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Abstract

The research presented in this dissertation focuses on the development of efficient explicit

time integration schemes for the chemical Langevin equations (CLEs). Due to the presence of

multiple time scales in complex chemical reaction networks, CLEs often involve stiffness and

hence classical explicit time integration methods require extremely small step sizes to maintain

numerical stability. The methodology proposed in this research is based on the concept of

stochastic computational singular perturbation, which separates the fast and slow dynamics of

an underlying stiff stochastic differential equation system by projecting the drift and diffusion

onto appropriate sets of basis. The CLE system can then be integrated forward in two steps,

one for the slow dynamics and the other for the fast dynamics which can be approximated by

a stochastic algebraic relation, and thus admits much larger step sizes than classical explicit

schemes. The schemes are applied to a stiff chemical reaction system involving 3 species and

6 reaction channels. Numerical experiments show significant improvement in computational

efficiency compared to classical explicit methods while maintaining numerical stability.
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vii



List of Tables

viii



Chapter 1

Introduction: Chemical Reactions

Consider a chemical reaction system of N ≥ 1 chemical species {S1, · · · , SN} which inter-

act through M ≥ 1 chemical reactions {R1, · · · , RM} inside some fixed volume Ω which is

well-stirred and at a constant temperature uniform over Ω. For each chemical reation Rj with

chemical equation

Rj :
N∑
i=1

αijSi →
N∑
i=1

βijSi, j = 1 · · ·M, (1.1)

and stoichiometric coefficients αij, βij ∈ Z+, define the state-change vector (or stoichiometric

vector) vj = {vj1, · · · , vjN} with its ith component represented by

vji = βij − αij ≡ the change in the number of Si

molecules produced by one Rj reaction

(j = 1, · · · ,M ; i = 1, · · · , N).

(1.2)

We denote the concentration of species Si at time t by Xi(t). Our goal is to estimate the

evolution of X(t) = {X1, · · · , XN}, given the initial state of the system X(t0) = {X1(t0), · · · , XN(t0)}

at some time t0.

To study a chemical reaction system along time without tracking positions and velocities

of all the molecules, we introduce the reaction rate of a chemical reaction [1, 2, 3, 4].

The reaction rate can be used to describe the trajectories of the concentration Xi of each

chemical species Si evolving in time by a set of coupled ordinary differential equations (ODEs)

of the form
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dXi

dt
= fi(X1, · · · , XN), i = 1, · · · , N, (1.3)

which is called reaction rate equations (RREs) with the function fi defined by the chemical

reactions in the system.

In general, some reactions are naturally faster than others in the same chemical system,

resulting in a system of stiff ODEs/RREs. The behaviour of stiff ODEs is like differential-

algebraic equations (DAEs), in the sense that their solution dynamics exhibit underlying al-

gebraic manifolds. Fast time-scales are “exhausted” rapidly, and solutions move on lower-

dimensional eventually, attracting, and invariant “slow manifolds” that characterize the long-

term process dynamics. These manifolds are an expression of the partial-equilibration of fast

time scales, being characterized by algebraic relationships among a subset of the species. Thus,

a smaller differential “slow” sub-system is necessary to approximate the full system state when

the dynamics approach this manifold.

While in general a stiff chemical reaction system evolves many different time scales [5, 6,

7, 8, 9, 10], theoretical approaches usually assume a stiff system consists of two time-scales:

rapid and slow. The rapid time-scales decay quickly, and the solutions tend to be attracted

to a lower-dimensional “slow-manifold” which describes the process in the long-term. To

understand stiff systems, identifying slow-manifolds by mathematical analysis is an effective

first step to study the system dynamics [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25,

26, 27, 28]. Moreover, these manifolds can also lead to study the projection of ODEs onto rapid

and slow subdomains, and inspire for explicit time integration methods for stiff ODE systems

[29, 13].

Computational Singular Perturbation (CSP), which uses automated computational proce-

dures to obtain physical insights on massively complex reaction systems, is an effective method

to discover low-dimensional manifolds of underlying ODE systems [14, 11, 29, 30, 2, 31]. It

is widely used for chemical kinetics problems. CSP can be used to identify chemical species

controlled by different reaction rates and to obtain a reduced system and better approximations.
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The CSP method is a powerful tool for analyzing deterministic stiff ODE systems; it serves

as an effective model reduction technique and inspires explicit time integration strategies. How-

ever, applications in chemical kinetics at small scales are usually presented by the interpretation

of a stochastic process governed by random jumps, and ODE systems only represent the av-

erage results [32]. Fundamentally, chemical reactions are stochastic, as they are the result of

random collisions among particles (molecules, atoms). However, the relevance of stochastic

motions depends on the scale of the system being considered. When the system size and par-

ticle counts are at the macro-scale, stochastic effects are averaged out and the system can be

approximated by a family of coupled deterministic ODEs, which are also RREs. An interme-

diate meso-scale regime exists when particle counts are large, e.g., O(103), but not sufficiently

so to make the continuum approximation viable. In this regime, the Fokker-Planck equation

can be used to simulate the evolution of the probability density function (PDF) of states, or the

chemical Langevin equation (CLE) can be used to simulate state trajectories [32].

More precisely, when the size of an chemical reaction system is small, e.g., it is governed

by the chemical Master equation (CME).

For chemical reaction systems based on jump Markov processes, fast occurring reaction

can be eliminated by quasi-steady-state approximation, and further proceed from reduced CME

[33, 34]. However, CME can only be described or solved analytically except for some simple

cases. Thus, for a chemical system that consists of fast and slow time-scales, we are interested

in the SDEs which also interpret stochastic chemical kinetics problems properly.

1.1 Reaction Rate Equation about Concentration

As an introductory example, consider a chemical reaction with three species X, Y, and Z:

2X + Y
k−→Z, (1.4)

where k represents the reaction rate of this chemical reaction. It means that two molecules of

X combining with one molecule of Y can form one molecule of Z. The rate of decrease of

3



concentration of X is twice the rate of decrease of concentration of Y . We can describe the

relation as follows [4]:

d[X]

dt
= 2 · d[Y ]

dt
, (1.5)

note that the [X] and [Y ] in (1.5) mean the concentration of species X and Y , respectively.

Moreover, the absolute rate of change of concentrations of Y and Z are the same, but Y is

decreasing and Z is increasing. Thus, we got the following relation:

d[Z]

dt
= −d[Y ]

dt
, (1.6)

where [Z] and [Y ] are the concentrations of species Z and Y , respectively. Summarizing (1.5)

and (1.6), we get

−1

2

d[X]

dt
= −d[Y ]

dt
=
d[Z]

dt
. (1.7)

Next consider a more general chemical reaction with species X, Y, Z of the form

αX + βY
k−→γZ, (1.8)

where α, β, and γ are positive stoichiometric coefficients describing the number of species

involved in one reaction. The governing equations for (1.8) read:

v(t) = − 1

α

d[X]

dt
= − 1

β

d[Y ]

dt
=

1

γ

d[Z]

dt
, (1.9)

where the function v(t) is called reaction rate of the chemical reaction (1.8).

An explicit formulation of the function v(t) can be obtained from the Kinetic Law of chem-

ical reaction. For a chemical reaction (1.8) with reaction rate v(t), the Kinetic Law suggests

v(t) = k[X]α[Y ]β, (1.10)
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where the constant k for proportionality is the rate constant of the reaction (1.8), α and β are

the order of the reaction in terms of X and Y .

Putting (1.9) and (1.10) together gives the following system of RREs for the reaction (1.8):

d[X]

dt
= −αk · [X]α · [Y ]β,

d[Y ]

dt
= −βk · [X]α · [Y ]β,

d[Z]

dt
= γk · [X]α · [Y ]β.

(1.11)

Note that for a chemical reaction system with M reactions and N species as in (1.1), the

RREs will be an ordinary differential equation system with N equations, and there will be M

terms at most on the RHS of each equation, as N differential equations describe the rate of

changes of species concentration, and each reaction contributes one term to affect the rate of

change of species, if the species is involving in the chemical reaction. In general, in macro-

scale systems, the RREs are a system of ordinary differential equations describing the time

evolution of concentrations of each species.

1.1.1 Example 1: One Unimolecular Reaction

Consider the chemical reaction,

X
k1−→Y, (1.12)

which means one molecule of X forms one molecule of Y through this reaction with rate

constant k1. According to Kinetic Law (1.10) and relation of concentration changes, the RREs

for reaction (1.12) can be derived as

d[X]

dt
= −k1 · [X],

d[Y ]

dt
= k1 · [X].

(1.13)
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1.1.2 Example 2: One Bimolecular Reaction on the Same Species

Consider a bimolecular reaction on the same species such as

2X
k2−→Y, (1.14)

with rate constant k2 and the reaction rate relation

v2(t) = −1

2

d[X]

dt
=
d[Y ]

dt
. (1.15)

According to Kinetic Law (1.10), the RRE for (1.14) are

d[X]

dt
= −2k2 · [X] · [X],

d[Y ]

dt
= k2 · [X] · [X].

(1.16)

1.1.3 Example 3: One Bimolecular Reaction on Different Species

Given a bimolecular reaction on different species with the rate constant k3 such as

X + Y
k3−→Z, (1.17)

the reaction rate relation can be derived as

v3(t) = −d[X]

dt
= −d[Y ]

dt
=
d[Z]

dt
. (1.18)

It leads to the RREs for (1.18):

d[X]

dt
= −k3 · [X] · [Y ],

d[Y ]

dt
= −k3 · [X] · [Y ],

d[Z]

dt
= k3 · [X] · [Y ].

(1.19)
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1.1.4 Example 4: Multiple Reactions

Consider a chemical reaction system with multiple chemical species which interact through

more than one chemical reaction in some fixed volume Ω. For example,

X + Y
k4


k5
Z. (1.20)

The number of species X, Y, Z may change through either forward or backward reactions.

Therefore, the reaction rate relations are

v4(t) = −d[X]

dt
= −d[Y ]

dt
=

d[Z]

dt
,

v5(t) =
d[X]

dt
=

d[Y ]

dt
= −d[Z]

dt
.

(1.21)

This shows that the amount of species are determined by two reactions, thus there are two terms

on the right hand side of each RRE:

d[X]

dt
= −k4 · [X] · [Y ] + k5[Z],

d[Y ]

dt
= −k4 · [X] · [Y ] + k5[Z],

d[Z]

dt
= k4 · [X] · [Y ]− k5[Z].

(1.22)

1.1.5 Note

In this section, we introduced the rate of change of concentration of chemical species in the

system. While it is applied at a constant volume, closed system with steady temperature simple

environment, the concentration [X] is related to the number of molecules X by

[X] =
X

N0V
, (1.23)

where the constant N0 is the Avogadro constant, and V is the constant of fixed volume.

7



1.2 Propensity Function

When the size of a chemical reaction system is at micro-scale, stochasticity becomes dominant

and hence the stoichiometry information is no longer enough to characterize the system. In

addition to the amount of change of each molecule caused by reactions, we are also interested

in when and how each reaction takes place. The information of each reaction Rj is described

by the propensity function defined as

aj(x)dt : the probability, given X(t) = x, that one Rj

reaction will occur inside Ω in the next infinitesimal

time interval [t, t+ dt).

(1.24)

The propensity functions can be described by the ignition of chemical reactions between

chemical particles in the system, which depends on the number of possible combinations of re-

actant molecules involved in reaction Rj [1]. Underlying the logical sense, equation (1.24) de-

scribes the behavior of stochastic chemical kinetics represented by CME [35, 36] and stochastic

simulation algorithm (SSA, also called Gillespie algorithm) [37]. Three of the simplest cases

for deriving propensity functions are unimolecular reaction, bimolecular reaction on different

species, and bimolecular reaction on the same species.

