
Towards the formulation of a new multi–determinant
electron propagator for open–shell molecular systems

Hector H. Corzo

July 30, 2018
Version: My Second Draft





Department of Chemistry and Biochemistry
Division of Physical chemistry

Quantum Chemistry Group

Towards the formulation of a new
multi–determinant electron propagator for

open–shell molecular systems

Hector H. Corzo

Supervisor Joseph Vincent Ortiz
Department of Chemistry and Biochemistry
Auburn University

1. Reviewer German Mills
Department of Chemistry and Biochemistry
Auburn University

2. Reviewer Filip Pawlowski
Department of Chemistry and Biochemistry
Auburn University

3. Reviewer Hans–Werner van Wyk
Department of Mathematics and Statistics
Auburn University

July 30, 2018



Hector H. Corzo

Towards the formulation of a new multi–determinant electron propagator for open–shell molecular

systems

Electron propagator, July 30, 2018

Supervisor: Joseph Vincent Ortiz

Reviewers: German Mills, Filip Pawlowski and Hans–Werner van Wyk

Auburn University

Quantum Chemistry Group

Division of Physical chemistry

Department of Chemistry and Biochemistry



Abstract

Over the past decades, natural sciences have successfully provided an understanding of
macroscopic phenomena that reflect molecular structures and mechanisms. However,
the desire for a deeper understanding and manipulation of nature and its processes
on an atomistic level has generated an intersection of key concepts from quantum
mechanics and chemistry. In many important cases, the accurate description of pro-
cesses involving electron transfer could give insights for the development of new
nanomaterials, biomaterials, catalysts and for the elucidation of complex metabolic
processes in living organisms. Accurate determination of ionization energies (IEs) and
electron affinities (EAs) is crucial for understanding these processes since they are
associated with the ability of a molecule to gain or lose electrons. The employment of
theoretical methods for the determination of these quantities provides an inexpensive
and advantageous guide for the development of several fundamental and applied
research projects, especially when experimental measurements are difficult to obtain.

From a theoretical point of view, two strategies are often practiced to calculate vertical
electron binding energies, the direct and indirect approaches. The indirect, or ∆E
approach, requires the calculation of the total energy of an ionized species (with N ±
1 electrons) at the geometry of the N-electron parent molecule. The total energies are
commonly computed with coupled–cluster (CC) or density-functional theory (DFT)
methods [1–4]. The direct approach, the simplest strategy for the calculation of binding
energies, is based on the Koopmans–theorem (KT) [5] approximation for the case of
wave function methods and its extension by Janak [6] for the case of density functional
theory (DFT) methods. This direct approach uses energies of the highest occupied
and lowest unoccupied canonical Hartree–Fock or Kohn–Sham orbitals of N–electron
species. Direct methods for calculations of IEs and EAs can describe multiple elec-
tronic states in a single calculation. Closed–shell, N–electron reference states are less
likely to introduce symmetry problems. Therefore, the direct approach is often free
from spin–contamination and artificial symmetry breaking whereas these qualities
are not always true for the indirect approach. Direct methods are divided into two
main families. The first family includes methods which employ an exponential Ansatz
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for the molecule and then applies a linear combination of ionization operators to the
reference state to obtain final–state wave-functions and energies such as the equation–
of–motion, coupled–cluster (EOM–CC) [1] method and the symmetry–adapted–cluster,
configuration-interaction (SAC–CI) [7] method. These two methods may only reflect dif-
ferences in the symmetry–adaptation of excitation or ionization operators, algorithms
for the determination of matrix elements between ionization operators, techniques
of diagonalization or numerical criteria for the selection of ionization operators [1, 7,
8]. The second family of methods is based on Many-body Green’s functions [2, 9–11].
The many-body Green’s functions or propagators were introduced by Linderberg and
Öhrn [12, 13]; subsequent contributions to the propagator theory and methodology
were made by several authors, such as Cederbaum, von Niessen, Schirmer, Yeager,
Ortiz and others [14–16]. Electron-propagator (EP) methods are among the most robust
ab-initio methodologies capable of generating powerful computational tools for the de-
scription of the electronic structure of atoms and molecules. One of the most important
advantages of the electron propagator methods is the direct calculation of observables
without wavefunctions and balanced treatments of initial and final states [2]. Electron
propagator methods not only provide means to directly calculate electron binding
energies, Dyson orbitals, one-electron properties, and total energies of molecules, but
also allow systematic improvements in determining correlation and relaxation effects
[10].

The flexibility of the theory and mathematical concepts on which electron propagator
methods are based produces propagators that have correct qualitative trends with
arithmetic scaling factors as low as O(N3) [10, 17, 18], as well as propagators with
scaling factors of O(N5) capable of produce results of the same acurracy and quality as
the ones produced by more computationally intensive ab-initio correlated methods [18].
The results obtained by ab-initio electron propagator methods may be systematically
improved by increasing the flexibility of self–energy approximations and by enlarge-
ment of basis sets [3, 10, 11, 18, 19]. Electron propagator methods have successfully
predicted electron binding energies of large varieties, sizes, and types of chemical
systems, ranging from diatomic molecules to nucleotides, fullerenes, substituted por-
phyrins, and biologically relevant molecules [3, 19–25]. The predictive capabilities of
electron propagator methods have been examined recently[18]. In this study, EP results
were compared with extrapolated energies calculated with coupled–cluster singles
and doubles plus perturbative triples [26], i.e., CCSD(T), and correlation–consistent
double, triple and quadruple ζ basis sets [27–30]. EP calculations are proven to be
capable of predicting ionization energies with average errors smaller than 0.15 eV and
iterative arithmetic bottlenecks of O3V2 where O and V are respectively the numbers
of occupied and virtual spin-orbitals [10]. In electron propagator methodology, many
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approximate forms of the self–energy matrix, Σ(E), assumes a canonical, Hartree–Fock
basis of orbitals in which closed-shell reference determinants have been employed.
The extension to unrestricted Hartree–Fock spin orbitals is readily accommodated by
the usual formalism. However, when spin contamination becomes strong in unre-
stricted reference determinants, the assignment of spin quantum numbers to initial
and final states becomes problematic. A restricted Hartree–Fock determinant could be
advantageous in such circumstances. The efforts of this thesis are focused on extend-
ing the capabilities of the current single determinant electron propagator formalism
to a formulation in which multiple determinants can be employed, enabling the for-
mulation of a new electron propagator approximation that allows the calculation of
ionization energies of open–shell molecules in which spin–contamination represents
a challenge in the calculation of correct and accurate ionization energies. This new
electron propagator method overcomes the spin–contamination problem by using
determinants that are more general than those generated in restricted Hartree–Fock
theory. For this new electron propagator formulation, generalized matrix elements of
the superoperator Hamiltonian that accommodate non–integer occupation numbers
associated with general, orthogonal spin orbitals were obtained for the first time. For
the definition of the self–energy matrix of this new propagator, the partitioning scheme
for the primary and secondary blocks of the superoperator Hamiltonian was redefined.
In this new formulation, the ionization–operator spaces will contain sets of operators
that change the quantum number Ms by ±1/2. These sets include electron removal
plus spin–flip processes. This new method not only has the advantage of conserving
correct spin quantum number (〈S2〉) values but also takes advantage of point-group
symmetry. It also has an O2V3 arithmetic scaling factor, where O and V are, respectively,
the numbers of occupied and virtual spin-orbitals.
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B.1.7 a†ūaual̄ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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1The Green’s Function

„Wer ein mathematisches Buch nicht mit Andacht
ergreift, und es wie Gottes-Wort liest, der versteht es
nicht.

— Novalis
(Poet from the German Romanticism)

Green’s function techniques are in several areas of science and engineering one of the
most well known and useful strategies for solving nonhomogeneous linear differential
equations with boundary conditions by describing the input function, the function that
makes the differential equation nonhomogeneous, as a series of impulses. In physics,
Green’s functions are powerful mathematical tools not only for solving differential
equations but also for the elucidation of the effects associated to non-contact force
sources. An illustration of the extraordinary capabilities of the Green’s functions is
given in the Quantum field theory (QFT), where they are used as the n-point correlation
functions [31–34]. Since their introduction by Richard Feynman [35–37], Green’s func-
tions have produced some of the most stunningly precise and accurate descriptions of
quantum phenomena [31–33].

1.1 Mathematical overview of the Green’s function

Consider an nth-order, inhomogeneous, differential equation with the general form

Lu(x) = f(x) with a < x < b, (1.1)

where L is a partial differential operator involving the independent variable x and f(x)
is the input function of the differential equation. Then, the solution u(x) may be found
by the inverse operator L−1 such that the function u(x) can be written as

u(x) = L−1f(x). (1.2)
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In particular, if the operatorL happens to be some Hermitian linear differential operator
with boundary conditions on a Lebesgue space [38] L2, i.e. a square integrable function
space that forms a Hilbert space, and λ is a real constant that is not in the spectrum of
eigenvalues of L, then, for a differential equation with the form

(L− λ)u(x) = f(x), (1.3)

the solution is given by the Fredholm integral [39] equation defined as:

u(x) =
∫
Gλ(x, y)f(y)dy. (1.4)

The kernel of this integral transformation is known as the Green’s function [40–42] and
can be obtained by solving the δ-source problem given by:

(L− λ)Gλ(x, y) = δ(x− y). (1.5)

The Green’s function describes the response or effect on the value of the nonhomoge-
neous equation at the point x after a perturbation [40, 42] due to a δ-source1 located at y.
Furthermore, for a distributed source (figure 1.1) the solution to the δ-source problem
can be found through the superposition of each of the δ-sources [42]. In other words,

6 8 10 12 14 16 18 20 22
0

0.02

0.04

0.06

xi

f(xi)

Fig. 1.1.: Distribution of sources and point sources

the input function f(x) in equation (1.3) is a superposition of δ-sources and can be
expressed as

f(x) ≈ f(x1)δ(x−x1)+f(x2)δ(x−x2)+· · ·+f(xn)δ(x−xn) ≈
∑
xi

f(xi)δ(x−xi). (1.6)

1The input function f(x) in equation 1.3 is commonly referred as a function source or just as a source.
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In this context, f(x) is a source function that can be thought of as an integral over
δ-source points. In the most cases, f(x) is solved by simply knowing the solution of a
point source from the distribution, i.e by finding the Green’s function, g(x, x′), (figure
1.2). Subsequently, the overall solution of the source f(x) is obtained by superposing

6 8 10 12 14 16 18 20 22
0

0.02

0.04

0.06

xi

f
(x
i)
δ(
x
−
x
i)

Fig. 1.2.: The solution to a point source is also known as the Green’s function

all the solutions of the individual δ-source points of the distribution (figure 1.3) and
adding them up. When the fundamental solution f(x) from Equation (1.3) is assumed

8 10 12 14 16 18 20
0

0.02

0.04

0.06

xi

G
(x
,x

i)
f

(x
i)

Fig. 1.3.: Green’s function for the distributed source

to be a distribution, the solution u(x) is obtained by adding up the Green’s function for
each δ-source located at xi [39, 42] such that equation 1.4 is rewritten as

u(x) ≈ G(x, x1)f(x1) + · · ·+G(x, xn)f(xn) ≈
∑
xi

G(x, xi)f(xi). (1.7)
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Therefore, the solution to u(x) is a superposition of the solution of each of the projec-
tions of f(xi) over δ(x − xi) (figure 1.3). An exemplification of the main idea of this

8 10 12 14 16 18 20

0.02

0.04

0.06
u(x) =

∑
xiG(x, xi)f(xi)

xi

∑ x
i
G

(x
,x

i)
f

(x
i)

Fig. 1.4.: Green’s function for the distributed source

procedure is given in the context of electrostatic fields and the resulting potential from
point charges where a point charge may be seen as a δ-source of charge. The potential
of any distribution of charges is calculated by adding up the distribution of charges
once the solution to a point charge is known.

1.2 Quantum Scattering and the Green’s function

Green’s functions are widely used for the description of quantum scattering processes
[40, 43, 44], in which the δ-source is now seen as a wave source. The Schrödinger
equation can be written in the form of Equation (1.3). If the operator L is defined as
the kinetic energy operator (∇2), the constant λ as the negative of the square of the
wavenumber (−k2) and the source f(x) as 2m

}2 V ψ the Schrödinger equation may be
expressed as

(∇2 + k2)ψ = 2m
}2 V ψ. (1.8)
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Notice that if the input function2 was zero, Equation (1.8) would have the same form
as the Helmholtz equation3. Thus, if one could find a function G(r) that solves the
Helmholtz equation such that the Helmholtz equation may be written as

(∇2 + k2)G(r) = δ3(r), (1.9)

then, ψ could be expressed as

ψ(r) =
∫
G(r, r0)f(r0)d3r0.

4 (1.10)

Therefore, the Schrödinger equation in (1.8) satisfies:

(∇2 + k2)ψ(r) =
∫

[(∇2 + k2)G(r, r0)]f(r0)d3r0 =
∫
δ2(r − r0)f(r0)d3r0 = f(r),

(1.11)
where G(r) is the Green’s function for the Helmholtz equation. Then, the solution to
this last equation can be found by finding the solution G(r); this may be accomplished
by means of the Fourier transform5. If the Green’s function G(r) is defined as

G(r) = 1
(2π)3/2

∫
eis·rg(s)d3s. (1.12)

Then, by applying the Fourier transform to the left and right hand side of the Equation
(1.9) one obtains:

1
(2π)3/2

∫
(−s2 + k2)eis·rg(s)d3s = 1

(2π)3

∫
eis·rd3s, (1.13)

where
g(s) = 1

(2π)3/2(k2 − s2)
. (1.14)

Substituting this expression in Equation (1.12) yields

G(r) = 1
(2π)3

∫ 1
(k2 − s2)e

is·rd3s, (1.15)

which is the solution of equation 1.9 expressed in terms of momentum variables. In
order to obtain the Green’s function in terms of position variables, the inverse Fourier
transform needs to be carried out. The variable r is a fixed variable, therefore, the

2f(x) = 2m
}2 V ψ which makes the equation (1.8) inhomogeneous.

3The Helmholtz equation with form (∇2 + k2)ψ = 0 arises from the transform of the wave equation
into the frequency domain and constitutes a time-independent representation of the wave equation.

4d3r0 or in general d3x represents a higher order differential using Leibnitz notation [45].
5The Fourier transform turns a differential equation into an algebraic equation.

1.2 Quantum Scattering and the Green’s function 5



integral in equation 1.15 can be divided into its spherical coordinate components[40,
41, 43], s, θ and ϕ. Consequently this equation can be rewritten as6

G(r) = 1
(2π)2

∫ 1
(k2 − s2)sds

∫
eisr cos(θ) sin(θ)dθ. (1.16)

The integration with respect to the θ coordinate in this equation yields

G(r) = 2
(2π)2r

∫ ∞
0

s sin(sr)
(k2 − s2)ds. (1.17)

In this last expression the product of the numerator in the integral is even, therefore,
the limits of this integral can be changed and one may rewrite the integral as

G(r) = 1
4π2r

∫ ∞
−∞

s sin(sr)
(k2 − s2)ds. (1.18)

Notice that the resulting integral in equation 1.18 blows up at k = ±s, there are two
poles on the real axis. Therefore this is not a trivial integrate to evaluate. The easiest way
to evaluate this integral is by using the contour integration technique and Cauchy’s in-
tegral formulation[41]. When taking Cauchy’s theorem7 under consideration, equation
(1.18) becomes

G(r) = 1
4π2r

∫ ∞
−∞

s(eisr − e−isr)
2πi(k − s)(k + s)ds, (1.19)

and after the integration of this last equation the Green’s function is found to be

G(r) = −e
−ikr

4πr . (1.20)

Finally, using this expression for the Green’s function one may write the general
solution of the Schrödinger equation given by Equation 1.8 as

ψ(r) = ψ0(r) + 2m
}2

∫
G(r, r0)V (r0)ψ(r0)d3r0,

= ψ0(r)− m

2π}2

∫
eik|r−r0|

|r − r0|
V (r0)ψ(r0)d3r0.

(1.21)

This solution, Equation 1.21, is known as the integral form of the Schrödinger equation
and it is entirely equivalent to its more popular differential form.

6This new expression for G(r) does not have an integral over ϕ since the value of this integral is just 2π.
7Cauchy’s theorem demonstrates that when integrating around a closed loop in the complex plane, the

integral can be deformed in any way and the result is the sum of the residues which are due to the
poles that are inside the curve on the complex plane.
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1.2.1 The Born approximation

The integral form of the Schrödinger equation provides a valid expression for the ψ(r)
function for a given potential V . It is important to point out that this solution, given
by equation 1.21, depends on an integral that involves the same solution that one is
trying to find. In principle, this can be a problematic defect of this solution to ψ(r),
however, there are means to overcome this problem. One way may consist in making
some considerations about the physical attributes of a process one is trying to describe.
For instance, in the case of scattering processes, one may assume that the potential
V (r0) in equation (1.21) is a weak potential that drops to zero outside some delimited
region such that V (r0) is localized at r0 = 0. Therefore, for a much greater region
than the region where the potential is nonzero, r >> r0, the wave–function ψ is not
substantially altered. One may hypothesize that ψ ≈ ψ0 and rewrite equation (1.21)
as

ψ(r) = ψ0(r)− m

2π}2
eikr

r

∫
e−ik·r0V (r0)ψ0(r0)d3r0. (1.22)

For the case of plane waves8 this equation becomes

ψ(r) = eikz − m

2π}2
eikr

r

∫
ei(kẑ−k)·r0V (r0)d3r0, (1.23)

and when rearranging the equation as

ψ(r) = eikz + eikr

r

(
− m

2π}2

∫
ei(kẑ−k)·r0V (r0)d3r0

)
, (1.24)

the scattering amplitude may be defined as

f(θ, φ) = − m

2π}2

∫
ei(kẑ−k)·r0V (r0)d3r0. (1.25)

By using the integral form of the Schrödinger equation given in equation (1.21), the
solution to the wave function can be expressed as

ψ = ψ0 +
∫
gV ψd3r. (1.26)

where

g(r) = − m

2π}2
eikr

r
(1.27)

8ψ0(r) = eikz
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Now, if ψ0 is the incident wave in the scattering process and V is the scattering potential,
then, the outgoing wave after a first interaction with the potential V may be expressed
as

ψ1 = ψ0 +
∫
gV ψ0d

3r. (1.28)

This first correction to the wave function is known as the first Born approximation [40,
41, 43]. The correction to the wave function ψ can be extended to more than just this
first correction. If the expression for ψ1 is plugged under the integral sign, the second
order corrected wave function is obtained

ψ2 = ψ0 +
∫
gV ψ1d

3r

= ψ0 +
∫
gV (ψ0 +

∫
gV ψ0)d3r

= ψ0 +
∫
gV ψ0 +

∫ ∫
gV gV ψ0d

3r.

(1.29)

In a similar fashion the third order corrected wave function can be obtained

ψ3 = ψ0 +
∫
gV ψ0d

3r +
∫ ∫

gV gV ψ0d
3r +

∫ ∫ ∫
gV gV gV ψ0d

3r (1.30)

This procedure can be repeated multiple times to generate the formal series for ψ
known as the Born series

ψ = ψ0 +
∫
gV ψ0d

3r +
∫ ∫

gV gV ψ0d
3r +

∫ ∫ ∫
gV gV gV ψ0d

3r + · · · (1.31)

In each iteration for the Born series the n-solution of ψ is approximated in terms of high
dimensional integrals where the only dependency is on the incident wave function
ψ0. A pictorial explanation of the Born series is thought as follow: Under zero–order
conditions, the wave function ψ is unperturbed (untouched) by the potential V , then,
in first order it is “kicked out” for the potential once and then, it starts to propagate
out in some new direction; in the second order correction the propagated wave from is
“kicked” again and propagated to a new direction and then kicked again and propagates
again to a new direction and so on. The Green’s function describes how the perturbation
propagates between one interaction to the next. This is the reason why the Green’s
function is also called the propagator. Feynman’s formulation of relativistic quantum
mechanics was inspired by the Born series. Feynman’s diagrams [34, 37, 40, 42] are
pictorial means to represent the Born series, expressed entirely in terms of the vertex
factors (V ) and the propagators (g) connected together.
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1.3 The Quantum Field theory formalism

The scattering process can also be formulated from the perspective of quantum field
theory, in which a quantum system with many identical particles can be described by
the quantum field [34, 39, 42, 46]. In this context, the vector space that represents the
quantum state space of a quantum system of N identical non-relativistic particles is
generated by the union of each of the N particle Hilbert spaces,HN , of the system [47].
The union of all theHN spaces of a given N -particle system is known as the Fock space
(F) [39, 41, 47, 48] and is mathematically expressed as:

F =
∞⋃
N=0
HN (1.32)

where the subspace with N equal to zero is formed by a single state known as the
vacuum state. The vacuum state represents the state with no physical particles and
therefore, it is the lowest possible energy state; this so called vacuum state9 is denoted
as

|00 · · · 0〉 ≡ |0〉. (1.33)

The differentHN subspaces in F can be connected through a quantum field operator
that creates or annihilates a particle at a specific point in space, such that a ket with a
single particle in a particular k momentum state can be denoted in terms of the creator
operator associated with that momentum acting on the vacuum state,

|ki〉 = a†ki |0〉. (1.34)

Thus, applying the creator operator a†ki to the vacuum state assigns a particle i to
a particular k state. Following this notation, the ket that represent the case of two
particles within the same state k is, then, expressed as

|ki, kj〉 = a†kja
†
ki
|0〉. (1.35)

In general, this notation will be conserved for N particles and n states. Since these field
operators are spatial functions, a quantum field may be generated by an N particle
quantum system[39, 46].

9Since this so called vacuum state represents an abstract state with no particles, the vacuum state ket is
different from the null ket.
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1.3.1 The Fock space representation of the Hamiltonian

Imagine a system of N non-relativistic particles in a IR3 dimensional space, with
coordinates {r1, r2 · · · , rN }. The Hamiltonian for this system may be expressed as:

H = − 1
2m

N∑
i=1
∇2
i + V (r1, r2, · · · , rN ), (1.36)

where the∇2
i is the Laplacian with respect to ri and V is a symmetric function. The

set of eigenfunctions Ψn associated with this Hamiltonian is then found by solving the
Schrödinger equation:

HΨn(r1, r2, · · · , rN ) = EnΨn(r1, r2, · · · , rN ). (1.37)

These eigenfunctions Ψn are, then, the state vectors of the many particle system. When
this many particle system is assumed to have only identical particles, Ψn will be
symmetric under an interchange of any two coordinates ri and rj for Bosons, whereas,
in the case of Fermions, Ψn will be antisymmetric. An analogy to Ψn can be defined
in the context of the quantum field by defining an operator ψ that acts on a ket vector
state, |n1n2n3 · · · 〉, that contains the information about how many particles are in the
various single particle wave function type states. If the operator ψ(r) is interpreted as
an operator that annihilates a particle at the r position, then, its Hermitian conjugate
ψ†(r) can be regarded as the operator that creates a particle at the same position r.
When the identical particles in the system are defined as Bosons, these two operators
are defined through the commutation relations,[

ψ(r), ψ†(r′)
]

= δ3(r − r′)[
ψ†(r), ψ†(r′)

]
= 0[

ψ(r), ψ(r′)
]

= 0,

(1.38)

whereas, for Fermions the operators are defined through anticommutator relations10,

{ψ(r), ψ†(r′)} = δ3(r − r′)

{ψ†(r), ψ†(r′)} = 0

{ψ(r), ψ(r′)} = 0.

(1.39)

10In an associative algebra the commutator is defined as [a, b] = ab− ba, whereas the anticommutator is
defined as {a, b} = ab+ ba [49].
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When the Hamiltonian that describes the many particle system in the Fock space is
defined in terms of the N particle subspaces equation (1.36) may be written as

H =
∑
i

f(ri) +
∑
i<j

g(ri, rj) +
∑
i<j<k

h(ri, rj , rk) + · · · (1.40)

where the function f(ri) is interpreted as an one-particle operator, g(ri, rj) as a two-
particle operator and so forth. Therefore, an N -particle operator is defined as a sum of
functions that only depends on a set of n coordinates, where the operators that act on
more than one particle (g, h, etc.) are symmetric with respect to the coordinates of the
particles. Thereby, an N -particle operator in the Fock space can be constructed in terms
of creation and annihilation operators,

∑
i

f(ri)→
∫
ψ†(r)f(r)ψ(r)d3r

∑
i<j

g(ri, rj)→
1
2

∫
ψ†(r1)ψ†(r2)g(r1, r2)ψ(r1)ψ(r2)d3r1d

3r2

∑
i<j<k

h(ri, rj , rk)→ 1
3!

∫
ψ†(r1)ψ†(r2)ψ†(r3)h(r1, r2, r3)ψ(r1)ψ(r2)ψ(r3)d3r1d

3r2d
3r3

...

(1.41)

Using this formalism, the potential, V (r1, r2, · · · , rN ), of the Hamiltonian in Equation
(1.36) can be reduced to a two-particle operator defined as the sum of the potentials
between particle pairs,

V (r1, r2, · · · , rN ) =
∑
i<j

v(ri, rj). (1.42)

Then, the Hamiltonian that represents the many body system in terms of creation and
annihilation operators in the Fock space yields

H = − 1
2m

∫
ψ†(r)∇2ψ(r)d3r + 1

2

∫
ψ†(r1)ψ†(r2)v(r1, r2)ψ(r2)ψ(r1)d3r1d

3r2.

(1.43)
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1.3.2 The quantum field as an N -particle system

In order to show the relationship between the quantum field and a system with many
identical particles, an operator whose eigenvalue is the number of particles in a given
state vector is first defined,

N̂ =
∫
ψ†(r)ψ(r)d3r, (1.44)

this operator, known as the number operator, is a Hermitian operator and, therefore,
holds the following commutation relations11:[

N̂ ,H
]

= 0[
ψ(r), N̂

]
= ψ(r)[

ψ†(r), N̂
]

= −ψ†(r).

(1.45)

These commutation relations indicate that applying the operator ψ(r) on an eigenstate
of N̂ will decrease the eigenvalue by 1, whereas ψ†(r) will increase the eigenvalue by 1.
Consequently, the vacuum state is the eigenstate of the operator N̂ whose eigenvalue
is equal to zero. This implies, then, that the vacuum state can be annihilated by
consecutively applying ψ(r) onto it,

ψ(r)|0〉 = 0, (1.46)

analogously, applying ψ†(r) repeatedly to the vacuum state will generate non–negative
integers eigenvalues for N̂ . Thus, the function belonging to the complete set of states
|E,N〉 of a quantum field are eigenstates of H and N̂ ,

H|E,N〉 = E|E,N〉

N̂ |E,N〉 = N |E,N〉.
(1.47)

Then, the N -particle wave function ΨE(r1, r2 · · · , rN ) of a many identical particle
system is equivalent to the complete set of states |E,N〉,

ΨE(r1, r2 · · · , rN ) ≡ 1√
N !
〈0|ψ(r1) · · ·ψ(rN )|E,N〉. (1.48)

In this sense, the probability amplitude that describes the N particles at the positions
r1, r2 · · · , rN can be formed by evaluating the overlap between the vacuum state and
the state resulting from annihilating the particles at the r1, r2 · · · , rN positions from

11These commutation relations can be easily demonstrated by using the expressions in equations (1.38)
and (1.39)
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|E,N〉. Therefore, a quantum field may be equivalent to a system with N identical
particles.

1.3.3 The ψ(r) and ψ†(r) field operators

The ψ(r) and ψ†(r) field operators act onto ket vectors states that are characterized for
having particles whose wave function are δ-functions. It was shown in section 1.1 that
δ-functions, in general, can be expressed as a linear superposition of a complete set of
functions. Thus, ψ(r) and ψ†(r) may be expressed as a linear combination of operators
that creates or annihilates particles with a specific wave function type. Furthermore,
if uk(r) is defined as a member of a complete single particle set of orthonormal wave
function such that ∫

u∗k(r)uk′(r)d3r = δkk′ (1.49)

and ∑
k

u(r)u∗(r)d3r = δ3(r − r′), (1.50)

then, the expansion of the creation and annihilation field operators with respect to such
a basis yields

ψ(r) =
∑
k

uk(r)ak

ψ†(r) =
∑
k

u∗k(r)a†k.
(1.51)

Due to the orthonormality of the function uk(r) and the commutator relations defined
for ψ(r) and ψ†(r), the operators ak and a†k satisfy commutation relations for Bosons,[

ak, a
†
k′

]
= δkk′

[ak, ak′ ] = 0[
a†k, a

†
k′

]
= 0,

(1.52)

whereas for Fermions they satisfy anticommutation relations,

{ak, a†k′} = δkk′

{ak, ak′} = 0

{a†k, a
†
k′} = 0.

(1.53)
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Using these commutation and anticommutation relations, it may be concluded that for
each k state the eigenvalues of a†k, ak are integer numbers,

a†kak|n〉 = nk|n〉

〈nk|mk〉 = δnk,mk .
(1.54)

These integers numbers, nk, correspond to the occupation numbers of the single-particle
state k. The allowed values of nk for identical particles are:

nk =

For Bosons : 0, 1, 2, · · · ,∞.

For Fermions : 0, 1.
(1.55)

Then, the general actions of the operators a and a† may be expressed as:

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√

1± n|n+ 1〉
(1.56)

where the positive sign corresponds to Bosons and the negative sign to Fermions.
These expressions indicate that a particle in the state with wave function u(r) will be
annihilated when the operator a is applied, whereas such a particle will be created if a†

is applied. Therefore, if one simultaneously diagonalizes a†kak for all k, the obtained
eigenstates will be a set of occupation numbers, {n0, n1, · · · , nk}. This set of occupation
numbers will constitute a valid basis for the Fock space. The string of operators a†kak can
be defined as the occupation-number operator, N̂k, and hence the number operator N̂
defined in Equation (1.44) can be given in terms of this occupation-number operator

N̂ =
n∑
k=1

N̂k. (1.57)

This stresses the fact that the total number of particles present is known by adding up
the elements of a given occupation number vector,

N =
∑
k

nk. (1.58)

1.3.4 Change of base for operators

The creation and annihilation fields operators act on a set of states that are a basis of
H . This implies that the representation of these operators is determined by the chosen
state basis. Therefore, an equivalent representation of these field operators could be
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given by using more than one basis. To illustrate this idea, one may imagine a case of
plane waves of Fermion particles propagating through a region of volume Ω. Starting
from a plane wave basis,

|φ〉 =
∑
n

|n〉〈n|φ〉, (1.59)

a given state φ can be expressed in the momentum basis by simply performing a change
of basis such that

|ki〉 =
∑
i

|ki〉〈ki|φ〉. (1.60)

Now, suppose a well–defined x position state that when expressed in terms of the
momentum basis yields:

|x〉 =
∑
i

|ki〉〈ki|x〉. (1.61)

Since this is a well-defined position state, the amplitude for this state is known and its
inner product of the momentum ki state is expressed as:

〈ki|x〉 ∼ e−ikix. (1.62)

Therefore, equation 1.61 can be rewritten as the ket that corresponds to a particle in a
definite position x in the basis of plane wave momentum eigenstates

|x〉 =
∑
i

|ki〉e−ikix, (1.63)

where, this particle at position x can be created by applying a creation operator to the
vacuum

ψ†(x)|0〉 =
∑
i

a†ki |0〉e
−ikix. (1.64)

Therefore, the operator that creates a particle at a position x may be expressed as

ψ†(x) =
∑
i

a†kie
−ikix (1.65)

1.3.5 Describing interactions

The description of the interactions of a particle can be outlined by using the physical
and mathematical tools developed in quantum field theory. Let’s say one wants to
describe a scattering process where a particle comes in with some initial momentum |ki〉
and scatters to end up with some final momentum |kf 〉, see figure 1.5. If the interaction
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|ki〉

|kf〉

Fig. 1.5.: Scattering at a definite place

Hamiltonian that destroys a particle with momentum km and creates a particle with
momentum kl is expressed as

Ĥi ∼
∑
lm

Vlma
†
kl
akm , (1.66)

then, the incoming particle with momentum ki can be expressed as

|ki〉 = a†ki |0〉 (1.67)

whereas, the outgoing particle with momentum kf is expressed as

|kf 〉 = a†kf |0〉 → 〈kf | = 〈0|akf . (1.68)

The amplitude of a particle with momentum kf after an interaction starting with
momentum ki can be, then, described with the matrix element between the incoming
wave, the interaction potential Vlm and outgoing wave,

〈kf |Ĥi|kf 〉 ∼
∑
lm

Vlm〈0|akfa
†
kl
akma

†
ki
|0〉. (1.69)

This matrix is just the sum over the interaction potential and the creation and annihila-
tion operators acting on the vacuum state.

1.3.6 Energy and momentum conservation

Now, let’s extend the discussion to consider particle decay, a process where a single
particle with one initial incoming state ended up with more than one final state. The
simplest decay process may be represented in figure 1.6, where a particle with an initial
state |k〉 ends up with two states, |l〉 and |m〉. If this decay occurs in a defined place but
an unknown time, this transition may be described by using Fermi’s golden rule[41, 50,
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|ki〉

|kl〉

|km〉

Fig. 1.6.: Decay process at a definite place

51]. The probability of the decay is proportional to the integral of the matrix elements
of the perturbation between the initial and final states,∫

t
〈lm|ψ†ψ†ψ|k〉dt. (1.70)

where in the plane wave representation, the ψ operator can be expressed as super-
positions of creation and annihilation operators written as

ψ ∼
∑
k

aeikx+ωkt (1.71)

and
ψ† ∼

∑
k

a†e−ikx+ωkt. (1.72)

The substitution of the ψ and ψ† operators in equation (1.70) and a definite position,
x = 0, yield ∫

t
ei(ωl+ωm−ωk)tdt. (1.73)

Since the time is unknown, the consideration of all possible times, and, therefore, the
integration over all these times yields

δ(ωl + ωm − ωk). (1.74)

This last result in terms of a delta-function ensures one of the most relevant conse-
quences of the invariance under time, the conservation of energy. In other words, when
conservation of energy is ensured, energy at the end of the scattering experiment is
ensured to be the same as it was at the beginning of the experiment12. Similarly, for the

12Energy can neither be created nor destroyed.
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case of a definite time but an unknown position x the final expression obtained is in
terms of a δ-function ∫

x
〈lm|ψ†ψ†ψ|k〉dx. (1.75)

If t = 0
∼
∫
x
e−i(kl+km−kk)xdx (1.76)

then,
∼ δ(kl + km − kk). (1.77)

Therefore, integration over all the possible positions ensures conservation of momen-
tum. It is important to mention that in quantum mechanics the position and momentum
of a particle cannot be simultaneously measured with precision. Therefore, when the
position was definite, one needed to consider all possible times to obtain equation
(1.74), whereas in the case of a definite time all possible positions were considered to
obtain equation (1.77). This points out the most important idea in quantum mechanics,
the Heisenberg uncertainty principle[43, 52].

1.4 The Many–Body Green’s function

Following the ideas presented in section (1.3) let us consider a single particle Hamilto-
nian h1 whose eigenstates and eigenvalues are

h1|φn〉 = εn|φn〉. (1.78)

In general, a particle located in a given |φn〉 would always remain in the same state.
However, let’s imagine one could prepare the system in a generic trial state denoted
by |ψx〉 and follow its time evolution. When the trial state is created at time t = 0, the
wavefunction at a later time t may be expressed as

|ψ(t)〉 = e−
ih1t
~ |ψx〉

=
∑
n

|φn〉e−
iεnt
~ 〈φn|ψx〉.

(1.79)

Thus, if one knows the eigenstates |φn〉, the time evolution of the trial state can be
obtained by expanding the trial state, |ψx〉, into the |φn〉 basis and letting every compo-
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nent to propagate independently. Then, the probability amplitude that a measurement
would find the particle at position r yields

〈r|ψ(t)〉 = 〈r|e−
ih1t
~ |ψx〉

=
∫
dr′〈r|e−

ih1t
~ |r′〉〈r′|ψx〉

=
∫
dr′

∑
n

〈r|φn〉e−
iεnt
~ 〈φn|r′〉〈r′|ψx〉

≡
∫
dr′G(r, r′; t)ψx(r′),

(1.80)

which involves the propagator G. In general, the time evolution of any initial state
can be calculated if G(r, r′; t) is known. In a single glance, it may seem that the
only information contained in the propagator G is related only to time evolution of
a given initial state, but this is not true. The propagator G defined in equation (1.80)
also contains information about the energy and probability associated with placing a
particle at position r, these quantities are given by the braket 〈φn|r′〉 = 〈φn|ψ†(r′)|0〉.
Furthermore, the time evolution is a superposition of waves propagating with different
energies. Therefore, applying the Fourier transform to the propagator G would allow
to obtain the full eigenvalue spectrum related to the evolution over time of a particle
which moves from an initial position r to a final position r′.

1.4.1 One–particle Green’s function

Let us express the annihilation and creation field operators in the Heisenberg descrip-
tion as

ψi(r, t) = e
iHt
~ ψi(r)e−

iHt
~

ψ†j(r, t) = e
iHt
~ ψ†j(r)e−

iHt
~

(1.81)

where H is the full Hamiltonian of the system and the field operator subscripts i
and j indicate possible internal degrees of freedom (spin, isospin, etc). By using the
Heisenberg representation of the field operators, the one-particle Green’s function can
be defined as the expectation value of the time ordered product of an annihilation
and a creation field operator with respect to the exact ground state wave-function
of a N -particle system, |ΨN

0 〉. Then, the one-particle Green’s function or one-particle
propagator is mathematically expressed as

Gij(rt; r′t′) = − i
~
〈ΨN

0 |T [ψi(r, t)ψ†j(r
′, t′)]|ΨN

0 〉, (1.82)
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where T is Wick’s time-ordering operator which orders the field operators in chrono-
logical order with times increasing from right to left. If the chronological order is an
odd permutation of the original order, then, a multiplicative factor of −1 needs to be
added. Consequently, if the Hamiltonian does not depend on time, by introducing a
unit step function13, θ, the propagator in equation (1.82) becomes

Gij(r, r′; t− t′) = − i
~
θ(t− t′)〈ΨN

0 |[ψi(r)e−i(H−ENo ) (t−t′)
~ ψ†j(r

′)]|ΨN
0 〉

∓ i

~
θ(t′ − t)〈ΨN

0 |[ψ
†
j(r
′)ei(H−ENo ) (t−t′)

~ ψi(r)]|ΨN
0 〉.

(1.83)

In general, the propagator definition presented in equations (1.82) and (1.83) may be
valid for any orthonormal basis. Therefore, a more general expression for equation
(1.83) may be written as

Gij(t, t′) = −i[θ(t− t′)〈ΨN
0 |[ψi(t)ψ

†
j(t
′)]|ΨN

0 〉 − θ(t′ − t)〈ΨN
0 |[ψ

†
j(t)ψi(t

′)]|ΨN
0 〉] (1.84)

where ψi(t) and ψ†j(t) now represent a more general single-particle basis and one lets
~ = 1. The terms of the Green’s function in equation (1.84) represent the propagation of
a particle (first right hand side term) and the propagation of a hole (second right hand
side term). When the particles described are electrons, the propagation of a particle
describes the addition of an electron to the system, whereas the propagation of a hole
the removal of an electron from the system. The one-particle Green function can be
considered as a time-dependent generalization of the one-particle density matrix

ρij = 〈ΨN
0 |ψ

†
jψi|Ψ

N
0 〉 = −iGij(t, t+), (1.85)

where t+ is defined by adding an infinitesimal positive shift η+ to the time t, t+ = t+η+.
Therefore, one may obtain the one-particle density by setting r = r′ and summing over
the spin coordinate

ρ(r) = −i
∫
dσsG(r, s, t; r, s, t+). (1.86)

In the case of electrons, if the many-body system is invariant under time translation14

the Green’s function would only depend on τ = t − t′. Then, by introducing the

13Heaviside step function [53]
14A system is invariant under time translation if there are no time–dependent external potentials.
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completeness relations for the (N−1)– and (N+1)–electronic states the one-particle
Green’s function yields

G(r, r′; τ) = − i
~

[θ(τ)
∑
a

〈N |ψ(r)|N + 1, a〉〈N + 1, a|ψ†(r′)|N〉e−i(EN+1,a−EN )τ

− θ(−τ)
∑
i

〈N |ψ†(r′)|N − 1, i〉〈N − 1, i|ψ(r)|N〉e−i(EN−EN−1,i)τ ]
(1.87)

where EN denotes the energy of the N -electron ground state |N〉, EN+1,a the energy of
the a-th (N+1)-electron state |N+1, a〉, and EN−1,i the energy of the i-th (N−1)-electron
state |N−1, i〉.

1.5 Green function and Photoelectron emission

In the photoelectron (PE) emission experiment [40, 43], the photocurrent is measured
as function of the kinetic energy of the ejected electrons, Ee. The photocurrent mea-
surement is proportional to the magnitude of the external field over many orders of
magnitude of Ee. The ejection energy Ee, according to the Einstein’s photoelectric
relation is proportional to the difference between the photon energy (}ω0) and the
binding energy I ,

Ee = }ω0 − I. (1.88)

If one uses the same principles as in the case of the one–photon scattering process, the
photoelectron emission can be calculated by using the Fermi’s golden rule. Thus, the
transition rate at a given energy ω is given by

P (ω) = 2πe2

m2c2}
∑
F

∣∣∣〈F |∑
n

An ·Pn|ΨN
0 〉
∣∣∣2δ(ω − Ee)δ(EF − EN0 − }ω0) (1.89)

where |F 〉 and |ΨN
0 〉 are the final and initial states of the N–electron atom or molecule

under study, consequently, EF and E0 are the energies for this states. On the other
hand, An · Pn is the scalar product of the external field at the nth electron and the
momentum of this electron. In terms of creation and annihilation operators, ak and a†k,
for a one particle state |φk〉 the transition probability P (ω) may be expressed as

P (ω) = 2πe2

m2c2}
∑
F

∣∣∣〈F |∑
k,l

τkla
†
kal|Ψ

N
0 〉
∣∣∣2δ(ω − Ee)δ(EF − EN0 − }ω0)

= − 2e2

m2c2}
∑

k,l,m,n

τ∗mnτklIm{iGlkmn(−}ω0 − iη)}δ(ω − Ee)
(1.90)
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where
τij = 〈φi|A ·P|φj〉 (1.91)

and Glkmn(−}ω0 − iη) is the Fourier transform of the particle–hole component of the
two–body Green’s function15. In this formalism, all the internal properties such as
the spin–orbit coupling, the vibrational, rotational and electronic interactions that are
needed to describe the photoelectron spectrum of atoms and molecules are contained
in the Green’s function. Thus, the complete description of the measured photoelectron
spectrum may be obtained by computing the two–body Green’s function, but this is
not always feasible. On the other hand, the τij matrix contains the information that
pertains to the angular distribution of the photoelectrons as well as the information
about the relative intensities of different photoelectron spectrum bands as a function of
the photon energy. When an orthogonal spin–orbital basis, such as the Hartree–Fock
spin–orbitals (φHFi ), is used, τij may be calculated as the matrix elements of the scalar
product An ·Pn between the φHFi and φHFj Hartree–Fock orbitals. Although Green’s
functions provide a natural theoretical approach for the elucidation of a measured
photoelectron spectrum, the accurate evaluation of the exact Green’s function is a
non–trivial and computational costly task. Thereof, reasonable approximations need to
be made in order to compute practical P (ω) values.

1.5.1 Approximation to the final state

In equation (1.90), the final state |F 〉 may be approximated by an antisymmetrized
product of a (N − 1)–electron state, |ψN−1

s 〉, with a one–electron continuum state |e〉.
The contribution of the continuum state |e〉 to the initial state |ψN0 〉 is close to zero.
Therefore, when Ee is large, in order to obtain a nonvanishing value for P (ω) the
operator ak must annihilate an electron in |e〉 in the final state |F 〉. Equation (1.90)
becomes

P (ω) = 2e2

m2c2}
∑
e,n,l

τ∗enτelIm{Gln(ω − }ω0 − iη)}δ(ω − Ee) (1.92)

where the Fourier transform of the advanced one-electron Green’s function yields

Gln(ω − iη) =
∑
s

〈ΨN
0 |a†n|ΨN−1

s 〉〈ΨN−1
s |al|ΨN

0 〉
ω − EN−1

s − EN0 − iη
. (1.93)

Although the ansatz for the final state, |F 〉 = |e〉|ψN−1
s 〉, implies that the ejected electron

is not correlated with the other electrons in the ionic system, this does not mean that
the state |e〉 is in general a plane wave or only describes a free electron. To the contrary,

15In this expression η is a positive parameter that approaches zero as required for the Fourier transform.
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the ejected electron feels the other electrons, but its influence on these other electrons is
neglected. Furthermore, one could construct the optimum one–electron state |e〉 that
best describes the system under study. Conversely, in order to accurately describe the
photoelectron emission process, one may need to consider the different effects that the
remaining electrons in the ionic system exert on the ejected electron. For instance, for
the case }ω0 � I , the ejected electron is usually considered free and |e〉 is taken as a
plane wave with the appropriate symmetry, whereas for the case }ω0−I ≤ I , Coulomb-
type waves describing the interaction of the electron with the static charge distribution
of the ion should be considered. Finally, ionizations at the }ω0 ≈ I threshold are
correctly characterized by the two–particle Green’s function. The transition probability
P (ω) may be expressed in terms of the eigenvalues Dk(ω) of the Green’s function
matrix G(ω) as

P (ω) = 2e2

m2c2}
Im{

∑
e

tr
[
D̃(ω − }ω0 − iη)

]
δ(ω − Ee)}, (1.94)

with
D̃ij = |τei(ω)|2Di(ω)δij , (1.95)

and
τei(ω) =

∑
j

τejSij(ω), (1.96)

where Sij are the elements of the eigenvector matrix of G(ω). After considering the
Fourier transform one finds

Im{Dk(ω − iη)} = π
∑
s

Pk(s)δ(ω + EN−1
s − EN0 ) (1.97)

with
0 ≤ Pk ≤ 1. (1.98)

The Pk(s) quantities are known as pole strengths. Since these quantities can only have
positive values, it follows that for all ω values the transition probability P (ω) will be
always positive.

