation only; the series with the blue line depicts an
algorithm with Neighborhood Mutation combined with Local Repair.

compactness heuristic can be expressed as follows:

minimize
n∑
j=1

n∑
i=1

dijxij (4.2)

subject to xij ∈ {0, 1}, i, j = 1, 2, ..., n (a)

where dij is the distance from the center of zone i to the center of district j and xij returns

1 iff zone i is assigned to district j, and 0 otherwise.

This heuristic produces reasonable, tightly clustered candidate solutions with minimum

distances between zones (see Table A.12), and a typical highly fit solution with maximum

sum of distances from a district’s zones to the district center of 8142.35 kilometers (see

Figure 4.20).

We again see that the Local Repair algorithm is especially effective in both increasing the

quality of the solution returned and also the percentage of contiguous (i.e. valid) solutions

in the population over time (see Table A.12). We can observe that, with Neighborhood

Mutation only, the percentage of valid solutions decreases to as little as 57.75% with a

123

mutation rate of pm = 0.005. However, with the addition of the Local Repair algorithm,

that percentage remains at or above 78.23% for the duration of the algorithm. Similarly,

the minimum fitness solution found is consistently and significantly lower for the duration

of the algorithm’s run (see Figure 4.19).

A second variation attempts to minimize the mean distance from the centroid of each

zone in the district to the district center’s own centroid, and can be expressed as follows:

minimize
∑
j

(∑n
i=1 dijxij∑n
i=1 xij

)
(4.3)

subject to xij ∈ {0, 1}, i, j = 1, 2, ..., n (a)

where dij is the distance from the center of zone i to the center of district j and xij returns

1 iff zone i is assigned to district j, , and 0 otherwise.

This heuristic can produce slightly more elongated districts, as seen in Figure 4.21, which

represents a typical highly fit solution with maximum average distance from a district’s zones

to the district center of 93.2671 kilometers (see also Table A.11).

124

Figure 4.20: An alternative solution to a districting problem for the State of Alabama using
a district compactness heuristic based upon minimizing the sum of the distances of zone
centroids to their respective district centers’ centroid.

125

Figure 4.21: A sample near-optimal solution for districting the state of Alabama into seven
contiguous zones comprised of ZIP Code Tabulation Areas (ZCTAs) based on district com-
pactness, as measured by the average distance from each parcel’s centroid to its district
center’s centroid. The algorithm ran for 500 generations with a population size µ = 100,
neighborhood mutation with pm = 0.005, no recombination or crossover, a selection tourna-
ment size k = 3, and a soft contiguity constraint. The above solution represents a maximum
average distance to the district center of 93.2671 km.

126

Chapter 5

Evolutionary Algorithms in Multi-criteria Optimization Search

and the Use of Agents in Heuristic Evaluation

“If we are to understand the interactions of a large number

of agents, we must first be able to describe the capabilities

of individual agents.”

— John Henry Holland [110]

5.1 Implementing a Multi-Objective Heuristic for Districting Problems

Most real-world search problems can seldom be reduced to a single heuristic. More often,

there are multiple, sometimes conflicting, considerations that must be taken into account in

order to produce an acceptable solution. Konak et al. write that, when it comes to multi-

objective search problems, “the objectives are generally conflicting, preventing simultaneous

optimization of each objective” and that “many, or even most, real engineering problems

actually do have multiple objectives” [107].

Geographic districting problems are no different, and examples can easily be envisioned.

For example, a warehousing problem might need to reach a balance between delivery times

and distances with fuel consumed and labor hours paid for drivers. Or, an emergency medical

service’s dispatching plan might have to balance the location of basic or advanced life support

127

ambulances with average response times and the location of supporting fire departments and

rescue services.

Rittel and Webber call these “wicked problems” because they have few clarifying traits

and “include nearly all public policy issues — whether the question concerns the location of a

freeway, the adjustment of a tax rate, the modification a school curricula, or the confrontation

of crime” [147, 160]. They write that the information needed to solve such problems depends

on each particular stakeholder’s interpretation or approach for solving it. When dealing with

such real-world problems, Xiao et al. similarly write that “decision makers may find it difficult

to derive a single solution that is best in all objectives” [185].

Single-objective optimization problems are relatively straightforward, and finding a so-

lution that satisfies or nearly satisfies a single criteria is relatively trivial. Traditional and

evolutionary search algorithms could easily tackle such problems if only one constraint were

addressed at a time. But near-optimal solutions for one constraint may be very poorly suited

from the perspective of another constraint.

There are many approaches to find solutions in a mutli-objective problem. Among these

are the constraint method, the weighted mean or [134]“scalarization” methods [157], and the

noninferior set estimation (NISE) method [48], which is a particular application of a weighted

method that attempts to derive an optimal set of weights for individual criteria.

With the constraint method all but a single, primary objective is moved to a constraint

set, in which the range of each constraint criteria is allowed to vary freely within a defined

range of allowed tolerance [47][107].

But the more commonly employed of these methods is combining multiple objectives

into a single heuristic function, but with this approach “the problem lies in the proper

selection of the weights or utility functions to characterize the decision maker’s preferences,”

and it can be challenging to determine the proper weights for each individual objective, even

for an expert in the subject domain [107].

128

When utilizing a combined heuristic with scaling of multiple objectives, a complication

is that even small perturbations in weights of individual criteria can lead to vastly different

solutions. In these cases, a “reasonable solution to a multi-objective problem is to investigate

a set of solutions, each of which satisfies the objective at an acceptable level without being

dominated by any other solution” [107].

This method suffers from drawbacks: it is useful only for problems that can be expressed

mathematically; it is inefficient when applied to large problems; and it may fail to find

important solutions [125][185]

When a multi-objective solution satisfies each objective as best it can, and in such a

way that any improvement in regard to one criteria would result in a corresponding sacrifice

in regard to one or more other criteria, that solution is said to be “nondominated”. Such

a solution is said to be part of the Pareto optimal set, or the set of all solutions that are

nondominated. There are many, and possibly an infinite, number of Pareto optimal solutions

for a multi-objective problem, and the set of these solutions can be envisioned to form a

line in the n-dimensional hyperspace that is called the “Pareto front” or “Pareto frontier”

[47][107][132].

In terms of multi-objective search, this means that when two or more objectives conflict

with each other, “optimizing (a heuristic) with respect to a single objective often results in

unacceptable results with respect to the other objectives” and therefore “a perfect multi-

objective solution that simultaneously optimizes each objective function is almost impossi-

ble” [107].

There are three general goals for a multi-objective optimization problem: [47][107]

1. The best-known Pareto front should be as close as possible to the true Pareto front.

That is, the algorithm should endeavor to find a best solution or solutions that are as

close to the theoretically optimal set as possible.

2. Solutions in the best-known Pareto set should be evenly distributed over the frontier in

order to provide the user a clear understanding of tradeoffs between different solutions.

129

3. The best known Pareto front should represent the spectrum of the entire front, which

requires investigating solutions at the extreme ends of the search space.

Evolutionary Algorithms in general, and Genetic Algorithms in particular, are ideal

for exploration of such a frontier, and are by far the method of choice for multi-objective

metaheuristic techniques [99][185].

Political districting problems are an excellent example of a problem with multiple, com-

peting constraints that must be balanced: population equality, compactness, preservation of

neighborhoods and communities, distribution or consolidation of minority or ethnic popula-

tions, household income, home ownership, respect for natural boundaries, etc.

Finding a solution that satisfies all, or at least many, of these constraints is extremely

difficult, and in the end comes down to a subjective decision made by a stakeholder. But it

is still necessary to employ search to get to a point at which a set of one or more potential

solutions that balance these considerations can be compared subjectively by the user. For

this reason, it is necessary to find a way to combine multiple, independent heuristics into a

single objective function that can be utilized by search algorithms, whether traditional or

evolutionary, to order the desirability of potential solutions with respect to each other.

The approach of combining independent heuristics into a single objective function, as

employed by Bozkaya et al., is most commonly accomplished by treating each criteria as a

weighted constraint with an independent weighting factor [29][107]. These weighting factors

are either arbitrarily assigned by the user or may be allowed to fluctuate over the course of

the algorithm’s execution.

In our implementation of a weighted multi-objective objective function, we first identify

the independent heuristics that we wish to evaluate. For example, we seek a solution for a

districting problem that balances the following considerations: population equality between

districts; equal distribution of minority population between districts; geographic compactness

of districts; and geographic contiguity (i.e. “connectedness”) of all zones in a district.

130

Both population equality heuristics measure the divergence of each zone’s population

with the average population for all zones. The difference between the average and the value

of the zone with the maximum divergence is then selected as the overall fitness of the solution

— essentially, the zone with the worst difference from the average drives the fitness.

Therefore, the heuristic for total population equality can be expressed as follows:

fpop(x) = max
j∈J

(∣∣P (j)− P̄
∣∣) (5.1)

subject to
∑
j∈J

xij = 1 (i ∈ I), (a)

xij = 0 or 1 (i ∈ I, j ∈ J), (b)

whereP (j) =
∑
i∈I

pixij (j ∈ J), (c)

P̄ =

∑
j∈J

∑
i∈I

pixij

k
(d)

where P (j) is the sum of the population in district j indicated by (c), P̄ is the average of

the populations of all districts indicated by (d), xij in (a) is a constraint function that each

zone is assigned to one and only one district, and (b) is a constraint function that is equal

to one iff zone i is assigned to district j.

To equalize the distribution of minority population, the heuristic is identical to the

above formula with the exception of the population data being used:

fminority(x) = max
j∈J

(∣∣Pminority(j)− P̄minority∣∣) (5.2)

with the same constraints as above.

For measuring district compactness, we have the two heuristics proposed by Bozkaya

et al. and the two employed here in previous trials. The more subjectively appealing of

these is the sum-of-distances measure used in the previous chapter (see Figure 4.20), but the

131

average of distances and other measures are equally valid. Therefore, the district compactness

measure can be expressed as follows:

fcomp(x) =
n∑
j=1

n∑
i=1

dijxij (5.3)

subject to xij ∈ {0, 1}, i, j = 1, 2, ..., n (a)

where dij is the distance from the center of zone i to the center of district j and xij returns

1 iff zone i is assigned to district j,

Combining these three measures into a single objective function requires a separate

weighting measure for each, which we will call αpop, αminority, and αcomp. The combined

objective function can then be expressed as the sum of each individual fitness heuristic

multiplied by its weighting measure:

F (x) = αpopfpop(x) + αminorityfminority(x) + αcompfcomp(x) (5.4)

To accommodate the soft contiguity constraint, we forego the fixed-value fitness penal-

ization employed previously in favor of a proportionate penalty that multiplies the fitness

value by a user-defined scaling factor. First, this approach maintains the advantage of re-

taining invalid but otherwise highly fit solutions in the population, as advocated by Bação

et al., Chou et al., and others [12][44]. But instead of clustering all infeasible solutions at

the bottom of a fitness-ordered population, where selective pressure would quickly eliminate

them, a proportionate penalty allows the infeasible solutions to be distributed more evenly.

In this manner, a highly fit but infeasible solution, even after penalization, could have a

better fitness value than a valid but poorly fit solution. Therefore, the highly fit but invalid

solution has a greater chance of selection and further mutation that could, potentially, render

the solution valid once more.

132

In this manner, the fitness function becomes:

F (x) = β
(
αpopfpop(x) + αminorityfminority(x) + αcompfcomp(x)

)
(5.5)

where β is a scaling factor that is equal to 1 if the solution is contiguous (i.e. valid), and

is equal to an arbitrary value greater than 1 when the solution is discontiguous. In this

manner, β enforces the soft contiguity constraint by penalizing the fitness value, increasing

it by a desired factor.

5.2 Evolutionary Search Results with a Multi-objective Heuristic

With this objective function, we evaluate the evolutionary algorithm’s performance on

a state-wide scale, districting the state of Alabama into seven contiguous zones based on this

balance of three fitness heuristics and a soft contiguity constraint.

Scaling factors for the individual fitness function are chosen subjectively and vary de-

pending on the which of the objective criteria are employed. We evaluate the performance

of the Evolutionary Algorithm with four different combinations of objectives:

• Balancing total population distribution and district compactness with a soft contiguity

constraint.

• Balancing minority population distribution and district compactness with a soft con-

tiguity constraint.

• Balancing total population distribution and minority population distribution with a

soft contiguity constraint.

• Balancing total population distribution, minority population distribution, and district

compactness with a soft contiguity constraint.

Because the values of the first two criteria — total population distribution and minority

population distribution — approach a theoretical optimal value of zero, the values of αpop

133

Subjective Criteria Weights for Multi-Objective Optimization, By Trial
αpop αminority αcomp β

Total Population Distribution + District Compactness 0.005 0.00 1.00 2.5
Minority Population Distribution + District Compactness 0.00 0.05 1.00 1.5
Total Population Distribution +

0.01 1.00 0.00 1.5
Minority Population Distribution
Total Population Distribution + Minority Population

0.01 1.00 1.00 1.5
Distribution + District Compactness

Table 5.1: Subjective weighting factors for four trials of a weighted, multi-heuristic districting
problem. The weights shown here correspond to the objective function depicted in Equation
5.5.

and αminority tend to dominate the objective function compared to the district compactness

measure. In terms of the two population distribution criteria, the total population is much

larger and therefore tends to dominate the minority population distribution.

The specific criteria weights for each of these trials are depicted in Table 5.1. These

weights are subjectively selected to scale each independent heuristic to an essentially equal

weight, in terms of selective pressure and convergence of the algorithm.

The first two trials each utilize an heuristic function that attempts to balance three

different objective simultaneously: equal distribution of population, district compactness,

and district contiguity. In the first trial, a distribution of total population metric is used.

In the second, a distribution of non-white, or minority, population metric is used. The two

metrics are computed identically, with the only difference being the quantity of persons to

divide equally. These three objectives — population distribution, compactness, and contigu-

ity — are considered to be relatively complementary, but which we mean that with proper

weighting factors no one objective tends to excessively dominate another.

Although there are several methods, particularly NISE, that can provide a set of weights

that produce solutions along the Pareto front, that is not necessary here, as we desire only

to provide sufficiently reasonable multi-objective solutions against which to later compare

the performance of an agent-based solution.

134

F
ig

u
re

5.
1:

T
h
re

e
p

os
si

b
le

so
lu

ti
on

s
fo

r
d
is

tr
ic

ti
n
g

th
e

st
at

e
of

A
la

b
am

a
in

to
se

ve
n

co
n
ti

gu
ou

s
d
is

tr
ic

ts
b
as

ed
on

a
m

u
lt

i-
cr

it
er

ia
h
eu

ri
st

ic
th

at
in

cl
u
d
es

eq
u
al

d
is

tr
ib

u
ti

on
of

to
ta

l
p

op
u
la

ti
on

,
d
is

tr
ic

t
co

m
p
ac

tn
es

s,
an

d
ge

og
ra

p
h
ic

co
n
ti

gu
it

y.
T

h
e

w
ei

gh
te

d
h
eu

ri
st

ic
at

te
m

p
ts

to
ac

h
ie

ve
b
al

an
ce

b
et

w
ee

n
th

e
fi
rs

t
tw

o
cr

it
er

ia
an

d
in

cl
u
d
es

a
p

en
al

iz
at

io
n

sc
al

in
g

fa
ct

or
fo

r
d
is

tr
ic

t
d
is

co
n
ti

gu
it

y.
T

h
e

so
lu

ti
on

s
re

p
re

se
n
t,

fr
om

le
ft

,
a

m
ax

im
u
m

to
ta

l
p

op
u
la

ti
on

d
iff

er
en

ce
b

et
w

ee
n

d
is

tr
ic

ts
of

20
7,

32
9,

an
d

20
5

p
er

so
n
s.

C
om

p
ac

tn
es

s,
m

ea
su

re
d

as
th

e
m

ax
im

u
m

of
th

e
av

er
ag

e
d
is

ta
n
ce

of
zo

n
es

fr
om

th
e

d
is

tr
ic

t
ce

n
te

r,
is

,
fr

om
le

ft
,

32
1.

4k
m

,
37

8.
7k

m
,

an
d

38
8.

8k
m

.

135

F
ig

u
re

5.
2:

T
h
re

e
p

os
si

b
le

so
lu

ti
on

s
fo

r
d
is

tr
ic

ti
n
g

th
e

st
at

e
of

A
la

b
am

a
in

to
se

ve
n

co
n
ti

gu
ou

s
d
is

tr
ic

ts
b
as

ed
on

a
m

u
lt

i-
cr

it
er

ia
h
eu

ri
st

ic
th

at
in

cl
u
d
es

eq
u
al

d
is

tr
ib

u
ti

on
of

m
in

or
it

y
p

op
u
la

ti
on

,
d
is

tr
ic

t
co

m
p
ac

tn
es

s,
an

d
ge

og
ra

p
h
ic

co
n
ti

gu
it

y.
T

h
e

w
ei

gh
te

d
h
eu

ri
st

ic
at

te
m

p
ts

to
ac

h
ie

ve
b
al

an
ce

b
et

w
ee

n
th

e
fi
rs

t
tw

o
cr

it
er

ia
an

d
in

cl
u
d
es

a
p

en
al

iz
at

io
n

sc
al

in
g

fa
ct

or
fo

r
d
is

tr
ic

t
d
is

co
n
ti

gu
it

y.
T

h
e

so
lu

ti
on

s
re

p
re

se
n
t,

fr
om

le
ft

,
a

m
ax

im
u
m

m
in

or
it

y
p

op
u
la

ti
on

d
iff

er
en

ce
b

et
w

ee
n

d
is

tr
ic

ts
of

12
7,

16
1,

an
d

17
0

p
er

so
n
s.

C
om

p
ac

tn
es

s,
m

ea
su

re
d

as
th

e
m

ax
im

u
m

of
th

e
av

er
ag

e
d
is

ta
n
ce

of
zo

n
es

fr
om

th
e

d
is

tr
ic

t
ce

n
te

r,
is

,
fr

om
le

ft
,

33
6.

2k
m

,
37

4.
2k

m
,

an
d

35
4.

41
k
m

.

136

Algorithm performance in for the first trial shows similar performance to single-objective

algorithm performance. Three solutions with subjectively reasonable results are shown in

Figure 5.1 and represent successful partitioning of the state into seven districts with a

difference of no more than 207, 329, and 205 persons, respectively, with reasonable com-

pactness metrics. All four series of the algorithm, each with varying mutation rates of

pm = 0.001, 0.0025, 0.005, 0.010, show a reasonable downward curve for population mean

fitness over successive generations. Similarly, the standard deviation of population fitness

continues to grow tighter for all but the final series with a high mutation rate (pm = 0.010)

(see Tables A.13 and A.14).

Performance for the second trial, which utilizes a distribution of minority population

heuristic, is substantially similar, with three sample districting solutions that represent a dif-

ference of no more than 127, 161, 170 non-white persons with acceptable district compactness

measures (see Figure 5.2 and Tables A.15 and A.16).

Finally, two trials were run utilizing a multi-objective heuristic with two criteria that are

in conflict with each other: distribution of total population and distribution of non-white, or

minority population. A potential solution that tends to favor either one of these objectives

tends to be dominant over the other objective. Although, with the correct weighting it is

theoretically possible to achieve a candidate solution in which no objective dominates over

the others — such a solution would be said to lie along the Pareto frontier for this problem.

The third trial balances only the total population and minority population distribution

with a soft contiguity constraint and achieves only moderate success. Three solutions de-

picted in Figure 5.3 show substantially poorer distribution of each separate population while

attempting to reach a balance of the two together. For example, with the weights used here,

the total population difference between any two zones in candidate solutions is typically

around 85,000 persons while the maximum difference in non-white persons between any two

zones is around 1,500 persons. Adjustment of weights can shift this balance toward or away

from one objective — essentially adjusting its dominance relative to the other. But, unless

137

F
ig

u
re

5.
3:

T
h
re

e
p

os
si

b
le

so
lu

ti
on

s
fo

r
d
is

tr
ic

ti
n
g

th
e

st
at

e
of

A
la

b
am

a
in

to
se

ve
n

co
n
ti

gu
ou

s
d
is

tr
ic

ts
b
as

ed
on

a
m

u
lt

i-
cr

it
er

ia
h
eu

ri
st

ic
th

at
at

te
m

p
ts

to
b
al

an
ce

to
ta

l
p

op
u
la

ti
on

d
is

tr
ib

u
ti

on
,

m
in

or
it

y
p

op
u
la

ti
on

d
is

tr
ib

u
ti

on
,

an
d

ge
og

ra
p
h
ic

co
n
ti

gu
it

y.
T

h
e

w
ei

gh
te

d
h
eu

ri
st

ic
at

te
m

p
ts

to
ac

h
ie

ve
b
al

an
ce

b
et

w
ee

n
th

e
fi
rs

t
tw

o
cr

it
er

ia
an

d
in

cl
u
d
es

a
p

en
al

iz
at

io
n

sc
al

in
g

fa
ct

or
fo

r
d
is

tr
ic

t
d
is

co
n
ti

gu
it

y.
T

h
e

so
lu

ti
on

s
re

p
re

se
n
t,

fr
om

le
ft

,
a

m
ax

im
u
m

to
ta

l
p

op
u
la

ti
on

d
iff

er
en

ce
b

et
w

ee
n

d
is

tr
ic

ts
,

fr
om

le
ft

,
of

85
,9

69
,

10
4,

26
9,

an
d

87
,5

25
p

er
so

n
s.

M
ax

im
u
m

m
in

or
it

y
p

op
u
la

ti
on

d
iff

er
en

ce
b

et
w

ee
n

d
is

tr
ic

ts
,

fr
om

le
ft

,
is

1,
47

4,
1,

27
5,

an
d

11
,5

09
p

er
so

n
s.

138

the weight of one objectives is reduced to near-zero, the results achieved for either objective

will not be as precise as those that can be achieved with that objective in isolation.

Duplication of this with the addition of a fourth objective — a district compactness

constraint — produces similar results. Two candidate solutions for a four-objective heuristic

are shown in Figure 5.4.

When employing a weighted multi-heuristic function with conflicting objectives, we see

that the standard deviation of the population fitness no longer grows continually tighter in

successive generations, as seen in almost all other trials of this algorithm (see Tables A.17,

A.18, A.19, and A.20), confirming the inability of the algorithm to continually improve the

population in each successive generation.

These trials can be repeated with randomly assigned district centers rather than fixed

centers, which tend to produce slightly better results, especially in terms of the district

compactness objective.

5.3 Multi-objective Heuristic Evaluation by Independent Agents

Although its been more than two decades since the idea of intelligent agents became

mainstream, there still lacks consensus on a single definition for the term “agent” [182] [96]

[139] [116] [78]. When it comes to describing what constitutes an intelligent software agent,

Jennings writes that “there is no real agreement even on the core question of exactly what an

agent is,” much less what comprises one category of agents versus another [96, 8]. Heucke,

Wooldridge, and others agree, noting that to attempt their own definitions would be, as

Gilbert et al. write, to add to an “already crowded plate” [78] [87, 1598]. Wooldridge, with

Jennings, suggests that the entire field of artificial intelligence can be summarized as that

part of computer science that “aims to construct agents that exhibit aspects of intelligent

behavior” and that the idea of an “agent” is therefore a central concept of artificial intelli-

gence [182, 116]. Wooldridge elects to punt on attempting a formal description, concluding

that the term agent “defies attempts to produce a single universally accepted definition”

139

Figure 5.4: Two possible solutions for districting the state of Alabama into seven contigu-
ous districts based on a multi-criteria heuristic that attempts to balance total population
distribution, minority population distribution, district compactness, and geographic conti-
guity. The weighted heuristic attempts to achieve balance between the first three criteria
and includes a penalization scaling factor for district discontiguity. The solutions represent,
from left, a maximum total population difference between districts of 112,783 and 108,659
persons, maximum minority population difference of 185 and 864 persons, and a maximum
average distance from the district center of 321.3km and 443.91km.

140

[182, 116]. Nwana writes that overuse of the word has tended to “mask the fact that...there

is a truly heterogeneous body of research being carried out under this banner” [133].

A universal definition may be impossible, but most scholars seem to be in general

agreement regarding many of the characteristics that software agents share, although they

often differ in terminology and perspective.

Russell and Norvig suggest that the most important characteristics are an agent’s ability

to perceive its environment and to effect actions upon that environment [153]. Jennings et

al. agree, and call this situatedness, which “means that the agent receives sensory input from

its environment and that it can perform actions which change the environment in some way”

[96, 8].

Franklin and Graesser expand on this with the addition that the agent’s actions reflect

pursuit of an agenda specific to the agent [72]. Heucke and Gilbert et al. extrapolate this

further by making the agent’s agenda a proxy for that of a human operator or user and write

that agents “...employ some knowledge or representation of the user’s goals or desire” [87,

7-38] [78, 913].

Wooldridge and Jennings enumerate characteristics likely to be found in software agents:

autonomy, social ability, reactivity, and pro-activeness [182]. Gilbert et al. define three axes

of intelligent agents: Agency, Intelligence, and Mobility [78, 913]. Heucke, based on an earlier

classification by Nwana, also attempts a taxonomy of software agents, which includes: col-

laborative agents, interface agents, mobile agents, information agents (aka Internet agents),

reactive agents, and hybrid agents [87][133].

Heucke writes that an “agent should show social behavior and should feature the ability

to interact with external entities” [87]. When a group of intelligent agents collaborate to

solve a problem, we call this a multiple agent system (MAS). Jennings defines this as “a

loosely coupled network of problem solvers that work together to solve problems that are

beyond the individual capabilities or knowledge of each problem solver” [96, 17].

141

The concept of employing multiple agent systems is not new, and scholars have proposed

various ways to characterize and classify these systems. One way to look at a MAS is to

examine the nature of the interactions among agents. Jennings et al. name three common

types of interactions among agents: cooperation, coordination, and negotiation [96, 9].

A big challenge of multiple agent systems is “to recognize and reconcile disparate view-

points and conflicting intentions among a collection of agents trying to coordinate their

actions” [96, 18].

However, the autonomous nature of individual agents with often differing goals and

heuristics does not necessarily mean that, working together, they cannot collectively produce

desirable outcomes. Jennings et al. write that “self-interested agents, by definition, simply

choose a course of action which maximizes their own utility. In a society of self-interested

agents, it is desirable that if each agent maximizes its local utility, then the whole society

exhibits desirable behavior” [96, 24].

Polgar and Polgar agree: “The ultimate goal of cooperation and coordination is to

reach a globally optimal solution independent of the language or protocol used” [139, 812].

They write “if we map the cooperation goals into distributed problem-solving strategies and

let each agent play the role of a cooperating computational unit instead of an autonomous

negotiator, it is then possible to deploy distributed constraint satisfaction problem-solving

strategies” [139].

There has been limited published work on the marriage of multi-agent systems and

evolutionary algorithms, but some have argued that there is much compatibility between

multiple agent systems and Genetic Algorithms (GAs) that can be exploited. Sarker, when

considering whether agent-based GAs are an emerging paradigm, notes first that “hybridiza-

tion with another method or methods is a very common practice” when constructing GAs,

and that the information sharing inherent in a MAS can be leveraged here as well. [156, 45]

“In a multiple agent system, the relevant information from individual agents are com-

piled, theories about their behavior are formulated ... resulting in an emergence of system

142

properties and behaviors,” Sarker writes. “These generic steps are not much different from

the steps entailed by Evolutionary Algorithms. In other words, they are similar to any other

rational problem-solving approaches” [156, 45].

