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Abstract

The aim of this work is to study a variety of concepts in a non-commutative setting,

which originally arose in Commutative Ring Theory. The discussion focuses particularly on

properties like hopficity and co-hopficity, maximality and almost maximality, self-injectivity

and FGC-rings. We investigate these in the context of chain and duo rings and extend some

fundamental results.
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Chapter 1

Introduction

Throughout this work, by a ring R we mean an associative ring with identity and by an

R-module we mean a unitary R-module. Precise definitions and concrete examples of all the

concepts mentioned in the present introduction will be given in the corresponding chapters.

A ring R with unit is a right (left) chain ring R if its right (left) ideals are linearly

ordered by inclusion. Commutative chain rings are called valuation rings. Furthermore, a

right (left) duo ring R is a ring in which every right (left) ideal is two-sided. In particular,

Rx ⊆ xR (xR ⊆ Rx) for all x ∈ R, i.e. in a right (left) duo ring, every right (left) principal

ideal absorbs its left (right) counterpart. Duo rings are also called invariant rings [4].

Chain rings arise as a natural generalization of valuation rings. The latter have been

studied extensively by several authors, and a summary of the rich structure theory available

for these rings can be found in Fuchs’ and Salce’s book ([13]). Chain rings themselves

also arise in Geometry, for instance in the investigation of Helmslev planes, and have been

discussed in detail by Bessenrodt, Brungs, and Törner ([4], [5] and [9]). Naturally, the

question arises which properties of modules over valuation rings carry over to the non-

commutative setting. For instance, Albrecht and Scible addressed this question in [1] by

considering the structure theory of finitely generated modules over valuation domains. They

showed that this structure theory extends to chain rings if and only if the chain ring R also

is a duo ring. The results in [4] further emphasize the importance of the duo condition in

the investigation of chain rings.

Concepts like hopficity and co-hopficity, maximality and almost maximality, and

FGC-rings have been the focus of research in commutative ring theory for several decades,

and can be found in [29], [14] and [6].
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The main goal of this dissertation is to examine non-commutative versions of these

notions in the the framework of one-sided chain and duo rings.

Section 2 introduces the notions of chain and duo ring, gives several examples and

describes their basic properties which are used in the remainder of our discussion. Section

3 considers repetitive elements and repetitive rings, which were introduced by Goodearl in

[15] to characterize the rings R for which all surjective endomorphisms of finitely generated

R-modules are automorphisms. We continue the discussion of [15] by describing how to

construct repetitive elements, and investigate repetitive elements in chain rings. Our main

result shows that one-sided duo rings are repetitive, and a chain ring is a duo ring if all its

units are repetitive (Theorem 3.2.2).

A right R-module M is Hopfian if every surjective endomorphism of M is an auto-

morphism. Dually, M is co-Hopfian if injective endomorphisms are automorphisms. The

notions of hopficity and co-hopficity were introduced by Hiremath in [16], and have been

studied by Goodearl, Varadarajan and other, see, e.g. [28]. Section 4 presents some exam-

ples and results about rings R that are Hopfian as right R-modules. In particular, we show

that modules with a local endomorphisms ring satisfy a cancellation property (Proposition

4.0.16). We use this result to show that a free R-module is Hopfian if and only if it is finitely

generated whenever R is a right (left) chain ring or right (left) duo ring (Theorem 4.0.18).

In addition, we observe that cyclic R-modules are Hopfian if R is a right duo ring. This

allows us to show that finite direct sums of cyclic R-modules are Hopfian (Theorem 4.0.21)

if R is a right chain and right duo ring. As a corollary, we obtain that finite direct sums of

cyclic modules cancel in direct sums for these rings.

Section 5 studies one-sided annihilators. Theorem 5.1.2 shows that every left principal

ideal of a chain ring R is a left annihilator if RR is co-Hopfian. Using the right-left symmetry

of this result, we obtain that these conditions on RR imply that the nil-radical N(R) of R,

it is contained in the left singular ideal Zl(R) of R. Moreover, the Jacobson radical J(R),

and the right singular ideal Zr(R) are both nilpotent in this case.
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Also, Section 5 considers maximality, almost maximality and self-injectivity. Gill’s had

shown that these concepts are closely related in the commutative case [14]. We extend several

of his results to the non-commutative setting. For instance, we establish that right almost

maximality of a ring R is equivalent to its right maximality if R is a right duo and right

chain ring which is not a domain. This allows us to characterize right self-injective rings, as

the left maximal rings R such that RR is co-Hopfian whenever R is a chain and right duo

ring. This also extends Klatt’s and Levy’s characterization of valuation rings in [21].

In Section 6, we show that the right-left localizations of a duo ring R at a completely

prime (prime) ideal P are equivalent. In particular, we obtain that, if R is an almost

maximal chain and duo ring, then the localization RP also is an almost maximal chain ring.

Our discussions in Section 4 naturally give rise to the question of which rings R have the

property that all finitely generated right R-modules are direct sums of cyclic modules. Such

rings are called right FGC-rings. Kaplansky has shown that an almost maximal valuation

ring is an FGC-ring [19, Theorem 14]. However, a combination of results by Kaplansky,

Matlis, Gill, Lafon and Warfield shows that a local commutative ring R is an FGC-ring if

only if R is an almost maximal ring ([12, p.133-135]). Behboodi extended this result in [3] to

a non-commutative setting by showing that a local duo ring R is an FGC-ring if and only if

it is a chain-ring for which R/I is a linearly compact left R-module for every non-zero ideal I

of R. We use this result to extend Kaplansky’s characterization to right chain and right duo

rings (Theorem 6.2.4). We also show that the FGC-property is closed under localizations.

Additionally, we address a question asked by Fuchs and Salce in [13], namely to find the

integral domains R, over which the finitely generated (finitely presented) modules cancel in

direct sums. Our last theorem, collects many of our findings about chain and duo rings, and

links all the main concepts of this work as follows:

Theorem 6.2.8. Let R be a chain and duo ring, and P a prime ideal of R such that

R \ P does not contains zero divisors. If R is a FGC-ring, the following hold:

a) Any finitely generated module cancels in direct sums.
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b) R is an almost maximal ring. If R is not a domain, then R is a maximal ring.

c) If RR or RR is co-Hopfian and if R is not a domain, then R is self-injective.

d) Every finitely generated R-module M is Hopfian. If M is also injective, then M is both

Hopfian and co-Hopfian.

e) All matrix rings Mn(R) are repetitive.

f) The localization RP is an almost maximal chain ring.

g) If E = E(R/J(R)) is Noetherian, then E has a finite number of submodules.

h) All finitely generated injective R-modules satisfy Fitting’s Lemma.

i) An R-module M is distributive if only if all cyclic submodules of M are distributive.

Although we intended to make this document as self-contained as possible, the reader

has to be aware that most of the topics studied in this dissertation are related to well-known

problems in Ring Theory. While we introduce many of the basic definitions and facts related

to the concepts studied, the reader is referred to standard texts like [2], [22], [26] or [30] for

additional background details.
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1.1 Basic Notions

As we mentioned before, all rings R are associative rings with identity and all the

R-modules are unitary. The word ideal refers a two-sided ideal; and adjectives like

co-Hopfian or Noetherian, likewise means both right and left co-Hopfian or Noetherian.

Let R be a ring and S a subset of R, the right annihilator of S is the set

annr(S) = {a ∈ R | sa = 0 for any s ∈ S}. In a similar way, we define the left an-

nihilator annl(S). Also, an element 0 6= x ∈ R is a right (left) zero divisor if annl(x) 6= 0

(annr(x) 6= 0).

A domain is a ring with no right or left zero divisors, and a right (left) unit u in R is

an element of R such that there is a ∈ R with au = 1 (ua = 1). Additionally, M 6= 0 is a

simple module if M has no proper submodules different from zero.

An object satisfies the Ascending Chain Condition (ACC) with respect to a property P ,

if any non-trivial chain of subobjects satisfying P eventually terminates. A Noetherian right

(left) module is a module that satisfies the ACC for right (left) submodules, while a right

(left) Noetherian ring satisfies this condition for right (left) ideals. Similarly, we define the

Descending Chain Condition (DCC), Artinian right (left) module and Artinian right (left)

ring. On the other hand, an object satisfies the Maximum Condition (MC) for some type

of subobjects, if every non-empty family of these subobjects has a maximal element. It is a

well-known fact that a module satisfies the MC with respect to P if and only if satisfies the

ACC with respect to P .

The intersection of all maximal right (or left) ideals of R is called the Jacobson radical,

J(R), of R. A useful characterization of this ideal is

J(R) = {y ∈ R | 1− xyz is a unit for every x, z ∈ R}

A submodule N of M is an essential submodule if every non-zero submodule of M has

a non-zero intersection with N , and this is denoted by N ⊆e M . The right singular ideal of

R is Zr(R) = {x ∈ R | annr(x) ⊆e R}. Similarly, we define the left singular ideal Zl(R).
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1.2 Notation

Z ring of integers

N set of natural numbers

Q field of rational numbers

MR (RM) category of right (left) R-modules

Zn ring of residues Z/nZ

⊂ strict inclusion

ω first infinite cardinal

A \B set-theoretic difference

Mn(R) ring of n× n matrices with entries from R

C(R) the center of the ring R

M (I),
⊕

i∈IM direct sum of I copies if M

EndR(M) ring of R-endomorphisms of M

xR, Rx right, left cyclic R-module generated by x

Rad(M) radical of M

J(R) Jacobson radical of R

N(R) nilradical of R

E(M) injective hull (or envelope) of M

Zr(R), Zl(R) right, left singular ideal of R

dim(M) Goldie-dimension of M

U(R) group of units of the ring R

(RP )r, (RP )l right, left localization of R at the completely prime ideal P

6



Chapter 2

One-sided Chain Rings and Duo Rings

This chapter discusses some of the basic properties of chain and duo rings which will be used

throughout our discussion. A more extensive study of right chain rings can be found in [4].

