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Abstract 

 

 

Invasive invertebrates are studied due to their impacts on human and ecosystem health, 

but impacts on native invertebrates are less known. The red imported fire ant (RIFA, Solenopsis 

invicta) is an ideal model species to quantify this relationship is they take advantage of disturbed 

landscapes, which is problematic for disturbance-mediated longleaf pine ecosystems (Pinus 

palustris) of the southeastern United States. I hypothesized that RIFA mound numbers are driven 

by environmental variables (e.g., prescribed fire, region, disturbance history) in longleaf pine 

ecosystems, and that higher RIFA presence would decrease native and increase non-native ant 

species richness. I tested these hypotheses on 11 properties in Florida and Georgia, and results 

indicated that RIFA mound numbers do relate to certain environmental variables and higher 

RIFA presence did decrease native and increase non-native ant species richness. My findings can 

help land managers in balancing costs of invasive species control and meeting conservation 

goals.  
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Chapter 1: Introduction 

 

 

 One of the greatest threats to conservation worldwide is the spread of invasive species, 

which impact native species and ecosystems through predation, habitat destruction, and 

competition (MEA 2005). While $128 billion is spent annually in the US to mitigate their 

economic damage (Pejchar and Mooney 2009), invasive species incur additional costs through 

animal extinctions (Clavero and García-Berthou 2005), decreasing biodiversity, and impairment 

of ecosystem services (Pejchar and Mooney 2009, Pyšek and Richardson 2010). As a result, 

preventing the establishment and spread of invasive species, evaluating their effects on 

ecosystems, and determining appropriate management responses to invasion are serious priorities 

for land managers globally (Lowry et al. 2013). 

 An area of concern that is poorly understood is how restoration of natural disturbance 

regimes may influence biological invasions and their subsequent impacts on native species. For 

example, prescribed burning is a common practice to promote longleaf pine savannas in the 

southeastern United States, both on old field sites (historically agricultural) and on sites 

dominated by native groundcover that have never been cultivated. Many species directly benefit 

from maintenance of these ecosystems, and prescribed burning is an essential component of 

reversing declines in grassland species such as the federally endangered red-cockaded 

woodpecker (Picoides borealis), indigo snake (Drymarchon couperi), and gopher tortoise 

(Gopherus polyphemus).  
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However, invasive species may also take advantage of these management practices and 

have negative impacts on species of conservation concern. A prime example of an invasive 

species expanding in the face of restoration efforts is the red imported fire ant (Solenopsis 

invicta, hereafter RIFA). Native to South America, RIFA was introduced into the US between 

the 1930s and 1940s (Callcott 2002). RIFA take advantage of disturbed areas (e.g., pastures, 

mowed areas near roads) to develop new colonies and expand their range each year, altering 

community composition and ecosystem integrity (Tschinkel 1988, Camilo and Phillips 1990, 

Plowes et al. 2007). The species is now established in over 128 million ha in the US (Morrison et 

al. 2004, Zhang et al. 2007). Under current climatic conditions, RIFAs have the potential to 

continue expanding their US distribution northward (Korzukhin et al. 2001, Morrison et al. 

2004), with even further expansions possible due to climate change (Morrison et al. 2005). This 

historical establishment and continued expansion of RIFA is of high concern for conservation 

efforts. RIFA reach high densities, are highly aggressive, and are omnivorous, giving them 

potential to impact agricultural crops (Jetter et al. 2002), invertebrates, and vertebrates including 

herpetofauna, mammals, and birds (Allen et al. 2001, Ferris et al. 1998, Reagan et al. 2000). 

Among vertebrate wildlife species, grassland birds may be at risk of negative population-level 

effects of RIFA predation as this guild of birds has already been in steep decline for decades 

(Brennan 1991, Wojcik et al. 2001). 

 The severity of impacts RIFA have on a system (Macom and Porter 1996) can vary. For 

instance, RIFA depredate a number of altricial species, including  northern bobwhite quail 

(Colinus virginianus, hereafter bobwhite) and the American alligator (Alligator mississippiensis, 

Reagan et al. 2000), as well as some precocial species like the loggerhead turtle (Caretta caretta, 

Allen et al. 2001a). Previous research found that that region partially explained variation in RIFA 
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nest depredation of bobwhites, but did not clarify what regional factors were influential RIFA 

(Haines et al. 2017). This uncertainty reduces the ability of managers to identify the conditions 

(i.e. when and where) under which RIFA effects on native species warrant higher concern.  