He goes further to point out that multiple agent systems are useful when an explicitly

defined fitness function is difficult to construct. It is this possibility of incorporating a

multiple agent system into an Evolutionary Algorithm’s heuristic function that we wish to

explore. It is intriguing to ask if a group of agents, each of which is able to inform on part

of the fitness of a solution, but none of which can inform on all of it, can collectively provide

an admissible heuristic for the algorithm.

5.3.1 Pools of Cooperating Agents

We investigate creating one or more pools of agents, each concerned with a specific

quality attribute, that together can inform on the overall quality of a solution. In this

system, a single agent of a specific type is assigned to each district, and that agent assesses

and renders a subjective quality assessment of that district only, without examining other

districts in the solution. For example, a set of agents tailored to assess a metric, such as the

equality of population distribution or contiguity of a district, can separately evaluate the

suitability of the district to which they are assigned and, when combined together, provide

an overall assessment of the entire candidate solution.

For agents that assess their district in terms of population equality, compactness, or a

similar measure, the agent’s heuristic is assessed along a Likert scale [118][124]. A Likert scale

was selected in deference to the concept that each agent is a virtual stakeholder with a specific

perspective and agenda for its district. If the agent is asked to provide an assessment that

is analogous to the subjective assessment that might be produced by a human stakeholder

— which would conceivably, or even likely, be measured on a Likert scale — it makes sense

to apply the same for the agent’s assessment.

143

Figure 5.5: A sample Likert scale heuristic that might be used by agents for quality assess-
ment of candidate solutions. Population equivalence can be assessed based on the difference
between zone population size and ideal population size, top, and compactness can be assessed
based on the average zone distance from the district center, bottom. The width of the scale
or the granularity of divisions in the scale can be adjusted to provide more or less selective
pressure, as desired. The position of the origin is arbitrary and does not affect performance.

Although it would be possible for agents to provide a continuous spectrum of values

across all whole or real numbers, it is not necessary. Recall that the purpose of a fitness

function is merely to order one candidate solution relative to another. The degree of inequal-

ity between two solutions is irrelevant; it is necessary only that they can be ranked relative

to each other. “Finer granularity is not required,” writes Fogel, and “criterion need not be

specific with the precision that is required of some other methods” [63, 2].

The width of the Likert scale can be tailored to increase or decrease selective pressure

and the scale need not be centered on the origin of the number line (see Figure 5.5). The

wider the scale, the less likely that two candidate solutions will receive an equivalent score

from all agents, but in the event that an equality does occur, a secondary heuristic may be

used as a tiebreaker.

For agents with a binary decision, such as district contiguity agents, the agent’s heuristic

returns a value of ±1, although this value may be scaled when combined with the results

from other agents with a greater magnitude of values.

Is it valid to call this technique an “intelligent agent?” This system meets Russell and

Norvig’s definition of “situatedness” for an agent, in that each agent is able to perceive the

zones that comprise the district to which it is assigned and, by providing a quality assessment

of that part of the solution, can effect changes on the environment through the collective

144

ratings of all agents, which in turn affect the chances of the solution being selected for recom-

bination or mutation and, therefore, including most of its genome in subsequent generations

[154]. Additionally, this behavior is also exemplar of both Franklin and Graesser’s definition

of an agent pursuing an agenda that is specific to itself [72] and also Heucke and Gilbert et

al.’s definition of an agent as a proxy for a user and his goals [87][78].

5.4 Results of Heuristic Evaluation by Intelligent Agents

Three trials were performed for an Evolutionary Algorithm with pools of intelligent

agents assessing one or more quality objectives. The first trial employed a pool of seven

agents — one assigned to each district — to assess the quality of population distribution

within that district and a second pool to assess the contiguity of the zones in that district.

The population agents’ heuristic measures the district population against an optimal

population size (e.g. the total population divided by the number of desired districts) and

then assesses the district based on difference between the district’s population and the ideal:

fpop(i) =

∣∣∣∣Pi − P

k

∣∣∣∣, where P is the total population, k is the number of districts, and Pi

is the population of district i. The population difference is then subjectively scored based

on the Likert scale described above. Together, the pool of agents collaboratively provide a

quality measure for the entire solution:
k∑
1

L(i), where L(i) is the Likert scale score of the

agent for district i.

For the pool of contiguity agents, the heuristic is simpler: fcont(i) = −1 or + 1. And

the collaborative assessment of all these agents becomes
k∑
1

fcont(i). For district compactness

agents, a similar Likert scale and formula as that employed for population agents was utilized.

The agents are successfully able to rank order the members of the population and,

thus, provide enough selection pressure through tournament selection for fit solutions to

reproduce more frequently and, over time, increase the overall fitness of the population (see

Table A.21). One sample solution produced depicts a partitioning of the state into seven

145

Figure 5.6: Two near-optimal solutions for districting the state of Alabama into seven con-
tiguous zones using pools of agents to provide a quality heuristic. The first map, left, depicts
an equal distribution of total population with a difference of no more than 136 persons be-
tween any two districts. The second map, right, depicts equal distribution of non-white
population with a difference of no more than 13 persons between any two districts. Both
solutions were obtained using a pool of seven agents, one dedicated to each district, working
together to provide an overall quality heuristic for the entire solution. The algorithm em-
ployed 100 iterations of a mutation only evolutionary algorithm running for 500 generations
with a mutation rate pm = 0.005, a population size µ = 100, randomly generated district
centers, and Neighborhood Mutation with Local Repair.

146

contiguous districts with a maximum population difference between any two zones of 36

persons (see Figure 5.6).

A second trial repeats this process with the substitution of a pool of agents that assess

the distribution of non-white, or minority, individuals within the district compared to the

ideal distribution: fminority(i) =

∣∣∣∣Pi − P

k

∣∣∣∣, where Pi is the non-white population of the

district. These agents perform similarly to the first trial (see Table A.21), and produced an

extraordinarily fit solution with a maximum non-white population difference between any

two districts of only 13 persons (see Figure 5.6).

Finally, a multi-objective trial was conducted with four separate pools of agents. Each

pool of seven agents, with one agent assigned per district, assesses each of the four quality cri-

teria: equality of total population distribution, equality of minority population distribution,

district compactness, and district contiguity. Together, a total of 28 agents independently

assess districts according to their own criteria and combine these assessments to produce a

single quality measure for the entire solution. The individual measures produced by each

pool were summed, with a scaling factor of 5.0 applied to the contiguity agents’ score to

provide a difference in maximum and minimum scores equivalent to that of the other pools.

This trial produces results comparable to that seen in the weighted multi-objective

heuristic seen previously, with similar improvement in mean population fitness and standard

deviation of population fitness over successive generations (see Table A.22). One candidate

solution achieved a total population equality of no more than 370 persons with a minority

population inequality of no more than 44,991 persons and a maximum average distance from

district center of 337.0 km (see Figure 5.7).

147

Figure 5.7: A candidate solution for districting the state of Alabama into seven contiguous
zones using four collaborative pools of heuristic agents to separately assess total population
distribution, non-white population distribution, district compactness, and district contiguity.
The four separate pools of agents’ heuristics are then combined to rank order the population.
This map depicts a potential solution with a total population difference of no more than
370 persons between any two districts, a non-white population difference of no more than
44991 persons between any two districts, and an average distance from district center of no
more than 337.0 km. The algorithm employed 100 iterations of a mutation only evolutionary
algorithm running for 500 generations with a mutation rate pm = 0.005, a population size µ =
100, randomly generated district centers, and Neighborhood Mutation with Local Repair.

148

Chapter 6

Conclusions and Future Work

“Writing is like driving at night in the fog. You can only

see as far as your headlights, but you can make the whole

trip that way.”

— E.L. Doctorow [138]

6.1 Conclusions on Evolutionary Solutions to Districting Problems with Con-

tiguity Constraints

Solving basic districting problems with evolutionary algorithms is no more or less chal-

lenging than most other evolutionary optimized search problems. However, there are two

additional complications for evolutionary districting problems that can make evolutionary

searches difficult: incorporating multiple, independent heuristics; and obeying a geographic

contiguity constraint. The latter is the more challenging, and has been dealt with in multiple

ways, including simply discarding non-contiguous candidate solutions [29][86] or by imposing

a fitness penalty [12][44].

The destructive effects of crossover on the genetic string for contiguous districting prob-

lems are severe. Random crossover produces an infeasible solution in almost every case;

multiple- and single-point crossover are less destructive, but still produce infeasible solutions

149

a majority of the time. The effects of individual mutations on the genetic string are po-

tentially as severe, but the less frequent occurrence of mutation, controlled by a mutation

factor that is typically set at a value of once per every hundred or thousand genes, makes

this more manageable.

With adequate selective pressure, a simple Genetic Algorithm can, in many cases, over-

come both of these negative tendencies and still produce a reasonably fit solution, as observed

in the performance of a typical, unoptimized genetic algorithm on the small-scale districting

problem for Jefferson County, Alabama (see Figure 4.2 and Table 4.3). However, the per-

centage of the population that are infeasible solutions is high and these impede the rate of

improvement of the population as it converges toward a highly fit solution.

We conclude that a simple genetic algorithm, with traditional k = 2 tournament selec-

tion, single-point crossover, and stochastic mutation with rate pm = 0.001 can produce a

reasonably fit solution to a basic districting problem with a geographic contiguity constraint.

Although algorithm performance is not as efficient as seen in later, more sophisticated algo-

rithms, the observed results seem sufficient to at least partially validate Hypothesis 1.

As seen in trials of the algorithm operating in a 25x25 grid “sandbox” with simulated

demographic data, the size of the population and the rate of mutation both have a strong

effect on algorithm performance. We see that population sizes between 100 and 500 indi-

viduals allow sufficient genetic variety in the population for a mutation-based algorithm to

converge to highly fit solutions despite more than 53% of the population being comprised

of non-contiguous, invalid, candidate solutions. We also observe that the percentage of

discontiguous solutions varies inversely with the population size — that is, as the popula-

tion size decreases, the percentage of invalid solutions in the population increases, with a

corresponding negative impact on the quality of the solution found (see Table A.3).

The implementation of the Neighborhood Mutation algorithm in place of purely stochas-

tic mutation results in a vast increase in the percentage of valid solutions in the population

for all population sizes and in all generations for the duration of algorithm execution —

150

more than 99% in all cases. The quality of solutions found with Neighborhood Mutation is

correspondingly higher, and the rate of convergence is likewise faster (see Table A.4).

In lieu of Neighborhood Mutation, traditional, stochastic mutation can be paired with

the Local Repair algorithm, which attempts to detect and correct contiguity errors after

they occur. Observations show that Local Repair is even more effective then Neighborhood

Mutation at the traditionally accepted mutation rate of pm = 0.001 [81][126], resulting in a

population with more than 99.8% valid solutions at each population size and for all genera-

tions throughout the algorithm’s execution (see Tables A.5, A.8, A.9, and A.11). Solution

quality and rate of convergence are both comparable to that found with Neighborhood Mu-

tation.

When mutation rates are increased above the traditional value, solution quality and

algorithm convergence can increase up until a point at which destructive mutations occur

in the genome at a rate too high for the Neighborhood Mutation algorithm to prevent and

for the Local Repair algorithm to correct. Observations suggest that, for Neighborhood

Mutation alone, this rate is approximately pm = 0.010 for the type of algorithm and the

districting problem investigated here (see Table A.7). When Neighborhood Mutation is

combined with Local Repair, the effects of higher mutation rates can be significantly lessened

but not eliminated (see Table A.9).

We conclude that, in terms of solving a districting problem with geographic contiguity

constraint on a state-wide level, both Hypothesis 2 and Hypothesis 3 are validated by the

observed data. This similarly strengthens validation of Hypothesis 1, which we consider

confirmed.

6.2 Conclusions on Multi-Objective Heuristic Evaluation of Evolutionary Dis-

tricting Problems

We show that an evolutionary algorithm can perform well with a weighted multi-

objective heuristic and produce multiple, reasonable candidate solutions to a districting

151

problem while balancing two or three separate objectives that are relatively non-conflicting.

Observations demonstrate that a weighted, multi-objective heuristic can provide adequate

selective pressure to allow a population to continually improve and converge.

This holds true for a weighted heuristic that includes both total population distribution

with district compactness and contiguity (see Tables A.13 and A.14) and minority population

distribution with district compactness and contiguity (see Tables A.15 and A.16). In both

instances, mean population fitness shows a continued downward trend over time for various

mutation rates and each also shows a consistent downward trend in the standard deviation

of the population fitness over time, demonstrating convergence of the algorithm.

However, with the introduction of a second population distribution measure, the ability

of the weighted multi-objective heuristic function to simultaneously provide adequate selec-

tive pressure to each objective becomes questionable. Trials involving both a total population

and minority population distribution objective, with a soft district compactness constraint,

show an ability to consistently but slowly improve the population fitness over time, but the

standard deviation of population fitness fails to tighten (see Tables A.17 and A.18). The

addition of a fourth objective, such as district compactness, produces similar results (see

Tables A.19 and A.20).

Replacement of the weighted multi-objective function with a pool of heuristic agents is

especially effective, with a very quick improvement in population fitness for trials involving

a total population or minority population objective and a contiguity constraint (see Table

A.21). In both trials, both the mean population fitness and standard deviation of popula-

tion fitness have pronounced downward slopes, demonstrating strong selective pressure and

convergence. Both trials produce reasonable candidate solutions comparable to those found

in non-agent approaches. A third trial employing four pools of agents — each focusing on

either total population distribution, minority population distribution, district compactness,

or district contiguity — produces results comparable to that of the weighted four-objective

heuristic above (see Table A.22). Compared to the weighted multi-objective heuristic, the

152

multiple pools of agents show similar improvement in mean population fitness over time.

However, the trial with multiple pools of agents shows a more pronounced downward slope

to the standard deviation of fitness over time, suggesting, but not conclusively, that the

multiple agent pool approach may better promote algorithm convergence in this instance.

It is worth noting, however, that the selective pressure is dependent on a secondary

heuristic that can be used to resolve ranking ties (e.g. when the collective agents’ score

of two candidate solutions is equal). The frequency of ties is dependent on the width of

the Likert scale used by each specific type of agent, but ties do occur relatively often, but

with a greater frequency in early and later generations. Because a randomly generated

initial population is usually of a uniformly poor fitness, ties tend to occur more often in

early generations of the algorithm. Similarly, as the population converges and becomes less

genetically diverse, ties are more apt to occur in later generations as well. There are multiple

feasible approaches to resolving such ties: a coin toss, prioritizing one agent pool’s heuristic

over another, or employing a secondary objective function. Each will work, but the choice

of method affects both the selective pressure and convergence rate of the algorithm.

Another observation is that the contiguity agents’ heuristic, which is a binary ±1 can

be overwhelmed by the magnitude of the rating scale for other agent pools, and therefore

a weighting factor for the contiguity agent pool may be desirable to prevent dominance by

other pools and a subsequent increase in infeasible solutions in the population.

We observe that employing a pool of multiple, independent agents that inform separately

on discrete parts of a candidate solution can then merge those assessments to produce a

combined heuristic rating for the entire solution. This is demonstrated in trials involving

pools of different types of population agents (see Figure 5.6), which we consider to confirm

Hypothesis 4-A. The ability of multiple pools of agents with different quality heuristics to

work collaboratively to achieve a goal is similarly demonstrated in Table A.22 and Figure

5.7, which we consider to confirm Hypothesis 4-C for this type of problem.

153

There is anecdotal evidence to suggest that solutions that are found to be partially

infeasible by one or more agents can evolve into feasible solutions in subsequent generations.

The observation that the percentage of feasible solutions in agent-based trials — particularly

those involving many competing agent pools — can decrease and then later increase suggests

that some number of infeasible solutions can mutate and become feasible, but the effects of

stochastic selection and mutation likely account for much of this variation. Therefore, we do

not feel that adequate data is available to confirm or deny Hypothesis 4-B, which we aim to

resolve through more granular future studies.

6.3 Future Work

Through the development of this algorithm, a number of difficulties and opportunities

for research arose that are worthy of consideration in future studies:

Reducing the Destructiveness of Crossover The effect of single-point, two-point, and

especially uniform crossover on the genome for a contiguous districting problem is disastrous.

In the vast majority of cases, such crossover is fatally disruptive in terms of district contiguity.

It would be worthwhile to investigate alternative approaches to crossover that are less likely

to render an otherwise fit solution infeasible. One particular approach that may bear fruit

is the implementation of a non-linear genome with position-independent genes, much like

that described by Holland’s original inversion operator [92], that can be reordered in the

genome without losing the mapping of a specific gene to a specific district. This would allow

the clustering of genes allocated to a specific district close to each other and, thus, allow

crossover to occur at a point within a district, and thus not disrupt it.

Growth of Infeasible Solutions The rapid increase in the percentage of infeasible (i.e.

discontiguous) solutions produced with high mutation rates (pm ≥ 0.01) could perhaps be

mitigated through a combination of several methods: the widening of the neighborhood

examined by the neighborhood mutation algorithm to reduce the number of incompatible

154

adjacent mutations, the implementation of the local repair algorithm with a similarly widened

area of examination for discontinuity detection, and the employment of elitism with either

a generational or steady-state evolutionary algorithm to ensure that more-fit solutions are

not crowded out of the population.

Weighting for Multi-Objective Heuristic Finding suitable weights in a multi-objective

heuristic function that will produce a set of solutions along a the Pareto frontier, along

which no single objective tends to dominate over another, can be a significant problem for

Genetic Algorithms in general [20]. It is, in particular, a significant challenge for the type

of districting problem explored here. There is research to suggest that a genetic algorithm

can simultaneously coevolve a set or sets of weights for a multi-objective heuristic that can

produce both non-dominated solutions that are also subjectively acceptable to the user [20].

Other approaches to determining a desirable values for a weighted multi-objective function

are well researched and could provide clarity on both the weighted mutli-objective heuristic

trials and the multi-objective agent-based heuristic trials attempted here [31][43][97][186].

Modeling User Preferences in Agent Heuristic Finally, the potential of intelligent

agents to act as a proxy or surrogate for a human stakeholder can be further investigated

through attempts to map agent performance to human-subject preferences with respect to

various objectives or subjective quality criteria for districting problems. This could lead

to the development of more representative agent models that can function as a proxy in a

manner similar to that envisioned by Chou et al.’s VSF.

155

Glossary

admissible heuristic A heuristic that never overestimates the the actual cost of reaching a

goal. Also sometimes called an “optimistic heuristic”. 143, see also heuristic function

agent An agent is anything that can be viewed as perceiving its environment, through

sensors or other means of input, and acting upon that environment through actuators

or other means of output [116]. ii, iii, 5, 6, 8, 139, 142–145, 147, 161, see also rational

agent

agent function In artificial intelligence, a mathematical or other function that take a series

of perceptions of the external environment and maps them to an action or sequence of

actions to be performed by the agent as a response. An agent function may or may

not incorporate past perceptions in its calculations.

allele A shortened form of the word allelomorph, one of two or more possible variant forms

or values of a gene at a particular locus along a chromosome [81, 28]. Allelic variation

at a specific locus is defined as the number of distinct alleles present in a population

[148]. 11, 12, 15, 19, 25, 27, 32, 38, 59, 62, 63, 78, 82, 88, 89, 94, 96, 104–108, 156–159,

161, see also gene

allelomorph An allele. 15, 156, see allele

annealing In computer science, a heuristic function that is used to approximate global

optimization in a search space that, in simplistic terms, evaluates “nearby” solutions

and moves toward solutions that are closer to the theoretical optimum. Also referred

to as simulated annealing . 22, 68, 76

156

certainty factor In artificial intelligence, a numerical value, usually in the range 0..1 that

represents the level of confidence that an assertion is true.

chromosome A molecule that contains all or part of the genetic information of an organism

[100]. 13, 15, 19, 55–60, 63, 77, 78, 101, 102, 104, 156–159

convergence In evolutionary programming and genetic algorithms, the phenomenon in

which every individual in the population is identical [114]. 13, 48, 53, 60, 61, 64, 65,

68, 70, 97–99, 103, 105, 107, 109, 134, 151–153

deterministic A system in which randomness is not involved, or for which a sequence

of actions or calculations will always be consistent for the same starting condition.

Deterministic systems are often considered to be stateless, since past conditions have

no effect on future actions. 23, see also stochastic

diploid In genetic algorithms, a diploid genetic algorithm is one in which each member of the

population has more than one chromosome in which alleles of genes are also assigned

additional characteristics, or values, such as “dominant” or “recessive,” that affect how

those genes are involved in the mating process. More simply, diploid means that genetic

chromosomes are paired. Diploid GAs therefore differ from traditional algorithms in

both its representation of the genome and also its reproduction operations [135] [114,

29]. 12, 16, 31, see also haploid

disruption In evolutionary programming or genetic algorithms, a schema is said to be

disrupted if a child of an parent that matches a schema H does not itself match H

[114]. 27, 28, 55, 57, 59, 63,

elitism In genetic algorithms, particularly steady-state GAs, the practice of never discarding

a more fit solution to make room in the population for a less-fit child solution [167,

25]. 16, 32, 40, 43, 51–53, 77, 80, see also infant mortality

157

epistasis Non-linear interaction between genes. The term epistasis describes a certain rela-

tionship between genes, where an allele of one gene hides or masks the visible output,

or phenotype, of another gene. This should not be confused with the concept of dom-

inant and recessive genes, which are terms that apply to different alleles of the same

gene [160] [114]. 11, 15, see also gene

evaluation function A calculation of the cost or value for a given state or node in an

informed search algorithm. For example, in a best-first search, the node with the

lowest evaluation function result might be deemed the best node and, therefore, would

be selected for expansion. , see also heuristic function

frontier The current set of all leaf nodes in a graph or tree. Search-based problem solving

algorithms generally expand the set of known states by performing actions on leaf

nodes to create additional known states [153, 75].

gamete A single chromosome from one haploid parent that fuses with another haploid

during recombination to produce a zygote [126, 5]. , see also chromosome

gene A unit of hereditary information at a specific location, called the locus, along a chro-

mosome, which is composed of many separate genes. In a genetic algorithm, a gene

represents a specific value at a specific location in the chromosomal sequence of an

individual in the population [60]. 15–17, 19, 25–27, 30, 31, 36–38, 54–63, 77, 78, 88,

89, 96, 101, 102, 105, 156, 158–160, see also locus

Genetic Programming An extension of the concepts of evolutionary computation and

genetic algorithms into the realm of computer program construction. In this approach,

computer programs representing an executable solution to a problem, are generally

expressed as trees of discrete operations and operands. These trees are modified and

added onto through methods similar to those found in genetic algorithms to create

new, potential more accurate, programs to solve the problem [37]. 11

158

genome The complete set of genes or genetic material present in a cell or organism. In

evolutionary computing, a genome is typically represented as a string of binary or

higher order values that, together, encode a representation of a potential solution for

the problem to be solved. 19, 25–27, 32, 36, 37, 39, 42, 53, 55, 58, 60, 77, 78, 87, 96,

145, 151, 154, 157, 159, see also gene

genotype A genotype is the entire genetic makeup of an individual, or the complete list of

genes present in an individual. But the term is sometimes more narrowly construed

to mean the set of alleles present at one or more loci in a chromosome. In genetic

algorithms, genotype generally refers to the string or array of values that represent a

potential solution to a problem [25] [114]. 11, 60, 159, 160, see also phenotype

Hamming distance In Genetic Algorithm with binary chromosomes, the Hamming dis-

tance between two genomes can be calculated as the number of genes that differ be-

tween the two genomes. Two individuals who are identical with the exception of a

single gene would have a Hamming distance of 1 between their genomes. Individuals

with two differing genes would have a Hamming distance of 2, and so on [83] [126]. 19,

58

haploid In biology, a cell that has only one chromosome set. In genetic algorithms, the

term haploid implies that each potential solution to a problem has only a single string

or array of values representing the full genotype of the individual [4] [114]. 31, 158, see

also diploid

heuristic Generally speaking, a “rule of thumb” measure when making decisions or classi-

fications in an algorithm [46]. ii, iii, 4, 5, 8, 20, 122, 160, see heuristic function

heuristic function Such functions are a common means by which additional understanding

of a problem domain can be incorporated into a search algorithm. 2, 143, 156, see also

admissible heuristic

159

hyperspace A multi-dimensional space of greater than three dimensions. A related concept

is that of a hypercube, which is a generalization of a three-dimensional object into more

than three dimensions. A hypercube of n dimensions is called an “n-cube”[176]. 18,

25, 129

infant mortality In genetic algorithms, the practice of never allowing an invalid or far

inferior child solution to enter the population. 53, 54, see also elitism

Keyhole Markup Language A markup language based on the Extensible Markup Lan-

guage (XML) that is used to express single or nested geographic locations, boundaries,

polygons, and other annotations. Originally developed by Keyhole, Inc., it has since

been adopted as a voluntary international standard by the Open Geospatial Consor-

tium. 85, 109, 164

locus In genetic algorithms, the locus refers to the position in a genetic string of a particular

gene [114]. 31, 36, 38, 55–57, 59

metaheuristic In general, a problem-independent framework, or general algorithm, that is

used to develop a tailored, more specific algorithm or solution to an individual problem.

The term is sometimes loosely used to refer to a specific implementation of a heuristic

optimization algorithm [162]. 130, see also heuristic

orgy In genetic algorithms, a method for creating child instances by recombination of the

chromosomes of all individuals in the population at the same time, as opposed to the

recombination of the chromosomes of two parents only [167, 24]. 38

phenotype The visible characteristics or traits of an individual. In the field of genetics, an

organism’s genotype is the genetic information that manifests itself in the form of its

phenotype. 11, 15, see also genotype

160

propagation In genetic algorithms, propagation refers to the inheritance of the charac-

teristics of one generation into subsequent generations. More broadly, a schema is

propagated if individuals in the current population match that schema as well as indi-

vidual in the subsequent population. A schema can propagate even if the individuals

that match it are not children of the parents that match it, although they often are

[114]. 1, 6, 29, 37, 39, 42, 43, 80

pruning The concept of removing from consideration in a search algorithm one or more

possible solutions, particularly in tree- or graph-based problems, without having to

first examine them. 52

rational agent An agent that acts in a manner that achieves, or aims to achieve, the best

possible outcome, or when there is uncertainty, the best expected outcome [153, 4]. ,

see also agent

satisficing The goal of finding a course of action that is ‘good enough,’ as opposed to the

sometimes unrealistic goal of finding the absolute best or ‘maximum’ solution. i.e.