A ring is a right chain ring if aR ⊆ bR or bR ⊆ aR for all a, b ∈ R. Similarly, we

define left chain rings. If R is both a right and a left chain ring, then R is a chain ring. A

commutative chain ring R is called valuation ring. An example of a finite valuation ring is

the ring Zpk with p a prime and k ∈ N. For a non-commutative example, consider the field

F4 with four elements and define the standard vector-space addition on V = F4

⊕
F4. To

make V into a ring R define a multiplication by (a, b) · (c, d) = (ac, ad + bc2). According to

[17], R is smallest non-commutative chain ring. Observe that finite one-sided chain rings are

automatically two-sided chain rings ([17, Theorem 2.1]). A further example is obtained by

considering a division ring D which admits a one-to-one D-endomorphism f which is not an

automorphism. The ring R∗ = D×D which is obtained by using the standard addition and

by defining the multiplication by (a, b) · (c, d) = (ac, f(a)d+ bc), is a right chain ring that is

not left chain ring (nor a domain) [5, Example 6.16].

Recall that a non-zero R-module M is called local if it has a largest proper submodule.

In general, Rad(M) is the intersection of all maximal submodules of M . Examples of local

Z-modules are simple modules and the modules Zpk , where p is prime and k < ω. The

radical of the right RR is the Jacobson radical J(R) of R. It is a two-sided ideal of R, and

coincides with the radical of RR. In a local ring R, J(R) is the unique maximal right ideal

of R. Examples of local rings include fields, rings in which every element is either a unit

or nilpotent, the endomorphism rings of indecomposable modules (non-zero modules with no

non-trivial direct summands) of finite length and of course, any chain ring.
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Although the next results are well-known properties of chain rings, we include some of

the proofs for the convenience of the reader.

Lemma 2.0.1. [4, Lemma 1.2 & Lemma 1.4] Let R be a right chain ring.

a) R is a local ring such that all right ideals are linearly ordered by the inclusion.

b) Every finitely generated right ideal is principal.

c) If M ∈ RM and x ∈M , then xR is indecomposable.

d) For every a ∈ R, Ra ⊆ UaR

e) A right ideal of R is a two-sided ideal exactly if uI ⊆ I for every u ∈ U(R).

Proof. a) If I and J are right ideals of R such that I 6⊂ J , then there exists a ∈ I \J . For any

b ∈ J , we have bR ⊆ aR, since a 6∈ J . Therefore J =
∑

b∈J bR ⊆ aR ⊆ I. In particular, any

two maximal right ideals must be equal. b) follows immediately from the definition. Finally,

to see c) observe that the submodules of xR are linearly ordered since xR ∼= R/annr(x). In

particular, xR is indecomposable.

d) Let x ∈ R. If x is either a unit or xa ∈ aR, then we are done. Suppose x ∈ J and

xa /∈ aR. Since R is a right chain ring, we have that aR ⊆ xaR, and a = xas for some

s ∈ R. Note that s must be in J , for otherwise s is a unit and xa ∈ aR. Then 1 + s ∈ U and

xa(1 + s) = xa+ xas = xa+ a = (1 + x)a.

Since x ∈ J by assumption, (1 + x) ∈ U and we obtain

xa = (1 + x)a(1 + s)−1 ∈ UaR.

e) Clearly the result holds if I is a two-sided ideal. Conversely, suppose I is a right

ideal such that uI ⊆ I for every u ∈ U . If a ∈ I, then Ua ⊆ I by assumption. Then

ra ∈ Ra ⊆ UaR ⊆ I for every r ∈ R by d). Therefore I is an ideal.
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A ring R is a right (left) duo ring if every right (left) ideal is a two-sided ideal, or

equivalently, a ring such that Ra ⊆ aR (aR ⊆ Ra) for any a ∈ R. We will say that R is duo

ring if R is a right and left duo ring, i.e. if aR = Ra for all a ∈ R. Trivial examples of duo

rings are, of course, commutative rings and division rings. Furthermore, the right chain ring

R∗ = D ×D defined previously is also a right duo ring that is not a left duo ring.

Another example is given in [8]. Let F be the splitting field of the polynomial

p(x) = x3 − 2 over the rational numbers Q. Let α be the real root of p(x) and β be one of

the complex roots. Then there exists an automorphism σ of F with σ(α) = β. We consider

the twisted power series ring K = F [[x, σ]] in one variable x over F . It consists of all formal

series
∑∞

i=0 aix
i where ai ∈ F with the addition

∑∞
i=0 aix

i +
∑∞

i=0 bix
i =

∑∞
i=0(ai + bi)x

i

and the multiplication defined using the distributive law and the rule xa = σ(a)x. The

subring R = Q + xK of K, consisting of all those series whose constant term is in Q is a

non-commutative duo domain.

For one-sided annihilators in a right duo ring, the following is well-known:

Lemma 2.0.2. Let M be a right module over a right duo ring R.

a) If M is finitely generated, say M =
∑n

i=1 xiR, then annr(M) = ∩ni=1annr(xi).

b) annr(x) = annr(xR) for all x ∈M .

Proof. a). If a ∈
⋂n
i=1 annr(xi) and m ∈ M , then, ma =

∑n
i=1 xiria. Since R is a right duo

ring there is a family {ti}ni=1 ∈ R such that ria = ati for any i. Hence, ma =
∑n

i=1(xia)ti = 0.

Therefore
⋂n
i=1 annr(xi) ⊆ annr(M). Since annr(M) ⊆

⋂n
i=1 annr(xi), the result follows.

Note that b) is an immediate consequence of a).

9



Chapter 3

Repetitive Rings

An element a of a ring R is right repetitive if, for each finitely generated right ideal I

of R, the right ideal
∑∞

n=0 a
nI is also finitely generated. Rings in which every element is

right repetitive are called right repetitive rings. Repetitiveness is not a left-right symmetric

condition as it is shown in [15] (Examples 9, 10 and 13).

Proposition 3.0.1. [15, p. 591] Let R be any ring and a ∈ R, then, the following conditions

are equivalent:

a)
∑∞

n=0 a
nI is a finitely generated right ideal of R for any finitely generated right ideal

I of R.

b)
∑∞

n=0 a
nI =

∑k
n=0 a

nI for some positive integer k for any finitely generated right ideal

I of R.

c) for any x ∈ R, there exist kx < ω and r0, r1, ..., rkx−1 ∈ R such that

akxx = xr0 + axr1 + a2xr2 + ...akx−1xrkx−1 (1)

.

Proof. a) =⇒ b) Let {y1, y2, ..., ym} be a set of the generators for
∑∞

n=0 a
nI. Then

yi = ani1 bi1 + ani2 bi2 + ... + anis bis for some s < ω. If ki = max{nij}sj=1, it is clear that

yi ∈
∑ki

n=0 a
nI. Therefore, if k = max{ki}mi=1, we have

∑∞
n=0 a

nI ⊂
∑k

n=0 a
nI.

b) =⇒ c). Let x ∈ R, consider the right principal ideal xR. By b)∑∞
n=0 a

nxR =
∑k

n=0 a
nxR for some positive integer k. Then, ak+1x ∈

∑k
n=0 a

nxR, i.e.

ak+1x =
∑k

n=0 a
nxrxn .

10



c) =⇒ a). Let y ∈
∑∞

n=0 a
nI. Thus y = an1b1 + an2b2 + ... + ansbs for some s < ω,

where bi ∈ I for any i = 1, 2, ..., s. Let {x1, x2, ..., xm} be a set of the generators for I, then

bi =
∑m

j=1 xjcbij with cbij ∈ R, and therefore anibi =
∑m

j=1 a
nixjcbij . By c), for each xj, there

exist kj and xj0 , xj1 , ..., xjkj−1
∈ R such that

akjxj = xjxj0 + axjxj1 + a2xjxj2 + akj−1xjxjkj−1
∈

kj−1∑
n=0

anI (2)

If ni ≤ kj, clearly anixj ∈
∑kj−1

n=0 a
nI. Suppose that kj < ni. Observe that equation

(2) implies akj+txj ∈
∑kj

n=0 a
nI for any t < ω. This means that anixj = akj+(ni−kj)xj

belongs to
∑kj

n=0 a
nI. Thus, in both cases anixjcbij ∈

∑kj
n=0 a

nI for any j = 1, 2, ...,m. Let

k = max{kj}mj=1. Then, anibi =
∑m

j=1 a
nixjcbij ∈

∑k
n=0 a

nI, and therefore y ∈
∑k

n=0 a
nI.

Note that c) establishes that it suffices to check repetitiveness only for right principal

ideals I.

3.1 Right Repetitive Elements

Let C(R) be the center of R, which consist of all the elements in R that commute with

arbitrary elements in R. If a ∈ R is integral over C(R), then there exists a monic polynomial

p(x) ∈ C(R)[x] such that p(a) = 0, and consequently p(a)r = 0 for all r ∈ R. Therefore, a

satisfies an equation of the type (1) (in Proposition 3.0.1) since the coefficients of p(x) and

r commute. Thus, a is a repetitive element in R. Repetitiveness, in this sense, is a kind of

integrality condition. Trivially, nilpotent elements in a ring are repetitive. In general, rings

that are integrally closed over their center, commutative rings and right Noetherian rings

are examples of right repetitive rings.

We now discuss how to construct additional repetitive elements from given ones.