1.2.1 Unimolecular reaction

For a unimolecular reaction

Rj : Si → product(s),

suppose there exists a constant kj such that the probability of one Rj reaction happens some-

where in the chemical system during the infinitesimal time period [t, t + dt] is kjdt, and kj is

called specific probability rate constant for reaction channel Rj [32]. While the population of

Si is Xj at time t, the probability that one of the Si molecular particles undergoing the reaction

Rj in [t, t+ dt) is Xi · kjdt. Thus the propensity function of Rj can be written as

aj(x) = kjXi. (1.25)

8



1.2.2 Bimolecular reaction on different species

Consider a bimolecular reaction on different species

Rj : Si + Sk → product(s).

Since the system is well-stirred in some fixed volume and at a constant temperature, the prob-

ability rate constant kj also exists in such bimolecular systems based on chemical kinetics.

While the number of Si and Sk are Xi and Xk, repectively, the propensity function for reaction

Rj is

aj(x) = kjXiXk, (1.26)

since the variety of combination of a pair “Si and Sk” is XiXk.

1.2.3 Same species bimolecular reaction

For a same species bimolecular chemical reaction

Rj : Si + Si → product(s),

the combination of randomly selecting two Si particles is 1
2
Xi(Xi−1),which leads the propen-

sity function to be

aj(x) = kj ·
1

2
Xi(Xi − 1). (1.27)

1.2.4 Note

Overall, the propensity function can be denoted as

aj(x) = kj · h(x), (1.28)

where h(x) represents the combinations of selected reactants in the chemical system, and kj is

a probability rate constant for such chemical reaction.
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To estimate kj , it is necessary to assume the reaction Rj occurs under certain conditions.

For bimolecular cases, the probability of two particles meeting in the system depends on the

size of the environment, which is inversely proportional to the volume Ω; on the other hand, the

volume does not affect the probability of ignition in unimolecular cases [37]. Since we assume

the chemical system is with fixed volume, we can omit the influence of volume size on kj .

1.3 Chemical Master Equation

Chemical Master equations (CME) [38] are used to described the evolution of a system mod-

elled by the probability functions of combinations of the numbers of chemical species. It is

a set of partial differential equations (PDEs) on probabilities of different states of chemical

species.

As the population X(t) of species evolve, the goal is to infer the probability

P(x, t|x0, t0) := Prob{X(t) = x, given X(t0) = x0}. (1.29)

Consider in an infinitesimal time interval [t, t+dt), the development of the probability through

time yields the CME :

∂P(x, t|x0, t0)

∂t
=

M∑
j=1

[aj(x− vj)P(x− vj, t|x0, t0)− aj(x)P(x, t|x0, t0)] (1.30)

where vj is the state-change vector of reaction Rj , and aj(x) is the propensity function of Rj ,

j = 1, · · · ,M . Exact trajectories for CME may be computed by Gillespie’s algorithm, also

called the stochastic simulation algorithm (SSA). However, SSA is usually computationally

expensive, see the note at the end of this section.

1.3.1 Example

Consider a chemical kinetic system of three species X, Y and Z with two reactions:

X + Y
k1


k2
Z (1.31)
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with the forward reaction rate constants k1 and backward reaction rate constants k2 and denote

the number of molecules to be U(t) = [X(t), Y (t), Z(t)]T = [X, Y, Z]T . According to (1.26)

and (1.25), the propensity function of forward reaction is a1(U) = k1XY , and the propensity

function of backward reaction is a2(U) = k2Z. Therefore, the chemical master equation of the

system (1.31) at some time t can be derived as:

∂P(U)

∂t
= k1(X + 1)(Y + 1)P(X + 1, Y + 1, Z − 1)

+ k2(Z + 1)P(X − 1, Y − 1, Z + 1)

− (k1XY + k2Z)P(X, Y, Z),

(1.32)

where P(U) = P(U, t|u0, t0).

Suppose we start out with three molecules of X , five molecules of Y and none of Z. Then

all the possible combinations of reactant molecules are

U(t) = {[3, 5, 0]T , [2, 4, 1]T , [1, 3, 2]T , [0, 2, 3]T}. (1.33)

Since there are four possibilities of combinations, the chemical Master equation of system

(1.31) contains four equations:

∂P([3, 5, 0]T )

∂t
= k2P([2, 4, 1]T )− 15k1P([3, 5, 0]T ), (1.34)

∂P([2, 4, 1]T )

∂t
= 15k1P([3, 5, 0]T ) + 2k2P([1, 3, 2]T )

− (8k1 + k2)P([2, 4, 1]T ),

(1.35)

∂P([1, 3, 2]T )

∂t
= 8k1P([2, 4, 1]T ) + 3k2P([0, 2, 3]T )

− (3k1 + 2k2)P([1, 3, 2]T ),

(1.36)

∂P([0, 2, 3]T )

∂t
= 3k1P([1, 3, 2]T )− 3k2P([0, 2, 3]T ). (1.37)
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In this CME system, there are four probability differential equations since it has four

possibilities of combinations of chemical reactants, and it is numerically computable by solving

the equations. However, it is unrealistic to assume the number of chemical species to be less

than 10 in a real world chemical system.

1.3.2 Note

Although the CME determines the probability function P(x, t|x0, t0) completely, it is almost

impossible to solve analytically except for some simple cases, or even very challenging to com-

pute numerically since it needs enormous storage capacity due to the fact that it is essentially

an infinite dimensional system of ODEs involving every possible combination of states at any

given time.

It is unrealistic to solve CME if there are hundreds or even thousands possibilities on

the combination of number of reactants. Unless the chemical system is simple and with few

particular properties, then the CME could describe some distinguishing features to let us know

the number of species exactly, like the examples and methods in [33, 39, 40].

Therefore, instead of solving analytically the probability density function P(U, t|u0, t0),

the stochastic simulation algorithm (SSA) was introduced in [3, 37] by Gillespie in order to

simulate numerically the evolution of number of species during the stochastic process in such

chemical kinetic system.

1.4 Reaction Rate Equation Deduced by Propensity Functions

Consider the CME (1.30). When (1.30) is multiplied by x and summed over all x, we get

d〈X(t)〉
dt

=
M∑
j=1

vj〈aj(X(t))〉. (1.38)

Suppose X(t) is a deterministic process hypothetically, it leads to

〈h(X(t))〉 = h(X(t)) (1.39)
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for all function h. Then (1.38) can be reduced to

dX(t)

dt
=

M∑
j=1

vjaj(X(t)). (1.40)

This is the reaction rate equations (RREs) derived by propensity functions, which is a set of

coupled ODEs describing a continuous, deterministic process. However, all the fluctuations

are ignored in RRE (1.40), which may not be legitimate for chemical kinetics in real world.

Therefore, let’s consider stochastic simulation algorithm to understand the trajectories of X(t)

in probability sense.

1.5 Stochastic Simulation Algorithm

Due to the challenges of inferring the probability density function of the population X(t), we

look at the trajectories of X(t) constructed versus t by using Monte Carlo methods, i.e., at each

time t, we randomly choose the next reactionRj to occur, then generate another random number

τ to determine the timing whenRj fires and update the molecular populations, then repeat from

generating j for next reaction to happen. This generating method is called stochastic simulation

algorithm (SSA) or Gillespie algorithm.

To understant the generated trajectories of X(t), we are interested in the new probability

function p(τ, j|x, t). The key idea of SSA is to introduce a new probability function, which is

defined as:

p(τ, j|x, t) := the probability, given X(t) = x, that the next reaction in the

system will fire in the infinitesimal time interval

[t+ τ, t+ τ + dτ), and will be an Rj reaction.

(1.41)

Since the probability of some reaction occurs in the time interval [t, t+ dt) is
∑
j

aj(x)dt,

it is shown in [32] that the probability that a time τ will run out without any reaction firing is

exp(
∑
j

aj(x)τ). Multiplying by the propensity function (1.24), we obtain the probability in
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(1.41) as follows:

p(τ, j|x, t) = aj(x)exp(−a0(x)τ) (1.42)

where

a0(x) :=
M∑
j′=1

aj′(x). (1.43)

The above mathematical approach assumes that τ is an exponential random variable with

mean and standard deviation 1/a0(x), and j is a statistical independent integer random variable

with point probabilities aj(x)/a0(x).

Although the SSA provides exact prediction of X(t), futher improvements or adaptions

need to be made and exactness might be compromised since the direct SSA is computationally

expensive.

A few methods have been created to modify for SSA, like the next reaction method [41,

42], or an efficient simmulation approach we are going to introduce in the following, the tau-

leaping method.

1.6 Tau-Leaping Method

While the proceeding time steps in direct SSA generate random variables, instead we consider

time increment to be a fixed number τ in tau-leaping or τ−leaping method, for approximation

and simulation of a stochastic system, which is introduced by Gillespie [43], as a bridge to

Reaction Rate Equation (RRE). Basically, it performs all reactions in a time interval before

updating propensity functions.

In what follows, we made the following assumption on the time interval [t, t+ τ),

1. Leap-condition: aj(x) has no significant changes or is essentially a constant in [t, t+ τ),

i.e.,

aj(x(t)) ≈ aj(x(s)) for any t ≤ s ≤ t+ τ. (1.44)

2. The number of reactionsRj that occur in [t, t+τ) is a Poisson distributed random variable

with mean and variance aj(x)τ .
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The number τ is called the leap. It has to be chosen carefully since it needs to be small

enough to satisfy the leap-condition, and large enough that the expected number of firings of

each reaction Rj during time τ is� 1, i.e.,

aj(x)τ � 1 for all j = 1, · · · ,M. (1.45)

More discussion for efficient step size τ selection is described in [44].

To construct the numerical simulation based on tau-leaping method with a fixed time in-

crement τ , the processes are as follows:

1. Choose a time step τ , which satisfies the leap condition.

2. Given initial state x = X(t) at the time t, with the reactions Rj to fire kj times in the

time interval [t, t + τ), along with its propensity function aj(x) and state-change vector

vj .

3. For each Rj , compute the Poisson random variable Pj(aj(x)τ).

4. Update the number of species by

X(t+ τ) = x +
M∑
j=1

Pj(aj(x)τ)vj, (1.46)

where vj is the state-change vector of reaction Rj . While updating X(t), it may be

necessary to check that no population of species reaches unrealistic values, for example,

becoming negative due to the unbounded nature of Poisson random variable Pj(aj(x)τ).

5. Repeat from Step 1 as desired or end the simulation.

Comparing the Tau-Leaping method with the Stochastic Simulation Algorithm (SSA), the

main difference is that the time increments of tau-leaping is fixed but the randomness of the

system is on the times of firings of reactions, where time increments between reactions in SSA

are random numbers. The meanings of them can be interpreted by the following graphs:
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1.7 Chemical Langevin Equation

Since no significant modification of propensity functions is performed in the time interval [t, t+

τ), it is computationally more efficient than the direct SSA. However, we need to be careful in

choosing the leap τ :

(a) τ has to be small enough that the propensity functions aj(x) do not change during [t, t+

τ).

Thus, the propensity functions satisfy

aj(X(t̂)) ∼= aj(x), for all t̂ in [t, t+ τ). (1.47)

There are more details addressed in [32]. So the Poisson random variable P(aj(x)τ)

represents the number of times that reaction channel Rj ignites in a duration τ while

the propensity function remains essentially a constant at value aj(x(t)). Therefore, the

population X = [X1, · · · , XN ]T at time t+ τ is allowed to be approximated by

Xi(t+ τ) = Xi(t) +
M∑
j=1

vjiPj(aj(x), τ), i = 1, · · · , N, (1.48)

where vji is the i−th entry of the state-change vector vj .
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(b) τ has to be large enough that the expected number of occurrences of each reaction Rj in

[t, t+ τ) is much greater than 1.