“replacing the goal of maximizing with the goal of satisficing” [161].

schema Also sometimes called a similarity template, a definition of a set of linear values that

members of the conforming set must match. Schemata may be of varying lengths, and

some positions in the defining template may be “unknown” or “don’t care”. Therefore,

given m possible values, or alleles, at a specific position in a string, there are m + 1

possible values for that position in the schema. A schema is characterized both by

its order and its defining length, in addition to the specific values at each position

in the schema. Given a schema with a defining length of n, there are nm possible

permutations of that schema [81, 29] [114]. 26–30, 39, 55–58, 92, 157, 161

selective pressure In a genetic algorithm, the probability of the best individual being

selected compared to the average probability of selection of all individuals. Increasing

161

selective pressure results in a faster loss of population diversity [16][178]. 47–50, 53,

115, 132, 134, 144, 150, 152, 153

stochastic A random process or function or one employing randomness. Examples of

stochastic processes include random walks and Bernoulli, Poisson, Markov, and Gaus-

sian processes. Most genetic algorithms are stochastic in design [135]. 4, 12, 15, 21,

29, 30, 36, 43, 44, 47, 60, 62, 90, 94, 109, 111, 150, 151, see also deterministic

syllogism A deductive scheme of a formal argument consisting of a major and a minor

premise and a conclusion (as in “every virtue is laudable; kindness is a virtue; therefore

kindness is laudable”)[1].

takeover In a genetic algorithm, the phenomenon of an entire population being comprised

of individuals identical or substantially similar to a single individual which has has

existed in some form since the initial population [40]. 54, 162

takeover time The amount of time, usually measured in generations, for takeover to occur

in a genetic algorithm [40]. , see takeover

tractability The ability to solve or make progress in solving a problem in a reasonable

time. In reference to computational problem solving, a problem or type of problem

for which the time required to solve a case grows exponentially with the size of the

problem instance is referred to as intractable [153, 8].

ZIP Code Tabulation Area A geographic block designated by the United State Census

Bureau that is comprised of addresses from one or more ZIP codes. ZCTAs are based

on census block boundaries, and not those of the U.S. Postal Service ZIP code area. In

many cases ZCTAs and Zip codes are very similar, and as a general rule the majority

of addresses within a ZCTA share the same ZIP code. However, some addresses from

other zip codes may be included in a ZCTA with a different identifier based on census

162

block boundaries. Demographic data from the decennial census is aggregated by ZCTA,

and is not available based upon ZIP code alone [171][94]. 85, 109, 114, 126, 165

163

Acronyms

BGA breeder genetic algorithm. 45,

BTS Binary Tournament Selection. 42–44, 51, 52

EA Evolutionary Algorithm. ii, iii, xv, 2, 5, 7, 17, 24, 25, 34, 64, 65, 81, 84, 97, 100, 130,

133, 143, 145

EC Evolutionary Computation. 1–3, 10, 11, 13, 16, 17, 19, 25, 34, 52–55

EP Evolutionary Programming. 10, 12, 16,

ES Evolutionary Strategies. 10, 12, 13, 16, 35, 54,

EVOP Evolutionary Operation. 11,

FPS Fitness Proportionate Selection. 42, 43, 45, 47

GA Genetic Algorithm. 1, 2, 5, 8, 10–13, 16, 24–26, 30–35, 41, 53, 54, 68, 76–80, 94–96,

101, 130, 142, 150, 155, 157, 159

HLAI human level artificial intelligence.

HUX half-uniform crossover. 58,

IEC Interactive Evolutionary Computation. 83

KML Keyhole Markup Language. 85, 109

MAS multiple agent system. 5, 141–143

164

RTS Roulette Tournament Selection. 43, 52,

RWS Roulette Wheel Selection. 43, 45–47, 51, 52, 77

SPX simplex crossover.

TS Tabu Search. 23, 68, 72, 75, 76, 78,

VSF validated surrogate fitness. 83, 155

ZCTA ZIP Code Tabulation Area. 85, 95, 109, 110, 112, 114, 126, 186

165

Bibliography

[1] Syllogism. In Merriam Webster’s Collegiate Dictionary. Merriam-Webster, Inc.,
Springfield, MA, eleventh edition, September 2017.

[2] E.H.L. Aarts and P.J.M. van Laarhoven. Simulated annealing: An introduction. Sta-
tistica Neerlandica, 43(1):31–52, 1989.

[3] Michael Affenzeller. A generic evolutionary computation approach based upon genetic
algorithms and evolution strategies. 28:59–72, 04 2002.

[4] Michael Allaby, editor. Haploid. Oxford University Press, third edition, 2006.

[5] Lee Altenberg. Advances in genetic programming. chapter The Evolution of Evolvabil-
ity in Genetic Programming, pages 47–74. MIT Press, Cambridge, MA, USA, 1994.

[6] Lee Altenberg. The schema theorem and price’s theorem. Foundations of Genetic
Algorithms, 3:23–49, 1995.

[7] Micah Altman. Is automation the answer: The computational complexity of automated
redistricting. Rutgers Computer and Law Technology Journal, 23:81–142, 1997.

[8] M. R. Anderberg. Cluster Analysis for Applications. Academic Press, 1973.

[9] Joe Wirt Atmar, III. Speculation on the Evolution of Intelligence and Its Possible
Realization in Machine Form. PhD thesis, Las Cruces, NM, USA, 1976. AAI7622497.

[10] Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric
data structure. ACM Comput. Surv., 23(3):345–405, September 1991.

[11] Saad A. Azeem M. Modified queen bee evolution based genetic algorithm for tuning of
scaling factors of fuzzy knowledge base controller. Proceedings of the IEEE INDICON
2004, pages 299–303, 2004.

[12] Fernando Bação, Victor Lobo, and Marco Painho. Applying genetic algorithms to zone
design. Soft Comput., 9(5):341–348, May 2005.

[13] T. Bäck, U. Hammel, and H.-P. Schwefel. Evolutionary computation: Comments on
the history and current state. In David B. Fogel, editor, Evolutionary Computation:
The Fossil Record, pages 15–26. Wiley-IEEE Press, 1st edition, 1998.

[14] Thomas Bäck and Hans-Paul Schwefel. An overview of evolutionary algorithms for
parameter optimization. Evol. Comput., 1(1):1–23, March 1993.

166

[15] James E. Baker. Adaptive selection methods for genetic algorithms. In Proceedings of
the 1st International Conference on Genetic Algorithms, pages 101–111, Hillsdale, NJ,
USA, 1985. L. Erlbaum Associates Inc.

[16] James E. Baker. Reducing bias and inefficiency in the selection algorithm. In Pro-
ceedings of the Second International Conference on Genetic Algorithms on Genetic
Algorithms and Their Application, pages 14–21, Hillsdale, NJ, USA, 1987. L. Erlbaum
Associates Inc.

[17] Edwin Roger Banks, Paul Agarwal, Marshall McBride, and Claudette Owens. A com-
parison of selection, recombination, and mutation parameter importance over a set of
fifteen optimization tasks. In Proceedings of the 11th Annual Conference Companion on
Genetic and Evolutionary Computation Conference: Late Breaking Papers, GECCO
’09, pages 1971–1976, New York, NY, USA, 2009. ACM.

[18] William J. Baumol and Philip Wolfe. A warehouse-location problem. Operations
Research, 6(2):252–263, 1958.

[19] David Beasley, David R. Bull, and Ralph R. Martin. An overview of genetic algorithms:
Part 2, research topics. 15, 02 1970.

[20] P. J. Bentley and J. P. Wakefield. Finding acceptable solutions in the pareto-optimal
range using multiobjective genetic algorithms. In P. K. Chawdhry, R. Roy, and R. K.
Pant, editors, Soft Computing in Engineering Design and Manufacturing, pages 231–
240, London, 1998. Springer London.

[21] Dr Prakash Bethapudi, Sreenivasa Reddy, T Sitamahalakshmi, and VARMA KA-
MADI. Feature analysis and classification of bi-rads breast cancer using genetic algo-
rithm. 6, 03 2015.

[22] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies: A comprehensive
introduction. Natural Computing, 1(1):3–52, Mar 2002.

[23] Tobias Blickle and Lothar Thiele. A Comparison of Selection Schemes Used in Genetic
Algorithms. Swiss Federal Institute of Technology, Zurich, Switzerland, December 1995.

[24] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolu-
tionary algorithms. Evolutionary Computing, 4(4):361–394, December 1996.

[25] PDQ Cancer Genetics Editorial Board, editor. Genotype. National Cancer Institute,
2016.

[26] G. E. P. Box. The exploration and exploitation of response surfaces; some general,
considerations and examples. Biometrics, pages 16–60, 1954.

[27] George E. P. Box. Evolutionary operation: A method for increasing industrial produc-
tivity. Journal of the Royal Statistical Society. Series C (Applied Statistics), 6(2):81–
101, 1957.

167

[28] George E. P. Box and Norman Richard. Draper. Evolutionary operation; a statistical
method for process improvement [by] George E. P. Box [and] Norman R. Draper. Wiley
New York, 1969.

[29] Burcin Bozkaya, Erhan Erkut, and Gilbert Laporte. A tabu search heuristic and
adaptive memory procedure for political districting. European Journal of Operational
Research, 144(1):12–26, 2003.

[30] F. Z. Brill, D. E. Brown, and W. N. Martin. Fast generic selection of features for
neural network classifiers. IEEE Transactions on Neural Networks, 3(2):324–328, Mar
1992.

[31] Jason Brownlee. Clever Algorithms: Nature-Inspired Programming Recipes. Lulu Press,
Inc., Morrisville, NC, June 15 2012.

[32] Glen Van Brummelen. Heavenly Mathematics: The Forgotten Art of Spherical
Trigonometry. Princeton University Press, 2012.

[33] M. G. Bulmer. The mathematical theory of quantitative genetics / M.G. Bulmer.
Clarendon Press ; New York : Oxford University Press Oxford, 1980.

[34] George H. Burgin. Systems identification by quasilinearization and by evolutionary
programming. Journal of Cybernetics, 3(2):56–75, 1973.

[35] Carnegie Mellon University. AI FAQs: What is evolutionary programming (EP)?

[36] Carnegie Mellon University. AI FAQs: What’s an evolutionary strategy (ES)?

[37] Carnegie Mellon University. AI FAQs: What’s genetic programming (GP)?

[38] Daniel Joseph Cavicchio Jr. Adaptive search using simulated evolution. PhD thesis,
University of Michigan, Ann Arbor, MI, USA, August 1970.

[39] Center for Economic Studies, United States Census Bureau. Decennial census of pop-
ulation and housing.

[40] Uday Kumar Chakraborty, Kalyanmoy Deb, and Mandira Chakraborty. Analysis of
selection algorithms: A markov chain approach. Evol. Comput., 4(2):133–167, June
1996.

[41] P. K. Chawdhry and R. K. Pant, editors. Soft Computing in Engineering Design and
Manufacturing. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1st edition, 1997.

[42] J. Cheng, G. G. Yen, and G. Zhang. A many-objective evolutionary algorithm with
enhanced mating and environmental selections. IEEE Transactions on Evolutionary
Computation, 19(4):592–605, Aug 2015.

[43] Oliver Chikumbo. Using different approaches to approximate a pareto front for a mul-
tiobjective evolutionary algorithm: Optimal thinning regimes for eucalyptus fastigata.
International Journal of Forestry Research, page 27, 2012.

168

[44] Christine Chou, Steven Kimbrough, John Sullivan-Fedock, C. Jason Woodard, and
Frederic H. Murphy. Using interactive evolutionary computation (iec) with validated
surrogate fitness functions for redistricting. In Proceedings of the 14th Annual Confer-
ence on Genetic and Evolutionary Computation, GECCO ’12, pages 1071–1078, New
York, NY, USA, 2012. ACM.

[45] Jon Christensen, Joe Marks, and Stuart Shieber. An empirical study of algorithms for
point-feature label placement. ACM Trans. Graph., 14(3):203–232, July 1995.

[46] Per Christensson. Software terms: Heuristic.

[47] C.A.C. Coello. A Survey of Constraint Handling Techniques Used with Evolutionary
Algorithms. Laboratorio Nacional de Informática Avanzada, 06 1999.

[48] Jared L Cohon. Multiobjective programming and planning. Mineola, N.Y. : Dover
Publications, 2003. Originally published: New York : Academic Press, 1978. in series:
Mathematics in science and engineering. With new pref.

[49] Leon Cooper. Location-allocation problems. Operations Research, 11(3):331–343, 1963.

[50] Elon S. Correa, Maria Teresinha A. Steiner, Alex A. Freitas, and Celso Carnieri. A ge-
netic algorithm for the p-median problem. In Lee E. Spector and Erik D. Goodman, ed-
itors, Proc. 2001 Genetic and Evolutionary Computation Conference (GECCO-2001),
pages 1268–1275, San Fracisco, USA, July 2001. Morgan Kaufmann.

[51] Michael Crichton. Prey. Harper Collins, New York, NY, USA, 2003.

[52] J.F. Crow and M. Kimura. Efficiency of truncation selection. Proceedings of the
National Academy of Sciences of the United States of America, 76(1):396–399, January
1979.

[53] Charles Darwin. On the Origin of Species by Means of Natural Selection, or the Preser-
vation of Favoured Races in the Struggle for Life. John Murray (publisher), London,
England, 1859.

[54] Dilip Datta, Jose Rui Figueira, Carlos M. Fonseca, and Fernando Tavares-Pereira.
Graph partitioning through a multi-objective evolutionary algorithm: A preliminary
study. In Proceedings of the 10th Annual Conference on Genetic and Evolutionary
Computation, GECCO ’08, pages 625–632, New York, NY, USA, 2008. ACM.

[55] Lawrence Davis and Martha Steenstrup. Genetic algorithms and simulated annealing:
An overview. In Lawrence Davis, editor, Genetic Algorithms and Simulated Annealing,
chapter 1, pages 1–11. Morgan Kaufmann Publishers Inc., Los Altos, California, 1987.

[56] R Dawkins. The Blind Watchmaker. Longman Scientific and Technical, 1986.

[57] Kenneth Alan De Jong. An Analysis of the Behavior of a Class of Genetic Adaptive
Systems. PhD thesis, Ann Arbor, MI, USA, 1975. AAI7609381.

169

[58] Kenneth Alan De Jong, David B. Fogel, and Hans-Paul Schwefel. A history of evolu-
tionary computation. Evolutionary Computation, pages 40–59, 2000.

[59] René Descartes (1596-1650). Discourse on method ; and, Meditations on first philoso-
phy. Hackett Pub. Co., Indianapolis, IA, third edition, 1993.

[60] Editors of Encyclopædia Britannica. Gene, heredity, September 22 2017.

[61] Larry J. Eshelman, Richard A. Caruana, and J. David Schaffer. Biases in the crossover
landscape. In Proceedings of the Third International Conference on Genetic Algo-
rithms, pages 10–19, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers
Inc.

[62] D. B. Fogel and A. Ghozeil. Schema processing under proportional selection in the pres-
ence of random effects. IEEE Transactions on Evolutionary Computation, 1(4):290–
293, Nov 1997.

[63] David B. Fogel. The advantages of evolutionary computation. In Biocomputing and
Emergent Computation: Proceedings of BCEC97, pages 1–11. World Scientific Press,
1997.

[64] David B. Fogel. Evolutionary Computation: The Fossil Record. Wiley-IEEE Press, 1st
edition, 1998.

[65] David B. Fogel. An Introduction to Evolutionary Computation. Wiley-IEEE Press, 1st
edition, 1998.

[66] David B. Fogel. Evolutionary Computation: Towards a New Philosophy of Machine
Intelligence. Wiley-IEEE Press, 2nd edition, 1999.

[67] David B. Fogel. In memoriam: Alex s. fraser (1923-2002). IEEE Transactions on
Evolutionary Computation, 6(5), October 2002.

[68] David B. Fogel. Introduction to evolutionary computation. In Kwang Y. Lee and Mo-
hammed A. El-Sharkawi, editors, Modern Heuristic Optimization Techniques: Theory
and Applications to Power Systems, pages 1–23. Wiley-IEEE Press, 2007.

[69] David Bruce Fogel. Evolving Artificial Intelligence. PhD thesis, La Jolla, CA, USA,
1992. UMI Order No. GAX93-03240.

[70] L.J. Fogel. On the Organization of Intellect. 1964.

[71] L.J. Fogel, A.J. Owens, and M.J. Walsh. Artificial intelligence through simulated evo-
lution. Wiley, Chichester, WS, UK, 1966.

[72] Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for
autonomous agents. In Proceedings of the Workshop on Intelligent Agents III: Agent
Theories, Architectures, and Languages, pages 21–35, London, UK, August 12-13 1996.
Springer-Verlag.

170

[73] A. S. Fraser. Simulation of genetic systems by automatic digital computers. i. intro-
duction. Australian Journal of Biological Sciences, 10:484–491, 1957.

[74] Juergen Gall, Bodo Rosenhahn, and Hans-Peter Seidel. An Introduction to Interacting
Simulated Annealing, pages 319–345. Springer Netherlands, Dordrecht, 2008.

[75] R. S. Garfinkel and G. L. Nemhauser. Optimal political districting by implicit enu-
meration techniques. Management Science, 16(8):B495–B508, 1970.

[76] William V. Gehrlein. A comparative analysis of measures of social homogeneity. Quality
and Quantity, 21(3):219–231, Sep 1987.

[77] Katrina Ellison Geltman. The simulated annealing algorithm, February 20 2014.

[78] Don Gilbert et al. The role of intelligent agents in the information infrastructure.
Proceedings of the 18th Annual Pacific Telecommunications Conference, 1:912–919,
January 14-18 1996.

[79] Fred Glover. Heuristics for integer programming using surrogate constraints. 8:156 –
166, 01 1977.

[80] Jeff Goddell. Inside the artificial intelligence revolution: A special report, pt. 1. Rolling
Stone, February 29 2016.

[81] David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition,
1989.

[82] John J. Greffenstette and James E. Baker. How genetic algorithms work: A critical
look at implicit parallelism. In Proceedings of the 3rd International Conference on
Genetic Algorithms, pages 20–27, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

[83] R. W. Hamming. Error detecting and error correcting codes. The Bell System Technical
Journal, 29(2):147–160, April 1950.

[84] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution strategies. April 5 2013.

[85] Nikolaus Hansen, Dirk V. Arnold, and Anne Auger. Evolution Strategies, pages 871–
898. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[86] S. W. Hess, J. B. Weaver, H. J. Siegfeldt, J. N. Whelan, and P. A. Zitlau. Nonpartisan
political redistricting by computer. Operations Research, 13(6):998–1006, 1965.

[87] Alexa Heucke, Georg Peters, and Roger Tagg. Intelligent Software Agents, pages 1598–
1602. IGI Global, Hershey, PA, USA, 2005.

[88] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal Golden Braid. Basic Books,
Inc., New York, NY, USA, 1979.

171

[89] John H. Holland. Outline for a logical theory of adaptive systems. J. ACM, 9(3):297–
314, July 1962.

[90] John H. Holland. Genetic algorithms and the optimal allocation of trials. SIAM
Journal on Computing, 2(2):88–105, 1973.

[91] John H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, USA, 1992.

[92] John Henry Holland. Adaptation in Natural and Artificial Systems: An introductory
analysis with applications to biology, control, and artificial intelligence. University of
Michigan Press, 1975.

[93] Roy B. Hollstien. Artificial Genetic Breeding Procedures for Parameter Optimization.
PhD thesis, University of Michigan, Ann Arbor, MI, USA, September 1973.

[94] Phil Hurvitz. What is the difference between zip code ”boundaries” and ZCTA areas?

[95] Christopher Ingraham. This is the best explanation of gerrymandering you will ever
see, March 2015.

[96] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A roadmap of agent
research and development. Autonomous Agents and Multi-Agent Systems, 1(1):7–38,
Mar 1998.

[97] S. Jiang and S. Yang. An improved multiobjective optimization evolutionary algorithm
based on decomposition for complex pareto fronts. IEEE Transactions on Cybernetics,
46(2):421–437, Feb 2016.

[98] Norman Johnson. Sewall wright and the development of shifting balance theory, 2008.

[99] D.F. Jones, S.K. Mirrazavi, and M. Tamiz. Multi-objective meta-heuristics: An
overview of the current state-of-the-art. European Journal of Operational Research,
137(1):1 – 9, 2002.

[100] Stephen Juan. What is the difference between a chromosome and a gene?, May 19
2006.

[101] Sung Jung. Queen-bee evolution for genetic algorithms. 39:575 – 576, 04 2003.

[102] Dervis Karaboga and Bahriye Akay. A survey: Algorithms simulating bee swarm
intelligence. Artif. Intell. Rev., 31(1-4):61–85, June 2009.

[103] Ali Karci. Imitation of bee reproduction as a crossover operator in genetic algorithms,
01 2004.

[104] J. Kennedy and R. Eberhart. Particle swarm optimization. In Neural Networks, 1995.
Proceedings., IEEE International Conference on, volume 4, pages 1942–1948 vol.4, Nov
1995.

172

[105] James Kennedy. Particle Swarm Optimization, pages 1113–1113. Springer US, Boston,
MA, 2013.

[106] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

[107] Abdullah Konak, David W. Coit, and Alice E. Smith. Multi-objective optimization us-
ing genetic algorithms: A tutorial. Reliability Engineering and System Safety, 91(9):992
– 1007, 2006. Special Issue - Genetic Algorithms and Reliability.

[108] John R. Koza. Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[109] John R. Koza. Genetic programming as a means for programming computers by natural
selection. Statistics and Computing, 4(2):87–112, Jun 1994.

[110] John R. Koza. Hidden order: How adaptation builds complexity. Artificial Life,
2(3):333–335, 1995.

[111] Alfred A. Kuehn and Michael J. Hamburger. A heuristic program for locating ware-
houses. Management Science, 9(4):643–666, 1963.

[112] Harold W. Kulin and Robert E. Kuenne. An efficient algorithm for the numerical
solution of the generalized weber problem in spatial economics. Journal of Regional
Science, 4(2):21–33, 1962.

[113] John E. Laird and Allen Newell. A universal weak method: Summary of results.
In Proceedings of the Eighth International Joint Conference on Artificial Intelligence -
Volume 2, IJCAI’83, pages 771–773, San Francisco, CA, USA, 1983. Morgan Kaufmann
Publishers Inc.

[114] William B. Langdon and Riccardo Poli. Foundations of Genetic Programming. Springer
Publishing Company, Incorporated, 1st edition, 2002.

[115] Jonathan W. Lartigue. An alternative approach to viral infection for solving the knap-
sack problem through evolutionary programming. Master’s thesis, Auburn University,
Auburn, Ala., April 2002.

[116] Svetlana Lazebnik. Lecture on rational agents. lecture, September 2017.

[117] Kwang Y. Lee and Mohammed A. El-Sharkawi. Modern Heuristic Optimization Tech-
niques: Theory and Applications to Power Systems. Wiley-IEEE Press, 2007.

[118] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,
140:1–55, 1932.

[119] Peter Lynch. How voronoi diagrams help us understand our world, January 2017.

173

[120] Robert E. Mahony and Robert C. Williamson. Prior knowledge and preferential struc-
tures in gradient descent learning algorithms. J. Mach. Learn. Res., 1:311–355, Septem-
ber 2001.

[121] Luca Mariot and Alberto Leporati. Heuristic search by particle swarm optimization
of boolean functions for cryptographic applications. In Proceedings of the Companion
Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation,
GECCO Companion ’15, pages 1425–1426, New York, NY, USA, 2015. ACM.

[122] Michael de la Maza and Bruce Tidor. An analysis of selection procedures with partic-
ular attention paid to proportional and boltzmann selection. In Proceedings of the 5th
International Conference on Genetic Algorithms, pages 124–131, San Francisco, CA,
USA, 1993. Morgan Kaufmann Publishers Inc.

[123] John McCullock. Introduction to particle swarm optimization.

[124] Saul McLeod. The likert scale, 2008.

[125] K. Miettinen. Nonlinear multiobjective optimization. Kluwer Academic Publishers,
Boston, 1999.

[126] Melanie Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA, 1998.

[127] Noraini Mohd Razali and John Geraghty. Genetic algorithm performance with different
selection strategies in solving tsp, 01 2011.

[128] Alcir J. Monticelli, Rubén Romero, and Eduardo Nobuhiro Asada. Fundamentals of
simulated annealing. In Kwang Y. Lee and Mohammed A. El-Sharkawi, editors, Mod-
ern Heuristic Optimization Techniques: Theory and Applications to Power Systems,
pages 123–146. Wiley-IEEE Press, 2007.

[129] H. Mühlenbein, M. Schomisch, and J. Born. Paper: The parallel genetic algorithm as
function optimizer. Parallel Comput., 17(6-7):619–632, September 1991.

[130] Heinz Mühlenbein and Dirk Schlierkamp-Voosen. Predictive models for the breeder
genetic algorithm i. continuous parameter optimization. Evol. Comput., 1(1):25–49,
March 1993.

[131] Heinz Mühlenbein and Hans-Michael Voigt. Gene Pool Recombination in Genetic
Algorithms, pages 53–62. Springer US, Boston, MA, 1996.

[132] Giuseppe Narzisi. Multi-Objective Optimization: A Quick Introduction. Courant In-
situte of Mathematical Sciences, New York University, New York, NY, USA, January
2008.

[133] Hyacinth S. Nwana. Software agents: an overview. The Knowledge Engineering Review,
11(3):205–244, 1996.

174

[134] A. K. Ojha and K. K. Biswal. Multi-objective geometric programming problem with
weighted mean method. International Journal of Computer Science and Information
Security, 7(2):82–86, 2010.

[135] A. Omidpour, B. Nasiri, K. Alagheband, and M. R. Meybodi. A new real-valued
diploid genetic algorithm for optimization in dynamic environments. In 2014 Iranian
Conference on Intelligent Systems (ICIS), pages 1–6, Feb 2014.

[136] G. Pavai and T. V. Geetha. A survey on crossover operators. ACM Comput. Surv.,
49(4):72:1–72:43, December 2016.

[137] Massimo Pigliucci. Sewall wright’s adaptive landscapes: 1932 vs. 1988. 23:591–603,
01 2008.

[138] George Plimpton, Van Wyck Brooks, and Malcolm Cowley, editors. Writers at Work:
The Paris Review Interviews. Penguin Books, second edition, November 1977.

[139] Jana Polgar and Tony Polgar. Designing agents with negotiation capabilities. Ency-
clopedia of Information Science and Technology, pages 810–815, 2005.

[140] R. Poli. Why the schema theorem is correct also in the presence of stochastic ef-
fects. In Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat.
No.00TH8512), volume 1, pages 487–492 vol.1, 2000.

[141] George R. Price. Selection and covariance. Nature, (227):520–521, 1970.

[142] George R. Price. Extension of covariance selection mathematics. Annals of Human
Genetics, 35(4):485–490, 1972.

[143] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing, Vienna, Austria, 2017.

[144] Rosshairy Abd Rahman, Razamin Ramli, Zainoddin Jamari, and Ku Ruhana Ku-
Mahamud. Evolutionary algorithm with roulette-tournament selection for solving
aquaculture diet formulation. Mathematical Problems in Engineering, 2016, 2016.

[145] Ingo Rechenberg. Evolutionsstrategie; Optimierung technischer Systeme nach Prinzip-
ien der biologischen Evolution. Mit einem Nachwort von Manfred Eigen. Frommann-
Holzboog [Stuttgart-Bad Cannstatt], 1973.

[146] Charles S. ReVelle and Ralph W. Swain. Central facilities location. Geographical
Analysis, 2(1):30–42, 1970.

[147] Horst W. J. Rittel and Melvin M. Webber. Dilemmas in a general theory of planning.
Policy Sciences, 4(2):155–169, Jun 1973.

[148] Kara Rogers. What’s the difference between a gene and an allele?