The binding energy of the ejected electron may be expressed as Is = EN−1
s − EN0 and

τejδ(ω−Ee) becomes τesjδ(ω−Ee).Therefore a further symplification of equation (1.95)
yields

P (ω) = 2πe2

m2c2}
∑
s,k

|τe,k(}ω0 − Is)|2Pk(s)δ(ω + Is − }ω0). (1.99)
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If the correlation of the electrons in the atom or molecule is neglected, the Green’s
function becomes the free Green’s functionG0. When the Green’s function matrixG0

is diagonal, the transition probability reads

P 0(ω) = 2πe2

m2c2}
∑

k≤N/2
|τek,k|

2δ(ω − εk − }ω0), (1.100)

where εk is energy of the kth orbital of the atom of molecule. This last equation
indicates that for the case of a N electron closed-shell system the number of bands that
one can expect is at most N/2. This assertion, however, is not in agreement with the
photoionization experimental reality. In the photoionization process, simultaneous
excitation or the ionization of a second electron in the same atom or molecule are events
with high probability. These excitations accompanying the ionization event are the so–
called shake–up and shake–off processes. These last processes can only be contemplated
when electron correlation effects are considered in the treatment of the system. For
instance, consider Gln(ω − iη) in equations (1.92) and (1.93). If the configuration
interaction is negleted, the final ionic state |ΨN−1

s 〉, whose electron configuration differs
from that of the reference ground state by the occupation of more than one orbital,
would not be observed. However, if the configuration interaction is taken into account
(the full Gln(ω − iη) is considered), the final ionic state will borrow intensity from
the other states giving it a suitable electronic configuration and symmetry that would
allow this ionic state to be observed. In general, for atoms and molecules the features
in the photoelectron spectrum that are invariant to the experiment conditions can be
determinated by computing the one– or two–body Green’s function together with
|e〉. Furthermore, the information related to the binding energies and the vibrational
structure of the bands of the system in consideration is contained in the one–body
Green’s function.
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2The Electron Propagator

„Will you understand what I’m going to tell you? . . .
No, you’re not going to be able to understand it. . . .
That is because I don’t understand it. Nobody does.

— Richard Phillips Feynman
(QED: The Strange Theory of Light and Matter)

After Feynman introduced the ideas and foundations of the free electron propagator
into quantum field theory [35, 37], Schwinger extended Feynman’s discussion to many–
particle systems [54, 55]. Subsequently, Martin and Schwinger [56] introduced what is,
perhaps, the most significant work in the development of what is known today as the
many-particle propagator theory. The first application of the many-particle propagator
to finite systems and the basis of the theory for atoms and molecules were introduced
by Linderberg and Öhrn [12, 13]; subsequent contributions to the propagator theory
and methodology were made by several authors, such as Cederbaum [9], von Niessen
[57], Schirmer [58], Yeager [59], Simons [60], Ortiz [15] and others [14, 16, 61, 62]. The
capabilities and usefulness of the many-particle propagators are of great relevance
for the prediction and study of stationary and transition properties. Many-particle
propagators are direct methods for the determination of theoretical photoelectron
spectra of atoms and molecules. In the framework of electronic structure theory and
ab–initio methods, many–body propagators, in particular the one–electron propagator,
have been stressed as the best direct method to obtain and predict accurate electron
binding energies, due to their solid mathematical foundations[62].

2.1 Electron propagator concepts

In electron propagator (EP) theory, binding energies, Dyson orbitals and one–electron
properties are contained in the poles and residues of the one–electron Green’s func-
tion[15, 16]. Poles are energies where singularities of the one–electron Green’s function
lie, whereas residues are the coefficients of the terms responsible for those singularities.
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In the spin–orbital basis, the spectral form for the p–q element of the EP matrix [2, 15,
16] reads

Gpq(E) = lim
η→0
{
∑
n

〈N |ap|N + 1, n〉〈N + 1, n|a†q|N〉
E − EN+1

n + EN0 + iη
+
∑
n

〈N |a†q|N − 1, n〉〈N − 1, n|ap|N〉
E + EN−1

n − EN0 − iη
},

(2.1)
where p and q are general spin–orbital indices, and |N〉 is the exact non–degenerate
ground state of an N–electron system with energy EN0 . EN±1 and |N ± 1, n〉 denote
energies and states with N ± 1 electrons. η is a positive infinitesimal constant that guar-
antees the convergence of the Fourier transform from the time–dependent expression.
For a finite, orthonormal and discrete spin–orbital basis, the Gpq(E) matrix has only
simple poles in the frequency domain, i.e. poles are only located in the energy plane.
When η approaches zero these poles are all on the real energy axis, with values equal
to the difference between the total energy of the N–electron stationary ground state
and the N ± 1–electron final state. The overlap amplitudes [63] between the N– and
N ± 1–electron states are known as the Feynman–Dyson amplitudes (FDAs). These
amplitudes are defined according to the spin–orbital basis and the creation, a†q, and
annihilation, ap, electron field operators [15, 16, 63],

fn(q) = 〈N + 1, n|a†q|N〉

gn(p) = 〈N − 1, n|ap|N〉.
(2.2)

FDAs are a reflection of the corrections to the one–electron unperturbed state upon the
introduction of a perturbation. This perturbation corresponds to the propagation of
the self interaction of the electron by the means of an effective potential. This results
in the propagator self–energy taking effectively into account many–body effects such
as the interaction of the electron with the vacuum state and with the other electrons
of the system, improving the overall description of the unperturbed wave–function.
FDAs are fundamental for the calculation of intensities in photoelectron spectrometry
for principal and satellite structures [2, 15, 16, 63, 64]. Furthermore, FDAs provide
means to construct the overlap function between the reference–state wave–function
with N–electrons and a final state with N ± 1 electrons

φDysonn (x1) = N1/2
∫
dx2dx3...dxNΨN (x1, x2, x3, ..., xN )Ψ∗N−1,n(x2, x3, ..., xN ),

φDysonn (x1) = (N + 1)1/2
∫
dx2dx3...dxN+1ΨN+1,n(x1, x2, x3, ..., xN+1)Ψ∗N (x2, x3, ..., xN+1).

(2.3)

These overlap functions are defined as the Dyson orbitals for the electron detachment
(N − 1 electron final state), and attachment (N + 1 electron final state), processes.
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Dyson orbitals are mathematical entities that have been proven to be powerful tools for
the phenomenological description and prediction of electron detachment–attachment
processes in atoms and molecules [2, 64]. Moreover, photoionization cross sections and
many kinds of transition probabilities depend on Dyson orbitals. The normalization
factors of the Dyson orbitals are known as the pole strengths:

Pn =
∫
|φDysonn (x1)|dx1. (2.4)

Pole strengths are quantities with values between zero and unity. Pole strengths
are used as a criterion of the importance of many–electron processes and electron
correlation in the description of a transition from N to N ± 1 electrons.

2.2 Electron propagator formalism

The basis of the electron propagator theory (EPT) was first introduced by Linderberg
and Öhrn [12, 13]. The superoperator formalism for EPT was advanced by Goscinski
and Lukman [65]. Although the superoperator formalism is the most mathematically
rigorous form of deriving the equations of EPT, it may be also, in some cases, the most
tedious and challenging approach. An alternative to the superoperator formalism of
EPT may be the diagrammatic approach [16, 66] which represents the diverse terms
and functions of the EPT equations by pictorial symbols. While the diagrammatic
approach may look at first to be a more convenient way to produce EPT equations,
this approach is not ideal for developing propagators in which a precise control over
the intermediate terms which produce the final EPT equations is needed. Also, in the
diagrammatic approach, it can be difficult to guarantee that all the diagrams needed
to take into account all the electronic effects have been considered and not double
counted. Therefore, the diagrammatic approach for the formulation of electron propa-
gator methods may produce wrong propagator equations, see for example reference
[67] where some terms are missing for the expressions of some of the field operator
couplings. In this respect the superoperator formalism is, in several cases, the most
accurate and flexible approach for deriving new electron propagator methods [68].

2.2.1 Second quantization concepts

In electronic structure theory, the foundation for the treatment of atoms and molecules
is based on second–quantization concepts and the definition of operators and vector
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states[48]. In second quantization the many–electron Hamiltonian can be expressed
as

H =
∑
PQ

hPQa
†
PaQ + 1

4
∑
PQRS

〈PQ||RS〉a†Pa
†
QaSaR, (2.5)

where
〈PQ||RS〉 =

∫
Ψ∗P (1)Ψ∗Q(2)r−1

12 (1− P12)ΨR(1)ΨS(2)d1d2 (2.6)

represent the antisymmetric two–electron integrals. This Hamiltonian operates in the
Fock space spanned by all the independent eigenstates of the number operator of the
total number of electrons, which is constructed within a given spin–orbital basis. If the
chosen spin–orbital basis diagonalizes the Fock operator such that

FPQ = hPQ +
∑
RS

〈PR||QS〉〈a†RaS〉 = εP δPQ, (2.7)

where
〈a†RaS〉 = 〈ground state|a†RaS |ground state〉, (2.8)

then, the Hamiltonian may be partitioned as

H = H0 + (H −H0), (2.9)

where H0 is taken as the unperturbed operator defined as

H0 =
∑
P

εPa
†
PaP . (2.10)

In electron propagator theory, the electron propagator defined by only using the
uncorrelated electron dynamics characterized by H0 is denoted as G0. The matrix
elements of G0 in a given spin–orbital basis are expressed in the same fashion as
the full electron propagator, equation (2.1). However, |N〉 is now interpreted as the
Hartree–Fock ground state

|N〉 = a†ia
†
j · · · a

†
N |0〉 ≡ |HF〉 (2.11)

where |0〉 is the nondegenerate eigenstate of the electron number operator correspond-
ing to the eigenvalue zero. The ground state energy may be defined as

E0(E) =
Occ∑
i

εj (2.12)
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and the expression of the energy of the N − 1 state yields

Ej(N − 1) = E0(N)− εj , (2.13)

whereas for the N + 1 state

Ea(N + 1) = E0(N) + εa (2.14)

with

|N − 1, j〉 =
Occ∏
i 6=j

a†i |0〉 (2.15)

and

|N + 1, a〉 =
Occ∏
i

a†ia
†
a|0〉, (2.16)

respectively. The normalized determinant states and the anticommutation relations

[a1, a2]+ = [a†1, a
†
2]+ = [a1, a

†
2]+ − δ1,2 = 0 (2.17)

yield the following expressions for the overlap amplitudes:

fp(j) = 〈N + 1, p|a†j |N〉 = ±δpj (2.18)

and
gb(i) = 〈N − 1, b|ai|N〉 = ±δbi. (2.19)

2.2.2 Propagator couplings and superoperator theory

The full electron propagator Gpq expressed in equation (2.1) depends on the electron
field operators ap and a†q. Therefore an alternative notation for this propagator[15, 16,
63] may be

Gpq = 〈〈ap; a†q〉〉E . (2.20)

By using this notation, the expression for Gpq(E) in equation (2.1) may be rearranged
in the following way:

E(E − EN+1
n + EN0 )−1 = 1 + (EN+1

n − EN0 )(E − EN+1
n + EN0 )−1, (2.21)

where, for the left hand side of equation 2.1 one may obtain

〈N |ap|N + 1, n〉(EN+1
n − EN0 ) = 〈N |[ap, H]|N + 1, n〉, (2.22)
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a similar expression is obtained for the right hand side of the equation (2.1). After the
manipulations of the propagator equation, the final expression is

E〈〈ap; a†q〉〉E = 〈|N [ap, a†q]+|N〉+ 〈〈[ap, H]; a†q〉〉E (2.23)

which is the equation of motion of the electron propagator. Equation (2.23) may be
regarded as the first instance of a chain of equations, since the more complicated
propagator 〈〈[ap, H]; a†q〉〉E has an analogous definition to the one of 〈〈ap; a†q〉〉E :

〈〈ap; a†q〉〉E = E−1〈[ap, a†q]+〉+E−2〈[[ap, H], a†q]+〉+E−3〈[[[ap, H], H], a†q]+〉+ . . . (2.24)

where the expectation values 〈. . . 〉 are taken with respect to the ground state |N〉 (or a
suitable ensemble) and evaluated as the trace of the density operator of the ensemble.
This last equation may be defined in terms of the superoperators acting on a space of
electron field operators f ,

f = {f1, f3, f5, . . . , fn} with n = {2k + 1 : k ∈ Z}. (2.25)

If X and Y are general elements of this linear space of electron field operators, the
identity superoperator Î and the Hamiltonian superoperator Ĥ yield the following
relations

ÎX = X

ĤX = [X,H],
(2.26)

and their scalar product reads

(X|Y) = 〈 [Y,X†]+ 〉. (2.27)

A more succinct notation for the full propagator may be written as

Gpq ≡ 〈〈a†p; a†q〉〉E = (a†p|(EÎ − Ĥ)−1a†q), (2.28)

where (EÎ − Ĥ)−1 is known as the superoperator resolvent. The matrix elements of
the electron propagator are, then, related to the field operator products arising from the
superoperator resolvent evaluated with respect to the |N〉 reference state. Thus, Dyson
orbitals as well as the electron binding energies calculated using electron propagators
are properties of the reference state that is being for used for the calculation.
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2.2.3 Partitioning and the inner projection basis

In electron propagator calculations, the elements of the superoperator resolvent matrix
may be calculated by considering the polynomial expansions in Ĥ and E. However,
the techniques of inner projection and partitioning[62, 69, 70] may offer a more efficient
approach for the systematic approximate treatment of the electron propagator. Starting
with the expression for the full propagator in equation (2.28) and introducing vector
arrays of electron field operators, the matrix expression for the electron propagator
yields

G(E) = 〈〈a;a†〉〉E = (a†|(EÎ − Ĥ)−1a†). (2.29)

The inner projection of G(E) can be easily defined by following the ideas by Pickup
and Goscinski[62]. For positive definite operators

A′ = A1/2ÔbA
1/2 (2.30)

where Ôb is a projection operator in the |b〉 basis defined as

Ôb = |b〉〈b|b〉−1〈b|. (2.31)

Therefore, it can be proven that Ô2
b = Ôb :

Ô2
b = |b〉〈b|b〉−1〈b|b〉〈b|b〉−1〈b|

= |b〉〈b|b〉−1〈b| = Ôb.
(2.32)

Since 〈b|b〉 is real and (〈b|b〉−1)† = 〈b|b〉−1, the operator Ôb is self-adjoint,

Ô†b = (〈b|)†(〈b|b〉−1)†(|b〉)†

= |b〉〈b|b〉−1〈b| = Ôb.
(2.33)

If the basis |b〉 is complete, the operator Ôb is the identity operator and therefore, the
inner projection is exact:

A′ = A1/2ÎA1/2 = A. (2.34)

Then, if A ≥ 0, since 0 ≤ Ôb ≤ 1, the following operator inequality holds

0 ≤ A′ ≤ A (2.35)

Alternate forms of the inner projection may be obtained by the Bazley [70, 71] transfor-
mation

|f〉 = A1/2|b〉 (2.36)
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and Aronszajn [70, 72] transformation

|g〉 = A−1/2|b〉. (2.37)

Using the former one may obtain

A′ = |f〉〈f |A−1f〉−1〈f |. (2.38)

If the operator A has N negative eigenvalues, the relation

A ≥ |f〉〈f |Af〉−1〈f | (2.39)

is valid provided that 〈f |Af〉 also has N negative eigenvalues. Even when the operator
A has no unique sign, the inner projection will reach convergence in the limit of
completeness [73, 74]. Thus, the need of a resolvent operator in equation (2.29) may be
eliminated by substituting

A = E − Ĥ (2.40)

in equation (2.39) or by substituting

A−1 = E − Ĥ (2.41)

in equation (2.38). The superoperator inverse is turned into a matrix inverse and the
expression for theG(E) matrix becomes

G(E) = (a†|h)(h|(EÎ − Ĥ)h)−1(h|a†) (2.42)

where h is a manifold of element from the linear space of electron field operators. The
manifold of operators hmay be partitioned into a set of simple field operators, a†, and
an orthogonal complementary set f such that the orthogonal conditions between these
sets of operators are:

(a†|a†) = 1a,

(f |f) = 1a×f ,

(f |a†) = 0f×a,

(a†|f) = 0f .

(2.43)
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When h = {a†; f}, a† ≡ f1 is denoted as the primary space or sector, whereas f ≡
{f3; f5; f7; · · · ; fn}, where n is a positive odd integer, is denoted as the secondary space
or sector. Then, the partitioned form of the propagator matrix may be expressed as

G(E) =
[
(a†|a†) (a†|f)

] [(a†|EÎ − Ĥ|a†) (a†|EÎ − Ĥ|f)
(f |EÎ − Ĥ|a†) (f |EÎ − Ĥ|f)

]−1 [
(a†|a†)
(a†|f)

]
, (2.44)

which reduces to

G(E) =
[
1 0

] [E1− (a†|Ĥa†) −(a†|Ĥf)
−(f |Ĥa†) (f |Ĥf)

]−1 [
1
0

]
. (2.45)

Poles of the propagator, therefore, occur at values of E that are equal to the eigenvalues,
ω, of the superoperator Hamiltonian matrix

Uω = ĤU (2.46)

expressed as

ωn

[
Ua,n

U f,n

]
=
[
(a†|Ĥa†) (a†|Ĥf)
(f |Ĥa†) (f |Ĥf)

]−1 [
Ua,n

U f,n

]
. (2.47)

In the basis of operators one may express the propagator matrix as

G(E) =
[
1 0

] [
U(E1− ω)−1U †

] [1
0

]
. (2.48)

The residues corresponding to the nth electron binding energy, ωn, are defined as

Res(ωn) = lim
E→ωn

Gpq(E)(E − ωn) = Up,nU
∗
q,n. (2.49)

The Dyson orbitals corresponding to the same pole may be expressed as

φDysonn =
∑
p

φpU
∗
p,n. (2.50)

Due to the orthogonalization of the primary and secondary operator space, only the
diagonal of the primary block of the inverse of (h|(EÎ − Ĥ)h) is needed to determine
the propagator matrixG(E). The inverse of the propagator matrix may be expressed
as[62, 75]

G−1(E) = (a†|(EÎ − Ĥ)a†)− (a†|Ĥf)(f |(EÎ − Ĥ)f)−1(f |a†)

= E1a − Ĥaa − Ĥaf (E1a − Ĥff )−1Ĥfa.
(2.51)
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The contributions from the secondary space of the eigenvectors, Uf do not appear
in the residues.Therefore, the search of poles and residues requires only the solution
of equation (2.46). Thus, the usual matrix diagonalization techniques used in config-
uration interactions calculations may be applied to the electron propagator, where
instead of configurations, operators are used to form the basis. In the case of ionization
energies (electron detachments), in addition to the usual CI-like operator for occupied
orbitals (one–hole, h, and two–hole one–particle, 2hp operators for shakeup processes)
operators corresponding to virtual orbitals (one–particle, p, and two–particle one–hole,
2ph, for the shakeon processes) may contribute to the eigenvector, U , to generate the
N − 1–electron states in the Hilbert space. These operators are also needed in the case
of electron affinities (electron attachments); electron attachment operators also have h,
p, 2hp and 2ph constituents.

2.2.4 Hartree–Fock orbitals and binding energies

In quantum chemistry, the ground state Hartree–Fock spin–orbital basis is the most
commonly used basis for calculations regarding atoms and molecules. According to
the Koopmans’s theorem[5], KT, Hartree–Fock ab–initio orbital energies may be good
measures of the valence electron binding energies of atoms and molecules. Although
Hartree–Fock orbital energies may give an acceptable qualitative description of the
ionization of valence electrons, these energies are a poor representation of the core
ionization energies. In order to go beyond the qualitative results of Koopmans’s
theorem, the addition of correction terms are necessary. These corrections terms may be
separated into two classes, relaxation terms and correlation terms. The relaxation terms
may be obtained by performing separate Hartree–Fock calculations on the N–electron
ground state and the N ± 1–electron final state corresponding to the ionic state of an
electron detachment or attachment process. The difference between the total energies
calculated for the N–electron ground state and its corresponding ion state yields the
approximate electron binding energy with full account of the relaxation process. This
procedure of approximating the binding energies is known as the ∆ESCF procedure.
On the other hand, correlation terms are more complicated to generate and require a
deeper analysis that can be found in great detail elsewhere [76]. In the calculation of
accurate binding energies, both correlation and relaxation terms need to be balanced
for each system under consideration. Furthermore, this equilibrium between the
correlation and relaxation terms varies a great deal from the core to the valence region.
Finding the delicate stability between the correlation and relaxation terms, which is
unique for each system under consideration, is what makes the problem of calculating
electron binding energies challenging. The qualitative classification of the electron
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detachment and attachment processes may be done in terms of molecular orbital (MO)
configurations. For one–electron detachment processes, a hole may be created in
a formerly doubly occupied MO reference determinantal wave–function. The one–
electron detachment energy can be viewed as a Koopmans’s theorem value adjusted
by the final–state orbital relaxation and electron correlations. In the transition process
that describes the detachment of one electron, in addition to the creation of a hole in
the reference state, the shakeup processes may also be considered by two electrons
leaving occupied MOs with the attachment of an electron to a virtual MO as shown in
figure 2.1. In general, the one–hole, 1h, and one–particle, 1p configurations correspond
to qualitative Koopmans pictures for the description of the electron detachment and
attachment processes. However, in order to obtain quantitative results, configurations
such as 2ph, 2hp, 3ph, 3hp, . . . , np(n − 1)h, nh(n − 1)p, where n is an positive odd
integer, need to be considered.

i

j
k

l

a
b

c

Occupied (O)

V irtual (V )

Ref. 1h 2hp

Fig. 2.1.: Electron detachment from a closed-shell reference state.

2.3 Dyson equation

The usual approximation procedure to evaluate the EP involves a perturbation expan-
sion. Poles of an unperturbed one–electron propagator,G0(E), where

[G0(E)]pq = δpq(E − εp)−1, (2.52)

equal canonical Hartree–Fock orbital energies, εp. The latter are eigenvalues obtained
through self–consistent solution of the Hartree–Fock equations, which in canonical
form read

FφHFp = εpφ
HF
p , (2.53)
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where φHFp is a canonical Hartree–Fock orbital. In the frozen–orbital, single–determinant
approximation employed in Koopmans’s theorem, ionization energies are related to
occupied orbital energies by

Ip = −εp. (2.54)

Results at the Koopmans’s theorem level usually are quantitatively inadequate and
often produce erroneous orderings of cationic states because they neglect electron
correlation and orbital relaxation in final states. With the introduction of an energy–
dependent, non–local potential known as the self–energy, Σ(E), an improved electron
propagator can be obtained fromG0(E) by employing the Dyson equation, which in
its inverse, matrix form reads

G−1(E) = G0
−1(E)−Σ(E). (2.55)

The propagator poles may be computed from the equivalent expression [2, 15]

[F + Σ(Ep)]φDysonp ≡ Γ(Ep)φDysonp = Epφ
Dyson
p , (2.56)

where F is the Fock operator of equation 2.53 that is generated by the one–electron
density matrix of the reference state,

(a†p|(EÎ − Ĥ)a†q) = Eδpq − hpq − Σrs〈pr||qs〉〈N, 0|a†ras|N, 0〉 ≡ Epδpq − Fpq, (2.57)

which may be correlated. Ep is a pole ofG(E) which satisfies the Dyson equation and
the eigenfunctions are the Dyson orbitals. Hence, the inverse of the Dyson equation
may be written as

G−1(E) = E1− F −Σ(Ep). (2.58)

Thus, by demanding that G−1(E) = 0 the poles of the electron propagator may be
obtained. A more succinct expression for equation (2.56) in which the condition of
G−1(E) having a zero eigenvalue is imposed may be expressed by

[F + Σ(E)]C = CE. (2.59)

This expression can be thought as a generalization of the canonical Hartree–Fock
equations, where the exchange and Coulomb terms in the Fock operator are subject to a
correlated one–electron density matrix, and the orbital relaxation as well as correlation
in the final states are described by the self–energy operator. In electron propagator
theory, all the contributions from the correlated motion of the electrons are collected into
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the self–energy matrix. This matrix has energy–dependent and energy–independent
(also known as constant) components

Σ(E) = σ(E) + Σ(∞). (2.60)

When E approaches infinity, the energy–dependent terms vanishes and only the con-
stant terms of the self–energy matrix remain,

Σpq(E) = Σrs〈pr||qs〉ρcorrrs . (2.61)
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3Electron Propagator
Approximations

„Although many of the artifices employed in the works
before mentioned are remarkable for their elegance, it
is easy to see they are adapted only to particular
objects, and that some general method, capable of
being employed in every case, is still wanting.

— George Green
(The mathematical theory of electricity)

In electron propagator theory, all relaxation and correlation effects reside in the self–
energy operator. Although the exact form of the self–energy operator is known, it
is seldom feasible to employ. (Full configuration interaction calculation has simi-
lar difficulties.) The energy–dependent, non–local form of the self–energy operator
may be systematically improved by increasing its flexibility with perturbation theory
procedures. Different propagator approximations are attained by choosing different ap-
proximate ground states (i.e. the Hartree–Fock ground state, Kohn–Sham ground state,
multiconfigurational reference states, etc.), and by truncation of the inner projection
superoperator manifold f . Furthermore, the accuracy of the electron propagator ap-
proximations may be systematically increased by enlargement of basis sets. Although
electron propagator theory allows the construction of several convenient ab–initio prop-
agator approximations, the exact one–electron propagator is not one of them. In the
derivation of the one–electron propagator no approximations have been made, and
therefore the one–electron propagator is exact so far. It is not until the introduction of
an approximate wave–function, usually a Hartree–Fock determinant, that an approxi-
mation into the one–electron propagator equations is for the first time included.
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3.1 Propagator approximations

In electron propagator theory, approximations to F + Σ(E) are generally needed to
calculate useful data. Propagators with approximate forms of Σ(E) that assume a
canonical, Hartree–Fock basis of orbitals have been introduced for the calculation of
binding energies of atoms and molecules [10, 15]. The formalism of many of these
propagators employ a closed–shell reference determinant that in most cases can be
extended to the unrestricted Hartree–Fock spin orbital basis. When the superoperator
Hamiltonian matrix Ĥ is partitioned as

Ĥ = Ĥ0 + (Ĥ − Ĥ0), (3.1)

the same techniques as in Raleigh–Schrödinger perturbation theory can be imple-
mented. Thus, one may identify the zeroth–order propagator,

G−1
0 (E) = (a†|(EÎ − Ĥ0)a†). (3.2)

The metric corresponding to the superoperator space is defined by

(X|Y) = 〈N |[X†,Y]+|N〉 = Tr[ρ[X†, Y ]+] (3.3)

where the reference density operator is defined as:

ρ = |N〉〈N |. (3.4)

To obtainG(E), the inner projection[69, 70] with a complete manifold of operatorsX
allows the replacement of the superoperator resolvent by an inverse matrix, resulting
in

G(E) = (a†|X)(X|(EÎ − Ĥ)X)−1(X|a†). (3.5)

The projection manifold may be partitioned into the set of simple field operators and
an orthonormalized complementary set, f ,

(a†|X) = [(a†|a†) (a†|f)] = [1a 0a,f ]. (3.6)

When the reference determinant is defined by the approximate ground state expressed
as

|N〉 = |HF〉+ |Correlation〉, (3.7)
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the inverse of the full electron propagator matrixG(E) may be expressed as

G−1(E) = G−1
0 (E)−Σ(E). (3.8)

In this manner,G−1
0 (E) is the so–called Hartree–Fock propagator:

[G−1
0 (E)]pq = (E − εp)δpq, (3.9)

where εp are the elements of the diagonal Hartree–Fock matrix, i.e. the Hartree–Fock
orbital energies. Therefore, the elements of the inverse form of the Dyson equation for
the full electron propagator may be expressed as:

G−1
pq (E) = (E − εp)δpq − Σpq(E). (3.10)

3.2 Perturbative improvements to the Self–energy

The elements of the many electron propagator satisfy

G−1
pq (E) = (E − εp)δpq − Σpq(E), (3.11)

where the determinant of the inverse propagator matrix det(G−1) vanishes at values
of the energy parameter corresponding to electron binding energies. These electron
binding energies correspond to the energy parameter E and satisfy the relation

det[(E1− ε)−Σ(E)] = 0 (3.12)

or

E = C†(E)[ε−Σ(E)]C(E) (3.13)

If the inner projection manifold f is neglected and, corrections to the ground state
beyond |HF〉 are not considered, the self–energy vanishes and the electron binding
energies are given as the negative of the pth orbital energy, εp. Since neither relaxation
nor correlation effects are considered, this approximation to the values of the electron
binding energies is the so–called frozen orbital approximation obtained by the Koop-
mans’s theorem. In electron propagator theory, the values obtained by Koopmans’s
theorem, the Hartree–Fock orbital energies, are the poles of the zeroth–order electron
propagator matrix G0(E). Koopmans’s theorem results may be improved by means
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of perturbative corrections that account for final–state orbital relaxation and electron
correlation. These corrections to the Koopmans’s theorem results are contained in the
self–energy matrix, Σ(E). The partition of the Hamiltonian presented in equation (3.1)
may be rewritten as

Ĥ = Ĥ0 + Ŵ , (3.14)

where Ŵ is defined as the fluctuation potential. After applying the usual perturbation
theory techniques,the Hamiltonian partition may be expressed as

Ĥ = Ĥ0 + λŴ , (3.15)

where λ is a dimensionless parameter with continuous values between zero (no pertur-
bation) and unity(full perturbation). If the density operator is expressed as a Maclaurin
power series1 in λ,

ρ = ρ0 + λρ1 + λ2ρ2 + · · ·+ λkρk, (3.16)

the following commutator relation holds for the density operator and the unperturbed
Hamiltonian operator:

[H0, ρ0] = 0. (3.17)

Thus, for the full Hamiltonian, one may obtain the following commutator relation-
ship:

[H0, ρk] + [W,ρk−1] = 0. (3.18)

When the superoperator Hamiltonian matrix is partitioned into primary (P) and sec-
ondary (Q) sectors,

Ĥ =
[

P Q
Q Q

]
, (3.19)

each of the blocks of the superoperator Hamiltonian matrix Ĥ may be evaluated in
various orders of the fluctuation potential. For example, when the superoperator matrix
Ĥ is expressed in terms of the field operators a and f ,

Ĥ =
[

(a|Ĥ|a) (a|Ĥ|f)
(f |Ĥ|a) (f |Ĥ|f)

]
, (3.20)

1Taylor series at zero are also called Maclaurin series. This special case of Taylor series was named after
the Scottish mathematician Colin Maclaurin, who made extensive use of them in the 18th century.
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the evaluation of any of the blocks of the superoperator Hamiltonian in a given order n
will be defined as the sum of the n constituents that define that order. In this respect,
for the primary operator block evaluated to the nth order, the expression obtained is

(a|Ĥ|a)n = (a|Ĥ|a)0 + (a|Ĥ|a)1 + (a|Ĥ|a)2 + · · ·+ (a|Ĥ|a)n. (3.21)

Inclusion of all self–energy terms through a given order is generally accomplished
by improving the reference density operator. The superoperator matrix elements that
are needed to recover all self-energy terms up to fifth order for the usual case with a
Hartree–Fock reference density operator are reported in table 3.1.

n (a|Ĥ|a) (f3|Ĥ|a) (f3|Ĥ|f3) (f5|Ĥ|a) (f5|Ĥ|f3) (f5|Ĥ|f5)
1 1 - - - - -
2 2 1 0 - - -
3 3 2 1 - - -
4 4 3 2 2 1 0
5 5 4 3 3 2 1

Tab. 3.1.: Superoperator Hamiltonian requirements for Σn.

3.2.1 Hermiticity

Non–Hermitian terms in the superoperator Hamiltonian matrix may be present when
the anti–commutator, [Y †, X]+, in

(Y |ĤX)− (X|ĤY )∗ = Tr([H, ρ][Y †, X]+]), (3.22)

does not vanish [75]. Such terms appear in the superoperator couplings of the type
(fn|Ĥfm) where n and m ∈ Z with n > m. These Non–Hermitian terms of these
superoperator couplings are absent in the adjoint matrices, and involve elements of
the Fock operator. For instance, in (f1|Ĥf5), the non–Hermitian terms involve electron
repulsion integrals that occur in the first–order, Møller–Plesset amplitudes. Linderberg
observed that non–Hermitian terms may be systematically eliminated via perturbative
improvements to the reference density operator[75]. For instance, after making the
usual assumptions of perturbation theory, for the relationship expressed in equation
(3.18), when the reference density operator ρ is correct through order k,

(Y |ĤX)− (X|ĤY )∗ = Tr([W,ρk][Y †, X]+]), (3.23)
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and the non–Hermitian terms are of order k + 1. Inclusion of first–order corrections to
the reference density operator suffices for Hermiticity in the superoperator Hamiltonian
matrix through first order.

3.3 The second–order electron propagator

The first correction to the self–energy matrix in the one–electron propagator occurs at
the second order of perturbation. The superoperator Hamiltonian matrix that recovers
the poles of the second order self–energy may be expressed as

Ĥ =
[

(a|Ĥ|a)(0) (a|Ĥ|f3)(1)

(f3|Ĥ|a)(1) (f3|Ĥ|f3)(0)

]
, (3.24)

where f3 is the vector of 2hp and 2ph operators defined with respect to the reference
determinant. The second–order approximation to the self–energy has the simplest
expressions for the superoperator Hamiltonian matrix blocks. These blocks may be
expressed in terms of creation and annihilation field operators as

(a|Ĥa) : (aι|Ĥaκ) = 〈ref |[aι[aκ,H]]+|ref〉

(f3|Ĥf3) : (a†ιasat|Ĥa†κapaq) = 〈ref |[a†ta†saι[a†κapaq,H]]+|ref〉

(a|Ĥf3) : (au|Ĥa†κapaq) = 〈ref |[a†u[a†κapaq,H]]+|ref〉

(f3|Ĥa) : (a†ιasat|Ĥar) = 〈ref |[a†ta†saι[ar,H]]+|ref〉

(3.25)

where |ref〉 is the reference determinant used for the superoperator coupling expan-
sion. The indices of the creation and annihilation field operators are general indices,
i.e. correspond to either a hole or a particle. The expressions for these field opera-
tor coupling are obtained by applying each set of field operator into the reference
determinant that has been selected to represent the reference–state of the molecular
system. In quantum chemistry, the Hartree–Fock reference–state may be the simplest
determinant that could be used. In most cases, the Hartree–Fock reference determinant
will suffice for the correct description of atoms and molecules. However, no all the
important electronic interaction nor electronic quantum effects can be described by a
single Hartree–Fock wave–function. The Hartree–Fock wave–function corresponds to
the portrait of a particular case of several electronic quantum states that may be impor-
tant for the correct description of the molecular system and its properties. Therefore,
the evaluation of the superoperators coupling using a more general reference–state
brings the advantage of achieving more general expressions that can be adapted to
describe cases in which several particular determinants are needed. In this regard,

44 Chapter 3 Electron Propagator Approximations



H. H. Corzo and J. V. Ortiz have deduced and introduced more general expressions
for the superoperator coupling of equation (3.25)[11]. The expression reported by H.
H. Corzo and J. V. Ortiz were derived using as the reference–state the true vacuum
state[48], |vac〉. These expressions correspond to a more general determinant than the
Hartree-Fock determinant and may be used in the description of more complicated
types of molecular systems and electronic processes.

3.3.1 Primary–Primary block

When a general determinant is employed, the expansion of the operator vectors corre-
sponding to the zeroth order Primary–Primary block of superoperator Hamiltonian
matrix (Ĥ(0)

PP) yields
(aι|Ĥ(0)aκ) = Fκι. (3.26)

The elements of the Ĥ(0)
PP block in the canonical Hartree–Fock orbital spin–basis read

(aι|Ĥaκ)(0) = δκιει. (3.27)

These elements are the diagonal elements of the Fock matrix, and therefore, they
represent the one–electron energies, or Hartree–Fock orbital energies, obtained after
solving the Roothaan equations.

3.3.2 Primary–Secondary and Secondary–Primary blocks

The expansion of the terms in first order for the Primary–Secondary block ( Ĥ(1)
PQ)

yields

(au|Ĥa†κapaq)(1) = δupFκq(nκ−nq)+δuqFκp(nκ−np)−〈pq‖uκ〉[(1−nκ)npnq+nκ(1−np)(1−nq)]
(3.28)

whereas for the Secondary-Primary block ( Ĥ(1)
QP) the expression is

(a†ιasat|Ĥar)(1) = 〈ιr‖st〉[(1− nι)nsnt + nι(1− ns)(1− nt)]. (3.29)

In Ĥ(1)
PQ, the terms that depend on the Fock operator are non–Hermitian. These terms

may be omitted [11, 75]. Therefore, the expressions for the Primary–Secondary block
may be rewritten as

(au|Ĥa†κapaq)(1) = −〈pq‖uκ〉[(1− nκ)npnq + nκ(1− np)(1− nq)] (3.30)

3.3 The second–order electron propagator 45



3.3.3 Secondary–Secondary block

The expansion of the Secondary–Secondary block of superoperator Hamiltonian matrix
(ĤQQ) reads

(a†ιasat|Ĥa†κapaq) = Fqtδικδsp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− Fqsδκιδtp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− Fptδqsδκι[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ Fpsδικδtq[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ Fικ[δtpδsq − δpsδtq][(1− nι)nsnt + nι(1− ns)(1− nt)]

+ 〈ιq‖κt〉δsp[(1− nι)nsnt + nι(1− ns)(1− nt)](nq − nκ)

+ 〈ιp‖κt〉δsq[(1− nι)nsnt + nι(1− ns)(1− nt)](nκ − np)

+ 〈ιq‖κs〉δtp[(1− nι)nsnt + nι(1− ns)(1− nt)](nκ − nq)

+ 〈pι‖sκ〉δtq[(1− nι)nsnt + nι(1− ns)(1− nt)](np − nκ)

+ 〈pq‖ts〉δκι[(1− nκ)nsnt + nκ(1− ns)(1− nt)](np + nq − 1).
(3.31)

Since the full many–body Hamiltonian was used for the derivation of this superoperator
coupling, this last expression corresponds to the first order superoperator coupling
evaluation. In zeroth order, however, only terms that depend on the Fock operator do
not vanish,

(a†ιasat|Ĥa†κapaq)(0) = Fqtδικδsp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− Fqsδκιδtp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− Fptδqsδκι[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ Fpsδικδtq[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ Fικ[δtpδsq − δpsδtq][(1− nι)nsnt + nι(1− ns)(1− nt)].

(3.32)

When a grand–canonical Hartree–Fock spin–orbital basis is used the above expression
reduces to

(a†ιasat|Ĥa†κapaq)(0) = εtδqtδικδsp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− εsδqsδκιδtp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− εtδptδqsδκι[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ εsδpsδικδtq[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ εκδικ[δtpδsq − δpsδtq][(1− nι)nsnt + nι(1− ns)(1− nt)],
(3.33)
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that may be reduced as

(a†ιasat|Ĥa†κapaq)(0) = (εt + εs − ει)[δqtδsp − δtpδsq][(1− nκ)nsnt + nκ(1− ns)(1− nt)]δικ.
(3.34)

The expression in equation (3.34) depends on a difference of products of Dirac deltas
that are related by exchanging their indices. This relationship between the Dirac deltas
resembles the determinant of a two by two matrix. Therefore, further simplification of
equation (3.34) may be obtained by means of matrix algebra notation[11]. However, for
the sake of simplicity, equation (3.34) will be simplified by setting the logical condition
that a single index can not be associated to two different particles, i.e., the operators
are unique operators. A creation or annihilation operator acts on a specific particle at a
given time. Therefore, if s > t and p > q implies that δsq δtp is equal to zero. Therefore
the expression in equation 3.34 reduces to

(a†ιasat|Ĥa†κapaq)(0) = (εt + εs − ει)[(1− nκ)nsnt + nκ(1− ns)(1− nt)]δqtδspδικ.
(3.35)

Finally, for a grand–canonical Hartree–Fock basis the expression for Ĥ(0)
QQ yields

(a†ιasat|Ĥa†κapaq)(0) = (εt + εs − ει)[(1− nκ)nsnt + nκ(1− ns)(1− nt)]. (3.36)

3.3.4 Second–Order Self–Energy

The Dyson equation that express the second order self–energy yields

Σ(2)(E) = (a|Ĥf3)(1)[E1− (f3|Ĥf3)(0)]−1(f3|Ĥa)(1). (3.37)

Taking this definition of the second order self–energy and replacing each of the super-
operator couplings by their general expressions, the elements of the Σ(2)(E) may be
expressed as

Σ(2)
ru (E) =

∑
ι,κ,p,q,s,t

Nιst〈ιr‖st〉
[
Nιst[E1 + Fικδpsδtq − Fqtδικδsp − Fpsδικδtq]

]−1
Nκpq〈pq‖κu〉,

(3.38)

where,
Nκpq = [(1− nκ)npnq + nκ(1− np)(1− nq)] (3.39)
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and
Nιst = [(1− nκ)nsnt + nκ(1− ns)(1− nt)] (3.40)

are the normalization factors of in terms of the occupational numbers. The second–order
self–energy matrix with a grand canonical, Hartree–Fock reference density operator,
when p = s, q = t and ι = κ, yields

Σ(2)
ru (E) =

∑
ι,p<q

Nιpq〈rι‖pq〉〈pq‖uι〉
E1 + ει − εp − εq

, (3.41)

Using the above expression, the 2hp and 2ph terms for the second order propagator
can be easily infer when the correct indices convention and values of the occupation
numbers are adopted. If the indices a, b, c are set for virtual orbitals, i, j, k for occupied
orbitals and κ, ι, ν for either virtual or occupied orbitals, then the 2hp term is obtained
when nι = 0 and np = nq = 1, whereas, the 2ph term is obtained when nι = 1 and
np = nq = 0. Therefore, the elements of the second–order self–energy matrix may be
written as

Σ(2)
ικ (E) =

∑
a,i<j

〈ιa‖ij〉〈ij‖κa〉
E + εa − εi − εj

+
∑
i,a<b

〈ιi‖ab〉〈ab‖κi〉
E + εi − εa − εb (3.42)

This last expression of the self–energy matrix contains the largest corrections to Koop-
mans’s theorem. The second–order self–energy may be sufficient for a qualitative
correct ordering of the valance electron final states in the photoelectron spectra, espe-
cially when a good quality basis set is used.

3.3.5 Second–order relaxation correction terms

When computing ionization energies, the indices of the second order self–energy matrix,
Σ(2)
ικ (E) will correspond to occupied orbitals in the Hartree–Fock reference determinant,

i.e. Σ(2)
pp (E). If one isolates the terms in the second sum of equation (3.42) that results

when the indices a or b are equal to i one obtains

ΣR(2)
pp (E) = −

∑
ai

|〈ap||ip〉|2

εa − εi
. (3.43)

This last expression is precisely the second–order contribution to the ionization energy
calculated as the self–consistent field (SCF) difference

− Ip(∆SCF ) = EHF (N)− EpHF (N − 1) (3.44)
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with
EHF (N) =

∑
a

εa −
1
2
∑
ab

〈ab||ab〉. (3.45)

In equation (3.44), EpHF (N − 1) is the total energy obtained from a separate SCF
calculation on the state characterized by the spin–orbital p being removed from the
electron configuration of the Hartree–Fock N–electron reference state. This ∆SCF
approximation is defined as the relaxation correction of the ionization energy. Thus,
equation (3.43) displays the second–order relaxation correction terms. Similarly, the
relaxation correction terms of the self–energy matrix in any order of perturbation may
be identified. Furthermore, rules for the separation of the self–energy relaxation (ΣR

pp)
and correlation (ΣC

pp) terms have been given in the literature [77].

3.4 Diagonal approximations

In the basis of Hartree–Fock spin–orbitals, the self–energy includes all relaxation and
correlation corrections. Hartree–Fock orbitals can be a reasonable approximation to
the Dyson orbitals. Under this idea, one may neglect the off–diagonal elements of the
second–order self–energy matrix,

Σ(2)
pq (E) = 1

2
∑
aij

〈pa||ij〉〈ij||qa〉
E + εa − εi − εj

+ 1
2
∑
iab

〈pi||ab〉〈ab||qi〉
E + εi − εa − εb

, (3.46)

where i, j, k, ... are occupied (h) spin–orbital indices, a, b, c, ... are virtual (p) spin–orbital
indices and anti–symmetrized electron repulsion integrals are represented in Dirac
notation. This diagonal, or quasiparticle, approximation of the self–energy assumes
that Koopmans’s theorem provides a qualitatively reasonable description of an ionizing
transition and leads to a simplified form of the Dyson equation that reads

E = εp + Σpp(E) (3.47)

where the correlation contributions to the matrix elements of the Fock operator of the
Dyson quasiparticle equation [F + Σ(Er)]φDysonr = Erφ

Dyson
r are absorbed into Σ(E).

In this way, corrections to the results of Koopmans’s theorem may be calculated for
each canonical Hartree–Fock orbital. In the diagonal approximation, Dyson orbitals
become proportional to normalized, canonical Hartree–Fock orbitals such that

φDysonp = √πpφHFp , (3.48)
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where pole strengths are evaluated by the formula

πp = (1− dΣpp(E)
dE

)−1. (3.49)

The derivative of Σpp(E) with respect to E is evaluated at the pole (i.e. the self–
consistent value of E in equation (3.47)). These derivatives may also serve to accelerate
the search for poles in equation (3.47) by use of Newton’s numerical method for find-
ing the roots of a function of a single variable. Diagonal self–energy approximations
have been exploited in a wide variety of applications [22, 25, 78–80]. Employment
of equation (3.47) with the second–order self–energy of equation (3.46) defines the
diagonal, second–order, or D2, approximation. The D2 approximation may be the most
efficient electron propagator approximation for the calculation of vertical detachment
energies of atoms and molecules. In the canonical Hartree–Fock basis, the D2 approxi-
mation requires a relatively small set of four–index electron repulsion integrals where
one index corresponds to a canonical orbital of interest for each of the detachment
energy calculation. The other three indices correspond to 2hp or 2ph operators. The D2
lengthiest calculation has an arithmetic scaling factor of OV 2.

3.4.1 The D3 approximation

In the canonical Hartree–fock spin–orbital basis, the diagonal elements of the third–
order self–energy matrix [81, 82] read

Σ(3)
pp (E) = Σ(3)

pp (∞)+

∑
aij

[Ypaij + 1
2Upaij(E)]〈pa||ij〉

E + εa − εi − εj
+
∑
iab

[Ypiab + 1
2Upiab(E)]〈pi||ab〉

E + εi − εa − εb
, (3.50)

where
E = εp + Σpp(E). (3.51)

Upaij(E) = −1
2
∑
kl

〈pa||kl〉〈kl||ij〉
E + εa − εk − εl

− (1− Pij)
∑
bk

〈pb||jk〉〈ak||bi〉
E + εb − εj − εk

. (3.52)

Upiab(E) = 1
2
∑
cd

〈pi||cd〉〈cd||ab〉
E + εi − εc − εd

+ (1− Pab)
∑
jc

〈pj||bc〉〈ic||ja〉
E + εj − εb − εc

(3.53)

Ypaij = 1
2
∑
bc

〈pa||bc〉tijbc + (1− Pij)
∑
kb

〈pk||bj〉tikab (3.54)

Ypiab = 1
2
∑
jk

〈pi||jk〉tjkab + (1− Pab)
∑
jc

〈pc||jb〉tijac (3.55)
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and where Pij and Pab are spin–orbital permutation operators. The Y matrices are
second–order intermediates that depend on first–order wavefunction amplitudes de-
fined by

tijab = 〈ij||ab〉
εi + εj − εa − εb

. (3.56)

The constant (or energy–independent) self–energy term,

Σ(3)
pp (∞) =

∑
tu

〈pt||pu〉ρ(2)
tu , (3.57)

arises from the Fock operator in the Dyson quasiparticle equation and depends on
the second–order density matrix, ρ(2). The use of the third–order self-energy Σ(3)

pp

for the calculation of binding energies in atoms and molecules defines the so–called
D3 approximation. In the D3 approximation, the arithmetic bottleneck occurs in
the evaluation of the Upiab(E) intermediate (see equation 3.53), where for every p, a
summation that involves electron repulsion integrals with four virtual indices has
OV 4 scaling. This step must be repeated for every iteration with respect to E. The
latter integrals may be calculated and stored or may be regenerated as needed in a
semi–direct algorithm [83, 84].