Note that for the Poisson random variable N (m,σ2) with sufficiently large values of the

mean m and variance σ2 (standard deviation σ) can be approximated excellently by a

normal random variable with the same mean and variance aj(x)τ ,

Pj(aj(x)τ) ≈ Nj(aj(x)τ, aj(x)τ), (1.49)

where N (m,σ2) denotes the normal random variable with mean m and variance σ2. It

leads equation (1.48) into the form

Xi(t+ τ) = Xi(t) +
M∑
j=1

vjiNj(aj(x)τ, aj(x)τ), i = 1, · · · , N. (1.50)

Using the linear combination theorem for normal random variables

N (m,σ2) = m+ σN (0, 1),

equation (1.50) can be written as

Xi(t+τ) = Xi(t)+
M∑
j=1

vjiaj(x)τ+
M∑
j=1

vji

√
aj(x)τ ·Nj(0, 1), i = 1, · · · , N. (1.51)

Let’s consider any time interval τ that satisfies conditions (a) and (b) as a macroscopic

infinitesimal time increment and denote it by dt, equation (1.51) becomes the following “white-

noise form” Langevin equation

dXi(t) =
M∑
j=1

vjiaj(x)dt+
M∑
j=1

vji

√
aj(x)dWj(t), i = 1, · · · , N, (1.52)
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Figure 1.1: Logical structure of stochastic chemical kinetics [1]

where the Wj(t) are temporally uncorrelated, statistically independent Gaussian white noises.

Furthermore, equation (1.52) can be written rigorously as the SDE

dXi(t)

dt
=

M∑
j=1

vjiaj(x) +
M∑
j=1

vji

√
aj(x)dWj(t), i = 1, · · · , N, (1.53)

where Wj(t) are independent Wiener processes.

1.8 Remarks

The logical structure of stochastic chemical kinetics is schematized in Figure 1.1. The propen-

sity function aj(x)dt leads to the CME and SSA; and the tau-leaping method is developed if

aj(x) is treated as a constant during the infinitesimal time interval [t, t+ τ). As the thermody-

namic limit is approached, the second term of CLE (1.53) on the right grows more slowly as
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the square root of the system size. When the last term becomes negligibly small compared with

other terms such as in full thermodynamic limit, the CLE (1.53) reduces to the RRE (1.40).
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Chapter 2

Computational Singular Perturbation and Stochastic Computational Singular Perturbation

2.1 Stiff Problems and Singular Perturbation

While we are interested in the evolution on chemical Langevin equations (1.53), which are

stochastic differential equations (SDEs), it shows that the propensity function aj(x) plays an

important role on controlling the speed of processes. It is common that a chemical reaction

system involves dissimilar reaction rates, i.e., a chemical system may consists of probability

rate constant kj in (1.28) with different magnitudes.

Due to the fact of different reaction rates causing some reactions perform much frequent

than the others, mathematically we can classify chemical reaction channels to be rapid and slow

reactions. It is called a “stiff problem” or “stiff system” for such ODEs in multiple time-scales

with well-separated rapid and slow dynamical modes.

Solving stiff problems are numerically challenging. Due to rapid variation in solution in-

volving in some of the domain, the numerical simulation may have to take extremely small

step size to maintain stability, which is computationally expensive. In [45], the authors devel-

oped techniques to deal with extremely stiff ordinary differential equations in dynamic systems

based on implicit Runge-Kutta procedure.

Mathematically an ordinary differential equation system with stiffness can be expressed

in singular perturbed form [46]:

dF(t) = p(F(t),G(t), ε)dt,

εdG(t) = q(F(t),G(t), ε)dt.

(2.1)
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This is a typical sinularly perturbed initial value problem (IVP) with a small positive pa-

rameter ε. It is important on applications in chemistry, physics, engineering and biology. De-

notes that ε affects the solutions to be dependent on different time scales.

2.2 Computational Singular Perturbation

The Computational Singular Perturbation (CSP) method provides the concepts of an algorithm

specifically designed to solve and analyze stiff ordinary differential equation systems [47, 11].

First, identify the contributions of the slow and fast time-scales, then integrate numerically the

slow time-scales only to generate the next point; at the end of each integration step, separate

and identify the contribution of the fast modes by means of an algebraic amendment to improve

computational efficiency.

Consider an ODE system
dX

dt
= µ(X), (2.2)

where X is a column vector with N entries. Next, represent µ(X) by some spanning sets aj ,

µ(X) =
N∑
j=1

ajf
j, (2.3)

and denotes that

A = [a1, · · · , aN ]. (2.4)

f j is called the amplitude corresponding to aj , which is given by

f j = bj · µ, (2.5)

while bj can be obtained by the orthogonal sets of aj , i.e.,

B = [b1; · · · ;bN ] =


b1

...

bN

 = A−1, (2.6)
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and

bj · ai = δji. (2.7)

One of the aims of CSP is to construct a set of “ideal basis vectors” {a1, · · · , aN}, such

that the representation (2.3) can be well-separated into two rate relative subdomains: fast and

slow [11]. In order to find out the proper spanning sets, CSP method studies the evolution of

amplitudes of each mode by differentiating (2.2) with respect to time to obtain

dµ

dt
= J · µ (2.8)

where J denotes the N ×N Jacobian matrix of µ with respect to X. At a given time t, the state

X(t) is known, so is the Jacobian J(t). Applying inner product of bj with (2.8) and using the

spanning representation (2.3), the evolution of amplitudes is derived to follow

df i

dt
=

N∑
k=1

Λj
kf

k, (2.9)

where

Λj
k =

[
dbi

dt
+ bi · J

]
· aj, (2.10)

and
dbi

dt
=

[
dbi1
dt
, · · · , db

i
N

dt

]
. (2.11)

To construct an appropriate set of basis vectors {a1, · · · , aN} such that the fast and slow

dynamics are separated while projecting onto {a1, · · · , aN}, CSP monitors the behaviour of

the square matrix Λ = [Λj
k] which describes the influence to the evolution of fk by other

magnitudes. CSP performs two steps refinements to let Λ approach a nearly block diagonoal

matrix to achieve the goal.

2.3 Stochastic Computational Singular Perturbation

Although the CSP method is a powerful tool to analyze and simulate stiff ODE systems, it is

not directly applicable to Chemical Langevin equation since there are non-negligible stochastic
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parts. In [48], a stochastic computational singular perturbation method (SCSP) is developed to

deal with stochastic ordinary differential equation (SDE) systems with similar tactics.

Consider the stochastic singular perturbation system

dF(t) = p(F(t),G(t), ε)dt+ P (F(t),G(t), ε)dW (t),

εdG(t) = q(F(t),G(t), ε)dt+
√
εQ(F(t),G(t), ε)dW (t),

(2.12)

where F(t) and G(t) are stochastic processes, ε is a small positive number, and W (t) is a

one-dimensional Wiener process.

Using the same strategies as CSP, we are interested in finding proper vector sets to span

deterministic and stochastic vector fields of SDEs

dX = µ(X)dt+
M∑
j=1

σj(X)dWj(t). (2.13)

For any two given sets of basis vectors, ai and αααi for i = 1, · · · , N , we denote

A = [a1, · · · , aN ] for µ(X),

Aj = [αααj1, · · · ,ααα
j
N ] for each σj(X), j = 1, · · · ,M.

(2.14)

Now we span the vector fields µ(X) and σj(X) such that

µ(X) =
L∑
r=1

arf
r +

N∑
s=L+1

asf
s, (2.15)

σj(X) =
L∑
r=1

αααjrg
r
j +

N∑
s=L+1

αααjsg
s
j , (2.16)

where L denotes the dimension of fast subdomain, ar, αααjr span rapid subdomains, as and αααjs

span slow subdomains, and f i, gij denotes the amplitudes, respectively. Also let

B = [b1; · · · ;bN ] =


b1

...

bN

 (2.17)

23



and

Bj = [βββj1; · · · ;βββjN ] =


βββj1
...

βββjN

 (2.18)

to be the corresponding orthogonal row vectors set of A and Aj , respectively, i.e.,

B = A−1, Bj = (Aj)−1. (2.19)

Thus, the amplitudes corresponding to A and Aj are

f i = bi · µ, (2.20)

gij = βββji · σi. (2.21)

Denote [f ] = [f 1, · · · , fN ]T , [gj] = [g1
j , · · · , gNj ]T as the N -dimensional column vectors com-

posed of deterministic and stochastic amplitudes.

For simplicity of exposition, first consider a Stratonovich SDE system consisting of only

one noise term, which means, M = 1 in (2.13) the SDE can thus be reduced to

dX = µ(X)dt+ σ(X) ◦ dW (t), (2.22)

where ◦ represents the Stratonovich product. Here, we can take advantage of its preservation

of the chain rule like ordinary calulus. While performing SCSP [48], an arbitrary initial set

of basis vectors are chosen to span the vector fields of the deterministic and stochastic parts

respectively, then perform iterations of refinements are performed in order to find an ideal

spanning vector set by getting optimized amplitudes f and g. Another procedure in SCSP is

as follows: Eigenvectors of the Jacobian of µ(X) and σ(X) in (2.22) are chosen as the basis

{a1, · · · , aN} and {ααα1, · · · ,αααN} to span the vector fields of deterministic and stochastic parts
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respectively, which leads the time evolution of all modes to be

d

f
g

 =

Λ V

Γ T

 · dω(t), (2.23)

where dω(t) = Diag[f · INdt, g · INdW (t)], Jµ, Jσ are the Jacobians of µ(X) and σ(X)

correspondingly, and Λ, V,Γ, T are N ×N matrices that

Λ = BJµA, V = BJµA, Γ = BJσA, T = BJσA. (2.24)

After k iterative refinements are performed, the “drift” f and the “volatility” g will be split

into rapid components f r(k),g
r
(k) and slow components f s(k),g

s
(k), respectively. Therefore, the fast

and slow deterministic subdomains are spanned by Ar
k and As

k, respectively, and fast and slow

stochastic subdomains are spanned by Ar and As, respectively. It leads us to define formally

the k-th stochastic slow manifold by a stochastic relation that captures the near-equilibration of

fast processes. The dynamics of the originial SDE (2.22) are then further reduced to

dX ≈ As
kf

s
(k) +Askgs(j) ◦ dW (t) (2.25)

while approaching the “k-th stochastic slow manifold”. This idea is used to build a new time-

scale splitting, explicit algorithm to integrate stiff SDEs that consists of three steps.

1. Identify the number m of exhausted modes at a given time.

2. Starting from a trial set of basis vectors, construct SCSP basis vectors iteratively by the

refinement procedures.

3. After k ≥ 0 iterations of refinements, integrate the SDE system (2.22) from tj to tj+1 in

two steps as follows:

X̂j = Xj +

∫ tj+1

tj

Arkf
r
(k) +Arkgr(k) ◦ dW (t), (2.26)
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Xj+1 = X̂j +

∫ tj+1

tj

Askf
s
(k) +Askgs(k) ◦ dW (t). (2.27)

While using the Euler method for
∫ tj+τ

tj
Arkf

r
(k) and the midpoint rule for

∫ tj+τ

tj
Arkgr(k) ◦

dW (t), (2.26) becomes

X̂j = Xj + Ark(Xj)f
r
(k)(Xj)τ +

ξ
√
τ

2

(
Ark(Xj)g

r
(k)(Xj) +Ark(X̂j)g

r
(k)(X̂j)

)
, (2.28)

where ξ is a standard normal random variable, and τ is the expected elapsed time of the

fast modes. Then integrating along the k−th stochastic slow manifold according to the

simplified system (2.25) to obtain Xj+1 similar to previous strategy,

Xj+1 ≈X̂j + Ask(Xj)f
s
(k)(Xj)hj

+
ξ
√
hj

2

(
Ask(Xj)g

s
(k)(Xj) +Ask(Xj+1)gs(k)(Xj+1)

)
,

(2.29)

where ξ is a standard normal random variable, and hj := tj+1 − tj .