Proposition 3.1.1. Let R be a ring, and x ∈ R right repetitive.

a) If u ∈ U(R), then u−1xu is right repetitive.

11



b) If c ∈ C(R), then xc is right repetitive.

c)

x 0

0 0

,

0 x

0 0

 ,
0 0

0 x

 and

0 0

x 0

 are right repetitive in the matrix ring M2(R).

Proof. a) If a is any element in R, by Proposition 3.0.1 x repetitive implies that there exist

k < ω and r0, r1, ..., rk−1 ∈ R such that

xk(ua) =
k−1∑
n=0

xn(ua)rn

Hence u−1(xkua) =
∑k−1

n=0 u
−1xn(ua)rn. Since (u−1xu)m = (u−1xmu) for any m, we conclude

(u−1xu)ka =
∑k−1

n=0(u−1xu)narn. Thus, u−1xu is repetitive.

b) As in a), there exist k < ω and r0, r1, ..., rk−1 ∈ R such that xka =
∑k−1

n=0 x
narn for

any a ∈ R. Hence,

(xc)ka = xkcka = ck(xka) = ck(
k−1∑
n=0

xnarn) =
k−1∑
n=0

(xc)na(ck−nrn)

as required.

c) Let x be a right repetitive element inR, and

a b

c d

 be an arbitrary element inM2(R).

We only show that

x 0

0 0

 is right repetitive since the other cases can be treated in a similar

way. Since x is right repetitive, there are k < ω and r0, r1, ..., rk−1, s0, s1....., sk−1 ∈ R, such

that xka =
∑k−1

i=0 x
iari and xkb =

∑k−1
j=0 x

jbsj.
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Therefore,

x 0

0 0


k a b

c d

 =

xka xkb

0 0


=

∑k−1
n=0 x

narn
∑k−1

n=0 x
nbsn

0 0


=

k−1∑
n=0

x 0

0 0


n a b

c d


rn 0

0 sn



which implies that

x 0

0 0

 is right repetitive in M2(R).

Additionally, we have:

Corollary 3.1.2. If R is a right repetitive ring, then M2(R) is right repetitive if and only if

the finite sum of right repetitive elements in this ring is also right repetitive.

Proof. The direct implication is it clear. It remains to show that M2(R) is right repetitive if

the sum of repetitive elements is repetitive. Let

a b

c d

 be an element in M2(R). Since R is

right repetitive, a, b, c and d are right repetitive elements in R. By c) in the previous propo-

sition,

a 0

0 0

 ,
0 b

0 0

 ,
0 0

c 0

 and

0 0

0 d

 are right repetitive elements. By hypothesis,

their sum must be also right repetitive.

Note that the arguments in the proof of Proposition 3.1.1 c) hold for matrices in the ring

Mn(R) for all 1 < n < ω. Therefore, to verify that the ring Mn(R) is repetitive (whenever

R is repetitive), it is enough to show that the sum of repetitive elements is also repetitive.

The repetitiveness of the ring Mn(R) will play an important role in the next section.
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3.2 Right Repetitive Chain Rings

We now investigate repetitive elements in chain rings.

Theorem 3.2.1. Let R be a right chain ring. If x is a right repetitive element of R, then

1 + x is right repetitive.

Proof. Let a ∈ R. We need to show that Σ∞n=0(1 + x)naR is a finitely generated right ideal

of R. Since R is a right chain ring, the right ideals (1 + x)R, xaR and aR have to satisfy

one of the following cases:

If (1 + x)aR ⊆ xaR, aR , then (1 + x)a = as for some s ∈ R. For 0 < n < ω, we obtain

(1 + x)na = (1 + x)n−1(1 + x)a = (1 + x)n−1as ∈ (1 + x)n−1aR.

Thus, (1 + x)naR ⊆ (1 + x)n−1aR, and

aR ⊆
∞∑
n=0

(1 + x)naR ⊆ (1 + x)aR ⊆ aR

Then
∑∞

n=0(1 + x)naR = aR is a finitely generated right ideal of R.

On the other hand, if aR ⊆ (1 + x)aR, then xa = (−a) + (1 + x)a ∈ (1 + x)aR, and

xaR ⊆ (1 + x)aR. Since (1 + x)aR ⊆ aR+ xaR, we obtain (1 + x)aR = aR+ xaR. Also, if

xaR ⊆ (1 + x)aR, then a = (−xa) + (1 + x)a ∈ (1 + x)aR, and (1 + x)aR = aR + xaR as

before. We now show

Σn
k=0(1 + x)kaR = Σn

k=0x
kaR

for all n < ω in both of these cases. By what has been shown, aR+ (1 + x)aR = aR+ xaR.

Clearly,

Σn+1
k=0(1 + x)kaR ⊆ Σn+1

k=0x
kaR.

14



We can find `0, . . . , `n < ω such that

xn+1a = (1 + x)n+1a− [Σn
k=0x

k`k]a ∈ (1 + x)n+1aR + Σn
k=0x

kaR.

By the induction hypothesis, Σn
k=0x

kaR = Σn
k=0(1 +x)kaR. Hence, xn+1a ∈ Σn+1

k=0(1 +x)kaR.

Since x is right repetitive, there are k, ` < ω such that

Σ∞n=0x
naR = Σk

n=0x
naR = x`aR

using the fact that R is a right chain ring. But

Σ∞n=0(1 + x)naR = Σ∞n=0x
naR = x`aR

by what was shown in the last paragraph.

We conclude this section by looking at repetitiveness in chain and duo rings:

Theorem 3.2.2. Let R be a ring.

a) If R is a right duo ring, then R is right repetitive.

b) If R is a right chain ring and all the units are right repetitive, then R is right duo.

Proof. a) Let R be a right duo ring. If x, a ∈ R, then xa = as for some s ∈ R. Thus,

xna = xn−1(xa) = xn−1(as) for all 0 < n < ω. Hence, xnaR ⊆ aR if 0 < n < ω, and

aR ⊆
∞∑
n=0

xnaR = aR +
∞∑
n=1

xn−1aR ⊆ aR

which implies that x is right repetitive. Hence, R is a right repetitive ring.

b) Let R be a right chain ring such that every u ∈ U(R) is right repetitive. There are

k, ` < ω such that

Σ∞n=0u
naR = Σk

n=0u
naR = u`aR
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For all r ∈ R, we can find s ∈ R such that u`+1ar = u`as. Since u is a unit, this implies

uaR ⊆ aR. By part e) of Lemma 2.0.1, aR is a two-sided ideal of R, for all a ∈ R, and R is

a right duo ring.
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Chapter 4

RR Hopfian and Hopfian Modules

A right R-module M is Hopfian if every epimorphic endomorphism f : M → M is an

automorphism. Hopficity is a categorical notion that has been studied for groups, rings,

modules, and topological spaces. Hiremath introduced the concept of Hopfian rings and

modules in [16]. This section presents some examples and results on Hopfian modules. We

are interested exclusively in the hopficity of rings considered as modules.

According to Varadarajan ([28, Theorem 1.3]), a ring is Hopfian as a left module if only

if is Hopfian as a right module. Thus, we just say that the ring is Hopfian as a module.

Clearly, every simple module is Hopfian. Some other examples of these modules are given

by the following results:

Proposition 4.0.1 ([16], Proposition 1.2). Any commutative ring R is Hopfian as an

R-module.

Proof. Let f : RR → RR be any epimorphism with f(1R) = a. Then, f(r) = f(1)r = ar for

any r ∈ R. Since exist b ∈ R such that f(b) = 1R, we have 1R = f(b) = f(1R)b = ab = ba.

Thus, a is a unit, and Ker f = AnnR(a) = 0.

Moreover, finite-dimensional vector spaces are Hopfian by a simple dimension argument.

Our next result extends this to a more general setting. Recall that the Goldie-dimension,

dim(M) of a module M is the maximal number of non-zero summands in any direct sum of

submodules of M .

Proposition 4.0.2. Let R be a ring.

a) Any module which satisfies the ACC for kernels of its endomorphism ring is Hopfian.
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b) If R has finite right Goldie-dimension, then finitely generated projective and finite

dimensional nonsingular right R-modules are Hopfian.

Proof. a) Let f : M →M be an epimorphism with Ker f = K. Since M satisfies the ACC,

the chain

K = Ker f ⊆ Ker f 2 ⊆ Kerf 3 ⊆ ...

becomes stationary. Select k < ω such that Ker fk = Ker f ` for ` > k. Pick y ∈ Kerfk,

and note that fk is also an epimorphism. Therefore, there exists x ∈M such that fk(x) = y.

Hence, f 2k(x) = fk(y) = 0. Thus, x ∈ Ker f 2k = Ker fk, and y = fk(x) = 0. Therefore,

K ⊆ Ker fk = 0.

b) Let P be a finitely generated projective right R-module. If f : P → P is an

epimorphism, then the projectivity of P projective yields P ∼= P ⊕Ker f . Since there exist

a finitely generated free module F such that F ∼= P ⊕ N for some submodule N of F , we

obtain that P has finite right Goldie dimension. Since dim(P )+dim(Ker f) = dim(P ) <∞,

we conclude Ker f = 0. The case of a finite dimensional nonsingular module is discussed in

the same way.

In particular, note that every finitely generated right module over a right Noetherian

ring is Hopfian. Also, if f : RR → RR is an epimorphism, then Kerf = annr(f(1R)) and

annr(f
n(1R)) ⊆ annr(f

n+1(1R)) for any n < ω, then by Part a),

Corollary 4.0.3. A ring which satisfies the ACC on right or left annihilators is Hopfian.