3.4.2 OVGF

The Outer valence Green function (OVGF) approximations assume a diagonal self–
energy matrix and describe low–energy transitions [81, 85]. All versions of OVGF are
based on the third–order expansion of the self–energy and include estimates of higher–
order contributions. Three frequently applied procedures have been denominated as
versions A, B and C [81, 85, 86]. OVGF version A corrects canonical HF orbital energies
with

ΣOV GF−A
pp (E) = Σ(2)

pp (E) + (1 +Xp)−1Σ(3)
pp (E), (3.58)

where E is the pole obtained with diagonal second–order and third–order self–energy
terms. The scaling coefficient for the third order–terms in the latter equation depends
on Xp, which is defined by

Xp = −2σ
(3)
pp (E)

Σ(2)
pp (E)

, (3.59)

where the numerator has 2hp and 2ph contributions such that

σ(3)
pp (E) = 1

2
∑
aij

〈pa||ij〉Ypaij
E + εa − εi − εj

+ 1
2
∑
iab

〈pi||ab〉Ypiab
E + εi − εa − εb

. (3.60)
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The B version [9] is similar, but separates the energy–dependent 2ph and 2hp contribu-
tions to σ(3)

pp through

ΣOV GF−B
pp (E) = Σ(2)

pp (E)+Σ(3)
pp (∞)+(1+X2hp

p )−1Σ(3−2hp)
pp (E)+(1+X2ph

p )−1Σ(3−2ph)
pp (E),

(3.61)
where

X2hp
p = −2σ

(3−2hp)
pp (E)
Σ2−2hp
pp

, (3.62)

X2ph
p = −2σ

(3−2ph)
pp (E)
Σ2−2ph
pp

. (3.63)

In version C, the self–energy correction reads

ΣOV GF−C
pp (E) = Σ(2)

pp (E) + (1 +XC
p )−1Σ(3)

pp (E), (3.64)

where

XC
p =

X2hp
p Σ3−2hp

pp (E) +X2ph
p Σ3−2ph

pp (E)
Σ3−2hp
pp (E) + Σ3−2ph

pp (E)
. (3.65)

An algorithm that introduces several numerical criteria for the choosing among these
alternatives has been developed and implemented for the OVGF approximation [81,
85, 86]. The OVGF approximation requires a full integral transformation and has an
iterative, bottleneck step with OV 4 scaling. Although the A, B and C versions of OVGF
introduce no numerical parameters, the OVGF selection procedure does.

3.4.3 P3 and P3+

The arithmetic bottleneck and efficiency problems for computing binding energies in
the D3 and OVGF approximations may be avoided with the P3 and P3+ approximations.
The P3 approximation, also known as partial third–order quasiparticle theory [82, 87],
is an approach in which several terms in Σ(3)(E) are omitted from the calculations. The
P3 self–energy for electron detachment energies reads

ΣP3(E)kk = 1
2
∑
iab

〈ki||ab〉〈ab||ki〉
E + εi − εa − εb

+ 1
2
∑
aij

〈ka||ij〉[Wkaij + Ukaij(E)]
E + εa − εi − εj

, (3.66)

where
Wkaij = 〈ka||ij〉+ Ykaij . (3.67)
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This approximation retains all second order terms and has some 2h1p terms in third
order. The arithmetic bottleneck occurs in the evaluation of Ykaij intermediates. Here,
the first term in equation 3.54 requires electron repulsion integrals with three virtual
indices and has an arithmetic scaling factor ofO2V 3. No transformed electron repulsion
integrals with four virtual indices are required in calculations of vertical ionization
energies. On the other hand, the renormalized partial third order, or P3+, method is
obtained by introducing a renormalization factor such that [88],

ΣP3+(E)kk = 1
2
∑
iab

〈ki||ab〉〈ab||ki〉
E + εi − εa − εb

+ [1 + Λk]−1 1
2
∑
aij

〈ka||ij〉[Wkaij + Ukaij(E)]
E + εa − εi − εj

,

(3.68)
where Λk reads

Λk = −1
2[Σ(2)

kk (E)]−1 ×
∑
aij

〈ka||ij〉Ykaij
E + εa − εi − εj

. (3.69)

This simple procedure avoids exaggeration of final state relaxation effects with virtually
no additional computational effort. The P3+ approximation has a single O2V 3 step
and iterations with O3V 2 scaling. P3+ has a need for transformed integrals with three
virtual indices only in a single step and independence of integrals with four virtual
indices.

3.5 Non–diagonal approximations

Electron propagator approximations in which the complete self–energy matrix is con-
sidered for the calculation of the binding energies are sometimes referred to as the
non–diagonal electron propagator approximations. In these electron propagator ap-
proximations, self–energy terms in all orders of the fluctuation potential are procured
by considering the eigenvalues and eigenvectors of the super operator Hamiltonian
matrix, ĤΩ = Ωω. The simplest non–diagonal approximations is, perhaps, the so–
called non–diagonal second–order propagator (ND2). For the ND2 approximation all
the elements corresponding to second–order superoperator Hamiltonian matrix and
the occupied and virtual spin–orbitals (i.e. the occupied–occupied, occupied–virtual,
virtual–occupied, and virtual–virtual blocks) are considered. In this respect, in the basis
of Hartree–Fock spin–orbitals, the self–energy matrix for the ND2 method is equal to
Σ(2)
ικ (E) of equation (3.42). Similarly, this fashion, several approximations in which the

diagonal self–energy approximation has not been made may be developed.
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3.5.1 The 2ph−TDA approximation

The second–order electron propagator approximation may be applied for the calcula-
tion of outer valence ionization energies which are far from the poles of the self–energy.
Usually, these ionization energies have pole strengths close to unity, thus, one may
expect a single line in the photoelectron spectrum for each molecular orbital. However,
in the inner valence region the one–particle picture of ionization may break down com-
pletely, and satellite lines with small relative intensities may accompany the ionization
main lines. These satellite lines as well as the inner valence ionization energies lie in the
pole region of the self–energy. The two–particle, one–hole, Tamm–Dancoff (2ph−TDA)
approximation, which takes the pole structure of the self–energy into account, was
introduced by Cederbaum and coworkers [85, 89, 90] in order to calculate inner va-
lence ionization energies and their satellite lines. The 2ph−TDA approximation is a
renormalized method that employs a Hartree–Fock reference state and considers all
first–order couplings among h, p, 2hp, and 2ph operators. This propagator approxima-
tion may be advantageous over the ND2 approximation for the calculation of ionization
energies of electrons in which the one–electron concepts useful for the description of
the outer valence and core electrons are not longer valid. The 2ph−TDA approximation
is equivalent to the choice

Ĥ =
[

(a|Ĥ|a)(0) (a|Ĥ|f3)(1)

(f3|Ĥ|a)(1) (f3|Ĥ|f3)(1)

]
. (3.70)

Thus, the 2ph−TDA self–energy may be expressed as

Σ(2ph−TDA)(E) = (a|Ĥf3)(1)[E1− (f3|Ĥf3)(1)]−1(f3|Ĥa)(1). (3.71)

The 2ph−TDA self–energy differs from the second–order self–energy in the secondary–
secondary block of the superoperator Hamiltonian [15, 91]. In the 2ph−TDA ap-
proximation, the ĤQQ is evaluated in first order. When considering the (f3|Ĥ|f3)(1)

superoperator coupling, and the indexes hierarchy to represent the occupied and vir-
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tual nature of the orbitals, that is ι > s > t and κ > p > q, the Ĥ(1)
QQ block may be

expressed as

(f3|Ĥf3)(1) = (a†ιasat|Ĥa†κapaq)

= Fqtδικδsp[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

+ Fpsδικδtq[(1− nκ)nsnt + nκ(1− ns)(1− nt)]

− Fικδpsδtq[(1− nι)nsnt + nι(1− ns)(1− nt)]

+ 〈ιq‖κt〉δsp[(1− nι)nsnt + nι(1− ns)(1− nt)](nq − nκ)

+ 〈pι‖sκ〉δtq[(1− nι)nsnt + nι(1− ns)(1− nt)](np − nκ)

+ 〈pq‖ts〉δκι[(1− nκ)nsnt + nκ(1− ns)(1− nt)](np + nq − 1)

. (3.72)

Therefore, the Ĥ(1)
QQ superoperator Hamiltonian block for the 2hp superoperator cou-

pling yields

(a†ιasat|Ĥa†κapaq)2hp = Fqtδικδsp + Fpsδικδtq − Fικδpsδtq + 〈ιq‖κt〉δsp + 〈pι‖sκ〉δtq + 〈pq‖ts〉δκι,
(3.73)

whereas for the 2ph case the expression is

(a†ιasat|Ĥa†κapaq)2ph = Fqtδικδsp + Fpsδικδtq − Fικδpsδtq − 〈ιq‖κt〉δsp − 〈pι‖sκ〉δtq − 〈pq‖ts〉δκι.
(3.74)

When the expressions of each of the blocks of the Σ(2ph−TDA) of equation (3.71) are
considered, the final expression for the 2ph−TDA self–energy matrix in the Hartree-
Fock canonical spin–orbital basis reads

Σ(2ph−TDA)
ικ (E) =

∑
a,i<j,b,k<l

〈ιa‖ij〉
[
(E1− Ĥ)−1)

]
aij,bkl

〈kl‖κb〉

+
∑

i,a<b,j,c<d

〈ιi‖ab〉
[
(E1− Ĥ)−1)

]
iab,jcd

〈cd‖κj〉
(3.75)
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A diagonal variation of the 2ph−TDA self–energy may be obtained if the off–diagonal
elements are neglected. The self–energy matrix elements of this approximation denoted
as the D2ph−TDA reads

Σ(D2ph−TDA)
ικ (E) =

∑
a,i<j

〈ιa‖ij〉〈ij‖κa〉
E + εa − εi − εj + 〈ij‖ij〉 − 〈ai‖ai〉 − 〈aj‖aj〉

+
∑
i,a<b

〈ιi‖ab〉〈ab‖κi〉
E + εi − εa − εb − 〈ab‖ab〉+ 〈ia‖ia〉+ 〈ib‖ib〉

(3.76)

A more succinct expression for the above equation may be rewritten as

Σ(D2ph−TDA)
ικ (E) =

∑
r,p,q

Nrpq〈ιr‖pq〉〈pq‖κr〉
E + εr − εp − εq + ∆rpq

, (3.77)

where
Nrpq = [(1− nr)npnq + nr(1− np)(1− nq)] (3.78)

and

∆rpq = 1
2〈pq‖pq〉(np + nq − 1)− 〈rq‖rq〉(nq − nr)− 〈rp‖rp〉(np − nr). (3.79)

It is important to point out that for the self–energy matrix of the 2ph−TDA approxi-
mation the ĤQQ block is no longer diagonal. Since the Σ(2ph−TDA) retains first order
terms in the (F3|ĤF3) superoperator coupling, the ĤQQ block of the superoperator
Hamiltonian contains off–diagonal terms that depends on two electron integrals. There-
fore, the inversion of the ĤQQ is not longer trivial as in the case of the second–order
self–energy matrix. Although several methods and algorithm have been reported to
obtain the inverse of a matrix [92], the nature of the ĤQQ block makes the binomial
series expansion the simplest and most ideal method for the determination of the in-
verse matrix in equation (3.71). The terms in the (f3|Ĥf3)(1) coupling may be separated
in the zeroth–order terms that depend on the unperturbed part of the superoperator
Hamiltonian and the terms that are corrected through first order,

(f3|Ĥf3)(1) = (f3|Ĥf3)(0) + (f3|Ĥf3)(1) = (f3|Ĥ0f3)(0) + (f3|Ŵf3)(1) (3.80)

In general, terms that depends on the fluctuation operator Ŵ are smaller than the
terms that depends on the Ĥ0, therefore the (f3|Ĥf3)(1) matrix may be assumed to be a
diagonal dominant matrix. The inversion of the Ĥ1

QQ matrix in the Dyson equation
may be approximated through a power series equivalent to

1
(A−B) = A−1 +A−1BA−1 +A−1BA−1BA−1 + ..., (3.81)
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where the matrix A is equal to the zeroth order diagonal matrix (f3|Ĥ0f3)(0) and the
matrix B is equal to the skew–symmetric matrix (f3|Ŵf3)(1). Thus, the Σ(2ph−TDA)

self–energy matrix may be rewritten as an expansion of the form

Σ(2ph−TDA)(E) = (a|Ĥf3)(1)[E1− (f3|Ĥ0f3)(0)]−1(f3|Ĥa)(1)

+ (a|Ĥf3)(1)[E1− (f3|Ĥ0f3)(0)]−1(f3|V̂f3)(1) × [E1− (f3|Ĥ0f3)(0)]−1(f3|Ĥa)(1)

+ (a|Ĥf3)(1)[E1− (f3|Ĥ0f3)(0)]−1(f3|V̂f3)(1) × [E1− (f3|Ĥ0f3)(0)]−1(f3|V̂f3)(1)

× [E1− (f3|Ĥ0f3)(0)]−1(f3|Ĥa)(1) + · · · .
(3.82)

In the Hartree–Fock basis, where the usual notation for particles (p or virtual orbitals
with indices a, b, c, . . . ) and holes (h or occupied orbitals with indices i, j, k, . . . ) have
been adopted. The zeroth order contributions to the primary–secondary couplings van-
ish. The resulting first–order terms for the 2ph−TDA approximation may be expressed
as

(a†aaiaj |Ĥaκ)(0) = 〈κa|ji〉

(a†iaaab|Ĥaκ)(0) = 〈κi|ba〉.
(3.83)

The zeroth order terms that depend only on the unperturbed part of the superoperator
Hamiltonian for the 2hp–2hp coupling yields

(a†aaiaj |H0a
†
bakal)(0) = δabδikδjl(εi + εj − εa), (3.84)

whereas the term that is corrected through first order in V is given by

(a†aaiaj |V a
†
bakal)(0) = −δab〈kl|ij〉+ (1− Pij)(1− Pkl)δik〈al|bj〉, (3.85)

for i < j and k < l. The 2ph–2ph couplings through first order in V are given by

(a†iaaab|H0a
†
jacad)(0) = δijδacδbd(εa + εb − εi) (3.86)

and

(a†iaaab|V a
†
jacad)(0) = −δij〈cd|ab〉+ (1− Pab)(1− Pcd)δac〈id|jb〉 (3.87)

with a < b and c < d. The chief arithmetic bottleneck in 2ph−TDA calculations scales
as OV 4, where O is the number of occupied orbitals and V the number of virtual
orbitals. This arithmetic bottleneck arises from matrix multiplications that involve
2ph–2ph couplings. The 2ph−TDA approximation has been applied extensively in
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making quantitative assignments of inner–valence features in photoelectron spectra.
Initially, the 2ph−TDA approximation was developed with the idea that by taking
into consideration the detailed pole structure of the self–energy one may overcome
the wrong ordering of states produced by Koopmans’s approximation for molecules
with strong correlation effects (i.e. N2O4, H2CO, HCOOH, N2, CO, CS, butatriene,
etc. [93–97]). In the expansion of the Σ(2ph−TDA) matrix, not all the third order terms
are taken into account fully. Only, higher order terms, the so–called renormalization
terms, which introduce an effective interaction are summed to infinite order. Thus, with
iterations having an arithmetic scaling bottleneck of OV 4 the 2ph−TDA approximation
is more computationally demanding than the ND2 approximation. In general, the
quality of 2ph−TDA results improve steadily with larger basis sets, but it is not an
efficient approximation for the purpose of estimating basis set effects.

3.5.2 The 3+ and ADC(3) approximations

In the same manner as in the diagonal approximations, a non–diagonal approximation
that resembles third order terms can be defined. The superoperator Hamiltonian matrix
that recovers all the third order terms for the self–energy may be expressed as

Ĥ =
[

(a|Ĥ|a)(3) (a|Ĥ|f3)(2)

(f3|Ĥ|a)(2) (f3|Ĥ|f3)(1)

]
. (3.88)

This superoperator Hamiltonian matrix recovers all the terms in all orders for the
calculation of the poles. When all the high order h, p, 2hp, 2ph couplings that suffice
to include all third–order terms are calculated for the self–energy, the so–called 3+
propagator approximation is produced [81, 85]. Certain types of higher order terms
also are included in 3+. The third-order algebraic diagrammatic construction, or
ADC(3), propagator approximation retains these terms and also adds fourth–order and
some higher order terms in the energy–independent part of the self–energy matrix[81].
The non–diagonal ADC(3) and 3+ approximations require contractions with O2V 4

scaling; iterative OV 4 steps and a full integral transformation are needed as well.

3.5.3 The NR2 approximation

The nondiagonal, renormalized, second–order (NR2) approximation [98], is a variation
of the ND2 and 2ph−TDA approximations which retains some third-order and higher
order terms. The NR2 self–energy is complete only in second order, and is defined
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in terms of the first–order, double–substitution operator (T (1)
2 ). For the attachment

process, the NR2 self–energy is derived by the superoperator metric

(X|Y)N+1 = 〈N |[X†,Y]+(1 + T
(1)
2 )|N〉 (3.89)

whereas for the detachment process the superoperator metric reads

(X|Y)N−1 = 〈N |(1 + T
(1)
2 )[X†,Y]+|N〉. (3.90)

If the operator manifold spans h, p, 2hp and 2ph operators, second–order terms in
the superoperator Hamiltonian appear only if Y is a 2ph operator and X is a 2hp
operator for electron detachments. In the case electron attachments, the roles of p and
h are reversed. Numerical examination of the self–energy terms indicate that only
the second–order terms in the Ĥ2hp−h block may not be neglected. These results also
indicate that first–order 2ph-2ph terms are unimportant. The NR2 ionization energies
are obtained after Hermitizing and diagonalizing the Ĥ superoperator matrix:

Ĥ =



(a|Ĥ|a)(0)
hh (a|Ĥ|a)(0)

hp (a|Ĥ|f3)(1)
h−2hp (a|Ĥ|f3)(1)

h−2ph

(a|Ĥ|a)(0)
ph (a|Ĥ|a)(0)

pp (a|Ĥ|f3)(1)
p−2hp (a|Ĥ|f3)(1)

p−2ph

(f3|Ĥ|a)(2)
2hp−h (f3|Ĥ|a)(1)

2hp−p (f3|Ĥ|f3)(1)
2hp−2hp (f3|Ĥ|f3)(0)

2hp−2ph

(f3|Ĥ|a)(1)
2ph−h (f3|Ĥ|a)(1)

2ph−p (f3|Ĥ|f3)(0)
2ph−2hp (f3|Ĥ|f3)(0)

2ph−2ph


.

(3.91)
In the NR2 approximation, all first–order couplings between simple and triple operators
and zeroth-order couplings between triple operators are present, therefore both second–
order terms in the self–energy are conserved. As in the 2ph−TDA self–energy, 2hp ring
and ladder terms of the 2hp type are present in third and higher orders. NR2 reduces
the formally sixth–power dependence of the second–order couplings between h and
2hp operators thorough matrix–vector multiplications. For the calculation of ionization
energies, the NR2 approximation has a formal arithmetic scaling of the fifth–power, in
which no electron repulsion integrals with four virtual–orbital indices are needed. NR2
has a O2V 3 iterative arithmetic bottleneck and a non–iterative arithmetic bottleneck
with O3V 3 scaling. These arithmetic scaling make NR2 computationally more efficient
than the ADC(3) and 3+ approximations.
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3.6 Comparison among approximations

The arithmetic and storage requirements for the most used electron propagator ap-
proximations are shown in table 3.2. In general, diagonal approximations are less
computationally intensive than non–diagonal ones. Calculations on a representative

Method Iterative Bottleneck Non–iterative Bottleneck Storage
D2 OV 2 - OV 2

OVGF OV 4 O2V 3 V 4

P3 (P3+) O3V 2 O2V 3 OV 3

2p–h TDA OV 4 - V 4

3+ OV 4 O2V 4 V 4

ADC(3) O2V 4 O2V 4 V 4

NR2 O2V 3 O3V 3 OV 3

Tab. 3.2.: Scaling of Arithmetic and Storage Requirements

set of closed–shell molecules [18] indicates that D2 is the most easily executed electron
propagator approximation. When compared with extrapolated coupled–cluster singles
and doubles plus perturbative triples calculations, CCSD(T), D2 produces results that
steadily rise as basis sets are improved. Although D2 values may improve with the
basis set size, its mean errors remain unacceptably large. Among the diagonal approx-
imations, the P3+ approximation is the most accurate of all with values that exhibit
the best trends with respect to basis–set saturation. In the case of the non–diagonal
approximations, the NR2 approximation yields the most accurate values and displays
the best convergence to extrapolated CCSD(T) standards with respect to basis sets.

3.6.1 Final verdict

Finally, one may conclude that P3+ and NR2 are the recommended electron–propagator
approximation for the calculations of vertical ionization energies. Because of its treat-
ment of couplings between 2hp operators that is exact through first order, the NR2
method is more likely than P3+ to give a correct description of higher vertical ionization
energies with lower pole strengths. The advantages of the NR2 and P3+ methods may
be extended by employment of techniques that account for basis–set saturation. A
more extensive and detailed discussion about the best utilization practices, the different
advantages, disadvantages, numerical performance and recommendations about the
different electron propagator approximations may be found elsewhere [14, 18].
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4The Electron Propagator
Implementation

„Brainless users do not care about what is inside the
box, as long as the box does what they think they need
done.

— Rephrasing Jef Raskin
about Human Computer Interfaces

In several of the computational implementations of the electron propagator methods,
two separate strategies have been employed to obtain the poles of the electron prop-
agator matrix. The first departs from the fact that the electron propagator equations
are eigenvalue equations of the superoperator Hamiltonian Ĥ acting on simple field
operators or on products of field operators that change the number of electrons by one.
Therefore, finding a pole may be regarded as solving an eigenvalue problem given by
Ĥν = λν, where ν†ν = 1. Thus, the well known concepts, computational techniques
and algorithms from linear algebra are key for solving this eigenvalue problem. The
second strategy corresponds to the employment of the Dyson quasiparticle equation
in which poles occur when the determinant of the inverse of the electron propagator
matrix, det[G−1(E)], is equal to zero. In other words, poles are found when E is one
of the eigenvalues of F + Σ(E). Provided that the same superoperator Hamiltonian
matrix elements were used, the two approaches for obtaining the electron propagator
matrix poles are equivalent. Although these two strategies may be equivalent, from
the computational point of view, their algorithms may have different strengths and
limitations. In this chapter, the some of the most important remarks learned from the
implementation of the electron propagator equations will be discussed.
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4.1 The eigenvalue problem

The poles of the electron propagator matrix correspond to the eigenvalues of the
superoperator Hamiltonian matrix Ĥ:

[
Ĥaa Ĥaf

Ĥ fa Ĥff

]
. (4.1)

Thus, electron binding energies and the corresponding linear combinations of operators
in the primary (a) and secondary (f ) spaces may be obtained by diagonalizing Ĥ ,

[
Ĥaa Ĥaf

Ĥ fa Ĥff

] [
Cap

Cfp

]
=
[
Cap

Cfp

]
Ep. (4.2)

Insertion of the eigenvalues obtained in the partitioned form of the electron propagator
matrix, G(E), produces the inversion of the matrix with a zero eigenvalue, i.e., this
insertion is sufficient to obtain a pole. When large basis set are used, the superoperator
Hamiltonian matrix may be of a considerable size, which makes, in several cases,
impractical its construction and storage. Therefore, the diagonalization of the full
superoperator Hamiltonian to find the binding energies of large molecular systems
may be challenging and inefficient.

4.1.1 The Dyson approach

The eigenvalues needed for the description of binding energies may be obtained
by solving the Dyson quasiparticle equation self consistently. The Dyson equation
approach to the electron propagator allows the reduction of the memory and disk
needed for the determination of the poles of the electron propagator matrix. In the
Dyson equation formulation of electron propagator, instead of diagonalizing the full
superoperator Hamiltonian matrix, Ĥ, the diagonalization of a smaller matrix formed
by the addition of the elements of the primary sector of the superhamiltonian matrix,
Ĥaa, and the self–energy matrix elements is diagonalized,

[Ĥaa + Ĥaf(E1f − Ĥff)−1Ĥ fa]Cap = [F + Σ(E)]Cap = CapEp. (4.3)

The eigenvalues obtained from this diagonalization are used to iteratively solve the
equation

det{G−1(E)} = {E1− F −Σ(E)} = 0 (4.4)
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Thus, finding the self–consistent eigenvalues of the Dyson quasiparticle equation
requires the construction of the F and Σ(E) matrices. The elements of these matrices
are blocked into four sectors that take into consideration the occupied (O) and virtual
(V ) orbitals of the spin–basis set,

[
(O,O) (O, V )
(V,O) (V, V )

]
. (4.5)

When the canonical Hartree–Fock spin–orbital basis set is used, the Fock matrix is
diagonal, therefore, the Hartree–Fock molecular orbital energies may be used to build
up the F matrix,

F =



εO1

εO2 0
. . .

0 εV1
εVn


. (4.6)

The Σ(E) matrix, in general, is not diagonal, and its block elements are determined by
the indices of the product of the superoperator coupling Haf (EIf −Hff )−1Hfa:

Σa,a(E) =
[
Σ(aO, aO) Σ(aO, aV )
Σ(aV , aO) Σ(aV , aV )

]
. (4.7)

4.1.2 Hermiticity considerations

The electron propagator superoperator Hamiltonian is Hermitian and so is the self–
energy matrix. This Hermiticity may be used in order to further reduce the amount of
memory and disk needed for handling and storage of the [Ĥaa +Ĥaf(E1f−Ĥff)−1Ĥ fa]
matrix, where only the lower or upper triangular elements of the Σ(E) matrix suffice
for the construction of this matrix. To illustrate this idea, let’s consider a hypothetical
molecule with only two occupied (O) molecular orbitals and one virtual (V ) orbital.
For this hypothetical molecule, full description of binding energies may be obtained by
only taking into consideration the lower triangular part of Σ(E):

Σ(E) =

Σ(O1, O1) Σ(O1, O2) Σ(O1, V1)

Σ(O2, O1) Σ(O2, O2) Σ(O2, V1)

Σ(V1, O1) Σ(V1, O2) Σ(V1, V1)



. (4.8)
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If N is the total number of occupied and virtual orbitals that need to be considered in
the construction of the self–energy matrix, then N = O + V . Taking advantage of the
Hermiticity of Σ(E) considering only the lower triangular elements of the self–energy
matrix reduces the number of elements, operations and storage needed to construct the
Σ(E) matrix from N2 to (1+N)N

2 . This reduction is significant, especially when large
molecules are being considered and modest amounts of computational resources are
available. Most of the electron propagator approximations described in this work were
implemented, or are being implemented, in Fortran. Thus, one should consider that in
Fortran the memory layout for multidimentional arrays is column–major. Therefore,
when working with the allocation of arrays for the representation of matrices, these
should be allocated as following: This array arrangement for the electron propagator

2-D matrix

1
2
3
4

5
6
7

8
9 10

Array layout

1 2 3 4 5 6 7 8 9 10

Fig. 4.1.: Memory allocation for array matrices

matrices will guarantee a better performance in the access, allocation and management
of the data generated. If the electron propagator approximations are implemented in C
or C++ one should use row–major layout.

4.1.3 Point group considerations

The efficiency of the electron propagator implementation may be improved when the
molecular symmetry of the molecule is taking into consideration (when the point group
of the molecule is other than C1, of course). The self–energy matrix, as well as the
Fock matrix may be reduced into blocks based on the irreducible representation of the
molecular orbital in which the electron is being removed or added. Since the coupling
between field operators that correspond to orbitals with different symmetry will vanish,
for the construction of the F , or the primary sector of the superoperator Hamiltonian,
and the Σ(E) matrices, one needs only to take into consideration the occupied and
virtual orbitals with the same irreducible representation as the orbital from which
the electron will be removed or added. Take for example the water molecule with
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the C2v point group. The molecular orbitals of the H2O with the 6-311 basis set may
represented as shown in figure 4.2.

A1

A1

B2

A1

B1

A1

B2

B2

A1

B1

A1

B2

A1

A1

B2

B1

A1

B2

A1

Closed (C)

V irtual (V )

Fig. 4.2.: Molecular orbital configuration for water and the 6-311G basis set

For the case of the ionization of one of the electrons from the highest occupied molecular
orbital, (HOMO) of water, whose symmetry is B1, instead of taking into consideration
the 19 molecular orbitals presented in figure 4.2, one may only considered 3 molecular
orbitals with B1 symmetry, see figure 4.3.

B1

B1

B1

Closed (C)

V irtual (V )

Fig. 4.3.: Molecular orbital to be considered for the detachment energy of the HOMO
orbital of H2O

Since the molecular orbitals whose contributions to the HOMO self–energy are zero or
close to zero have been removed, the number of molecular orbitals and two electron
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integrals that need to be considered have been reduced as well. Therefore, in this case,
the use of the molecular point group has reduced the amount of memory and operations
needed to compute the pole of the self–energy matrix for the HOMO orbital.

4.2 Pole search methods

Pole searches based on Dyson equation usually converge rapidly with respect to E.
Starting with equation (4.4), one may express the unperturbed part of the propagator
in terms of the canonical orbital energies εp as

G−1
0 (E) = E1− F = E1− ε, (4.9)

such that the Dyson equation reads

G−1(E) = G−1
0 (E)−Σ(E). (4.10)

In the Dyson formulae of the electron propagator, E is a pole when G−1(E) has a
vanishing eigenvalue. In this regard, one searches for E such that E is an eigenvalue of
a function Γ(E), where

Γ(E) = ε+ Σ(E). (4.11)

The definition of Γ(E) indicates that the value of this function is self–consistent. In
other words, Γ(E) is a function of the form:

f(x) = x, (4.12)

where the value of the function depends upon the value of the point x. The x point is
known as the attractive fixed point of the function f . In the case of Γ(E), the value E,
the eigenvalue that is being searched, is obtained from the evaluation of the self–energy
function Γ(E). In this regard, E is a fixed point of the function Γ. In order to find
the solution E the evaluation of the function Γ(E) may start at a point E1 in the basin
of attraction of E and if En+1 = Γ(En) for n ≥ 1, then, the sequence {En}n≥1 will
converge to the solution E. Therefore, equation (4.11) may be rewritten as

Ek+1 = Γ(Ek) = ε+ Σ(Ek), k ≥ 0. (4.13)

Therefore, the self–energy provides a stationary iterative method of solving a linear
system that generates an approximation of the exact value E and a residual. Thus, the
self–energy, Σ(E), approximates to itself, forming a correction equation for which the
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process would be repeated until the residual is minimized to the desired threshold. In
principle, faster convergence of a stationary iterative method may be achieved when
better estimations of the stationary point value are given between consecutive iterations.
Successively better estimations of the stationary point could be made by a root–finding
algorithm such as the bisection, Newton–Raphson, or secant numerical methods. If a
function f(En) is defined as the residual, the difference of the numerical value of two
consecutive self–energies that were evaluated at two consecutive points Ei and Ei+1,
then, this residual function may be expressed as

f(En) = Γ(Ek+1)− ε− Σ(Ek), k ∈ n ≥ 0. (4.14)

The root of the f(En) function corresponds to the case in which the variation between
two consecutive iterations is zero or close to zero, and therefore the eigenvalue E of
the self–energy Γ(E).

4.2.1 Newton–Raphson root–finding algorithm

In electron propagator implementations, the most used numerical method for deter-
mining the next guess of the Γ(E) function is the Newton–Raphson method [99]. In
the Newton–Raphson method, starting with the initial point x0, the estimation of the
following point, xt, is made by finding the tangent line to x0, as shown in figure 4.4.

x

y

x0

f(x0)
f(x0)

f ′(x0) xt = x0 − f(x0)
f ′(x0)

xt

f(xt)
f(xt)

Fig. 4.4.: Graphical representation of the Newton–Rapson method

The x–intercept of this tangent line is the point xt which usually is a better approxi-
mation to the function’s root. In the Newton–Raphson method only one point and its
evaluation in the function are needed to start the algorithm. However, the function’s
derivative is also needed, which in some cases is not easy to obtain. By using the
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Newton–Raphson equations a new guess for the evaluation of the self–energy may be
determined by the following expression:

En+1 = Γ(En−1)− f(En)
f ′(En) n > 0, (4.15)

where f
′

stands for derivative of the function with respect of the energy E. If the
canonical Hartree–Fock orbital energies are used to build the self–energy of a given
electron propagator approximation, equation (4.15) may be expanded as follow:

En+1 = εHF + Σ(En−1)− εHF + Σ(En)− εHF − Σ(En−1)
dΣ(En)
dEn

− 1

= εHF + Σ(En−1)− Σ(En)− Σ(En−1)
dΣ(En)
dEn

− 1

= [εHF + Σ(En−1)][Σ′(En)− 1]
Σ′(En)− 1 − Σ(En)− Σ(En−1)

Σ′(En)− 1

= εHFΣ′(En) + Σ(En−1)Σ′(En)− εHF − Σ(En−1)
Σ′(En)− 1 − Σ(En)− Σ(En−1)

Σ′(En)− 1

= εHFΣ′(En) + Σ(En−1)Σ′(En)− εHF − Σ(En−1)− Σ(En) + Σ(En−1)
Σ′(En)− 1

= εHFΣ′(En) + Σ(En−1)Σ′(En)− εHF − Σ(En)
Σ′(En)− 1

= εHFΣ′(En) + Σ(En−1)Σ′(En)− εHF − Σ(En)
Σ′(En)− 1

= Γ(En−1)Σ′(En)− Γ(En)
Σ′(En)− 1

= Γ(En)− Γ(En−1)Σ′(En)
1− Σ′(En)

(4.16)

For the general eigenvalue formulae,

E′C(Eold) = Γ(Eold)C(Eold), (4.17)

the Newton–Raphson root finding algorithm for determining the new guess (Enew)
may be expressed as

Enew = Eold −
E′ −Eold

C†(Eold)dΣ(E)
dE |E=EoldC(Eold)− 1

(4.18)

When using the Newton–Raphson algorithm the convergence of eigenvalue E of the
function Γ(E) is usually found in three to five iterations. However, some problems with
the convergence of the self consistent procedure may arise when the initial guess is far
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from the pole of interest or when the self–energy is not a well behaved smooth function
whose derivative may present difficulties. This may be the case for the third–order
self–energy and the ND2 as well as the 2ph−TDA approximations in which the number
of iterations needed to find the pole of the self–energy may increase considerably and,
in some cases, not converge.

4.2.2 Secant root–finding algorithm

Convergence problems sometimes associated with finding the poles of self–energy
may be solved by the secant method[100]. This method offers an derivative free
alternative for finding the poles of the electron propagator approximations. The secant
method may be regarded as a finite–difference approximation of Newton’s method.
Therefore, the same ideas used in the Newton’s method for finding better guesses for
the eigenvalue E may also be developed in the secant method framework. In the secant
method, at least two points (xi and xi−1) are needed to start the algorithm, however,
only one function evaluation per iteration is needed. Using the secant method, the xi+1

root may be approximated as

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1) . (4.19)

One of the disadvantages that the secant method has is the order of convergence.
Unlike the Newton–Raphson method in which the order of convergence is quadratic,
the secant method order of convergence is approximately 1.618. If the residual, f(En),
is expressed as in equation (4.14), a new guess for the evaluation of the self–energy can
be determined by using the following expression:

Ei+1 = Ei − f(Ei)
Ei − Ei−1

f(Ei)− f(Ei−1) , i > 0. (4.20)

Starting with a given Hartree–Fock orbital energy as initial guess, if one consider that
the value of the self–energy depends on the self–energy generated using the previous
guess, the sequential process for the self–energy is

Guess value→ Self–energy→ Output value
εHF Σ(εHF ) E1

E1 Σ(E1) E2

E2 Σ(E2) E3

(4.21)
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Thus, the expansion of equation (4.20) in terms of the self–energy and the eigenvalue E
yields:

En+1 = Γ(En−1)− (Γ(En)− Γ(En−1)) Γ(En−1)− Γ(En−2)
(Γ(En)− Γ(En−1))− (Γ(En−1)− Γ(En−2))

= Γ(En−1)− (Γ(En)− Γ(En−1)) Γ(En−1)− Γ(En−2)
Γ(En)− 2Γ(En−1) + Γ(En−2)

= Γ(En−1)− (Γ(En)− Γ(En−1))εHF + Σ(En−1)− εHF − Σ(En−2)
Γ(En)− 2Γ(En−1) + Γ(En−2)

= Γ(En−1)− (Σ(En)− Σ(En−1)) Σ(En−1)− Σ(En−2)
Γ(En)− 2Γ(En−1) + Γ(En−2)

= Γ(En−1)− (Σ(En)− Σ(En−1)) Σ(En−1)− Σ(En−2)
Σ(En)− 2Σ(En−1) + Σ(En−2)

= Γ(En−1)− Σ(En)Σ(En−1)− Σ(En)Σ(En−2)− Σ(En−1)2 + Σ(En−1)Σ(En−2)
Σ(En)− 2Σ(En−1) + Σ(En−2)

= εHF + Σ(En−1)− Σ(En)Σ(En−1)− Σ(En)Σ(En−2)− Σ(En−1)2 + Σ(En−1)Σ(En−2)
Σ(En)− 2Σ(En−1) + Σ(En−2)

= εHF + Σ(En)Σ(En−2)− Σ(En−1)2

Σ(En)− 2Σ(En−1) + Σ(En−2) ,

(4.22)

where Σ(En−2) = E1, Σ(En−1) = E2 and Σ(En−1) = E3. When the secant method is
compared with the Newton–Raphson method, the number of iterations needed for
the convergence of the second–order self–energy increases by two due to the order of
convergence and number of points needed for the secant algorithm. In other words,
while the Newton–Raphson method may need three iteration to converge to the pole,
the secant method needs five iterations. However, for the second–order non-diagonal
self–energy, there were cases in which the Newton–Raphson method could not find the
pole whereas the secant method found the pole after 8-15 iterations.

4.2.3 Improvement to the Secant root–finding algorithm

The order of convergence and number of points needed for the secant algorithm may
be improved by using the parametric equation of a circle [101]. By introducing the
parametric equation of the circle tangent to the abscissa axis in the point x0 of a given
function, the diameter of the circle is given by the line segment [x0, f(x0)] as shown
in figure 4.6. The improvement of the secant method consists in the generation of
this circle tangent to the initial point x0 whose center is located at [x = x0, y = f(x0)

2 ].
The coordinates of this first circle are used to generate a second circle tangent to the
abscissa axis in xt, see figure 4.7. This second circle has its diameter defined by the
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Fig. 4.5.: Parametric equation of a circle

x

y

x0

f(x0)

x0

f(x0)
2

f(x0)

Fig. 4.6.: Parametric equation of a circle tangent to the first point of a function f(x)

line segment [xt, f(xt)] and its center located at (xt = x0 + r0, y = f(xt)
2 ). A line is

constructed through the f(x0) and f(xt) points. The intersection of this line with the x
axis generates the next guess point, figure 4.8.

Thus, the secant method may be now expressed as

xn+1 = xn +
∣∣f(xn)

∣∣
2 −

∣∣f(xn)
∣∣

2

 f(xn +
∣∣f(xn)

∣∣
2 )

f(xn +
∣∣f(xn)

∣∣
2 )− f(xn)

 . (4.23)

This formulation for the secant method only requires one point to start the algorithm
and two function evaluations for iteration and has a quadratic convergence. Similarly
to the Newton–Raphson and normal secant algorithms, this process is repeated until
convergence is reached. If a function f(En) is defined as the residual expressed in
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Fig. 4.7.: Improvement to the secant method
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Fig. 4.8.: Generation of the next guess point xn

equation (4.14), using this variation of the secant method for a new guess for the
evaluation of the self–energy can be determined by

Ei+1 = 2Γ(Ei−1) + |Γ(Ei)− Γ(Ei−1)| − Γ(Ei), i > 0. (4.24)

4.2.4 Pole strengths

The pole strength of the self–energy is the norm of the primary space’s component of
the eigenvector such that

ΓP.S.
p =

[
1−C†(Epole)

dΣ(E)
dE

∣∣
E=Epole

C(Epole)
]−1

(4.25)

Pole strengths are related to the eigenvectors of superoperator Hamiltonian Ĥ via

ΓP.S.
p =

C†apCap

C†apCap +C†fpCfp
=
[
1 +

C†fpCfp

C†apCap

]
. (4.26)
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If the derivative of the eigenvalue is defined as

∂Ep
∂E

=
C†ap

∂Σ(E)
∂E

∣∣∣
E=Ep

Cap

C†apCap
, (4.27)

a more succinct notation for the pole strength is

ΓP.S.
p =

(
1− ∂Ep

∂E

)−1
. (4.28)

4.2.5 Derivative

For the calculation of the pole strength, the calculation of the derivative of the self–
energy matrix is necessary. This derivative may be calculated analytically for uncompli-
cated self–energy expressions, such as that of the second–order self–energy. However,
analytical expressions are not always possible. In this respect, numerical derivatives
may, in some cases, be the most efficient option for the calculation of the derivative
of the self–energy, and therefore, its pole strength. In order to compute the derivative
of the self–energy, the finite difference method may be used. When the pole of the
self–energy is found, a small perturbation, ∆, to the Ep value in the forward direction
allows the use of the forward difference,

(∂Γ(E)
∂E

)
E=Ep

=
Γ(Ep+∆E

)− Γ(Ep)
∆E

(4.29)

whereas, if this perturbation is applied to the backward direction, the backward differ-
ence may be used, (∂Γ(E)

∂E

)
E=Ep

=
Γ(Ep)− Γ(Ep−∆E

)
∆E

. (4.30)

Since the guess used to the generate the self–energy in which the pole was found may
correspond to the evaluation of a previous point in the self–energy1 the backward
difference may be applied without any extra computational cost. However, both the
backward and forward differences have a truncation error, or accuracy, of O(∆E).
Numerical tests have shown that when compared with the analytical derivative of
the self–energy, neither the backward differentiation nor the forward differentiation is
reliable. On the other hand, the central difference approximation has been shown to
be a reliable option for the calculation of the derivative of the self–energy matrix. The

1This can not be always assumed, therefore in the implementation one always should check the sign of
the difference and direction to determine if the previous point value corresponds to the Σ(En−1) or
Σ(En+1).
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truncation error of the central difference is of O(∆E)2. For this approximation of the
derivative, after the pole of the self–energy is found, a small perturbation of the same
size of the pole threshold is applied to both the backward and forward direction of
the Ep value (see figure 4.9). Thus, the expression for the derivative of the self–energy

x

Γ(E)

En−∆E
En En+∆E

∂Σ(E)
∂E

∣∣∣
E=Ep

Fig. 4.9.: Self–energy derivative using the central difference

yields (∂Γ(E)
∂E

)
E=Ep

=
Γ(Ep+∆E

)− Γ(Ep−∆E
)

2∆E
(4.31)

4.2.6 Selection of the Eigenvalue

For the case of the non–diagonal approximations, the Dyson self–energy propagator
algorithm generates an array that contains the sum of the Fock and self–energy matrix,
F µ,ν + Σ(E)µ,ν , such that

F µ,ν +Σµν =


F1,1 F1,2 F1,3 . . . F1,4

F2,1 F2,2 F2,3 . . . F2,4
...

...
...

. . .
...

Fµ,1 Fµ,2 Fµ,3 . . . Fµ,ν

+


Σ1,1 Σ1,2 Σ1,3 . . . Σ1,4

Σ2,1 Σ2,2 Σ2,3 . . . Σ2,4
...

...
...

. . .
...

Σµ,1 Σµ,2 Σµ,3 . . . Σµ,ν

 . (4.32)

This array is diagonalized to obtain the array that contains the eigenvalues and eigen-
vectors. In the generated eigenvalue vector there will the same number of values as
the number of occupied and virtual orbitals that were considered for the formation
of the F µ,ν matrix, whereas the eigenvector matrix will have as much elements as
the Σ(E)µ,ν matrix. In order to identify the eigenvalue that needs to be considered
for determining the Ep pole, one must be careful about which eigenvector is taken.
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The vector of eigenvalues Eµ most of the time has the same canonical order as the
orbital energies, however this is not always true. After the relaxation and correlation
corrections are considered, the canonical order of the orbitals may changed (this effect
is known as a Koopmans’s defect). Therefore, a selection of the eigenvalue based on
the energy ordering of the canonical orbitals is not always a reliable option. The most
trustworthy way to select the eigenvalue that will be used for the determination of the
pole is by computing the overlap matrix,

Sµν = 〈χµ|χν〉 =
∑
l

C∗µlCνl = (CC†)µν . (4.33)

The overlap matrix Sµν is a Gramian matrix used to describe the inter-relationship of a
set of basis vectors. The overlap matrix is always a square matrix of size n× n, where
n is the number of basis functions used,

Sµν =


〈χ1|χ1〉 〈χ1|χ2〉 〈χ1|χ3〉 . . . 〈χ1|χν〉
〈χ2|χ1〉 〈χ2|χ2〉 〈χ2|χ3〉 . . . 〈χ2|χν〉

...
...

...
. . .

...
〈χµ|χ1〉 〈χµ|χ2〉 〈χµ|χ3〉 . . . 〈χµ|χν〉

 (4.34)

In the implementation of the electron propagator approximations, the overlap matrix
is computed between the old eigenvector that corresponds to the Ep value and the
eigenvectors generated right after the diagonalization of the [F + Σ(E)] matrix. For
this process, the initial vector used is a unit vector having the same direction as the
canonical direction of the orbital εp such that

V Guess
µ =



0
1
0
...
0


(4.35)

Using this initial vector, the position of the employed eigenvalue is determined by the
position of the eigenvector with the largest overlap, which is usually close to unity.

4.3 Eigenvectors

The primary and secondary components of the eigenvectors obtained after the diago-
nalization of equation (4.3) contain information that may be used to further describe
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and interpret electron binding energies, one–electron properties, correlation and relax-
ation effects, charge and spin densities and total energies of the molecules under study.
These eigenvectors indicate the contribution of the field operators in the self–energy.
After solving for a pole Ep it is possible to obtain its derivatives with respect to changes
in the one–electron part of the many–electron Hamiltonian. Due to the orthogonality
conditions of the primary and secondary spaces, contributions of the secondary sector
of the eigenvectors do not appear in the residues. Using equation (4.2) the secondary
space’s component of the eigenvector may be defined as

Cfp = (Ep1f − Ĥff )−1ĤfaCap (4.36)

The primary and secondary components of the eigenvectors contain information that
may be used to further describe and interpret electron binding energies, one–electron
properties, correlation and relaxation effects, charge and spin densities and total ener-
gies of the molecules under study.