2.4 Remarks

For stochastic systems, SCSP allows the iterative construction of two sets of basis vectors

spanning the fast and slow dynamical subspaces for both the drift and diffusion of an SDE

system. With this construction, the fast and slow dynamics of a stiff stochastic differential

equation (SDE) can be decoupled, while projecting onto the tensor product of the associated

vector spaces. An operator-split explicit time integration algorithm is developed for solving

stiff SDEs using SCSP. Since the stochastic algebraic relation describing the fast dynamics

does not depend on the step length of time integration, and the subsequent time integration

of the slow processes is non-stiff, the construction allows stable integration with large explicit

time steps. Numerical experiments highlight the accuracy of computed first order statistics of

the state variables, and that of the second order statistics of the slow variables, relative to stiff

time integration of the original SDE system.
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Chapter 3

Simplified Stochastic Computational Singular Perturbation

3.1 Simplified Stochastic Computational Singular Perturbation (SSCSP)

The governing CLE for a chemical reaction system with multiple reactions involves multiple of

noises and thus multiple diffusion vectors. Each additional noise requires one more application

of eigen analysis and SCSP. Though this is not a major problem providing the advancement of

parallel computing nowadays, it is still a drawback of the algorithm. Moreover, the Jacobian

matrices of most of these diffusion vectors, due to the special structure of chemical reaction

network, are singular, and hence create more numerical complexity.

Noticing the special relation between the drift and diffusion terms of CLEs, the main goal

of this chapter and also of this research is to develop a simplified SCSP-based algorithm that

can simulate stiff CLEs more efficiently while maintaining numerical stability.

According to (1.53), the deterministic part and the coefficient of the noise term in (2.13)

are

µ(X) =



M∑
j=1

vj1aj(X)

...
M∑
j=1

vjNaj(X)


, (3.1)

σj(X) =


vj1
√
aj(X)

...

vjN
√
aj(X)

 , (3.2)
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respectively. The Jacobian matrices for µ(X) and σj are

Jµ(X) =



M∑
j=1

vj1
∂aj
∂x1

M∑
j=1

vj1
∂aj
∂x2

· · ·
M∑
j=1

vj1
∂aj
∂xN

M∑
j=1

vj2
∂aj
∂x1

M∑
j=1

vj2
∂aj
∂x2

· · ·
M∑
j=1

vj2
∂aj
∂xN

...
... . . . ...

M∑
j=1

vjN
∂aj
∂x1

M∑
j=1

vjN
∂aj
∂x2

· · ·
M∑
j=1

vjN
∂aj
∂xN


, (3.3)

Jσj(X) =
1

2
√
aj(X)



vj1
∂aj
∂x1

vj1
∂aj
∂x2

· · · vj1
∂aj
∂xN

vj2
∂aj
∂x1

vj2
∂aj
∂x2

· · · vj2
∂aj
∂xN

...
... . . . ...

vjN
∂aj
∂x1

vjN
∂aj
∂x2

· · · vjN
∂aj
∂xN


. (3.4)

Due to the similarity in structures of Jµ and Jσi’s, we propose to use the same basis vector set

A = [a1, · · · , aN ], (3.5)

for both deterministic and stochastic parts. Following the SCSP, let A to be the eigenvectors of

µ(X), which leads the evolution of magnitudes to be

d[f ] = d[g] = Λf · dt+ Λg · dW,

where Λ = BJµA.
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3.2 Time integration: Special Case with No Noise

Consider the ODE

dX = µ(X)dt, (3.6)

where the stochastic term from the SDE (2.22) is ignored. The function µ(X) can be projected

onto any set of basis vectors:

µ(X) =
N∑
j=1

ajf
j. (3.7)

It is important to study the evolution of amplitudes f j . The bigger the magnitude of the ampli-

tudes f j is, the greater significance on the corresponding vector aj . We follow the strategy in

[30], differentiate (3.7) with respect to time and use (3.6) to obtain

dµ

dt
= J · dX

dt
= J · µ, (3.8)

where J = [Jij] is the Jacobian of µ with dimension N ×N and

Jij =
∂µi
∂xj

. (3.9)

Differentiating (2.20) and using (3.8), the evolution of f i can be described as an expansion of

f 1, f 2, · · · , fN as
df i

dt
=

N∑
j=1

Λi
jf

j, i = 1, · · · , N, (3.10)

where

Λi
j ≡

(dbi
dt

+ bi · J
)
· aj, (3.11)

and bi’s are defined in (2.17) as an orthogonal vector sets with respect to aj . The derivative

of a row vector bi = [bi1, · · · , biN ] are defined to be the row vector where the entries are the

derivatives of entries of bi, i.e.,

dbi

dt
=
[dbi1
dt
, · · · , db

i
N

dt

]
. (3.12)
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At any fixed time t, the matrix J and vector X(t) are known. Choose the column vector

set aj to be the eigenvectors of J corresponding to eigenvalues λj with descending magnitudes,

i.e., |λ1| > |λ2| > · · · > |λN |. Since aj is a constant initial trial set of time-independent basis

vectors at time t = t0, we can assume

dbi

dt
= 0. (3.13)

Thus, the formula (3.11) is further updated

Λi
j ≡ bi · J · aj = λj(b

i · aj) =


λi if j = i

0 if j 6= i

, (3.14)

which indicates Λi
j is an N ×N diagonal matrix and its diagonal elements are the eigenvalues

of the Jacobian J, i.e.,

Λ =


λ1 0

. . .

0 λN

 (3.15)

Moreover, it simplifies (3.10) and the evolution of amplitude f i can be expressed as a linear

ODE
df i

dt
= λif

i. (3.16)

Assume that after certain time T , the fast mode with dimension M becomes stable and

the remaining N −M dimensions slow subdomain dominates the behavior of X. Based on the

idea for CSP, the change of X during the time interval [T, T + ∆t) is expressed as

X(T + ∆t)−X(T ) =

∫ T+∆t

T

(
M∑
r=1

arf
r

)
dt+

∫ T+∆t

T

Pµdt, (3.17)
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where P is an N ×N matrix representing the projection of the slow subdomain. To derive the

matrix P , write the ODE system (3.6) as

dX = µ(X)dt =
( M∑
r=1

arf
r + Pµ

)
dt, (3.18)

therefore,

Pµ = µ−
M∑
r=1

arf
r

= µ−
M∑
r=1

arb
rµ

=
(
I −

M∑
r=1

arb
r
)
µ.

(3.19)

From this we get the projection matrix of the slow subdomain:

P = I −
M∑
r=1

arb
r. (3.20)

Dividing by λi to the equation (3.16), and substituting

f i =
1

λi

df i

dt
(3.21)

into the first integral of (3.17), yields

X(T + ∆t)−X(T ) =
M∑
r=1

1

λr

∫ T+∆t

T

ar
df r

dt
dt+

∫ T+∆t

T

Pµdt. (3.22)

Applying integration by parts, yields

X(T + ∆t)−X(T ) =
M∑
r=1

1

λr

[
arf

r|t=T+∆t − arf
r|t=T −

∫ T+∆t

T

dar
dt
f r dt

]

+

∫ T+∆t

T

Pµdt.

(3.23)

Due to the fact that the projection on fast subdomain has been exhausted, the quantity arf
r at

t = T + ∆t becomes much smaller than at t = T . Thus, the first term in the bracket on the
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RHS can be omitted, i.e.,

arf
r|t=T+∆t = 0. (3.24)

Moreover, the integral in the bracket can also be ignored since aj is a constant initial trial set

of time-independent basis and it yields

dar
dt

= 0. (3.25)

Thus, the change of X as (3.17) can be rewritten as

X(T + ∆t)−X(T ) = −
M∑
r=1

1

λr

[
arf

r|t=T
]

+

∫ T+∆t

T

Pµdt+Remainder, (3.26)

where

Remainder =
M∑
r=1

1

λr

[
arf

r|t=T+∆t −
∫ T+∆t

T

dar
dt
f r dt

]
, (3.27)

and it represents the small terms which can be neglected in approximation.

3.3 Time Integration: Stiff SDE System

3.3.1 Stratonovich SDE with Only One Noise Term

First, consider the Stratonovich SDE of stochastic column process X(t) = [x1(t), x2(t), · · · , xN(t)]T

with only one diffusion term σ,

dX = µ(X)dt+ σ(X) ◦ dW (t), (3.28)

where the drift (deterministic) term µ and diffusion (stochastic) term σ denote N × 1 column

vectors, the operator ◦ denotes the Stratonovich product, and W (t) is a Wiener process. Here

we use the same basis aj to span both drift and diffusion parts,

µ(X) =
N∑
j=1

ajf
j, (3.29)
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σ(X) =
N∑
j=1

ajg
j, (3.30)

which is unlike (2.15) and (2.16) using different basis to span deterministic and stochastic parts

respectively. It is easier to study and analyze the evolution of the corresponding magnitudes f j

and gj .

In order to study the evolution of amplitudes f j , use similar tactic as [30], differentiate

(3.29) to obtain

dµ = J · dX, (3.31)

where J = [Jij] is the Jacobian of µ with dimension N ×N and

Jij =
∂µi
∂xj

. (3.32)

Differentiating

f i = bi · µ, (3.33)

where bi is from the orthogonal row vector sets to aj and use (3.8), the evolution of f i can be

written as

df i = dbi · µ+ bi · J · dX

= dbi · µ+ bi · J ·

[(
N∑
j=1

ajf
j

)
dt+

(
N∑
j=1

ajg
j

)
◦ dW (t)

] (3.34)

Given the time t = T , the Jacobian matrix J and vector X(t) are known and let aj be the

eigenvectors of J corresponding to eigenvalues λj with descending magnitudes, i.e.,

|λ1| > |λ2| > · · · > |λN |. (3.35)

Since aj is a constant initial trial set of time-independent basis vectors, dbi can be neglected,

and (3.34) can be expressed as
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df i =
N∑
j=1

Λi
jf

jdt+
N∑
j=1

Λi
jg
j ◦ dW (t), (3.36)

where

Λi
j ≡ bi · J · aj = λj(b

i · aj) =


λi if j = i

0 if j 6= i

. (3.37)

Similar to (3.15), Λi
j is a diagonal matrix and its diagonal elements are the eigenvalues of

the Jacobian J. Moreover, (3.36) can be simplified and the evolution of amplitude f i can be

expressed as a SDE

df i = λi[f
idt+ gi ◦ dW (t)]. (3.38)

Assume that after a short period of certain time, the fast mode with dimension M are

exhausted and the remaining N −M dimensions slow subdomain dominates the behavior of

X. Based on the concept of CSP, the integration of X during the time interval [T, T + ∆t) can

be expressed as

X(T + ∆t)−X(T ) =

∫ T+∆t

T

(
M∑
r=1

arf
r

)
dt

+

∫ T+∆t

T

(
M∑
r=1

arg
r

)
◦ dW (t)

+

∫ T+∆t

T

P

(
µ dt+ σ ◦ dW (t)

)
,

(3.39)

where P is the projection matrix of the slow subdomain and can be derived as

P = I −
M∑
r=1

arb
r. (3.40)

From equation (3.38), substituting

f idt =
1

λi
df i − gi ◦ dW (t) (3.41)
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into the first integral of (3.39) yields

X(T + ∆t)−X(T ) =
M∑
r=1

∫ T+∆t

T

ar

(
1

λr
df r − gr ◦ dW (t)

)

+

∫ T+∆t

T

M∑
r=1

arg
r ◦ dW (t)

+

∫ T+∆t

T

P

(
µ dt+ σ ◦ dW (t)

)
.