175

[149] Amos Ives Root, Ann Harman, Hachiro Shimanuki, and Kim Flottum. The ABC
and XYZ of Bee Culture: An Encyclopedia Pertaining to the Scientific and Practical
Culture of Honey Bees. A. I. Root Co., 41st edition, 2007.

[150] Jonathan E. Rowe. Genetic algorithm theory. In Proceedings of the 9th Annual Con-
ference Companion on Genetic and Evolutionary Computation, GECCO ’07, pages
3585–3608, New York, NY, USA, 2007. ACM.

[151] Jonathan E. Rowe. Genetic algorithm theory. In Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation, GECCO ’12, pages
917–940, New York, NY, USA, 2012. ACM.

[152] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1995.

[153] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pear-
son Education, 2nd edition, 2003.

[154] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pear-
son Education, Upper Saddle River, NJ, USA, 3rd edition, 2010.

[155] Noureddin Sadawi. Java implementation of the roulette wheel selection method.

[156] Ruhul A. Sarker and Tapabraeta Ray. Agent-based evolutionary algorithms: Emerging
paradigm or buzzwords? OR/MS Today, 38(5), October 2011.

[157] Y. Sawaragi, H. Nakayama, T. Tanino, A. Torokhti, and P. Howlett. Theory of Mul-
tiobjective Optimization. Mathematics in science and engineering. Academic Press,
1985.

[158] H.-P. Schwefel and J. Born. Numerische optimierung von computer-modellen mit-
tels der evolutionsstrategie. mit einer vergleichenden einführung in die hill-climbing-
und zufallsstrategien. (isr 26) basel-stuttgart, birkhäuser verlag 1977. 390 s., sfr. 48,–.
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte
Mathematik und Mechanik, 60(5):272–272, 1980.

[159] Hans-Paul Schwefel. Collective phenomena in evolutionary systems, 01 1987.

[160] Michael D. Shapiro. Pigeon breeding: Genetics at work.

[161] Herbert A. Simon. Administrative behavior: a study of decision-making processes in
administrative organization. The Macmillan Company, 1st edition edition, 1947.

[162] Kenneth Sörensen and Fred Glover. Metaheuristics, 01 2013.

[163] William Spears. Crossover or mutation? 2, 07 1999.

[164] William Spears and Kenneth De Jong. On the virtues of parametrized uniform
crossover. Technical report, Defense Technical Information Center, 01 1995.

176

[165] Erik Svensson and Ryan Calsbeek. The Adaptive Landscape in Evolutionary Biology.
Oxford University Press, 2012.

[166] H. Takagi. Interactive evolutionary computation: fusion of the capabilities of ec opti-
mization and human evaluation. Proceedings of the IEEE, 89(9):1275–1296, Sep 2001.

[167] Andrea Tettamanzi and Marco Tomassini. Soft Computing: Integrating Evolutionary,
Neural, and Fuzzy Systems. Springer Publishing Company, Incorporated, 1st edition,
2001.

[168] The MathWorks Inc. Displaying a contour plot under a mesh plot.

[169] Tinh-Chi Tran, Tien Ba Dinh, and Viviane Gascon. Meta-heuristics to solve a dis-
tricting problem of a public medical clinic. In Proceedings of the Eighth International
Symposium on Information and Communication Technology, SoICT 2017, pages 127–
134, New York, NY, USA, 2017. ACM.

[170] United States Census Bureau. Census tracts.

[171] United States Census Bureau. Zip code tabulations areas (ZCTAs).

[172] United States Census Bureau. ZIP code tabulation areas (ZCTAs). pamphlet, Wash-
ington, D.C., February 2015.

[173] United States National Archives. Enumeration district and related maps, 1880 - 1990.

[174] Abraham Wald. Statistical Decision Functions. Wiley: New York, 1950.

[175] Alfred Weber. uber den Standort der Industrien, Translated as Alfred Weber’s Theory
of the Location of Industries. PhD thesis, uber den Standort der Industrien, Tubingen,
Germany, 1909.

[176] Eric W. Weisstein. Hypercube.

[177] Eric W. Weisstein. Stirling Number of the Second Kind. MathWorld. Last visited on
3/8/2018.

[178] Darrell Whitley. The genitor algorithm and selection pressure: Why rank-based alloca-
tion of reproductive trials is best. In Proceedings of the Third International Conference
on Genetic Algorithms, pages 116–121. Morgan Kaufmann, 1989.

[179] Darrell Whitley. A genetic algorithm tutorial. Statistics and Computing, 4(2):65–85,
Jun 1994.

[180] Ryan Wojes. What is annealing in metallurgy?

[181] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82, Apr 1997.

[182] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.
The Knowledge Engineering Review, 10(2):115–152, June 1995.

177

[183] Sewall Wright. The roles of mutation, inbreeding, crossbreeding and selection in evo-
lution. Proceedings of the Sixth International Congress of Genetics, 1:356–366, 1932.

[184] Ningchuan Xiao. Geographic optimization using evolutionary algorithms. March 2003.

[185] Ningchuan Xiao, David A Bennett, and Marc P Armstrong. Using evolutionary algo-
rithms to generate alternatives for multiobjective site-search problems. Environment
and Planning A: Economy and Space, 34(4):639–656, 2002.

[186] Eckart Zitzler and Lothar Thiele. An evolutionary algorithm for multiobjective opti-
mization: The strength pareto approach, 1998.

178

Appendices

179

Appendix A

Additional Tables and Figures

180

24
18

1
11

23
3

19
29

1
23

49
9

43
55

24
97

4
18

92
6

10
90

3
6
9
9
2

5
3
4
4

1
2
9
4
2

1
9
3
7
2

2
1
2
7
8

2
3
7
1
9

1
0
6
4
8

6
9
3
9

1
0
0
9
0

3
1
4
7

1
0
8
8
7

1
6
9
3
4

2
4
8
9
9

6
8
0
9

4
4
6
9

6
4
3
2

1
2
7
2
4

24
78

9
53

14
10

03
8

11
43

6
11

48
6

64
47

31
81

19
25

0
3
4
3
4

1
7
7
3
4

1
1
2
9

1
2
0
7
8

1
2
6
0
4

1
4
4
6
9

1
5
8
1
1

9
1
3
0

5
1
7
0

1
6
7
6
6

4
8
3
9

2
2
6
3
8

2
1
5
2
7

1
1
1
1
6

8
2
4
9

2
3
1
6
0

1
3
8
6
8

16
62

38
10

19
69

0
61

22
13

81
6

22
78

7
11

91
4

19
00

8
2
0
5
6
9

3
5
2
6

3
2
6
4

3
1
7

2
4
8
6
5

2
2
7
1

1
0
6
0

6
4
0
3

6
5
9
4

1
7
0
4
2

1
0
3
1
7

2
2
7
1
7

1
8
9
7

4
1
2
9

1
9
0
6
4

1
6
0
5
9

2
2
3
7
6

24
74

0
12

96
9

12
10

1
10

51
2

11
92

3
23

21
3

13
60

5
68

9
2
1
4
5
6

1
6
6
5

3
3
4
4

1
0
7
8

2
3
9
8
5

1
4
9
5
3

1
5
7
9
4

2
1
9
0
8

1
6
1
5
1

8
6
5
2

1
2
0
0
8

2
4
1
4
5

6
4
3
5

7
6
7
8

3
5
2
5

4
0
4
0

4
5
8
6

21
33

18
83

3
19

58
5

17
32

6
20

04
0

14
05

6
13

85
7

99
8
5

3
2
5
6

1
8
5
6
8

1
3
3
9
7

2
3
3
8

1
9
7
7
6

8
5
2

1
8
2
5
9

2
0
5
9
1

1
3
9
2
4

2
0
0
8
3

1
2
1
1
8

5
4
7
1

7
4
0
9

2
1
0
1
8

9
5
0
8

1
3
3
0
9

1
5
6
8
4

36
51

24
38

8
22

19
6

12
65

4
79

26
13

57
9

84
56

43
9

9
5
4
1

1
2
5
4
8

1
8
2
9
1

1
2
1
0
3

1
5
8
1
3

1
1
9
4
2

3
3
7
5

5
4
5
9

1
7
9
2
4

4
6
6

3
6
0
3

4
8
9
5

1
9
7
6
7

2
1
0
3
9

1
1
2
5
9

1
3
4
7
2

1
5
4
8
0

76
61

36
33

39
67

12
12

12
64

2
75

6
14

48
0

82
6
6

2
3
6
7
8

1
5
0
5
0

1
9
6
6
1

2
0
5
7
3

1
8
3
9
9

1
1
1
9
9

1
4
2
5
7

1
0
6
0
5

9
7
3
5

5
9
6

3
2
3
8

1
9
6
5
0

2
0
7
6
8

1
7
1
9

1
2
9
3
3

1
1
6
1
4

1
2
5
3
9

68
84

10
79

5
70

37
10

63
4

29
64

86
07

26
81

22
18

2
1
4
0
3
5

1
8
5
2
1

1
2
6
8
9

1
0
4
7
8

1
0
5
7
6

1
4
6
4
5

1
5
0
1

6
8
3
5

1
2
3
4
0

2
7
7
9

1
5
6
7
9

1
8
4
7

1
8
0
4
9

5
5
7
4

2
1
0
2
3

2
0
1
6
6

3
4
0

11
49

8
87

3
97

03
20

02
5

14
24

3
14

56
6

13
95

8
10

08
9

2
1
3
9

9
1
3
8

2
4
0
8
3

2
0
4
6

1
2
4
7
1

3
2
9
4

1
1
0
2
1

2
3
2
5
7

5
8
1
6

1
4
8
4
9

1
4
0
4
4

1
3
3
5
6

1
0
6
2
4

8
4
0
5

2
3
2
8
3

7
4
2
4

1
3
5
5
6

72
52

47
40

10
43

4
21

66
1

65
16

24
93

6
11

70
7

50
9
2

1
8
2
3
7

6
4
0
8

2
0
1
2
3

1
2
0
0
0

5
9
5
2

1
7
9
2
2

5
7
4
2

1
6
9
6
6

2
1
2
1
5

1
5
0
7
4

1
7
9
3
5

7
0
2
0

8
0
4
2

5
9
7
1

1
0
9
3
9

1
0
3
6
3

1
7
6
3
3

12
43

52
31

15
29

6
44

23
22

09
1

13
62

2
84

80
24

18
4

7
3
0
5

2
2
6
8
5

7
8
5
6

6
2
6
9

1
5
9
2
0

1
4
6
6
1

6
1
0
5

1
9
0
8
1

1
5
1
7
1

2
1
1
4
5

1
1
8
9
7

1
9
1
3
6

1
2
0
4
8

2
7
2
8

5
3
8
4

1
0
7
5
2

8
1
7
8

20
02

6
61

73
12

05
5

24
63

8
17

55
20

99
82

31
95

2
8

5
3
9
2

7
6
5
0

1
6
8
6
8

1
4
7
6
5

1
4
7
7
0

2
1
0
5
9

1
3
8
3
1

1
0
9
1
4

1
4
5
1
7

2
0
2
6
3

6
0
6
9

2
0
2
2
6

2
1
8
3

1
6
7
0
1

1
4
9
5
7

2
1
8
3
3

1
8
4
4
6

17
84

9
16

73
2

22
28

0
23

67
8

23
36

9
23

5
13

30
9

15
12

9
2
0
8
9

9
5
9
0

1
4
1
9
1

6
5
9
2

1
0
0
7
4

1
6
9
8
6

2
4
5
0
2

6
2
9
5

7
2
5
1

2
3
0
5
5

3
9
0
1

2
3
4
9

2
3
8
3
3

1
6
4
9
1

7
5
4

3
9
6
8

4
2
8

10
19

4
10

38
4

11
86

30
42

14
19

13
58

6
15

78
6

44
4
9

2
1
8
5
4

2
3
8
4
6

1
0
0
4
6

6
0
9
9

4
6
6
7

5
3
6
8

7
5
3
7

2
4
0
0
0

9
3
0
3

9
4
8
7

4
4
8
8

2
1
3
7
8

2
3
5
7
4

2
2
5
9
7

1
2
3
8
9

2
1
6
5
6

9
9
2
0

13
08

4
13

98
17

67
2

11
17

1
21

44
3

63
99

11
78

13
90

6
1
8
5
3
6

1
8
6
3
5

1
7
7
8
2

8
7
2
7

1
6
9
4
1

1
9
8
4
9

6
8
2
2

2
2
1
9
1

1
1
6
7

2
0
4
5
0

1
0
7
6
3

7
1
0
5

2
1
6
1
6

1
8
5
2
9

1
6
5
5
1

1
3
6
0
4

1
3
9
0
6

86
09

10
06

9
50

55
43

61
54

73
24

25
0

33
58

24
26

6
8
6
7
2

1
8
7
6
1

5
9
0
6

1
8
2
2

4
0
0
7

6
2
8
8

2
4
9
7

3
4
2
2

1
5
3
7
6

2
5
6
9

2
1
8
2
9

4
7
4
3

6
2
7
7

1
2
3
8
1

9
8
4
9

7
0
7
2

2
3
0
2
1

15
72

8
95

44
18

47
1

16
71

9
12

29
4

22
00

7
12

63
0

20
55

3
8
3
0
0

1
4
8
6
1

1
5
6
3

6
9
3

6
9
9
8

2
2
9
6
4

2
0
5
6
8

2
3
3
1
0

1
4
8
2
3

1
3
3
9
3

8
3
3
9

2
4
8
3
1

1
4
1
2

2
1
8
0
0

1
8
3
6
8

6
7
6
0

1
1
6
6

18
99

57
67

17
49

0
24

26
0

10
37

9
22

09
77

2
15

94
1

1
5
5
6
6

3
8
7
5

1
2
8
1
7

1
5
9
1
3

8
2
5
3

6
1
1
6

2
3
5
7
3

8
5
7
2

1
4
2
6
5

1
0
6
8
4

9
3
0
9

1
5
7
6
4

2
4
5
3

2
6
8
9

1
9
5
8

2
2
7
2
2

6
5
4
0

15
79

22
84

7
14

07
6

23
53

7
37

07
15

39
8

92
06

20
1
6

2
0
1
1

1
2
1
1
4

6
3
3
3

1
7
3
2
7

5
8
1
9

6
9
4
6

2
3
7
4
4

1
2
7
3
3

1
0
3
1
1

2
4
9
3
3

1
0
4
5
2

1
0
7
3
2

6
8
1
3

4
0
9
8

1
6
3
5
9

1
3
9
9
2

7
9
9
1

18
91

7
12

97
8

96
01

23
74

5
13

41
6

10
20

53
00

22
53

7
1
7
0
3
3

1
3
9
4
8

2
1
2
7
0

9
9
7
7

2
3
4
8
0

5
0
3
5

1
8
2
3
6

1
3
1
4

2
0
2
2
6

1
9
6
1

1
5
2
3
1

1
0
5
4
3

5
6
2
5

9
9
0

1
5
4
5
3

1
0
0
6
4

1
9
4
0

17
83

3
38

75
15

51
6

18
64

2
22

82
8

72
29

11
09

5
60

1
5

1
2
8
0
5

1
9
3
0
3

3
3
4
2

7
7
1
0

1
6
8
5
0

1
1
7
4
7

4
5
6
7

5
2
0
3

1
2
5
0
1

1
1
9
1
6

4
1
7
6

2
1
9
9
7

3
5
1
9

1
2
4
3
5

2
1
5
8
2

1
5
9
8
5

4
9
0

94
11

17
03

35
32

24
19

8
49

29
19

89
4

22
47

18
74

6
1
2
3
4
8

2
9
9
8

7
8
0
8

1
3
1
1
0

1
9
1
7
8

1
7
8
6
4

1
3
4
5
6

1
9
9
2
8

1
2
9
9
1

2
0
7
3
2

5
8
8
4

1
1
7
7
5

1
8
4
0
6

1
5
0
8
3

2
1
6
8
9

2
0
8
4
3

2
0
4
7
3

21
00

3
54

95
51

2
93

60
76

44
14

80
0

20
2

18
04

8
1
5
2
8
9

2
4
7
5

1
0
3
4
1

1
5
8
9
0

1
1
7
9
5

1
1
9
2
3

2
8
6

6
1
7
7

2
7
2
9

4
0
9
8

1
8
2
9
2

1
8
2
8
4

2
3
7
9
4

1
1
6
6
4

2
1
6
8
8

1
4
3
3
6

7
3
7
4

53
44

17
00

6
37

28
37

65
92

76
18

73
2

13
75

2
30

4
8

1
1
1
0
6

2
1
5
9

1
3
1
5

4
2
1
7

5
6
5
8

7
0
4
6

2
2
6
7
0

2
4
7
6
7

9
6
2
4

1
3
4
7
1

1
1
4
3
3

1
7
3
8
3

1
7
9
7
8

2
1
0
4
3

2
4
9
8
5

1
1
2
6
4

1
6
3
9
7

12
17

4
16

80
16

70
0

17
23

2
19

31
0

19
45

0
43

37
22

03
1

7
9
9
8

8
9
0
1

1
9
4
5
9

3
1
6
4

1
6
7
1

2
0
8
9
1

1
7
0
1
7

2
0
1
6
2

1
0
8
1
7

1
1
2
8
2

2
3
2
0
5

6
7
9
4

8
2
4
4

1
0
7
8
9

2
0
4
0
2

8
9
3
6

2
1
8
6
2

T
ab

le
A

.1
:

S
am

p
le

d
at

a
fo

r
co

n
tr

ol
le

d
te

st
in

g
of

a
d
is

tr
ic

ti
n
g

p
ro

b
le

m
u
si

n
g

a
25

x
25

gr
id

w
it

h
ra

n
d
om

ly
ge

n
er

at
ed

p
op

u
la

ti
on

s
va

lu
es

in
th

e
ra

n
ge

(2
00
,2

50
00

)
w

it
h

a
m

in
im

u
m

va
lu

e
of

20
2,

a
m

ax
im

u
m

va
lu

e
of

24
,9

85
,

a
m

ea
n

of
14

,3
17

.7
,

an
d

a
to

ta
l

p
op

u
la

ti
on

of
7,

51
6,

79
8.

181

Percentage of Infeasible Solutions for a 25x25 Grid Districting Problem

Generation
µ=10 µ=50 µ=100 µ=500

Count Percent Count Percent Count Percent Count Percent
10 6 0.6 26 0.52 42 0.42 341 0.682
20 0 0.0 20 0.40 35 0.35 256 0.512
30 3 0.3 19 0.38 46 0.46 220 0.440
40 2 0.2 17 0.34 45 0.45 221 0.442
50 6 0.6 18 0.36 38 0.38 180 0.360
60 5 0.5 23 0.46 38 0.38 185 0.370
70 0 0.0 21 0.42 42 0.42 163 0.326
80 7 0.7 21 0.42 40 0.40 178 0.356
90 2 0.2 21 0.42 43 0.43 195 0.390
100 5 0.5 14 0.28 36 0.35 191 0.382

Table A.2: Variations in the number of infeasible (i.e. non-contiguous) solutions in the
population over time for typical run of an evolutionary algorithm operating on a 25x25 zone
districting problem partitioned into four districts with fixed centers and using single-point
crossover, no mutation, tournament size k = 4, and population sizes of µ = 10, µ = 50,
µ = 100, and µ = 500.

182

C
o
n
ti

g
u

o
u

s
D

is
tr

ic
ti

n
g

P
ro

b
le

m
w

it
h

R
a
n

d
o
m

M
u

ta
ti

o
n

x
1
0
0

T
ri

a
ls

P
op

u
la

ti
on

S
iz

e
=

50
P

o
p

u
la

ti
o
n

S
iz

e
=

1
0
0

P
o
p

u
la

ti
o
n

S
iz

e
=

5
0
0

G
en

er
at

io
n

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

1
16

58
7

12
23

41
.6

8
74

42
.9

3
0
.6

3
5
6

1
8
3
1
9

1
2
4
1
8
.6

5
5
0
5
6
.4

2
0
.6

4
3
9

1
1
8
1
5

1
2
3
2
1
9
.7

9
2
2
3
4
.7

5
0
.6

3
8
9

10
17

61
9

88
08

8.
54

13
45

2.
49

0
.3

2
8
4

1
8
3
1
9

8
3
0
8
5
.3

6
1
0
5
0
6
.8

7
0
.3

3
2
7

6
8
3
1

7
8
1
6
2
.0

8
5
6
3
8
.3

9
0
.3

5
5
4

20
17

61
9

74
16

6.
72

12
91

1.
56

0
.2

5
3
0

1
5
6
0
0

7
2
0
1
4
.1

5
1
0
6
5
2
.2

3
0
.3

5
1
5

6
8
3
1

6
4
8
4
7
.8

6
6
3
6
9
.1

1
0
.4

0
9
3

30
11

56
7

67
65

9.
50

11
99

4.
88

0
.2

3
0
4

7
9
1
0

6
7
3
6
4
.6

7
1
0
5
5
4
.0

8
0
.3

3
9
1

2
6
4
9

5
8
5
7
3
.4

7
7
3
6
9
.3

7
0
.4

3
4
5

40
11

47
5

65
25

7.
95

11
04

7.
71

0
.2

0
7
4

4
0
7
1

6
4
1
1
3
.2

7
9
2
5
1
.8

5
0
.3

2
4
7

2
5
4
9

5
3
6
7
6
.1

2
7
4
5
7
.3

1
0
.4

3
6
6

50
93

19
62

98
9.

23
10

32
5.

32
0
.2

2
0
8

4
0
7
1

6
0
7
2
6
.4

6
8
9
6
1
.5

4
0
.3

3
9
6

2
4
5
5

4
8
8
4
4
.1

7
6
7
2
3
.3

7
0
.4

3
7
0

60
45

78
62

57
1.

89
10

26
4.

12
0
.1

9
4
0

4
4
3
8

5
9
4
4
0
.7

0
9
2
0
9
.7

0
0
.3

3
4
8

1
3
9
5

4
5
0
9
6
.1

8
5
8
6
3
.9

0
0
.4

3
6
8

70
45

78
61

71
3.

24
97

85
.0

4
0
.1

8
7
4

2
8
5
0

5
7
3
2
2
.9

5
8
6
4
1
.1

8
0
.3

3
3
7

1
3
9
5

4
2
2
7
4
.7

0
5
0
7
3
.3

5
0
.4

3
5
6

80
45

78
60

44
4.

62
10

47
2.

03
0
.1

9
9
4

2
8
5
0

5
5
0
1
6
.5

0
8
4
9
8
.6

8
0
.3

3
7
0

7
8
7

4
0
3
7
8
.4

3
3
9
9
3
.0

0
0
.4

4
0
2

90
23

07
59

77
5.

23
10

38
6.

94
0
.1

9
5
2

2
8
5
0

5
3
2
4
5
.2

0
8
8
1
3
.3

2
0
.3

3
8
5

9
4
3

3
9
0
0
0
.5

1
3
6
2
8
.8

0
0
.4

4
1
1

10
0

26
30

59
09

3.
10

91
19

.7
8

0
.1

8
9
8

2
8
5
0

5
1
2
1
6
.9

0
8
8
6
5
.6

0
0
.3

4
6
4

5
7
6

3
8
1
6
2
.4

3
3
2
8
0
.0

2
0
.4

4
1
7

11
0

26
30

57
87

8.
09

79
72

.5
3

0
.1

9
1
4

2
5
6
4

8
0
9
1
0
.7

7
8
8
4
0
.9

9
0
.3

2
8
6

5
7
6

3
7
7
4
8
.8

3
2
8
0
8
.6

7
0
.4

3
8
2

12
0

26
30

57
40

6.
94

78
92

.1
2

0
.1

8
4
4

2
5
1
8

4
9
1
8
9
.4

7
8
9
2
5
.0

8
0
.3

4
1
1

3
7
3

3
7
3
5
8
.6

5
2
8
7
0
.4

3
0
.4

3
9
1

13
0

26
30

56
08

1.
95

84
56

.4
1

0
.1

9
4
0

1
4
0
7

4
8
0
4
8
.9

3
8
9
3
5
.8

7
0
.3

3
9
4

3
7
3

3
7
1
4
7
.9

2
2
9
4
5
.4

1
0
.4

3
7
2

14
0

26
30

56
43

7.
70

91
43

.1
0

0
.1

7
6
4

1
4
0
7

4
7
2
7
1
.8

9
8
5
3
3
.1

7
0
.3

3
8
1

3
7
3

3
6
9
3
6
.0

9
2
7
6
2
.8

5
0
.4

3
8
0

15
0

26
30

55
60

7.
37

79
90

.7
0

0
.1

8
1
6

1
0
8
2

4
5
7
5
6
.6

0
8
5
1
6
.4

0
0
.3

5
1
5

3
7
3

3
6
4
5
5
.6

6
2
8
8
5
.5

7
0
.4

4
3
0

16
0

26
30

54
77

6.
31

89
61

.0
2

0
.1

8
5
4

1
4
0
7

4
5
8
7
8
.3

1
8
5
5
7
.4

6
0
.3

3
7
1

2
5
3

3
6
4
6
7
.1

6
2
9
9
0
.4

4
0
.4

4
1
9

17
0

14
44

54
63

1.
42

75
39

.0
7

0
.1

7
8
8

1
0
2
3

4
5
5
3
4
.8

9
7
9
9
2
.3

7
0
.3

3
0
9

2
5
3

3
6
1
7
5
.1

9
2
9
5
0
.5

8
0
.4

4
5
1

18
0

14
44

53
69

6.
89

85
89

.2
7

0
.1

8
6
0

1
0
2
3

4
4
8
3
9
.4

0
8
7
5
0
.5

0
0
.3

3
9
0

1
6
4

3
6
6
7
7
.2

0
3
0
7
5
.6

0
0
.4

3
6
2

19
0

14
44

54
25

2.
68

79
33

.9
1

0
.1

7
2
2

1
0
2
3

4
4
3
5
1
.9

3
9
2
5
7
.8

9
0
.3

3
9
9

1
6
4

3
6
1
4
2
.9

3
2
9
4
1
.0

2
0
.4

4
2
9

20
0

14
44

53
26

7.
75

86
81

.2
5

0
.1

7
9
4

1
0
2
3

4
4
0
5
3
.4

9
8
4
4
9
.4

2
0
.3

3
7
4

1
6
4

3
6
3
3
3
.5

5
2
8
2
2
.4

2
0
.4

3
7
5

21
0

14
44

53
34

1.
87

75
73

.0
0

0
.1

7
1
0

1
0
2
3

4
4
1
7
3
.8

8
8
8
2
6
.4

8
0
.3

3
3
3

1
6
4

3
5
8
9
5
.6

6
2
8
9
5
.5

8
0
.4

4
4
9

22
0

14
44

53
25

8.
18

73
67

.0
4

0
.1

7
4
6

8
6
3

4
3
6
4
8
.6

7
8
6
1
7
.5

1
0
.3

3
3
8

1
6
4

3
6
1
8
2
.0

3
2
7
8
4
.5

7
0
.4

4
0
2

23
0

14
44

52
40

9.
01

87
95

.9
1

0
.1

8
7
8

8
6
3

4
3
0
6
1
.6

8
8
6
1
2
.8

4
0
.3

3
8
9

1
6
4

3
6
4
2
7
.6

8
2
9
4
3
.3

5
0
.4

3
5
8

24
0

14
44

51
70

9.
28

85
07

.2
8

0
.1

9
2
4

8
6
3

4
2
8
7
7
.4

3
9
0
1
8
.7

6
0
.3

3
6
2

1
0
0

3
5
9
0
2
.1

9
2
9
3
6
.1

1
0
.4

4
2
5

25
0

14
44

51
80

9.
75

81
32

.9
3

0
.1

8
4
0

8
6
3

4
3
1
9
1
.0

1
8
6
8
5
.1

3
0
.3

3
4
1

1
0
0

3
6
0
7
0
.6

5
2
9
6
9
.8

8
0
.4

3
9
3

26
0

14
44

51
41

1.
48

82
49

.1
9

0
.1

8
3
2

8
6
3

4
2
8
3
8
.9

7
9
0
8
5
.7

7
0
.3

3
6
1

1
0
0

3
5
9
0
1
.1

8
2
8
9
4
.3

7
0
.4

4
1
5

27
0

14
44

51
59

1.
44

86
54

.5
3

0
.1

7
8
4

6
5
3

4
2
3
1
6
.0

9
8
7
8
2
.1

8
0
.3

4
1
5

1
0
0

3
6
0
2
8
.9

3
2
8
6
1
.2

5
0
.4

3
9
5

28
0

14
44

51
86

0.
77

86
24

.8
0

0
.1

7
4
6

6
5
3

4
2
6
3
2
.9

0
9
4
1
0
.0

2
0
.3

3
4
9

1
0
0

3
6
4
1
5
.5

1
2
9
1
7
.8

5
0
.4

3
4
7

29
0

14
44

51
33

7.
99

58
61

.4
4

0
.1

7
9
2

6
5
3

4
2
2
1
7
.4

0
9
1
0
8
.0

7
0
.3

3
7
7

1
0
0

3
6
4
7
9
.1

4
2
8
0
9
.5

3
0
.4

3
2
7

30
0

14
44

51
12

6.
23

87
68

.0
7

0
.1

8
1
4

6
5
3

4
2
4
5
5
.6

0
8
8
5
3
.5

6
0
.3

3
5
8

1
0
0

3
5
8
6
6
.6

6
3
0
1
5
.2

4
0
.4

4
2
8

T
ab

le
A

.3
:

A
co

m
p
ar

is
on

of
ca

n
d
id

at
e

so
lu

ti
on

fi
tn

es
s

fo
r

10
0

tr
ia

ls
of

a
ge

n
et

ic
al

go
ri

th
m

ru
n
n
in

g
fo

r
30

0
ge

n
er

at
io

n
s

w
it

h
p

op
u
la

ti
on

si
ze

s
of
µ

=
50

,
µ

=
10

0,
an

d
µ

=
50

0
fo

r
a

d
is

tr
ic

t
p
ar

ti
ti

on
in

g
p
ro

b
le

m
w

it
h

a
p

en
al

iz
in

g
co

n
ti

gu
it

y
co

n
st

ra
in

t
on

a
25

x
25

gr
id

w
it

h
n
o

cr
os

so
ve

r
op

er
at

io
n
,

ra
n
d
om

m
u
ta

ti
on

w
it

h
p
ro

b
ab

il
it

y
p m

=
0.