4.3.1 Dyson orbitals

Dyson orbitals naturally emerge from the inverse form of the Dyson quasiparticle
equation. They are inferred from the Feynman–Dyson amplitudes, which are related
to the residues of the electron propagator. In the quasi-particle form of the Dyson
equation, the pseudo–eigenvalues of the self–energy operator provide eigenfunctions
that are proportional to Dyson orbitals. In terms of the Hartree–Fock wave–function,
the Dyson orbitals may be expressed as

φDysonp =
∑

a
C†apφ

HF
a . (4.37)

Dyson orbitals may be expressed in terms of molecular coefficients and atomic orbitals.
By using this last equation the corresponding change of basis yields

φDysonp =
∑

a
C†ap

∑
j

CM.O.
aj χA.O.j

=
∑
j

(∑
a
C†apC

M.O.
aj

)
χA.O.j

=
∑

j
Upjχ

A.O.
j .

(4.38)
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4.3.2 Charge density

The derivatives of the electron propagator pole, Ep, with respect to changes in the
one–electron part of the many–electron Hamiltonian may correspond to external fields
or to the field produced by the nuclei arranged in a given way. Let the Dyson equation
approach to discovering poles be expressed as

Epole = C†(ε+ Σ(E)|E=Epole)C. (4.39)

If γ denotes differentiation with respect to a perturbation, Eγpole then

Eγ
pole = C†γ(ε+ Σ(E)|E=Epole)C

+C†(ε+ Σ(E)|E=Epole)C
γ

+C†
(
εγ + Σγ(E)

∣∣∣
E=Epole

+ Eγpole
∂Σ(E)
∂E

∣∣∣
E=Epole

)
C

(4.40)

In the last of the three terms, there are three portions that pertain to the derivatives
of the orbital energies, derivatives of the self–energy, where the E parameter is held
constant, and derivatives of the self-energy employing the chain rule. Thus, this
equation may be rearranged to

Eγ
pole(1−C

†∂Σ(E)
∂E

∣∣∣
E=Epole

C) = C†γCEpole +C†CγEpole

+C†
(
εγ + Σγ(E)

∣∣∣
E=Epole

)
C

(4.41)

Note that the left side of the previous equation is Eγ
pole divided by the pole strength,

ΓP.S.pole . By using the fact that

C†C = 1 (4.42)

which implies that

dC†C

dE
= 0, (4.43)

and thus

C†Cγ +C†γC = 0, (4.44)
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the first two terms on the right side of equation (4.41) vanish. Therefore, equation (4.41)
reduces to

Eγpole = ΓP.S.poleC
†(εγ + Σγ(E)|E=Epole)C. (4.45)

A similar conclusion follows by finding poles using the entire superoperator Hamilto-
nian matrix:

ĤC = CEpole. (4.46)

Differentiation leads to

ĤγC†ĤCγ = CγE†poleCE
γ
pole. (4.47)

After multiplying both sides by C† this last equation becomes,

Eγpole = C†ĤγC. (4.48)

Using this approach to find the pole, the derivatives of the superoperator Hamiltonian
matrix need to be evaluated in order to calculate Eγpole. Connections between the two
approaches are facilitated by partitioning the eigenvectorsC into their primary (a) and
secondary (f ) portions:

C = [Cap,Cfp] (4.49)

The derivatives of the primary and secondary contributions of superoperator Hamilto-
nian may be connected to the spin density of the ionized system by:

ρSpinpq = Dα
pq −Dβ

pq (4.50)

whereas the charge density of the ionized system may be expressed as:

ρChargepq = Dα
pq +Dβ

pq (4.51)

whereDα
pq andDβ

pq denote the derivatives of the primary or secondary sectors of the
superoperator Hamiltonian matrix for the removal of an alpha or beta electron.

Finally, the electron–propagator algorithm may be summarized in the following dia-
gram:
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Fig. 4.10.: Electron propagator self consistent algorithm

4.4 Orbital energy threshold recommendation

In the Dyson quasiparticle equation, denominators in the expressions for the self–
energy matrix depend on orbital energy differences. For example, for the second–order
self–energy matrix,

Σ(2)
ru (E) =

∑
ι,p<q

〈rι‖pq〉〈pq‖uι〉Nrpq

E + ει − εp − εq
, (4.52)
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the difference E + ει − εp − εq depends on three different orbital energy indices. If for
the 2ph and 2hp terms of the self–energy matrix these differences become small, self–
consistent field calculations cannot be expected to converge, because of pronounced
fluctuations in elements of the virtual–virtual or occupied–occupied blocks of the
superoperator Hamiltonian. Such conditions are encountered usually when the binding
energy computed corresponds to an occupied, inner-valence spin orbital in which the
quasiparticle picture is not longer valid.
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5Restricted open–shell electron
propagator

„I don’t know what’s the matter with people! They
don’t learn by understanding; they learn by some
other way, by rote or something. Their knowledge is
so fragile!

— Richard Phillips Feynman
(Surely You’re Joking, Mr. Feynman!)

A large variety of electronic structure methods can accurately describe only the singlet
ground-state of closed–shell systems. The desire of correctly describing molecular
systems with open–shell electronic configurations brings the necessity to confront
Löwdin’s symmetry dilemma [102–105]. In the Sanibel symposium meeting of 1963
[103], Löwdin pointed out that computational chemists are challenged with a dilemma:
imposing constraints to enforce correct spin–symmetry properties in the resulting
eigenfunctions or increasing the variational parameters to achieve the lowest energy
possible. In the case of open–shell systems, enforcement of the correct spin–symmetry
results in the formulation of the so–called restricted open–shell methods denoted
by an RO prefixed to the method’s acronym (e.g., Restricted open-sheell Hartree–
Fock (ROHF), Restricted Open–shell Moller–Plesset perturbation theories (ROMPn),
Restricted Open–shell Coupledcluster theories (ROCCn), etc.). RO methods preserve
spin–symmetry by reducing variational flexibility. It has been shown that RO methods
do not provide adequate structures, energies, and spin densities [104–110]. In particular,
for the ROHF approximation, whose equations were formulated by Roothaan more
than 50 years ago [111], shows that the eigenvalues for the effective Fock operator of
the model violate the Aufbau principle. Thus, ROHF orbital energies are not physically
meaningful. Therefore, Koopmans’s theorem or any phenomenological conclusion
based on ROHF orbitals are incorrect. In spite of this very well known and documented
ambiguity about the ROHF orbitals, some authors make studies in which wrong or
inconsequential conclusions are based on ROHF determinants [106, 110, 112–116]. In
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this chapter, possible solutions to the ROHF Koopmans’s theorem will be summarized
and discussed.

5.1 Löwdin’s symmetry dilemma

In computational chemistry, restricting each occupied orbital in a closed–shell system
to contain only one α and only one β electron is the simplest way to enforce spin
symmetry, 〈Ŝ2〉 = 0. This same idea may be extended to open–shell atoms or molecules.
In the so–called restricted open–shell (RO) methodologies, each unpaired electron
resides only in an α spin–orbital with the remaining β electrons constrained to doubly
occupied orbitals. In a single–determinant approximation, the constraints imposed by
the RO technique may enforce the generation of eigenstates that are eigenfunctions of
Ŝ2, however these constraints also reduce the variational flexibility. The variational
flexibility of the RO methods may be increased by allowing different orbitals for
different spins; this generates the so–called unrestricted (U) methods. Furthermore, in a
single–determinant approximation the variational flexibility may be maximized when
each of the electrons of the system is described as a linear combination of α and β spin
orbitals. Methods based on this idea are known as generalized (G) methods. Although
the unrestricted and generalized methods increase the variational flexibility of single–
determinant approximations, the resulting states are no longer eigenfunctions of Ŝ2.
Choosing between a lower energy solution, and a solution that is an eigenfunction of
the spin operator Ŝ2, and the spatial symmetry operators for the relevant nuclear point
group, is exactly what Löwdin’s symmetry dilemma requires.

5.2 Symmetry Breaking

The consequences and implications of the Löwdin’s symmetry dilemma may be ex-
plored in the framework of group theory. The following discussion is based on the
published conclusion given by Fukutome, Paldus, Brändas and Goings [104, 105, 108,
117]. Broken symmetry wave–functions may be classified by investigating how they
transform under the action of the invariance operators ĝ constituting the symmetry
group G of the spin-free electronic Hamiltonian Ĥ ,

[ĝ, Ĥ] = 0 ∀ĝ ∈ G, (5.1)
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or
ĝĤĝ−1 = Ĥ, (5.2)

such that Ĥ is invariant under transformation by any operator ĝ. In general, when |ψ〉 is
an eigenstate of Ĥ , ĝ|ψ〉 would also be an eigenstate belonging to the same eigenvalue
as |ψ〉. Thus, exact eigenstates of Ĥ can be chosen to be simultaneous eigenstates
of the various symmetries in G. In the case of the approximate variational Hartree–
Fock wave–functions, the symmetry requirements represent additional constraints.
Although, certain symmetries may be contained in a lowest energy solution, when
these symmetries are included in the approximation of the variational Hamiltonian
one may only raise the energy, this due to the independent–particle nature of the
approximate Hamiltonian. Thus, the more physical constraints are removed from
the Hamiltonian the closer the solution will be to the exact solution (lowest energy
solution). This dependency between symmetry constraints and energy is reflected in the
various broken symmetry subgroups in which the solutions of the single–determinental
Hartree–Fock approximation may fall.

5.2.1 Group and subgroups of symmetries

Let X̂ be an operator that is invariant with respect to similarity transformations by
various subgroupsH ⊂ G such that

ĥX̂ĥ−1 = X̂, (∀ĥ ∈ H ⊂ G). (5.3)

For an independent particle model, if the operator X̂ is an one body operator, such as
the Fock operator, defined in the spinor basis,

|α〉 =
(

1
0

)
|β〉 =

(
0
1

)
(5.4)

and
|α〉〈α| = |β〉〈β| = I2. (5.5)

Any arbitrary spin function may be expressed as

|φs〉 = cs1|α〉+ cs2|β〉 =
(
cs1
cs2

)
. (5.6)
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Thus, establishing X̂ into a spinor basis yields

X̂ = |iσ1〉〈iσ1|X̂|jσ2〉〈jσ2| = Xiσ1,jσ2 |iσi〉〈jσ2| =
(
Xαα Xαβ

Xβα Xββ

)
(5.7)

with
(Xσ1σ2)ij ∈ C σ1, σ2 ∈ α, β. (5.8)

In terms of second quantization notation this may be expressed as

X̂ =
∑
ij

∑
σ1,σ2

Xiσ1,jσ2a
†
iσ1
ajσ2 =

∑
ij

∑
σ1,σ2

Xiσ1,jσ2Ê
iσ1
jσ2
. (5.9)

The transformation properties of X̂ under symmetry operations can be determined
by examining the transformation of the U(2n) generators Êiσ1

jσ2
, but for the sake of

simplicity only the transformations of a 2× 2 block matrix X will be considered. In
this case, the problem is reduced to finding the constraints on the X matrix that for
any given symmetry operation make the following relation true:

ĥ

(
Xαα Xαβ

Xβα Xββ

)
ĥ−1 =

(
Xαα Xαβ

Xβα Xββ

)
. (5.10)

The general invariance group of the spin–free electronic Hamiltonian involves the spin
rotation (SU(2)) and the time reversal (T ) groups. The SU(2) group may be given in
terms of spin operators such that1

SU(2) =
{
UR(~n, θ) = exp(iθ

3∑
a=1

Ŝan̂a);~n = (n1, n2, n3);~n ∈ R3; ||~n|| = 1, θ ∈ (−2π, 2π]
}
.

(5.11)
Notice that the SU(2) group is a double cover[118], when the spin space is rotated by
2π the sign of the wave–function changes, and if the spin space is rotated again by
another 2π the original state is recovered. This behavior is characteristic of fermions.
On the other hand, the time reversal group is defined as

T =
{
±1̂,±Θ̂

}
, (5.12)

where in general Θ̂ is defined in terms of the complex conjugation operator K̂,

Θ̂ = ÛR(~e2,−π)K̂ = exp(−iπŜ2)K̂. (5.13)

1The rotations in spin space are quite similar to rotations in 3D space.
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It is important to point out that the time reversal does not really mean effects in
time per se, but rather changes the direction of movement, be it linear momentum or
angular momentum. Θ̂ is just an antiunitary operator [119] that consists of the spin–
looking part (unitary part) and then the complex conjugation operator (antiunitary
part). Therefore,

Θ̂−1 = −Θ̂ = exp(iπŜ2)K̂. (5.14)

Now, consider the unitary transformations of the form U = eiB̂ , where B̂ is a Hermitian
operator (B̂ = B̂†), acting on some operator X̂ such that

X̂ = ÛX̂Û−1 = e−iB̂X̂eiB̂. (5.15)

The Baker-Campbell-Hausdorff transformation allows expressing e−iB̂X̂eiB̂ as

e−iB̂X̂eiB̂ = X̂ + [X̂, iB̂] + 1
2! [[X̂, iB̂], iB̂] + · · · (5.16)

Thus, the constraints on X̂ introduced by symmetry operations are satisfied when
[X̂, iB̂] = 0. Therefore, transformation of the 2× 2 matrixX under the Pauli spin ma-
trices defines the SU(2) spin rotation as well as the time–reversal operations. The spin
rotation and time–reversal groups are known to contain the following subgroups:

• I : There is no symmetry.

• Θ: Symmetric only to time-reversal symmetry.

• K: Symmetric only to complex conjugation.

• Sz : Symmetric only to spin rotations about the z-axis.

• Sz,Θ: Symmetric to both spin rotation about z-axis and time-reversal symmetry.

• Sz,K: Symmetric to both spin rotation about z-axis and complex conjugation.

• S2: Symmetric to all spin rotations.

• S2,Θ: Symmetric to both all spin rotations and time reversal symmetries.

Concerning the Hartree–Fock approximation, the differences between the RHF, UHF
and GHF may be explored in terms of the different implications and consequences
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related to imposition of different combinations of symmetry constraints. If the complex
Fock matrix is defined as (

Fαα Fαβ

Fβα Fββ

)
, (5.17)

for each symmetry or group of symmetries the similarity transformation is given by

ĥ

(
Fαα Fαβ

Fβα Fββ

)
ĥ−1 =

(
Fαα Fαβ

Fβα Fββ

)
(5.18)

where h is the symmetry generator.

5.2.2 No symmetry constraints

The simplest transformation on the Fock matrix is given when there are no symmetry
constraints. In this case, the similarity transformation is given by

Î

(
F αα F αβ

F βα F ββ

)
Î−1 =

(
F αα F αβ

F βα F ββ

)
. (5.19)

Since no symmetry constraints are imposed the electron spin can mix. The values of
the elements of the Fock matrix may be real or complex. This first result corresponds to
the structure of the complex generalized Hartree–Fock (GHF) Fock matrix.

5.2.3 Complex conjugation symmetry constraints

On the other hand, when the complex conjugation symmetry is imposed, the transfor-
mation on the Fock matrix yields

K̂

(
F αα F αβ

F βα F ββ

)
K̂ =

(
F ∗αα F ∗αβ
F ∗βα F ∗ββ

)
, (5.20)

which corresponds to the structure of the real GHF Fock matrix where the values of
this Fock matrix have to be identical on complex conjugation. Notice that for this case
K is its own inverse and can only act to either the left or the right.
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5.2.4 Time–reversal symmetry constraints

For this case, let the σ2 matrix be the Pauli matrix expressed as:

σ2 =
(

0 −i
i 0

)
(5.21)

If the Ŝ2 operator yields

− i
(

0 −i
i 0

)
K̂

(
F αα F αβ

F βα F ββ

)
iK̂

(
0 i

−i 0

)
=
(
F ∗ββ −F ∗βα
−F ∗αβ F ∗αα

)
, (5.22)

then the imposition of time reversal symmetry only introduces two constraints. Thus,
by eliminating F βα and F ββ the Fock matrix for the paired GHF approximation is
obtained: (

F ββ F αβ

−F ∗αβ F ∗αα

)
. (5.23)

5.2.5 z-axis rotation symmetry constraints

Now, if the Pauli matrix σ3 is defined as

σ3 =
(

1 0
0 −1

)
, (5.24)

one can show that(
1 0
0 −1

)
K̂

(
F αα F αβ

F βα F ββ

)(
1 0
0 −1

)
=
(
F αα −F αβ

−F βα F ββ

)
(5.25)

is satisfied only if

F =
(
F αα 0

0 F ββ

)
(5.26)

Thus, invariance with respect to Sz results in two separate spin blocks. These spin
blocks have no restriction in their dimensions and may take real or complex values.
This case corresponds to the complex version of the UHF approximation.
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5.2.6 Time–reversal and z-axis rotation symmetry constraints

In order to examine the effect of invariance to multiple symmetry operations, one
should remember that when considering multiple symmetry operations the order in
which the symmetry operations is performed matters. In general, symmetry operations
do not commute. However, since each symmetry operation returns the system to its
original state, each symmetry operation can be considered separately. For instance,
consider two symmetry operations on F parameterized by A and B such that

e−iÂe−iB̂F̂ eiB̂eiÂ = e−iÂ[F̂ +[F̂ , iB̂]+ · · · ]eiÂ = e−iÂF̂ eiÂ = [F̂ +[F̂ , iÂ]+ · · · ]. (5.27)

This last is true if and only if

[F̂ , iÂ] = [F̂ , iB̂] = 0 (5.28)

Therefore, for our purposes, multiple symmetry operations only give us more con-
straints in which the order of each of the symmetry operation does not matter. Thus, in
the case of the time reversal and z-axial spin symmetry one obtains

(
1 0
0 −1

)
K̂

(
Fαα Fαβ

−F ∗αβ F ∗αα

)(
1 0
0 −1

)
=
(
Fαα −Fαβ
−F ∗αβ F ∗αα

)
(5.29)

where the off–diagonal elements of the Fock matrix must go to zero,

(
Fαα 0

0 F ∗αα

)
. (5.30)

This result corresponds to the UHF approximation.

5.2.7 Complex conjugation and z-axis rotation symmetry
constraints

The preservation of the rotation about spin z-axis and the complex conjugation symme-
try yields (

Fαα 0
0 Fββ

)
, (F ∈ R) (5.31)

Since symmetry with respect to complex conjugation forces all matrix elements to be
real, this results corresponds to the real version of UHF approximation.
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5.2.8 All spin axis rotation symmetry constraints

For this case is important to point out that even when S2 does have an operator
representation, it is not a symmetry operation. The S2 operator may be regarded as
the identity, therefore invariance with respect to S2 can be interpreted as invariance
with respect to the whole spin rotation group, Sx, Sy, Sz . However, while Sz is already
a part of the total spin rotation group, invariance with respect Sz does not imply
invariance with respect to S2, but invariance with respect S2 does, in general, imply
invariance with respect to Sz . Invariance with respect to the spin group may be shown
by considering any two spin rotations, since each spin operator may be generated by
the commutator of the other two. Therefore, the invariance with respect to all spin axes
may be evaluated by employing the result of Sz and applying the generator Sx defined
by Pauli matrix σ1. If the Pauli matrix σ1 is expressed as

σ1 =
(

0 1
1 0

)
(5.32)

Applying the generator Sx on the result of Sz yields

(
0 1
1 0

)(
F αα 0

0 F ββ

)(
0 1
1 0

)
=
(
F ββ 0

0 F αα

)
(5.33)

which implies that F αα = F ββ or

F =
(
FR 0
0 FR

)
, (FR ∈ C) (5.34)

Invariance with respect to all spin rotation group results in the complex RHF case,
where the α and β spin blocks are equivalent.

5.2.9 Time reversal and all spin axis rotation symmetry
constraints

Since the time reversal group contains the Ŝy operator, in order to obtain the expression
for this case, one just needs to take the previous results and make them invariant to
complex conjugation. Thus, the expression obtained yields:

K̂

(
FR 0
0 FR

)
K̂ =

(
F ∗R 0
0 F ∗R

)
. (5.35)
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Invariance with respect to complex conjugation forces all the elements of the Fock
matrix to be real. This last expression corresponds to the real version of the RHF case.

As shown, in the framework of the Hartree–Fock theory, several variations of the
Hartree–Fock approximation can be derived from simple symmetry considerations.
Furthermore, the RHF and UHF approximations are subgroups of the GHF equations.
If GHF equation are restricted to be invariant with respect to spin rotations along the
z-axis the UHF equations will emerge, whereas if GHF equations are restricted to be
invariant to time-reversal as well as spin rotations along all axes (x, y, z), the real RHF
equations are obtained.

5.3 The diverse pictures of the Hartree–Fock theory

In quantum chemistry, most of the ab–initio correlated methods and hybrid density
functional theory (DFT) methods are built upon the Hartree–Fock approximation. In
the Hartree–Fock theory, the N–electron wave–function is denoted by a normalized
Slater determinant, Ψ0, which contains N spin–orbitals ψi,

Ψ0 = |ψ1ψ2 . . . ψN 〉. (5.36)

While maintaining a normalized total wave function, these spin–orbitals are optimized
to minimize the energy, E, by means of the variational principle,

E = 〈Ψ0|H|Ψ0〉. (5.37)

In this optimization, the full electronic Hamiltonian after the application of the Born–
Openheimer approximation denoted, by H , is employed. The minimization of the
energy with respect to the spin–orbitals under the constraint of orthonormality yields

F iψi = εiψi (5.38)

This last equation corresponds to a one–electron eigenvalue equation in which the Fi
operator is known as the effective one–electron operator for the ith electron. This Fock
operator is defined as

F i = hi + V HF
i (5.39)
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where hi is the one–electron Hamiltonian operator describing the motion of the ith
electron in the electric field generated by the N nuclei each with charge ZA, thus, hi
may be expressed as:

hi = −1
2∆2

i −
NNuclei∑

A

ZA
riA

, (5.40)

whereas, V HF
i is the mean field potential experienced by the ith electron due to the

presence of the other electrons. Thus, V HF
i may be expressed as:

V HF
i =

N∑
j

(J j −Kj) (5.41)

where J j represent the Coulomb operator, defining the electron–electron repulsion
energy due to each of the two electrons in the jth orbital,

J j |ψi(1)〉 = 〈ψj(2)| 1
r12
|ψj(2)〉|ψi(1)〉, (5.42)

whereas, Kj is the exchange operator, defining the electron exchange energy due to
the antisymmetry of the total N–electron wave–function,

Kj |ψi(1)〉 = 〈ψj(2)| 1
r12
|ψi(2)〉|ψj(1)〉. (5.43)

Following the Roothaan[120] and Hall[121] equations, the spatial part, φi, of each
spin–orbital can be written as a linear combination of M basis functions χν ,

ψi = φi(r) =
Mbasis∑
ν

Cνiχν(r). (5.44)

Therefore, by considering this last equation, equation (5.38) yields

Mbasis∑
ν

F iχνCνi = εi

Mbasis∑
ν

χνCνi, (5.45)

which after the left multiplication by χτ and integration becomes

Mbasis∑
ν

[
Fτν − εiSτν

]
Cνi = 0 i = 1, 2, . . . , N (5.46)

where
Fτν = 〈χtau|F |χν〉 (5.47)
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and
Sτν = 〈χτ |χν〉. (5.48)

5.3.1 The self–consistent field procedure

A more succinct notation for equation (5.46) may be

FC = SCε. (5.49)

where F is the Fock matrix formulation of the Fock operator, C the molecular orbital
coefficients matrix, S the overlap matrix between basis functions, and ε is the diagonal
matrix containing the molecular orbital energies. Following the formulation of the
Hartree–Fock equations, one may notice that the Fock matrix does not have a linear
dependence on the molecular orbital coefficients. The Fock matrix depends on the
Coulomb and exchange operators which have a dependency upon the molecular orbital
coefficients matrix. Therefore, from a mathematical perspective, spin contamination
is a direct manifestation of the nonlinearity of the Fock operator. In computational
implementations, the Hartree–Fock method is also referred as the self–consistent field
procedure. In the implementation of the self–consistent field algorithm, equation (5.49)
is solved in an iterative manner (figure 5.1).
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Fig. 5.1.: Hartree–Fock Self consistent field algorithm
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Starting with an initial guess for the molecular orbital coefficients, a first Fock matrix F
is built. This Fock matrix is used to generate a new set of molecular orbital coefficients
from which the a new Fock matrix will be built. This processes of generating C and F
matrix is repeated until the change in energies converges below a numeric threshold
and self–consistency is achieved. The several physical pictures of the Hartree–Fock
approximation (i.e., UHF, RHF, ROHF and GHF) reside in the set of the orthonormal
spin–orbital basis used, ψi, within the Hartree–Fock equations. In the restricted versions
of Hartree–Fock approximation (RHF and ROHF), both the α and β spin–orbitals have
the same spatial functions and therefore identical values for the molecular orbital
coefficients, Cνi,

ψαi (r) = φi(r)α =
Mbasis∑
ν

Cνiχν(r)α, ψβi (r) = φi(r)β =
Mbasis∑
ν

Cνiχν(r)β. (5.50)

The wave–functions generated with the restricted and restricted open–shell Hartree–
Fock approximations are eigenfunctions of both the Ŝz and Ŝ2 operator. In the un-
restricted version of the Hartree–Fock approximation (UHF), a spin–orbital basis in
which the α and β spin–orbitals may have different spatial functions is used. Therefore,
in the UHF approximation, the α and β molecular orbital coefficients, Caνi and Cbνi, that
are used to define the spin–orbitals, are different from each other,

ψαi (r) = φαia = φia(r)α = [
Mbasis∑
ν

Caνiχν(r)]α

ψβi (r) = φβib = φib(r)β = [
Mbasis∑
ν

Cbνiχν(r)]β

. (5.51)

The resulting wave–functions from the UHF approximation are eigenfunctions of the Ŝz
operator but not of the Ŝ2 operator. Due to the fact that the unrestricted Hartree–Fock
formulation has less symmetry constraints than the restricted Hartree–Fock formula-
tion, the unrestricted Hartree–Fock solutions are variationally more flexible than their
corresponding restricted Hartree–Fock counterparts. The variational flexibility of the
Hartree–Fock solutions is maximized in the generalized Hartree–Fock approximation.
In the generalized Hartree–Fock approximation, each of the spin–orbitals is defined as
a linear combination of both α and β spin–orbitals[122],

ψi(r) = φαia + φβib = φia(r)α+ φib(r)β =
Mbasis∑
ν

{
[Caνiχν(r)]α+ [Cbνiχν(r)]β

}
. (5.52)

Although the resulting wave–functions from the GHF approximation have the most
variational flexibility, they are neither eigenfunctions of the Ŝz operator nor of the
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Ŝ2 operator. Now that the different formulations for the Hartree–Fock method have
been presented, let’s further analyze Löwdin’s symmetry dilemma in a more practical
manner. Table 5.1 summaries the spin symmetry and the energy implications of each of
the Hartree–Fock approximations. It is important to point out that for all the Hartree–
Fock formulations the molecular coefficients can be real or complex. Löwdin pointed

Hartree–Fock methods
Formulation 〈Ŝz〉 〈Ŝ2〉 ψαi and ψβi Energy hierarchy

RHF and ROHF Yes Yes Identical Cνi The least variational flexibility
UHF Yes No Cα

νi and Cβ
νi EUHF ≤ ERHF,ROHF

GHF No No ψi(r) = ψαi + ψβi EGHF ≤ EUHF ≤ ERHF,ROHF
Tab. 5.1.: Hartree–Fock approximations and their constraints–flexibility balancing

out with his symmetry dilemma that every quantum chemist should understand the
implications that the symmetry constraints would have in the energy of the system
under study. Based on these implications, one should balance variational flexibility
versus symmetry constraints. For instant, in the restricted version of the Hartree–
Fock approximation one may guarantee correct quantum numbers for the system
under study, however, this implies imposing certain constraints in the variational
Hamiltonian which would only raise the energy of the system. Therefore, it is not
surprising that for open–shell electronic configurations energies computed by post
Hartree–Fock methods based on the restricted open–shell version of the Hartree–Fock
approximation report larger energies than their counterpart based on the unrestricted
Hartree–Fock approximation.

For open–shell systems, the restricted open–shell wave–function is a single configura-
tion state function (CSF) and therefore a pure spin state. On the other hand, unrestricted
Hartree–Fock energies are lower than restricted open–shell Hartree–Fock energies be-
cause for the restricted wave–function the restriction that the α and β orbitals will be
the same has been established. However, this may not be clear for some authors that
often point out the fact that restricted energies are higher than unrestricted ones and
make inconsequential conclusions as if the energy obtained with a restricted method
were supposed to be lower than the energy of an unrestricted method. Furthermore, for
the cases of open-shell systems, the restricted open–shell solution may not only have
higher energies as compared to their unrestricted counterpart but also one needs to be
careful in deriving conclusions based on the restricted open–shell molecular orbitals
(population analysis, binding energies, etc.) because any conclusion based on ROHF
orbitals may be erroneous [106, 110, 112–116]. Since Roothaan’s [111] introduction of
the Restricted Open–shell Hartree–Fock model, orbital energies do not have physical
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meaning. Therefore, any conclusions based on the ordering, magnitude or properties
of the ROHF molecular orbital without any previous treatment of the orbitals are
erroneous [104, 105, 107, 109, 123–126].

5.4 The Restricted Open–shell Hartree–Fock model

The restricted open–shell Hartree–Fock (ROHF) method generates wave–functions that
are eigenfunctions of both the Ŝz and Ŝ2 operator. Therefore, the ROHF approxima-
tion is the preferred tool for studying molecules with unpaired electrons. However,
the physical picture emerging from Roothaan’s open–shell theory have always been
somewhat unclear. In the formulation of the ROHF equations, some arbitrariness may
be found in the construction of the ROHF total Fock matrix. This generates different
coupling schemes for the formation of the ROHF Fock matrix. Although the ROHF
wave–function and total energy obtained from these schemes are the same, the result-
ing orbitals and orbital energies are different and, generally, the post–ROHF results
depend on the ROHF coupling scheme used [109, 125–127]. The energy expression for
the ROHF energy may be expressed as

EROHF = 2
∑
i

fihii +
∑
ij

fifj(2aji 〈ij|ij〉 − b
j
i 〈ij|ij〉) (5.53)

where hij represent one–electron integrals, 〈ij||kl〉 the two–electron integrals (in Dirac’s
notation), aji and bji are the coupling coefficients, and fi is the orbital occupation number
(1 for doubly occupied orbitals and 0 for virtual or unoccupied orbitals). In the case
of high–spin open—shell systems, a = 1, b = 2, and f = 1/2 for singly occupied
orbitals.

5.4.1 The different ROHF schemes

In ROHF theory Roothaan’s effective Fock operator is defined as

F̂ROHF =


Occupied Open V irtual

Occupied Rcc F βco F cscv

Open F βoc Roo Fαov

V irtual F csvc Fαvo Rvv

. (5.54)
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where Fα and F β are the UHF α and β Fock matrices and F cs = (Fα + F β)/2. At
self-consistent field (SCF) convergence, all off–diagonal ROHF Fock matrix elements
become zero. The choice of the diagonal elements in equation (5.54) is completely
arbitrary within a set of A and B coupling coefficients,

Rcc = AccF
α
cc +BccF

β
cc

Roo = AooF
α
oo +BooF

β
oo

Rvv = AvvF
α
vv +BvvF

β
vv

. (5.55)

Different values for these coupling coefficients have been suggested in the literature,
see table 5.2. Although all the different ROHF coefficients schemes may converge to

ROHF Hamiltonian
Acc Bcc Aoo Boo Avv Bvv Developer

-1/2 3/2 1/2 1/2 3/2 -1/2 Roothaan [111]
1/3 2/3 1/3 1/3 2/3 1/3 McWeeny and Diercksen [128]
1/2 1/2 1 0 1 0 Davison [129]
1/2 1/2 1/2 1/2 1/2 1/2 Guest and Saunders [130]
1/2 1/2 1 0 0 1 Binkley, Pople, and Dobosh [131]
1/2 1/2 1 0 1/2 1/2 Faegri and Manne [132]
1/2 1/2 1/2 0 1/2 1/2 Euler equations [133]

2S+1
2 − 1

2S 1 0 1 0 Canonical ROHF-I [123–125]
0 1 0 1 − 1

2S
2S+1

2 Canonical ROHF-II [123–125]
Tab. 5.2.: Some of the coefficients reported in the literature for equation (5.55) for the

systems having a half-filled open electronic shell with all spins parallel.

the same ROHF energy for a given system, the election of these coefficients may affect
the rate of convergence of the self–consistent field algorithm and the orbital energies
whose physical meaning is lost due to this dependence. Choices guided to determine
“canonical” sets that satisfy Koopmans’s theorem may result in violations to the Aufbau
principle [123–126]. Among all the methods and techniques proposed for fixing these
violations and to obtain a meaningful Koopmans’s theorem picture with the ROHF
approximation, the method proposed by Plakhutin and Davidson [123–125] may be
the most promising one.
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5.5 Koopmans’s theorem in the restricted open-shell
Hartree-Fock approximation

Koopmans’s theorem is one of the most useful and widely used theorems in quantum
chemistry applications. This theorem was first introduced within the framework
of the Hartree–Fock method for closed–shell atoms and molecules and establishes
that the energy of removing an electron from the ith energy level is equal to the ith
eigenvalue (εi) of the canonical Hartree–Fock equation. For closed-shell systems, the
formulation of the Koopmans’s theorem is based on the approximation of “frozen”
orbitals, therefore, the calculated one–electron energies εi are correlated with the
vertical ionization energy. Results derived from Koopmans’s theorem for closed–shell
systems have been extensively discussed in the literature [134–137]. Although the
fundamentals of the Koopmans’s theorem are well established, some specific problems
arise when applying this theorem to open–shell systems. Among these problems,
the most problematic one is related to the validity of Koopmans’s theorem in the
framework of the restricted open–shell Hartree–Fock method. In the application
of Koopmans’s theorem in the ROHF approach, the main problems arise from the
ambiguity in the one–electron energies derived from ROHF calculations. This problem
related to the ambiguity of the one–electron energy definitions in the ROHF method
was first pointed out by Roothaan[111] and later discussed by Dodds and McWeeny
[138] and other authors [104, 105, 107, 109, 123–127]. In spite of the well known and
documented ambiguity of ROHF orbital energies, it is often assumed in present–day
that Koopmans’s theorem is valid in the ROHF method or that meaningful conclusions
can be extracted from ROHF orbital energies. (See for example references [106, 110,
112–116] where in some cases, the wrong use of the ROHF orbital energies leads to
contradictory results.) In order to overcome the limitations of Koopmans’s theorem
in the ROHF approach B. N. Plakhutin et al proposed a new scheme for the coupling
coefficients of the ROHF Fock matrix [123–125]. The utilization of these coefficients
allows the generation of meaningful pseudo–canonical orbital energies that can be used
for the calculation of the electron propagator self–energy matrix.

5.5.1 Generation of the correct ROHF couplings coefficients

Using the field superoperator formalism from electron propagator theory, deductions
of algebraic expressions for the ROHF Fock matrix may be obtained. Starting with
an open–shell determinant with a singly occupied orbital (e.g., a doublet state), the
elimination of one particle could produce one singlet or two triplet states, where
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the singlet and one of the triplet states correspond to linear combinations (sum or
difference) of two different determinants. (see figure 5.2.)
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Fig. 5.2.: Generation of singlet and triplet states from a doublet state.

Among the three different states that may be generated with a doublet determinant, the
triplet state with quantum numbers Ms = 1 and S = 1 may be the easiest to generate.
This triplet state may be generated through the removal of a β electron from a doubly
occupied orbital. This electron removal can be easily described by an annihilation
field operator that acts on a doubly occupied orbital. On the other hand, the singlet
(Ms = 0, S = 0) and the remaining triplet (Ms = 0, S = 1) states are generated through
the evaluation of simple field annihilation operator and a string of field operators that
remove the α electron from the singly occupied orbital s and excites to that orbital a β
electron from a doubly occupied orbital. The evaluation of these three superoperator
field couplings may generate expressions that correspond to a correct description of
Koopmans’s theorem in the framework of the ROHF approximation.

5.5.2 Formulation of the first triplet state (Ms = 1 S = 1)

The triplet state with quantum numbersMs = 1 and S = 1, may be generated by remov-
ing a β electron from the doubly occupied orbital. In the context of the superoperaor
theory this removal of an electron corresponds to the application of an annihilation
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operator on a doubly occupied orbital. This removal process may be then described as
the superoperator coupling:

(alβ|Ĥalβ). (5.56)

Using an N -electron determinant as a reference determinant,

|χ〉 =
∏
i=1

a†i |vac〉 (5.57)

The expansion of the superoperator coupling for the triplet state with quantum numbers
Ms = 1, S = 1 is described by the Fock matrix:

Flβlβ (5.58)

5.5.3 Formulation of the second triplet state (Ms = 0 S = 1)

The second triplet that can be obtained from the doublet reference determinant corre-
sponds to the quantum numbers Ms = 0 and S = 1. These quantum numbers may
be obtained from a linear combinations of two different determinants. This linear
combination correspond to the sum of the determinant obtained by the annihilation of
an α electron from the reference determinant, and the determinant obtained from the
removal of a β electron from a double occupied orbital, and the spin change from α to
β of the electron in the singly occupied orbital,

(
(alα + a†SβaSαalβ)

√
2

|Ĥ
(alα + a†SβaSαalβ)

√
2

). (5.59)

In order to deduce the terms corresponding to the superoperator coupling in equation
(5.59), one must consider the superoperator coupling defined by both a simple a field
operator and an f3 field operator acting on the reference state. Since this second
triplet state is generated by the linear combination of two different determinants, the
evaluation of the following superoperator couplings

(alα|Ĥalα) (5.60)

and
(a†SβalβaSα|Ĥa

†
SβalβaSα) (5.61)

and their cross terms:
(a†SβalβaSα|Ĥalα), (5.62)
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and
(alα|Ĥa†SβalβaSα). (5.63)

are necessary for the correct description of this triplet state. Considering the N -electron
determinant (5.57) as a determinant reference, one can easily show that the evaluation
of the annihilation of an α electron (5.60) reads:

F
lαlα

. (5.64)

On the other hand, the evaluation of the string of operators that represent the annihila-
tion of a beta electron in the double occupied orbital l and the electron spin change in
the orbital s (5.61) yields

(FSαSα − FSβSβ)[kSαklβ − kSβkSα + kSβ − kSβklβ] + F
lβlβ

[kSαklβ − kSβkSα + kSβ − kSβklβ]

+ gSSSS [kSβklβkSβ − kSβkSβ − kSαkSβkSα + kSαkSβ + kSαklβkSα − 2kSαklβkSβ + kSβkSαkSβ]

+ g
lSlS

[kSβkSαkSβ − kSβkSβ + kSβkSαkSα − 2kSβkSα − kSαklβkSα + kSβklβkSβ + kSαklβ

− kSβklβ + kSβ]
(5.65)

where gPQRS represents the two–electron integral given by 〈PQ||RS〉 (Dirac notation)
and kx,sx represent the occupational number of the orbital x with spin sx. Considering
the fact that in the reference determinant the s orbital is a singly occupied orbital with
just one α electron, one may assume that the occupation numbers kSβ and kSα are equal
to zero and one respectively. Therefore, the equation obtained for the superoperator
coupling yields

(FSαSα − FSβSβ)[klβ] + F
lβlβ

[klβ] + gSSSS [klβ] (5.66)

In order to further simplify equation (5.66) one must consider some physical aspect
of the system under study. The Fock matrix FSαSα is the term that describes the
interactions of the electron α in the orbital S with the electrons located in others
orbitals. Thus, one may express FSβSβ matrix by

FSβSβ = FSαSα + JSαSα, (5.67)

where JSαSα represents a Coulomb repulsion integral2. In the same fashion the Flβlβ
matrix may be written as

Flβlβ = Flαlα +KlαSα, (5.68)

2In Dirac notation the two electron integral may be represented as 〈ab||ab〉 = 〈ab|ab〉 − 〈ab|ba〉 =
Jab −Kab.
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where KlαSα represents an exchange integral. Therefore, equation (5.66) may be re-
duced to:

F
lβlβ

. (5.69)

For the cross terms (5.62) and (5.63), the evaluation of the superoperator couplings
read

g
lSSl

[kSαklβ + kSβ − kSβklβ − kSβkSα], (5.70)

and
g
lSlS

[kSβklβ − kSβ + kSβkSα − kSαklβ]. (5.71)

Finally, after the corresponding algebraic substitutions and taking in account the
normalization factor of 1

2 the equation (5.59) reads

F
lβlβ

(5.72)

5.5.4 Formulation of the singlet state (Ms = 0 S = 0)

The singlet state corresponds to the difference of the two determinants generated by
the evaluation of a simple field annihilation operator and a string of field operators
that remove the α electron from the singly occupied orbital s and excites to that orbital
a β electron from a doubly occupied orbital,

((alα − a†SβaSαalβ)|Ĥ(alα − a†SβaSαalβ)). (5.73)

Using similar arguments as the ones used for the deduction of the second triplet state,
the coupling that represents the formulation of the singlet state with quantum numbers
Ms = 0 and S = 0 yields

((alα−a†SβaSαalβ)|Ĥ(alα − a†SβaSαalβ)) =
F
lαlα
−KlαSα −KlαSα + F

lβlβ
+ FSαSα − FSβSβ − JlαSα + JSαSα + JSαlα −KSαlα

2
(5.74)

which reduces to

((alα − a†SβaSαalβ)|Ĥ(alα − a†SβaSαalβ)) = F
lβlβ
− 2KlαSα (5.75)

These deductions obtained using the superoperator theory for the characterization of
the ionization process with a single ROHF reference determinant have direct resem-
blance to the coupling coefficients of the ROHF Fock matrix obtained by B. N. Plakhutin
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[123–125]. Therefore, using the Plakhutin ROHF Fock matrix scheme, one may use
the ROHF orbital energies to obtain the self–energy matrix of the different electron
propagator approximations for the calculation of binding energies in which the spin
contamination does not allow the used of a UHF reference determinant. Although the
orbital energies obtained by Plakhutin’s scheme recover the physical interpretation of
the orbital energies such that Koopmans’s theorem may be applied in the framework of
the ROHF approximation, this approach may not be applicable to all systems or cases.
In order to correctly describe the correlation and orbital relaxation effects produced in
the electron detachment process a reformulation of the electron propagator self–energy
matrix is needed. Therefore, a more general procedure for the generation of orbital
correlation and relaxation corrections to improve Koopmans’s theorem values for the
binding energies of open–shell systems is still needed.
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6Multireference open–shell electron
propagator

„Innovation distinguishes between a leader and a
follower.

— Steve Jobs
(CEO Apple Inc.)

For the proper description of open–shell atoms and molecules, an accurate treatment
of non–dynamic (also known as static) correlation is needed. Static correlation results
from the interaction of degenerate or near–degenerate configurations. Thus, atoms
and molecules that present this type of configurations at certain geometries cannot be
described correctly by a single determinant. In quantum chemistry, approximations
based on methods such as the second–order Møller–Plesset perturbation theory (MP2)
or coupled cluster (CC) theory may capture part of electron correlation that results
from the instantaneous interaction between individual electrons (the so–called dynamic
correlation). However, these methods are single–reference methods and while they
may offer an improvement to the accuracy of the computed result when compared
to the experiment, these methods may work only when the reference determinant
used is a qualitatively correct first description for the molecular system. Static electron
correlation may be accounted for by using multi–determinant methods such as the
multi–configurational self–consistent field (MCSCF) [139] method or the complete
active space SCF (CASSCF) [140] method. Furthermore, non–dynamic correlation
may recoverable via the multi–reference CI (MRCI) [141] or the MRPT [142] method.
However, the computational demands for these methods increase exponentially lim-
iting their use for large molecules and basis sets. An alternative may be found in the
spin–flip (SF) methods [143–148]. SF methods are multi–reference methods based on
the idea that, in principle, in a high–spin reference state there is not entanglement
between degenerate open–shell orbitals. Therefore, in SP methods, the electron excita-
tions considered in each of their approaches are spin–flipped from a high–spin m+ 1
state to give a multi–reference |s,m〉 state, where s indicates the quantum numbers
associated with the Ŝ2 operator, whereas m is the quantum number associated with
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the Ŝz operator. In this chapter, a new formulation for the self-energy matrix of the
electron–propagator will be presented.This new formulation for the electron propagator
is based on the ideas of the spin-flip technique and intended for open–shell molecules
in which spin–contamination represents a challenge in the calculation of correct and
accurate ionization energies.

6.1 The spin–flip technique

The spin–flip (SF) methods are single–reference electronic structure approximations
designed for describing strongly correlated systems. The spin–flip approach allows to
formulate and implement any truncated configuration interaction (CI) scheme such
that the resulting SF–CI energies are both variational and size–consistent. The spin–flip
approach operates under the idea that for many multi–configurational (or strongly
correlated) electronic states, there exists a higher spin state that may be higher in energy
but that is well described with a single electronic configuration. The simplest spin–flip
model employs a self consistent field wave–function for the reference state, and the
resulting equations for target states are therefore identical to configuration interaction
singles. In the spin–flip approach, however, the Hamiltonian is diagonalized only
in the basis of single α → β excitations from the reference determinant. The most
simple SF methods rely on an open–shell high-spin reference determinant (S = 1) upon
which a series of single spin–flipped excitations that produces a ∆S = 1 are generated.
Therefore, unlike a CASSCF(2,2) calculation, in which two active electrons in two active
orbitals are needed, the spin–flip approach offers a quasi–two–electron two orbitals
active space in the singly occupied orbitals, and allows for double excitations within
this active space.

6.1.1 Spin–flip and the spin–contamination problem

Despite the spin–flip approach’s advantages, in general, the resultant states from the
SP approach are not spin eigenfunctions [146], i.e, eigenfunction of the Ŝ2 operator.
It has been observed that excited states, and in many cases the ground state, are
significantly spin–contaminated, that is, they are a mixture of s = m,m+ 1,m+ 2, . . . .
It is well known that large spin–contamination may easily cause not only inaccurate
excitation energies but also lead to incorrect assignment of spectrum. This problem
prevails even when restricted open–shell Hartree–Fock (ROHF) reference determinants
are used. This problem that the SP methods have with spin–contamination may be
attributed to the neglect of spin–coupled counterparts of the SF–configuration space.
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A spin correct wave function may be obtained by partitioning the orbital space of the
reference restricted open–shell Hartree–Fock determinant into three subspaces: the
doubly occupied, the singly occupied, and the virtual space, see figure 6.1. Thus, a
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t

u

v

a
b

c

Closed (C)

Open (O)

V irtual (V )

Fig. 6.1.: Partitioned ROHF reference determinant

wave–function that is an eigenfunction of the Ŝ2 operator may be obtained by imposing
the constraint that all determinants in the wave–function have an MS quantum number
equal to zero and allowing the doubly occupied space to lose one electron and the
virtual space to gain one electron.