(3.42)

Note that the second integral of (3.42) can be cancelled with the latter part of the first integral,

we obtain

X(T + ∆t)−X(T ) =
M∑
r=1

∫ T+∆t

T

1

λr

(
ardf

r

)

+

∫ T+∆t

T

P

(
µ dt+ σ ◦ dW (t)

)
.

(3.43)

Applying the same strategy with formula (3.23) by using integration by parts on the first inte-

gral, yields

X(T + ∆t)−X(T ) =
M∑
r=1

1

λr

[
arf

r|t=T+∆t − arf
r|t=T −

∫ T+∆t

T

d[ar]

dt
f r dt

]

+

∫ T+∆t

T

P

(
µ dt+ σ ◦ dW (t)

)
.

(3.44)

Due to the fact that the projection on the fast domain has been exhausted, the quantity arf
r at

t = T + ∆t becomes much smaller than at t = T , i.e., arf r|t=T+∆t can be omitted. Moreover,

the integral in the bracket can also be neglected since aj is a constant initial trial set of time-

independent basis vectors and it yields

dar
dt

= 0. (3.45)
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Thus, the change of X as (3.17) can be rewritten as

X(T + ∆t)−X(T ) = −
M∑
r=1

1

λr

[
arf

r|t=T

]
+

∫ T+∆t

T

P

(
µ dt+ σ ◦ dW (t)

)

+Remainder,

(3.46)

where

Remainder =
M∑
r=1

1

λr

[
arf

r|t=T+∆t

]
, (3.47)

represents the small term which can be neglected in approximation.

3.3.2 Stratonovich SDE with Multiple Noise Terms

Consider the Stratonovich SDE of stochastic column process X(t) = [x1(t), x2(t), · · · , xN(t)]T

with multiple diffusion terms σk,

dX = µ(X)dt+
M∑
k=1

σk(X) ◦ dWk(t), (3.48)

where the (deterministic) drift term µ and (stochastic) diffusion term σk denote N × 1 column

vectors, ◦ denotes the Stratonovich product, and Wk(t) is Wiener process. Similar to (3.30),

denote each diffusion terms σk spanned by column vectors aj ,

σk(X) =
N∑
j=1

ajg
j
k. (3.49)

where gjk represents the corresponding magnitude with respect to vector aj on spanning the

function σk. Similar to (3.46) and with the same setting of matrix P , the change of X in (3.48)

can be expressed as

X(T + ∆t)−X(T ) = −
M∑
r=1

1

λr

[
arf

r|t=T

]

+
N∑
j=1

∫ T+∆t

T

P

(
µ dt+ σj ◦ dWj(t)

)
+Remainder,

(3.50)
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where Remainder represents the negligible small terms.

Although the derivation of (3.50) is mathematically correct, it disobeys the intuition on the

variance of X(t) which is contributed from the diffusion parts. In (3.50), the stochastic parts

are only provided by the slow subdomain, while the contribution from the fast subdomain is

cancelled (see (3.43)).

However, the result is still valuable in providing insights for improving the scheme. From

the numerical experiments, it is clearly shown that the contribution from the fast subdomain

may be neglected. In the next few sections, we will develop a modification following the idea

from (3.50) but without omitting the contribution from the fast subdomain, which turns out to

preserve the variance to a certain degree.

3.3.3 Two-Step Time Integration Scheme

Since the fast and slow modes are well seperated and can be interpreted in different time inte-

gration form, next we write a two-time-scale scheme of time integration including two steps.

First, compute the contribution from slow modes by the expression

X̃(T + ∆t) = X(T ) +
M∑
k=1

∫ T+∆t

T

P

(
µ dt+ σj ◦ dWj(t)

)
, (3.51)

where P is an N × N matrix and can be derived as (3.40). During the time elapsed from T

to T + ∆t, P is considered as a constant P (T ) and it can be computed in terms of the column

basis aj and corresponding row basis bj , which are known at time T .

Second, we substract the adjustment term contributed by the fast mode to complete the

time integration:

X(T + ∆t) = X̃(T + ∆t)−
M∑
r=1

1

λr

[
arf

r|t=T

]
. (3.52)

We express the last term on the RHS to be

∆Xfast(T + ∆t) ≈
M∑
r=1

1

λr

[
arf

r|t=T

]
, (3.53)

which is similar to the “radical correction” referred in [47].
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3.3.4 The Simplified Stochastic Computational Singular Perturbation Algorithm for Stratonovich

SDE

The simplified stochastic computational singular perturbation (SSCSP) algorithm for Stratonovich

SDE (3.28) is developed in two substeps to deal with fast and slow modes by (3.51) and (3.52).

Begin

Step I: Time integration on slow mode

1. Evaluate the source term µ(T ) = µ(X(T )) and σj(T ) = σj(X(T )).

2. Compute the Jacobian of µ at time T .

(a) Find the eivenvalues of Jµ, and sort them in descending order by magnitudes,

|λ1| > · · · > |λN |, (3.54)

and the corresponding eigenvector set

A = [a1, · · · , aN ], (3.55)

(b) Find the corresponding orthogonal row vectors set

B = [b1; · · · ;bN ] = A−1. (3.56)

3. Determine the dimension M of the exhausted fast mode at time T . The number M is the

greatest integer between 1 and N that satisfies the inequality

|τM+1

M∑
j=1

ajf
j| < Xerror, (3.57)

where Xerror is an error vector, and τM+1 is the time scale with CSP concept and defined

as

τM+1 =
1

λM+1

. (3.58)
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4. Generate the N ×N projection matrix

P (X(T )) = I −
M∑
r=1

arb
r, (3.59)

where ar and br represent the first M vectors of (3.55) and (3.56) and they span the fast

subdomain.

5. Perform time integration on the slow modes during time T to T + ∆t,

X̃(T + ∆t) = X(T ) + ∆t · P · (µ(X(T )))

+
1

2

N∑
j=1

Nj
√

∆t · P · (σj(X(T )) + σj(X̃(T + ∆t))),
(3.60)

where Nj denote standard normal variables. Forward Euler method is used on the deter-

ministic part. X̃(T+∆t) is solved implicitly by Newton’s method due to the Stratonovich

integration on the stochastic terms. Significant computational cost is consumed here for

performing Newton’s method and for computing the Jacobian matrices of σj and their

inverses. See more details at Appendix A.

Step II: Adjustment contributed from fast mode

According to the formula (3.52), the contribution from the fast mode can be evaluated as

follows:

1. Evaluate the amplitudes contributed from the fast subdomain

f r(T ) = br(X) · µ(X); (3.61)

2. Calculate the quantity contributed from the fast mode:

∆Xfast =
M∑
r=1

1

λr

[
ar(X(T )) · f r(T )

]
; (3.62)
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3. Finish the time integration of X by Modifing the state by the correction from fast time-

scales:

X(T + ∆t) = X̂(T + ∆t)−∆Xfast. (3.63)

End

3.3.5 Modification on SSCSP to Test Variance

Some concerns are addressed in Section 3.3.2 regarding the variance of simulation. Although

there is no rigorous mathematical analysis supporting such modifications, the contributions

from fast modes on stochastic parts are added heuristically, based on the SSCSP in previous

section.

Similar to (3.50), suppose the time integration for (3.48) can be approximated by

X(T + ∆t)−X(T ) = −
M∑
r=1

1

λr

[
arf

r|t=T

]

+
1

2

N∑
j=1

M∑
r=1

Nr√
|λr|

[
arg

r
j |t=T + arg

r
j |t=T+∆t

]

+
N∑
j=1

∫ T+∆t

T

P

(
µ dt+ σj ◦ dWj(t)

)
+Remainder,

(3.64)

where the second term on RHS represents the contribution from fast mode on stochastic parts.

Neither the quantities argr at t = T nor t = T + ∆t can be neglected in order to deal with the

Stratonovich integration by midpoint rule.

3.3.6 The SSCSP for Stratonovich SDE with Contribution from Fast Stochastic Modes

The algorithm to perform (3.64) is similar to Section 3.3.4 with a slight modification to deal

with the term arg
r
i |t=T+∆t. The amplitudes gr at time t = T + ∆t are approximated by

gri (T + ∆t) = br(X(T )) · σi(X(T + ∆t)), (3.65)
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where br(X(T )) is the orthogonal row vector set computed from ar, and σi(X(T + ∆t)) has

to be computed implicitly. For the purpose of saving computational cost and avoiding solving

Xi+1 = X(T + ∆t) implicitly twice, the scheme is designed as follows:

X(T + ∆t) = X(T ) + ∆t · P · (µ(X(T )))

+
1

2

N∑
j=1

Nj
√

∆t · P ·

(
σj(X(T )) + σj(X(T + ∆t))

)

−
M∑
r=1

(
1

λr

[
ar(X(T )) · f r(T )

]
−

N∑
j=1

1√
|λr|
Njar

[
gri (T ) + gri (T + ∆t)

])
,

(3.66)

where the last line is the contribution from fast mode.

3.3.7 Remarks

Even after the contribution from the fast subdomain is taken into account for the stochastic

parts in (3.66), the variance of X still shows inconsistency comparing with the the result by

Euler-Maruyama method with small step size.

This inspires us to test the schemes on an Itô SDE system to monitor the behavior of X

and its variance.

3.4 SSCSP for Itô SDE

Consider the Itô SDE of the stochastic column process X(t) = [x1(t), x2(t), · · · , xN(t)]T with

multiple diffusion terms σk,

dX = µ(X)dt+
M∑
k=1

σk(X)dWk(t), (3.67)

where the setting is similar to (3.48). The main difference between (3.48) and (3.67) is the

latter SDE system is in the Itô sense, instead of the Stratonovich sense as (3.48).

The significant advantage of the Stratonovich SDE is on mathematical analysis, as it fol-

lows the usual Calculus rules and we can differentiate (3.33) to get (3.34), which leads to the

time integration formula (3.50).
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However, since Stratonovich SDE defines the sum as the average of left-hand and right

hand sums, it is inevitable to solve the SDE implicitly, which results in a much higher compu-

tational cost.

Thus, we consider the SDE in the Itô sense as (3.67) to alleviate the efforts on solving X

implicitly caused by Stratonovich SDE, and also consider the contribution from fast modes to

the stochastic part. The previous time integration formula (3.50) is modified as

X(T + ∆t)−X(T ) = −
M∑
r=1

1

λr

[
arf

r|t=T

]
+

M∑
r=1

N∑
j=1

1√
|λr|

[
arg

r
j |t=T

]

+
N∑
j=1

∫ T+∆t

T

P

(
µ dt+ σj dWj(t)

)
+Remainder.

(3.68)

To build up the simulation based on SSCSP to project the rapid and slow subdomains

properly, the first step of the process is computing the contribution from slow modes by the

follows:

X̃(T + ∆t) = X(T ) +
M∑
k=1

∫ T+∆t

T

P

(
µ dt+ σj dWj(t)

)
, (3.69)

while the setting of P is as (3.51), it is a constant matrix at t = T with dimension is N × N

and can be computed by aj and bj .