00
1,

an
d

n
o

co
n
ti

gu
it

y
re

p
ai

r
op

er
at

io
n
.

183

C
o
n
ti

g
u

o
u

s
D

is
tr

ic
ti

n
g

P
ro

b
le

m
w

it
h

N
ei

g
h
b

o
rh

o
o
d

M
u

ta
ti

o
n

x
1
0
0

T
ri

a
ls

P
op

u
la

ti
on

S
iz

e
=

50
P

o
p

u
la

ti
o
n

S
iz

e
=

1
0
0

P
o
p

u
la

ti
o
n

S
iz

e
=

5
0
0

G
en

er
at

io
n

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

1
18

30
6

10
66

66
.0

4
66

56
.7

9
0
.9

9
6
4

1
0
9
2
8

1
0
4
9
8
0
.6

8
4
5
9
1
.9

9
0
.9

9
5
9

1
0
0
6
3

1
0
4
7
7
8
.4

9
2
0
5
7
.0

8
0
.9

9
6
3

10
93

69
49

02
2.

24
13

60
8.

61
0
.9

9
6
2

6
7
0
8

3
9
4
5
6
.7

6
1
1
3
9
3
.5

5
0
.9

9
5
5

2
1
8
3

2
8
6
7
3
.6

2
7
1
3
9
.1

7
0
.9

9
5
5

20
28

35
34

25
8.

10
13

63
5.

55
0
.9

9
6
2

2
3
5
2

2
3
6
8
0
.2

1
1
0
2
0
9
.7

0
0
.9

9
5
1

3
9
8

1
1
0
7
3
.7

6
4
3
5
1
.0

0
0
.9

9
5
2

30
23

81
23

26
7.

89
12

13
7.

57
0
.9

9
4
8

8
2
2

1
3
3
4
3
.3

6
7
9
4
0
.6

3
0
.9

9
3
8

3
2
1

5
0
3
2
.1

9
1
9
4
2
.1

6
0
.9

9
5
6

40
12

41
15

88
5.

33
10

26
4.

09
0
.9

9
4
6

7
4

7
4
8
4
.3

0
4
2
6
5
.4

6
0
.9

9
3
6

2
2
2

3
1
2
9
.8

6
1
1
9
5
.8

6
0
.9

9
5
2

50
35

0
11

39
0.

91
85

54
.2

6
0
.9

9
5
8

7
4

4
9
8
7
.1

1
2
4
7
3
.6

8
0
.9

9
3
7

1
1
7

2
2
7
2
.8

9
8
1
0
.9

6
0
.9

9
5
2

60
35

0
84

74
.9

2
71

21
.5

9
0
.9

9
5
8

7
4

3
6
9
6
.9

8
1
5
7
1
.7

3
0
.9

9
4
6

6
2

1
9
8
5
.5

7
6
2
0
.4

4
0
.9

9
4
7

70
35

0
65

40
.8

1
51

92
.2

1
0
.9

9
3
8

7
4

3
2
4
8
.4

6
1
4
6
4
.4

5
0
.9

9
2
6

6
2

1
7
7
8
.3

5
5
6
8
.4

3
0
.9

9
4
7

80
28

9
50

59
.7

6
33

31
.2

6
0
.9

9
5
6

7
4

2
7
3
8
.1

4
1
0
8
8
.7

2
0
.9

9
4
6

6
2

1
6
6
1
.6

9
5
0
6
.1

1
0
.9

9
4
8

90
28

9
41

63
.9

9
25

41
.7

2
0
.9

9
5
2

7
4

2
4
8
1
.1

7
1
0
4
6
.5

7
0
.9

9
4
8

6
2

1
6
5
1
.2

2
4
6
4
.6

7
0
.9

9
4
7

10
0

28
9

37
83

.4
9

17
19

.4
2

0
.9

9
3
6

7
4

2
4
6
9
.4

6
1
0
8
7
.9

6
0
.9

9
3
4

6
2

1
6
1
2
.0

9
4
8
5
.6

0
0
.9

9
5
0

11
0

16
6

33
59

.7
9

13
37

.2
3

0
.9

9
3
0

7
4

2
2
7
5
.2

4
9
4
3
.5

9
0
.9

9
4
7

6
2

1
7
1
6
.1

0
5
2
3
.2

0
0
.9

9
3
7

12
0

16
6

32
09

.2
1

13
65

.8
7

0
.9

9
0
8

7
4

2
1
7
9
.2

7
9
8
7
.7

2
0
.9

9
4
2

6
2

1
6
7
1
.2

3
5
3
7
.8

1
0
.9

9
4
3

13
0

16
6

29
09

.9
0

12
59

.3
8

0
.9

9
1
8

7
4

2
2
2
8
.8

0
9
6
1
.3

1
0
.9

9
1
9

6
2

1
6
1
4
.2

7
4
9
2
.5

9
0
.9

9
4
3

14
0

16
6

26
63

.6
6

10
67

.8
3

0
.9

9
3
2

7
4

2
1
3
7
.8

1
1
0
0
7
.7

6
0
.9

9
2
5

6
2

1
5
6
9
.4

8
4
4
9
.1

5
0
.9

9
4
8

15
0

16
6

26
25

.4
5

12
14

.5
1

0
.9

9
2
4

7
4

2
0
7
8
.6

0
9
0
2
.5

7
0
.9

9
2
5

6
2

1
5
5
4
.2

8
4
2
7
.2

5
0
.9

9
5
1

16
0

16
6

24
77

.5
5

11
78

.9
3

0
.9

9
3
0

7
4

2
0
4
4
.7

8
8
8
8
.9

7
0
.9

9
3
6

6
2

1
6
1
4
.6

7
4
6
2
.9

8
0
.9

9
4
0

17
0

16
6

23
44

.5
5

10
62

.5
7

0
.9

9
4
4

7
4

2
0
6
9
.8

0
7
5
7
.5

7
0
.9

9
2
3

6
2

1
5
5
3
.1

9
4
2
8
.5

4
0
.9

9
4
5

18
0

16
6

23
63

.7
6

11
16

.3
0

0
.9

9
4
2

7
4

1
9
6
8
.8

7
7
8
3
.4

1
0
.9

9
4
0

6
0

1
6
1
1
.1

2
4
7
5
.1

0
0
.9

9
3
8

19
0

12
2

22
50

.5
7

11
51

.2
0

0
.9

9
4
0

7
4

1
9
7
8
.8

9
8
0
1
.8

3
0
.9

9
2
7

6
0

1
6
2
1
.3

3
4
3
7
.4

6
0
.9

9
3
7

20
0

12
2

21
37

.3
3

10
52

.7
0

0
.9

9
5
0

7
4

2
0
2
6
.4

8
8
0
3
.9

2
0
.9

9
2
6

6
0

1
5
5
5
.6

2
3
9
8
.6

5
0
.9

9
4
5

21
0

12
2

22
93

.3
3

10
47

.9
0

0
.9

9
3
0

7
4

1
9
5
3
.3

1
8
4
2
.2

9
0
.9

9
2
9

6
0

1
6
0
7
.0

4
4
0
4
.6

4
0
.9

9
3
8

22
0

12
2

21
83

.9
5

10
75

.5
2

0
.9

9
3
8

7
4

1
7
9
3
.5

2
7
6
0
.5

9
0
.9

9
5
2

6
0

1
6
0
8
.4

0
4
4
9
.1

7
0
.9

9
4
2

23
0

12
2

24
23

.3
1

11
79

.0
1

0
.9

9
1
4

7
4

1
9
0
7
.1

7
8
5
7
.4

3
0
.9

9
3
5

6
0

1
5
9
0
.0

4
4
6
0
.5

2
0
.9

9
4
1

24
0

12
2

22
94

.9
3

11
04

.2
2

0
.9

9
0
6

4
2

1
8
6
2
.8

6
7
2
3
.8

3
0
.9

9
4
1

6
0

1
5
9
6
.4

6
4
3
7
.4

3
0
.9

9
4
1

25
0

12
2

21
70

.5
9

11
24

.3
8

0
.9

9
1
8

4
2

1
9
2
8
.2

2
7
8
8
.1

5
0
.9

9
3
0

6
0

1
5
9
5
.2

8
4
4
0
.9

2
0
.9

9
4
2

26
0

12
2

22
97

.4
9

12
97

.9
8

0
.9

9
1
4

4
2

1
9
1
3
.1

7
7
9
0
.4

3
0
.9

9
2
5

6
0

1
5
3
1
.1

9
4
0
7
.6

5
0
.9

9
4
0

27
0

12
2

21
35

.7
7

11
01

.7
9

0
.9

9
2
4

4
2

1
9
2
7
.6

4
8
7
2
.5

8
0
.9

9
3
2

6
0

1
5
8
8
.1

9
4
2
4
.7

8
0
.9

9
4
0

28
0

12
2

21
48

.5
1

96
1.

51
0
.9

9
3
6

4
2

1
9
9
3
.9

3
8
7
9
.8

7
0
.9

9
2
2

6
0

1
5
5
8
.1

7
4
1
9
.0

4
0
.9

9
4
4

29
0

12
2

23
03

.1
2

11
15

.4
4

0
.9

9
0
8

4
2

1
9
0
1
.5

4
7
6
0
.4

4
0
.9

9
2
6

6
0

1
5
8
6
.4

6
4
1
1
.4

6
0
.9

9
3
8

30
0

12
2

21
29

.7
5

10
22

.2
9

0
.9

9
1
8

4
2

1
8
5
6
.0

8
7
6
3
.0

0
0
.9

9
3
4

6
0

1
5
4
7
.4

6
4
0
5
.0

6
0
.9

9
4
4

T
ab

le
A

.4
:

A
co

m
p
ar

is
on

of
ca

n
d
id

at
e

so
lu

ti
on

fi
tn

es
s

fo
r

10
0

tr
ia

ls
of

a
ge

n
et

ic
al

go
ri

th
m

ru
n
n
in

g
fo

r
30

0
ge

n
er

at
io

n
s

w
it

h
p

op
u
la

ti
on

si
ze

s
of
µ

=
50

,
µ

=
10

0,
an

d
µ

=
50

0
fo

r
a

d
is

tr
ic

t
p
ar

ti
ti

on
in

g
p
ro

b
le

m
w

it
h

a
p

en
al

iz
in

g
co

n
ti

gu
it

y
co

n
st

ra
in

t
on

a
25

x
25

gr
id

w
it

h
n
o

cr
os

so
ve

r
op

er
at

io
n
,

im
p
le

m
en

ta
ti

on
of

th
e

N
ei

gh
b

or
h
o
o
d

M
u
ta

ti
on

al
go

ri
th

m
(s

ee
A

lg
or

it
h
m

4.
6)

w
it

h
p
ro

b
ab

il
it

y
p m

=
0.

00
1,

an
d

n
o

co
n
ti

gu
it

y
re

p
ai

r
op

er
at

io
n
.

184

C
on

ti
gu

o
u

s
D

is
tr

ic
ti

n
g

P
ro

b
le

m
w

it
h

R
a
n

d
o
m

M
u

ta
ti

o
n

a
n

d
L

o
ca

l
R

ep
a
ir

x
1
0
0

T
ri

a
ls

P
op

u
la

ti
on

S
iz

e
=

50
P

o
p

u
la

ti
o
n

S
iz

e
=

1
0
0

P
o
p

u
la

ti
o
n

S
iz

e
=

5
0
0

G
en

er
at

io
n

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

B
es

t
M

ea
n

S
td

D
ev

%
C

o
n

n
ec

te
d

1
22

25
10

40
98

.3
3

72
27

.0
7

1
.0

0
0
0

5
2
3
4

1
0
5
7
9
1
.3

0
4
6
0
5
.5

9
0
.9

9
9
2

2
9
0
9

1
0
4
3
2
3
.9

9
1
8
0
0
.1

9
0
.9

9
9
1

10
17

13
45

53
7.

90
13

71
2.

05
0
.9

9
8
8

2
1
2
3

3
9
8
9
0
.8

8
1
2
3
3
1
.7

5
0
.9

9
9
4

1
4
6
1

2
9
2
2
8
.6

7
7
8
7
0
.9

9
0
.9

9
9
5

20
17

13
32

20
5.

27
13

82
7.

09
0
.9

9
9
6

2
1
2
3

2
3
5
5
5
.4

9
1
0
5
7
2
.8

2
0
.9

9
9
3

5
8
0

1
2
2
1
3
.2

0
5
3
6
0
.4

7
0
.9

9
9
1

30
13

61
22

61
7.

69
11

99
1.

79
0
.9

9
9
6

1
1
3
4

1
4
3
0
2
.0

5
8
2
9
9
.3

8
0
.9

9
9
5

3
4
4

5
2
4
8
.9

7
2
3
7
8
.4

5
0
.9

9
9
3

40
12

78
15

53
4.

91
10

87
3.

09
0
.9

9
8
8

1
1
3
4

8
4
0
6
.0

3
5
3
7
2
.7

2
0
.9

9
9
5

3
4
4

3
0
8
8
.8

3
1
0
9
7
.5

1
0
.9

9
9
1

50
12

78
10

89
5.

00
88

09
.2

9
0
.9

9
8
8

8
1
1

6
0
1
6
.0

7
3
4
7
3
.7

7
0
.9

9
9
0

2
0
6

2
3
0
3
.9

4
8
8
6
.3

5
0
.9

9
9
4

60
99

3
82

53
.0

6
68

74
.3

6
0
.9

9
9
6

6
6
9

4
4
2
8
.8

4
2
5
5
5
.3

7
0
.9

9
9
1

2
0
6

1
9
3
5
.8

2
7
7
5
.3

0
0
.9

9
9
1

70
22

1
59

51
.1

1
41

90
.4

1
0
.9

9
9
0

5
7
6

3
6
9
1
.6

9
2
0
9
6
.6

0
0
.9

9
8
9

1
7
4

1
7
0
4
.3

9
6
2
2
.7

2
0
.9

9
9
2

80
22

1
47

08
.1

5
27

72
.7

0
0
.9

9
9
4

5
7
6

3
2
4
0
.5

2
1
7
0
5
.6

0
0
.9

9
9
2

1
1
0

1
5
8
7
.3

5
5
3
7
.9

5
0
.9

9
9
0

90
22

1
42

94
.3

4
23

94
.0

3
0
.9

9
8
8

3
2
7

2
9
0
5
.8

9
1
4
0
2
.9

2
0
.9

9
8
9

1
1
0

1
4
9
5
.8

5
5
2
2
.1

9
0
.9

9
9
1

10
0

22
1

35
91

.7
6

19
35

.7
2

0
.9

9
9
4

3
2
7

2
5
5
9
.5

3
1
2
1
7
.7

7
0
.9

9
9
4

1
1
0

1
4
5
0
.6

2
5
1
8
.6

9
0
.9

9
9
0

11
0

22
1

33
98

.8
1

18
53

.2
2

0
.9

9
9
2

4
9

2
3
3
1
.9

9
1
0
6
2
.8

1
0
.9

9
8
9

6
6

1
4
5
9
.9

9
5
0
0
.5

5
0
.9

9
9
0

12
0

22
1

30
54

.8
8

15
67

.8
8

0
.9

9
9
2

4
9

2
1
7
4
.2

3
1
1
0
6
.5

8
0
.9

9
8
9

6
6

1
4
2
6
.0

2
4
9
9
.2

6
0
.9

9
9
1

13
0

22
1

27
12

.2
4

13
92

.1
6

0
.9

9
9
4

4
9

1
9
5
4
.4

6
8
4
8
.3

6
0
.9

9
9
2

6
6

1
4
3
5
.8

4
4
9
3
.5

6
0
.9

9
9
1

14
0

22
1

25
47

.7
1

12
97

.6
5

0
.9

9
9
6

4
9

1
8
9
8
.0

5
8
8
4
.0

5
0
.9

9
8
6

6
6

1
4
2
8
.4

6
5
2
7
.6

0
0
.9

9
9
0

15
0

22
1

24
92

.2
6

12
63

.5
4

0
.9

9
8
8

4
9

1
9
0
9
.2

1
8
7
0
.1

0
0
.9

9
8
6

6
6

1
4
1
8
.5

0
4
8
8
.0

8
0
.9

9
9
0

16
0

22
1

24
27

.1
9

12
68

.2
5

0
.9

9
8
6

4
9

1
8
0
9
.2

6
8
5
4
.0

6
0
.9

9
8
7

6
6

1
3
9
8
.6

7
4
7
1
.9

6
0
.9

9
9
2

17
0

22
1

24
14

.6
4

12
32

.8
9

0
.9

9
8
6

4
9

1
7
8
3
.4

9
6
8
7
.8

5
0
.9

9
8
8

6
6

1
3
8
1
.2

5
4
3
6
.2

8
0
.9

9
9
3

18
0

22
1

22
30

.3
6

12
07

.2
8

0
.9

9
9
0

4
9

1
7
1
7
.0

2
7
1
7
.8

0
0
.9

9
9
1

6
6

1
3
8
9
.3

9
4
6
8
.4

8
0
.9

9
9
2

19
0

22
1

21
13

.2
6

11
45

.1
9

0
.9

9
8
8

4
9

1
6
7
8
.0

5
7
9
1
.9

8
0
.9

9
8
4

6
6

1
4
0
9
.1

8
4
8
3
.5

9
0
.9

9
9
1

20
0

22
1

21
10

.3
8

11
38

.1
7

0
.9

9
9
0

4
9

1
7
0
5
.2

6
7
7
0
.6

8
0
.9

9
8
6

6
6

1
3
7
8
.7

0
4
7
8
.7

3
0
.9

9
9
2

21
0

22
1

20
87

.1
6

10
39

.9
9

0
.9

9
8
6

4
9

1
6
0
8
.7

2
6
8
7
.4

3
0
.9

9
9
1

6
6

1
3
9
3
.1

0
4
7
0
.8

6
0
.9

9
9
1

22
0

22
1

20
12

.8
5

10
79

.1
2

0
.9

9
8
2

4
9

1
5
5
1
.6

8
6
9
4
.8

1
0
.9

9
9
1

6
6

1
3
9
1
.7

7
4
8
6
.4

7
0
.9

9
9
0

23
0

22
1

19
13

.7
5

94
8.

11
0
.9

9
8
6

4
9

1
6
2
2
.4

9
7
1
2
.7

6
0
.9

9
8
0

6
6

1
3
6
2
.4

3
4
8
1
.1

2
0
.9

9
9
3

24
0

22
1

18
40

.3
5

98
8.

45
0
.9

9
8
4

4
9

1
6
0
1
.7

9
6
8
2
.1

7
0
.9

9
8
3

6
6

1
4
1
9
.5

9
5
0
2
.5

2
0
.9

9
9
2

25
0

22
1

19
21

.7
3

88
0.

05
0
.9

9
8
6

4
9

1
5
8
3
.1

8
7
4
1
.6

3
0
.9

9
8
6

6
6

1
3
9
4
.0

8
4
6
4
.7

3
0
.9

9
9
1

26
0

22
1

17
57

.5
9

77
5.

27
0
.9

9
9
0

4
9

1
5
7
5
.5

6
6
4
0
.2

6
0
.9

9
8
6

6
6

1
3
9
8
.9

5
4
7
5
.8

1
0
.9

9
9
1

27
0

22
1

17
14

.3
5

74
9.

78
0
.9

9
9
2

4
9

1
5
0
8
.7

3
6
3
1
.5

6
0
.9

9
8
6

6
6

1
3
7
4
.0

2
4
7
3
.0

4
0
.9

9
9
1

28
0

22
1

17
32

.3
6

82
7.

06
0
.9

9
9
0

4
9

1
5
0
9
.9

6
6
6
5
.5

2
0
.9

9
8
3

6
6

1
3
6
4
.1

9
5
0
5
.5

3
0
.9

9
9
2

29
0

22
1

17
10

.5
3

70
8.

84
0
.9

9
9
0

4
9

1
4
7
3
.0

6
6
9
6
.5

1
0
.9

9
9
1

6
6

1
6
4
2
.6

8
4
8
3
.9

3
0
.9

9
9
1

30
0

22
1

16
79

.6
0

81
9.

10
0
.9

9
8
6

4
9

1
5
3
2
.4

3
6
8
1
.8

8
0
.9

9
8
5

6
6

1
3
6
9
.7

0
4
8
2
.6

3
0
.9

9
9
2

T
ab

le
A

.5
:

A
co

m
p
ar

is
on

of
ca

n
d
id

at
e

so
lu

ti
on

fi
tn

es
s

fo
r

10
0

tr
ia

ls
of

a
ge

n
et

ic
al

go
ri

th
m

ru
n
n
in

g
fo

r
30

0
ge

n
er

at
io

n
s

w
it

h
p

op
u
la

ti
on

si
ze

s
of
µ

=
50

,
µ

=
10

0,
an

d
µ

=
50

0
fo

r
a

d
is

tr
ic

t
p
ar

ti
ti

on
in

g
p
ro

b
le

m
w

it
h

a
p

en
al

iz
in

g
co

n
ti

gu
it

y
co

n
st

ra
in

t
on

a
25

x
25

gr
id

w
it

h
n
o

cr
os

so
ve

r
op

er
at

io
n
,

ra
n
d
om

m
u
ta

ti
on

w
it

h
p
ro

b
ab

il
it

y
p m

=
0.

00
1,

an
d

im
p
le

m
en

ta
ti

on
of

th
e

L
o
ca

l
R

ep
ai

r
al

go
ri

th
m

(s
ee

A
lg

or
it

h
m

4.
7)

on
ca

n
d
id

at
e

so
lu

ti
on

s
v
io

la
ti

n
g

th
e

co
n
ti

gu
it

y
co

n
st

ra
in

t.

185

Figure A.1: All Zip Code Tabulation Areas (ZCTAs) contained within the state of Alabama.
ZCTAs, which are geographic areas used in the decennial census, are approximations of U.S.
Postal Service Zone Improvement Plan (ZIP) Code service areas [94][172][171]. There are
642 ZCTAs contained entirely within Alabama.