6.1.2 Spin–flip for ionization energies

The spin–flip ideas for the correct treatment of atoms and molecules with a multi–
configurational nature, can be used for the calculation of electron detachment energies.
Take for example an open–shell reference state with a singly occupied orbital (i.e., a
doublet state), the elimination of one particle may change the z–projection of the total
spin moment, ∆Sz , by ±1

2 . When ∆Sz = −1
2 the state produced after the electron

removal is a singlet. The transition from a doublet to a singlet due to a removal of an
electron from aN electronic state to aN−1 electronic state may be described by a simple
field operator a, and the f3 field operator that represent the electron removal and a
spin–flip excitation, as shown in figure 6.4. In the framework of the electron propagator
theory, these two operators may be regarded as a multi–reference Koopmans’s theorem
picture of the ionization energy. However, in order to further consider orbital relaxation
and correlation corrections, a set of field operator that represent higher order excitations
need to be consider. Therefore, a new partition of the superoperator Hamiltonian and
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Fig. 6.2.: Doublet reference determinant and the resulting determinants produced after
the removal of an electron.

the inclusion of extra spin–flip operators not only of 2hp and 2ph type but also of the
3h2p and 3p2h type need to be included.

6.2 Spin–flip in electron propagator theory

In order to introduce the spin–flip technique to the electron propagator formalism,
a new partitioning of the superoperator Hamiltonian needs to be formulated. The
usual partition of the superoperator Hamiltonian matrix is blocked and divided into a
primary space (P) and a secondary space with three blocks (S),

Ĥ =
 P S

S S

 . (6.1)

The primary block of the superoperator Hamiltonian is usually formed by simple
field operators a, whereas the secondary block is formed by f3 field operators. For the
introduction of the spin–flip operators, however, the primary space of the superoperator
matrix will now contain in addition to the simple field operators, f3 field operators that
corresponds to the single α→ β excitation from the reference determinant formed after
the application of the a operator on the initial reference determinant. Thus, the new
partition of the superoperator Hamiltonian takes the form:

Ĥ =


P S
S S

S

S S

 (6.2)
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6.2.1 Redefinition of the primary block

For the new superoperator Hamiltonian, which takes into consideration the spin–flip
operator, the primary space is now defined as

ĤP =
(a|Ĥa) (a|Ĥf3)
(a|Ĥf3) (f3|Ĥf3)

 (6.3)

The application of a simple field operator a to this reference determinant may remove
either an electron from a singly occupied orbital or a doubly occupied orbital, which
may produce two different final states: For the definition of the primary space, f3
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Fig. 6.3.: h field operators for the primary space.

spin–flip field operators that only consider the doubly occupied and singly occupied
orbital spaces of the original reference determinant will be considered. Thus, this f3
spin–flip field operator may produce final reference states in which an α electron has
been removed from one of the doubly occupied orbitals and one of the open–shell
orbitals has changed the spin of its electron from α to β, see figure 6.4.
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Fig. 6.4.: 2hp spin–flip field operator corresponding to the primary space.

Similarly, the complementary one–particle (p) and two–particle one–hole (2ph) field
operators that need to be considered for the primary sector of the superoperator
Hamiltonian may be represented as in figure 6.8. In order to have a correct description
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Fig. 6.5.: p and 2ph operators for the primary space.

of the important correlation effect for the molecular system, this primary space will be
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considered in first order. Therefore, a general representation for the primary block of
the superoperator Hamiltonian may be expressed as

Ĥ(1)
PP =



ak a†ūauak̄ au ac

aj Fkj 〈uk̄‖jū〉 Fuj Fcj

a†
t̄
ataj̄ 〈t̄k‖tj̄〉 (a†

t̄
ataj̄ |Ĥa

†
ūauak̄)(1) 〈t̄u‖tj̄〉 〈t̄c‖tj̄〉

at Fkt −〈uk̄‖tū〉 Fut Fct

ab Fkb −〈uk̄‖bū〉 Fub Fcb


(6.4)

When the Brillouin theorem is considered this matrix may be expressed as

Ĥ(1)
PP =



ak a†ūauak̄ au ac

aj Fkj 〈uk̄‖jū〉 Fuj 0

a†
t̄
ataj̄ 〈t̄k‖tj̄〉 (a†

t̄
ataj̄ |Ĥa

†
ūauak̄)(1) 〈t̄u‖tj̄〉 〈t̄c‖tj̄〉

at Fkt −〈uk̄‖tū〉 Fut 0

ab 0 −〈uk̄‖bū〉 0 Fcb


.

(6.5)

6.2.2 Redefinition of the secondary block

In order to achieve a correct description of the final states, determinants corresponding
to 2hp, 2ph, 3h2p and 3p2h processes need to be considered. These determinants can
only be accessed by the application of f3 and f5 field operators to the initial single
reference determinant. Thus, in the case of the f3 field operators, the corresponding
2hp operators may be represented as:
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i

j
k

l

s
t

u

v

a
b

c

aiaja†a

i

j
k

l

s
t

u

v

a
b

c

ajasa†a

i

j
k

l

s
t

u

v

a
b

c

aiāja
†
s̄

i

j
k

l

s
t

u

v

a
b

c

atasa†a

i

j
k

l

s
t

u

v

a
b

c
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Fig. 6.6.: 2hp operators for the secondary space.
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On the other hand, for the 3h2p processes, which correspond to the f5 field operators,
the field operators needed may be represented as:
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āiājasa†s̄a†ā
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āiatasa†t̄a†a

i

j
k

l

s
t

u

v

a
b

c
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Fig. 6.7.: 3h2p operators for the secondary space.

Similarly, for the complementary part that corresponds to the two–particle one–hole
F3 field operators, the field operators to be considered are:
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āia
†
b̄a†ā
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Fig. 6.8.: 2ph operators for the secondary space
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For the three–particle two–hole operators, the field operators may be represented as
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Fig. 6.9.: 3p2h operators for the secondary space

6.3 Multi–reference ROHF propagator

The novelty of the new formulation of the electron propagator for computing the
ionization energies of open–shell molecules consists in the use of a single reference
determinant to access final states with strong multi–configuration character. This single
determinant will be improved using the spin–flip technique. The spin–flip operator
will allow the consideration of different determinants for the correct description of the
final state. As the initial reference determinant, the restricted open–shell Hartree–Fock
determinant will be used in order to reduce spin contamination. Correct quantum
numbers for the final states will be obtained by allowing doubly occupied orbitals to
lose one electron and the virtual space to gain one electron. For obtaining the different
correlation and orbital relaxation corrections for the different configurations that may
be considered, f3 and f5 field operator manifolds will be employed in the superoperator
Hamiltonian. However, not all the possible combinations of f3 and f5 field operator will
be used. Only those operators that generate a ∆Sz = −0.5 with respect to the reference
determinant will be used. Also, these field operator manifolds will be restricted to act
only on certain orbital blocks of the orbital partition presented in figure 6.1. In this
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respect, the poles of the corresponding electron propagator may be recovered by the
superoperator Hamiltonian matrix:

Ĥ =

a fP
3 fQ

3 fQ
5


(a|Ĥa) (a|ĤfP

3 ) (a|ĤfQ
3 ) (a|ĤfQ

5 ) a
(fP

3 |Ĥa) (fP
3 |ĤfP

3 ) (fP
3 |ĤfQ

3 ) (fP
3 |ĤfQ

5 ) fP
3

(fQ
3 |Ĥa) (fQ

3 |ĤfP
3 ) (fQ

3 |ĤfQ
3 ) (fQ

3 |ĤfQ
5 ) fQ

3
(fQ

5 |Ĥa) (fQ
5 |ĤfP

3 ) (fQ
5 |ĤfQ

3 ) (fQ
5 |ĤfQ

5 ) fQ
5

(6.6)

where the superscripts P andQ indicate the primary and secondary sectors respectively.
For the definition of the new electron propagator approach for open–shell molecules,
the blocks of the superoperator Hamiltonian matrix will be evaluated using pertur-
bations of different orders. The primary space will be evaluated in its totality in first
order of perturbation and only simple field operators, a, that reduce the number of
electrons from N to N − 1 and spin–flip operators f3 that represent the removal of an
electron from a double occupied orbital and the spin change from α to β in a singly
occupied orbital will be considered. On the other hand, for the secondary blocks of the
superoperator Hamiltonian matrix, the couplings between the primary and secondary
blocks will be evaluated in first order, whereas the secondary–secondary block will be
evaluated in zeroth order. For the secondary space, the manifold of field operators that
will be used consists of seven different types of f3 field operator and only four types
of f5 field operators. The different string of field operators that will be used for the
definition of the secondary block are summarized in table 6.1.

Strings of field operators
No ID Bra Ket
1 FI

3 a†
b̄
alak̄ a†āajaī

2 FII
3 a†balak a†aajai

3 FIII
3 a†baual a†aasaj

4 FIV
3 a†ūakal̄ a†s̄aiaj̄

5 FV
3 a†bauav a†aasat

6 FVI
3 a†

b̄
aual̄ a†āasaj̄

7 FVII
3 a†ūaval̄ a†s̄ataj̄

8 FI
5 a†

b̄
a†ūaual̄ak̄ a†āa

†
s̄asaj̄aī

9 FII
5 a†ba

†
ūaual̄ak a†aa

†
s̄asaj̄ai

10 FIII
5 a†ba

†
v̄auavak̄ a†aa

†
t̄
asataī

11 FVI
5 a†ūa

†
v̄aval̄ak̄ a†s̄a

†
t̄
ataj̄aī

Tab. 6.1.: f3 and f5 operators that will be consider for the definition of the
secondary space
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Thus, the superoperator Hamiltonian matrix that recovers the poles of this new propa-
gator approximation may be rewritten as

Ĥ =

a fP
3 fQ

3 fQ
5


(a|Ĥa)(1) (a|ĤfP

3 )(1) (a|ĤfQ
3 )(1) (a|ĤfQ

5 )(1) a
(fP

3 |Ĥa)(1) (fP
3 |ĤfP

3 )(1) (fP
3 |ĤfQ

3 )(1) (fP
3 |ĤfQ

5 )(1) fP
3

(fQ
3 |Ĥa)(1) (fQ

3 |ĤfP
3 )(1) (fQ

3 |ĤfQ
3 )(0) (fQ

3 |ĤfQ
5 )(0) fQ

3
(fQ

5 |Ĥa)(1) (fQ
5 |ĤfP

3 )(1) (fQ
5 |ĤfQ

3 )(0) (fQ
5 |ĤfQ

5 )(0) fQ
5

(6.7)

For this superoperator Hamiltonian matrix, the expression of the different terms re-
sulting from the coupling of the field operators used in defining the primary space are
reported in table 6.2. Using the operators listed in table 6.1 the secondary–secondary

a fP
3

F
ai as aa a†s̄asaī

ak Fik Fsk Fak −〈s̄i‖ks̄〉

au Fiu Fsu Fau −δusFs̄̄i − 〈s̄i‖us̄〉a

ab Fib Fsb Fab −〈s̄i‖bs̄〉

fP
3 a†ūauak̄ 〈ūi‖uk̄〉 〈ūs‖uk̄〉 〈ūa‖uk̄〉 Fīk̄δūs̄δus + Fsuδūs̄δk̄ī − Fūs̄δsuδk̄ī

+ 〈s̄i‖k̄u〉δs̄ū + 〈ūī‖s̄k̄〉δus + 〈sū‖us̄〉δk̄ī
Tab. 6.2.: Primary Space terms

block of the superoperator Hamiltonian may be represented as in equation (6.8). Since
a single ROHF determinant is used as a reference determinant, due to the effects of
the Brillouin theorem, several of the field operator couplings vanish in zeroth order as
shown in table 6.3. The expressions obtained for the couplings of the different set of
field operators are reported in tables 6.4–6.7. For the coupling between the primary
and the secondary field operator spaces, the expressions for the superoperator Hamil-
tonian matrix terms depend on the Fock matrices and two electron–integrals. The
expressions for these couplings are reported in tables 6.8–6.10. Complete deduction
and details about the notation of the coupling terms between field operators are given
in appendices A, B and C
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Ĥ

F
V

II
3

)
(F

I 3|
Ĥ
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|Ĥ

F
IV 5

)
(F

IV 3
|Ĥ
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|Ĥ

F
IV 5

)
(F

V
I

3
|Ĥ
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|Ĥ

F
II

I
3

)
(F

V
II

3
|Ĥ
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|Ĥ

F
V 3

)
(F

II
I

5
|Ĥ
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|Ĥ

F
I 5)

(F
II

I
5
|Ĥ
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|Ĥ

F
V

I
3

)
(F

IV 5
|Ĥ
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ī

a
† b̄
a
la
k̄

T
0

0
T

0
T

T
0

0
0

0

a
† ba
la
k

0
T

T
0

0
0

0
0

0
0

0

a
† ba
u
a
l

0
T

T
0

T
0

0
0

0
0

0

a
† ūa
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(fQ
3|ĤfQ

3) and (fQ
3|ĤfQ

3) Terms

Coupling Terms

(a†
b̄
alak̄|Ĥa

†
āajaī) Fīk̄δb̄āδlj + Fjlδb̄āδk̄ī − Fb̄āδjlδk̄ī

+ 〈jī‖k̄l〉δāb̄ + 〈b̄̄i‖āk̄〉δlj + 〈jb̄‖lā〉δk̄ī

(a†
b̄
alak̄|Ĥa†aajai) 〈b̄i‖ak̄〉δlj − 〈b̄j‖ak̄〉δli

(a†
b̄
alak̄|Ĥa†aasaj) 〈b̄j‖ak̄〉δls − 〈b̄s‖ak̄〉δlj

(a†
b̄
alak̄|Ĥa

†
s̄aiaj̄) −Fb̄s̄δilδk̄j̄ + 〈b̄j̄‖s̄k̄〉δli + 〈ib̄‖ls̄〉δk̄j̄

(a†
b̄
alak̄|Ĥa†aasat) 0

(a†
b̄
alak̄|Ĥa

†
āasaj̄) Fslδb̄āδk̄j̄ + 〈sj̄‖k̄l〉δāb̄ + 〈sb̄‖lā〉δk̄j̄

(a†
b̄
alak̄|Ĥa

†
s̄ataj̄) 〈tb̄‖ls̄〉δk̄j̄

(a†balak|Ĥa
†
āajaī) 〈b̄i‖āk〉δlj − 〈b̄i‖āl〉δkj

(a†balak|Ĥa†aajai) Fikδbaδlj − Filδabδkj − Fjkδilδab + Fjlδbaδki + Fba[−δjlδki + δkjδli]
+ 〈ji‖kl〉δab + 〈bi‖ak〉δlj − 〈bj‖ak〉δli − 〈bi‖al〉δkj + 〈jb‖la〉δki

(a†balak|Ĥa†aasaj) −Fskδjlδab + Fslδbaδkj + 〈sj‖kl〉δab − 〈bs‖ak〉δlj + 〈sb‖la〉δkj

(a†balak|Ĥa
†
s̄aiaj̄) 〈bj̄‖s̄k〉δli − 〈bj̄‖s̄l〉δki

(a†balak|Ĥa†aasat) 〈st‖kl〉δab

(a†balak|Ĥa
†
āasaj̄) 0

(a†balak|Ĥa
†
s̄ataj̄) 0

(a†baual|Ĥa
†
āajaī) −〈b̄i‖āu〉δlj

(a†baual|Ĥa†aajai) −Fiuδabδlj + Fjuδbaδli + 〈ji‖lu〉δab − 〈bi‖au〉δlj + 〈jb‖ua〉δli

(a†baual|Ĥa†aasaj) Fjlδbaδus + Fsuδbaδlj − Fbaδsuδlj + 〈sj‖lu〉δab + 〈bj‖al〉δus + 〈sb‖ua〉δlj

(a†baual|Ĥa
†
s̄aiaj̄) −〈bj̄‖s̄u〉δli

(a†baual|Ĥa†aasat) Ftlδbaδus − Fslδtuδab + 〈st‖lu〉δab + 〈bt‖al〉δus − 〈bs‖al〉δut

(a†baual|Ĥa
†
āasaj̄) 〈bj̄‖āl〉δus

(a†baual|Ĥa
†
s̄ataj̄) 〈bj̄‖s̄l〉δut

Tab. 6.4.: Secundary–Secundary for the f3–f3 blocks
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(fQ
3|ĤfQ

3) and (fQ
3|ĤfQ

3) Terms

Coupling Terms

(a†ūakal̄|Ĥa
†
āajaī) −Fūāδjkδl̄̄i + 〈ūī‖āl̄〉δkj + 〈jū‖kā〉δl̄̄i

(a†ūakal̄|Ĥa†aajai) 〈ūi‖al̄〉δkj − 〈ūj‖al̄〉δki

(a†ūakal̄|Ĥa†aasaj) −〈ūs‖al̄〉δkj

(a†ūakal̄|Ĥa
†
s̄aiaj̄) Fj̄ l̄δūs̄δki + Fikδūs̄δl̄j̄ − Fūs̄δikδl̄j̄ + 〈ij̄‖l̄k〉δs̄ū + 〈ūj̄‖s̄l̄〉δki + 〈iū‖ks̄〉δl̄j̄

(a†ūakal̄|Ĥa†aasat) 0

(a†ūakal̄|Ĥa
†
āasaj̄) Fskδūāδl̄j̄ + 〈sū‖kā〉δl̄j̄

(a†ūakal̄|Ĥa
†
s̄ataj̄) Ftkδūs̄δl̄j̄ + 〈tj̄‖l̄k〉δs̄ū + 〈tū‖ks̄〉δl̄j̄

(a†bauav|Ĥa
†
āajaī) 0

(a†bauav|Ĥa†aajai) 〈ji‖vu〉δab

(a†bauav|Ĥa†aasaj) Fjvδbaδus − Fjuδabδvs + 〈sj‖vu〉δab + 〈bj‖av〉δus − 〈bj‖au〉δvs

(a†bauav|Ĥa
†
s̄aiaj̄) 0

(a†bauav|Ĥa†aasat) Ftvδbaδus − Ftuδabδvs − Fsvδtuδab + Fsuδbaδvt + Fba[−δsuδvt + δvsδut]
+ 〈st‖vu〉δab + 〈bt‖av〉δus − 〈bs‖av〉δut − 〈bt‖au〉δvs + 〈sb‖ua〉δvt

(a†bauav|Ĥa
†
āasaj̄) 〈bj̄‖āv〉δus − 〈bj̄‖āu〉δvs

(a†bauav|Ĥa
†
s̄ataj̄) 〈bj̄‖s̄v〉δut − 〈bj̄‖s̄u〉δvt

(a†
b̄
aual̄|Ĥa

†
āajaī) Fjuδb̄āδl̄̄i + 〈jī‖l̄u〉δāb̄ + 〈jb̄‖uā〉δl̄̄i

(a†
b̄
aual̄|Ĥa†aajai) 0

(a†
b̄
aual̄|Ĥa†aasaj) 〈b̄j‖al̄〉δus

(a†
b̄
aual̄|Ĥa

†
s̄aiaj̄) 〈ib̄‖us̄〉δl̄j̄

(a†
b̄
aual̄|Ĥa†aasat) 〈b̄t‖al̄〉δus − 〈b̄s‖al̄〉δut

(a†
b̄
aual̄|Ĥa

†
āasaj̄) Fj̄ l̄δb̄āδus + Fsuδb̄āδl̄j̄ − Fb̄āδsuδl̄j̄ + 〈sj̄‖l̄u〉δāb̄ + 〈b̄j̄‖āl̄〉δus + 〈sb̄‖uā〉δl̄j̄

(a†
b̄
aual̄|Ĥa

†
s̄ataj̄) −Fb̄s̄δtuδl̄j̄ + 〈b̄j̄‖s̄l̄〉δut + 〈tb̄‖us̄〉δl̄j̄

Tab. 6.5.: Secundary–Secundary for the f3–f3 blocks
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(fQ
3|ĤfQ

3) and (fQ
3|ĤfQ

3) Terms

Coupling Terms

(a†ūaval̄|Ĥa
†
āajaī) 〈jū‖vā〉δl̄̄i

(a†ūaval̄|Ĥa†aajai) 0

(a†ūaval̄|Ĥa†aasaj) 〈ūj‖al̄〉δvs

(a†ūaval̄|Ĥa
†
s̄aiaj̄) Fivδūs̄δl̄j̄ + 〈ij̄‖l̄v〉δs̄ū + 〈iū‖vs̄〉δl̄j̄

(a†ūaval̄|Ĥa†aasat) 〈ūt‖al̄〉δvs − 〈ūs‖al̄〉δvt

(a†ūaval̄|Ĥa
†
āasaj̄) −Fūāδsvδl̄j̄ + 〈ūj̄‖āl̄〉δvs + 〈sū‖vā〉δl̄j̄

(a†ūaval̄|Ĥa
†
s̄ataj̄) Fj̄ l̄δūs̄δvt + Ftvδūs̄δl̄j̄ − Fūs̄δtvδl̄j̄ + 〈tj̄‖l̄v〉δs̄ū + 〈ūj̄‖s̄l̄〉δvt + 〈tū‖vs̄〉δl̄j̄

Tab. 6.6.: Secundary–Secundary for the f3–f3 blocks

122 Chapter 6 Multireference open–shell electron propagator



(fQ
5|ĤfQ

5) and (fQ
5|ĤfQ

5) Terms

Coupling Terms

(a†
b̄
a†ūaual̄ak̄|Ha

†
āa
†
s̄asaj̄aī) Fīk̄δj̄ l̄δsuδāb̄δs̄ū − Fīl̄δj̄k̄δsuδāb̄δs̄ū − Fj̄k̄δīl̄δsuδāb̄δs̄ū + Fj̄ l̄δīk̄δsuδāb̄δs̄ū

− Fsuδj̄k̄δīl̄δāb̄δs̄ū + Fsuδj̄ l̄δīk̄δāb̄δs̄ū − Fb̄āδūs̄δīk̄δj̄ l̄δsu + Fb̄āδūs̄δīl̄δj̄k̄δsu

− Fūs̄δb̄āδīk̄δj̄ l̄δsu + Fūs̄δb̄āδīl̄δj̄k̄δsu

(a†
b̄
a†ūaual̄ak̄|Ha†aa

†
s̄asaj̄ai) 0

(a†
b̄
a†ūaual̄ak̄|Ha†aa

†
t̄
asataī) 0

(a†
b̄
a†ūaual̄ak̄|Ha

†
s̄a
†
t̄
ataj̄aī) −Fb̄s̄δūt̄[δīk̄δj̄ l̄δtu − δīl̄δj̄k̄δtu] + Fb̄t̄δūs̄[δīk̄(δj̄ l̄δtu)− δīl̄(δj̄k̄δtu)]

(a†ba
†
ūaual̄ak|Ha

†
āa
†
s̄asaj̄aī) 0

(a†ba
†
ūaual̄ak|Ha†aa

†
s̄asaj̄ai) Fikδj̄ l̄δsuδabδs̄ū − Fbaδūs̄δikδj̄ l̄δsu − Fūs̄δbaδikδj̄ l̄δsu

(a†ba
†
ūaual̄ak|Ha†aa

†
t̄
asataī) −Ftkδīl̄δsuδabδt̄ū + Fskδīl̄δtuδabδt̄ū

(a†ba
†
ūaual̄ak|Ha

†
s̄a
†
t̄
ataj̄aī) 0

(a†ba
†
v̄auavak̄|Ha

†
āa
†
s̄asaj̄aī) 0

(a†ba
†
v̄auavak̄|Ha†aa

†
s̄asaj̄ai) −Fivδj̄k̄δsuδabδs̄v̄ + Fiuδj̄k̄δsvδabδs̄v̄

(a†ba
†
v̄auavak̄|Ha†aa

†
t̄
asataī) Fīk̄δtvδsuδabδt̄v̄ − Fīk̄δsvδtuδabδt̄v̄ + Ftvδīk̄δsuδabδt̄v̄ − Ftuδīk̄δsvδabδt̄v̄

− Fsvδtuδīk̄δabδt̄v̄ + Fsuδtvδīk̄δabδt̄v̄ − Fbaδv̄t̄δīk̄δtvδsu + Fbaδv̄t̄δīk̄δsvδtu

− Fv̄t̄δbaδīk̄δtvδsu + Fv̄t̄δbaδīk̄δsvδtu

(a†ba
†
v̄auavak̄|Ha

†
s̄a
†
t̄
ataj̄aī) 0

(a†ūa
†
v̄aval̄ak̄|Ha

†
āa
†
s̄asaj̄aī) −Fūāδv̄s̄δīk̄δj̄ l̄δsv + Fūāδv̄s̄δīl̄δj̄k̄δsv + Fv̄āδūs̄δīk̄δj̄ l̄δsv − Fv̄āδūs̄δīl̄δj̄k̄δsv

(a†ūa
†
v̄aval̄ak̄|Ha†aa

†
s̄asaj̄ai) 0

(a†ūa
†
v̄aval̄ak̄|Ha†aa

†
t̄
asataī) 0

(a†ūa
†
v̄aval̄ak̄|Ha

†
s̄a
†
t̄
ataj̄aī) Fīk̄δj̄ l̄δtvδs̄ūδt̄v̄ − Fīk̄δj̄ l̄δtvδs̄v̄δt̄ū − Fīl̄δj̄k̄δtvδs̄ūδt̄v̄ + Fīl̄δj̄k̄δtvδs̄v̄δt̄ū

− Fj̄k̄δīl̄δtvδs̄ūδt̄v̄ + Fj̄k̄δīl̄δtvδs̄v̄δt̄ū + Fj̄ l̄δīk̄δtvδs̄ūδt̄v̄ − Fj̄ l̄δīk̄δtvδs̄v̄δt̄ū
− Ftvδj̄k̄δīl̄δs̄ūδt̄v̄ + Ftvδj̄k̄δīl̄δs̄v̄δt̄ū + Ftvδj̄ l̄δīk̄δs̄ūδt̄v̄ − Ftvδj̄ l̄δīk̄δs̄v̄δt̄ū
− Fūs̄δv̄t̄δīk̄δj̄ l̄δtv + Fūs̄δv̄t̄δīl̄δj̄k̄δtv + Fv̄s̄δūt̄δīk̄δj̄ l̄δtv − Fv̄s̄δūt̄δīl̄δj̄k̄δtv
+ Fūt̄δv̄s̄δīk̄δj̄ l̄δtv − Fūt̄δv̄s̄δīl̄δj̄k̄δtv − Fv̄t̄δūs̄δīk̄δj̄ l̄δtv + Fv̄t̄δūs̄δīl̄δj̄k̄δtv

Tab. 6.7.: Secundary–Secundary f5–f5 blocks
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(a|ĤfQ
3) and (fQ

3|Ĥa) Terms

Coupling Terms

(aκ|Ĥa†āajaī) −δκjFā̄i − δκīFāj − 〈jī‖κā〉

(aκ|Ĥa†aajai) −δκjFai − δκiFaj − 〈ji‖κa〉

(aκ|Ĥa†aasaj) −δκsFaj − δκjFas − 〈sj‖κa〉

(aκ|Ĥa†s̄aiaj̄) −δκiFs̄j̄ − δκj̄Fs̄i − 〈ij̄‖κs̄〉

(aκ|Ĥa†aasat) −δκsFat − δκtFas − 〈st‖κa〉

(aκ|Ĥa†āasaj̄) −δκsFāj̄ − δκj̄Fās − 〈sj̄‖κā〉

(aκ|Ĥa†s̄ataj̄) −δκtFs̄j̄ − δκj̄Fs̄t − 〈tj̄‖κs̄〉

(a†
b̄
alak̄|Ĥaι) 〈b̄ι‖lk̄〉

(a†balak|Ĥaι) 〈bι‖lk〉

(a†baual|Ĥaι) 〈bι‖ul〉

(a†ūakal̄|Ĥaι) 〈ūι‖kl̄〉

(a†bauav|Ĥaι) 〈bι‖uv〉

(a†
b̄
aual̄|Ĥaι) 〈b̄ι‖ul̄〉

(a†ūaval̄|Ĥaι) 〈ūι‖vl̄〉
Tab. 6.8.: Primary–Secundary and Secundary–Primary for the a–f3–a blocks
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(fP
3|ĤfQ

3) and (fQ
3|ĤfP

3) Terms

Coupling Terms

(a†ūauak̄|Ĥa
†
āajaī) 〈jū‖uā〉δk̄ī

(a†ūauak̄|Ĥa†aajai) 0

(a†ūauak̄|Ĥa†aasaj) 〈ūj‖ak̄〉δus

(a†ūauak̄|Ĥa
†
s̄aiaj̄) Fiuδūs̄δk̄j̄ + 〈ij̄‖k̄u〉δs̄ū + 〈iū‖us̄〉δk̄j̄

(a†ūauak̄|Ĥa†aasat) 〈ūt‖ak̄〉δus − 〈ūs‖ak̄〉δut

(a†ūauak̄|Ĥa
†
āasaj̄) −Fūāδsuδk̄j̄ + 〈ūj̄‖āk̄〉δus + 〈sū‖uā〉δk̄j̄

(a†ūauak̄|Ĥa
†
s̄ataj̄) Fj̄k̄δūs̄δut + Ftuδūs̄δk̄j̄ − Fūs̄δtuδk̄j̄ + 〈tj̄‖k̄u〉δs̄ū + 〈ūj̄‖s̄k̄〉δut + 〈tū‖us̄〉δk̄j̄

(a†
b̄
alak̄|Ĥa

†
s̄asaī) 〈sb̄‖ls̄〉δk̄ī

(a†balak|Ĥa
†
s̄asaī) 0

(a†baual|Ĥa
†
s̄asaī) 〈b̄i‖s̄l〉δus

(a†ūakal̄|Ĥa
†
s̄asaī) Fskδūs̄δl̄̄i + 〈s̄i‖l̄k〉δs̄ū + 〈sū‖ks̄〉δl̄̄i

(a†bauav|Ĥa
†
s̄asaī) 〈b̄i‖s̄v〉δus − 〈b̄i‖s̄u〉δvs

(a†
b̄
aual̄|Ĥa

†
s̄asaī) −Fb̄s̄δsuδl̄̄i + 〈b̄̄i‖s̄l̄〉δus + 〈sb̄‖us̄〉δl̄̄i

(a†ūaval̄|Ĥa
†
s̄asaī) Fīl̄δūs̄δvs + Fsvδūs̄δl̄̄i − Fūs̄δsvδl̄̄i + 〈s̄i‖l̄v〉δs̄ū + 〈ūī‖s̄l̄〉δvs + 〈sū‖vs̄〉δl̄̄i

Tab. 6.9.: Primary–Secundary and Secundary–Primary f3–f3 blocks
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(fP
3|ĤfQ

5) and (fQ
5|ĤfP

3) Terms

Coupling Terms

(a†ūauak̄|Ha
†
āa
†
s̄asaj̄aī) δs̄ū[−δsu(j̄k̄||̄iā)− δīk̄(j̄u||sā)− δj̄k̄(su||̄iā)]

− (ūā||̄is̄)δusδk̄j̄ + (ūā||j̄s̄)δusδk̄ī

(a†ūauak̄|Ha†aa
†
s̄asaj̄ai) δs̄ū[−δsu(j̄k̄||ia)− δj̄k̄(su||ia)]

− (ūa||is̄)δusδk̄j̄ + (ūa||ss̄)δuiδk̄j̄

(a†ūauak̄|Ha†aa
†
t̄
asataī) δt̄ū[−δsu(tk̄||̄ia)− δīk̄(tu||sa) + δtu(sk̄||̄ia)]

+ (ūa||tt̄)δusδk̄ī − (ūa||st̄)δutδk̄ī

(a†ūauak̄|Ha
†
s̄a
†
t̄
ataj̄aī) δs̄ū[δtu(j̄k̄||̄it̄) + δīk̄(j̄u||tt̄) + δj̄k̄(tu||̄it̄)]

+ δt̄ū[−δtu(j̄k̄||̄is̄)− δīk̄(j̄u||ts̄)− δj̄k̄(tu||̄is̄)]
− (ūs̄||̄it̄)δutδk̄j̄ + (ūs̄||j̄t̄)δutδk̄ī

(a†
b̄
a†ūaual̄ak̄|Ha

†
s̄asaī) − δūs̄[(ūk̄||̄il̄)δsu − (ūl̄||̄ik̄)δsu + (ūu||sl̄)δīk̄]

− (ūk̄||b̄s̄)δsuδīl̄ + (ūl̄||b̄s̄)δsuδīk̄

(a†ba
†
ūaual̄ak|Ha

†
s̄asaī) − δūs̄[(ūk||̄il̄)δsu − (ūl̄||̄ik)δsu + (ūl̄||sk)δīu]

− (ūk||bs̄)δsuδīl̄ + (ūu||bs̄)δskδīl̄

(a†ba
†
v̄auavak̄|Ha

†
s̄asaī) − δv̄s̄[(v̄k̄||̄iv)δsu − (v̄v||̄ik̄)δsu + (v̄u||sv)δīk̄]

+ (v̄v||bs̄)δsuδīk̄ − (v̄u||bs̄)δsvδīk̄

(a†ūa
†
v̄aval̄ak̄|Ha

†
s̄asaī) δūs̄[(v̄k̄||̄iq)δsv − (v̄l̄||̄ik̄)δsv + (v̄v||sl̄)δīk̄]

− δv̄s̄[(v̄k̄||̄il̄)δsv − (v̄l̄||̄ik̄)δsv + (v̄v||sl̄)δīk̄]
− (v̄k̄||ūs̄)δsvδīl̄ + (v̄l̄||ūs̄)δsvδīk̄

Tab. 6.10.: Primary–Secundary and Secundary–Primary f3–f5–f3 blocks
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6.3.1 Self–energy reformulation

For the electron detachment energies, the Dyson electron propagator approximation
that uses a single ROHF determinant as the reference determinant may be expressed
as

e + Σ(E) = (h|Ĥh) + (h|ĤfQ)(1)[E1− (fQ|ĤfQ)(0)]−1(fQ|Ĥh)(1) (6.9)

where h represents the field operators corresponding to the new partition of the primary
space, whereas fQ are the field operators corresponding to the secondary space. Thus,
the repartitioned primary space may be expressed as

(h|Ĥh) = (a + fP
3 |Ĥ|a + fP

3 ) = (a|Ĥa) + (a|ĤfP
3 ) + (fP

3 |Ĥa) + (fP
3 |ĤfP

3 ) (6.10)

On the other hand, the self–energy matrix for this repartitioned electron propagator
may be expressed as

Σ(E) = (h|ĤfQ)(1)[E1− (fQ|ĤfQ)(0)]−1(fQ|Ĥh)(1) (6.11)

This new expression for the self–energy matrix would now holds products between
the H3,3, H5,5, H3,5 and H5,3 matrices. Thus in the implementation of this electron
propagator, both the primary and secondary block would need to be allocated as a
2× 2 blocked matrix instead of as a simple array. Hence, Γ(E) may be expressed as

Γ(E)2×2 = (h|Ĥh)2×2 + Σ(E)2×2 (6.12)

This is relevant to mention in order to clearly understand that after the diagonalization
of the Γ(E)2×2 matrix the resulting eigenvectors and values would now have dimension
corresponding to two times the number of orbitals that are being considered, 2 ×N
where N = Occupied orbitals + Virtual orbitals. Therefore, the overlap algorithm
that is usually used for the selection of the eigenvalue that will correspond to the next
iteration may need to be adapted. In general, the initial guess overlap vector has only
one element different from zero. (The element that corresponds to the orbital from
which an electron in being removed or added) For the case of the spin–flip propagator,
the initial guess overlap vector may have two of its elements with values different
than zero. The position of these elements is related to the final determinants that are
considered for the description of the final state. For example, if the initial reference
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determinant is a doublet, then the initial guess vector will be divided into two different
sectors of size N ,

V Guess
µ =



i

j

k

s

a
...
N

i

j

k

s

a
...
N



. (6.13)

In this vector, the different sectors may be regarded as the different determinants
needed to form the final state. Thus, the only elements different than zero would be
those corresponding to the orbitals from which an electron need to be removed from
the reference determinant to produce the relevant configurations for the final state,

V Guess
µ =



i

j
1√
2
s

a
...
N

i

j
1√
2
s

a
...
N



. (6.14)

In the case of a doublet reference determinant, in which a singlet and a triplet state
may be obtained by a linear combination of two determinants, one may be able to
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distinguish between these two states by inspecting the overlap coefficient values and
their signs,

V Guess
µ =



i

j
1√
2
s

a
...
N

i

j

± 1√
2

s

a
...
N



. (6.15)

If the two overlap coefficients with the closest value to unity have the same sign, then
the state obtained is a triplet state otherwise is a singlet state. Advancement of the
implementation and development of the algorithm for this electron propagator are still
in progress.
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APrimary block field operator
couplings

The couplings for the primary block are based on the superoperator Hamiltonian
matrix:

ĤPP =
[

(a|Ĥa) (a|ĤF3)
(a|ĤF3) (F3|ĤF3)

]
(A.1)

The terms of this matrix are evaluated in first order. The indices and coupling for field
operators that are used for building the ĤPP matrix are as follow:

Ĥ(1)
PP =



ak a†ūauak̄ au ac

aj Fkj 〈uk̄‖jū〉 Fuj Fcj

a†
t̄
ataj̄ 〈t̄k‖tj̄〉 (a†

t̄
ataj̄ |Ĥa

†
ūauak̄) 〈t̄u‖tj̄〉 〈t̄c‖tj̄〉

at Fkt −〈uk̄‖tū〉 Fut Fct

ab Fkb −〈uk̄‖bū〉 Fub Fcb


(A.2)

A.1 Deduction of the matrix elements for the
primary–primary block

(aj |Ĥak) = Fkj (A.3)

(at|Ĥak) = Fkt (A.4)

(ab|Ĥak) = Fkb (A.5)
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(aj |Ĥau) = Fuj (A.6)

(at|Ĥau) = Fut (A.7)

(ab|Ĥau) = Fub (A.8)

(aj |Ĥac) = Fcj (A.9)

(at|Ĥac) = Fct (A.10)

(ab|Ĥac) = Fcb (A.11)

(a†κapaq|Ĥar) = 〈κr‖pq〉(−npnκ − nκnq + npnq + nκ)

= 〈κr‖pq〉(+1)

= 〈κr‖pq〉

(A.12)

(a†ūauak̄|Ĥaj) = 〈ūj‖uk̄〉(−nunū − nūnk̄ + nunk̄ + nū)

= 〈ūj‖uk̄〉(+1)

= 〈ūj‖uk̄〉

(A.13)

(a†
t̄
ataj̄ |Ĥak) = 〈t̄k‖tj̄〉(−ntnt̄ − nt̄nj̄ + ntnj̄ + nt̄)

= 〈t̄k‖tj̄〉(+1)

= 〈t̄k‖tj̄〉

(A.14)
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(a†
t̄
ataj̄ |Ĥau) = 〈t̄u‖tj̄〉(−ntnt̄ − nt̄nj̄ + ntnj̄ + nt̄)

= 〈t̄u‖tj̄〉(+1)

= 〈t̄u‖tj̄〉

(A.15)

(a†
t̄
ataj̄ |Ĥac) = 〈t̄c‖tj̄〉(−ntnt̄ − nt̄nj̄ + ntnj̄ + nt̄)

= 〈t̄c‖tj̄〉(+1)

= 〈t̄c‖tj̄〉

(A.16)

(at|Ĥa†ūauak̄) = δtuFūk̄(nū − nk̄) + δtk̄Fūu(nū − nu) + 〈uk̄‖tū〉(nunū + nūnk̄ − nunk̄ − nū)

= δtuFūk̄(−1) + δtk̄Fūu(−1) + 〈uk̄‖tū〉(−1)

= −δtuFūk̄ − δtk̄Fūu − 〈uk̄‖tū〉
(A.17)

(ab|Ĥa†ūauak̄) = δbuFūk̄(nū − nk̄) + δbk̄Fūu(nū − nu) + 〈uk̄‖tū〉(nunū + nūnk̄ − nunk̄ − nū)

= δbuFūk̄(−1) + δbk̄Fūu(−1) + 〈uk̄‖tū〉(−1)

= −δbuFūk̄ − δbk̄Fūu − 〈uk̄‖bū〉
(A.18)

(a†
t̄
ataj̄ |Ĥa

†
ūauak̄) = Fk̄j̄δt̄ūδtu − Fk̄tδūt̄δj̄u − Fuj̄δk̄tδūt̄ + Futδt̄ūδj̄k̄ + Ft̄ū[−δutδj̄k̄ + δj̄uδtk̄]

+ 〈uk̄‖j̄t〉δūt̄ + 〈t̄k̄‖ūj̄〉δtu − 〈t̄u‖ūj̄〉δtk̄ − 〈t̄k̄‖ūt〉δj̄u + 〈ut̄‖tū〉δj̄k̄
(A.19)
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BSecondary block field operator
couplings

The difference between the 2hp and 2ph terms is reflected in the occupation numbers.
By using the general deductions expressions, the 2hp and 2ph are related through a
sign change and the nature of the indices, the indices that were set for occupied orbitals
now represent virtual orbitals an vice-versa. Therefore, In this expression we only focus
on 2ph terms that can be transform to 2hp by changing multiplying the 2ph by −1. In
some cases,the two electron integrals have been change from the Dirac notation to the
Mulliken notation. The change of notation of the two electron integral was done in
order to further reduce the long expressions that were obtained using matrix notation.
The relations between the two notations is:

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉

= (ik|jl)− (il|jk)
(B.1)

B.1 General term for (F3|ĤF3) for the 2ph terms in
first order

The field operator (F3|ĤF3) coupling general expression reads

(a†ιasat|Ĥa†κapaq) = Fqtδικδsp − Fqsδκιδtp − Fptδqsδκι + Fpsδικδtq + Fικ[−δpsδtq + δtpδsq]

+ 〈pq‖ts〉δκι + 〈ιq‖κt〉δsp − 〈ιp‖κt〉δsq − 〈ιq‖κs〉δtp + 〈pι‖sκ〉δtq
(B.2)
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B.1.1 a†
b̄
alak̄

(a†
b̄
alak̄|Ĥa

†
āajaī) = Fīk̄δb̄āδlj − Fīlδāb̄δk̄j − Fjk̄δīlδāb̄ + Fjlδb̄āδk̄ī + Fb̄ā[−δjlδk̄ī + δk̄jδl̄i]

+ 〈jī‖k̄l〉δāb̄ + 〈b̄̄i‖āk̄〉δlj − 〈b̄j‖āk̄〉δl̄i − 〈b̄̄i‖āl〉δk̄j + 〈jb̄‖lā〉δk̄ī
= Fīk̄δb̄āδlj + Fjlδb̄āδk̄ī − Fb̄āδjlδk̄ī + 〈jī‖k̄l〉δāb̄ + 〈b̄̄i‖āk̄〉δlj + 〈jb̄‖lā〉δk̄ī

(B.3)

(a†
b̄
alak̄|Ĥa

†
aajai) = Fik̄δb̄aδlj − Filδab̄δk̄j − Fjk̄δilδab̄ + Fjlδb̄aδk̄i + Fb̄a[−δjlδk̄i + δk̄jδli]

+ 〈ji‖k̄l〉δab̄ + 〈b̄i‖ak̄〉δlj − 〈b̄j‖ak̄〉δli − 〈b̄i‖al〉δk̄j + 〈jb̄‖la〉δk̄i
= 〈b̄i‖ak̄〉δlj − 〈b̄j‖ak̄〉δli

(B.4)

(a†
b̄
alak̄|Ĥa

†
aasaj) = Fjk̄δb̄aδls − Fjlδab̄δk̄s − Fsk̄δjlδab̄ + Fslδb̄aδk̄j + Fb̄a[−δslδk̄j + δk̄sδlj ]

+ 〈sj‖k̄l〉δab̄ + 〈b̄j‖ak̄〉δls − 〈b̄s‖ak̄〉δlj − 〈b̄j‖al〉δk̄s + 〈sb̄‖la〉δk̄j
= 〈b̄j‖ak̄〉δls − 〈b̄s‖ak̄〉δlj

(B.5)

(a†
b̄
alak̄|Ĥa

†
s̄aiaj̄) = Fj̄k̄δb̄s̄δli − Fj̄lδs̄b̄δk̄i − Fik̄δj̄lδs̄b̄ + Filδb̄s̄δk̄j̄ + Fb̄s̄[−δilδk̄j̄ + δk̄iδlj̄ ]

+ 〈ij̄‖k̄l〉δs̄b̄ + 〈b̄j̄‖s̄k̄〉δli − 〈b̄i‖s̄k̄〉δlj̄ − 〈b̄j̄‖s̄l〉δk̄i + 〈ib̄‖ls̄〉δk̄j̄
= −Fb̄s̄δilδk̄j̄ + 〈b̄j̄‖s̄k̄〉δli + 〈ib̄‖ls̄〉δk̄j̄

(B.6)

(a†
b̄
alak̄|Ĥa

†
aasat) = Ftk̄δb̄aδls − Ftlδab̄δk̄s − Fsk̄δtlδab̄ + Fslδb̄aδk̄t + Fb̄a[−δslδk̄t + δk̄sδlt]

+ 〈st‖k̄l〉δab̄ + 〈b̄t‖ak̄〉δls − 〈b̄s‖ak̄〉δlt − 〈b̄t‖al〉δk̄s + 〈sb̄‖la〉δk̄t
= 0

(B.7)
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(a†
b̄
alak̄|Ĥa

†
āasaj̄) = Fj̄k̄δb̄āδls − Fj̄lδāb̄δk̄s − Fsk̄δj̄lδāb̄ + Fslδb̄āδk̄j̄ + Fb̄ā[−δslδk̄j̄ + δk̄sδlj̄ ]

+ 〈sj̄‖k̄l〉δāb̄ + 〈b̄j̄‖āk̄〉δls − 〈b̄s‖āk̄〉δlj̄ − 〈b̄j̄‖āl〉δk̄s + 〈sb̄‖lā〉δk̄j̄
= Fslδb̄āδk̄j̄ + 〈sj̄‖k̄l〉δāb̄ + 〈sb̄‖lā〉δk̄j̄

(B.8)

(a†
b̄
alak̄|Ĥa

†
s̄ataj̄) = Fj̄k̄δb̄s̄δlt − Fj̄lδs̄b̄δk̄t − Ftk̄δj̄lδs̄b̄ + Ftlδb̄s̄δk̄j̄ + Fb̄s̄[−δtlδk̄j̄ + δk̄tδlj̄ ]

+ 〈tj̄‖k̄l〉δs̄b̄ + 〈b̄j̄‖s̄k̄〉δlt − 〈b̄t‖s̄k̄〉δlj̄ − 〈b̄j̄‖s̄l〉δk̄t + 〈tb̄‖ls̄〉δk̄j̄
= 〈tb̄‖ls̄〉δk̄j̄

(B.9)

B.1.2 a†balak

(a†balak|Ĥa
†
āajaī) = Fīkδbāδlj − Fīlδābδkj − Fjkδīlδāb + Fjlδbāδkī + Fbā[−δjlδkī + δkjδl̄i]

+ 〈jī‖kl〉δāb + 〈b̄i‖āk〉δlj − 〈bj‖āk〉δl̄i − 〈b̄i‖āl〉δkj + 〈jb‖lā〉δkī
= 〈b̄i‖āk〉δlj − 〈b̄i‖āl〉δkj