Furthermore, Vasconcelos’ Theorem [29, Proposition 1.2] reduces the discussion to non-

commutative rings:

Theorem 4.0.4. [29] A finitely generated module over a commutative ring is Hopfian.

Proof. (Vasconcelos) Let f be the given endomorphism of M . One can consider M as a

module over R[x], where the action of the indeterminate is given by xm = f(m) for m ∈M .
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Then M is a finitely generated R[x]-module with M = xM . Consequently, (1 + sx)M = 0

for some s ∈ R[x] using determinants. It is then clear that f is a monomorphism.

Unfortunately, arguments like this using determinants fail to carry over to a non-

commutative setting in most cases.

The following theorem which is due to K. Goodearl characterizes the rings R for whose

every finitely generated R-module is Hopfian.

Theorem 4.0.5. [15, Theorem 7] For a ring R, the following conditions are equivalent:

a) All finitely generated right R−modules are Hopfian.

b) All matrix rings Mn(R) are right repetitive.

c) In every matrix ring Mn(R), all units are right repetitive.

Corollary 4.0.6. [15, Proposition 4] If R is a right repetitive ring, then all cyclic right

R-modules are Hopfian.

The next result provides an example of a ring R for which all finitely generated

R-modules are Hopfian.

Proposition 4.0.7. [15, Example 10] Let R =

 K 0

K[x] K[x]

 where K is a field and x is

an indeterminate. The matrix ring Mn(R) is left repetitive for any n < ω since R is left

Noetherian.

It is important to note that according to Propositions 4.0.1 and 4.0.6, commutative and

repetitive rings are Hopfian as modules, but also is true, that this is not the case for every

ring, as we will observe in Proposition 4.0.19.

We now investigate the Hopfian property in the context of right duo and right chain

rings. Combining the last corollary with Theorem 3.2.2 yields

Corollary 4.0.8. If R is a right duo ring, then all cyclic right R-modules are Hopfian.
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In the following, we make use of a classical result called Shur’s Lemma:

Lemma 4.0.9. [2, Shur’s Lemma] If M is a simple R-module, then EndR(M) is a division

ring.

Proposition 4.0.10. Any local ring is Hopfian as a module over itself.

Proof. Let R be a local ring and J = J(R) be the Jacobson radical of R. It suffices

to consider R as a right module by what has been said previously. It is clear that R/J

is a simple R-module. By the Schur’s Lemma, EndR(R/J) is a division ring.

Let φ : EndR(R) → EndR(R/J) be the ring homomorphism defined as φ(f) = f̄ ,

where f̄(a + J) = f(a) + J . Since RR is free, φ is an epimorphism. Note that,

for any epimorphism f ∈ EndR(R), we have that R = f(R) ⊃ J . Then

f /∈ HomR(R, J) = Ker φ. This implies that f̄ has an inverse ḡ = φ(g) for some

g ∈ EndR(R). Note that φ(gf) = φ(g)φ(f) = 1EndR(R/J) = φ(1EndR(R)) where

EndR(R) = R. Thus, 1R − gf ∈ Ker φ, and therefore (1R − gf)(a) ∈ J for any a ∈ R.

Since R local, we have that 1R − (1R − g(f(1R))) is a unit. Since g(f(1R)) = g(1R)f(1R),

we obtain that f(1R) has a left inverse. This means that, if 0 = f(x) = f(1R)x, then x = 0.

Therefore, f is an isomorphism.

A ring R is Dedekind-finite (DF ) if ab = 1R implies ba = 1R for all a, b ∈ R. For

example, if M is a Hopfian R-module, and f, g ∈ E = EndR(M) satisfy fg = 1E, then f

must be epic. The hopficity of M gives gf = 1E. Thus, the endomorphism rings of Hopfian

(or co-Hopfian) modules are example of DF -ring. Modules with the latter property are

called DF-Modules. Several properties of these modules are summarized in [7]. For example,

it is easy to see that:

Proposition 4.0.11. The class of rings R such that RR is Hopfian coincides with the class

of DF-rings.

Proof. As it is observed above, if RR is Hopfian then EndR(RR) = R is a DF -ring. On the

other hand, every endomorphism f of RR has the form f(r) = ar for some a ∈ R. Thus, if
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f is onto, then aR = R, and ab = 1R for some b ∈ R. Since R is a DF -ring, ba = 1R. Thus,

g(r) = br is the inverse of f .

Proposition 4.0.12. [23, Exercise 20.8] For any ring R and any integer n ≥ 1, the following

statements are equivalent:

a) Mn(R) is DF .

b) For any right R−module M , Rn
R
∼= Rn

R ⊕K implies that K = 0.

c) Rn
R is Hopfian.

Lemma 4.0.13. [23, Exercise 20.9] Mn(R) is DF for all n < ω if R is a right duo ring R.

Proof. (Goodearl, [23, p.284]). Let {Ji}i∈I be the set of maximal right ideals of R. Since

Ji is an ideal, R/Ji is a division ring for any i ∈ I. Thus, Mn(R)/Mn(Ji) ∼= Mn(R/Ji)

is a simple Artinian ring for all n < ω, which we know to be Dedekind-finite by using

arguments from Linear Algebra. The natural ring homomorphism Mn(R) →
∏

iMn(R/Ji)

has Mn(Rad(R)) = Rad(Mn(R)) as its kernel. Thus, Mn(R)/Rad(Mn(R)) is a DF -ring,

and this implies the same for Mn(R).

A ring R has right stable range 1 if, whenever aR + bR = R for some a, b ∈ R, then

there exists e ∈ R such that a + be ∈ U(R). Observe that if b = 0, then this condition is

equivalent to R being a DF -ring. Due to a result of Vaserstein left and right stable range 1

are equivalent properties [22, p.300]. For this type of rings we have,

Proposition 4.0.14. Any local ring R has stable range 1.

Proof. Let a, b ∈ R such that aR + bR = R. Then, aR = R or bR = R since otherwise

aR, bR ⊆ J yields R = J(R). Without lost of generality assume bR = R. Then b /∈ J yields

that b is a unit. If a also is a unit, then (1R− a) + (−(1R− b)) = b− a cannot be a non-unit

since R is local. Thence, 1R− (b− a) = a+ b(b−1− 1R) is invertible as is required. Similarly,

if a is not a unit, then (1R − b) + (−a) = 1R − (a + b) cannot be invertible, which implies

that a+ b(1R) is a unit.
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Theorem 4.0.15. [22, Cancellation Theorem of Evans] Let R be a ring, and M,N,K be

right R-modules. Suppose EndR(M) has stable range 1. Then M ⊕ N ∼= M ⊕ K implies

N ∼= K.

Combining the last two results, we obtain:

Proposition 4.0.16. Any module with a local endomorphism ring cancels in direct sums.

Observe that the cancellation property does not hold for modules in general; given

two non-isomorphic R-modules N and K, if we set M = N ⊕ K ⊕ N ⊕ K ⊕ ..., then

M⊕N ∼= M⊕K ∼= M , but M cannot be cancelled. This construction, known as Eilenberg’s

trick, suggests restricting the study of the cancellation property to finitely generated modules

([11],p.192). As a first step, we investigate free Hopfian modules. We have,

Corollary 4.0.17. If R is a local ring, then any finitely generated free right R-module is

Hopfian.

Proof. Let F be a finite free R-module, and consider an epimorphism g : F → F with kernel

K. Since F is projective, then F ∼= F ⊕K, or equivalently, Rn
R
∼= Rn

R ⊕K for some n < ω.

By the previous proposition, we can cancel RR one by one since R is local. Thus, K = 0.

According to Hiremath [16], it is not known whether hopficity is closed under taking

(finite) direct sums. However, Hiremath showed that Hopfian free modules are finitely gener-

ated [16, Proposition 12]. Thus, combining Hiremath’s proposition with Proposition 4.0.12,

Lemma 4.0.13, and Corollary 4.0.17, we obtain,

Theorem 4.0.18. Let R be a local ring or a right duo ring. Then a free right R-module is

Hopfian if only if it is finitely generated.

Interestingly, a free module of finite rank over a non-commutative ring need not to be

Hopfian. In fact, as we mentioned before, not every ring is Hopfian as a module as Hiremath

pointed out in the following example.
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Proposition 4.0.19. [16, p.899] Let K be a field, and V = ⊕∞n=1K be a countably infinite

dimensional vector space over K. Then the ring R of all linear operators of V is not Hopfian

as an R-module.

Proof. To show this, define two K-endomorphisms of V by f((ki)
∞
i=1) = (0, k1, k2, ...), and

g((ki)
∞
i=1) = (k2, k3, k4, ...) for (ki)

∞
i=1 ∈ V . Let π1 : V → K be the projection onto the

first coordinate with kernel ⊕∞n=2K. Then gf = 1R and π1f = 0. If R were Hopfian, then

R would be a DF -ring by Proposition 4.0.11. Therefore, fg = 1R. But this means that

π1 = π11R = π1(fg) = (π1f)g = 0, a contradiction.

Recall that a module is indecomposable in case it is non-zero and has no non-trivial

direct summands. A direct decomposition M = ⊕AMα of a module M as a direct sum of

idecomposables submodules {Mα}α∈A is an indecomposable decomposition.

To prove the main result of this chapter, we need the following result:

Theorem 4.0.20. [2, Azumaya’s Theorem] If a module has a direct decomposition

M = ⊕AMα, where each endomorphism ring End(Mα) is local, then this is an indecom-

posable decomposition and,

a) Every non-zero direct summand of M has an indecomposable direct summand;

b) The decomposition M = ⊕AMα complements maximal direct summands and thus is

equivalent to every indecomposable decomposition of M .

Theorem 4.0.21. Let R be a right duo and right chain ring. A right R-module of the form

M = ⊕ni=1xiR is Hopfian.