Second, subtracting the adjustment term contributed by the fast modes to complete the

time integration:

X(T + ∆t) = X̃(T + ∆t)−

(
M∑
r=1

1

λr

[
arf

r|t=T

]
+

M∑
r=1

N∑
j=1

1√
|λr|

[
arg

r
j |t=T

])
. (3.70)

The adjustment by fast mode on the RHS is expressed as

∆Xfast(T + ∆t) =
M∑
r=1

1

λr

[
arf

r|t=T

]
+

M∑
r=1

N∑
j=1

1√
|λr|

[
arg

r
j |t=T

]
. (3.71)
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3.4.1 SSCSP Algorithm for Itô SDE

The SSCSP algorithm for Itô SDE is similar with the setting for Stratonovich SDE. The only

differences between the two are

1. Using the Euler-Maruyama scheme to handle the time integration on stochastic parts,

instead of the mid-point rule for the diffusion term in the Stratonovich SDE.

2. The adjustment from fast subdomain also includes the contribution from stochastic terms,

i.e., taking into account of the influence from ar by amplitudes grj .

It is developed in two substeps, one for slow modes by (3.69), the other for fast modes by

(3.70).

Begin

Step I: Time integration on the slow mode

1. Given the initial state x = X(t), evalutate the source term µ(x) and σj(x), j = 1, · · · , N

at time t = T .

2. Compute the Jacobian of µ(x) and its eigenvectors A = [a1, · · · , aN ], where the absolute

values of corresponding eigenvalues are in descending order, i.e.,

|λ1| > | · · · > |λN |. (3.72)

3. Calculate the corresponding orthogonal row vectors set B = [b1(t); · · · ;bN(t)] = A−1.

4. Determine the dimension M of exhausted fast mode at time T . The number M is the

greatest integer between 1 and N that satisfies the inequality

|τM+1

M∑
j=1

ajf
j| < Xerror, (3.73)

where Xerror is an error vector, and τM+1 is the time scale with CSP concept [29] and

defined as

τM+1 =
1

λM+1

. (3.74)
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5. Evaluate projection matrix for the slow modes

P (X(T )) = I −
M∑
r=1

arb
r. (3.75)

6. Perform time integration on slow modes during time T to T + ∆t,

X̂(T + ∆t) = X(T ) + ∆t · P · (µ(X(T )))

+
M∑
j=1

Nj
√

∆t · P · σj(X(T )).
(3.76)

where Nj denote standard normal variables.

Step II: Adjustment contributed from fast modes

1. Compute the amplitudes of µ(x) and σj(x) for the fast subdomain corresponding to Ar

= [a1, · · · , aM ] by

f r = br(X) · µ(X),

grj = br(X) · σj(X), j = 1, · · · , N.
(3.77)

2. Calculate the quantity contributed by the fast modes:

∆Xfast =
M∑
r=1

1

λr

[
ar(X(T )) · f r

]
+

M∑
r=1

N∑
j=1

1√
|λr|

[
ar(X) · grj

]
. (3.78)

3. Finish the time integration of X by Modifing the state by the correction from fast time-

scales:

X(T + ∆t) = X̂(T + ∆t)−∆Xfast. (3.79)

End

3.4.2 Note

Unlike the SSCSP algorithm for Stratonovich SDE, the SSCSP for Itô SDE maintain the proper

variance as expected since the contributions from fast subdomain on diffusion parts are not
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neglected. The computation performance is better than SSCSP for Stratonovich SDE because

it is basically a modification from forward Euler-Maruyama scheme, and it doesn’t need to

be solved implicitly as in Stratonovich SDE. It also improves the computational efficiency

significantly since the contribution from fast modes is an algebraic amendment, and the selected

time step ∆t can be much bigger than the time step in ordinary numerical schemes like Euler-

Maruyama scheme and Milstein scheme. In next chapter, we shall demonstrate that the SSCSP

has better efficiency while maintaining the accuracy.
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Chapter 4

Numerical Experiment: The VG model

A model referred to as the VG problem with relavant features of a stiff chemical kinetics mech-

anism was introduced in [49]. We are going to apply the SSCSP method on the VG model and

show its maintenance of stability and improvement of efficiency compared to other numerical

methods. The model was characterized by having a constant, explicitly defined small parame-

ter and non-prescribed slow and fast variables. In particular, the following set of six symbolic

reactions modeling the dynamics of three species X , Y and Z was considered:

X
k1


k2

2Y, (4.1)

X + Y
k3


k4
Z, (4.2)

Y + Z
k5


k6
X, (4.3)

with the forward reaction rate constant kf and reverse reaction rate constants kb of the three

reactions are defined as

kf = [k1, k3, k5] = [
5

ε
,
1

ε
, 1], (4.4)

kb = [k2, k4, k5] = [
5

ε
,
1

ε
, 1], (4.5)

where ε > 0 is an explicit small constant. Note that R1, R4, R6 are unimolecular reactions with

propensity functions derived as (1.25), R3, R5 are bimolecular reaction on different species

with propensity functions in the form of (1.26), and R2 is a bimolecular reaction on the same

species, where the propensity function can be derived by (1.27).

46



Consider a well-stirred system of molecules of chemical species X, Y and Z that interact

through chemical reaction channels {R1, ..., R6}. Assume that the system is confined to a fixed

volume Ω and is in thermal equilibrium at a constant temperature. Denote by X(t), Y (t) and

Z(t) the concentration of molecules of species X , Y and Z in the system at time t. Let’s write

U(t) ≡ (X(t), Y (t), Z(t)). Our goal is to estimate the state vector U(t), given that the system

was in state U(t0) = x0 = (x0, y0, z0) at some initial time t0.

For each reaction channel Rj , the propensity function aj is defined so that

aj(x)dt ≡ the probability given U(t) = x, that one Rj reaction will occur somewhere

inside Ω in the next infinitesimal time interval [t, t+ dt).

According to [37, 38], the propensity function is in the form

aj(x) = kjhj(x),

where kj is the specific probability rate constant for reaction channel Rj , and hj(x) is the

number of distinct combinations of Rj reactant molecules in the system, j = 1, · · · , 6.

According to [38], the functions hj(x) for the reaction chanels (4.1) - (4.3) are:

a1(x) = k1h1(x) =
5

ε
·X, (4.6)

a2(x) = k2h2(x) =
5

ε
· 1

2
Y (Y − 1), (4.7)

a3(x) = k3h3(x) =
1

ε
·XY, (4.8)

a4(x) = k4h4(x),=
1

ε
· Z, (4.9)

a5(x) = k5h5(x) = Y Z, (4.10)

a6(x) = k6h6(x) = X. (4.11)

The state-change vector vj of system (4.1) - (4.3), which are defined as (1.2), are:
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v1 = [−1, 2, 0]T (4.12)

v2 = [1,−2, 0]T , (4.13)

v3 = [−1,−1, 1]T (4.14)

v4 = [1, 1,−1]T , (4.15)

v5 = [1,−1,−1]T , (4.16)

v6 = [−1, 1, 1]T , (4.17)

where vij = [vi1,vi2,vi3]T indicates the number of species {X, Y, Z} changed through the

reaction Ri.

4.1 Reation Rate Equation

Following the above construction, the ODE for the mean of each Xi can be deduced as

dE[Xi]

dt
=
∑
j

vjiE[aj(x)], i = 1, 2, 3, (4.18)

where the x = [X1(t), X2(t), X3(t)]T = [X, Y, Z]T . This gives us the reaction rate equation

for the VG system:

dX

dt
= −5

ε
X +

5

2ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z + Y Z −X,

dY

dt
=

10

ε
X − 5

ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z − Y Z +X,

dZ

dt
=

1

ε
XY − 1

ε
Z − Y Z +X.

(4.19)

Multiplying ε and then setting ε = 0, we obtain a slow manifold defined by the intersection

of two surfaces (See Figure 4.1):

Z = XY, 2X = Y (Y − 1). (4.20)
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Figure 4.1: This graph shows the slow manifold (yellow curve) which is the intersection of two
surfaces: Z = XY (red) and 2X = Y (Y − 1) (green).

The numerical experiments show that the slow manifold attracts all trajectories of [X, Y, Z]T

starting from an initial value off the slow manifold, and all solutions approach the origin

[X, Y, Z]T = [0, 0, 0]T as time passes by. We also notice all trajectories are attracted to the

surface 2X = Y (Y − 1) before approaching to the slow manifold (4.20), even if it is close to

the surface Z = XY in the beginning.

4.2 Chemical Langevin Equation of VG Model (Itô SDE)

Following the formula (2.13) with propensity functions (4.6) - (4.11) and state-change vectors

(4.12) - (4.17), the chemical Langevin equation of VG model can be derived as:

dX(t) =

(
−5

ε
X +

5

2ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z + Y Z −X

)
dt

−
√

5

ε
XdW1(t) +

√
5

2ε
Y (Y − 1)dW2(t)−

√
1

ε
XY dW3(t)

+

√
1

ε
ZdW4(t) +

√
Y ZdW5(t)−

√
XdW6(t)

, (4.21)

49



12

10

8

X

60

7
46

5

Y

Numerical Simulation of RRE of VG Model

20

4
2

3
2

1 0
0

40
Z

60

80

Slow Manifold

Figure 4.2: The numerical simmulations (colorful curves) of (4.19) compare with the slow
manifold.

dY (t) =

(
10

ε
X − 5

ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z − Y Z +X

)
dt

+ 2

√
5

ε
XdW1(t)− 2

√
5

2ε
Y (Y − 1)dW2(t)−

√
1

ε
XY dW3(t)

+

√
1

ε
ZdW4(t)−

√
Y ZdW5(t) +

√
XdW6(t),

(4.22)

dZ(t) =

(
1

ε
XY − 1

ε
Z − Y Z +X

)
dt+

√
1

ε
XY dW3(t)

−
√

1

ε
ZdW4(t)−

√
Y ZdW5(t) +

√
XdW6(t),

(4.23)

where X(t) = [X(t), Y (t), Z(t)]T denotes the population of species X, Y, Z at time t, ε is

a given small parameter, and Wi are independent two-sided Brownian motions. It is an SDE

system in the form of (3.48), and the respective column-vector functions µ, σ1, · · · , σ6 of X =
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[X, Y, Z]T each with three entries are

µ(X) = µ([X, Y, Z]T ) =



−5

ε
X +

5

2ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z + Y Z −X

10

ε
X − 5

ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z − Y Z +X

1

ε
XY − 1

ε
Z − Y Z +X


, (4.24)

σ1(X) = σ1([X, Y, Z]T ) =



−
√

5

ε
X

2

√
5

ε
X

0


, (4.25)

σ2(X) = σ2([X, Y, Z]T ) =



√
5

2ε
Y (Y − 1)

−2

√
5

2ε
Y (Y − 1)

0


, (4.26)

σ3(X) = σ3([X, Y, Z]T ) =



−
√

1

ε
XY

−
√

1

ε
XY√

1

ε
XY


, (4.27)

σ4(X) = σ4([X, Y, Z]T ) =



√
1

ε
Z√

1

ε
Z

−
√

1

ε
Z


, (4.28)

51



σ5(X) = σ5([X, Y, Z]T ) =



√
Y Z

−
√
Y Z

−
√
Y Z


, (4.29)

σ6(X) = σ6([X, Y, Z]T ) =



−
√
X

√
X

√
X


. (4.30)

4.3 Chemical Langevin Equation of VG Model (Stratonovich SDE)

We may also consider the Chemical Langevin Equation in the Stratonovich sense to take ad-

vantage of the mathematical analysis in Chapter 3. Similar to (4.21) - (4.23), the CLEs of the

VG model as a Stratonovich SDE system are as follows:

dX(t) =

(
−5

ε
X +

5

2ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z + Y Z −X

)
dt

−
√

5

ε
X ◦ dW1(t) +

√
5

2ε
Y (Y − 1) ◦ dW2(t)−

√
1

ε
XY ◦ dW3(t)

+

√
1

ε
Z ◦ dW4(t) +

√
Y Z ◦ dW5(t)−

√
X ◦ dW6(t)