(B.10)

(a†balak|Ĥa
†
aajai) = Fikδbaδlj − Filδabδkj − Fjkδilδab + Fjlδbaδki + Fba[−δjlδki + δkjδli]

+ 〈ji‖kl〉δab + 〈bi‖ak〉δlj − 〈bj‖ak〉δli − 〈bi‖al〉δkj + 〈jb‖la〉δki
= Fikδbaδlj − Filδabδkj − Fjkδilδab + Fjlδbaδki + Fba[−δjlδki + δkjδli]

+ 〈ji‖kl〉δab + 〈bi‖ak〉δlj − 〈bj‖ak〉δli − 〈bi‖al〉δkj + 〈jb‖la〉δki
(B.11)

(a†balak|Ĥa
†
aasaj) = Fjkδbaδls − Fjlδabδks − Fskδjlδab + Fslδbaδkj + Fba[−δslδkj + δksδlj ]

+ 〈sj‖kl〉δab + 〈bj‖ak〉δls − 〈bs‖ak〉δlj − 〈bj‖al〉δks + 〈sb‖la〉δkj
= −Fskδjlδab + Fslδbaδkj + 〈sj‖kl〉δab − 〈bs‖ak〉δlj + 〈sb‖la〉δkj

(B.12)
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(a†balak|Ĥa
†
s̄aiaj̄) = Fj̄kδbs̄δli − Fj̄lδs̄bδki − Fikδj̄lδs̄b + Filδbs̄δkj̄ + Fbs̄[−δilδkj̄ + δkiδlj̄ ]

+ 〈ij̄‖kl〉δs̄b + 〈bj̄‖s̄k〉δli − 〈bi‖s̄k〉δlj̄ − 〈bj̄‖s̄l〉δki + 〈ib‖ls̄〉δkj̄
= 〈bj̄‖s̄k〉δli − 〈bj̄‖s̄l〉δki

(B.13)

(a†balak|Ĥa
†
aasat) = Ftkδbaδls − Ftlδabδks − Fskδtlδab + Fslδbaδkt + Fba[−δslδkt + δksδlt]

+ 〈st‖kl〉δab + 〈bt‖ak〉δls − 〈bs‖ak〉δlt − 〈bt‖al〉δks + 〈sb‖la〉δkt
= 〈st‖kl〉δab

(B.14)

(a†balak|Ĥa
†
āasaj̄) = Fj̄kδbāδls − Fj̄lδābδks − Fskδj̄lδāb + Fslδbāδkj̄ + Fbā[−δslδkj̄ + δksδlj̄ ]

+ 〈sj̄‖kl〉δāb + 〈bj̄‖āk〉δls − 〈bs‖āk〉δlj̄ − 〈bj̄‖āl〉δks + 〈sb‖lā〉δkj̄
= 0

(B.15)

(a†balak|Ĥa
†
s̄ataj̄) = Fj̄kδbs̄δlt − Fj̄lδs̄bδkt − Ftkδj̄lδs̄b + Ftlδbs̄δkj̄ + Fbs̄[−δtlδkj̄ + δktδlj̄ ]

+ 〈tj̄‖kl〉δs̄b + 〈bj̄‖s̄k〉δlt − 〈bt‖s̄k〉δlj̄ − 〈bj̄‖s̄l〉δkt + 〈tb‖ls̄〉δkj̄
= 0

(B.16)

B.1.3 a†baual

(a†baual|Ĥa
†
āajaī) = Fīlδbāδuj − Fīuδābδlj − Fjlδīuδāb + Fjuδbāδl̄i + Fbā[−δjuδl̄i + δljδuī]

+ 〈jī‖lu〉δāb + 〈b̄i‖āl〉δuj − 〈bj‖āl〉δuī − 〈b̄i‖āu〉δlj + 〈jb‖uā〉δl̄i
= −〈b̄i‖āu〉δlj

(B.17)

(a†baual|Ĥa
†
aajai) = Filδbaδuj − Fiuδabδlj − Fjlδiuδab + Fjuδbaδli + Fba[−δjuδli + δljδui]

+ 〈ji‖lu〉δab + 〈bi‖al〉δuj − 〈bj‖al〉δui − 〈bi‖au〉δlj + 〈jb‖ua〉δli
= −Fiuδabδlj + Fjuδbaδli + 〈ji‖lu〉δab − 〈bi‖au〉δlj + 〈jb‖ua〉δli

(B.18)
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(a†baual|Ĥa
†
aasaj) = Fjlδbaδus − Fjuδabδls − Fslδjuδab + Fsuδbaδlj + Fba[−δsuδlj + δlsδuj ]

+ 〈sj‖lu〉δab + 〈bj‖al〉δus − 〈bs‖al〉δuj − 〈bj‖au〉δls + 〈sb‖ua〉δlj
= Fjlδbaδus + Fsuδbaδlj − Fbaδsuδlj + 〈sj‖lu〉δab + 〈bj‖al〉δus + 〈sb‖ua〉δlj

(B.19)

(a†baual|Ĥa
†
s̄aiaj̄) = Fj̄lδbs̄δui − Fj̄uδs̄bδli − Filδj̄uδs̄b + Fiuδbs̄δlj̄ + Fbs̄[−δiuδlj̄ + δliδuj̄ ]

+ 〈ij̄‖lu〉δs̄b + 〈bj̄‖s̄l〉δui − 〈bi‖s̄l〉δuj̄ − 〈bj̄‖s̄u〉δli + 〈ib‖us̄〉δlj̄
= −〈bj̄‖s̄u〉δli

(B.20)

(a†baual|Ĥa
†
aasat) = Ftlδbaδus − Ftuδabδls − Fslδtuδab + Fsuδbaδlt + Fba[−δsuδlt + δlsδut]

+ 〈st‖lu〉δab + 〈bt‖al〉δus − 〈bs‖al〉δut − 〈bt‖au〉δls + 〈sb‖ua〉δlt
= Ftlδbaδus − Fslδtuδab + 〈st‖lu〉δab + 〈bt‖al〉δus − 〈bs‖al〉δut

(B.21)

(a†baual|Ĥa
†
āasaj̄) = Fj̄lδbāδus − Fj̄uδābδls − Fslδj̄uδāb + Fsuδbāδlj̄ + Fbā[−δsuδlj̄ + δlsδuj̄ ]

+ 〈sj̄‖lu〉δāb + 〈bj̄‖āl〉δus − 〈bs‖āl〉δuj̄ − 〈bj̄‖āu〉δls + 〈sb‖uā〉δlj̄
= +〈bj̄‖āl〉δus

(B.22)

(a†baual|Ĥa
†
s̄ataj̄) = Fj̄lδbs̄δut − Fj̄uδs̄bδlt − Ftlδj̄uδs̄b + Ftuδbs̄δlj̄ + Fbs̄[−δtuδlj̄ + δltδuj̄ ]

+ 〈tj̄‖lu〉δs̄b + 〈bj̄‖s̄l〉δut − 〈bt‖s̄l〉δuj̄ − 〈bj̄‖s̄u〉δlt + 〈tb‖us̄〉δlj̄
= +〈bj̄‖s̄l〉δut

(B.23)

B.1.4 a†ūakal̄

(a†ūakal̄|Ĥa
†
āajaī) = Fīl̄δūāδkj − Fīkδāūδl̄j − Fjl̄δīkδāū + Fjkδūāδl̄̄i + Fūā[−δjkδl̄̄i + δl̄jδkī]

+ 〈jī‖l̄k〉δāū + 〈ūī‖āl̄〉δkj − 〈ūj‖āl̄〉δkī − 〈ūī‖āk〉δl̄j + 〈jū‖kā〉δl̄̄i
= −Fūāδjkδl̄̄i + 〈ūī‖āl̄〉δkj + 〈jū‖kā〉δl̄̄i

(B.24)
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(a†ūakal̄|Ĥa
†
aajai) = Fil̄δūaδkj − Fikδaūδl̄j − Fjl̄δikδaū + Fjkδūaδl̄i + Fūa[−δjkδl̄i + δl̄jδki]

+ 〈ji‖l̄k〉δaū + 〈ūi‖al̄〉δkj − 〈ūj‖al̄〉δki − 〈ūi‖ak〉δl̄j + 〈jū‖ka〉δl̄i
= 〈ūi‖al̄〉δkj − 〈ūj‖al̄〉δki

(B.25)

(a†ūakal̄|Ĥa
†
aasaj) = Fjl̄δūaδks − Fjkδaūδl̄s − Fsl̄δjkδaū + Fskδūaδl̄j + Fūa[−δskδl̄j + δl̄sδkj ]

+ 〈sj‖l̄k〉δaū + 〈ūj‖al̄〉δks − 〈ūs‖al̄〉δkj − 〈ūj‖ak〉δl̄s + 〈sū‖ka〉δl̄j
= −〈ūs‖al̄〉δkj

(B.26)

(a†ūakal̄|Ĥa
†
s̄aiaj̄) = Fj̄ l̄δūs̄δki − Fj̄kδs̄ūδl̄i − Fil̄δj̄kδs̄ū + Fikδūs̄δl̄j̄ + Fūs̄[−δikδl̄j̄ + δl̄iδkj̄ ]

+ 〈ij̄‖l̄k〉δs̄ū + 〈ūj̄‖s̄l̄〉δki − 〈ūi‖s̄l̄〉δkj̄ − 〈ūj̄‖s̄k〉δl̄i + 〈iū‖ks̄〉δl̄j̄
= Fj̄ l̄δūs̄δki + Fikδūs̄δl̄j̄ − Fūs̄δikδl̄j̄ + 〈ij̄‖l̄k〉δs̄ū + 〈ūj̄‖s̄l̄〉δki + 〈iū‖ks̄〉δl̄j̄

(B.27)

(a†ūakal̄|Ĥa
†
aasat) = Ftl̄δūaδks − Ftkδaūδl̄s − Fsl̄δtkδaū + Fskδūaδl̄t + Fūa[−δskδl̄t + δl̄sδkt]

+ 〈st‖l̄k〉δaū + 〈ūt‖al̄〉δks − 〈ūs‖al̄〉δkt − 〈ūt‖ak〉δl̄s + 〈sū‖ka〉δl̄t
= 0

(B.28)

(a†ūakal̄|Ĥa
†
āasaj̄) = Fj̄ l̄δūāδks − Fj̄kδāūδl̄s − Fsl̄δj̄kδāū + Fskδūāδl̄j̄ + Fūā[−δskδl̄j̄ + δl̄sδkj̄ ]

+ 〈sj̄‖l̄k〉δāū + 〈ūj̄‖āl̄〉δks − 〈ūs‖āl̄〉δkj̄ − 〈ūj̄‖āk〉δl̄s + 〈sū‖kā〉δl̄j̄
= Fskδūāδl̄j̄ + 〈sū‖kā〉δl̄j̄

(B.29)

(a†ūakal̄|Ĥa
†
s̄ataj̄) = Fj̄ l̄δūs̄δkt − Fj̄kδs̄ūδl̄t − Ftl̄δj̄kδs̄ū + Ftkδūs̄δl̄j̄ + Fūs̄[−δtkδl̄j̄ + δl̄tδkj̄ ]

+ 〈tj̄‖l̄k〉δs̄ū + 〈ūj̄‖s̄l̄〉δkt − 〈ūt‖s̄l̄〉δkj̄ − 〈ūj̄‖s̄k〉δl̄t + 〈tū‖ks̄〉δl̄j̄
= Ftkδūs̄δl̄j̄ + 〈tj̄‖l̄k〉δs̄ū + 〈tū‖ks̄〉δl̄j̄

(B.30)

B.1.5 a†bauav

(a†bauav|Ĥa
†
āajaī) = Fīvδbāδuj − Fīuδābδvj − Fjvδīuδāb + Fjuδbāδvī + Fbā[−δjuδvī + δvjδuī]

+ 〈jī‖vu〉δāb + 〈b̄i‖āv〉δuj − 〈bj‖āv〉δuī − 〈b̄i‖āu〉δvj + 〈jb‖uā〉δvī
= 0

(B.31)
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(a†bauav|Ĥa
†
aajai) = Fivδbaδuj − Fiuδabδvj − Fjvδiuδab + Fjuδbaδvi + Fba[−δjuδvi + δvjδui]

+ 〈ji‖vu〉δab + 〈bi‖av〉δuj − 〈bj‖av〉δui − 〈bi‖au〉δvj + 〈jb‖ua〉δvi
= 〈ji‖vu〉δab

(B.32)

(a†bauav|Ĥa
†
aasaj) = Fjvδbaδus − Fjuδabδvs − Fsvδjuδab + Fsuδbaδvj + Fba[−δsuδvj + δvsδuj ]

+ 〈sj‖vu〉δab + 〈bj‖av〉δus − 〈bs‖av〉δuj − 〈bj‖au〉δvs + 〈sb‖ua〉δvj
= Fjvδbaδus − Fjuδabδvs + 〈sj‖vu〉δab + 〈bj‖av〉δus − 〈bj‖au〉δvs

(B.33)

(a†bauav|Ĥa
†
s̄aiaj̄) = Fj̄vδbs̄δui − Fj̄uδs̄bδvi − Fivδj̄uδs̄b + Fiuδbs̄δvj̄ + Fbs̄[−δiuδvj̄ + δviδuj̄ ]

+ 〈ij̄‖vu〉δs̄b + 〈bj̄‖s̄v〉δui − 〈bi‖s̄v〉δuj̄ − 〈bj̄‖s̄u〉δvi + 〈ib‖us̄〉δvj̄
= 0

(B.34)

(a†bauav|Ĥa
†
aasat) = Ftvδbaδus − Ftuδabδvs − Fsvδtuδab + Fsuδbaδvt + Fba[−δsuδvt + δvsδut]

+ 〈st‖vu〉δab + 〈bt‖av〉δus − 〈bs‖av〉δut − 〈bt‖au〉δvs + 〈sb‖ua〉δvt
= Ftvδbaδus − Ftuδabδvs − Fsvδtuδab + Fsuδbaδvt + Fba[−δsuδvt + δvsδut]

+ 〈st‖vu〉δab + 〈bt‖av〉δus − 〈bs‖av〉δut − 〈bt‖au〉δvs + 〈sb‖ua〉δvt
(B.35)

(a†bauav|Ĥa
†
āasaj̄) = Fj̄vδbāδus − Fj̄uδābδvs − Fsvδj̄uδāb + Fsuδbāδvj̄ + Fbā[−δsuδvj̄ + δvsδuj̄ ]

+ 〈sj̄‖vu〉δāb + 〈bj̄‖āv〉δus − 〈bs‖āv〉δuj̄ − 〈bj̄‖āu〉δvs + 〈sb‖uā〉δvj̄
= 〈bj̄‖āv〉δus − 〈bj̄‖āu〉δvs

(B.36)

(a†bauav|Ĥa
†
s̄ataj̄) = Fj̄vδbs̄δut − Fj̄uδs̄bδvt − Ftvδj̄uδs̄b + Ftuδbs̄δvj̄ + Fbs̄[−δtuδvj̄ + δvtδuj̄ ]

+ 〈tj̄‖vu〉δs̄b + 〈bj̄‖s̄v〉δut − 〈bt‖s̄v〉δuj̄ − 〈bj̄‖s̄u〉δvt + 〈tb‖us̄〉δvj̄
= 〈bj̄‖s̄v〉δut − 〈bj̄‖s̄u〉δvt

(B.37)
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B.1.6 a†
b̄
aual̄

(a†
b̄
aual̄|Ĥa

†
āajaī) = Fīl̄δb̄āδuj − Fīuδāb̄δl̄j − Fjl̄δīuδāb̄ + Fjuδb̄āδl̄̄i + Fb̄ā[−δjuδl̄̄i + δl̄jδuī]

+ 〈jī‖l̄u〉δāb̄ + 〈b̄̄i‖āl̄〉δuj − 〈b̄j‖āl̄〉δuī − 〈b̄̄i‖āu〉δl̄j + 〈jb̄‖uā〉δl̄̄i
= Fjuδb̄āδl̄̄i + 〈jī‖l̄u〉δāb̄ + 〈jb̄‖uā〉δl̄̄i

(B.38)

(a†
b̄
aual̄|Ĥa

†
aajai) = Fil̄δb̄aδuj − Fiuδab̄δl̄j − Fjl̄δiuδab̄ + Fjuδb̄aδl̄i + Fb̄a[−δjuδl̄i + δl̄jδui]

+ 〈ji‖l̄u〉δab̄ + 〈b̄i‖al̄〉δuj − 〈b̄j‖al̄〉δui − 〈b̄i‖au〉δl̄j + 〈jb̄‖ua〉δl̄i
= 0

(B.39)

(a†
b̄
aual̄|Ĥa

†
aasaj) = Fjl̄δb̄aδus − Fjuδab̄δl̄s − Fsl̄δjuδab̄ + Fsuδb̄aδl̄j + Fb̄a[−δsuδl̄j + δl̄sδuj ]

+ 〈sj‖l̄u〉δab̄ + 〈b̄j‖al̄〉δus − 〈b̄s‖al̄〉δuj − 〈b̄j‖au〉δl̄s + 〈sb̄‖ua〉δl̄j
= 〈b̄j‖al̄〉δus

(B.40)

(a†
b̄
aual̄|Ĥa

†
s̄aiaj̄) = Fj̄ l̄δb̄s̄δui − Fj̄uδs̄b̄δl̄i − Fil̄δj̄uδs̄b̄ + Fiuδb̄s̄δl̄j̄ + Fb̄s̄[−δiuδl̄j̄ + δl̄iδuj̄ ]

+ 〈ij̄‖l̄u〉δs̄b̄ + 〈b̄j̄‖s̄l̄〉δui − 〈b̄i‖s̄l̄〉δuj̄ − 〈b̄j̄‖s̄u〉δl̄i + 〈ib̄‖us̄〉δl̄j̄
= 〈ib̄‖us̄〉δl̄j̄

(B.41)

(a†
b̄
aual̄|Ĥa

†
aasat) = Ftl̄δb̄aδus − Ftuδab̄δl̄s − Fsl̄δtuδab̄ + Fsuδb̄aδl̄t + Fb̄a[−δsuδl̄t + δl̄sδut]

+ 〈st‖l̄u〉δab̄ + 〈b̄t‖al̄〉δus − 〈b̄s‖al̄〉δut − 〈b̄t‖au〉δl̄s + 〈sb̄‖ua〉δl̄t
= 〈b̄t‖al̄〉δus − 〈b̄s‖al̄〉δut

(B.42)

142 Chapter B Secondary block field operator couplings



(a†
b̄
aual̄|Ĥa

†
āasaj̄) = Fj̄ l̄δb̄āδus − Fj̄uδāb̄δl̄s − Fsl̄δj̄uδāb̄ + Fsuδb̄āδl̄j̄ + Fb̄ā[−δsuδl̄j̄ + δl̄sδuj̄ ]

+ 〈sj̄‖l̄u〉δāb̄ + 〈b̄j̄‖āl̄〉δus − 〈b̄s‖āl̄〉δuj̄ − 〈b̄j̄‖āu〉δl̄s + 〈sb̄‖uā〉δl̄j̄
= Fj̄ l̄δb̄āδus + Fsuδb̄āδl̄j̄ − Fb̄āδsuδl̄j̄ + 〈sj̄‖l̄u〉δāb̄ + 〈b̄j̄‖āl̄〉δus + 〈sb̄‖uā〉δl̄j̄

(B.43)

(a†
b̄
aual̄|Ĥa

†
s̄ataj̄) = Fj̄ l̄δb̄s̄δut − Fj̄uδs̄b̄δl̄t − Ftl̄δj̄uδs̄b̄ + Ftuδb̄s̄δl̄j̄ + Fb̄s̄[−δtuδl̄j̄ + δl̄tδuj̄ ]

+ 〈tj̄‖l̄u〉δs̄b̄ + 〈b̄j̄‖s̄l̄〉δut − 〈b̄t‖s̄l̄〉δuj̄ − 〈b̄j̄‖s̄u〉δl̄t + 〈tb̄‖us̄〉δl̄j̄
= −Fb̄s̄δtuδl̄j̄ + 〈b̄j̄‖s̄l̄〉δut + 〈tb̄‖us̄〉δl̄j̄

(B.44)

B.1.7 a†ūaual̄

(a†ūaval̄|Ĥa
†
āajaī) = Fīl̄δūāδv̄j − Fīvδāūδl̄j − Fjl̄δīvδāū + Fjvδūāδl̄̄i + Fūā[−δjvδl̄̄i + δl̄jδvī]

+ 〈jī‖l̄v〉δāū + 〈ūī‖āl̄〉δvj − 〈ūj‖āl̄〉δvī − 〈ūī‖āv〉δl̄j + 〈jū‖vā〉δl̄̄i
= 〈jū‖vā〉δl̄̄i

(B.45)

(a†ūaval̄|Ĥa
†
aajai) = Fil̄δūaδvj − Fivδaūδl̄j − Fjl̄δivδaū + Fjvδūaδl̄i + Fūa[−δjvδl̄i + δl̄jδvi]

+ 〈ji‖l̄v〉δaū + 〈ūi‖al̄〉δvj − 〈ūj‖al̄〉δvi − 〈ūi‖av〉δl̄j + 〈jū‖va〉δl̄i
= 0

(B.46)

(a†ūaval̄|Ĥa
†
aasaj) = Fjl̄δūaδvs − Fjvδaūδl̄s − Fsl̄δjvδaū + Fsvδūaδl̄j + Fūa[−δsvδl̄j + δl̄sδvj ]

+ 〈sj‖l̄v〉δaū + 〈ūj‖al̄〉δvs − 〈ūs‖al̄〉δvj − 〈ūj‖av〉δl̄s + 〈sū‖va〉δl̄j
= 〈ūj‖al̄〉δvs

(B.47)
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(a†ūaval̄|Ĥa
†
s̄aiaj̄) = Fj̄ l̄δūs̄δvi − Fj̄vδs̄ūδl̄i − Fil̄δj̄vδs̄ū + Fivδūs̄δl̄j̄ + Fūs̄[−δivδl̄j̄ + δl̄iδvj̄ ]

+ 〈ij̄‖l̄v〉δs̄ū + 〈ūj̄‖s̄l̄〉δvi − 〈ūi‖s̄l̄〉δvj̄ − 〈ūj̄‖s̄v〉δl̄i + 〈iū‖vs̄〉δl̄j̄
= Fivδūs̄δl̄j̄ + 〈ij̄‖l̄v〉δs̄ū + 〈iū‖vs̄〉δl̄j̄

(B.48)

(a†ūaval̄|Ĥa
†
aasat) = Ftl̄δūaδvs − Ftvδaūδl̄s − Fsl̄δtvδaū + Fsvδūaδl̄t + Fūa[−δsvδl̄t + δl̄sδvt]

+ 〈st‖l̄v〉δaū + 〈ūt‖al̄〉δvs − 〈ūs‖al̄〉δvt − 〈ūt‖av〉δl̄s + 〈sū‖va〉δl̄t
= 〈ūt‖al̄〉δvs − 〈ūs‖al̄〉δvt

(B.49)

(a†ūaval̄|Ĥa
†
āasaj̄) = Fj̄ l̄δūāδvs − Fj̄vδāūδl̄s − Fsl̄δj̄vδāū + Fsvδūāδl̄j̄ + Fūā[−δsvδl̄j̄ + δl̄sδvj̄ ]

+ 〈sj̄‖l̄v〉δāū + 〈ūj̄‖āl̄〉δvs − 〈ūs‖āl̄〉δvj̄ − 〈ūj̄‖āv〉δl̄s + 〈sū‖vā〉δl̄j̄
= −Fūāδsvδl̄j̄ + 〈ūj̄‖āl̄〉δvs + 〈sū‖vā〉δl̄j̄

(B.50)

(a†ūaval̄|Ĥa
†
s̄ataj̄) = Fj̄ l̄δūs̄δvt − Fj̄vδs̄ūδl̄t − Ftl̄δj̄vδs̄ū + Ftvδūs̄δl̄j̄ + Fūs̄[−δtvδl̄j̄ + δl̄tδvj̄ ]

+ 〈tj̄‖l̄v〉δs̄ū + 〈ūj̄‖s̄l̄〉δvt − 〈ūt‖s̄l̄〉δvj̄ − 〈ūj̄‖s̄v〉δl̄t + 〈tū‖vs̄〉δl̄j̄
= Fj̄ l̄δūs̄δvt + Ftvδūs̄δl̄j̄ − Fūs̄δtvδl̄j̄ + 〈tj̄‖l̄v〉δs̄ū + 〈ūj̄‖s̄l̄〉δvt + 〈tū‖vs̄〉δl̄j̄

(B.51)

144 Chapter B Secondary block field operator couplings



B.2 General term for (F5|ĤF5) for the 2ph terms in
zero order

(a†αa
†
βapaqar|Ha

†
ιa
†
τasatau) =

det(Furδtqδsp)det(διαδτβ)

− Putdet(Furδtqδsp)det(διαδτβ)

− Pusdet(Furδtqδsp)det(διαδτβ)

− Fαιδβτdet(δurδtqδsp)

+ PαβFαιδβτdet(δurδtqδsp)

+ PιτFαιδβτdet(δurδtqδsp)

− PιτPαβFαιδβτdet(δurδtqδsp)

(B.52)

where

det(Furδtqδsp) =

∣∣∣∣∣∣∣∣
Fur Fuq Fup

δtr δtq δtp

δsr δsq δsp

∣∣∣∣∣∣∣∣ = Fur(δtqδsp − δsqδtp)− Fuq(δtrδsp − δtpδsr) + Fup(δtrδsq − δtqδsr)

det(διαδτβ) =
∣∣∣∣∣δια διβ

δτα δτβ

∣∣∣∣∣ = (διαδτβ − διβδτα)

det(δurδtqδsp) =

∣∣∣∣∣∣∣∣
δur δuq δup

δar δtq δtp

δsr δsq δsp

∣∣∣∣∣∣∣∣ = δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)

(B.53)
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(a†αa
†
βapaqar|Ha

†
ιa
†
τasatau) =

[Fur(δtqδsp − δsqδtp)− Fuq(δtrδsp − δtpδsr) + Fup(δtrδsq − δtqδsr)]× (διαδτβ − διβδτα)

− Put[Fur(δtqδsp − δsqδtp)− Ful(δtrδsp − δtpδsr) + Fup(δtrδsq − δtqδsr)]× (διαδτβ − διβδτα)

− Pus[Fur(δtqδsp − δsqδtp)− Ful(δtrδsp − δtpδsr) + Fup(δtrδsq − δtqδsr)]× (διαδτβ − διβδτα)

− Fαιδβτ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

+ PαβFαιδβτ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

+ PιτFαιδβτ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

− PιτPαβFαιδβτ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]
(B.54)

(a†αa
†
βapaqar|Ha

†
ιa
†
τasatau) =

[Fur(δtqδsp − δsqδtp)− Fuq(δtrδsp − δtpδsr) + Fup(δtrδsq − δtqδsr)]× (διαδτβ − διβδτα)

− [Ftr(δuqδsp − δsqδup)− Ftl(δurδsp − δupδsr) + Ftp(δurδsq − δuqδsr)]× (διαδτβ − διβδτα)

− [Fsr(δtqδup − δuqδtp)− Fsl(δtrδup − δtpδur) + Fsp(δtrδuq − δtqδur)]× (διαδτβ − διβδτα)

− Fαιδβτ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

+ Fβιδατ [δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

+ Fατδβι[δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]

− Fβτδαι[δur(δtqδsp − δsqδtp)− δuq(δtrδsp − δtpδsr) + δup(δtrδsq − δtqδsr)]
(B.55)

General indices

(a†αa
†
βaπaµaκ|Ha

†
ιa
†
τaσaθaη) =

[Fηκ(δθµδσπ − δσµδθπ)− Fηµ(δθκδσπ − δθπδσκ) + Fηπ(δθκδσµ − δθµδσκ)]× (διαδτβ − διβδτα)

− [Fθκ(δηµδσπ − δσµδηπ)− Fθµ(δηκδσπ − δηπδσκ) + Fθπ(δηκδσµ − δηµδσκ)]× (διαδτβ − διβδτα)

− [Fσκ(δθµδηπ − δηµδθπ)− Fσµ(δθκδηπ − δθπδηκ) + Fσπ(δθκδηµ − δθµδηκ)]× (διαδτβ − διβδτα)

− Fαιδβτ [δηκ(δθµδσπ − δσµδθπ)− δηµ(δθκδσπ − δθπδσκ) + δηπ(δθκδσµ − δθµδσκ)]

+ Fβιδατ [δηκ(δθµδσπ − δσµδθπ)− δηµ(δθκδσπ − δθπδσκ) + δηπ(δθκδσµ − δθµδσκ)]

+ Fατδβι[δηκ(δθµδσπ − δσµδθπ)− δηµ(δθκδσπ − δθπδσκ) + δηπ(δθκδσµ − δθµδσκ)]

− Fβτδαι[δηκ(δθµδσπ − δσµδθπ)− δηµ(δθκδσπ − δθπδσκ) + δηπ(δθκδσµ − δθµδσκ)]
(B.56)
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B.2.1 a†
b̄
a†ūaual̄ak̄

(a†
b̄
a†ūaual̄ak̄|Ha

†
āa
†
s̄asaj̄aī) =

[Fīk̄(δj̄ l̄δsu − δsl̄δj̄u)− Fīl̄(δj̄k̄δsu − δj̄uδsk̄) + Fīu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]× (δāb̄δs̄ū − δāūδs̄b̄)

− [Fj̄k̄(δīl̄δsu − δsl̄δīu)− Fj̄ l̄(δīk̄δsu − δīuδsk̄) + Fj̄u(δīk̄δsl̄ − δīl̄δsk̄)]× (δāb̄δs̄ū − δāūδs̄b̄)

− [Fsk̄(δj̄ l̄δīu − δīl̄δj̄u)− Fsl̄(δj̄k̄δīu − δj̄uδīk̄) + Fsu(δj̄k̄δīl̄ − δj̄ l̄δīk̄)]× (δāb̄δs̄ū − δāūδs̄b̄)

− Fb̄āδūs̄[δīk̄(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fūāδb̄s̄[δīk̄(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fb̄s̄δūā[δīk̄(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

− Fūs̄δb̄ā[δīk̄(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

= [Fīk̄(δj̄ l̄δsu)− Fīl̄(δj̄k̄δsu)]× (δāb̄δs̄ū)

− [Fj̄k̄(δīl̄δsu)− Fj̄ l̄(δīk̄δsu)]× (δāb̄δs̄ū)

− Fsu(δj̄k̄δīl̄ − δj̄ l̄δīk̄)× (δāb̄δs̄ū)

− Fb̄āδūs̄[δīk̄δj̄ l̄δsu − δīl̄δj̄k̄δsu]

− Fūs̄δb̄ā[δīk̄δj̄ l̄δsu − δīl̄δj̄k̄δsu]

= Fīk̄δj̄ l̄δsuδāb̄δs̄ū − Fīl̄δj̄k̄δsuδāb̄δs̄ū − Fj̄k̄δīl̄δsuδāb̄δs̄ū + Fj̄ l̄δīk̄δsuδāb̄δs̄ū

− Fsuδj̄k̄δīl̄δāb̄δs̄ū + Fsuδj̄ l̄δīk̄δāb̄δs̄ū − Fb̄āδūs̄δīk̄δj̄ l̄δsu + Fb̄āδūs̄δīl̄δj̄k̄δsu

− Fūs̄δb̄āδīk̄δj̄ l̄δsu + Fūs̄δb̄āδīl̄δj̄k̄δsu

(B.57)

(a†
b̄
a†ūaual̄ak̄|Ha

†
aa
†
s̄asaj̄ai) =

[Fik̄(δj̄ l̄δsu − δsl̄δj̄u)− Fil̄(δj̄k̄δsu − δj̄uδsk̄) + Fiu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]× (δab̄δs̄ū − δaūδs̄b̄)

− [Fj̄k̄(δil̄δsu − δsl̄δiu)− Fj̄ l̄(δik̄δsu − δiuδsk̄) + Fj̄u(δik̄δsl̄ − δil̄δsk̄)]× (δab̄δs̄ū − δaūδs̄b̄)

− [Fsk̄(δj̄ l̄δiu − δil̄δj̄u)− Fsl̄(δj̄k̄δiu − δj̄uδik̄) + Fsu(δj̄k̄δil̄ − δj̄ l̄δik̄)]× (δab̄δs̄ū − δaūδs̄b̄)

− Fb̄aδūs̄[δik̄(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fūaδb̄s̄[δik̄(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fb̄s̄δūa[δik̄(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

− Fūs̄δb̄a[δik̄(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

= [Fik̄δj̄ l̄δsu − Fil̄δj̄k̄δsu]× (δab̄δs̄ū) = 0
(B.58)
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(a†
b̄
a†ūaual̄ak̄|Ha

†
aa
†
t̄
asataī) =

[Fīk̄(δtl̄δsu − δsl̄δtu)− Fīl̄(δtk̄δsu − δtuδsk̄) + Fīu(δtk̄δsl̄ − δtl̄δsk̄)]× (δab̄δt̄ū − δaūδt̄b̄)

− [Ftk̄(δīl̄δsu − δsl̄δīu)− Ftl̄(δīk̄δsu − δīuδsk̄) + Ftu(δīk̄δsl̄ − δīl̄δsk̄)]× (δab̄δt̄ū − δaūδt̄b̄)

− [Fsk̄(δtl̄δīu − δīl̄δtu)− Fsl̄(δtk̄δīu − δtuδīk̄) + Fsu(δtk̄δīl̄ − δtl̄δīk̄)]× (δab̄δt̄ū − δaūδt̄b̄)

− Fb̄aδūt̄[δīk̄(δtl̄δsu − δsl̄δtu)− δīl̄(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsl̄ − δtl̄δsk̄)]

+ Fūaδb̄t̄[δīk̄(δtl̄δsu − δsl̄δtu)− δīl̄(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsl̄ − δtl̄δsk̄)]

+ Fb̄t̄δūa[δīk̄(δtl̄δsu − δsl̄δtu)− δīl̄(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsl̄ − δtl̄δsk̄)]

− Fūt̄δb̄a[δīk̄(δtl̄δsu − δsl̄δtu)− δīl̄(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsl̄ − δtl̄δsk̄)]

= 0
(B.59)

(a†
b̄
a†ūaual̄ak̄|Ha

†
s̄a
†
t̄
ataj̄aī) =

[Fīk̄(δj̄ l̄δtu − δtl̄δj̄u)− Fīl̄(δj̄k̄δtu − δj̄uδtk̄) + Fīu(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]× (δs̄b̄δt̄ū − δs̄ūδt̄b̄)

− [Fj̄k̄(δīl̄δtu − δtl̄δīu)− Fj̄ l̄(δīk̄δtu − δīuδtk̄) + Fj̄u(δīk̄δtl̄ − δīl̄δtk̄)]× (δs̄b̄δt̄ū − δs̄ūδt̄b̄)

− [Ftk̄(δj̄ l̄δīu − δīl̄δj̄u)− Ftl̄(δj̄k̄δīu − δj̄uδīk̄) + Ftu(δj̄k̄δīl̄ − δj̄ l̄δīk̄)]× (δs̄b̄δt̄ū − δs̄ūδt̄b̄)

− Fb̄s̄δūt̄[δīk̄(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

+ Fūs̄δb̄t̄[δīk̄(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

+ Fb̄t̄δūs̄[δīk̄(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

− Fūt̄δb̄s̄[δīk̄(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

= −Fb̄s̄δūt̄[δīk̄δj̄ l̄δtu − δīl̄δj̄k̄δtu] + Fb̄t̄δūs̄[δīk̄(δj̄ l̄δtu)− δīl̄(δj̄k̄δtu)]
(B.60)

148 Chapter B Secondary block field operator couplings



B.2.2 a†ba
†
ūaual̄ak

(a†ba
†
ūaual̄ak|Ha

†
āa
†
s̄asaj̄aī) =

[Fīk(δj̄ l̄δsu − δsl̄δj̄u)− Fīl̄(δj̄kδsu − δj̄uδsk) + Fīu(δj̄kδsl̄ − δj̄ l̄δsk)]× (δābδs̄ū − δāūδs̄b)

− [Fj̄k(δīl̄δsu − δsl̄δīu)− Fj̄ l̄(δīkδsu − δīuδsk) + Fj̄u(δīkδsl̄ − δīl̄δsk)]× (δābδs̄ū − δāūδs̄b)

− [Fsk(δj̄ l̄δīu − δīl̄δj̄u)− Fsl̄(δj̄kδīu − δj̄uδīk) + Fsu(δj̄kδīl̄ − δj̄ l̄δīk)]× (δābδs̄ū − δāūδs̄b)

− Fbāδūs̄[δīk(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄kδsu − δj̄uδsk) + δīu(δj̄kδsl̄ − δj̄ l̄δsk)]

+ Fūāδbs̄[δīk(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄kδsu − δj̄uδsk) + δīu(δj̄kδsl̄ − δj̄ l̄δsk)]

+ Fbs̄δūā[δīk(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄kδsu − δj̄uδsk) + δīu(δj̄kδsl̄ − δj̄ l̄δsk)]

− Fūs̄δbā[δīk(δj̄ l̄δsu − δsl̄δj̄u)− δīl̄(δj̄kδsu − δj̄uδsk) + δīu(δj̄kδsl̄ − δj̄ l̄δsk)]

= 0
(B.61)

(a†ba
†
ūaual̄ak|Ha

†
aa
†
s̄asaj̄ai) =

[Fik(δj̄ l̄δsu − δsl̄δj̄u)− Fil̄(δj̄kδsu − δj̄uδsk) + Fiu(δj̄kδsl̄ − δj̄ l̄δsk)]× (δabδs̄ū − δaūδs̄b)

− [Fj̄k(δil̄δsu − δsl̄δiu)− Fj̄ l̄(δikδsu − δiuδsk) + Fj̄u(δikδsl̄ − δil̄δsk)]× (δabδs̄ū − δaūδs̄b)

− [Fsk(δj̄ l̄δiu − δil̄δj̄u)− Fsl̄(δj̄kδiu − δj̄uδik) + Fsu(δj̄kδil̄ − δj̄ l̄δik)]× (δabδs̄ū − δaūδs̄b)

− Fbaδūs̄[δik(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄kδsu − δj̄uδsk) + δiu(δj̄kδsl̄ − δj̄ l̄δsk)]

+ Fūaδbs̄[δik(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄kδsu − δj̄uδsk) + δiu(δj̄kδsl̄ − δj̄ l̄δsk)]

+ Fbs̄δūa[δik(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄kδsu − δj̄uδsk) + δiu(δj̄kδsl̄ − δj̄ l̄δsk)]

− Fūs̄δba[δik(δj̄ l̄δsu − δsl̄δj̄u)− δil̄(δj̄kδsu − δj̄uδsk) + δiu(δj̄kδsl̄ − δj̄ l̄δsk)]

= Fikδj̄ l̄δsuδabδs̄ū − Fbaδūs̄δikδj̄ l̄δsu − Fūs̄δbaδikδj̄ l̄δsu
(B.62)
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(a†ba
†
ūaual̄ak|Ha

†
aa
†
t̄
asataī) =

[Fīk(δtl̄δsu − δsl̄δtu)− Fīl̄(δtkδsu − δtuδsk) + Fīu(δtkδsl̄ − δtl̄δsk)]× (δabδt̄ū − δaūδt̄b)

− [Ftk(δīl̄δsu − δsl̄δīu)− Ftl̄(δīkδsu − δīuδsk) + Ftu(δīkδsl̄ − δīl̄δsk)]× (δabδt̄ū − δaūδt̄b)

− [Fsk(δtl̄δīu − δīl̄δtu)− Fsl̄(δtkδīu − δtuδīk) + Fsu(δtkδīl̄ − δtl̄δīk)]× (δabδt̄ū − δaūδt̄b)

− Fbaδūt̄[δīk(δtl̄δsu − δsl̄δtu)− δīl̄(δtkδsu − δtuδsk) + δīu(δtkδsl̄ − δtl̄δsk)]

+ Fūaδbt̄[δīk(δtl̄δsu − δsl̄δtu)− δīl̄(δtkδsu − δtuδsk) + δīu(δtkδsl̄ − δtl̄δsk)]

+ Fbt̄δūa[δīk(δtl̄δsu − δsl̄δtu)− δīl̄(δtkδsu − δtuδsk) + δīu(δtkδsl̄ − δtl̄δsk)]

− Fūt̄δba[δīk(δtl̄δsu − δsl̄δtu)− δīl̄(δtkδsu − δtuδsk) + δīu(δtkδsl̄ − δtl̄δsk)]

= −Ftkδīl̄δsuδabδt̄ū + Fskδīl̄δtuδabδt̄ū

(B.63)

(a†ba
†
ūaual̄ak|Ha

†
s̄a
†
t̄
ataj̄aī) =

[Fīk(δj̄ l̄δtu − δtl̄δj̄u)− Fīl̄(δj̄kδtu − δj̄uδtk) + Fīu(δj̄kδtl̄ − δj̄ l̄δtk)]× (δs̄bδt̄ū − δs̄ūδt̄b)

− [Fj̄k(δīl̄δtu − δtl̄δīu)− Fj̄ l̄(δīkδtu − δīuδtk) + Fj̄u(δīkδtl̄ − δīl̄δtk)]× (δs̄bδt̄ū − δs̄ūδt̄b)

− [Ftk(δj̄ l̄δīu − δīl̄δj̄u)− Ftl̄(δj̄kδīu − δj̄uδīk) + Ftu(δj̄kδīl̄ − δj̄ l̄δīk)]× (δs̄bδt̄ū − δs̄ūδt̄b)

− Fbs̄δūt̄[δīk(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄kδtu − δj̄uδtk) + δīu(δj̄kδtl̄ − δj̄ l̄δtk)]

+ Fūs̄δbt̄[δīk(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄kδtu − δj̄uδtk) + δīu(δj̄kδtl̄ − δj̄ l̄δtk)]

+ Fbt̄δūs̄[δīk(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄kδtu − δj̄uδtk) + δīu(δj̄kδtl̄ − δj̄ l̄δtk)]

− Fūt̄δbs̄[δīk(δj̄ l̄δtu − δtl̄δj̄u)− δīl̄(δj̄kδtu − δj̄uδtk) + δīu(δj̄kδtl̄ − δj̄ l̄δtk)]

= 0
(B.64)
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B.2.3 a†ba
†
v̄auav̄ak̄

(a†ba
†
v̄auavak̄|Ha

†
āa
†
s̄asaj̄aī) =

[Fīk̄(δj̄vδsu − δsvδj̄u)− Fīv(δj̄k̄δsu − δj̄uδsk̄) + Fīu(δj̄k̄δsv − δj̄vδsk̄)]× (δābδs̄v̄ − δāv̄δs̄b)

− [Fj̄k̄(δīvδsu − δsvδīu)− Fj̄v(δīk̄δsu − δīuδsk̄) + Fj̄u(δīk̄δsv − δīvδsk̄)]× (δābδs̄v̄ − δāv̄δs̄b)

− [Fsk̄(δj̄vδīu − δīvδj̄u)− Fsv(δj̄k̄δīu − δj̄uδīk̄) + Fsu(δj̄k̄δīv − δj̄vδīk̄)]× (δābδs̄v̄ − δāv̄δs̄b)

− Fbāδv̄s̄[δīk̄(δj̄vδsu − δsvδj̄u)− δīv(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsv − δj̄vδsk̄)]

+ Fv̄āδbs̄[δīk̄(δj̄vδsu − δsvδj̄u)− δīv(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsv − δj̄vδsk̄)]

+ Fbs̄δv̄ā[δīk̄(δj̄vδsu − δsvδj̄u)− δīv(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsv − δj̄vδsk̄)]

− Fv̄s̄δbā[δīk̄(δj̄vδsu − δsvδj̄u)− δīv(δj̄k̄δsu − δj̄uδsk̄) + δīu(δj̄k̄δsv − δj̄vδsk̄)]

= 0
(B.65)

(a†ba
†
v̄auavak̄|Ha

†
aa
†
s̄asaj̄ai) =

[Fik̄(δj̄vδsu − δsvδj̄u)− Fiv(δj̄k̄δsu − δj̄uδsk̄) + Fiu(δj̄k̄δsv − δj̄vδsk̄)]× (δabδs̄v̄ − δav̄δs̄b)

− [Fj̄k̄(δivδsu − δsvδiu)− Fj̄v(δik̄δsu − δiuδsk̄) + Fj̄u(δik̄δsv − δivδsk̄)]× (δabδs̄v̄ − δav̄δs̄b)

− [Fsk̄(δj̄vδiu − δivδj̄u)− Fsv(δj̄k̄δiu − δj̄uδik̄) + Fsu(δj̄k̄δiv − δj̄vδik̄)]× (δabδs̄v̄ − δav̄δs̄b)

− Fbaδv̄s̄[δik̄(δj̄vδsu − δsvδj̄u)− δiv(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsv − δj̄vδsk̄)]

+ Fv̄aδbs̄[δik̄(δj̄vδsu − δsvδj̄u)− δiv(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsv − δj̄vδsk̄)]

+ Fbs̄δv̄a[δik̄(δj̄vδsu − δsvδj̄u)− δiv(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsv − δj̄vδsk̄)]

− Fv̄s̄δba[δik̄(δj̄vδsu − δsvδj̄u)− δiv(δj̄k̄δsu − δj̄uδsk̄) + δiu(δj̄k̄δsv − δj̄vδsk̄)]

= −Fivδj̄k̄δsuδabδs̄v̄ + Fiuδj̄k̄δsvδabδs̄v̄

(B.66)
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(a†ba
†
v̄auavak̄|Ha

†
aa
†
t̄
asataī) =

[Fīk̄(δtvδsu − δsvδtu)− Fīv(δtk̄δsu − δtuδsk̄) + Fīu(δtk̄δsv − δtvδsk̄)]× (δabδt̄v̄ − δav̄δt̄b)

− [Ftk̄(δīvδsu − δsvδīu)− Ftv(δīk̄δsu − δīuδsk̄) + Ftu(δīk̄δsv − δīvδsk̄)]× (δabδt̄v̄ − δav̄δt̄b)

− [Fsk̄(δtvδīu − δīvδtu)− Fsv(δtk̄δīu − δtuδīk̄) + Fsu(δtk̄δīv − δtvδīk̄)]× (δabδt̄v̄ − δav̄δt̄b)

− Fbaδv̄t̄[δīk̄(δtvδsu − δsvδtu)− δīv(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsv − δtvδsk̄)]

+ Fv̄aδbt̄[δīk̄(δtvδsu − δsvδtu)− δīv(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsv − δtvδsk̄)]

+ Fbt̄δv̄a[δīk̄(δtvδsu − δsvδtu)− δīv(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsv − δtvδsk̄)]

− Fv̄t̄δba[δīk̄(δtvδsu − δsvδtu)− δīv(δtk̄δsu − δtuδsk̄) + δīu(δtk̄δsv − δtvδsk̄)]