186

Contiguous Districting Problem for the State of Alabama with a
Population Equality Heuristic and Neighborhood Mutation x 100 Iterations
Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 40929 83511.34 12959.52 0.9818 36090 82903.11 12161.67 0.9551

20 32028 73788.76 13799.14 0.9816 20569 69002.55 12867.06 0.9487

30 22448 66340.16 14428.06 0.9814 17204 59961.86 12579.68 0.9455

40 16480 60298.05 15421.83 0.9781 10569 82286.18 12733.68 0.9443

50 9290 55507.38 15174.74 0.9774 8525 46179.84 12589.78 0.9336

60 8297 50158.03 14568.64 0.9788 6271 40587.18 12453.84 0.9303

70 5040 46161.53 14451.34 0.9770 2160 35318.74 12218.52 0.9299

80 4566 42190.11 14416.92 0.9749 1421 30805.41 12163.36 0.9300

90 4222 38120.86 13510.26 0.9746 1232 26676.35 11496.63 0.9268

100 3898 35311.06 13566.66 0.9743 1164 23780.51 10847.69 0.9167

110 3031 32435.69 13059.01 0.9731 543 21106.65 9967.10 0.9159

120 1521 39792.30 13175.72 0.9693 192 18790.21 9646.02 0.9161

130 1003 27511.62 13241.20 0.9687 180 16840.20 8706.25 0.9112

140 618 25180.67 12887.79 0.9674 167 15442.31 8100.10 0.9097

150 382 23157.07 12503.57 0.9649 136 13934.58 7144.04 0.9082

160 382 21313.57 11829.88 0.9660 98 13092.59 6309.20 0.9033

170 314 19249.98 11106.94 0.9683 93 12325.90 5839.03 0.9015

180 314 17347.83 10365.13 0.9685 93 11615.76 5349.78 0.9035

190 314 16186.55 10397.28 0.9625 93 10636.49 4417.85 0.9090

200 314 14770.97 10216.34 0.9636 93 10346.40 3699.27 0.9030

210 314 13206.81 9971.11 0.9647 93 10252.74 3643.61 0.8983

220 314 11875.26 8971.42 0.9654 93 9894.39 3455.70 0.8991

230 314 10870.07 8316.52 0.9637 93 9548.26 2965.60 0.8991

240 118 10181.98 8096.41 0.9637 93 9081.32 2894.39 0.9034

250 104 9258.44 7878.26 0.9656 93 9075.40 2699.41 0.9033

260 104 8704.52 7439.97 0.9622 93 8899.22 2547.33 0.9030

270 104 8287.07 7073.91 0.9595 93 9340.61 2770.75 0.8946

280 102 7820.23 6756.55 0.9591 93 8798.67 2492.36 0.9009

290 97 7423.68 6227.85 0.9587 93 8666.25 2074.94 0.9037

300 97 6795.71 6134.39 0.9623 93 8855.03 2114.57 0.8983

310 97 6765.19 5676.94 0.9583 93 8956.71 2191.96 0.8957

320 97 6356.73 5550.00 0.9602 93 9145.62 2500.55 0.8924

330 97 6407.12 5316.02 0.9552 93 8931.67 2363.12 0.8963

340 87 5675.25 5257.80 0.9630 68 9081.35 2222.95 0.8923

350 87 5620.56 4881.41 0.9612 68 8762.01 2104.30 0.8964

360 72 5519.81 5271.75 0.9600 66 8428.93 2280.58 0.9005

370 72 5278.38 4210.58 0.9601 66 8641.75 2133.85 0.8990

380 72 5258.99 3968.57 0.9594 66 8825.56 2403.72 0.8953

390 72 5375.11 3856.55 0.9539 66 8467.42 2289.39 0.9007

400 72 4868.05 3620.26 0.9622 66 8662.80 2265.97 0.8987

410 72 4842.53 3688.40 0.9601 66 8473.66 2080.94 0.9008

420 72 4673.13 3067.90 0.9600 66 8428.47 1993.42 0.8998

430 72 4558.00 2305.39 0.9590 66 8251.90 2009.00 0.9025

440 72 4464.89 2232.71 0.9591 66 8682.62 2171.61 0.8957

450 72 4331.62 1880.35 0.9585 66 8534.47 2287.96 0.8975

460 72 4399.35 1762.86 0.9564 66 8592.38 2079.97 0.8982

470 72 4337.46 1723.03 0.9659 66 8866.99 1925.97 0.8941

480 72 4221.92 1484.98 0.9592 66 8805.85 2086.17 0.8956

490 72 4165.95 1800.44 0.9596 66 8503.00 1991.27 0.8993

500 72 4201.23 1592.21 0.9568 66 9055.97 2120.04 0.8898

Table A.6: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with a equal population distribution
heuristic, population size µ = 100, no crossover, and Neighborhood Mutation with mutation rates of pm =
0.001 and pm = 0.0025.

187

Contiguous Districting Problem for the State of Alabama with a
Population Equality Heuristic and Neighborhood Mutation x 100 Iterations
Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 36866 80740.45 9948.44 0.9039 38830 84958.80 10203.57 0.8011

20 28108 66064.75 10910.47 0.8932 17115 68120.56 10894.40 0.7631

30 13048 56339.75 12231.85 0.8792 9792 58920.77 11891.33 0.7238

40 6355 48843.91 12023.41 0.8668 5432 52264.14 10809.65 0.6974

50 2410 42518.77 11903.30 0.8558 3841 47236.80 10027.34 0.6706

60 1583 37497.09 10696.35 0.8407 3282 43877.04 8740.69 0.6554

70 805 33193.77 10074.43 0.8333 1516 51155.33 8524.77 0.6250

80 677 28934.00 9407.26 0.8300 1335 41559.69 7803.01 0.6025

90 629 25763.75 8125.57 0.8213 2478 40663.90 7310.08 0.5909

100 607 24073.33 7906.16 0.8081 1968 41255.92 7047.34 0.5711

110 592 22348.03 6544.96 0.8075 1923 42239.86 6974.03 0.5460

120 552 21275.78 5950.20 0.8019 1847 51016.06 7181.23 0.5579

130 325 20355.88 5439.78 0.8013 1476 43393.21 7206.31 0.5241

140 242 19600.63 5152.64 0.7970 1424 42912.46 6843.66 0.5242

150 225 19221.42 4298.50 0.7949 1215 43696.79 7211.48 0.5142

160 147 18389.83 3756.03 0.8007 986 43990.88 7661.08 0.5161

170 183 18692.80 3860.59 0.7871 1586 46336.74 7760.98 0.4931

180 163 18450.46 3404.05 0.7881 1292 45773.39 8151.39 0.4881

190 163 17756.65 3563.29 0.7955 1586 48024.01 8513.34 0.4620

200 147 18027.82 3681.99 0.7894 1164 47686.58 8573.98 0.4654

210 147 18340.50 3692.69 0.7833 1407 48529.72 9449.94 0.4599

220 147 18019.95 3131.00 0.7838 1637 48997.91 8598.36 0.4473

230 147 17747.28 3385.36 0.7868 1838 50065.41 8661.80 0.4318

240 147 18450.57 3234.70 0.7781 2062 51230.34 8988.07 0.4193

250 147 18202.87 3263.53 0.7795 2129 51730.13 9280.16 0.4125

260 147 18036.73 2895.16 0.7827 1709 53069.78 9508.16 0.3965

270 147 17767.93 2769.06 0.7872 1785 53229.10 9916.93 0.3966

280 147 18060.75 3234.39 0.7804 1986 54908.51 9415.03 0.3749

290 117 17996.26 3134.62 0.7828 1793 55414.56 9388.30 0.3656

300 117 18355.05 3064.82 0.7757 1957 56298.37 9574.67 0.3501

310 117 18126.80 3277.13 0.7802 1957 57014.41 10376.71 0.3465

320 111 17807.45 3037.38 0.7853 2410 58222.09 9883.22 0.3251

330 111 17941.45 3371.47 0.7811 2151 58958.27 10156.95 0.3192

340 78 17863.22 3301.50 0.7815 2593 58780.44 10022.22 0.3056

350 78 18186.26 3525.83 0.7776 1758 59843.18 9752.58 0.2876

360 78 18061.90 3394.52 0.7772 2899 59969.37 9496.87 0.2935

370 78 18144.19 2913.68 0.7757 1796 60527.99 9636.52 0.2814

380 78 18078.51 3240.72 0.7787 2149 61483.98 9403.79 0.2532

390 78 18338.90 3260.04 0.7753 2797 61559.64 6134.15 0.2594

400 78 17919.40 3147.58 0.7815 2425 63709.28 9083.90 0.2470

410 78 18256.64 3343.79 0.7739 2982 63172.32 9255.22 0.2327

420 78 17817.04 3304.31 0.7859 3556 63406.32 8041.34 0.2228

430 78 18097.27 3026.94 0.7808 3806 65231.82 7889.00 0.2010

440 78 17757.38 3514.09 0.7821 4406 64394.70 8076.03 0.1990

450 78 18028.62 3453.45 0.7788 5043 64416.58 7108.46 0.1826

460 78 17929.08 3226.17 0.7800 4180 65196.99 6929.46 0.1665

470 78 17487.05 3086.09 0.7871 2964 66216.90 6450.17 0.1627

480 78 17871.46 3287.83 0.7835 4582 65691.52 6525.76 0.1612

490 78 18227.30 3571.47 0.7757 2345 66589.67 6666.32 0.1450

500 78 18239.60 3384.97 0.7787 2524 66786.85 6682.30 0.1351

Table A.7: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with a equal population distribution
heuristic, population size µ = 100, no crossover, and Neighborhood Mutation with mutation rates of pm =
0.005 and pm = 0.010.

188

Figure A.2: Two near-optimal solutions for districting the state of Alabama into seven
contiguous zones based on equal distribution of total population, with randomly generated
zone centers. The maps depict, from left, a distribution of total population with a difference
of no more than 85 and 119 persons, respectively, between any two zones.

189

Contiguous Districting Problem for the State of Alabama with a Minority Population
Heuristic, Neighborhood Mutation, and Local Repair x 100 Iterations

Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 34245 54018.85 5806.17 0.9942 37662 52409.13 5522.58 0.9861

20 31482 49409.56 6071.81 0.9932 34587 47029.48 5528.32 0.9844

30 31301 46776.40 6088.53 0.9926 30985 43703.61 5512.66 0.9803

40 29303 44658.49 5981.08 0.9936 27181 40874.46 5666.16 0.9763

50 27470 42804.79 5923.37 0.9929 24565 38294.88 6161.87 0.9779

60 26129 41105.97 5989.52 0.9916 22539 35950.44 6172.83 0.9712

70 24986 39516.43 6264.79 0.9905 20307 33777.87 6337.29 0.9687

80 21549 38150.83 6292.52 0.9900 15077 31552.21 6498.07 0.9678

90 19420 36711.13 6314.45 0.9897 12595 29597.42 6551.52 0.9662

100 17778 35431.69 6182.50 0.9875 7880 27618.98 6371.76 0.9620

110 15619 34003.53 6297.52 0.9881 6426 25776.85 6600.21 0.9631

120 13890 32864.37 6448.50 0.9880 5694 24104.52 6726.95 0.9610

130 11093 31635.03 6624.78 0.9891 4954 22490.25 6882.53 0.9559

140 10870 30343.21 6680.31 0.9873 4076 21059.59 6991.87 0.9496

150 9348 29436.61 6864.39 0.9845 3524 19672.62 6857.18 0.9480

160 8778 28266.04 6956.46 0.9865 1710 18157.40 6671.52 0.9514

170 8521 27251.46 7043.26 0.9842 1423 16860.48 6635.54 0.9487

180 7973 26282.99 6895.47 0.9818 1299 15850.25 6704.04 0.9427

190 7840 25356.62 7070.98 0.9828 982 14690.13 6806.29 0.9418

200 6594 24598.43 7024.55 0.9830 654 13697.76 6693.04 0.9385

210 5528 23676.00 6905.40 0.9844 351 12791.98 6419.97 0.9371

220 5215 22639.97 6846.41 0.9832 248 11955.06 6451.41 0.9359

230 3439 21528.03 7046.93 0.9843 221 11118.95 6397.72 0.9355

240 2441 20662.70 7143.57 0.9844 163 10393.26 6121.72 0.9321

250 1277 19799.44 7255.59 0.9816 121 9749.30 5877.39 0.9297

260 1057 19080.38 7305.05 0.9802 107 8980.00 5574.33 0.9310

270 895 18311.07 7384.58 0.9813 86 8332.11 5424.01 0.9294

280 669 17653.48 7427.65 0.9783 86 7677.50 5225.03 0.9351

290 539 16794.97 7539.36 0.9805 68 7435.38 5167.94 0.9248

300 461 16030.23 7500.60 0.9799 64 6885.36 4781.39 0.9263

310 426 15308.45 7491.54 0.9805 53 6478.49 4638.14 0.9236

320 234 14578.55 7492.57 0.9784 50 6103.36 4392.97 0.9239

330 158 13991.62 7533.53 0.9779 33 5759.24 4156.16 0.9234

340 158 13318.22 7549.93 0.9782 33 5409.69 4042.35 0.9237

350 158 12720.62 7617.66 0.9790 33 5274.83 3920.60 0.9197

360 158 12323.04 7569.38 0.9742 24 4987.48 3721.00 0.9242

370 142 11704.15 7477.50 0.9773 21 4739.06 3529.32 0.9256

380 142 11226.71 7442.16 0.9727 17 4529.30 3541.91 0.9229

390 95 10721.42 7416.83 0.9753 17 4466.32 3229.98 0.9228

400 72 10206.34 7469.35 0.9758 17 4340.10 3136.30 0.9199

410 52 9822.29 7453.45 0.9743 17 4295.94 2844.08 0.9172

420 51 9479.58 7390.95 0.9727 12 4103.55 2762.41 0.9184

430 39 9045.56 7494.67 0.9737 11 4155.60 2656.36 0.9155

440 33 8734.29 7447.61 0.9729 10 3879.40 2674.60 0.9195

450 30 8386.42 7431.60 0.9735 10 3873.83 2212.79 0.9171

460 30 8063.35 7291.43 0.9722 10 3722.83 2264.19 0.9175

470 30 7762.04 7255.33 0.9711 10 3680.40 2126.73 0.9169

480 30 7497.71 7157.98 0.9714 10 3407.87 1937.95 0.9230

490 30 7197.05 7083.83 0.9714 10 3487.26 1878.91 0.9181

500 30 6955.94 6973.43 0.9693 10 3438.57 1852.00 0.9190

Table A.8: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with an equal distribution of minority
population heuristic, population size µ = 100, no crossover, Neighborhood Mutation with mutation rates of
pm = 0.005 and pm = 0.010, and Local Repair.

190

Contiguous Districting Problem for the State of Alabama with a Minority Population
Heuristic, Neighborhood Mutation, and Local Repair x 100 Iterations

Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 34430 50565.89 5041.11 0.9711 29926 50978.25 5342.03 0.9323

20 30040 44707.08 5140.87 0.9596 25451 43664.78 4848.51 0.9029

30 22059 40763.20 5735.54 0.9506 22867 38699.24 4838.21 0.8860

40 16038 37368.23 6109.45 0.9451 17937 34719.89 4927.39 0.8631

50 13757 34415.35 6492.85 0.9326 12731 31223.49 5256.42 0.8363

60 12605 31369.68 6720.87 0.9285 6976 28198.42 5412.54 0.8206

70 7778 28677.92 6799.87 0.9187 3131 25439.30 5760.86 0.8095

80 5109 26214.61 6976.58 0.9121 1168 23476.39 5339.47 0.7889

90 2853 23961.41 6809.63 0.9067 1129 21351.72 5346.44 0.7796

100 1408 21802.72 6759.18 0.9004 919 19996.94 5298.17 0.7548

110 1209 19844.18 6557.31 0.8940 482 18617.26 5259.85 0.7390

120 971 18076.02 6390.29 0.8866 493 17681.50 5564.48 0.7230

130 702 16563.39 6283.59 0.8835 302 16674.37 5265.03 0.7167

140 586 15354.96 6319.74 0.8728 342 16078.58 5094.31 0.7072

150 534 14148.23 6264.17 0.8750 559 15143.43 4695.86 0.7087

160 212 13265.05 5991.41 0.8715 450 14974.82 4620.18 0.6981

170 157 12427.51 5937.30 0.8646 399 14901.09 4622.46 0.6887

180 119 11674.17 5785.05 0.8628 462 14510.01 4345.84 0.6799

190 100 10896.33 5366.53 0.8633 425 14222.15 4050.94 0.6784

200 100 10480.38 5155.82 0.8514 520 14389.76 5176.68 0.6636

210 65 9960.25 5035.05 0.8519 275 14186.62 3631.50 0.6622

220 45 9362.77 4724.21 0.8448 224 14202.91 3613.29 0.6597

230 45 8952.46 4500.13 0.8461 336 13994.61 3408.16 0.6612

240 41 8381.39 4149.85 0.8484 356 13911.99 3163.02 0.6596

250 38 8066.84 4041.19 0.8468 402 13839.49 3240.18 0.6515

260 38 7845.75 3817.15 0.8422 236 13711.49 2897.80 0.6598

270 38 7468.45 3541.47 0.8449 437 13740.12 3083.68 0.6488

280 38 7368.10 3602.87 0.8362 265 13945.67 2993.88 0.6424

290 26 6946.94 3206.66 0.8418 293 13922.52 2907.75 0.6428

300 26 6845.20 2907.62 0.8360 197 14243.65 2774.20 0.6265

310 26 6682.12 2713.29 0.8400 522 13825.06 2617.02 0.6379

320 26 6593.99 2662.80 0.8368 331 14147.33 2638.30 0.6276

330 26 3589.24 2443.43 0.8347 487 14257.11 2724.95 0.6256

340 26 6535.42 2431.89 0.8305 309 14201.28 2567.80 0.6307

350 26 6542.88 2300.81 0.8294 443 14115.21 2699.67 0.6287

360 26 6523.78 2212.61 0.8265 389 14440.86 2786.27 0.6160

370 26 6454.56 2068.77 0.8301 445 14508.00 2720.42 0.6148

380 25 6491.26 2049.75 0.8239 330 14578.94 2651.09 0.6215

390 26 6316.42 1965.85 0.8304 385 14561.90 2510.33 0.6130

400 25 6435.62 1949.88 0.8258 403 14543.19 2515.72 0.6142

410 24 6193.65 1685.54 0.8273 340 15026.13 2240.06 0.5934

420 25 6291.97 1815.27 0.8258 592 14756.26 2569.50 0.6019

430 25 6458.26 1706.85 0.8200 479 14812.96 2626.19 0.6049

440 25 6398.85 1856.28 0.8211 414 14998.51 2449.94 0.6035

450 17 6127.55 1762.69 0.8346 366 15039.35 2635.99 0.5969

460 24 6257.64 1513.49 0.8285 459 15248.59 2392.17 0.5869

470 24 6292.15 1344.69 0.8238 490 15178.72 2678.12 0.5927

480 24 6195.47 1539.71 0.8256 507 15166.08 2513.10 0.5945

490 24 6169.20 1578.59 0.8267 468 15385.07 2468.87 0.5883

500 24 6094.29 1601.75 0.8313 509 15439.74 2365.82 0.5841

Table A.9: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with an equal distribution of minority
population heuristic, population size µ = 100, no crossover, Neighborhood Mutation with mutation rates of
pm = 0.005 and pm = 0.010, and Local Repair.

191

Contiguous Districting Problem for the State of Alabama with a
District Compactness Heuristic and Neighborhood Mutation x 100 Iterations

Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 145.3 316.90 71.096 0.9841 154.7 313.65 68.81 0.9608

20 143.6 314.96 70.947 0.9817 151.9 311.43 69.09 0.9517

30 141.1 312.89 70.622 0.9814 149.3 309.02 68.45 0.9462

40 139.7 311.26 70.410 0.9785 147.2 306.80 68.19 0.9398

50 138.1 309.37 70.440 0.9774 145.4 304.72 68.22 0.9338

60 135.1 307.53 70.192 0.9770 142.7 302.52 69.82 0.9304

70 132.8 305.62 69.798 0.9783 141.7 300.85 67.22 0.9238

80 130.3 304.25 69.948 0.9734 139.5 299.13 66.92 0.9181

90 129.1 302.49 69.640 0.9731 138.4 297.18 66.82 0.9156

100 127.9 301.08 68.860 0.9704 136.6 295.53 67.02 0.9113

110 126.9 299.60 68.839 0.9687 135.7 293.72 66.57 0.9093

120 125.5 297.98 68.655 0.9694 134.6 291.76 65.82 0.9087

130 125.0 296.36 68.109 0.9699 133.4 290.53 65.81 0.9015

140 123.8 294.94 68.074 0.9684 132.5 289.36 66.22 0.8942

150 122.9 293.79 68.026 0.9637 131.5 287.29 64.73 0.8967

160 121.4 292.29 67.244 0.9641 130.0 286.48 65.05 0.8862

170 120.5 290.91 66.953 0.9633 129.5 284.77 65.99 0.8861

180 119.1 289.43 66.840 0.9649 128.3 282.88 63.92 0.8881

190 118.1 288.11 66.579 0.9656 127.2 281.58 64.47 0.8843

200 117.6 287.45 66.260 0.6598 125.9 280.91 63.52 0.8753

210 116.8 286.22 65.927 0.9608 124.3 279.43 64.22 0.8755

220 116.1 285.06 65.552 0.9604 123.3 278.34 64.14 0.8719

230 115.7 284.33 65.299 0.9563 123.1 277.17 63.02 0.8694

240 114.9 283.23 36.834 0.9556 121.5 276.08 63.95 0.8667

250 114.7 282.04 64.957 0.9560 120.7 275.50 63.21 0.8598

260 114.4 280.83 64.679 0.9579 120.0 274.09 63.38 0.8615

270 114.3 279.86 64.227 0.9568 119.9 272.77 63.23 0.8628

280 113.9 279.14 64.105 0.9539 119.2 271.90 62.50 0.8595

290 113.6 278.20 63.726 0.9533 117.9 270.40 62.47 0.8628

300 113.3 277.02 63.240 0.9554 117.5 270.50 62.47 0.8497

310 112.8 276.13 63.401 0.9543 116.8 268.81 32.11 0.8555

320 112.8 275.07 62.892 0.9546 116.4 268.06 62.45 0.8514

330 112.8 274.45 62.677 0.9516 115.6 266.89 62.31 0.8520

340 112.8 273.13 62.111 0.9551 114.8 267.36 62.09 0.8369

350 112.4 272.80 61.768 0.9491 114.3 365.98 61.51 0.8405

360 112.0 271.78 61.422 0.9499 113.9 264.75 61.61 0.8422

370 111.8 271.36 61.229 0.9451 113.4 264.33 61.36 0.8356

380 110.6 269.81 61.093 0.9511 113.0 263.45 61.31 0.8347

390 110.2 269.10 60.602 0.9488 112.3 262.09 60.87 0.8381

400 109.1 268.46 60.745 0.9465 111.8 261.41 60.68 0.8354

410 108.5 267.68 60.117 0.9449 111.3 259.71 60.72 0.8420

420 108.2 266.55 60.291 0.9478 110.7 259.68 60.51 0.8322

430 107.1 265.66 59.757 0.9481 110.2 258.86 60.72 0.8303

440 106.5 265.32 59.331 0.9432 109.4 258.58 60.64 0.8243

450 106.5 264.85 59.477 0.9392 109.3 256.84 60.54 0.8324

460 106.1 263.79 59.189 0.9415 108.7 256.22 59.17 0.8291

470 106.0 263.16 59.975 0.9401 108.5 255.57 59.77 0.8267

480 105.8 261.75 58.686 0.9466 107.7 255.22 59.32 0.8218

490 105.5 261.57 28.735 0.9414 107.3 253.86 59.61 0.8270

500 104.9 260.62 58.230 0.9437 107.0 253.52 59.76 0.8225

Table A.10: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with an average distance from
center compactness heuristic with a population size µ = 100, no crossover, and Neighborhood Mutation with
mutation rates of pm = 0.001 and pm = 0.0025.

192

Contiguous Districting Problem for the State of Alabama with an
Average Distance Compactness Heuristic and Neighborhood Mutation x 100 Iterations

Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 166.8 330.51 75.19 0.9081 123.1 330.26 74.94 0.8091

20 163.8 328.03 74.47 0.8960 121.5 331.27 75.21 0.7562

30 161.6 326.04 75.22 0.8792 120.3 330.83 75.28 0.7224

40 159.6 324.14 74.41 0.8636 119.2 330.44 74.60 0.6905

50 156.7 321.59 73.59 0.8538 118.3 331.00 75.56 0.6504

60 154.8 320.11 73.57 0.8351 117.3 332.11 73.92 0.6083

70 153.0 317.66 72.99 0.8291 116.5 331.71 74.50 0.5857

80 151.6 315.90 73.56 0.8174 116.2 333.72 74.15 0.5415

90 150.8 315.92 72.83 0.7889 115.5 333.75 72.87 0.5183

100 150.1 313.24 72.88 0.7895 115.0 335.59 73.08 0.4784

110 149.7 311.97 73.34 0.7768 114.8 335.61 72.48 0.4586

120 148.0 310.80 72.85 0.7646 114.6 336.15 73.21 0.4363

130 145.1 308.41 73.20 0.7664 114.4 337.37 72.47 0.4083

140 142.5 308.02 72.96 0.7495 114.2 337.65 72.83 0.3903

150 140.5 306.85 72.62 0.7407 113.7 337.70 73.15 0.3748

160 139.3 305.65 71.53 0.7338 113.5 339.37 71.31 0.3429

170 138.1 304.50 71.84 0.7268 113.2 339.10 72.39 0.3337

180 136.9 303.10 72.33 0.7237 113.2 338.51 72.41 0.3257

190 136.3 302.48 71.24 0.7133 113.0 338.97 72.47 0.3065

200 135.8 301.68 71.10 0.7054 113.0 337.76 70.40 0.3044

210 135.2 301.33 71.83 0.6935 112.9 338.87 71.09 0.2745

220 133.6 299.44 70.28 0.6984 112.9 339.38 69.76 0.2462

230 130.7 299.84 69.76 0.6802 112.9 337.31 69.32 0.2476

240 128.9 297.32 70.26 0.6912 112.9 336.45 68.88 0.2423

250 126.0 297.83 70.64 0.6727 112.9 336.14 68.40 0.2183

260 124.6 297.56 69.86 0.6629 112.9 334.36 66.87 0.2168

270 122.4 296.03 68.88 0.6654 112.9 333.88 66.65 0.1668

280 120.3 295.48 69.05 0.6590 112.9 333.37 66.43 0.1815

290 118.8 295.29 69.58 0.6493 112.9 331.76 66.25 0.1672

300 117.1 293.37 69.25 0.6571 112.9 330.21 65.02 0.1559

310 111.9 293.93 69.15 0.6401 112.9 328.20 66.04 0.1419

320 110.8 293.35 69.48 0.6350 112.9 326.09 65.05 0.1321

330 107.3 292.13 68.73 0.6371 112.9 324.75 64.38 0.1116

340 105.4 291.57 68.19 0.6321 112.9 322.53 64.87 0.1013

350 103.8 289.58 69.02 0.6420 112.9 320.27 64.99 0.0972

360 103.2 290.71 68.26 0.6210 112.9 318.00 63.97 0.0886

370 102.1 289.59 69.26 0.6225 112.9 315.73 63.50 0.0750

380 100.6 289.60 67.13 0.6133 112.9 313.48 63.27 0.0593

390 99.7 287.73 67.15 0.6229 112.9 309.77 62.54 0.0624

400 98.5 287.15 66.81 0.6202 112.9 307.82 62.17 0.0524

410 98.3 287.59 68.11 0.6074 112.9 305.52 62.11 0.0445

420 97.3 285.47 67.29 0.6198 112.9 302.61 61.28 0.0440

430 96.6 285.54 66.26 0.6108 112.9 300.23 60.39 0.0370

440 95.3 284.55 66.43 0.6126 112.9 297.08 59.92 0.0303

450 94.9 285.12 66.16 0.5981 112.9 294.54 58.92 0.0269

460 94.2 285.77 65.65 0.5841 113.0 292.00 58.60 0.0266

470 93.9 283.19 65.40 0.6026 113.0 289.08 57.50 0.0225

480 93.7 282.52 65.57 0.6018 113.0 286.10 56.52 0.0152

490 93.5 283.61 65.34 0.5838 113.0 283.26 55.96 0.0149

500 93.4 282.31 64.72 0.5894 112.9 280.64 54.82 0.0111

Table A.11: A comparison of candidate solution fitness, by generation, for 100 trials of an evolutionary
algorithm for a contiguous districting problem for the State of Alabama with an average distance from
center compactness heuristic with a population size µ = 100, no crossover, and Neighborhood Mutation with
mutation rates of pm = 0.005 and pm = 0.010.