Proof. Let be φ : M → M an epimorphism with Ker φ = K. We induct on the number of

generators of M. For n = 1, we have that M is a cyclic R-module, and then by Corollary

4.0.8, M is Hopfian. For the general case, suppose that the result is true for any module

with less than n generators. Consider the family of right ideals {annr(xi)}ni=1. Since R is a

right chain ring we may assume that this family of ideals satisfies annr(xi) ⊆ annr(xi+1) for
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any i. Observe, that R a right duo ring implies that annr(xi) is a two-sided ideal for any

i = 1, ..., n. Therefore, we have that I = annr(M) = annr(x1).

Moreover, each module xiR has a local endomorphism ring. To see this, let

α ∈ End(xiR), and consider the commutative diagram

0 −−−→ annr(xi) −−−→ R −−−→ xiR −−−→ 0yα0

yα1

yα
0 −−−→ annr(xi) −−−→ R −−−→ xiR −−−→ 0

where α0 and α1 are obtained by the projectivity of R. Hence, α1 is left multiplication by

some r1 ∈ R. Furthermore, left multiplication by s ∈ R induces an endomorphism of xiR

if and only if s annr(xi) ⊆ annr(xi). Since annr(xi) is a two-sided ideal, End(xiR) is an

epimorphic image of R, and hence local.

Since I is a two-sided ideal, M can be viewed as an (R/I)-module. Note that x1R ∼= R/I,

and let k be the largest index such that I = annr(x1R) = annr(x2R) = . . . = annr(xkR).

Then, F = ⊕ki=1xiR is a free (R/I)-module, and M = F ⊕ (⊕ni=k+1xiR). Since M ∼= M/K,

there is an (R/I)-submodule N of M containing K such that N/K ∼= ⊕ni=k+1xiR. Then,

M/N ∼= (M/K)/(N/K) ∼= F.

But F projective as an R/I−module implies M/K ∼= F ⊕ (N/K), and M = F ⊕ N as an

R/I-module since F ∼= M/N . Now, observe that xiR is indecomposable for any i since R

is a right chain ring.

Since the rings End(xiR) are local for all i = 1, . . . , n, we obtain that

N ∼= N/K ∼= ⊕ni=k+1xiR by Azumaya’s Theorem. Hence, there is an epimorphism N → N

with kernel K. Since N ∼= ⊕ni=k+1xiR, this epimorphism has to be an isomorphism, i.e.

K = 0 by induction hypothesis.
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Corollary 4.0.22. Let R be a right chain and right duo ring such that every finitely generated

right R-module is a direct sum of cyclic modules. Then

a) all the finitely generated right modules are Hopfian.

b) the endomorphism ring of every finitely generated right module is DF .

c) any finite direct sum of cyclic modules cancel in direct sums.

Proof. a) Is immediate from previous theorem. By Proposition 4.0.11, b) is equivalent to a).

c) As in the proof of the theorem above, the endomorphism ring of each cyclic module

in the direct sum is a local ring. By Corollary 4.0.16, each cyclic module has the cancellation

property. Therefore the direct sum of these modules also cancel in direct sums.

It is important to note that these last results raise the problem to determine when a

chain and duo ring is one of the so called FGC-rings. We revisit this question in Chapter 6.
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Chapter 5

Annihilators, Co-Hopficity and Self-Injectivity

5.1 Annihilator Conditions

In this section we discuss basic properties of the right and left annihilators. We begin

our discussion with a well-know result on annihilators.

Theorem 5.1.1. [26, Ikeda-Nakayama’s Theorem] The following properties of R are equivalent:

a) Every homomorphism f : I → R, where I is finitely generated right ideal, has the form

f(x) = rx for some r ∈ R.

b) R satisfies:

i) annl(A1 ∩ A2) = annl(A1) + annl(A2) for all finitely generated right ideals

A1 and A2.

ii) annl(annr(a)) = Ra for all a ∈ R.

Then we have,

Theorem 5.1.2. Let R be a chain ring. Then,

a) annl(A1 ∩ A2) = annl(A1) + annl(A2) for all right ideals A1 and A2.

b) If every a ∈ R with annr(a) = 0 is a unit, then annl(annr(B)) = B for every principal

left ideal B. If additionally R is a right duo ring, then

i) annl(annr(a)) = Ra, and

ii) for any principal right ideal I of R, every homomorphism f : I → R is defined by

a multiplication (by the left) by a fixed element of R.
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Proof. a) is immediate since R is a two-sided chain ring and A1 ⊆ A2 implies that

annl(A2) ⊆ annl(A1). We now prove b). Let B a principal left ideal of R with B = Rx

for some x ∈ R. Clearly, Rx ⊆ annl(annr(Rx)). If b ∈ annl(annr(Rx)), then Rb ⊆ Rx or

Rx ⊆ Rb since R a left chain ring. Clearly, the first inclusion implies the result. If the second

inclusion holds, then annr(Rb) ⊆ annr(Rx). Note that Rb ⊆ annl(annr(Rx)) implies

annr(Rb) ⊇ annr(annl(annr(Rx))) = annr(Rx)

Then, annr(Rb) = annr(Rx). This implies xa = 0 if and only if ba = 0 for all a ∈ R.

Recall that x = sb for some s ∈ R. If bt ∈ bR ∩ annr(s), then 0 = s(bt) = (sb)t = xt.

Thus, by the equality of the annihilators above, bt = 0. Therefore, bR ∩ annr(s) = 0. Since

bR 6= 0 and R is a right chain ring, annr(s) = 0. By hypothesis s is a unit, and therefore,

b = s−1x ∈ Rx which implies the desired equality. For b-i), note that Lemma 2.0.2 b)

implies annr(a) = annr(aR) ⊆ annr(Ra) for every a ∈ R since Ra ⊆ aR.

Thus, annr(a) = annr(Ra). By what has already been shown in Part b),

annl(annr(a)) = annl(annr(Ra)) = Ra. Finally, observe that b-i) is equivalent to b-ii)

according to the Ikeda-Nakayama’s Theorem.

Note the left-right symmetry in the preceding theorem. The rings that satisfy a) are

called left Ikeda-Nakayama rings (IN -rings) and are studied in [10]. Also note that b) implies

that every principal left ideal is a left annihilator.

5.2 RR co-Hopfian

Let R be a ring satisfying condition b) in Theorem 5.1.2, i.e., a ring in which every

element a with annr(a) = 0 is a unit. If f is a non-zero injective endomorphism of RR. Then

f(r) = f(1R)r. Since 0 = Kerf = annr(f(1R)), we have that f(1R) is a unit. Therefore,

f is onto. This means that rings with the latter property are co-Hopfian as right modules.

On the other hand, if RR is co-Hopfian and a ∈ R satisfies annr(a) = 0, then the assignment

1R 7→ a defines an injective endomorphism g of RR. Because of the co-hopficity of RR, it is an
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isomorphism. Thus, aR = R. This last condition implies that a has a right inverse. Observe

that the ring of endomorphisms of a co-Hopfian module is a DF -ring. Since EndR(RR) = R,

a must be a unit. Consequently,

Proposition 5.2.1. RR is co-Hopfian if only if every a ∈ R with annr(a) = 0 is a unit.

Co-Hopfian modules were studied in [16] and [28]. In the latter, Varadarajan observed

([28, p.294]) that co-Hopficity is not a right-left symmetric condition. Therefore, we say that

RR (or RR) is co-Hopfian to indicate that R is co-Hopfian as a right (or as a left) module.

We can show as in 4.0.2 a) that Artinian modules are co-Hopfian. Although, Z is Hopfian as

a Z-module, it is not co-Hopfian. On the other hand, Q is both Hopfian and co-Hopfian as

both a Q-module and as a Z-module [28]. For further examples of co-Hopfian modules, see

[15], [16] and [28]. Observe that if R is co-Hopfian as right or left module over itself, then R

is Hopfian as a module since it is easy to see that projective co-Hopfian objects are Hopfian.

It is also true that injective Hopfian objects are co-Hopfian. The next proposition is an easy

application of this.

A module is called semi-simple if it is a sum of simple modules. A ring R is called

semi-simple if RR is a semi-simple module. It is a well known fact that semi-simple rings

are those for which all the modules are projective and injective [26, Proposition 7.7, p.24].

Thus,

Proposition 5.2.2. Over a semi-simple ring a module is Hopfian if only if is co-Hopfian.

Examples of co-Hopfian modules are given in the following proposition. First, a well-

known result,

Lemma 5.2.3. Let M be a R-module with finite Goldie dimension and let f ∈ EndR(M) be

a monomorphism. Then f(M) is an essential submodule of M .

Also, a module M is right quasi-injective if and only if for every right R-module N ,

every R-monomorphism j : N → M , and every R-homomorphism f : N → M , there is an

f̄ ∈ EndR(M) such that f̄ j = f . It is clear that injective modules are quasi-injective.

28



Proposition 5.2.4. Let R be any ring. Then, any injective or quasi-injective R-module of

finite Goldie dimension is co-Hopfian.

Proof. Let M be a quasi-injective R-module, and let f : M →M be any R-monomorphism.

Then, M = f(M) ⊕ N for some submodule N of M . Observe that dim(f(M)) = dim(M)

since f(M) ⊆e M by the previous lemma. Therefore N = 0, and then f is an automorphism.

On a different topic, a ring R has the maximum condition on (right or left) annihilators

if and only if every non-empty set of (right or left) annihilators has a maximal element,

or equivalently, if any non-trivial chain of (right or left) annihilators eventually terminates

(ACC).