= Fīk̄δtvδsuδabδt̄v̄ − Fīk̄δsvδtuδabδt̄v̄ + Ftvδīk̄δsuδabδt̄v̄ − Ftuδīk̄δsvδabδt̄v̄
− Fsvδtuδīk̄δabδt̄v̄ + Fsuδtvδīk̄δabδt̄v̄ − Fbaδv̄t̄δīk̄δtvδsu + Fbaδv̄t̄δīk̄δsvδtu

− Fv̄t̄δbaδīk̄δtvδsu + Fv̄t̄δbaδīk̄δsvδtu

(B.67)

(a†ba
†
v̄auavak̄|Ha

†
s̄a
†
t̄
ataj̄aī) =

[Fīk̄(δj̄vδtu − δtvδj̄u)− Fīv(δj̄k̄δtu − δj̄uδtk̄) + Fīu(δj̄k̄δtv − δj̄vδtk̄)]× (δs̄bδt̄v̄ − δs̄v̄δt̄b)

− [Fj̄k̄(δīvδtu − δtvδīu)− Fj̄v(δīk̄δtu − δīuδtk̄) + Fj̄u(δīk̄δtv − δīvδtk̄)]× (δs̄bδt̄v̄ − δs̄v̄δt̄b)

− [Ftk̄(δj̄vδīu − δīvδj̄u)− Ftv(δj̄k̄δīu − δj̄uδīk̄) + Ftu(δj̄k̄δīv − δj̄vδīk̄)]× (δs̄bδt̄v̄ − δs̄v̄δt̄b)

− Fbs̄δv̄t̄[δīk̄(δj̄vδtu − δtvδj̄u)− δīv(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtv − δj̄vδtk̄)]

+ Fv̄s̄δbt̄[δīk̄(δj̄vδtu − δtvδj̄u)− δīv(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtv − δj̄vδtk̄)]

+ Fbt̄δv̄s̄[δīk̄(δj̄vδtu − δtvδj̄u)− δīv(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtv − δj̄vδtk̄)]

− Fv̄t̄δbs̄[δīk̄(δj̄vδtu − δtvδj̄u)− δīv(δj̄k̄δtu − δj̄uδtk̄) + δīu(δj̄k̄δtv − δj̄vδtk̄)]

= 0
(B.68)
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B.2.4 a†ūa
†
v̄aval̄ak̄

(a†ūa
†
v̄aval̄ak̄|Ha

†
āa
†
s̄asaj̄aī) =

[Fīk̄(δj̄ l̄δsv − δsl̄δj̄v)− Fīl̄(δj̄k̄δsv − δj̄vδsk̄) + Fīv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]× (δāūδs̄v̄ − δāv̄δs̄ū)

− [Fj̄k̄(δīl̄δsv − δsl̄δīv)− Fj̄ l̄(δīk̄δsv − δīvδsk̄) + Fj̄v(δīk̄δsl̄ − δīl̄δsk̄)]× (δāūδs̄v̄ − δāv̄δs̄ū)

− [Fsk̄(δj̄ l̄δīv − δīl̄δj̄v)− Fsl̄(δj̄k̄δīv − δj̄vδīk̄) + Fsv(δj̄k̄δīl̄ − δj̄ l̄δīk̄)]× (δāūδs̄v̄ − δāv̄δs̄ū)

− Fūāδv̄s̄[δīk̄(δj̄ l̄δsv − δsl̄δj̄v)− δīl̄(δj̄k̄δsv − δj̄vδsk̄) + δīv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fv̄āδūs̄[δīk̄(δj̄ l̄δsv − δsl̄δj̄v)− δīl̄(δj̄k̄δsv − δj̄vδsk̄) + δīv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fūs̄δv̄ā[δīk̄(δj̄ l̄δsv − δsl̄δj̄v)− δīl̄(δj̄k̄δsv − δj̄vδsk̄) + δīv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

− Fv̄s̄δūā[δīk̄(δj̄ l̄δsv − δsl̄δj̄v)− δīl̄(δj̄k̄δsv − δj̄vδsk̄) + δīv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

= −Fūāδv̄s̄δīk̄δj̄ l̄δsv + Fūāδv̄s̄δīl̄δj̄k̄δsv + Fv̄āδūs̄δīk̄δj̄ l̄δsv − Fv̄āδūs̄δīl̄δj̄k̄δsv
(B.69)

(a†ūa
†
v̄aval̄ak̄|Ha

†
aa
†
s̄asaj̄ai) =

[Fik̄(δj̄ l̄δsv − δsl̄δj̄v)− Fil̄(δj̄k̄δsv − δj̄vδsk̄) + Fiv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]× (δaūδs̄v̄ − δav̄δs̄ū)

− [Fj̄k̄(δil̄δsv − δsl̄δiv)− Fj̄ l̄(δik̄δsv − δivδsk̄) + Fj̄v(δik̄δsl̄ − δil̄δsk̄)]× (δaūδs̄v̄ − δav̄δs̄ū)

− [Fsk̄(δj̄ l̄δiv − δil̄δj̄v)− Fsl̄(δj̄k̄δiv − δj̄vδik̄) + Fsv(δj̄k̄δil̄ − δj̄ l̄δik̄)]× (δaūδs̄v̄ − δav̄δs̄ū)

− Fūaδv̄s̄[δik̄(δj̄ l̄δsv − δsl̄δj̄v)− δil̄(δj̄k̄δsv − δj̄vδsk̄) + δiv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fv̄aδūs̄[δik̄(δj̄ l̄δsv − δsl̄δj̄v)− δil̄(δj̄k̄δsv − δj̄vδsk̄) + δiv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

+ Fūs̄δv̄a[δik̄(δj̄ l̄δsv − δsl̄δj̄v)− δil̄(δj̄k̄δsv − δj̄vδsk̄) + δiv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

− Fv̄s̄δūa[δik̄(δj̄ l̄δsv − δsl̄δj̄v)− δil̄(δj̄k̄δsv − δj̄vδsk̄) + δiv(δj̄k̄δsl̄ − δj̄ l̄δsk̄)]

= 0
(B.70)
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(a†ūa
†
v̄aval̄ak̄|Ha

†
aa
†
t̄
asataī) =

[Fīk̄(δtl̄δsv − δsl̄δtv)− Fīl̄(δtk̄δsv − δtvδsk̄) + Fīv(δtk̄δsl̄ − δtl̄δsk̄)]× (δaūδt̄v̄ − δav̄δt̄ū)

− [Ftk̄(δīl̄δsv − δsl̄δīv)− Ftl̄(δīk̄δsv − δīvδsk̄) + Ftv(δīk̄δsl̄ − δīl̄δsk̄)]× (δaūδt̄v̄ − δav̄δt̄ū)

− [Fsk̄(δtl̄δīv − δīl̄δtv)− Fsl̄(δtk̄δīv − δtvδīk̄) + Fsv(δtk̄δīl̄ − δtl̄δīk̄)]× (δaūδt̄v̄ − δav̄δt̄ū)

− Fūaδv̄t̄[δīk̄(δtl̄δsv − δsl̄δtv)− δīl̄(δtk̄δsv − δtvδsk̄) + δīv(δtk̄δsl̄ − δtl̄δsk̄)]

+ Fv̄aδūt̄[δīk̄(δtl̄δsv − δsl̄δtv)− δīl̄(δtk̄δsv − δtvδsk̄) + δīv(δtk̄δsl̄ − δtl̄δsk̄)]

+ Fūt̄δv̄a[δīk̄(δtl̄δsv − δsl̄δtv)− δīl̄(δtk̄δsv − δtvδsk̄) + δīv(δtk̄δsl̄ − δtl̄δsk̄)]

− Fv̄t̄δūa[δīk̄(δtl̄δsv − δsl̄δtv)− δīl̄(δtk̄δsv − δtvδsk̄) + δīv(δtk̄δsl̄ − δtl̄δsk̄)]

= 0
(B.71)

(a†ūa
†
v̄aval̄ak̄|Ha

†
s̄a
†
t̄
ataj̄aī) =

[Fīk̄(δj̄ l̄δtv − δtl̄δj̄v)− Fīl̄(δj̄k̄δtv − δj̄vδtk̄) + Fīv(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]× (δs̄ūδt̄v̄ − δs̄v̄δt̄ū)

− [Fj̄k̄(δīl̄δtv − δtl̄δīv)− Fj̄ l̄(δīk̄δtv − δīvδtk̄) + Fj̄v(δīk̄δtl̄ − δīl̄δtk̄)]× (δs̄ūδt̄v̄ − δs̄v̄δt̄ū)

− [Ftk̄(δj̄ l̄δīv − δīl̄δj̄v)− Ftl̄(δj̄k̄δīv − δj̄vδīk̄) + Ftv(δj̄k̄δīl̄ − δj̄ l̄δīk̄)]× (δs̄ūδt̄v̄ − δs̄v̄δt̄ū)

− Fūs̄δv̄t̄[δīk̄(δj̄ l̄δtv − δtl̄δj̄v)− δīl̄(δj̄k̄δtv − δj̄vδtk̄) + δīv(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

+ Fv̄s̄δūt̄[δīk̄(δj̄ l̄δtv − δtl̄δj̄v)− δīl̄(δj̄k̄δtv − δj̄vδtk̄) + δīv(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

+ Fūt̄δv̄s̄[δīk̄(δj̄ l̄δtv − δtl̄δj̄v)− δīl̄(δj̄k̄δtv − δj̄vδtk̄) + δīv(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

− Fv̄t̄δūs̄[δīk̄(δj̄ l̄δtv − δtl̄δj̄v)− δīl̄(δj̄k̄δtv − δj̄vδtk̄) + δīv(δj̄k̄δtl̄ − δj̄ l̄δtk̄)]

= Fīk̄δj̄ l̄δtvδs̄ūδt̄v̄ − Fīk̄δj̄ l̄δtvδs̄v̄δt̄ū − Fīl̄δj̄k̄δtvδs̄ūδt̄v̄ + Fīl̄δj̄k̄δtvδs̄v̄δt̄ū

− Fj̄k̄δīl̄δtvδs̄ūδt̄v̄ + Fj̄k̄δīl̄δtvδs̄v̄δt̄ū + Fj̄ l̄δīk̄δtvδs̄ūδt̄v̄ − Fj̄ l̄δīk̄δtvδs̄v̄δt̄ū
− Ftvδj̄k̄δīl̄δs̄ūδt̄v̄ + Ftvδj̄k̄δīl̄δs̄v̄δt̄ū + Ftvδj̄ l̄δīk̄δs̄ūδt̄v̄ − Ftvδj̄ l̄δīk̄δs̄v̄δt̄ū
− Fūs̄δv̄t̄δīk̄δj̄ l̄δtv + Fūs̄δv̄t̄δīl̄δj̄k̄δtv + Fv̄s̄δūt̄δīk̄δj̄ l̄δtv − Fv̄s̄δūt̄δīl̄δj̄k̄δtv
+ Fūt̄δv̄s̄δīk̄δj̄ l̄δtv − Fūt̄δv̄s̄δīl̄δj̄k̄δtv − Fv̄t̄δūs̄δīk̄δj̄ l̄δtv + Fv̄t̄δūs̄δīl̄δj̄k̄δtv

(B.72)
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CPrimary-Secondary block field
operator couplings

The difference between the 2hp and 2ph terms is reflected in the occupation numbers.
By using the general deductions expressions, the 2hp and 2ph are related through a
sign change and the nature of the indices, the indices that were set for occupied orbitals
now represent virtual orbitals an vice-versa. Therefore, In this expression we only focus
on 2ph terms that can be transform to 2hp by changing multiplying the 2ph by −1. In
some cases,the two electron integrals have been change from the Dirac notation to the
Mulliken notation. The change of notation of the two electron integral was done in
order to further reduce the long expressions that were obtained using matrix notation.
The relations between the two notations is:

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉

= (ik|jl)− (il|jk)
(C.1)

C.1 General definitions

General term for (F1|ĤF3) and (F3|ĤF1) for the 2ph terms

(ab|Ĥa†ūauak̄) = −δbuFūk̄ − δbk̄Fūu − 〈uk̄‖bū〉 (C.2)

(a†
t̄
ataj̄ |Ĥac) = 〈t̄c‖tj̄〉 (C.3)

General term for (F3|ĤF3) for the 2ph terms
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(a†
t̄
ataj̄ |Ĥa

†
ūauak̄) = Fk̄j̄δt̄ūδtu − Fk̄tδūt̄δj̄u − Fuj̄δk̄tδūt̄ + Futδt̄ūδj̄k̄ + Ft̄ū[−δutδj̄k̄ + δj̄uδtk̄]

+ 〈uk̄‖j̄t〉δūt̄ + 〈t̄k̄‖ūj̄〉δtu − 〈t̄u‖ūj̄〉δtk̄ − 〈t̄k̄‖ūt〉δj̄u + 〈ut̄‖tū〉δj̄k̄
(C.4)

(a†
t̄
ataj̄ |Ĥa

†
ūauak̄) = Fk̄j̄δt̄ūδtu − Fk̄tδūt̄δj̄u − Fuj̄δk̄tδūt̄ + Futδt̄ūδj̄k̄ + Ft̄ū[−δutδj̄k̄ + δj̄uδtk̄]

+ 〈uk̄‖j̄t〉δūt̄ + 〈t̄k̄‖ūj̄〉δtu − 〈t̄u‖ūj̄〉δtk̄ − 〈t̄k̄‖ūt〉δj̄u + 〈ut̄‖tū〉δj̄k̄
(C.5)

General term for (F3|ĤF5) and (F5|ĤF3) for the 2ph terms

(a†ιasat|Ha†αa
†
βapaqar) = [1− Pβα][1− Prq − Prp]× FrβδαιNαstdet(δspδtq)(nβ − nr)

+ [1− Pαβ][1− Prp − Pqp][1− Pst]δps(qt||rβ)δαιNιstNβqr

+NιstNrαβ × [1− Prq − Prp](ια||rβ)det(δsqδtp)

(C.6)

(a†αa
†
βapaqar|Ha

†
ιasat)

=[1− Pαβ]× δαιNαβpqr × [1− Prq − Prp][1− Pst](βr||tq)δsp
+Nαβpqr × [1− Prq − Prp](βr||αι)det(δsqδtp)

(C.7)

where

Nαst = (1− nα)nsnt + nα(1− ns)(1− nt)

Nαβpqr = (1− nα)(1− nβ)npnqnr + nαnβ(1− np)(1− nq)(1− nr)

det(δspδtq) =
∣∣∣∣∣δsp δsq

δtp δtq

∣∣∣∣∣ = (δspδtq − δsqδtp)

det(δsqδtp) =
∣∣∣∣∣δsq δsp

δtq δtp

∣∣∣∣∣ = (δsqδtp − δspδtq)

(C.8)
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Therefore for 2ph and 3p2h nα = nβ = nι = 1

(a†ιasat|Ha†αa
†
βapaqar) = [1− Pβα][1− Prq − Prp]× FrβδαιNαst(δspδtq − δsqδtp)(nβ − nr)

+ [1− Pαβ][1− Prp − Pqp][1− Pst]δps(qt||rβ)δαιNιstNβqr

+NιstNrαβ × [1− Prq − Prp](ια||rβ)(δsqδtp − δspδtq)

= +δps(qt||rβ)δαιNιstNβqr − δpt(qs||rβ)δαιNιtsNβqr

− δrs(qt||pβ)δαιNιstNβqp + δrt(qs||pβ)δαιNιtsNβqp

− δqs(pt||rβ)δαιNιstNβpr + δqt(ps||rβ)δαιNιtsNβpr

− δps(qt||rα)δβιNιstNαqr + δpt(qs||rα)δβιNιtsNαqr

+ δrs(qt||pα)δβιNιstNαqp − δrt(qs||pα)δβιNιtsNαqp

+ δqs(pt||rα)δβιNιstNαpr − δqt(ps||rα)δβιNιtsNαpr]

+NιstNrαβ(ια||rβ)(δsqδtp − δspδtq)−NιstNrαβ(ια||qβ)(δsrδtp − δspδtr)

−NιstNrαβ(ια||pβ)(δsqδtr − δsrδtq)

= +δps(qt||rβ)δαι − δpt(qs||rβ)δαι − δrs(qt||pβ)δαι + δrt(qs||pβ)δαι
− δqs(pt||rβ)δαι + δqt(ps||rβ)δαι − δps(qt||rα)δβι + δpt(qs||rα)δβι
+ δrs(qt||pα)δβι − δrt(qs||pα)δβι + δqs(pt||rα)δβι − δqt(ps||rα)δβι
+ (ια||rβ)(δsqδtp − δspδtq)− (ια||qβ)(δsrδtp − δspδtr)− (ια||pβ)(δsqδtr − δsrδtq)

= [δps(qt||rβ)− δpt(qs||rβ)− δrs(qt||pβ)

+ δrt(qs||pβ)− δqs(pt||rβ) + δqt(ps||rβ)]δαι
+ [−δps(qt||rα) + δpt(qs||rα) + δrs(qt||pα)

− δrt(qs||pα) + δqs(pt||rα)− δqt(ps||rα)]δβι
+ (ια||rβ)(δsqδtp − δspδtq)− (ια||qβ)(δsrδtp − δspδtr)− (ια||pβ)(δsqδtr − δsrδtq)

(C.9)

with general indeces

(a†ιaσaτ |Ha†αa
†
βaπaκaρ) = [δπσ(κτ ||ρβ)− δπτ (κσ||ρβ)− δρσ(κτ ||πβ)

+ δρτ (κσ||πβ)− δκσ(πτ ||ρβ) + δκτ (πσ||ρβ)]δαι
+ [−δπσ(κτ ||ρα) + δπτ (κσ||ρα) + δρσ(κτ ||πα)

− δρτ (κσ||πα) + δκσ(πτ ||ρα)− δκτ (πσ||ρα)]δβι
+ (ια||ρβ)(δσκδτπ − δσπδτκ)− (ια||κβ)(δσρδτπ − δσπδτρ)

− (ια||πβ)(δσκδτρ − δσρδτκ)
(C.10)
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(a†αa
†
βapaqar|Ha

†
ιasat)

=[1− Pαβ]× δαιNαβpqr × [1− Prq − Prp][1− Pst](βr||tq)δsp
+Nαβpqr × [1− Prq − Prp](βr||αι)(δsqδtp − δspδtq)

(C.11)

(a†αa
†
βapaqar|Ha

†
ιasat)

= + δαι[(βr||tq)δsp − (βr||sq)δtp − (βq||tr)δsp
+ (βq||sr)δtp − (βp||tq)δsr + (βp||sq)δtr]

− δβι[(βr||tq)δsp − (βr||sq)δtp − (βq||tr)δsp
+ (βq||sr)δtp − (βp||tq)δsr + (βp||sq)δtr]

+ δsqδtp(βr||αι)− δspδtq(βr||αι)− δsrδtp(βq||αι) + δspδtr(βq||αι)

− δsqδtr(βp||αι) + δsrδtq(βp||αι)
(C.12)

with general indeces

(a†αa
†
βaπaνaρ|Ha

†
ιaσaκ)

= + δαι[(βρ||κq)δσπ − (βρ||σν)δκπ − (βν||κρ)δσπ
+ (βν||σρ)δκπ − (βπ||κν)δσρ + (βπ||σν)δκρ]

− δβι[(βρ||κν)δσπ − (βρ||σν)δκπ − (βν||κρ)δσπ
+ (βν||σρ)δκπ − (βπ||κν)δσρ + (βπ||σν)δκρ]

+ (βρ||αι)[δσνδκπ − δσπδκν ]

+ (βν||αι)[δσπδκρ − δσρδκπ]

+ (βπ||αι)[δσρδκν − δσνδκρ]

(C.13)
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C.2 (F1|ĤF3) Terms

(ab|Ĥa†ūauak̄) = −δbuFūk̄ − δbk̄Fūu − 〈uk̄‖bū〉 (C.14)

(aκ|Ĥa†āajaī) = −δκjFā̄i − δκīFāj − 〈jī‖κā〉 (C.15)

(aκ|Ĥa†aajai) = −δκjFai − δκiFaj − 〈ji‖κa〉 (C.16)

(aκ|Ĥa†aasaj) = −δκsFaj − δκjFas − 〈sj‖κa〉 (C.17)

(aκ|Ĥa†s̄aiaj̄) = −δκiFs̄j̄ − δκj̄Fs̄i − 〈ij̄‖κs̄〉 (C.18)

(aκ|Ĥa†aasat) = −δκsFat − δκtFas − 〈st‖κa〉 (C.19)

(aκ|Ĥa†āasaj̄) = −δκsFāj̄ − δκj̄Fās − 〈sj̄‖κā〉 (C.20)
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(aκ|Ĥa†s̄ataj̄) = −δκtFs̄j̄ − δκj̄Fs̄t − 〈tj̄‖κs̄〉 (C.21)

C.3 (F3|ĤF1) Terms

(a†
t̄
ataj̄ |Ĥac) = 〈t̄c‖tj̄〉 (C.22)

(a†
b̄
alak̄|Ĥaι) = 〈b̄ι‖lk̄〉 (C.23)

(a†balak|Ĥaι) = 〈bι‖lk〉 (C.24)

(a†baual|Ĥaι) = 〈bι‖ul〉 (C.25)

(a†ūakal̄|Ĥaι) = 〈ūι‖kl̄〉 (C.26)

(a†bauav|Ĥaι) = 〈bι‖uv〉 (C.27)
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(a†
b̄
aual̄|Ĥaι) = 〈b̄ι‖ul̄〉 (C.28)

(a†ūaval̄|Ĥaι) = 〈ūι‖vl̄〉 (C.29)

C.4 (F P
3 |ĤF

Q
3 ) Terms

(a†
t̄
ataj̄ |Ĥa

†
ūauak̄) = Fk̄j̄δt̄ūδtu − Fk̄tδūt̄δj̄u − Fuj̄δk̄tδūt̄ + Futδt̄ūδj̄k̄ + Ft̄ū[−δutδj̄k̄ + δj̄uδtk̄]

+ 〈uk̄‖j̄t〉δūt̄ + 〈t̄k̄‖ūj̄〉δtu − 〈t̄u‖ūj̄〉δtk̄ − 〈t̄k̄‖ūt〉δj̄u + 〈ut̄‖tū〉δj̄k̄
= Fk̄j̄δt̄ūδtu + Futδt̄ūδj̄k̄ − Ft̄ūδutδj̄k̄ + 〈uk̄‖j̄t〉δūt̄ + 〈t̄k̄‖ūj̄〉δtu + 〈ut̄‖tū〉δj̄k̄

(C.30)

(a†ūaual̄|Ĥa
†
āajaī) = Fīl̄δūāδuj − Fīuδāūδl̄j − Fjl̄δīuδāū + Fjuδūāδl̄̄i + Fūā[−δjuδl̄̄i + δl̄jδuī]

+ 〈jī‖l̄u〉δāū + 〈ūī‖āl̄〉δuj − 〈ūj‖āl̄〉δuī − 〈ūī‖āu〉δl̄j + 〈jū‖uā〉δl̄̄i
= 〈jū‖uā〉δl̄̄i

(C.31)

(a†ūaual̄|Ĥa
†
aajai) = Fil̄δūaδuj − Fiuδaūδl̄j − Fjl̄δiuδaū + Fjuδūaδl̄i + Fūa[−δjuδl̄i + δl̄jδui]

+ 〈ji‖l̄u〉δaū + 〈ūi‖al̄〉δuj − 〈ūj‖al̄〉δui − 〈ūi‖au〉δl̄j + 〈jū‖ua〉δl̄i
= 0

(C.32)
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(a†ūaual̄|Ĥa
†
aasaj) = Fjl̄δūaδus − Fjuδaūδl̄s − Fsl̄δjuδaū + Fsuδūaδl̄j + Fūa[−δsuδl̄j + δl̄sδuj ]

+ 〈sj‖l̄u〉δaū + 〈ūj‖al̄〉δus − 〈ūs‖al̄〉δuj − 〈ūj‖au〉δl̄s + 〈sū‖ua〉δl̄j
= 〈ūj‖al̄〉δus

(C.33)

(a†ūaual̄|Ĥa
†
s̄aiaj̄) = Fj̄ l̄δūs̄δui − Fj̄uδs̄ūδl̄i − Fil̄δj̄uδs̄ū + Fiuδūs̄δl̄j̄ + Fūs̄[−δiuδl̄j̄ + δl̄iδuj̄ ]

+ 〈ij̄‖l̄u〉δs̄ū + 〈ūj̄‖s̄l̄〉δui − 〈ūi‖s̄l̄〉δuj̄ − 〈ūj̄‖s̄u〉δl̄i + 〈iū‖us̄〉δl̄j̄
= +Fiuδūs̄δl̄j̄ + 〈ij̄‖l̄u〉δs̄ū + 〈iū‖us̄〉δl̄j̄

(C.34)

(a†ūaual̄|Ĥa
†
aasat) = Ftl̄δūaδus − Ftuδaūδl̄s − Fsl̄δtuδaū + Fsuδūaδl̄t + Fūa[−δsuδl̄t + δl̄sδut]

+ 〈st‖l̄u〉δaū + 〈ūt‖al̄〉δus − 〈ūs‖al̄〉δut − 〈ūt‖au〉δl̄s + 〈sū‖ua〉δl̄t
= 〈ūt‖al̄〉δus − 〈ūs‖al̄〉δut

(C.35)

(a†ūaual̄|Ĥa
†
āasaj̄) = Fj̄ l̄δūāδus − Fj̄uδāūδl̄s − Fsl̄δj̄uδāū + Fsuδūāδl̄j̄ + Fūā[−δsuδl̄j̄ + δl̄sδuj̄ ]

+ 〈sj̄‖l̄u〉δāū + 〈ūj̄‖āl̄〉δus − 〈ūs‖āl̄〉δuj̄ − 〈ūj̄‖āu〉δl̄s + 〈sū‖uā〉δl̄j̄
= −Fūāδsuδl̄j̄ + 〈ūj̄‖āl̄〉δus + 〈sū‖uā〉δl̄j̄

(C.36)

(a†ūaual̄|Ĥa
†
s̄ataj̄) = Fj̄ l̄δūs̄δut − Fj̄uδs̄ūδl̄t − Ftl̄δj̄uδs̄ū + Ftuδūs̄δl̄j̄ + Fūs̄[−δtuδl̄j̄ + δl̄tδuj̄ ]

+ 〈tj̄‖l̄u〉δs̄ū + 〈ūj̄‖s̄l̄〉δut − 〈ūt‖s̄l̄〉δuj̄ − 〈ūj̄‖s̄u〉δl̄t + 〈tū‖us̄〉δl̄j̄
= Fj̄ l̄δūs̄δut + Ftuδūs̄δl̄j̄ − Fūs̄δtuδl̄j̄ + 〈tj̄‖l̄u〉δs̄ū + 〈ūj̄‖s̄l̄〉δut + 〈tū‖us̄〉δl̄j̄

(C.37)

162 Chapter C Primary-Secondary block field operator couplings



C.5 (FQ
3 |ĤF P

3 ) Terms

(a†
b̄
alak̄|Ĥa

†
t̄
ataj̄) = Fj̄k̄δb̄t̄δlt − Fj̄lδt̄b̄δk̄t − Ftk̄δj̄lδt̄b̄ + Ftlδb̄t̄δk̄j̄ + Fb̄t̄[−δtlδk̄j̄ + δk̄tδlj̄ ]

+ 〈tj̄‖k̄l〉δt̄b̄ + 〈b̄j̄‖t̄k̄〉δlt − 〈b̄t‖t̄k̄〉δlj̄ − 〈b̄j̄‖t̄l〉δk̄t + 〈tb̄‖lt̄〉δk̄j̄
= 〈tb̄‖lt̄〉δk̄j̄

(C.38)

(a†balak|Ĥa
†
t̄
ataj̄) = Fj̄kδbt̄δlt − Fj̄lδt̄bδkt − Ftkδj̄lδt̄b + Ftlδbt̄δkj̄ + Fbt̄[−δtlδkj̄ + δktδlj̄ ]

+ 〈tj̄‖kl〉δt̄b + 〈bj̄‖t̄k〉δlt − 〈bt‖t̄k〉δlj̄ − 〈bj̄‖t̄l〉δkt + 〈tb‖lt̄〉δkj̄
= 0

(C.39)

(a†baual|Ĥa
†
t̄
ataj̄) = Fj̄lδbt̄δut − Fj̄uδt̄bδlt − Ftlδj̄uδt̄b + Ftuδbt̄δlj̄ + Fbt̄[−δtuδlj̄ + δltδuj̄ ]

+ 〈tj̄‖lu〉δt̄b + 〈bj̄‖t̄l〉δut − 〈bt‖t̄l〉δuj̄ − 〈bj̄‖t̄u〉δlt + 〈tb‖ut̄〉δlj̄
= 〈bj̄‖t̄l〉δut

(C.40)

(a†ūakal̄|Ĥa
†
t̄
ataj̄) = Fj̄ l̄δūt̄δkt − Fj̄kδt̄ūδl̄t − Ftl̄δj̄kδt̄ū + Ftkδūt̄δl̄j̄ + Fūt̄[−δtkδl̄j̄ + δl̄tδkj̄ ]

+ 〈tj̄‖l̄k〉δt̄ū + 〈ūj̄‖t̄l̄〉δkt − 〈ūt‖t̄l̄〉δkj̄ − 〈ūj̄‖t̄k〉δl̄t + 〈tū‖kt̄〉δl̄j̄
= +Ftkδūt̄δl̄j̄ + 〈tj̄‖l̄k〉δt̄ū + 〈tū‖kt̄〉δl̄j̄

(C.41)

(a†bauav|Ĥa
†
t̄
ataj̄) = Fj̄vδbt̄δut − Fj̄uδt̄bδvt − Ftvδj̄uδt̄b + Ftuδbt̄δvj̄ + Fbt̄[−δtuδvj̄ + δvtδuj̄ ]

+ 〈tj̄‖vu〉δt̄b + 〈bj̄‖t̄v〉δut − 〈bt‖t̄v〉δuj̄ − 〈bj̄‖t̄u〉δvt + 〈tb‖ut̄〉δvj̄
= +〈bj̄‖t̄v〉δut − 〈bj̄‖t̄u〉δvt

(C.42)
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(a†
b̄
aual̄|Ĥa

†
t̄
ataj̄) = Fj̄ l̄δb̄t̄δut − Fj̄uδt̄b̄δl̄t − Ftl̄δj̄uδt̄b̄ + Ftuδb̄t̄δl̄j̄ + Fb̄t̄[−δtuδl̄j̄ + δl̄tδuj̄ ]

+ 〈tj̄‖l̄u〉δt̄b̄ + 〈b̄j̄‖t̄l̄〉δut − 〈b̄t‖t̄l̄〉δuj̄ − 〈b̄j̄‖t̄u〉δl̄t + 〈tb̄‖ut̄〉δl̄j̄
= −Fb̄t̄δtuδl̄j̄ + 〈b̄j̄‖t̄l̄〉δut + 〈tb̄‖ut̄〉δl̄j̄

(C.43)

(a†ūaval̄|Ĥa
†
t̄
ataj̄) = Fj̄ l̄δūt̄δvt − Fj̄vδt̄ūδl̄t − Ftl̄δj̄vδt̄ū + Ftvδūt̄δl̄j̄ + Fūt̄[−δtvδl̄j̄ + δl̄tδvj̄ ]

+ 〈tj̄‖l̄v〉δt̄ū + 〈ūj̄‖t̄l̄〉δvt − 〈ūt‖t̄l̄〉δvj̄ − 〈ūj̄‖t̄v〉δl̄t + 〈tū‖vt̄〉δl̄j̄
= Fj̄ l̄δūt̄δvt + Ftvδūt̄δl̄j̄ − Fūt̄δtvδl̄j̄ + 〈tj̄‖l̄v〉δt̄ū + 〈ūj̄‖t̄l̄〉δvt + 〈tū‖vt̄〉δl̄j̄

(C.44)

C.6 (F5|ĤF3) Terms

C.6.1 a†
b̄
a†ūaual̄ak̄

(a†
b̄
a†ūaual̄ak̄|Ha

†
s̄asaī)

= + δb̄s̄[(ūk̄||̄iq)δsu − (ūk̄||sl̄)δīu − (ūl̄||̄ik̄)δsu
+ (ūl̄||sk̄)δīu − (ūu||̄il̄)δsk̄ + (ūu||sl̄)δīk̄]

− δūs̄[(ūk̄||̄il̄)δsu − (ūk̄||sl̄)δīu − (ūl̄||̄ik̄)δsu
+ (ūl̄||sk̄)δīu − (ūu||̄il̄)δsk̄ + (ūu||sl̄)δīk̄]

+ (ūk̄||b̄s̄)[δsl̄δīu − δsuδīl̄]

+ (ūl̄||b̄s̄)[δsuδīk̄ − δsk̄δīu]

+ (ūu||b̄s̄)[δsk̄δīl̄ − δsl̄δīk̄]

= −δūs̄[(ūk̄||̄il̄)δsu − (ūl̄||̄ik̄)δsu + (ūu||sl̄)δīk̄]

− (ūk̄||b̄s̄)δsuδīl̄ + (ūl̄||b̄s̄)δsuδīk̄

(C.45)

164 Chapter C Primary-Secondary block field operator couplings



C.6.2 a†ba
†
ūaual̄ak

(a†ba
†
ūaual̄ak|Ha

†
s̄asaī)

= + δbs̄[(ūk||̄iq)δsu − (ūk||sl̄)δīu − (ūl̄||̄ik)δsu
+ (ūl̄||sk)δīu − (ūu||̄il̄)δsk + (ūu||sl̄)δīk]

− δūs̄[(ūk||̄il̄)δsu − (ūk||sl̄)δīu − (ūl̄||̄ik)δsu
+ (ūl̄||sk)δīu − (ūu||̄il̄)δsk + (ūu||sl̄)δīk]

+ (ūk||bs̄)[δsl̄δīu − δsuδīl̄]

+ (ūl̄||bs̄)[δsuδīk − δskδīu]

+ (ūu||bs̄)[δskδīl̄ − δsl̄δīk]

= −δūs̄[(ūk||̄il̄)δsu − (ūl̄||̄ik)δsu + (ūl̄||sk)δīu]

− (ūk||bs̄)δsuδīl̄ + (ūu||bs̄)δskδīl̄

(C.46)

C.6.3 a†ba
†
v̄auavak̄

(a†ba
†
v̄auavak̄|Ha

†
s̄asaī)

= + δbs̄[(v̄k̄||̄iq)δsu − (v̄k̄||sv)δīu − (v̄v||̄ik̄)δsu
+ (v̄v||sk̄)δīu − (v̄u||̄iv)δsk̄ + (v̄u||sv)δīk̄]

− δv̄s̄[(v̄k̄||̄iv)δsu − (v̄k̄||sv)δīu − (v̄v||̄ik̄)δsu
+ (v̄v||sk̄)δīu − (v̄u||̄iv)δsk̄ + (v̄u||sv)δīk̄]

+ (v̄k̄||bs̄)[δsvδīu − δsuδīv]

+ (v̄v||bs̄)[δsuδīk̄ − δsk̄δīu]

+ (v̄u||bs̄)[δsk̄δīv − δsvδīk̄]

= −δv̄s̄[(v̄k̄||̄iv)δsu − (v̄v||̄ik̄)δsu + (v̄u||sv)δīk̄]

+ (v̄v||bs̄)δsuδīk̄ − (v̄u||bs̄)δsvδīk̄

(C.47)
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C.6.4 a†ūa
†
v̄aval̄ak̄

(a†ūa
†
v̄aval̄ak̄|Ha

†
s̄asaī)

= + δūs̄[(v̄k̄||̄iq)δsv − (v̄k̄||sl̄)δīv − (v̄l̄||̄ik̄)δsv
+ (v̄l̄||sk̄)δīv − (v̄v||̄il̄)δsk̄ + (v̄v||sl̄)δīk̄]

− δv̄s̄[(v̄k̄||̄il̄)δsv − (v̄k̄||sl̄)δīv − (v̄l̄||̄ik̄)δsv
+ (v̄l̄||sk̄)δīv − (v̄v||̄il̄)δsk̄ + (v̄v||sl̄)δīk̄]

+ (v̄k̄||ūs̄)[δsl̄δīv − δsvδīl̄]

+ (v̄l̄||ūs̄)[δsvδīk̄ − δsk̄δīv]

+ (v̄v||ūs̄)[δsk̄δīl̄ − δsl̄δīk̄]

= δūs̄[(v̄k̄||̄iq)δsv − (v̄l̄||̄ik̄)δsv + (v̄v||sl̄)δīk̄]

− δv̄s̄[(v̄k̄||̄il̄)δsv − (v̄l̄||̄ik̄)δsv + (v̄v||sl̄)δīk̄]

− (v̄k̄||ūs̄)δsvδīl̄ + (v̄l̄||ūs̄)δsvδīk̄

(C.48)

C.7 (F3|ĤF5) Terms

C.7.1 a†āa
†
s̄asaj̄aī

(a†ūauak̄|Ha
†
āa
†
s̄asaj̄aī) = [δsu(j̄k̄||̄is̄)− δsk̄(j̄u||̄is̄)− δīu(j̄k̄||ss̄)

+ δīk̄(j̄u||ss̄)− δj̄u(sk̄||̄is̄) + δj̄k̄(su||̄is̄)]δāū
+ [−δsu(j̄k̄||̄iā) + δsk̄(j̄u||̄iā) + δīu(j̄k̄||sā)

− δīk̄(j̄u||sā) + δj̄u(sk̄||̄iā)− δj̄k̄(su||̄iā)]δs̄ū
+ (ūā||̄is̄)(δuj̄δk̄s − δusδk̄j̄)

− (ūā||j̄s̄)(δuīδk̄s − δusδk̄ī)

− (ūā||ss̄)(δuj̄δk̄ī − δuīδk̄j̄)

= +[−δsu(j̄k̄||̄iā)− δīk̄(j̄u||sā)− δj̄k̄(su||̄iā)]δs̄ū
− (ūā||̄is̄)δusδk̄j̄ + (ūā||j̄s̄)δusδk̄ī

(C.49)
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C.7.2 a†aa
†
s̄asaj̄ai

(a†ūauak̄|Ha
†
aa
†
s̄asaj̄ai) = [δsu(j̄k̄||is̄)− δsk̄(j̄u||is̄)− δiu(j̄k̄||ss̄)

+ δik̄(j̄u||ss̄)− δj̄u(sk̄||is̄) + δj̄k̄(su||is̄)]δaū
+ [−δsu(j̄k̄||ia) + δsk̄(j̄u||ia) + δiu(j̄k̄||sa)

− δik̄(j̄u||sa) + δj̄u(sk̄||ia)− δj̄k̄(su||ia)]δs̄ū
+ (ūa||is̄)(δuj̄δk̄s − δusδk̄j̄)

− (ūa||j̄s̄)(δuiδk̄s − δusδk̄i)

− (ūa||ss̄)(δuj̄δk̄i − δuiδk̄j̄)

= +[−δsu(j̄k̄||ia)− δj̄k̄(su||ia)]δs̄ū
− (ūa||is̄)δusδk̄j̄ + (ūa||ss̄)δuiδk̄j̄

(C.50)

C.7.3 a†aa
†
t̄asataī

(a†ūauak̄|Ha
†
aa
†
t̄
asataī) = [δsu(tk̄||̄it̄)− δsk̄(tu||̄it̄)− δīu(tk̄||st̄)

+ δīk̄(tu||st̄)− δtu(sk̄||̄it̄) + δtk̄(su||̄it̄)]δaū
+ [−δsu(tk̄||̄ia) + δsk̄(tu||̄ia) + δīu(tk̄||sa)

− δīk̄(tu||sa) + δtu(sk̄||̄ia)− δtk̄(su||̄ia)]δt̄ū
+ (ūa||̄it̄)(δutδk̄s − δusδk̄t)

− (ūa||tt̄)(δuīδk̄s − δusδk̄ī)

− (ūa||st̄)(δutδk̄ī − δuīδk̄t)

= +[−δsu(tk̄||̄ia)− δīk̄(tu||sa) + δtu(sk̄||̄ia)]δt̄ū
+ (ūa||tt̄)δusδk̄ī − (ūa||st̄)δutδk̄ī

(C.51)
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C.7.4 a†s̄a
†
t̄ataj̄aī

(a†ūauak̄|Ha
†
s̄a
†
t̄
ataj̄aī) = [δtu(j̄k̄||̄it̄)− δtk̄(j̄u||̄it̄)− δīu(j̄k̄||tt̄)

+ δīk̄(j̄u||tt̄)− δj̄u(tk̄||̄it̄) + δj̄k̄(tu||̄it̄)]δs̄ū
+ [−δtu(j̄k̄||̄is̄) + δtk̄(j̄u||̄is̄) + δīu(j̄k̄||ts̄)

− δīk̄(j̄u||ts̄) + δj̄u(tk̄||̄is̄)− δj̄k̄(tu||̄is̄)]δt̄ū
+ (ūs̄||̄it̄)(δuj̄δk̄t − δutδk̄j̄)

− (ūs̄||j̄t̄)(δuīδk̄t − δutδk̄ī)

− (ūs̄||tt̄)(δuj̄δk̄ī − δuīδk̄j̄)

= [δtu(j̄k̄||̄it̄) + δīk̄(j̄u||tt̄) + δj̄k̄(tu||̄it̄)]δs̄ū
+ [−δtu(j̄k̄||̄is̄)− δīk̄(j̄u||ts̄)− δj̄k̄(tu||̄is̄)]δt̄ū
− (ūs̄||̄it̄)δutδk̄j̄ + (ūs̄||j̄t̄)δutδk̄ī

(C.52)
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DList of Publications as graduate
student

During the author’s academic studies, several papers in diverse topics have published
as a result of his research in electron–propagator methods and computational chemistry.
A brief summary of his most significant publications is presented below.
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D.1 MgH Rydberg Series: Transition Energies from
Electron Propagator Theory and Oscillator
Strengths from the Molecular Quantum Defect
Orbital Method

In this publication vertical excitation energies belonging to several Rydberg series of
MgH were inferred from 3+ electron–propagator calculations of the electron affinities
of MgH+. Many electronically excited states with n > 3 are reported for the first time
and new insight is given on the assignment of several Rydberg series. The results
obtained in this study are in close agreement with experiment.

J. Quant Spectrosc Radiat Transf, 206, 161-166, (2017)
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D.2 Numerical test of SAC-CI methods for calculating
vertical ionization energies

Valence, vertical ionization energies of closed–shell molecules were calculated with
the symmetry–adapted–cluster, configuration–interaction (SAC–CI) method using ten
basis sets for its level 1 and level 2 operator inclusion criteria, whereas for its more
stringent level 3 scheme, 15 basis sets were used. For SAC-CI level 3, fortuitously
better results may be obtained when smaller basis sets are used. Anomalous behavior
with respect to the basis set size may occur when the level 1 and level 2 options are
employed.

Theor. Chem. Acc. 135, 236-1-236-8, (2016)
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D.3 Electron propagators based on generalised
density operators

Generalized matrix elements of the superoperator Hamiltonian that accommodate
non–integer occupation numbers associated with general, orthogonal spin orbitals are
presented for the first time. Non–Hermitian terms may be systematically eliminated
with perturbative corrections to generalized reference density operators. The structure
of self–energy approximations that are complete through second, third, fourth or fifth
order is presented in terms of superoperator Hamiltonian matrix elements. The present
extensions pertain when generalized, zeroth–order density operators expressed in
terms of orthonormal spin orbitals are employed.

Mol. Phys. 74, 267-298, (2016)
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D.4 Electron Propagator Theory: Foundations and
Predictions

After a brief discussion of the physical meaning of the poles and residues of the electron
propagator, the Dyson quasiparticle equation is derived. Practical approximations of
the self-energy operator in common use are defined in terms of the elements of the
Hermitian superoperator Hamiltonian matrix.

Adv. Quantum Chem. 74, 267-298, (2016)
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D.5 NR2 And P3+: Accurate, Efficient
Electron–Propagator Methods For Calculating
Valence, Vertical Ionization Energies Of
Closed–Shell Molecules

The renormalized partial third–order method (P3+) and the nondiagonal second–order
renormalized (NR2) methods have been identified as accurate and computationally
efficient electron–propagator methods for calculating the valence, vertical ionization
energies (VIEs) of closed-shell molecules through comparisons with related approxi-
mations.

J. Phys. Chem. A 119, 33, 8813-8821 (2015)
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D.6 Valence-Bound and Diffuse-Bound Anions of
5-Azauracil

Structures (including those produced by proton transfer), isomerization energies, and
electron binding energies of 5-azauracil and its anions have been calculated ab initio
with perturbative, coupled-cluster, and electron-propagator methods.

J. Phys. Chem. A 118, 34, 6908-6913 (2014)
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D.7 A Macrocyclic 1,4-Diketone Enables the
Synthesis of a p-Phenylene Ring That Is More
Strained than a Monomer Unit of
[4]Cycloparaphenylene

The synthesis of a p–terphenyl–based macrocycle, containing a p–phenylene unit with
42.6 kcal/mol of strain energy (SE), is reported. The conversion of a macrocyclic
1,4-diketone to a highly strained arene system takes place over five synthetic steps,
featuring iterative dehydrative reactions in the aromatization protocol.

Org. Lett. 18, 13, 3278-3281 (2016)
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D.8 Overcoming Strain-Induced Rearrangement
Reactions: A Mild Dehydrative Aromatization
Protocol for the Synthesis of Highly Distorted
para -Phenylenes

A series of p–terphenyl–based macrocycles, containing highly distorted p–phenylene
units, have been synthesized. A streamlined synthetic protocol for the synthesis of 1,4-
diketo macrocycles has been developed, using only 2.5 mol % of the Hoveyda–Grubbs
second–generation catalyst in both metathesis and transfer hydrogenation reactions.

J. Am. Chem. Soc. 138, 9, 3235-3240 (2016)
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D.9 Publications related to Numerical methods

A new numerical method for the calculation of Bessel function integrals is proposed.
This method utilizes the integral representation of the Bessel function to recast the
problem as a double integral; one of which is calculated with Gauss–Chebyshev quadra-
ture while the other uses a parameter–dependent Gauss–Laguerre quadrature in the
complex plane.

Rev. Mex. Fs. E. 59, 115-121, (2013)
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D.10 Measuring localization-delocalization
phenomena in a quantum corral

The standard deviations and Shannon information entropies of the probability densities
for a particle in a quantum corral are compared and contrasted. Illustrating how these
two measures emphasize different aspects of the underlying distributions which can
lead to inconsistent interpretations.

J. Math. Chem. 51, 179-193, (2013)

D.10 Measuring localization-delocalization phenomena in a quantum corral 179





Bibliography

[1]Rodney J. Bartlett. “Coupled-cluster theory and its equation-of-motion extensions”. In:
Wiley Interdiscip. Rev. Comput. Mol. Sci. 2.1 (2012), pp. 126–138 (cit. on pp. v, vi).

[2]Joseph Vincent Ortiz. “Electron propagator theory: an approach to prediction and interpre-
tation in quantum chemistry”. In: Wiley Interdisciplinary Reviews: Computational Molecular
Science 3.2 (2013), pp. 123–142 (cit. on pp. v, vi, 26, 27, 36).