, (4.31)

dY (t) =

(
10

ε
X − 5

ε
Y (Y − 1)− 1

ε
XY +

1

ε
Z − Y Z +X

)
dt

+ 2

√
5

ε
X ◦ dW1(t)− 2

√
5

2ε
Y (Y − 1) ◦ dW2(t)−

√
1

ε
XY ◦ dW3(t)

+

√
1

ε
Z ◦ dW4(t)−

√
Y Z ◦ dW5(t) +

√
X ◦ dW6(t),

(4.32)

dZ(t) =

(
1

ε
XY − 1

ε
Z − Y Z +X

)
dt+

√
1

ε
XY ◦ dW3(t)

−
√

1

ε
Z ◦ dW4(t)−

√
Y Z ◦ dW5(t) +

√
X ◦ dW6(t),

(4.33)

where the µ(X) and σ1(X), · · · , σ6(X) are listed as (4.24) - (4.30).
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4.4 Jacobian matrices for SSCSP

While implementing SSCSP, we need to calculate the Jacobian of µ(x) at given time t to find

eigenvectors as spanning basis. The Jacobian of µ(x) is a 3× 3 matrix which is determined by

given X(t) = x = [X, Y, Z]T :

Jµ(X) =



−5

ε
− Y

ε
− 1

5

2ε
(2Y − 1)− 1

ε
X + Z

1

ε
+ Y

10

ε
− Y

ε
+ 1 −5

ε
(2Y − 1)− 1

ε
X − Z 1

ε
− Y

Y

ε
+ 1

1

ε
X − Z −1

ε
− Y


. (4.34)

Moreover, we also need to calculate the Jacobians at given time t of vector-functions σj(x)

on diffusion terms in order to

1. perform Newton-Raphson method as (A.14) derived for solving Stratonovich SDE sys-

tem implicitly,

2. implement Explicit and Implicit Milstein schemes,

since the derivatives of the diffusion terms are involved in the process.

According to (4.25) - (4.30), the Jacobian matrices of σ1, · · · , σ6 have dimension 3 × 3

which are determined by the given X(t) = x = [X, Y, Z]T , and they can be calculated as

follows:

Jσ1(X) =



−1

2

√
5

εX
0 0√

5

εX
0 0

0 0 0


, (4.35)

Jσ2(X) =



0

√
5

8ε

2Y − 1√
Y 2 − Y

0

0 −
√

5

2ε

2Y − 1√
Y 2 − Y

0

0 0 0


, (4.36)
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Jσ3(X) =



−1

2

√
Y

εX
−1

2

√
X

εY
0

−1

2

√
Y

εX
−1

2

√
X

εY
0

1

2

√
Y

εX

1

2

√
X

εY
0


, (4.37)

Jσ4(X) =



0 0
1

2

√
1

εZ

0 0
1

2

√
1

εZ

0 0 −1

2

√
1

εZ


, (4.38)

Jσ5(X) =



0
1

2

√
Z

Y

1

2

√
Y

Z

0 −1

2

√
Z

Y
−1

2

√
Y

Z

0 −1

2

√
Z

Y
−1

2

√
Y

Z


, (4.39)

Jσ6(X) =



−1

2

√
1

X
0 0

1

2

√
1

X
0 0

1

2

√
1

X
0 0


. (4.40)
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4.5 SSCSP for VG Model

First, we need to calculate the Jacobian of µ(x) at given time t for later use. Next, compute

the eigenvalues and eigenvectors of Jµ, sort the eigenvalues by theire absolute values from the

greatest to the least, i.e., |λ1| > |λ2| > |λ3|.

From the observation of the model, the dimension of the rapid mode is set to be L = 2

and the time-step needs to be chosen carefully. Select the time step h to satisfy the condition

h >
1

|λ1|
, which could improve the efficiency over some ordinary numerical methods since

they need the numerical time increment to be less than the greatest absolute eigenvalue. Also,

h > 1
|λ1| allows the fastest mode to exhaust within one time step. Then calculate the middle

step

X̂i = Xi + a1f
1 · 1

|λ1|
+ a2f

2 · h̃+
1√
|λ1|

6∑
j=1

a1g
1
jNj

+
√
h̃

6∑
j=1

a2g
2
jNj

(4.41)

where

h̃ = α
1

|λ1|
+ (1− α)

1

|λ2|
, 0 < α < 1. (4.42)

Note that the middle step only involves the integration in the rapid subdomain. Then finish the

scheme by calculating

Xi+1 = X̂i + a3f
3 · h+

√
h

6∑
j=1

a3g
3
jNj, (4.43)

where the ak, f
k, gkj are depending on Xi instead of X̂i.

The other way to understand the scheme is in terms of the following expression:

Xi+1 = Xi +
3∑

k=1

hk · akfk

+
3∑

k=1

√
hk(g

k
1 gk2 · · · gk6) ·


N1

...

N6

 ak,

(4.44)
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where ak are the eigenvectors corresponding to the sorted absolute eigenvalues |λk|, Nj as

standard normal random variables, fk = bk · µ, gkj = bk · σj , and

h1 =
1

|λ1|
,

h2 = α
1

|λ1|
+ (1− α)

1

|λ2|
, where 0 < α < 1,

h3 = h which satisfies h >
1

|λ1|
.

(4.45)

4.5.1 Matrix Form of the Algorithm

For algorithms applied to multi-dimensional SDEs, it is feasible to represent the steps by matrix

operations, which is very helpful especially for implementing the algorithm in the programming

stage. The steps for computing the matrices and performing the algorithm are as follows:

1. Given the intial state  Xi

 =

 X(t)

 =


X(t)

Y (t)

X(t)

 (4.46)

which is a 3× 1 column vector in VG model.

2. Evaluate µ(Xi) and σ1(X1), · · · , σ6(X6). Each of them are 3×1 column vectors. Denote

P =

 µ(Xi)

 , (4.47)

Q =

 σ1(Xi) σ2(Xi) . . . σ6(Xi)

 , (4.48)

where P = µ(Xi) is 3× 1 column vector, and Q is a 3× 6 rectangular matrix.
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3. Compute the Jacobian matrix of µ(X), then evaluate the eigenvalues |λ1| > |λ2| > |λ3|

and their corresponding eigenvector a1, a2, a3. Denote

A =

 a1 a2 a3

 , (4.49)

where A is a 3 × 3 square matrix. Then find the orthogonal row vector sets b1,b2,b3

and denote

B = A−1 =


b1

b2

b3

 . (4.50)

4. Evaluate the amplitude of µ and σ1, · · · , σ6 with respect to a1, a2, a3 by

F =


f 1

f 2

f 3

 =


b1

b2

b3

 ·
 µ(Xi)

 = B ·P, (4.51)

G =


g1

1 · · · · · · · · · g1
6

g2
1 · · · · · · · · · g2

6

g3
1 · · · · · · · · · g3

6

 =


g1

g2

g3



=


b1

b2

b3

 ·
 σ1(Xi) σ2(Xi) . . . σ6(Xi)

 = B ·Q,

(4.52)
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5. Generate a column vector with six standard normal variables dW

 =


N1

...

N6

 . (4.53)

6. Compute the column vector [hF] with the i−th entry is hi · f i, i.e.,

 hF

 =


h1 · f 1

h2 · f 2

h3 · f 3

 , (4.54)

and the 3× 6 rectangular matrix [
√
hG] with the i−th row equals to

√
hi · gi:

 √hG
 =


√
h1 · g1

√
h2 · g2

√
h3 · g3

 . (4.55)

7. Finally, get the updated state Xi+1 = X(T + ∆t) by matrix operation:

Xi+1 = Xi + A · [hF] + A · [
√
hG] · dW

= Xi + A ·

(
[hF] + [

√
hG] · dW

) (4.56)

or  Xi+1

 =

 Xi

+

 a1 a2 a3

 ·

h1 · f 1

h2 · f 2

h3 · f 3



+

 a1 a2 a3

 ·


√
h1 · g1

√
h2 · g2

√
h3 · g3

 ·
 dW

 .
(4.57)
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As the matrix set up abow, it is the forward Euler-Maruyama scheme if h1 = h2 = h3.

4.6 Numerical Simulation

For the purpose of comparison, we test both the Stratonovich SDE and Itô SDE systems for the

VG model. We are interested in the circumstance when α is set to be close to 1, i.e., when h2

approaches to
1

|λ1|
as α close to 1. Set ε = 1000 and the initial condition

X0 = 100, Y0 = 200, Z0 = 300.

Some known numerical schemes are used to demonstrate the stability and performance of

SSCSP algorithm.

4.6.1 Stratonovich SDE

For a Stratonovich SDE system

dX = µ(X)dt+
M∑
k=1

σk(X) ◦ dWk(t), (4.58)

and step size ∆t, the Euler-Maruyama scheme is used to compare with SSCSP method for

i = 0, 1, · · ·N ,

Xi+1 = Xi + µ(Xi)∆t+
1

2

M∑
k=1

(
σk(Xi) + σk(Xi+1)

)
∆Wk,i, (4.59)

where

∆Wk,i := Wk,i(T + ∆t)−Wk,i(T ) (4.60)

are independent and identically distributed normal random variables with expected value zero

and variance ∆t. Equivelently

∆Wk,i = Nj
√

∆t, (4.61)

whereNj denotes the normal random variable. The midpoint rule is applied (see e.g., [50, 51])

to handle the Stratonovich integral.
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While solving the Stratonovich SDE system using midpoint rule involves implicit compu-

tations, the computational efficiency is affected regardless of the numerical scheme. Newton-

Raphson Method is used to solve the multidimensional equation implicitly (see Appendix A).

We tested two schemes, one follows (3.63) which does not include the contribution from

fast subdomain on stochastic part (See Figure 4.3), which shows reasonable variance from the

results implementing SSCSP schemes; the other follows (3.66) where the contributions are

included, however, the variance is greater than expected obviously from the Figure 4.4.

4.6.2 Itô SDE

Many widely used numerical schemes for the numeric solution of Langevin equations requires

the equation to be in Itô form [52]. For a Itô SDE

dX = µ(X)dt+
M∑
k=1

σk(X)dWk(t), (4.62)

with step size ∆t, these shemes are:

1. Euler-Maruyama Scheme:

Xi+1 = Xi + µ(Xi)∆t+
M∑
k=1

σk(Xi)∆Wk,i, (4.63)

where

∆Wk,i := Wk,i(T + ∆t)−Wk,i(T ) (4.64)

are independent and identically distributed normal random variables with expected value

zero and variance ∆t.

2. Implicit Euler-Maruyama Scheme

Xi+1 = Xi +

[
(1− β) · µ(Xi) + β · µ(Xi+1)

]
∆t+

M∑
k=1

σk(Xi)∆Wk,i, (4.65)
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Figure 4.3: X, Y, Z values by Euler and SSCSP for Stratonovich SDE.
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Figure 4.4: X, Y, Z values by Euler and SSCSP for Stratonovich SDE.
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where β is a parameter with 0 ≤ β ≤ 1 which characterizes the degree of implicitness.

(When β = 0, it reduces to the Euler-Maruyama scheme (4.63)).

3. Explicit Milstein Scheme:

Introduced in [50], the Milstein scheme is associated with Itô-Taylor expansion. The

Milstein method for multi-dimensional stochastic system is given by

Xj
i+1 = Xj

i + µ(Xi)∆t+
M∑
k=1

σjk(Xi)∆Wk,i

+
M∑
k=1

1

2
σjk(Xi)

∂

∂xj
σjk(Xi)

(
(∆Wk,i)

2 −∆t

)
,

(4.66)

for Xj
i represent the j−th component of Xi at the i−th time step.