Proposition 5.2.5. [18, Lemma 1.8 & Theorem 1.9]

a) Let R be a ring in which every principal right ideal is a right annihilator. Then

N(R) ⊆ Zl(R).

b) If R satisfies the maximum condition on left annihilators and if every principal right

ideal is a right annihilator, then J(R) and Zr(R) are both nilpotent.

Combining the above result with Part b) of Theorem 5.1.2, and using the right-left

symmetry in this theorem, we obtain,

Corollary 5.2.6. If R be a right chain ring such that RR is co-Hopfian, N(R) ⊆ Zl(R).

If R also satisfies the ACC condition on left annihilators, then J(R) and Zr(R) are both

nilpotent.

We conclude this section with a technical result which is a generalization of the com-

mutative case in [21] and that we will use later.
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Proposition 5.2.7. Let R be a chain ring such RR is co-Hopfian, I and A left ideals of R,

and let J = J(R) be the Jacobson radical of R.

a) If I is not an annihilator ideal, then there is a smallest principal ideal Rx containing

I, such that Rx = annl(annr(I)) and I = Jx.

b) If I ⊂ A, then annl(annr(I)) ⊆ A.

Proof. a) Since I is left ideal that is not an annihilator, I ⊂ annl(annr(I)).

If x ∈ annl(annr(I)) \ I, then I ⊂ Rx since R is a left chain ring. Hence,

I ⊂ Rx ⊆ annl(annr(I)). Taking right annihilators, we obtain annr(Rx) = annr(I), which

yields annl(annr(Rx)) = annl(annr(I)). By Proposition 5.1.2 b), Rx = annl(annr(I)). We

now show Jx = I. If Jx ⊂ K ⊂ Rx for some left ideal K ⊂ R, then K = Lx for some left

ideal L such that J ⊂ L ⊂ R, which contradicts the maximality of J . This means that there

are no left ideals between Jx and Rx. On the other hand, the fact that R is a left chain ring

implies Jx ⊆ I or I ⊆ Jx. Note that the first inclusion implies I = Jx by the observation

above. If the second inclusion were strict, then we would have I ⊂ Rb ⊂ Rx for some b ∈ Jx

since R is a left chain ring. Taking double annihilators would yield Rx = Rb. Therefore,

Jx = Rx which clearly is a contradiction. This also shows that Rx is the smallest left ideal

with the mentioned property.

b) Note that I ⊆ annl(annr(I)). If equality holds, then the result is obvious. If

the inclusion is strict, then I cannot be an annihilator ideal. By a), annl(annr(I)) = Rx

for some x ∈ R \ I. For any a ∈ A \ I, we have Rx ⊆ Ra or Ra ⊂ Rx. If the first

inclusion holds, we are done. So, assume Ra ⊂ Rx. Then I ⊂ Ra ⊆ Rx, which implies

annl(annr(I)) = Ra ⊆ A.
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5.3 One-Sided Maximal, Almost Maximal and Self-injective Rings

In this section, we discuss the relationship between right Maximal and right Almost

Maximal rings for right chain and right duo rings. Our results extend Gill’s work on the

commutative case [14]. We characterize right self-injective rings in terms of their right co-

Hopficity and left maximality.

A ring R is right (left) maximal if any system of pairwise solvable congruences of the form

xα ≡ xβ(Iβ) with α, β ∈ Λ, xα, xβ ∈ R and Iβ a right (left) ideal of R, has a simultaneous

solution in R. We will say that R is right (left) almost maximal if the above congruences

have a simultaneous solution whenever
⋂

Λ Iα 6= 0. Examples of maximal rings are fields, the

ring of p-adic integers Zp, and the ring Z/pnZ. Also, Z is an almost maximal ring that is

not a maximal ring.

The next theorem, establishes conditions for the equivalence of the concepts right almost

maximal and right maximal in right chain rings:

Theorem 5.3.1. If R is a right (left) chain ring which contains an element b 6= 0 such that

b2 = 0, then, R is right (left) almost maximal if only if R is right (left) maximal.

Proof. It is clear that R right maximal implies R right almost maximal. Suppose that R

is right almost maximal. Let Λ be any set, and consider a system xγ ≡ xα(Iα) of pairwise

solvable congruences with right ideals with γ, α ∈ Λ. We want to show that this system

has a simultaneous solution. If
⋂
α∈Λ Iα 6= 0, then the fact that R right almost maxi-

mal yields that this system has a simultaneous solution. Therefore, we may assume that⋂
α∈Λ Iα = 0. There is 0 6= b ∈ R such that b2 = 0. Since R is a right chain ring there exists

α0 ∈ Λ such that Iα0 ⊆ bR, otherwise 0 6= bR ⊆
⋂
α∈Λ Iα, which is not possible. Define

Λ′ = {α ∈ Λ | Iα ⊆ Iα0}. By hypothesis, xα ≡ xα0(Iα0) has solution for any α ∈ Λ. In par-

ticular, for α ∈ Λ′, we have that xα− xα0 ∈ Iα0 ⊆ bR and therefore, xα− xα0 = brα for some

rα ∈ R. Now, consider the right ideal Kα = {r ∈ R | br ∈ Iα} of R. Note that b2 = 0 ∈ Iα,

implies b ∈ Kα for all α ∈ Λ. Therefore
⋂
α∈Λ′ Kα ⊇

⋂
α∈ΛKα 6= 0. For γ, α ∈ Λ′ with
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Iγ ⊆ Iα, consider the system of congruences rγ ≡ rα(Kα). Note that xγ − xα = b(rγ − rα).

Since xγ − xα ∈ Iα, we have rγ − rα ∈ Kα. By what has been shown, this last system of

congruences admits a simultaneous solution r0. Finally, note that, since r0 − rα ∈ Kα, we

have (xα0 + br0)−xα = b(r0− rα) ∈ Iα. Therefore x = xα0 + br0 is the required simultaneous

solution.

Proposition 5.3.2. If R is a right duo and right chain ring which is not a domain, then

there is 0 6= a ∈ R such that a2 = 0.

Proof. Since R is not a domain, there exist a ∈ R such that annr(a) 6= 0. Since R is a right

chain ring, then annr(a) ⊆ aR or aR ⊆ annr(a). The first inclusion implies that, for any

0 6= s ∈ annr(a), s = ar for some r ∈ R. Then, s2 = (ar)s = a(rs). Since R is a is a right

duo ring, we have there is r′ ∈ R such that rs = sr′ and therefore s2 = (as)r′ = 0. Note

that aR ⊆ annr(a), which clearly implies a2 = 0.

Corollary 5.3.3. A right duo and right chain ring that is not a domain is right (left) almost

maximal if and only if is right (left) maximal.

Recall that R is right self-injective if R is injective as a right module over itself, or

equivalently, if any R-homomorphism f : I → R from a right ideal I of R can be extended

to all of R. Examples of self-injective rings are all the rings Zn. Also, if V is an infinite-

dimensional right vector space over a division ring D, then consider the full ring R of linear

transformations of V , where linear transformations act on the left. The ring R is right

self-injective, but is not left self-injective [24].

We now establish the relationship between right self-injective, right co-Hopfian and left

maximal rings for chain and right duo rings.
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Theorem 5.3.4. Let R be a chain ring and a right duo ring. Then R is a right self-injective

ring if and only if the following conditions hold:

a) RR is co-Hopfian.

b) R is a left maximal ring.

Proof. Assume that a) and b) holds. Let I be a right ideal of R and let f : I → R be a

right R-homomorphism. Take x ∈ I, and note that 0 = f(x(annr(x))) = f(x)(annr(x)).

Then f(x) ∈ annl(annr(x)). By applying a), Propositions 5.1.2 b-i) and 5.2.1,

f(x) ∈ Rx = annl(annr(x)) since R is also a right duo ring. Thus, f(x) = rxx for some

rx ∈ R. We want to prove that f can be extended to all of R, or equivalently, that f is defined

by left multiplication with a fixed element of R. For this, let a, b ∈ R. Since R is a right chain

ring, we may assume aR ⊆ bR. Consider the system of congruences ra ≡ rb(annl(a)), where

ra and rb are defined by f . We want to show that this system is pairwise solvable. We have

that a = bs for some s ∈ R. Then, (ra−rb)a = raa−rb(bs) = f(a)−f(b)s = f(a)−f(bs) = 0.

Therefore ra − rb ∈ annl(a) for any a, b ∈ R. By b), the system has a simultaneous solution

r̂ ∈ R. Then, r̂ − rx ∈ annl(x) for all x ∈ I, and consequently (r̂ − rx)x = 0. This implies

f(x) = rxx = r̂x for all x ∈ I. Therefore, f(x) = r̂x is the required extension, and R is right

self-injective.

Conversely, let f : R → R be any injective right R-homomorphism. Note that R right

self-injective implies that there exist an R-endomorphism g such that gf = 1R. Thus g is an

epimorphism. Since R is a right duo ring, RR is Hopfian by Corollary 4.0.8. Therefore, g is

an injection. Hence f is also an automorphism and RR is co-Hopfian.

We now show b). Let Λ be a set, and consider a family {Iα | α ∈ Λ} of left ideals of R.

Suppose that xγ ≡ xα(Iα) with γ, α ∈ Λ is a system of pairwise solvable congruences with

xα ∈ R for all α ∈ Λ. We want to show that this system admits a simultaneous solution.

Since R is a left chain ring, we may assume Iγ ⊆ Iα and therefore xα − xγ ∈ Iα. Observe

that if there is a non-zero left ideal Iα0 such that Iα0 ⊆ Iα for all α ∈ Λ, then xα0 − xα ∈ Iα
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for all α ∈ Λ, and this implies that the system has a simultaneous solution. Assume that

there is no such left ideal. Define Jα = annr(Iα). Then, if Iγ ⊆ Iα we have that Jα ⊆ Jγ.