193

Contiguous Districting Problem for the State of Alabama with a District Compactness
Heuristic, Neighborhood Mutation, and Local Repair x 100 Iterations

With Local Repair Without Local Repair

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 169.4 327.30 62.197 0.9643 183.5 360.23 61.943 0.9064

20 167.2 324.43 62.479 0.9555 180.7 359.38 62.332 0.8938

30 162.4 320.77 61.651 0.9501 176.2 360.25 63.862 0.8749

40 156.9 317.45 60.838 0.9444 174.0 358.42 61.136 0.8665

50 149.9 314.64 61.500 0.9368 171.2 360.69 61.944 0.8431

60 144.7 313.51 61.113 0.9236 168.3 361.07 60.882 0.8288

70 138.6 310.11 59.950 0.9212 164.8 360.40 61.853 0.8188

80 134.0 308.38 61.689 0.9134 162.0 360.34 60.898 0.8070

90 127.9 306.39 59.724 0.9073 158.5 359.44 59.950 0.7989

100 123.0 307.46 61.170 0.8900 155.8 360.88 60.416 0.7817

110 116.6 304.56 59.811 0.8891 153.4 360.46 59.510 0.7728

120 112.7 304.09 58.316 0.8785 151.9 360.61 58.998 0.7625

130 108.9 301.82 58.422 0.8760 149.2 360.01 59.635 0.7556

140 106.5 300.86 57.094 0.8693 147.8 360.10 60.100 0.7466

150 105.6 298.57 57.055 0.8680 146.9 361.00 60.266 0.7347

160 104.3 297.76 58.664 0.8612 146.2 360.45 58.015 0.7291

170 103.7 294.35 57.727 0.8646 145.7 359.22 58.673 0.7267

180 102.9 292.44 56.581 0.8629 144.6 360.16 57.811 0.7158

190 101.9 292.54 58.385 0.8530 143.8 359.69 57.685 0.7109

200 100.6 291.28 57.164 0.8489 143.1 359.03 59.740 0.7064

210 99.8 289.43 56.540 0.8472 142.8 361.40 57.020 0.6902

220 98.8 288.64 57.048 0.8415 142.3 359.38 58.113 0.6916

230 97.9 287.91 54.414 0.8356 141.7 359.62 58.693 0.6846

240 97.2 287.56 55.569 0.8280 140.9 359.09 56.458 0.6807

250 96.0 284.10 56.606 0.8332 140.5 357.42 55.647 0.6815

260 95.4 284.01 57.098 0.8254 139.9 359.08 57.788 0.6692

270 94.6 283.57 56.834 0.8194 139.5 358.96 59.135 0.6641

280 93.6 281.38 56.271 0.8199 138.8 358.39 60.507 0.6608

290 93.1 280.20 55.649 0.8167 138.6 356.93 57.124 0.6617

300 92.4 280.18 55.073 0.8091 138.1 356.76 56.671 0.6576

310 92.1 277.45 53.682 0.8127 137.8 356.20 58.581 0.6553

320 91.4 275.77 56.567 0.8122 137.5 355.81 58.033 0.6521

330 90.9 275.90 53.939 0.8044 137.1 356.39 57.499 0.6453

340 90.7 273.34 54.882 0.8076 136.8 358.18 56.669 0.6338

350 90.3 272.87 53.173 0.8028 136.2 358.94 56.907 0.6265

360 90.2 270.80 54.468 0.8043 135.6 357.07 55.994 0.6299

370 89.6 270.26 53.820 0.7998 135.5 354.29 55.026 0.6370

380 89.3 268.46 54.053 0.8004 135.2 358.88 57.276 0.6149

390 88.9 266.78 53.972 0.8011 134.7 357.00 57.201 0.6188

400 88.6 266.53 52.715 0.7960 134.6 357.23 57.376 0.6140

410 88.3 266.17 51.475 0.7915 133.8 358.01 54.041 0.6071

420 88.0 266.12 53.688 0.7856 133.6 355.48 56.261 0.6138

430 87.9 263.38 52.691 0.7911 132.9 355.14 55.518 0.6114

440 87.6 263.78 52.932 0.7841 132.7 354.86 54.583 0.6090

450 87.1 262.20 54.649 0.7853 132.3 355.09 57.650 0.6048

460 87.1 260.72 52.870 0.7859 131.8 356.49 54.744 0.5959

470 86.7 259.86 54.717 0.7844 131.5 356.80 56.119 0.5915

480 86.5 256.55 52.474 0.7929 131.3 356.66 54.646 0.5889

490 86.3 257.43 54.582 0.7843 131.0 355.58 54.873 0.5902

500 86.2 256.67 53.855 0.7823 130.8 358.01 57.125 0.5775

Table A.12: Comparison of Algorithm Performance for 100 Iterations, with and without Local
Repair, of a Contiguous Districting Problem for the State of Alabama with a District Compactness
Heuristic and Neighborhood Mutation with rate pm = 0.005, and population size µ = 100.

194

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total Population Distribution and District Compactness, Part 1 of 2

Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 1743.5 4448.25 676.83 0.9946 2013.3 4251.01 624.38 0.9853

20 1324.7 3876.65 676.79 0.9937 1622.1 3551.51 639.47 0.9822

30 1246.1 3472.27 706.68 0.9926 1126.2 2981.66 663.39 0.9782

40 1130.3 3108.60 703.04 0.9925 618.0 2511.93 715.78 0.9792

50 972.5 2805.01 729.89 0.9923 490.5 2098.48 709.39 0.9741

60 786.9 2541.58 695.28 0.9919 418.3 1752.83 640.22 0.9712

70 767.1 2311.33 689.43 0.9881 399.2 1456.20 553.18 0.9698

80 617.1 2027.23 684.31 0.9911 374.3 1227.59 477.02 0.9687

90 559.9 1820.47 661.82 0.9891 339.0 1054.71 420.13 0.9651

100 463.2 1639.81 661.54 0.9880 336.6 924.42 374.56 0.9643

110 361.9 1456.62 612.88 0.9865 315.7 840.75 327.80 0.9604

120 348.0 1309.21 559.41 0.9874 304.1 776.61 267.35 0.9626

130 340.0 1186.08 519.90 0.9864 291.6 734.60 226.19 0.9608

140 326.9 1072.39 481.99 0.9851 279.9 697.76 193.14 0.9612

150 323.6 964.97 438.13 0.9853 261.1 679.64 183.85 0.9605

160 295.2 873.82 411.60 0.9865 217.7 647.20 152.71 0.9604

170 295.2 791.36 354.27 0.9875 217.6 634.08 138.18 0.9611

180 275.1 740.45 329.51 0.9857 215.8 632.53 121.50 0.9577

190 245.0 707.25 294.53 0.9832 215.7 631.96 118.24 0.9560

200 240.6 659.09 257.58 0.9838 214.0 622.42 111.90 0.9552

210 222.9 626.75 234.42 0.9835 214.0 611.93 108.18 0.9580

220 222.9 602.18 210.73 0.9836 214.0 611.17 112.24 0.9553

230 221.3 586.15 196.73 0.9817 214.0 612.32 95.12 0.9580

240 217.1 562.21 185.48 0.9850 214.0 604.71 92.56 0.9573

250 204.9 552.37 169.54 0.9824 214.0 606.27 99.09 0.9563

260 204.4 552.68 174.48 0.9789 206.3 601.17 96.37 0.9585

270 204.4 540.49 149.49 0.9799 206.3 598.44 97.34 0.9570

280 203.5 524.12 137.94 0.9820 206.3 590.95 85.04 0.9603

290 202.2 523.61 129.76 0.9812 206.3 592.21 96.00 0.9569

300 202.2 516.26 127.87 0.9808 205.6 597.99 93.18 0.9575

310 202.2 500.80 124.03 0.9829 205.6 602.87 82.26 0.9534

320 202.2 505.02 118.64 0.9811 205.6 597.13 94.97 0.9560

330 202.2 494.92 114.69 0.9839 205.6 601.13 88.79 0.9547

340 198.9 499.65 110.62 0.9803 205.6 611.63 98.74 0.9492

350 198.9 487.19 115.28 0.9835 205.6 602.51 97.65 0.9537

360 198.9 486.21 108.68 0.9828 205.6 596.64 94.29 0.9542

370 198.9 486.29 105.11 0.9807 205.6 593.28 89.64 0.9581

380 198.9 481.38 104.97 0.9830 205.6 598.78 95.56 0.9567

390 198.9 483.94 102.99 0.9819 205.6 600.40 82.01 0.9551

400 198.9 484.84 103.08 0.9816 205.6 594.00 93.89 0.9551

410 198.9 477.78 97.12 0.9804 205.6 588.70 87.76 0.9573

420 198.9 476.41 96.19 0.9813 205.6 590.92 91.11 0.9557

430 198.9 479.86 102.60 0.9815 205.6 598.11 89.59 0.9537

440 198.9 477.87 99.32 0.9819 205.6 594.00 93.18 0.9525

450 198.9 470.47 92.60 0.9836 205.6 598.67 94.49 0.9536

460 198.9 476.38 99.58 0.9801 205.6 592.13 89.02 0.9552

470 198.9 473.83 99.14 0.9805 205.6 588.01 95.45 0.9547

480 198.9 467.89 92.38 0.9817 205.6 601.85 89.43 0.9526

490 198.9 471.89 95.12 0.9827 205.6 591.78 91.64 0.9531

500 198.9 467.34 95.13 0.9826 205.6 593.14 91.51 0.9550

Table A.13: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population with district compactness and a soft contiguity constraint.

195

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total Population Distribution and District Compactness, Part 2 of 2

Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 1770.1 4233.17 608.84 0.9610 1315.8 4350.02 630.09 0.9270

20 1415.9 3262.65 620.10 0.9552 751.3 3209.20 708.62 0.8997

30 808.1 2585.29 616.03 0.9462 413.2 2429.00 662.40 0.8855

40 486.7 2004.10 592.14 0.9381 395.6 1965.60 477.80 0.8567

50 461.4 1582.55 502.06 0.9326 408.4 1697.92 372.49 0.8450

60 323.1 1265.64 415.93 0.9314 366.7 1556.43 279.64 0.8278

70 307.3 1093.40 331.34 0.9223 346.7 1507.64 244.75 0.8177

80 293.4 979.61 268.83 0.9204 328.1 1523.36 230.44 0.8117

90 292.2 927.93 230.56 0.9176 283.3 1513.87 217.97 0.8024

100 270.2 894.32 201.94 0.9161 306.6 1508.32 253.64 0.7951

110 255.9 884.01 189.74 0.9083 326.6 1537.19 255.21 0.7864

120 250.9 849.73 165.26 0.9116 311.1 1545.97 244.48 0.7772

130 250.3 835.06 138.64 0.9139 321.4 1572.69 234.05 0.7753

140 234.2 824.62 131.58 0.9084 334.7 1592.52 265.56 0.7647

150 233.8 924.22 131.25 0.9095 303.6 1585.55 261.80 0.7676

160 233.1 833.11 133.90 0.9061 292.3 1583.94 274.01 0.7725

170 233.1 819.53 131.03 0.9079 318.4 1591.20 266.65 0.7633

180 233.0 815.76 120.49 0.9074 334.8 1620.54 300.03 0.7593

190 231.9 819.68 137.67 0.9053 350.8 1649.39 296.90 0.7549

200 231.9 813.58 121.47 0.9069 344.0 1692.52 296.04 0.7378

210 231.9 817.71 126.23 0.9074 342.5 1691.79 283.75 0.7404

220 228.0 819.49 129.31 0.9077 291.8 1722.99 317.79 0.7384

230 227.2 816.63 131.04 0.9053 348.9 1714.64 278.52 0.7333

240 227.2 812.93 115.56 0.9070 357.7 1724.74 312.99 0.7311

250 227.2 813.19 134.42 0.9042 342.8 1719.08 293.14 0.7287

260 227.2 810.53 124.67 0.9057 319.2 1742.15 319.81 0.7251

270 227.2 810.02 128.69 0.9090 312.3 1767.45 327.59 0.7239

280 227.2 810.94 117.30 0.9040 314.2 1780.98 332.16 0.7205

290 227.2 819.40 119.99 0.9049 296.4 1768.66 312.61 0.7181

300 227.2 808.35 114.03 0.9033 316.8 1775.18 314.41 0.7142

310 227.2 815.03 118.14 0.8996 343.5 1796.20 323.33 0.7100

320 226.8 812.63 135.86 0.9006 327.2 1853.02 354.99 0.6933

330 226.8 808.53 113.44 0.9045 321.7 1870.58 362.43 0.6906

340 226.8 809.75 122.50 0.9040 363.1 1883.55 347.97 0.6935

350 226.9 821.10 123.45 0.8993 311.9 1879.47 371.47 0.6899

360 226.8 811.26 118.20 0.9043 306.7 1891.65 374.46 0.6855

370 226.8 818.75 115.22 0.9055 376.3 1900.47 382.33 0.6856

380 226.8 818.48 127.50 0.9024 361.1 1934.31 377.41 0.6755

390 226.8 814.27 137.95 0.9051 339.4 1916.47 381.43 0.6817

400 226.8 807.56 134.63 0.9032 372.6 1933.84 362.70 0.6808

410 226.8 806.85 121.02 0.9018 331.8 1945.92 385.92 0.6785

420 226.8 823.16 130.83 0.9034 348.0 1970.81 438.71 0.6698

430 226.8 803.71 119.94 0.8979 367.6 1979.71 423.58 0.6622

440 226.8 808.11 109.40 0.9026 325.6 1992.16 409.55 0.6629

450 226.8 823.23 133.15 0.9006 296.7 2016.17 418.52 0.6573

460 226.8 822.93 131.46 0.9069 375.3 2017.86 426.79 0.6652

470 226.8 810.46 114.43 0.9019 304.1 2017.98 418.97 0.6563

480 226.8 817.46 129.11 0.9010 430.7 2027.08 443.23 0.6565

490 226.8 818.98 120.13 0.9015 335.9 2043.18 421.81 0.6467

500 226.8 820.10 119.79 0.8992 396.8 2056.74 408.20 0.6478

Table A.14: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population with district compactness and a soft contiguity constraint.

196

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Minority Population Distribution and District Compactness, Part 1 of 2
Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 1986.7 3046.51 277.36 0.9946 2024.1 2988.35 251.29 0.9858

20 1565.4 2837.56 298.45 0.9933 1873.4 2701.24 266.37 0.9848

30 1485.9 2709.75 305.24 0.9945 1734.5 2508.91 272.51 0.9823

40 1377.8 2595.31 324.26 0.9922 1564.1 2360.36 277.18 0.9797

50 1367.1 2502.10 322.00 0.9924 1304.9 2242.69 296.62 0.9745

60 1365.6 2412.98 316.48 0.9924 1226.8 2107.18 307.04 0.9734

70 1284.2 2335.11 311.47 0.9918 1042.1 1998.58 314.21 0.9691

80 1260.7 2262.39 316.59 0.9891 959.8 1901.86 325.88 0.9676

90 1091.1 2178.23 329.78 0.9876 854.5 1804.80 331.02 0.9638

100 996.4 2107.64 328.32 0.9882 612.0 1703.16 347.33 0.9601

110 959.7 2034.55 333.45 0.9877 500.8 1604.62 360.41 0.9623

120 836.0 1977.47 340.15 0.9848 472.5 1520.31 364.67 0.9585

130 824.7 1911.33 333.05 0.9864 350.2 1439.62 362.97 0.9516

140 671.0 1845.46 332.96 0.9849 321.2 1366.89 364.87 0.9488

150 597.4 1787.41 331.92 0.9827 306.3 1293.10 361.07 0.9523

160 501.8 1726.55 337.86 0.9838 301.8 1229.19 354.79 0.9513

170 468.6 1663.21 352.14 0.9850 285.3 1174.12 346.32 0.9461

180 441.5 1614.41 361.54 0.9831 281.2 1127.44 343.28 0.9402

190 422.3 1565.25 367.59 0.9853 271.6 1077.79 344.69 0.9398

200 410.3 1514.00 365.48 0.9810 260.1 1027.74 338.40 0.9387

210 406.2 1460.77 371.10 0.9800 244.7 974.71 339.00 0.9404

220 400.9 1411.10 378.06 0.9809 242.0 935.24 334.52 0.9352

230 391.0 1364.97 381.92 0.9808 236.5 889.12 326.29 0.9362

240 391.0 1322.40 385.18 0.9796 227.7 854.10 314.75 0.9314

250 378.8 1279.02 381.61 0.9879 217.3 818.35 299.31 0.9290

260 374.3 1242.25 382.22 0.9779 214.4 783.18 292.89 0.9303

270 369.0 1203.43 386.70 0.9799 213.1 754.86 284.73 0.9273

280 364.4 1163.08 393.36 0.9780 212.1 730.43 278.41 0.9253

290 358.6 1129.75 393.40 0.9752 211.0 697.07 268.88 0.9281

300 345.9 1092.97 391.54 0.9752 209.4 678.88 260.92 0.9183

310 334.5 1059.00 393.41 0.9773 207.3 652.54 252.62 0.9261

320 324.5 1026.86 391.76 0.9773 207.0 632.90 244.84 0.9229

330 318.6 995.75 388.99 0.9756 204.8 611.16 236.69 0.9268

340 310.8 961.17 386.68 0.9772 204.8 601.54 226.50 0.9209

350 293.7 935.87 388.24 0.9711 204.8 586.94 216.01 0.9174

360 289.9 911.89 387.05 0.9736 204.8 564.13 201.80 0.9245

370 280.2 881.05 380.32 0.9732 204.8 550.28 193.03 0.9204

380 279.8 855.61 383.33 0.9730 204.8 533.19 180.97 0.9235

390 277.8 832.13 379.29 0.9742 204.8 524.38 175.74 0.9174

400 272.4 810.46 374.21 0.9719 204.8 516.15 166.87 0.9176

410 271.5 784.03 371.49 0.9766 204.8 504.19 155.83 0.9185

420 270.0 764.05 370.53 0.9738 204.8 496.61 151.99 0.9210

430 269.6 747.45 370.98 0.9723 204.8 492.55 146.86 0.9151

440 267.3 730.15 369.16 0.9705 204.8 485.03 143.40 0.9132

450 263.3 711.97 364.40 0.9722 204.8 478.82 136.66 0.9157

460 255.9 696.32 360.97 0.9757 204.8 470.98 132.80 0.9171

470 251.5 684.27 361.86 0.9715 204.8 467.62 123.93 0.9108

480 245.3 671.52 359.00 0.9735 204.8 463.64 122.63 0.9123

490 244.5 658.31 353.81 0.9685 204.8 461.59 122.30 0.9103

500 241.7 644.74 345.32 0.9704 204.8 455.91 119.32 0.9150

Table A.15: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of minority population with district compactness and a soft contiguity constraint.

197

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Minority Population Distribution and District Compactness, Part 2 of 2
Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 2004.3 2890.86 282.65 0.9675 1954.7 2909.15 265.63 0.9314

20 1323.9 2572.75 302.02 0.9619 1370.8 2543.89 307.73 0.9069

30 1141.4 2365.28 302.01 0.9545 1146.1 2309.46 322.15 0.8803

40 1049.0 2189.60 325.25 0.9453 1009.4 2103.45 337.14 0.8564

50 893.5 2044.41 341.45 0.9307 808.6 1936.21 337.68 0.8401

60 770.6 1900.30 350.34 0.9252 599.2 1787.63 363.80 0.8088

70 551.5 1759.76 343.21 0.9252 552.3 1638.15 378.25 0.7939

80 525.9 1635.12 333.36 0.9174 436.8 1515.09 375.94 0.7773

90 510.0 1518.20 330.14 0.9126 397.3 1409.64 327.00 0.7688

100 494.1 1412.42 328.09 0.9010 370.9 1324.74 377.27 0.7415

110 491.8 1320.26 336.50 0.8935 335.9 1236.94 361.89 0.7270

120 470.5 1229.02 325.24 0.8904 298.5 1167.03 358.17 0.7101

130 442.7 1155.35 324.09 0.8830 270.8 1113.88 345.62 0.6907

140 343.4 1077.73 319.66 0.8847 268.7 1052.41 328.49 0.6949

150 306.2 1022.35 333.21 0.8664 257.2 1017.64 320.90 0.6768

160 295.8 968.12 327.77 0.8646 244.3 984.05 310.11 0.6613

170 298.2 911.97 314.95 0.8644 250.0 950.21 276.53 0.6554

180 290.8 867.52 308.39 0.8596 261.2 925.78 257.38 0.6398

190 282.5 824.78 300.70 0.8535 265.3 901.29 242.02 0.6361

200 274.7 790.30 290.88 0.8538 273.5 887.65 230.79 0.6299

210 266.7 747.13 262.14 0.8440 255.4 880.17 216.23 0.6233

220 261.4 710.74 238.29 0.8441 252.3 866.96 208.73 0.6211

230 255.7 684.85 223.60 0.8367 254.8 846.67 196.39 0.6096

240 253.9 662.28 217.38 0.8375 251.5 843.03 174.59 0.5965

250 248.9 648.20 207.72 0.8334 245.0 835.60 168.80 0.6004

260 224.0 622.79 189.30 0.8426 245.3 835.08 156.69 0.5905

270 211.8 616.81 188.40 0.8235 259.1 828.89 144.14 0.5847

280 210.4 604.22 173.56 0.8235 251.7 830.98 142.74 0.5733

290 208.7 585.12 174.36 0.8267 257.0 824.33 133.82 0.5738

300 208.7 583.21 149.19 0.8226 242.7 832.36 138.79 0.5619

310 208.7 570.32 131.54 0.8229 251.0 824.17 129.46 0.5733

320 208.0 556.94 125.55 0.8210 243.7 821.11 129.73 0.5624

330 206.8 554.15 123.33 0.8246 233.3 816.47 115.17 0.5575

340 204.5 554.44 115.78 0.8189 233.3 830.12 124.64 0.5537

350 204.5 551.49 110.00 0.8163 235.2 829.27 130.25 0.5431

360 204.5 537.99 114.09 0.8213 234.5 821.68 127.67 0.5391

370 204.1 541.14 103.84 0.8114 246.1 835.00 117.93 0.5301

380 204.1 536.59 100.01 0.8178 231.2 830.83 124.30 0.5415

390 204.1 529.14 98.08 0.8189 233.7 843.96 117.14 0.5232

400 204.1 534.48 99.89 0.8108 235.8 833.78 122.11 0.5408

410 204.1 530.80 98.65 0.8202 237.3 838.17 122.86 0.5196

420 204.1 528.75 97.18 0.8195 256.8 841.24 121.82 0.5145

430 204.1 532.04 91.43 0.8145 239.9 833.81 122.58 0.5207

440 204.1 525.46 90.68 0.8128 248.8 849.55 122.43 0.5086

450 204.1 526.63 88.99 0.8148 236.0 844.42 119.61 0.5200

460 204.1 526.81 88.60 0.8122 238.7 846.21 123.51 0.5054

470 204.1 523.59 90.07 0.8191 237.2 843.04 123.02 0.5030

480 204.1 532.00 81.60 0.8122 251.1 856.52 117.82 0.4903

490 204.1 526.44 83.69 0.8088 258.2 843.48 124.50 0.5049

500 204.1 527.54 79.36 0.8109 254.0 855.36 136.90 0.4860

Table A.16: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of minority population with district compactness and a soft contiguity constraint.

198

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total and Minority Population Distribution, Part 1 of 2

Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 49579.4 68703.13 6431.85 0.9939 49545.6 65570.86 5904.88 0.9859

20 45130.4 63649.63 5922.94 0.9929 45962.5 59897.78 5516.54 0.9817

30 41951.5 60091.79 5697.61 0.9926 42676.9 56686.73 5177.94 0.9793

40 41535.6 57965.98 5595.80 0.9922 42176.4 55018.89 5018.50 0.9775

50 41535.6 56417.48 5601.08 0.9905 40914 53461.91 5000.94 0.9777

60 41509.6 55286.49 5644.01 0.9910 39378.1 52347.84 5087.08 0.9735

70 40135.5 54404.56 5656.31 0.9892 37607.6 51427.12 5246.83 0.9679

80 38847.6 53690.49 6029.86 0.9886 36925.3 50575.85 5437.05 0.9677

90 37025.3 53158.38 6260.62 0.9890 33429.6 49963.73 5729.74 0.9655

100 34731.1 52700.29 6393.14 0.9886 33140.8 49281.72 5792.47 0.9657

110 33580 52262.82 6461.07 0.9886 31851.3 48810.06 5990.18 0.9594

120 33278.4 51855.54 6510.87 0.9875 31544.2 48113.21 6110.81 0.9642

130 32693.5 51509.78 6570.66 0.9866 31319.8 47682.69 6196.57 0.9630

140 32479.2 51217.84 6531.68 0.9842 30008.7 47134.55 6250.38 0.9634

150 32475.6 50806.95 6545.58 0.9865 29221.5 46890.30 6414.58 0.9594

160 32056.8 50489.02 6472.78 0.9866 28827.9 46677.33 6350.16 0.9543

170 31499 50155.75 6584.06 0.9869 28052.5 46316.66 6517.86 0.9607

180 31041.3 49897.30 6610.43 0.9864 27990.7 46138.98 6634.10 0.9509

190 30048.3 49669.94 660.82 0.9853 27656.5 46023.46 662.15 0.9514

200 29441.2 49428.31 6827.36 0.9842 27170.5 45713.86 6694.49 0.9530

210 28141.2 49117.24 6891.65 0.9855 27067.2 45486.89 6846.24 0.9506

220 25653.6 48966.53 7052.88 0.9824 27060.2 45266.55 7146.11 0.9488

230 24701.3 48736.36 7201.89 0.9835 26943.6 44935.22 7288.41 0.9510

240 24578 48597.54 7293.57 0.9822 26873.6 44790.65 7344.15 0.9469

250 24351.7 48450.79 7398.52 0.9825 25969.6 44619.70 7513.64 0.9457

260 24127.1 48237.22 7416.89 0.9837 25649.8 44472.72 7555.66 0.9440

270 23621.7 48096.61 7462.39 0.9828 25349.4 44281.97 7454.84 0.9444

280 23611.6 48006.75 7495.96 0.9820 25221.8 44069.35 7489.90 0.9395

290 23587.1 47818.24 7514.59 0.9816 25172.3 43840.28 7676.78 0.9448

300 23535.6 47703.30 7572.10 0.9822 24771.7 43671.45 7748.32 0.9434

310 23339.6 47647.25 7642.56 0.9806 24747.3 43616.59 7642.33 0.9415

320 23339.6 47480.30 7563.26 0.9808 24747.3 43431.88 7710.86 0.9410

330 23199.4 47252.90 7666.68 0.9833 24516 43243.05 7851.97 0.9402

340 23199.4 47199.80 7734.62 0.9825 24510.9 43006.74 7793.86 0.9432

350 23189.9 47158.05 7740.08 0.9809 24294.1 42962.82 7897.92 0.9375

360 23062.3 470303.21 7760.72 0.9814 23423.2 42761.87 7922.01 0.9405

370 23062.3 46994.15 7720.97 0.9801 23100.1 42661.63 7950.99 0.9368

380 23049.9 46903.58 7756.42 0.9807 21829.4 42551.35 8050.29 0.9337

390 23037.4 46866.86 7803.06 0.9797 21189.4 42483.45 8320.96 0.9311

400 22958.6 46759.29 7896.87 0.9813 20527 42220.35 8251.75 0.9364

410 22716.5 46720.49 7933.60 0.9800 20438.1 42156.18 8303.14 0.9320

420 21680.4 46548.97 8018.06 0.9824 20102.5 41891.68 8369.46 0.9373

430 21518.2 46519.23 8030.45 0.9806 19760.1 41829.75 8356.42 0.9312

440 20699.1 46364.55 8126.43 0.9828 16950.1 41793.60 8416.42 0.9315

450 20355.1 46266.01 8096.23 0.9792 16361.2 41617.28 8636.49 0.9299

460 20282 46202.30 8132.72 0.9795 15904 41551.09 8609.94 0.9245

470 20282 46158.32 8170.26 0.9774 15007.3 41450.55 8779.12 0.9252

480 20269.5 46120.66 8206.60 0.9766 14815.8 41299.40 8762.04 0.9267

490 20269.5 46001.61 8129.17 0.9776 14809.1 41170.92 8741.29 0.9265

500 20261.5 45910.19 8157.03 0.9783 14809.1 40952.61 8915.32 0.9301

Table A.17: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population and minority population with a soft contiguity constraint.