The main difference between Euler-Maruyama and Milstein scheme is that Milstein car-

ries one extra term. The Itô-Taylor expansion is used in order to derive this method,

hence providing a componentwise order 1.0 strong Taylor scheme. See more discussions

about strong Taylor scheme in [51, 53].

4. Implicit Milstein Scheme:

The order 1.0 implicit strong Taylor scheme given in [51] is a drift-implicit version of

the Milstein scheme, also called Implicit Milstein scheme:

Xj
i+1 = Xj

i +

[
(1− β) · µ(Xi) + β · µ(Xi+1)

]
∆t+

M∑
k=1

σjk(Xi)∆Wk,i

+
M∑
k=1

1

2
σjk(Xi)

∂

∂xj
σjk(Xi)

(
(∆Wk,i)

2 −∆t

)
,

(4.67)

where β is a parameter with 0 ≤ β ≤ 1 which characterises the degree of implicitness.

(When β = 0, it reduces to the Explicit Milstein scheme (4.66)).

Figure 4.5 is the comparison of SSCSP with Explicit Euler-Maruyama (4.63) and Explicit

Milstein (4.66), which shows the stability of SSCSP method.
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Figure 4.5: X, Y, Z values by Euler and SSCSP for Itô SDE.

64



It also improves the efficiency tremendously. Even though we need to compute the Jaco-

bian and its eigenvalues and eigenvectors at each state X(t), the SSCSP still saves the running

time greatly since bigger time steps are used, which depends on the eigenvalues of Jµ.

Numerical Scheme Running Time ∆t

Euler-Maruyama (EM) 23 min 5 · 10−8

Implicit EM (β = 0.5) 71 min 1 · 10−7

Explicit Milstein 93 min 5 · 10−8

Implicit Milstein (β = 0.5) 111 min 1 · 10−7

SSCSP (α = 0.99) 5 min 2.5 · 10−6(T > 0.0001)

SSCSP (α = 0.998) 6 min 2.5 · 10−6(T > 0.00013)
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Chapter 5

Summary

The goal of this research is to develop efficient and accurate numerical schemes for chemical

Langevin equations with stiffness. In the first part of this thesis, we introduced the mathematical

framework for modeling chemical reaction networks under different regimes. In particular, we

first introduced the reaction rate equation, which are systems of continuous and deterministic

ordinary differential equations on concentration of chemical species, that can be used to model

chemical reaction systems at macro scale. We then introduced the chemical Master equations,

which are partial differential equations or essentially infinite dimensional ordinary differential

equations on probability density functions of discrete states for number of chemical species.

While chemical Master equations provide complete information on an underlying chemical

reaction systems, they are almost analytically intractable and also numerically expensive to

simulate, and hence have been used mainly for micro-scale systems. To bridge the gap between

RREs and CMEs, chemical Langevin equations are introduced as the result of the tau-leaping

method. CLEs are continuous stochastic differential or difference equations on concentrations

of chemical species, and are the focus of this research.

With the consideration that most chemical reaction systems involve multiple time scales,

their governing CLEs genuinely involve stiffness. Numerical simulations of stochastic differ-

ential equations with stiffness have always been an important and challenging topics. It is well

known that due to rapid changes in some of the state variables, explicit schemes have to take

extremely small step sizes to ensure numerical stability. Alternatively, implicit schemes achieve
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better numerical stability, but both types of scheme are computationally expensive. In this re-

search we developed explicit time integration schemes for stiff CLEs, based on the concept of

stochastic computational singular perturbation.

Stochastic computational singular perturbation was generalized from computational sin-

gular perturbation for deterministic ODEs with stiffness, but incorporates stochasticity in the

system. The idea for SCSP is to project the drift and diffusion terms onto a carefully chosen set

of basis vectors, such that the evolution of fast and slow modes can be separated. The stochastic

system can then be integrated in two steps, one for the slow dynamics which can be integrated

completely on the slow subdomain, and one for the fast dynamics which are approximated by

sophisticatedly derived algebraic relations. One of the challenges to integrate according to full

SCSP schemes lies in the multiple noise structures, that lead to multiple diffusion matrices

which are usually singular. Noticing the special similarity of the drift and diffusion terms in

CLEs, in this research we developed numerical schemes based on a simplified SCSP, in which

only one set of basis vectors is chosen according to the drift part of the underlying CLE.

We developed SSCSP numerical schemes for both CLEs with Itô and Stratonovich noise

and compared their difference. We have also tested all for our schemes by a real stiff chem-

ical reaction system involving three species and six reactions channels, referred to as the VG

system.

In particular, we first derived the governing CLEs for the VG system and conducted pre-

liminary eigen analysis of the system. We then applied our proposed SSCSP-based explicit

time integration schemes to the CLE system with either Stratonovich or Itô noise. To facilitate

the coding process, matrix formulation of the schemes was also developed.

Our numerical experiments show that

(i) SSCSP-based explicit time integration schemes applied to CLEs with Stratonovich noise

give correct mean but misses the correct variance. Although no theoritical proof is pro-

vided, we conjecture this is due to the implicit algorithms used to handle the Stratonovich

noise terms.
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(ii) SSCSP-based explicit time integration schemes applied to CLEs with Itô noise captures

correctly both the mean and variance of the system.

(iii) The computing times of SSCSP-based explicit time integration schemes are significantly

lower than those of the classical schemes Euler-Maruyama, Implicit Euler-Maruyama,

Explicit Milstein, Implicit Milstein for stiff systems.

Note that several schemes proposed in the research are heuristic with partial analytical

support, though their performance was demonstrated by numerical experiments. Future work

includes (i) completing the mathematical framework of explicit time integration schemes based

on SCSP and SSCSP; (ii) investigating how the choice of step sizes affect accuracy and effi-

ciency of the schemes; (iii) proving convergence of SCSP and SSCSP algorithms and finding

convergence rates if possible; and (iv) developing precise description of random slow manifold.
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Appendix A

Newton’s Method on Performing Stratonovich Integration

A.1 Multivariate Newton’s Method (Newton-Raphson Method)

For solving a multivariate equation system



f1(x1, · · · , xN) = f1(x) = 0

f2(x1, · · · , xN) = f2(x) = 0

· · · · · · · · · · · ·

fN(x1, · · · , xN) = fN(x) = 0

(A.1)

where the variables are defined x = [x1, · · · , xN ]T , and further defined the vector function

f(x) = [f1(x), · · · , fN(x)]T . (A.2)

Thus, the equation system can be expressed as

f(x) = 0. (A.3)

Denote Jf (x) as N ×N Jacobian of the vector-valued function (A.2) as follows,

Jf =
[ ∂f
∂x1

, · · · , ∂f
∂xN

]
=


∂f1

∂x1

. . .
∂f1

∂xN
... . . . ...

∂fN
∂x1

. . .
∂fN
∂xN

,

 (A.4)

76



or component-wise, (
Jf

)
ij

=
∂fi
∂xj

. (A.5)

Given the initial guess of solution x0, by Newton-Raphson Method, the solution x̄ of the

system (A.1) can be obtained by

x̄ = lim
n→∞

xn (A.6)

if the limit exists, where xn, a column vector with N entries, is iterated as follows:

xn+1 = xn − J−1
f · f(xn), (A.7)

and J−1
f represents the inverse with dimension N ×N of Jacobian in (A.5).

A.2 SDE in Stratonovich Sense

While the SDE system in Stratonovich sense in (3.48), the evolution of X(t) needs to be solved

implicitly since Stratonovich integral applyed at middle point. In this dissetation, we have

different schemes to deal with Stratonovich SDEs with different types of stochastic terms in-

volve. Here we take the Forward Euler Method scheme (3.48) for example. It can be written as

follows,

Xi+1 = Xi + ∆t · µ(Xi) +
1

2

N∑
j=1

Nj
√

∆t ·
(
σj(Xi) + σj(Xi+1)

)
, (A.8)

where Nj denotes the normal random variable.

For solving Xi+1 in (A.8) in the form of (A.1) with 0 on RHS, rewrite the scheme formula

(A.8) as

Xi + ∆t · µ(Xi) +
1

2

N∑
j=1

Nj
√

∆t · σj(Xi)

+
1

2

N∑
j=1

Nj
√

∆t · σj(Xi+1)−Xi+1 = 0.

(A.9)

As Xi are known, the first three terms on the LHS of (A.9) is constant on the system of

functions we are trying to solve implicitly. To express our problem within the setting to perform
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Newton-Raphson Method, the system of functions f can be expressed as

f(x) = C + G(x) = 0, (A.10)

which includes the variable to be solved

x = Xi+1, (A.11)

a constant term with known variables Xi, ∆t, Nj , functions µ and σj:

C = Xi + ∆t · µ(Xi) +
1

2

N∑
j=1

Nj
√

∆t · σj(Xi), (A.12)

and a vector-function of x:

G(x) =
1

2

√
∆t ·

N∑
j=1

Nj · σj(x)− x. (A.13)

Thus, the N ×N Jacobian matrix involves in the Newton-Raphson Method formula (A.7) can

be derived as

Jf (x) = JG(x) =
1

2

√
∆t ·

N∑
j=1

Nj · Jσj(x)− I, (A.14)

where JG denotes the Jacobian matrix of vector-function (A.13), which happens to be equal to

the Jacobian of f , consists Jσj representing the Jacobian matrix of vector-function σj , and I,

the last term on the RHS, is the N ×N identity matrix.

A.3 Note

One of the advantages of the Stratonovich SDE is that it preserves the normal Calculus chain

rule using a middle point selection scheme, which is helpful in mathematical analysis. How-

ever, it inevitably causes the numerical scheme to become implicit, which depreciates the com-

putational efficiency since we need to perform the Newton-Raphson method to solve, which

involves calculating Jacobian matrices for every function in stochastic terms.
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Appendix B

Recalculation on Updating Numbers of Species Due to Reaching Unrealistic Values

B.1 The Algorithm

Due to the nature of chemical systems, the number of species must remain non-negative in the

simulation. However, it is indicated in (1.46) that numerical simulation for X(t) by tau-leaping

method may make the numbers become unrealistic due to the unbounded nature of Poisson

random variable, such as negative numbers [43, 54, 55, 56, 57]. Thus, it is legitimate to make

further intervention on modeling.

Regarding the VG model (4.21) - (4.23), the restriction has to be stronger than nonneg-

ativeness to cope with the diffusion terms (4.25) - (4.30). According to the second diffusion

function

σ2(X) =



√
5

2ε
Y (Y − 1)

−2

√
5

2ε
Y (Y − 1)

0


, (B.1)

the number Y must be equal to or greater than 1 to guarantee the positiveness in the square

root. On the other five diffusion functions, it induces that all of X, Y, Z must be nonnegative

to perform square root reasonably. Therefore, the following condition needs to be imposed on

VG model:

X ≥ 0, Y ≥ 1, Z ≥ 0. (B.2)
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If the unrealistic values are disregarded and move on while performing the numerical

simulation, it will be troublesome on the next update of X(t) = [X, Y, Z]T and it may consist

one or more complex numbers with negative real part and a small imaginary part.

Therefore, we choose not to move forward and recalculate from previous step if the up-

dated numbers do not satisfy the condition (B.2). A condition statement in code is added to

check the rationality of updated X(t).

Algorithm 1 Checking Updated X(t)
1: procedure CHECKING RATIONALITY OF X
2: top:
3: Xtemp = Xi

4: Xi+1 = [updated from Xi by some algorithms]
5: if Xi+1 <= [0, 1, 0]T then
6: Xi = Xtemp

7: goto top.

B.2 Remark

Some numerical methods are also developed to avoid the possibility to produce negative popu-

lations, such as binomial tau-leaping method in [58, 59].
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