Consider the multiplication maps fxγ : Jγ → R and fxα : Jα → R (left multiplication

by xγ and xα, respectively) on their common domain Jα. Therefore, we can define the map

f :
⋃
α∈Λ Jα → R as the union of the these maps. SinceR is a right chain ring, f can be viewed

as an R-homomorphism from a right ideal of R to R. By hypothesis, R is right self-injective,

and therefore, f can be extended to all of R. This implies that f is a multiplication from the

left by some element x ∈ R. Our claim, is that x is a solution for the system of congruences.

To show this, let aα ∈ Jα. Then, (x−xα)aα = xaα−xαaα = f(aα)− fxα(aα) = 0. Therefore

x− xα ∈ annl(Jα) = annl(annr(Iα)). We know Iα ⊆ annl(annr(Iα)). If the equality holds,

then x is the desired solution. Suppose Iα ⊂ annl(annr(Iα)). Recall that we are assuming

that there is no a smallest left ideal in the family {Iα}α ∈ Λ. Thus, Iγ ⊂ Iα for some

Iγ ∈ Λ. By Proposition 5.2.7 b), annl(Jγ) = annl(annr(Iγ)) ⊆ Iα. Then x − xγ ∈ Iα

since x − xγ ∈ annl(Jγ) (as we showed for α). By the pairwise solvability, xγ − xα ∈ Iα.

Thus, (x − xγ) + (xγ − xα) = x − xα ∈ Iα for all α ∈ Λ. Hence, x is again a simultaneous

solution.

As a corollary of this theorem, we obtain a different characterization of commutative

self-injective rings, than the one given by Klatt and Levy [21, Theorem 2.3]:

Corollary 5.3.5. A valuation ring R is self-injective if only if:

(a) RR or RR is co-Hopfian.

(b) R is a maximal ring.

Combining this last result with the Klatt’ and Levy’ theorem we have:

Corollary 5.3.6. Let R be a valuation ring that is also a maximal ring. Then, RR or RR

is co-Hopfian if only if Ann(Ann(B)) = B for all principal ideals B of R.
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Chapter 6

Localizations and FGC-Rings

6.1 Localizations in Chain and Duo rings

Let R be any ring. A completely prime ideal P of R is an ideal such that ab ∈ P

implies a ∈ P or b ∈ P . For such an ideal, we define the right localization of R at P ,

by (RP )r = {ab−1 | a ∈ R, b ∈ R \ P} whenever R \ P does not contain zero divisors.

As in the commutative case, we have that (RP )r is a local ring with right maximal ideal

P (RP )r = {ab−1 | a ∈ P, b ∈ R \ P}. To see this, just note that if P (RP )r is contained

strictly in some right maximal ideal Ī of (RP )r, then there is an element ab−1 ∈ Ī such that

ab−1 6∈ P (RP )r. This implies that ba−1 ∈ RP \ P (RP )r. Therefore, Ī contains a unit. In

a similar fashion, we can verify that P (RP )r is the unique right maximal ideal of (RP )r.

Symmetrically, we have that (RP )l is a local ring with left maximal ideal (RP )lP . It is

important to note that in a duo ring localizations at prime ideals always exist [25].

Lemma 6.1.1. Let R be a left (right) chain ring, and let P be a completely prime ideal of

R such that R \ P does not contain zero divisors. Then, the right (left) localization (RP )r

((RP )l) is a left (right) chain ring.

Proof. Let ā, b̄ ∈ (RP )r. Suppose that ā = rt−1 and b̄ = st−1. Since R is a left chain ring

and r, s ∈ R, we may assume that r = us for some u ∈ R. Therefore,

ā = rt−1 = u(st−1) ∈ (RP )rb̄, thus (RP )rā ⊆ (RP )rb̄.

It is important to mention, that, in general, the duo property is not closed under local-

izations. However, if additionally the ring is Noetherian, the localization results a duo ring

([8]).
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Recall that an ideal P of R is a prime ideal if for any two A,B ideals of R, AB ⊆ P

implies A ⊆ P or B ⊆ P . Observe that if R is a two-sided duo ring, then the notions of

completely prime and prime ideal, are equivalent. In that case, we have:

Lemma 6.1.2. Let R be a duo ring and P a prime ideal of R such that R \ P does not

contain zero divisors. Then (RP )r = (RP )l.

Proof. Let ā ∈ (RP )r. Then ā = st−1 for some s ∈ R and t ∈ R − P . Since R is a duo

ring, we have tR = Rt. Then ts = bt for some b ∈ R. Thus, ā = st−1 = t−1b ∈ (RP )l.

Symmetrically, we have the second containment and therefore the equality.

In view of the above, if R is a duo ring and there is no confusion we will denote the

two-sided localization just as RP . For the next result, recall that given a ring homomorphism

f : R→ S and a right ideal J of S, f−1(J) is a right ideal of R.

Theorem 6.1.3. Let R be a duo and chain ring, and let P be a prime ideal of R such that

R \P does not contain zero divisors. Then, R right maximal (almost maximal) ring implies

then RP is right maximal (almost maximal) ring.

Proof. Assume that R is a right maximal (almost maximal) ring. Consider the system

yγ ≡ yα(Jα) of pairwise solvable congruences with Jα right ideals of RP , yγ, yα ∈ RP and

α, γ ∈ Λ for some set Λ. We want to show that this system has a simultaneous solution

in RP . By the two previous lemmas, RP is a right chain ring ((RP )r = (RP )l). Without

lost of generality assume RP = (RP )r. Then Jα ⊂ PRP for any α ∈ Λ. Consider the

localization map φ : R → RP given by φ(r) = r/1. Suppose first that yα ∈ φ(R) for

any α ∈ Λ. Then, for each α ∈ Λ, there exists xα ∈ R such that φ(xα) = yα. Define

Iα = φ−1(Jα), and consider the system of congruences xγ ≡ xα(Iα) in R. This system is

pairwise solvable in R since φ(xγ) − φ(xα) ∈ Jα. Also, R is right maximal implies that

the system has a simultaneous solution x0 ∈ R. It follows that φ(x0) is a common solution

for the system in RP (if R is right almost maximal, observe that
⋂
α∈Λ Jα 6= 0 implies⋂

α∈Λ Iα 6= 0). Now, assume that yα0 /∈ φ(R) for some α0 ∈ Λ. The pairwise solvability of
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the system implies that yα0 − yα ∈ Jα0

⋃
Jα ⊆ PRP . Moreover, for any element y in the

localization, y = ab−1 = (a/1)(1/b) = φ(a)(φ(b))−1. Then, if y ∈ PRP , we have y ∈ φ(R).

Otherwise, y = (φ(b))−1 contradicting the maximality of PRP . Then, PRP ⊆ φ(R), and

therefore, yα0 − yα ∈ φ(R). Observe that yα 6∈ φ(R) for all α ∈ Λ, since yα0 − yα + yα ∈ φ(R)

contradicts our hypothesis. Thus, if yα /∈ φ(R) for some α, then yβ 6∈ φ(R) for any β ∈ Λ.

Let yγ ≡ yα(Jα) be a pairwise solvable system such that yα 6∈ φ(R) for any α ∈ Λ. Since

y = φ(a)(φ(b))−1 ∈ φ(a)R ⊆ φ(R) for all y ∈ RP , we conclude that yα = x−1
α = (φ(xα))−1 for

some xα ∈ R\P . Then y−1
α = φ(xα). SinceR is a right chain and left duo ring, we may assume

that xγ = xαs = txα for some s, t ∈ R. Thus, x−1
γ − x−1

α = (1 − t)(txα)−1 = yγ − yα ∈ Jα.

Therefore (1 − t)(txα)−1(txα)xα = xα − xγ ∈ Jα. This means that y−1
γ − y−1

α ∈ Jα. Hence,

y−1
γ ≡ y−1

α (Jα) is a pairwise solvable system with y−1
α ∈ φ(R) for all α ∈ Λ. By the first part

of the proof, this system has a simultaneous solution of the form φ(x0) with x0 ∈ R \ P .

Thus, (φ(x0))−1 is a common solution for the system yγ ≡ yα(Jα), and therefore RP is a

right maximal (almost maximal) ring.

6.2 Right FGC-Rings

Classic examples of FGC-rings are principal ideal domains. The characterization of

FGC-rings is a problem that has been of interest for many years. For 20 years, the only

known FGC-domains were the principal ideal domains and the almost maximal valuations

domains. In this section we establish some results for these rings for the non-commutative

case. For this, consider the next theorem due to Kaplansky, Matlis, Gill, Lafond, and

Warfield ([12, p.134]). Recall that a uniserial module is a module whose submodules are

totally ordered by inclusion.

Theorem 6.2.1. [14, Main Theorem] Let R be a local ring with maximal ideal J(R). Then

following are equivalent:

a) The unique simple module R/J(R) has uniserial injective hull E(R/J(R)).
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b) R is an almost maximal valuation ring.

c) Every idecomposable injective R-module is uniserial.

d) Every finitely generated R-module is a direct sum of cyclic modules R-modules.

For the non-commutative case, Behboodi recently obtained a similar characterization

for local duo rings [3]:

Theorem 6.2.2. [3, Theorem 3.5] Let R be a local duo ring. Then following statements are

equivalent:

a) R is a left FGC-ring.

b) Every 2-generated left R-module is a direct sum of cyclic modules.

c) Every factor module of the free left R-module R⊕R is a direct sum of cyclic modules.

d) Every factor module of the free left R-module R⊕R is serial.

e) R is uniserial and for every non-zero ideal I of R, R/I is a linearly compact left

R-module.

f) R is uniserial and every idecomposable injective left R-module is left uniserial.

g) R is a right FGC-ring.