199

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total and Minority Population Distribution, Part 2 of 2

Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 41481.4 65371.65 5967.90 0.9689 44047.6 64179.04 5704.90 0.9301

20 40132.5 58293.25 5256.16 0.9630 35097.8 57373.85 5912.86 0.9090

30 38598.9 54929.09 5412.75 0.9520 31681.2 54036.18 6119.29 0.8908

40 35599.1 52773.24 5746.00 0.9462 30660.1 51843.92 5932.63 0.8655

50 34076.4 51195.53 5827.98 0.9416 28241.7 49968.02 5814.10 0.8504

60 33033.3 50108.11 5982.12 0.9315 23626.4 48796.78 5859.67 0.8300

70 32223.1 49128.14 5911.99 0.9277 22281.8 47461.21 6029.76 0.8196

80 31264.8 48089.37 6308.86 0.9267 20132.5 46409.18 6111.01 0.7973

90 30507.8 47473.20 6450.94 0.9138 17854.8 45113.54 6243.24 0.7862

100 28974.6 46630.74 6453.91 0.9137 16453.1 44212.93 6170.80 0.7603

110 27879.8 45825.73 6487.94 0.9034 15332.3 43245.74 6225.65 0.7494

120 25703.7 44821.33 6734.94 0.9066 15177.7 42215.05 6475.64 0.7409

130 24962.9 44284.19 6841.74 0.9007 12759.5 41624.84 6375.51 0.7294

140 24669.9 43616.80 6975.09 0.8987 13078.5 40758.64 6528.13 0.7161

150 24287.7 43199.21 7334.80 0.8909 13106.1 40048.89 6616.28 0.6989

160 23827.7 42687.42 7369.94 0.8880 12810.3 39168.10 6564.36 0.6964

170 23078.2 42177.43 7595.82 0.8833 12471.5 38749.82 6777.58 0.6766

180 22583.4 41668.61 7735.00 0.8801 12495.5 37998.78 6679.16 0.6731

190 22513.3 41442.35 7831.47 0.8729 12588.9 37635.27 6732.65 0.6557

200 22346.1 40883.13 7994.25 0.8749 12419.4 36773.40 6475.06 0.6564

210 21875.9 40593.06 8218.97 0.8663 12822.0 36546.30 6653.74 0.6367

220 21470.5 40150.91 8210.58 0.8619 12424.3 35916.08 6641.27 0.6305

230 20236.9 39864.33 8333.24 0.8570 13148.8 35778.75 6770.64 0.6129

240 19935.5 39332.59 8387.10 0.8584 13156.0 35138.04 6741.89 0.6180

250 19783.8 39029.93 8484.85 0.8549 13923.8 35172.89 7000.11 0.5949

260 18196.3 38638.72 8533.29 0.8545 13244.7 34883.96 6571.64 0.5778

270 17790.4 38475.58 8705.06 0.8493 12837.3 34262.52 6759.39 0.5871

280 17586.7 37949.33 8724.08 0.8482 12516.1 33992.01 6656.01 0.5746

290 16543.5 37412.62 8690.43 0.8510 12203.3 33986.10 6701.01 0.5695

300 15939.5 37019.01 8641.86 0.8504 12450.7 33472.11 6619.05 0.5636

310 15932.2 36978.42 8771.22 0.8395 12154.6 33527.35 6533.46 0.5515

320 15804.3 36440.47 8831.08 0.8396 11589.5 33365.79 6449.66 0.5450

330 15658.1 36299.63 8817.67 0.8306 11937.2 33044.41 6538.26 0.5259

340 14744.0 35923.64 8947.63 0.8304 11665.3 32885.53 6396.00 0.5317

350 14394.3 35691.68 9056.02 0.8243 12212.1 32875.88 6722.85 0.5168

360 14201.8 35516.55 9112.90 0.8193 12321.5 32528.73 6508.63 0.5105

370 13997.8 35161.65 9089.08 0.8215 12422.4 32444.07 6755.09 0.5127

380 13997.8 35060.38 8902.32 0.8172 11376.0 32228.15 6507.39 0.5043

390 13997.8 34883.25 9070.78 0.8128 11245.7 32126.75 6269.99 0.4923

400 13955.4 34660.43 8905.95 0.8034 11671.8 32057.15 6409.84 0.4894

410 13613.7 34388.10 9133.03 0.8064 12496.0 62206.00 6183.56 0.4797

420 13613.7 34196.66 9077.24 0.8069 12455.9 31910.55 6461.44 0.4790

430 13515.2 34076.51 9285.76 0.8015 11937.7 31805.03 6221.55 0.4756

440 13254.1 33732.06 9251.19 0.8038 11763.5 31868.69 6259.31 0.4679

450 12992.5 33653.64 9221.87 0.7981 11942.9 31707.77 6192.62 0.4691

460 12569.7 33384.55 9184.36 0.8008 10304.3 31329.58 6058.31 0.4641

470 12415.6 33049.78 9063.09 0.8055 11345.6 31297.28 5876.91 0.4583

480 12294.1 32970.45 9366.70 0.7927 11177.3 31219.40 5467.41 0.4626

490 12056.7 32624.13 9204.79 0.7921 10398.2 31152.39 5600.04 0.4637

500 11701.9 32531.59 9351.44 0.7898 10070.9 31115.81 5525.17 0.4544

Table A.18: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population and minority population with a soft contiguity constraint.

200

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total and Minority Population Distribution and District Compactness, Part 1 of 2

Mutation Rate pm = 0.001 Mutation Rate pm = 0.0025

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 52737.9 67470.10 5668.49 0.9943 50917.4 67283.71 5209.93 0.9857

20 47912.0 62725.42 5459.73 0.9923 45806.3 60890.04 4815.34 0.9816

30 46772.6 60068.37 5429.89 0.9926 39888.9 57284.42 5059.42 0.9789

40 43563.5 58061.76 5643.71 0.9921 38858.4 55304.53 5138.30 0.9787

50 41759.8 56679.05 5849.66 0.9919 38410.4 53818.38 5316.53 0.9763

60 40602.5 55730.85 5853.97 0.9905 38140.5 52748.72 5485.03 0.9731

70 38969.0 55069.65 6004.10 0.9893 37855.3 51789.60 5688.68 0.9737

80 38573.9 54318.74 6182.47 0.9902 35034.8 51177.06 5781.63 0.9677

90 38538.3 53792.73 6159.82 0.9880 34264.8 50382.51 6084.71 0.9686

100 38402.6 53323.10 6155.49 0.9892 33459.4 49797.39 6220.14 0.9644

110 37884.6 52967.24 6133.09 0.9887 33183.8 49146.69 6290.66 0.9646

120 37789.2 52654.99 6152.21 0.9873 32623.3 48579.37 6445.02 0.9640

130 37636.0 52320.22 6078.20 0.9875 31377.3 48196.71 6616.55 0.9602

140 37296.8 52062.01 6083.54 0.9878 30422.0 47740.92 6533.96 0.9617

150 36865.9 51870.96 6061.18 0.9874 29932.6 47464.20 6705.37 0.9575

160 36865.9 51699.41 6097.44 0.9866 28860.4 47168.22 6604.92 0.9569

170 36865.9 51569.43 6085.62 0.9864 28018.4 46901.37 6668.34 0.9529

180 36673.1 51460.57 6021.43 0.9829 27106.4 46646.20 6818.00 0.9524

190 35898.2 51217.77 5980.81 0.9856 26319.3 46484.67 6825.32 0.9505

200 35796.5 51198.17 6093.88 0.9821 25896.3 46189.28 7053.07 0.9512

210 35770.5 50961.35 5989.00 0.9852 25229.3 45929.67 7017.85 0.9503

220 35770.5 50937.54 6069.63 0.9828 23708.7 45692.11 7073.07 0.9509

230 35760.8 50730.46 5993.43 0.9852 23077.5 45538.29 7184.38 0.9446

240 35555.2 50668.40 6017.20 0.9839 23054.5 45241.77 7292.48 0.9467

250 34396.2 50567.27 6039.08 0.9852 22525.2 45203.59 7295.90 0.9414

260 33668.9 50456.13 6069.39 0.9834 21202.8 44878.94 7380.64 0.9420

270 33633.4 50341.59 6020.35 0.9815 20505.3 44662.13 7548.28 0.9445

280 33625.0 50116.53 6079.23 0.9825 20380.9 44462.49 7517.93 0.9395

290 33625.0 50009.73 6090.66 0.9832 20302.2 44179.19 7545.97 0.9442

300 33625.0 49957.43 6165.97 0.9812 20019.0 44158.71 7891.22 0.9368

310 33625.0 49823.90 6153.48 0.9821 18210.9 44045.00 7817.34 0.9332

320 33625.0 49723.36 6222.25 0.9818 18176.1 43731.74 7861.11 0.9390

330 32665.6 49593.32 6270.78 0.9826 16461.2 43642.32 7840.40 0.9370

340 32393.1 49599.45 6246.71 0.9790 15899.8 43453.28 8089.09 0.9376

350 32232.1 49428.67 6313.80 0.9826 15892.2 43306.90 8027.19 0.9331

360 32220.4 49356.26 6364.78 0.9836 15844.4 43099.86 8226.96 0.9342

370 32148.0 49428.89 6428.55 0.9790 15747.1 43136.27 8192.38 0.9262

380 32145.8 49335.91 6416.15 0.9804 15745.6 43021.07 8303.94 0.9285

390 32143.8 49241.32 6424.64 0.9827 15744.0 42923.12 8266.40 0.9266

400 31956.1 49131.94 6469.36 0.9798 15743.4 42723.99 8318.43 0.9280

410 31432.7 48899.01 6551.59 0.9782 15580.6 42523.75 8380.35 0.9325

420 31424.9 48722.14 6616.10 0.9791 15577.8 42528.84 8437.54 0.9239

430 31421.2 48629.05 6664.15 0.9796 15577.0 42296.84 8534.31 0.9264

440 31391.0 48547.58 6645.24 0.9804 15575.8 42000.88 8488.08 0.9307

450 30836.6 48413.31 6785.72 0.9808 15575.3 41928.53 8524.85 0.9257

460 30303.8 48391.35 6803.70 0.9792 15574.2 41876.06 8523.97 0.9216

470 29497.8 48264.72 6773.39 0.9811 15573.5 41716.60 8751.53 0.9225

480 27539.5 48209.60 6918.34 0.9791 15572.2 41567.35 8670.17 0.9204

490 26452.7 48138.27 7022.40 0.9799 15571.7 41458.60 8763.14 0.9215

500 24562.2 48046.61 7175.40 0.9779 15571.0 41362.42 8745.61 0.9225

Table A.19: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population and minority population with district compactness and a soft
contiguity constraint. 201

Districting Problem for the State of Alabama with a Multi-Objective Heuristic Measure of
Total and Minority Population Distribution and District Compactness, Part 2 of 2

Mutation Rate pm = 0.005 Mutation Rate pm = 0.010

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 46878.9 65658.55 5838.04 0.9689 45152.4 65405.04 5277.57 0.9281

20 40685.6 59433.00 5194.25 0.9628 39946.7 58085.38 5003.77 0.9055

30 39559.1 56017.78 4982.96 0.9494 36584.4 54695.77 5091.82 0.8871

40 38522.3 53819.65 5411.83 0.9416 34862.7 52740.33 5032.44 0.8646

50 32798.8 52053.49 5515.30 0.9441 31246.5 51161.01 5481.13 0.8413

60 31177.8 51024.95 5923.76 0.9309 28180.0 49943.86 5718.20 0.8236

70 30034.2 49930.94 5778.00 0.9310 25077.2 48184.51 6214.13 0.8131

80 28556.4 49042.89 5840.96 0.9229 23684.8 47083.62 6681.64 0.7914

90 27268.9 48345.01 5916.13 0.9155 23207.9 45930.82 7032.57 0.7806

100 26562.3 47584.36 5975.34 0.9153 22710.4 45131.35 6808.36 0.7660

110 26063.1 46963.38 5976.02 0.9092 22042.9 44209.77 6997.67 0.7532

120 25996.2 46372.76 6228.18 0.9108 21415.9 43513.61 6945.23 0.7317

130 25181.0 45726.70 6268.42 0.9040 16674.1 42914.58 7180.48 0.7191

140 24899.4 45193.14 6601.27 0.8961 16671.6 42142.15 7170.97 0.7033

150 24252.8 44592.99 6710.27 0.8940 16106.4 41328.04 7114.37 0.6888

160 23257.1 44010.07 6849.46 0.8897 15886.5 40865.81 7527.27 0.6767

170 22721.6 43478.54 6978.62 0.8880 15882.7 39969.37 7200.14 0.6756

180 22242.8 42993.77 7130.43 0.8792 15996.7 39885.57 7421.90 0.6525

190 20267.6 42550.13 7202.53 0.8753 15829.3 39027.69 7350.09 0.6493

200 17354.1 42188.83 7287.19 0.8679 15687.3 38761.54 7374.20 0.6252

210 16836.2 41421.63 7427.92 0.8668 15367.4 38141.33 7265.17 0.6374

220 16836.2 41008.66 7635.03 0.8626 15508.3 37761.65 7425.58 0.6237

230 16794.1 40650.98 7789.45 0.8598 14970.3 37304.71 7482.98 0.6103

240 16688.1 40411.86 7850.89 0.8501 14212.3 36756.42 7259.42 0.6063

250 15818.0 39928.15 7920.56 0.8470 13951.5 36388.66 7462.19 0.5894

260 15216.8 39398.26 7989.62 0.8446 14817.1 36193.76 7567.89 0.5779

270 14657.3 38985.36 8061.78 0.8396 14762.2 35841.01 7353.62 0.5691

280 14304.6 38632.52 8071.96 0.8370 14685.5 35368.69 7070.90 0.5691

290 14079.0 38374.75 8018.88 0.8325 13575.9 34876.32 6923.67 0.5667

300 13966.9 37823.72 8212.71 0.8389 13475.0 34647.20 6881.60 0.5528

310 13966.9 37745.01 8126.99 0.8226 13198.7 34319.63 6850.78 0.5462

320 13942.4 37384.86 8315.64 0.8249 12865.9 33998.76 6592.07 0.5394

330 13905.4 36898.17 8254.54 0.8265 12589.9 33576.92 6632.78 0.5390

340 13270.4 36527.27 8496.30 0.8140 13636.2 33494.21 6143.67 0.5369

350 13269.5 35977.52 8521.08 0.8185 13027.9 33531.17 6344.96 0.5291

360 13258.4 35580.99 8435.28 0.8159 12601.7 33239.70 6463.11 0.5161

370 13171.9 35332.79 8713.96 0.8108 12732.7 32894.17 6285.68 0.5222

380 13053.0 35137.25 8843.29 0.8072 13000.6 32987.45 6083.68 0.5074

390 12740.7 34829.05 8903.75 0.8044 12830.1 32778.93 6282.51 0.5104

400 12348.2 34471.79 8876.58 0.8025 12774.9 32451.85 5967.50 0.5185

410 12168.9 34449.18 9189.05 0.7930 12989.0 32240.14 5791.52 0.5061

420 12044.5 34091.00 9082.43 0.7955 12997.5 32468.09 5451.38 0.4932

430 11827.1 33771.13 9050.98 0.7934 13150.9 32512.78 5804.71 0.4936

440 11825.7 33477.92 9169.16 0.7952 13336.0 32477.83 5687.57 0.4803

450 11823.2 33141.23 9390.91 0.7963 12083.3 32410.19 5824.57 0.4749

460 11823.9 33018.36 9093.87 0.7909 13150.3 32336.50 5451.93 0.4780

470 11813.0 32722.65 9391.50 0.7964 13710.2 31943.63 5227.50 0.4873

480 11822.9 32691.13 9172.36 0.7859 13811.6 31976.28 5269.15 0.4715

490 11821.4 32638.23 9357.67 0.7800 13055.4 32050.69 4899.46 0.4627

500 11817.2 32368.15 9229.74 0.7836 13151.1 31843.55 5179.30 0.4712

Table A.20: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting
Problem for the State of Alabama with a multi-objective heuristic that attempts to balance equal
distribution of total population and minority population with district compactness and a soft
contiguity constraint. 202

Districting Problem for the State of Alabama with an Agent-based Heuristic
Measure of Total and Minority Population Distribution

Total Population Distribution Heuristic Minority Population Distribution Heuristic

Generation Best Mean StdDev % Connected Best Mean StdDev % Connected

10 48069 193982.93 87883.65 0.9540 19438 80435.52 27432.22 0.9547

20 27479 165131.49 89014.70 0.9443 10805 68564.21 28290.12 0.9500

30 8046 145252.75 89444.47 0.9373 4893 61657.38 29072.49 0.9426

40 2446 123426.03 89129.65 0.9247 2588 56821.90 29027.91 0.9320

50 1811 120689.68 88720.36 0.9251 1996 53161.81 29015.82 0.9247

60 755 112152.21 88302.38 0.9097 595 50174.49 29475.54 0.9137

70 752 104093.58 87182.52 0.8986 313 47218.86 29410.27 0.9075

80 837 97109.97 85796.40 0.8910 288 44404.45 29340.49 0.9016

90 755 90419.21 84089.70 0.8903 283 42542.88 29352.70 0.8868

100 755 85242.25 82430.01 0.8790 241 40615.49 28970.18 0.8826

110 755 81128.55 81603.00 0.8703 205 38584.78 28783.57 0.8779

120 646 76692.16 80044.53 0.8650 187 36667.97 28513.11 0.8701

130 533 72799.78 78351.97 0.8667 152 34540.76 28252.19 0.8747

140 435 69603.12 76873.03 0.8576 129 32942.95 28139.38 0.8729

150 439 66506.04 75237.51 0.8454 102 31860.99 28101.46 0.8622

160 404 63943.17 73793.37 0.8455 85 31179.75 27749.07 0.8495

170 351 61847.09 71565.25 0.8338 68 30664.99 27588.61 0.8505

180 351 59125.48 69484.90 0.8347 47 28901.07 26979.12 0.8501

190 351 57169.42 67547.53 0.8280 45 28201.10 26707.33 0.8395

200 351 54520.21 65105.61 0.8320 47 27331.61 25912.00 0.8393

210 330 52626.88 64149.31 0.8288 43 26510.15 25131.62 0.8346

220 295 50723.38 61781.96 0.8292 33 25698.80 24904.57 0.8352

230 250 49162.52 60633.81 0.8207 27 25165.31 24771.69 0.8281

240 283 47318.84 58673.13 0.8224 27 24594.89 24136.75 0.8263

250 240 45530.69 56502.12 0.8203 27 24293.25 24115.02 0.8181

260 240 44147.34 55268.23 0.8217 27 23705.96 24062.62 0.8199

270 240 42810.34 53293.33 0.8154 27 23115.98 23566.94 0.8207

280 240 41821.12 51842.33 0.8082 27 22810.22 23073.88 0.8166

290 240 40767.54 50819.95 0.8105 27 22263.98 22741.20 0.8192

300 240 38818.54 48418.39 0.8144 27 22068.45 22784.80 0.8164

310 233 37960.43 46985.92 0.8097 27 21619.75 22186.88 0.8173

320 200 36322.91 45653.58 0.8138 27 21172.23 21999.44 0.8182

330 240 36182.31 44855.30 0.8042 27 21349.45 21888.34 0.8071

340 200 35034.75 44370.25 0.8099 27 21002.11 21180.91 0.8094

350 188 34178.56 43265.33 0.8138 27 20586.34 20624.55 0.8107

360 188 34974.01 42606.26 0.7891 27 20236.75 21174.65 0.8117

370 146 33872.35 41846.41 0.7965 25 20300.91 20553.05 0.8028

380 146 33016.84 40701.80 0.7940 25 19556.13 19872.52 0.8151

390 180 32201.52 39261.64 0.7970 25 19472.82 19842.70 0.8099

400 146 31731.94 38129.51 0.7915 13 19516.90 18942.87 0.8059

410 140 31327.98 37719.85 0.7890 25 19219.63 19047.13 0.8066

420 140 30465.92 36445.60 0.7882 25 18975.42 19026.21 0.8059

430 140 29645.77 35080.03 0.7931 25 18830.82 18878.69 0.8039

440 140 29574.35 33433.45 0.7842 25 18338.26 18168.27 0.8092

450 140 28684.20 33382.91 0.7897 16 17976.69 18341.11 0.8104

460 140 28581.49 32195.14 0.7859 25 18437.65 17771.29 0.8000

470 140 27900.69 31729.34 0.7885 24 18102.54 17758.67 0.8019

480 140 27982.45 31625.64 0.7801 24 17681.76 17319.65 0.8063

490 140 27702.14 30372.86 0.7802 24 17686.67 16681.58 0.8029

500 140 27331.72 30268.45 0.7790 19 17485.41 16741.49 0.8048

Table A.21: Comparison of Algorithm Performance for two trials over 100 Iterations of a Contiguous Dis-
tricting Problem for the State of Alabama with an Agent-based heuristic that attempts to balance equal
distribution of total population, left, and equal distribution of minority population, right, with district
compactness and a soft contiguity constraint.

203

Districting Problem for the State of Alabama with Multiple
Pools of Agents Assessing Total and Minority Population

Distribution, District Compactness, and District Contiguity

Generation Best Mean StdDev % Connected

10 102349.5 210269.86 69772.08 0.9664

20 95354.0 184776.24 63401.48 0.9700

30 97374.5 169830.42 64204.60 0.9536

40 97195.5 158372.58 64379.14 0.9291

50 94152.5 147834.66 60981.68 0.9245

60 88221.5 140530.54 59936.84 0.9236

70 83721.5 135884.31 59327.11 0.8864

80 74926.5 129885.98 55006.40 0.9164

90 73092.0 131124.40 55850.32 0.8309

100 66041.5 125918.56 54988.60 0.8500

110 66041.5 121708.74 53562.09 0.8991

120 63526.5 118499.87 53356.85 0.8927

130 63191.5 116422.98 51182.70 0.9036

140 61472.5 114231.03 53231.26 0.8791

150 60164.5 112933.33 50845.60 0.8718

160 59670.0 111524.18 48939.12 0.8655

170 58988.0 110847.92 50001.59 0.8645

180 59011.0 109714.26 49526.16 0.8627

190 58441.0 107870.12 47514.06 0.8855

200 57646.0 107099.10 46437.98 0.8682

210 57251.0 107698.25 44993.06 0.8355

220 57229.5 106108.91 45260.95 0.8445

230 56882.5 104873.27 43728.93 0.8427

240 53885.5 107733.57 47372.43 0.7682

250 51784.5 106751.20 47752.31 0.7736

260 53781.0 104828.22 48007.52 0.7855

270 55529.5 105671.13 46494.48 0.7509

280 54220.5 105331.80 46501.27 0.7445

290 52042.0 103016.60 47702.07 0.7755

300 50936.5 102292.65 46370.23 0.7809

310 50100.0 102714.31 46072.60 0.7591

320 49388.5 100759.93 46576.95 0.7791

330 49248.5 100886.80 45885.67 0.7673

340 48845.5 100234.31 46004.86 0.7727

350 48698.5 101085.46 45717.88 0.7527

360 48658.5 102065.45 46480.09 0.7391

370 48377.0 100073.66 46004.44 0.7727

380 48630.5 101292.57 45423.59 0.7364

390 48443.0 98286.49 45564.51 0.7709

400 48443.0 102889.28 48768.41 0.6918

410 48443.0 103747.40 47962.88 0.6745

420 48443.5 101990.77 48799.44 0.7055

430 48437.5 101675.93 49375.87 0.7091

440 48409.5 103296.33 48669.33 0.6773

450 47911.5 103517.32 49156.33 0.6809

460 47682.0 103340.53 49332.15 0.6836

470 47619.5 104820.47 50486.66 0.6818

480 47520.5 104213.57 49552.36 0.6782

490 47385.0 104471.84 50434.91 0.6718

500 46324.0 105938.24 51069.29 0.6609

Table A.22: Comparison of Algorithm Performance over 100 Iterations of a Contiguous Districting Problem
for the State of Alabama with a multiple pools of intelligent agents that attempt to balance equal distribution
of total population, equal distribution of minority population, district compactness, and district contiguity.

204

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Research Goals
	Hypotheses
	Research Overview

	Literature Review: Evolutionary Computing
	The Beginnings of Evolutionary Computation
	Origin of Evolutionary Computation
	General Evolutionary Computation Algorithms

	Traditional Search Methods
	Hill Climbing and Gradient Ascent
	Simulated Annealing
	Tabu Search
	Particle Swarm Optimization

	Evolutionary Computation Theory
	Schemata and the Building Blocks Theory
	The Schema Theorem
	Price's Covariance and Selection Theorem

	Characteristics of a Genetic Algorithm
	Fitness

	Evolution Strategies
	General Evolution Strategies
	Selection and Recombination Schemes

	Genetic Operators
	Basic Nomenclature
	Selection
	Recombination and Crossover
	Mutation
	Inversion
	Loss of Diversity and Convergence

	Literature Review: Metahuristic Search in Geographic Districting Problems
	Optimized Search for Location and Districting Problems
	Common Constraints on Districting Problems
	Population Equality
	Socio-economic Homogeneity
	Similarity to Existing Plan
	Integrity of Communities

	Evolutionary Approaches to Partitioning and Districting Problems

	Solving Districting Problems with Evolutionary Algorithms and Mitigating the Effects of Contiguity Constraints
	Constructing an Evolutionary Algorithm to Solve Districting Problems
	Construction of Algorithm and Initial Population
	Algorithm Implementation
	Results

	Controlled Testing of an Evolutionary Algorithm for Solving Districting Problems
	Initial Zone Creation
	Effects of Population and Tournament Size Variation

	Effects of Hard and Soft Contiguity Constraints on Populations
	Fitness Penalization
	Neighborhood Mutation
	Local Repair

	Algorithm Performance on Statewide Analysis
	Performance on Population Equality Heuristic
	Performance on Minority Population Heuristic
	Performance on District Compactness Heuristics

	Evolutionary Algorithms in Multi-criteria Optimization Searchand the Use of Agents in Heuristic Evaluation
	Implementing a Multi-Objective Heuristic for Districting Problems
	Evolutionary Search Results with a Multi-objective Heuristic
	Multi-objective Heuristic Evaluation by Independent Agents
	Pools of Cooperating Agents

	Results of Heuristic Evaluation by Intelligent Agents

	Conclusions and Future Work
	Conclusions on Evolutionary Solutions to Districting Problems with Contiguity Constraints
	Conclusions on Multi-Objective Heuristic Evaluation of Evolutionary Districting Problems
	Future Work

	Glossary
	Acronyms
	Bibliography
	Appendices
	Additional Tables and Figures