[3]Adriana Perez-Gonzalez, Annia Galano, and Joseph Vincent Ortiz. “Vertical ionization
energies of free radicals and electron detachment energies of their anions: A comparison
of direct and indirect methods versus experiment”. In: J. Phys. Chem. A 118.31 (2014),
pp. 6125–6131 (cit. on pp. v, vi).

[4]Miho Isegawa, Frank Neese, and Dimitrios A Pantazis. “Ionization Energies and Aqueous
Redox Potentials of Organic Molecules: Comparison of DFT, Correlated ab Initio Theory
and Pair Natural Orbital Approaches”. In: J. Chem. Theory Comput. 12.5 (2016), pp. 2272–
2284 (cit. on p. v).

[5]Tjalling Koopmans. “Über die Zuordnung von Wellenfunktionen und Eigenwerten zu
den einzelnen Elektronen eines Atoms”. In: Physica 1.1-6 (1934), pp. 104–113 (cit. on pp. v,
34).

[6]J. F. Janak. “Proof that ∂E
∂ni

= ε in density-functional theory”. In: Phys. Rev. B 18 (12 1978),
pp. 7165–7168 (cit. on p. v).

[7]H. Nakatsuji and K. Hirao. “Cluster Expansion Of The Wavefunction. Pseudo-Orbital
Theory Applied To Spin Correlation”. In: Chem. Phys. Lett. 47.3 (1977), pp. 569 –571 (cit. on
p. vi).

[8]H. H. Corzo, Jared M Krosser, Annia Galano, and J. V. Ortiz. “Numerical test of SAC-CI
methods for calculating vertical ionization energies”. In: Theor. Chem. Acc. 135.10 (2016),
p. 236 (cit. on p. vi).

[9]L S Cederbaum. “One-body Green’s function for atoms and molecules: theory and appli-
cation”. In: J. Phys. B 8.2 (1975), pp. 290–303 (cit. on pp. vi, 25, 52).

[10]Héctor H Corzo and J Vince Ortiz. “Electron Propagator Theory: Foundations and Pre-
dictions”. In: Adv. Quantum Chem. Vol. 74. Elsevier, 2017, pp. 267–298 (cit. on pp. vi,
40).

181



[11]Héctor H Corzo and JV Ortiz. “Electron propagators based on generalised density opera-
tors”. In: Mol. Phys. 115.5 (2017), pp. 545–551 (cit. on pp. vi, 45, 47).

[12]Yngve Öhrn and Jan Linderberg. “Propagators for Alternant Hydrocarbon Molecules”. In:
Phys. Rev. 139 (4A 1965), A1063–A1068 (cit. on pp. vi, 25, 27).

[13]J Linderberg and Y Öhrn. “Improved single-particle propagators in the theory of conju-
gated systems”. In: Proc. R. Soc. Lond. A. Vol. 285. 1402. The Royal Society. 1965, pp. 445–456
(cit. on pp. vi, 25, 27).

[14]David Danovich. “Green’s function methods for calculating ionization potentials, elec-
tron affinities, and excitation energies”. In: Wiley Interdisciplinary Reviews: Computational
Molecular Science 1.3 (2011), pp. 377–387 (cit. on pp. vi, 25, 60).

[15]Joseph V Ortiz. “Interpreting Bonding and Spectra With Correlated, One-Electron Con-
cepts From Electron Propagator Theory”. In: Annu. Rep. Comput. Chem. Vol. 13. Elsevier,
2017, pp. 139–182 (cit. on pp. vi, 25, 26, 29, 36, 40, 54).

[16]Jan Linderberg and Yngve Öhrn. Propagators in quantum chemistry. John Wiley & Sons,
2004 (cit. on pp. vi, 25–27, 29).

[18]HH Corzo, Annia Galano, O Dolgounitcheva, VG Zakrzewski, and JV Ortiz. “NR2 and
P3+: Accurate, Efficient Electron-Propagator Methods for Calculating Valence, Vertical
Ionization Energies of Closed-Shell Molecules”. In: J. Phys. Chem. A 119.33 (2015), pp. 8813–
8821 (cit. on pp. vi, 60).

[19]Manuel Díaz-Tinoco, O Dolgounitcheva, VG Zakrzewski, and JV Ortiz. “Composite
electron propagator methods for calculating ionization energies”. In: J. Chem. Phys. 144.22
(2016), p. 224110 (cit. on p. vi).

[20]J. V. Ortiz. “Toward an exact one-electron picture of chemical bonding”. In: Adv. Quantum
Chem. 35 (1999), pp. 33–52 (cit. on p. vi).

[21]O Dolgounitcheva, VG Zakrzewski, and JV Ortiz. “Electron propagator calculations on
uracil and adenine ionization energies”. In: Int. J. Quantum Chem 80.4-5 (2000), pp. 831–835
(cit. on p. vi).

[22]Viatcheslav G. Zakrzewski, Olga Dolgounitcheva, Alexander V. Zakjevskii, and J.V. Ortiz.
“Chapter 6 - Ab Initio Electron Propagator Methods: Applications to Fullerenes and
Nucleic Acid Fragments”. In: ed. by Ralph A. Wheeler. Vol. 6. Annu. Rep. Comput. Chem.
Elsevier, 2010, pp. 79 –94 (cit. on pp. vi, 50).

[23]H. H. Corzo, O Dolgounitcheva, V. G. Zakrzewski, and J. V. Ortiz. “Valence-Bound and
Diffuse-Bound Anions of 5-Azauracil”. In: J. Phys. Chem. A 118.34 (2014), pp. 6908–6913
(cit. on p. vi).

[24]Aleksey A Kletsov, Evgeny G Glukhovskoy, Aleksey S Chumakov, and Joseph V Ortiz.
“Ab initio electron propagator calculations of transverse conduction through DNA nu-
cleotide bases in 1-nm nanopore corroborate third generation sequencing”. In: BBA-Gen.
1860.1 (2016), pp. 140–145 (cit. on p. vi).

182 Chapter D Bibliography



[25]Viatcheslav G Zakrzewski, Olga Dolgounitcheva, Alexander V Zakjevskii, and J V Ortiz.
“Ab initio electron propagator calculations on electron detachment energies of fullerenes,
macrocyclic molecules, and nucleotide fragments”. In: Adv. Quantum Chem. 62 (2011),
pp. 105–136 (cit. on pp. vi, 50).

[26]Krishnan Raghavachari, Gary W Trucks, John A Pople, and Martin Head-Gordon. “A
fifth-order perturbation comparison of electron correlation theories”. In: Chem. Phys. Lett.
157.6 (1989), pp. 479–483 (cit. on p. vi).

[27]Rick A Kendall, Thom H Dunning Jr, and Robert J Harrison. “Electron affinities of the
first-row atoms revisited. Systematic basis sets and wave functions”. In: J. Chem. Phys. 96.9
(1992), pp. 6796–6806 (cit. on p. vi).

[28]David E Woon and Thom H Dunning Jr. “Gaussian basis sets for use in correlated molecu-
lar calculations. III. The atoms aluminum through argon”. In: J. Chem. Phys. 98.2 (1993),
pp. 1358–1371 (cit. on p. vi).

[29]Thom H Dunning Jr. “Gaussian basis sets for use in correlated molecular calculations. I.
The atoms boron through neon and hydrogen”. In: J. Chem. Phys. 90.2 (1989), pp. 1007–1023
(cit. on p. vi).

[30]Kirk A Peterson, David E Woon, and Thom H Dunning Jr. “Benchmark calculations with
correlated molecular wave functions. IV. The classical barrier height of the H+ H2 → H2+
H reaction”. In: J. Chem. Phys. 100.10 (1994), pp. 7410–7415 (cit. on p. vi).

[31]Frank Wilczek. “Quantum field theory”. In: Reviews of Modern Physics 71.2 (1999), S85
(cit. on p. 1).

[32]Nima Arkani-Hamed, Freddy Cachazo, and Jared Kaplan. “What is the simplest quantum
field theory?” In: Journal of High Energy Physics 2010.9 (2010), p. 16 (cit. on p. 1).

[33]Jakob Schwichtenberg. “Quantum Field Theory”. In: Physics from Symmetry. Springer,
2018, pp. 209–231 (cit. on p. 1).

[34]Nima Arkani-Hamed, Freddy Cachazo, and Jared Kaplan. “What is the simplest quantum
field theory?” In: J. High Energy Phys. 2010.9 (2010), p. 16 (cit. on pp. 1, 8, 9).

[35]R. P. Feynman. “Space-Time Approach to Non-Relativistic Quantum Mechanics”. In: Rev.
Mod. Phys. 20 (2 1948), pp. 367–387 (cit. on pp. 1, 25).

[36]R. P. Feynman. “Space-time approach to non-relativistic quantum mechanics”. In: Feyn-
man’s Thesis—A New Approach To Quantum Theory. World Scientific, 2005, pp. 71–109 (cit.
on p. 1).

[37]R. P. Feynman. “Mathematical Formulation of the Quantum Theory of Electromagnetic
Interaction”. In: Phys. Rev. 80 (3 1950), pp. 440–457 (cit. on pp. 1, 8, 25).

[39]Kerson Huang. Quantum field theory: From operators to path integrals. John Wiley & Sons,
2010 (cit. on pp. 2, 3, 9).

[40]Gabriel Barton. Elements of Green’s functions and propagation: potentials, diffusion, and waves.
Oxford University Press, 1989 (cit. on pp. 2, 4, 6, 8, 21).

183



[41]George B Arfken and Hans-Jurgen Weber. Mathematical methods for physicists. Academic
Press New York 1970, 1972 (cit. on pp. 2, 6, 8, 9, 16).

[42]Eleftherios N Economou. Green’s functions in quantum physics. Vol. 3. Springer, 1983 (cit. on
pp. 2, 3, 8, 9).

[43]David J Griffiths. Introduction to quantum mechanics. Cambridge University Press, 2016
(cit. on pp. 4, 6, 8, 18, 21).

[46]Stanley Ø Aks. “Proof that scattering implies production in quantum field theory”. In: J.
Math. Phys. 6.4 (1965), pp. 516–532 (cit. on p. 9).

[47]JM Cook. “The mathematics of second quantization”. In: Transactions of the American
Mathematical Society 74.2 (1953), pp. 222–245 (cit. on p. 9).

[48]Trygve Helgaker, Poul Jørgensen, and Jeppe Olsen. Molecular electronic-structure theory.
John Wiley & Sons, 2014 (cit. on pp. 9, 28, 45).

[51]David Griffiths. Introduction to elementary particles. John Wiley & Sons, 2008 (cit. on p. 16).

[52]Jun John Sakurai and Jim Napolitano. Modern quantum mechanics. Cambridge University
Press, 2017 (cit. on p. 18).

[54]Julian Schwinger. “On the Green’s functions of quantized fields. I”. In: Proc. Natl. Acad.
Sci. U.S.A. 37.7 (1951), pp. 452–455 (cit. on p. 25).

[55]Julian Schwinger. “On the Green’s functions of quantized fields. II”. In: Proc. Natl. Acad.
Sci. U.S.A. 37.7 (1951), pp. 455–459 (cit. on p. 25).

[56]Paul C Martin and Julian Schwinger. “Theory of many-particle systems. I”. In: Phys. Rev.
115.6 (1959), p. 1342 (cit. on p. 25).

[57]W Von Niessen, P Tomasello, J Schirmer, and LS Cederbaum. “Recent progress in a Green’s
function method for the calculation of ionisation spectra”. In: Australian Journal of Physics
39.5 (1986), pp. 687–710 (cit. on p. 25).

[58]Jochen Schirmer. “Closed-form intermediate representations of many-body propagators
and resolvent matrices”. In: Phys. Rev. A 43.9 (1991), p. 4647 (cit. on p. 25).

[59]Danny L Yeager. “The multiconfigurational spin-tensor electron propagator method
(MCSTEP)”. In: Adv. Quantum Chem. 50 (2005), pp. 289–313 (cit. on p. 25).

[60]Jack Simons. “Theoretical studies of negative molecular ions”. In: Annu. Rev. Phys. Chem.
28.1 (1977), pp. 15–45 (cit. on p. 25).

[61]Jens Oddershede. “Propagator methods”. In: Adv. Chem. Phys. (2007), pp. 201–239 (cit. on
p. 25).

[62]BT Pickup and O Goscinski. “Direct calculation of ionization energies: I. Closed shells”.
In: Mol. Phys. 26.4 (1973), pp. 1013–1035 (cit. on pp. 25, 31, 33).

[63]George D Purvis and Yngve Öhrn. “Electron propagator calculations of the photoelectron
spectrum for open shell molecules with applications to the oxygen molecule”. In: J. Chem.
Phys. 62.6 (1975), pp. 2045–2049 (cit. on pp. 26, 29).

184 Chapter D Bibliography



[64]JV Ortiz. “Brueckner orbitals, Dyson orbitals, and correlation potentials”. In: International
journal of quantum chemistry 100.6 (2004), pp. 1131–1135 (cit. on pp. 26, 27).

[65]Osvaldo Goscinski and B Lukman. “Moment-conserving decoupling of Green functions
via Pade approximants”. In: Chem. Phys. Lett. 7.6 (1970), pp. 573–576 (cit. on p. 27).

[66]Cederbaum L. S. “On green’s functions and their applications”. In: Int. J. Quantum Chem.
38.24 (), pp. 393–404 (cit. on p. 27).

[67]J Schirmer, LS Cederbaum, and O Walter. “New approach to the one-particle Green’s
function for finite Fermi systems”. In: Phys. Rev A 28.3 (1983), p. 1237 (cit. on p. 27).

[68]Lynn Tyner Redmon, George Purvis, and Yngve Öhrn. “Higher-order decoupling of the
electron propagator”. In: J. Chem. Phys. 63.11 (1975), pp. 5011–5017 (cit. on p. 27).

[69]Per-Olov Löwdin. “Studies in perturbation theory. x. lower bounds to energy eigenvalues
in perturbation-theory ground state”. In: Phys. Rev. 139.2A (1965), A357 (cit. on pp. 31, 40).

[70]Per-Olov Löwdin. “Studies in perturbation theory XIII. Treatment of constants of motion
in resolvent method, partitioning technique, and perturbation theory”. In: Int. J. Quantum
Chem. 2.6 (1968), pp. 867–931 (cit. on pp. 31, 32, 40).

[71]Norman W Bazley. “Lower bounds for eigenvalues with application to the helium atom”.
In: Phys. Rev. 120.1 (1960), p. 144 (cit. on p. 31).

[72]N Aronszajn. “Green’s functions and reproducing kernels”. In: Proceedings of the Symposium
on Spectral Theory and Differential Problems. 1951, pp. 164–187 (cit. on p. 32).

[73]Rodney J Bartlett and Erkki J Brändas. “Reduced partitioning procedure in configuration
interaction studies. I. Ground states”. In: J. Chem. Phys. 56.11 (1972), pp. 5467–5477 (cit. on
p. 32).

[74]Rodney J Bartlett and Erkki J Brändas. “Reduced partitioning procedure in configuration
interaction studies. II. Excited states”. In: J. Chem. Phys. 59.4 (1973), pp. 2032–2042 (cit. on
p. 32).

[75]Christoph Nehrkorn, George D Purvis, and Yngve Öhrn. “Hermiticity of the superoperator
Hamiltonian in propagator theory”. In: J. Chem. Phys. 64.4 (1976), pp. 1752–1756 (cit. on
pp. 33, 43, 45).

[76]David P Tew, Wim Klopper, and Trygve Helgaker. “Electron correlation: The many-
body problem at the heart of chemistry”. In: Journal of computational chemistry 28.8 (2007),
pp. 1307–1320 (cit. on p. 34).

[77]Gregory Born, Henry A Kurtz, and Yngve Öhrn. “Elementary finite order perturbation
theory for vertical ionization energies”. In: J. Chem. Phys. 68.1 (1978), pp. 74–85 (cit. on
p. 49).

[78]J. V. Ortiz, V. G. Zakrzewski, and O. Dolgounitcheva. “One-Electron Pictures of Electronic
Structure: Propagator Calculations on Photoelectron Spectra of Aromatic Molecules”.
English. In: Conceptual Perspectives in Quantum Chemistry. Ed. by Jean-Louis Calais and
Eugene Kryachko. Vol. 3. Springer Netherlands, 1997, pp. 465–517 (cit. on p. 50).

185



[79]O Dolgounitcheva, V Zakrzewski, and J V Ortiz. “Electron propagator calculations on
the ionization energies of nucleic acid bases, base-water complexes and base dimers”. In:
Fundamental World of Quantum Chemistry: A Tribute to the Memory of Per-Olov Löwdin. Ed. by
E. J. Brändas and E. S. Kryachko. Vol. 2. Kluwer, Dordrecht, 2003, pp. 525–55 (cit. on p. 50).

[80]Viatcheslav G Zakrzewski, Olga Dolgounitcheva, Alexander V Zakjevskii, and J V Ortiz.
“Ab initio electron propagator methods: Applications to nucleic acids fragments and
metallophthalocyanines”. In: Int. J. Quantum Chem. 110.15 (2010), pp. 2918–2930 (cit. on
p. 50).

[81]J. V. Ortiz. “The Electron Propagator Picture of Molecular Electronic Structure”. In: Com-
putational Chemistry: Reviews of Current Trends. World Scientific: Singapore, 1997. Chap. 1,
pp. 1–61 (cit. on pp. 50–52, 58).

[82]Antonio M. Ferreira, Gustavo Seabra, O. Dolgounitcheva, V. G. Zakrzewski, and J. V.
Ortiz. “Application and Testing of Diagonal, Partial Third-Order Electron Propagator
Approximations”. In: Quantum-Mechanical Prediction of Thermochemical Data. Ed. by Jerzy
Cioslowski. Vol. 22. Understanding Chemical Reactivity. Springer Netherlands, 2001,
pp. 131–160 (cit. on pp. 50, 52).

[83]V G Zakrzewski and J V Ortiz. “Semidirect algorithms in electron propagator calculations”.
In: Int. J. Quantum Chem. 52.S28 (1994), pp. 23–27 (cit. on p. 51).

[84]V G Zakrzewski and J V Ortiz. “Semidirect algorithms for third-order electron propagator
calculations”. In: Int. J. Quantum Chem. 53.6 (1995), pp. 583–590 (cit. on p. 51).

[85]W. von Niessen, J. Schirmer, and L. S. Cederbaum. “Computational methods for the
one-particle Green’s function”. In: Comput. Phys. Rep. 1.2 (1984), pp. 57 –125 (cit. on pp. 51,
52, 54, 58).

[86]V. G. Zakrzewski, J. V. Ortiz, Jeffrey A. Nichols, et al. “Comparison of perturbative and
multiconfigurational electron propagator methods”. In: Int. J. Quantum Chem. 60.1 (1996),
pp. 29–36 (cit. on pp. 51, 52).

[87]J. V. Ortiz. “Partial third-order quasiparticle theory: Comparisons for closed-shell ioniza-
tion energies and an application to the Borazine photoelectron spectrum”. In: J. Chem.
Phys. 104.19 (1996), pp. 7599–7605 (cit. on p. 52).

[88]J. V. Ortiz. “An efficient, renormalized self-energy for calculating the electron binding
energies of closed-shell molecules and anions”. In: Int. J. Quantum Chem. 105.6 (2005),
pp. 803–808 (cit. on p. 53).

[89]LS Cederbaum and W Domcke. “Theoretical aspects of ionization potentials and pho-
toelectron spectroscopy: A Green’s function approach”. In: Adv. Chem. Phys 36 (1977),
pp. 205–344 (cit. on p. 54).

[90]Paul von Ragué Schleyer, Norman L Allinger, Tim Clark, et al. Encyclopedia of computational
chemistry. Wiley Chichester, UK, 1998 (cit. on p. 54).

[91]Gregory Born and Yngve Öhrn. “A superoperator derivation of the 2p—h TDA equations”.
In: Chem. Phys. Lett. 61.2 (1979), pp. 307–312 (cit. on p. 54).

186 Chapter D Bibliography



[92]Ilse CF Ipsen. Numerical matrix analysis: Linear systems and least squares. Vol. 113. Siam, 2009
(cit. on p. 56).

[93]LS Cederbaum, W Domcke, J Schirmer, and W von Niessen. “Correlation effects in the
ionization of molecules: Breakdown of the molecular orbital picture”. In: Adv. Chem. Phys
65 (2007), pp. 115–159 (cit. on p. 58).

[94]Wo Von Niessen, Go Ho F Diercksen, and L Ss Cederbaum. “On the accuracy of ionization
potentials calculated by Green’s functions”. In: J. Chem. Phys. 67.9 (1977), pp. 4124–4131
(cit. on p. 58).

[95]F Brogli, E Heilbronner, Else Kloster-Jensen, et al. “The photoelectron spectrum of buta-
triene”. In: Chem. Phys. 4.1 (1974), pp. 107–119 (cit. on p. 58).

[96]LS Cederbaum, W Domcke, H Köppel, and W Von Niessen. “Strong vibronic coupling
effects in ionization spectra: The “mystery band” of butatriene”. In: Chem. Phys. 26.2 (1977),
pp. 169–177 (cit. on p. 58).

[97]DR Lloyd. DW Turner, C. Baker, AD Baker and CR Brundle, Molecular Photoelectron Spec-
troscopy. 1972 (cit. on p. 58).

[98]JV Ortiz. “A nondiagonal, renormalized extension of partial third-order quasiparticle
theory: Comparisons for closed-shell ionization energies”. In: J. Chem. Phys. 108.3 (1998),
pp. 1008–1014 (cit. on p. 58).

[102]Per-Olov Löwdin. “Band Theory, Valence Bond, and Tight-Binding Calculations”. In: J.
Appl. Phys. 33.1 (1962), pp. 251–280 (cit. on p. 81).

[103]P Lykos and GW Pratt. “Discussion on the Hartree-Fock approximation”. In: Rev. Mod.
Phys. 35.3 (1963), p. 496 (cit. on p. 81).

[104]Erkki J Brändas and Eugene S Kryachko. Fundamental world of quantum chemistry: a tribute
to the memory of Per-Olov Löwdin. Vol. 3. Springer Science & Business Media, 2013 (cit. on
pp. 81, 82, 96, 98).

[105]Hideo Fukutome. “Unrestricted Hartree–Fock theory and its applications to molecules
and chemical reactions”. In: Int. J. Quantum Chem 20.5 (1981), pp. 955–1065 (cit. on pp. 81,
82, 96, 98).

[106]Jason L Sonnenberg, H Bernhard Schlegel, and Hrant P Hratchian. Spin contamination in
inorganic chemistry calculations. Wiley Online Library, 2009 (cit. on pp. 81, 95, 98).

[107]Yao-Yuan Chuang, Elena L Coitiño, and Donald G Truhlar. “How should we calculate
transition state geometries for radical reactions? The effect of spin contamination on the
prediction of geometries for open-shell saddle points”. In: J. Phys. Chem. A 104.3 (2000),
pp. 446–450 (cit. on pp. 81, 96, 98).

[108]Xiangzhu Li and Josef Paldus. “Symmetry breaking in spin-restricted, open-shell Hartree–
Fock wave functions”. In: Int. J. Quantum Chem 109.8 (2009), pp. 1756–1765 (cit. on pp. 81,
82).

[109]Takashi Tsuchimochi and Gustavo E Scuseria. “Communication: ROHF theory made
simple”. In: J. Chem. Phys. 133.14 (2010), p. 141102 (cit. on pp. 81, 96, 98).

187



[110]Boris N Plakhutin, Natalia N Breslavskaya, Elena V Gorelik, and Alexei V Arbuznikov.
“On the position of the nitrogen 2p energy level in endohedral N@ C60 (Ih)”. In: J. Mol.
Struct: THEOCHEM 727.1-3 (2005), pp. 149–157 (cit. on pp. 81, 95, 98).

[111]CCJ Roothaan. “Self-consistent field theory for open shells of electronic systems”. In: Rev.
Mod. Phys. 32.2 (1960), p. 179 (cit. on pp. 81, 95, 97, 98).

[112]Jing Lu, Xinwei Zhang, and Xiangeng Zhao. “Electronic structures of endohedral N@ C60,
O@ C60 and F@ C60”. In: Chem. Phys. Lett. 312.2-4 (1999), pp. 85–90 (cit. on pp. 81, 95, 98).

[113]JC Greer. “The atomic nature of endohedrally encapsulated nitrogen N@ C60 studied
by density functional and Hartree-Fock methods”. In: Chem. Phys. Lett. 326.5-6 (2000),
pp. 567–572 (cit. on pp. 81, 95, 98).

[114]Björn M Reinhard and Gereon Niedner-Schatteburg. “Ionization energies and spatial
volumes of the singly occupied molecular orbital in hydrated magnesium clusters [Mg, n
H2O]+”. In: J. Chem. Phys. 118.8 (2003), pp. 3571–3582 (cit. on pp. 81, 95, 98).

[115]Jeremy P Coe, Nuno Almeida, and Martin J Paterson. “Investigation of challenging spin
systems using Monte Carlo configuration interaction and the density matrix renormaliza-
tion group”. In: J Comput Chem 38.31 (2017), pp. 2701–2712 (cit. on pp. 81, 95, 98).

[116]Russell G McKinlay, Nuno MS Almeida, Jeremy P Coe, and Martin J Paterson. “Excited
states of the nickel carbonyls Ni (CO) and Ni (CO)4: Challenging molecules for electronic
structure theory”. In: J. Phys. Chem. A 119.39 (2015), pp. 10076–10083 (cit. on pp. 81, 95, 98).

[120]Clemens Carel Johannes Roothaan. “New developments in molecular orbital theory”. In:
Reviews of modern physics 23.2 (1951), p. 69 (cit. on p. 91).

[121]George G Hall. “The molecular orbital theory of chemical valency VIII. A method of
calculating ionization potentials”. In: Proc. R. Soc. Lond. A 205.1083 (1951), pp. 541–552
(cit. on p. 91).

[122]Per-Olov Löwdin and István Mayer. “Some studies of the general Hartree-Fock method”.
In: Adv. Quantum Chem. Vol. 24. Elsevier, 1992, pp. 79–114 (cit. on p. 94).

[123]BN Plakhutin, EV Gorelik, and NN Breslavskaya. “Koopmans’ theorem in the ROHF
method: Canonical form for the Hartree-Fock hamiltonian”. In: J. Chem. Phys 125.20 (2006),
p. 204110 (cit. on pp. 96–98, 103).

[124]Ernest R Davidson and Boris N Plakhutin. “Koopmans’s theorem in the restricted open-
shell Hartree–Fock method. II. The second canonical set for orbitals and orbital energies”.
In: J. Chem. Phys 132.18 (2010), p. 184110 (cit. on pp. 96–98, 103).

[125]Boris N Plakhutin and Ernest R Davidson. “Canonical form of the Hartree-Fock orbitals
in open-shell systems”. In: J. Chem. Phys 140.1 (2014), p. 014102 (cit. on pp. 96–98, 103).

[126]Kurt R Glaesemann and Michael W Schmidt. “On the ordering of orbital energies in
high-spin ROHF”. In: J. Phys. Chem. A 114.33 (2010), pp. 8772–8777 (cit. on pp. 96–98).

[127]Gustavo E Scuseria and Takashi Tsuchimochi. “Constrained-pairing mean-field theory. II.
Exact treatment of dissociations to nondegenerate orbitals”. In: J. Chem. Phys 131.16 (2009),
p. 164119 (cit. on pp. 96, 98).

188 Chapter D Bibliography



[128]R McWeeny and GHFJ Diercksen. “Self-Consistent Perturbation Theory. II. Extension to
Open Shells”. In: J. Chem. Phys. 49.11 (1968), pp. 4852–4856 (cit. on p. 97).

[129]Ernest R Davidson. “Spin-restricted open-shell self-consistent-field theory”. In: Chem.
Phys. Lett. 21.3 (1973), pp. 565–567 (cit. on p. 97).

[130]MF Guest and VR Saunders. “On methods for converging open-shell Hartree-Fock wave-
functions”. In: Mol. Phys. 28.3 (1974), pp. 819–828 (cit. on p. 97).

[131]JS Binkley, JA Pople, and PA Dobosh. “The calculation of spin-restricted single-determinant
wavefunctions”. In: Mol. Phys. 28.6 (1974), pp. 1423–1429 (cit. on p. 97).

[132]Knut Fægri Jr and Rolf Manne. “A new procedure for Roothaan’s symmetry-restricted
open-shell SCF method”. In: Mol. Phys. 31.4 (1976), pp. 1037–1049 (cit. on p. 97).

[133]Vladimir Fock. “Näherungsmethode zur Lösung des quantenmechanischen Mehrkörper-
problems”. In: Zeitschrift für Physik 61.1-2 (1930), pp. 126–148 (cit. on p. 97).

[134]WG Richards. “The use of Koopmans’ Theorem in the interpretation of photoelectron
spectra”. In: Int. J. Mass Spectrom. Ion Processes 2.6 (1969), pp. 419–424 (cit. on p. 98).

[135]LS Cederbaum, G Hohlneicher, and W Von Niessen. “On the breakdown of the Koopmans’
theorem for nitrogen”. In: Chem. Phys. Lett. 18.4 (1973), pp. 503–508 (cit. on p. 98).

[136]Darwin W Smith and Orville W Day. “Extension of Koopmans’ theorem. I. Derivation”.
In: J. Chem. Phys 62.1 (1975), pp. 113–114 (cit. on p. 98).

[137]Rolf Manne and T Åberg. “Koopmans’ theorem for inner-shell ionization”. In: Chem. Phys.
Lett. 7.2 (1970), pp. 282–284 (cit. on p. 98).

[138]JL Dodds and R McWeeny. “Orbital energies and Koopmans’ theorem in open-shell
Hartree-Fock theory”. In: Chem. Phys. Lett. 13.1 (1972), pp. 9–12 (cit. on p. 98).

[139]Björn O Roos. “The Complete Active Space Self-Consistent Field Method and its Applica-
tions in Electronic Structure Calculations”. In: Adv. Chem. Phys. 69.2 (2007), pp. 399–445
(cit. on p. 105).

[140]Michael W Schmidt and Mark S Gordon. “The construction and interpretation of MCSCF
wavefunctions”. In: Annu. Rev. Phys. Chem. 49.1 (1998), pp. 233–266 (cit. on p. 105).

[141]Peter G Szalay, Thomas Müller, Gergely Gidofalvi, Hans Lischka, and Ron Shepard.
“Multiconfiguration self-consistent field and multireference configuration interaction
methods and applications”. In: Chem. Rev. 112.1 (2011), pp. 108–181 (cit. on p. 105).

[142]Björn O Roos, Per Linse, Per EM Siegbahn, and Margareta RA Blomberg. “A simple
method for the evaluation of the second-order-perturbation energy from external double-
excitations with a CASSCF reference wavefunction”. In: Chem. Phys. 66.1-2 (1982), pp. 197–
207 (cit. on p. 105).

[143]Preben Albertsen and Poul Jørgensen. “Ionization potentials and electron affinites for a
spacially nondegenerate doublet state in a second-order electron propagator approach”.
In: J. Chem. Phys 70.7 (1979), pp. 3254–3263 (cit. on p. 105).

189



[144]Barry Tennant Pickup and Atri Mukhopadhyay. “Spin symmetry adaptation of the one-
electron propagator”. In: Chem. Phys. Lett. 79.1 (1981), pp. 109–114 (cit. on p. 105).

[145]Anna I Krylov. “Size-consistent wave functions for bond-breaking: the equation-of-motion
spin-flip model”. In: Chem. Phys. Lett. 338.4-6 (2001), pp. 375–384 (cit. on p. 105).

[146]John S Sears, C David Sherrill, and Anna I Krylov. “A spin-complete version of the spin-
flip approach to bond breaking: What is the impact of obtaining spin eigenfunctions?” In:
J. Chem. Phys. 118.20 (2003), pp. 9084–9094 (cit. on pp. 105, 106).

[147]Anna I Krylov and C David Sherrill. “Perturbative corrections to the equation-of-motion
spin–flip self-consistent field model: Application to bond-breaking and equilibrium prop-
erties of diradicals”. In: J. Chem. Phys. 116.8 (2002), pp. 3194–3203 (cit. on p. 105).

[148]Nicholas J Mayhall and Martin Head-Gordon. “Computational Quantum Chemistry
for Multiple-Site Heisenberg Spin Couplings Made Simple: Still Only One Spin–Flip
Required”. In: J. Phys. Chem. Lett. 6.10 (2015), pp. 1982–1988 (cit. on p. 105).

Web Pages

[17]Wikipedia, the free encyclopedia. Big O notation. 2018. URL: https://en.wikipedia.org/
wiki/Big_O_notation (visited on July 17, 2018) (cit. on p. vi).

[38]Wikipedia, the free encyclopedia. Lp space. 2018. URL: https://en.wikipedia.org/wiki/
Lp_space (visited on Feb. 28, 2018) (cit. on p. 2).

[44]Wikipedia, the free encyclopedia. Propagator. 2018. URL: https://en.wikipedia.org/
wiki/Propagator (visited on Feb. 27, 2018) (cit. on p. 4).

[45]Wikipedia, the free encyclopedia. Leibniz’s notation. 2018. URL: https://en.wikipedia.
org/wiki/Leibniz%27s_notation (visited on Mar. 20, 2018) (cit. on p. 5).

[49]Wikipedia, the free encyclopedia. Commutator. 2018. URL: https://en.wikipedia.org/
wiki/Commutator (visited on July 17, 2018) (cit. on p. 10).

[50]Wikipedia, the free encyclopedia. Fermi’s golden rule. 2018. URL: https://en.wikipedia.
org/wiki/Fermi%27s_golden_rule (visited on Feb. 27, 2018) (cit. on p. 16).

[53]Wikipedia, the free encyclopedia. Heaviside step function. 2018. URL: https://en.wikipedia.
org/wiki/Heaviside_step_function (visited on Mar. 20, 2018) (cit. on p. 20).

[99]Wikipedia, the free encyclopedia. Newton’s method. 2018. URL: https://en.wikipedia.
org/wiki/Newton%27s_method (visited on Mar. 7, 2018) (cit. on p. 67).

[100]Wikipedia, the free encyclopedia. Secant method. 2018. URL: https://en.wikipedia.org/
wiki/Secant_method (visited on Mar. 7, 2018) (cit. on p. 69).

[101]Marouane Rhafli. An Improvement to the secant method. 2018. URL: http://vixra.org/pdf/
1405.0013v1.pdf (visited on May 15, 2018) (cit. on p. 70).

190 Chapter D Bibliography

https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Lp_space
https://en.wikipedia.org/wiki/Propagator
https://en.wikipedia.org/wiki/Propagator
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Leibniz%27s_notation
https://en.wikipedia.org/wiki/Commutator
https://en.wikipedia.org/wiki/Commutator
https://en.wikipedia.org/wiki/Fermi%27s_golden_rule
https://en.wikipedia.org/wiki/Fermi%27s_golden_rule
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Heaviside_step_function
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Newton%27s_method
https://en.wikipedia.org/wiki/Secant_method
https://en.wikipedia.org/wiki/Secant_method
http://vixra.org/pdf/1405.0013v1.pdf
http://vixra.org/pdf/1405.0013v1.pdf


[117]Joshua Goings. Broken Symmetries in Hartree-Fock. 2018. URL: http://joshuagoings.com/
2014/10/14/broken-symmetries-in-hartree-fock/ (visited on June 12, 2018) (cit. on
p. 82).

[118]Wikipedia, the free encyclopedia. Covering group. 2018. URL: https://en.wikipedia.org/
wiki/Covering_group (visited on June 27, 2018) (cit. on p. 84).

[119]Wikipedia, the free encyclopedia. Antiunitary operator. 2018. URL: https://en.wikipedia.
org/wiki/Antiunitary_operator (visited on July 17, 2018) (cit. on p. 85).

WEB PAGES 191

http://joshuagoings.com/2014/10/14/broken-symmetries-in-hartree-fock/
http://joshuagoings.com/2014/10/14/broken-symmetries-in-hartree-fock/
https://en.wikipedia.org/wiki/Covering_group
https://en.wikipedia.org/wiki/Covering_group
https://en.wikipedia.org/wiki/Antiunitary_operator
https://en.wikipedia.org/wiki/Antiunitary_operator




List of Figures

1.1 Distribution of sources and point sources . . . . . . . . . . . . . . . . . . . 2
1.2 The solution to a point source is also known as the Green’s function . . . . 3
1.3 Green’s function for the distributed source . . . . . . . . . . . . . . . . . . 3
1.4 Green’s function for the distributed source . . . . . . . . . . . . . . . . . . 4
1.5 Scattering at a definite place . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Decay process at a definite place . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Electron detachment from a closed-shell reference state. . . . . . . . . . . . 35

4.1 Memory allocation for array matrices . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Molecular orbital configuration for water and the 6-311G basis set . . . . . 65
4.3 Molecular orbital to be considered for the detachment energy of the

HOMO orbital of H2O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Graphical representation of the Newton–Rapson method . . . . . . . . . . 67
4.5 Parametric equation of a circle . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.6 Parametric equation of a circle tangent to the first point of a function f(x) 71
4.7 Improvement to the secant method . . . . . . . . . . . . . . . . . . . . . . . 72
4.8 Generation of the next guess point xn . . . . . . . . . . . . . . . . . . . . . 72
4.9 Self–energy derivative using the central difference . . . . . . . . . . . . . . 74
4.10 Electron propagator self consistent algorithm . . . . . . . . . . . . . . . . . 79

5.1 Hartree–Fock Self consistent field algorithm . . . . . . . . . . . . . . . . . . 93
5.2 generation of singlet and triplet states . . . . . . . . . . . . . . . . . . . . . 99

6.1 Partitioned ROHF reference determinant . . . . . . . . . . . . . . . . . . . 107
6.2 Doublet reference determinant and the resulting determinants produced

after the removal of an electron. . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3 h field operators for the primary space. . . . . . . . . . . . . . . . . . . . . . 109
6.4 2hp spin–flip field operator corresponding to the primary space. . . . . . . 110
6.5 p and 2ph operators for the primary space. . . . . . . . . . . . . . . . . . . . 110
6.6 2hp operators for the secondary space. . . . . . . . . . . . . . . . . . . . . . 112
6.7 3h2p operators for the secondary space. . . . . . . . . . . . . . . . . . . . . 113
6.8 2ph operators for the secondary space . . . . . . . . . . . . . . . . . . . . . 114

193



6.9 3p2h operators for the secondary space . . . . . . . . . . . . . . . . . . . . . 115

194 List of Figures



List of Tables

3.1 Superoperator Hamiltonian requirements for Σn. . . . . . . . . . . . . . . . 43
3.2 Scaling of Arithmetic and Storage Requirements . . . . . . . . . . . . . . . 60

5.1 Hartree–Fock approximations and their constraints–flexibility balancing . 95
5.2 Some of the coefficients reported in the literature for equation (5.55) for

the systems having a half-filled open electronic shell with all spins parallel. 97

6.1 f3 and f5 operators that will be consider for the definition of the secondary
space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Primary Space terms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.3 In the secondary–secondary block, the only couplings that do not banished

are in green . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.4 Secundary–Secundary for the f3–f3 blocks . . . . . . . . . . . . . . . . . . . 120
6.5 Secundary–Secundary for the f3–f3 blocks . . . . . . . . . . . . . . . . . . . 121
6.6 Secundary–Secundary for the f3–f3 blocks . . . . . . . . . . . . . . . . . . . 122
6.7 Secundary–Secundary f5–f5 blocks . . . . . . . . . . . . . . . . . . . . . . . 123
6.8 Primary–Secundary and Secundary–Primary for the a–f3–a blocks . . . . 124
6.9 Primary–Secundary and Secundary–Primary f3–f3 blocks . . . . . . . . . . 125
6.10 Primary–Secundary and Secundary–Primary f3–f5–f3 blocks . . . . . . . . 126

195





Colophon

This thesis was typeset with LATEX 2ε. Images, diagrams and figures were coded in TikZ.
This thesis uses the chem-acs Biblatex bibliography style developed by the American
Chemical Society (ACS). The design of the chem-acs style is similar to the achemso cita-
tions style for ACS publications (List of authors, publication title, journal abbreviation,
volume, year,pages).

More information about the achemso style at
https://ctan.org/pkg/achemso?lang=en/.

More information about the the chem-acs style at https://ctan.org/pkg/biblatex-chem?
lang=en/

https://ctan.org/pkg/achemso?lang=en/
https://ctan.org/pkg/biblatex-chem?lang=en/
https://ctan.org/pkg/biblatex-chem?lang=en/





	Cover
	Titlepage
	Abstract
	Acknowledgement
	1 The Green's Function
	1.1 Mathematical overview of the Green's function
	1.2 Quantum Scattering and the Green's function
	1.2.1 The Born approximation

	1.3 The Quantum Field theory formalism
	1.3.1 The Fock space representation of the Hamiltonian
	1.3.2 The quantum field as an N-particle system
	1.3.3 The (bold0mu mumu rrrrrr) and (bold0mu mumu rrrrrr) field operators
	1.3.4 Change of base for operators
	1.3.5 Describing interactions
	1.3.6 Energy and momentum conservation

	1.4 The Many–Body Green's function
	1.4.1 One–particle Green's function

	1.5 Green function and Photoelectron emission
	1.5.1 Approximation to the final state 


	2 The Electron Propagator
	2.1 Electron propagator concepts
	2.2 Electron propagator formalism
	2.2.1 Second quantization concepts 
	2.2.2 Propagator couplings and superoperator theory 
	2.2.3 Partitioning and the inner projection basis 
	2.2.4  Hartree–Fock orbitals and binding energies 

	2.3 Dyson equation

	3 Electron Propagator Approximations
	3.1 Propagator approximations
	3.2 Perturbative improvements to the Self–energy
	3.2.1 Hermiticity

	3.3 The second–order electron propagator
	3.3.1 Primary–Primary block
	3.3.2 Primary–Secondary and Secondary–Primary blocks
	3.3.3 Secondary–Secondary block
	3.3.4 Second–Order Self–Energy 
	3.3.5 Second–order relaxation correction terms

	3.4 Diagonal approximations
	3.4.1 The D3 approximation
	3.4.2 OVGF
	3.4.3 P3 and P3+

	3.5 Non–diagonal approximations
	3.5.1 The 2ph-TDA approximation
	3.5.2 The 3+ and ADC(3) approximations
	3.5.3 The NR2 approximation

	3.6 Comparison among approximations
	3.6.1 Final verdict


	4 The Electron Propagator Implementation
	4.1 The eigenvalue problem
	4.1.1 The Dyson approach
	4.1.2 Hermiticity considerations
	4.1.3 Point group considerations

	4.2 Pole search methods
	4.2.1 Newton–Raphson root–finding algorithm
	4.2.2 Secant root–finding algorithm
	4.2.3 Improvement to the Secant root–finding algorithm
	4.2.4 Pole strengths
	4.2.5 Derivative
	4.2.6 Selection of the Eigenvalue

	4.3 Eigenvectors
	4.3.1 Dyson orbitals
	4.3.2 Charge density

	4.4 Orbital energy threshold recommendation

	5 Restricted open–shell electron propagator
	5.1 Löwdin's symmetry dilemma
	5.2 Symmetry Breaking
	5.2.1 Group and subgroups of symmetries
	5.2.2 No symmetry constraints
	5.2.3 Complex conjugation symmetry constraints
	5.2.4 Time–reversal symmetry constraints
	5.2.5  z-axis rotation symmetry constraints
	5.2.6  Time–reversal and z-axis rotation symmetry constraints
	5.2.7  Complex conjugation and z-axis rotation symmetry constraints
	5.2.8  All spin axis rotation symmetry constraints
	5.2.9 Time reversal and all spin axis rotation symmetry constraints

	5.3 The diverse pictures of the Hartree–Fock theory
	5.3.1 The self–consistent field procedure

	5.4 The Restricted Open–shell Hartree–Fock model
	5.4.1 The different ROHF schemes

	5.5 Koopmans's theorem in the restricted open-shell Hartree-Fock approximation
	5.5.1 Generation of the correct ROHF couplings coefficients
	5.5.2 Formulation of the first triplet state (Ms=1  S=1)
	5.5.3 Formulation of the second triplet state (Ms =0  S=1) 
	5.5.4 Formulation of the singlet state (Ms =0  S=0)


	6 Multireference open–shell electron propagator
	6.1 The spin–flip technique
	6.1.1 Spin–flip and the spin–contamination problem
	6.1.2 Spin–flip for ionization energies 

	6.2 Spin–flip in electron propagator theory
	6.2.1 Redefinition of the primary block
	6.2.2 Redefinition of the secondary block

	6.3  Multi–reference ROHF propagator
	6.3.1  Self–energy reformulation


	A Primary block field operator couplings
	A.1 Deduction of the matrix elements for the primary–primary block

	B Secondary block field operator couplings
	B.1 General term for (F3"026A30C H"0362H F3) for the 2ph terms in first order
	B.1.1  aala
	B.1.2  abalak
	B.1.3  abaual
	B.1.4  aaka
	B.1.5  abauav
	B.1.6  aaua
	B.1.7  aaua

	B.2 General term for (F5"026A30C H"0362H F5) for the 2ph terms in zero order
	B.2.1  aa aua a
	B.2.2  aba aua ak
	B.2.3  aba aua a
	B.2.4  aa ava a


	C Primary-Secondary block field operator couplings
	C.1 General definitions
	C.2 (F1"026A30C H"0362H F3) Terms
	C.3 (F3"026A30C H"0362H F1) Terms
	C.4 (FP3"026A30C H"0362H FQ3) Terms
	C.5 (FQ3"026A30C H"0362H FP3) Terms
	C.6 (F5"026A30C H"0362H F3) Terms
	C.6.1  aa aua a
	C.6.2  aba aua ak
	C.6.3  aba auav a
	C.6.4 aa ava a

	C.7 (F3"026A30C H"0362H F5) Terms
	C.7.1  aa asa a
	C.7.2  aaa asa ai
	C.7.3  aaa asat a
	C.7.4  aa ata a


	D List of Publications as graduate student
	D.1 MgH Rydberg Series: Transition Energies from Electron Propagator Theory and Oscillator Strengths from the Molecular Quantum Defect Orbital Method
	D.2 Numerical test of SAC-CI methods for calculating vertical ionization energies
	D.3 Electron propagators based on generalised density operators
	D.4 Electron Propagator Theory: Foundations and Predictions
	D.5 NR2 And P3+: Accurate, Efficient Electron–Propagator Methods For Calculating Valence, Vertical Ionization Energies Of Closed–Shell Molecules
	D.6 Valence-Bound and Diffuse-Bound Anions of 5-Azauracil
	D.7 A Macrocyclic 1,4-Diketone Enables the Synthesis of a p-Phenylene Ring That Is More Strained than a Monomer Unit of [4]Cycloparaphenylene 
	D.8 Overcoming Strain-Induced Rearrangement Reactions: A Mild Dehydrative Aromatization Protocol for the Synthesis of Highly Distorted para -Phenylenes
	D.9 Publications related to Numerical methods
	D.10 Measuring localization-delocalization phenomena in a quantum corral

	Bibliography
	Colophon