Our next theorem considers the latter characterization in the framework of right chain

and duo rings. The proof it is based on the techniques developed by Gill in [14], and on an

application of the previous theorem. First, a technical result,

Lemma 6.2.3. [2, Nakayama’s Lemma] For a left ideal I of a ring, the following are equiv-

alent:

a) I ≤ J(R).

b) For every finitely generated left R-module M , if IM = M , then M = 0.
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c) For every finitely generated left R-module M , IM is superfluous in M .

Theorem 6.2.4. The following conditions are equivalent for a right duo and right chain

ring R:

a) R is a right FGC ring.

b) R is a right almost maximal ring.

c) E(R/I) is a uniserial right R-module for any right ideal I of R.

Proof. It remains to show c) =⇒ a): Let M a finitely generated right R−module. We

are going to induct on the number of generators of M . If n = 1, the result is obvious. Let

M =
∑n

i=1 xiR with {xi}n1=1 ⊆ M , for some n > 1. Assume that the result is true for any

module with less that n generators. Since R is a right duo and right chain ring, we may also

assume that annr(x1) = annr(M). Let I = annr(x1). Since R is right duo, I is a two-sided

ideal and then x1R ∼= R/I. Consider the diagram

0 −→ x1R ↪→ M

↓∼=

R/I ↙f

↓j

E(R/I)

Note that, since E(R/I) is injective, there exists M
f−→ E(R/I) which makes the diagram

commutative. Furthermore, M finitely generated implies that f(M) is a finitely generated

submodule of E(R/I). By hypothesis E(R/I) is uniserial, thus f(M) is a cyclic R-module.

Then there exists y ∈ E(R/I) such that f(M) = yR. This implies that we can find m ∈M

such that y = f(m). We claim mR ∼= yR. To prove this, suppose r ∈ annr(m). Then

mr = 0 yields 0 = f(mr) = f(m)r = yr. This means annr(m) ⊆ annr(y). On the other

hand, for α : x1R
∼=−→ R/I

j−→ E(R/I), we have α(x1) = ys for some s ∈ R. For any

a ∈ R we obtain α(x1a) = y(sa). Since R is a right duo ring, Ra ⊆ aR, there is t ∈ R
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such that sa = at. Then α(x1a) = y(sa) = y(at) = (ya)t. Hence, if a ∈ annr(y), then

α(x1a) = 0. Since α is a monomorphism x1a = 0. Thus, annr(y) ⊆ annr(x1) = I. Also,

I ⊆ annr(m), and I = annr(m) = annr(y). Then, R/I = R/annr(m) = R/annr(y), and

therefore, R/I ∼= mR ∼= yR. Now, consider the diagram

mR
i−→M

f−→ yR

↓∼= ↓∼=

R/I
α−→ R/I

We have that α : x1R ∼= R/I
j−→ R/I is an isomorphism. Thus, fi is also an isomorphism,

from wich we get that mR
i−→ M is splits, say M = mR ⊕ (M/mR). Finally, our claim

is that U = M/mR is a finitely generated R-module with less than n generators. To

show this, let J = J(R). By the Nakayama’s Lemma, mR/(mR)J is a non-zero cyclic

(R/J)-module and therefore mR 6= 0. Thus, U is finitely generated module with n − 1,

generators. By the induction hypothesis, U is direct sum of cyclic R-modules, and the same

holds for M .

Observe that by Lemma 2.0.1 a right chain rings are local rings. According to Bran-

dal [6], b) is equivalent to e) in Theorem 6.2.2. Thus, for the remaining implications,

we can apply this theorem since E(R/I) is an indecomposable injective R-module

whenever R is a right chain ring.

Is important to note the right-left symmetry in c) =⇒ a). This means that if R is a

right maximal chain duo ring, then R is a two-sided FGC-ring.

For a ring that is not necessarily chain-duo we also have:

Proposition 6.2.5. Let R be an FGC-ring and P a prime ideal of R such that R \ P does

not contains zero divisors. Then the localization RP is also an FGC-ring.

Proof. Let M be a finitely generated right RP -module, i.e. M = y1RP + y2RP + ...+ ynRP .

Suppose φ is the localization map defined by r 7→ r/1. It is clear that M and RP are

both right R-modules with the scalar multiplication induced by φ. Then the R-submodule
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N = y1R + y2R + ...+ ynR of M is a direct sum of cyclic modules since R is an FGC-ring,

say N = x1R⊕x2R⊕ ...⊕xkR for some x1, x2, ..., xk ∈ N . Consider the canonical projection

M
π−→ M/N which induces the epimorphism M ⊗R RP

π⊗IdRP−−−−−→ M/N ⊗R RP . If

z ∈ M/N ⊗R RP , then z = (
∑n

i=1 yirit
−1
i + N)⊗R rt−1 with rt−1 and rit

−1
i elements in RP

for all i = 1, 2, ..., n. Observe that there exists 0 6= d ∈ R \ P and s1, s2, ..., sn ∈ R such that∑n
i=1 yirit

−1
i =

∑n
i=1 yisid

−1. Thus, z = (
∑n

i=1 yisid
−1 +N)⊗R dd−1rt−1 = 0̄⊗R d−1rt−1 = 0,

which implies 0 = (π⊗ IdRP )(m⊗ 1RP ) = π(m)⊗ 1RP for any m ∈M . Therefore π(M) = 0̄,

and then M = N ⊗R RP = ⊕ki=1xiRP .

The next result partially addresses a question by Fuchs and Salce ([13, Problem 12]):

Which are the domains R, over which the finitely generated (finitely presented) modules

cancel in direct sums?

Corollary 6.2.6. Let R be a local right duo ring. If R is a right almost maximal right chain

ring (a right FGC-ring), then finitely generated modules cancel in direct sums.

Proof. If M is a finitely generated right R-module, then M is a finite direct sum of cyclic

modules. By Corollary 4.0.22. M cancels in direct sums.

For the next result, recall that a module M is called distributive module if for any

submodules K,L,N ,

K ∩ (L+N) = K ∩ L+K ∩N.

Observe that the inclusion K ∩ L+K ∩N ⊆ K ∩ (L+N) always holds.

For the next theorem, we will need the following lemma:

Lemma 6.2.7. [20, Proposition 1.3] Let M be an R-module. Then M is a distributive

module if and only if all submodules of M with two generators are distributive modules.
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Finally, the next theorem collects many of our findings about chain and duo rings and

links all the main concepts in this work through the FGC-rings:

Theorem 6.2.8. Let R be a chain and duo ring, and P a prime ideal of R such that R \ P

does not contains zero divisors. The following hold in case R is an FGC-ring:

a) Any finitely generated module cancels in direct sums.

b) R is an almost maximal ring. If R is not a domain, then R is a maximal ring.

c) If RR or RR is co-Hopfian and if R is not a domain, then R is self-injective.

d) Every finitely generated R-module M is Hopfian. If M is also injective, then M is both

Hopfian and co-Hopfian.

e) All matrix rings Mn(R) are repetitive.

f) The localization RP is an almost maximal chain ring. 1

g) If E = E(R/J(R)) is Noetherian, then E has a finite number of submodules.

h) All finitely generated injective R-modules satisfy Fitting’s Lemma. 2

i) An R-module M is distributive if only if all cyclic submodules of M are distributive.

Proof. a) is shown in Corollary 6.2.6. For b), Theorem 6.2.4 shows that R is an almost

maximal ring. Then, by the hypothesis and Proposition 5.3.2, R is a maximal ring. By

Theorem 5.3.4, c) holds. In d), Corollary 4.0.22 implies that M is Hopfian. Now, let

f : M → M be an injective R-homomorphism. The fact that M is injective implies that

there exists g : M → M such that gf = IdM . Thus, g is an epimorphism, and since M is

Hopfian, g is an automorphism. Therefore f is an isomorphism too. Note that e) is a direct

consequence of d) and Goodearl’s Theorem (Theorem 4.0.5). For f), Lemma 6.1.1, Theorem

1Although we know that RP is an FGC-ring (Proposition 6.2.5), we cannot use any the characterizations
for FGC-rings since RP is not necessarily a duo ring, unless R is a commutative or a Noetherian ring [8].

2Fitting’s Lemma: M ∈MR of finite length n, f ∈ EndR(M),then M = Imfn
⊕

Kerfn.
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6.1.3, and b) imply that RP is a an almost maximal chain ring. To show g), observe that

Theorem 4 in [25] establishes that with the conditions in g), E is right Noetherian if only

if E has finite length. Thus, by Theorem 6.2.4 c), E is uniserial, and the result follows.

Observe that by Theorem 8 in [15], h) and the first part of d) are equivalent. Finally, to

prove i), let M be an R-module such that any cyclic module is distributive. Let S be a

submodule of M with two generators and K,L,N submodules of S. We want to show that

K ∩ (L + N) ⊆ K ∩ L + K ∩ N . Note that S = s1R ⊕ s2R for some s1, s2 ∈ M since R is

an FGC-ring. Suppose K ⊆ siR, L ⊆ sjR and N ⊆ sqR with i, j, q = 1 or 2. Observe that

the result is clear if i = 1 and j = q = 2, or i = j = q. Assume i = j = 1 and q = 2. Let

x ∈ K ∩ (L+N). Then x = l+n ∈ K, and therefore, x− l ∈ s1R∩N = 0. But, this means

x ∈ K ∩ L = K ∩ L + K ∩ N since K ∩ N = 0. Therefore S is a distributive module, and

by Lemma 6.2.7 the result follows.
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