 Environmental factors such as site disturbance history, hydrology, and climate are known 

to affect RIFA occurrence and activity (Porter and Tschinkel 1987, Tschinkel 1988, Korzukhin 

et al. 2001). Soil type could be important due RIFAs reliance on underground nests and foraging 

tunnels, but there is currently a debate in the literature on this topic. Some studies have found no 

evidence that soil type impacts RIFA (Wangberg et al. 1980, Porter et al. 1991), but others 

suggest that soil characteristics have significant influence, such as particle size, bulk density, and 

soil moisture (Ali et al. 1986). Testing soil in relation to other environmental and management 

factors could shed light on this debated topic. Furthermore, there has been minimal work done 

comparing RIFA densities between old-field and native groundcover, as historical disturbance 

may impact present day invasions (Forbes et al. 2002). 

 RIFA provide a model taxon for assessing the basic question of how habitat and 

disturbance (e.g., land use, wildfire) interact with biological invasions and subsequent nest 

predation rates on grassland birds. Because little is known about the interactions of 

environmental characteristics and land management on RIFA, my study will provide information 

for managers to address this problem. My goal is to determine not only which environmental 

variables impact RIFA, but also how RIFA are impacting their environment.  

 To that effect, I will first test what environmental variables influence RIFA mound 

numbers. My first hypothesis is that RIFA mound density is driven by soil type, groundcover 

type, and burn interval. After evaluating the relationship of RIFA mound number to variables of 

interest, I will also determine how RIFA numbers influence native and non-native ant species 
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richness to model how RIFA are impacting native invertebrates. Specifically, my second 

hypothesis is that as RIFA numbers increase, native ant species richness will decrease while non-

native ant species richness will increase. Answering my two hypotheses could enable land 

managers to control RIFA in specific areas where the risk of RIFA impact is highest, allowing 

them to cut down on costs while attaining their conservation goals. On a larger scale, this work 

fills a gap in understanding how RIFA invasions may be related to restoration and disturbance, 

which can help untangle basic biological invasion questions and help guide management and 

habitat improvement efforts to protect native early-successional species which benefit ecosystem 

health and stakeholders. 
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Abstract 

 

 

Red imported fire ants (Solenopsis invicta, hereafter RIFA) are an aggressive invasive species 

expanding in the face of disturbance-mediated ecosystem restoration efforts (e.g., prescribed 

fire). Land managers are concerned habitat restoration may increase RIFA abundance and 

negatively impact species of conservation concern. I hypothesized that RIFA mound numbers 

correlated with burn interval, groundcover type, and soil type. I assessed my hypothesis by 

surveying 11 properties in Georgia and Florida during 2016 and 2017. Plots were randomly 

selected and characterized by burn rotation (burned or unburned within a year), groundcover 

(native or old field), and soil characteristics. The top Poisson model suggests that year, region, 

burn interval, and soil pH influence RIFA mound numbers. These variables could influence other 

invasive invertebrates, and correlate with past research investigating variation in RIFA nest 

depredation. Quantifying the indirect variables influencing RIFAs and other invasive 

invertebrates will help land managers make informed management decisions for conservation 

efforts. 

Keywords: distance sampling, habitat selection, pine savanna, Solenopsis invicta  

*Correspondent: amh0130@auburn.edu  
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 One of the greatest threats to conservation worldwide is the spread of invasive species, 

which impact native species and ecosystems through predation (Johnson 1961), habitat 

destruction (Allen et al. 2004), and competition (MEA 2005). In the US, invasive species cause 

an estimated $120 billion in damage and control efforts each year (Pimentel et al. 2005) on top of 

the ecological and economic costs incurred by increasing animal extinctions (Clavero and 

García-Berthou 2005), decreasing biodiversity (Wojcik et al. 2001), and impairing ecosystem 

services (Pejchar and Mooney 2009, Pyšek and Richardson 2010). As a result, preventing the 

establishment and spread of invasive species, evaluating their effects on ecosystems, and 

determining how management practices affect invasion are a priority for land managers (Lowry 

et al. 2013). 

 Certain types of management may facilitate invasion (Jetter et al. 2002), and it is poorly 

understood how restoration of natural disturbance regimes may influence biological invasions, as 

well as the subsequent impacts on native species. For example, prescribed burning is a common 

practice to restore and promote different types of early successional landscapes in the US (Forbes 

et al. 2000, Williamson et al. 2002). Restoration of early successional habitat is critical in a 

number of locations as species that depend on it have been declining in many locations (Van 

Lear et al. 2005). These species, including federally threatened and endangered species, directly 

benefit from maintenance of early successional ecosystems (Wilson et al. 1995, Palmer et al. 

2012). However, invasive species may also take advantage of disturbance-mediated 

management. For instance, ponderosa pine (Pinus ponderosa) forests of the Western US have 

been rapidly invaded by cheatgrass (Bromus tectorum) following the use of fire as cheatgrass is 

able to grow back faster than native grasses (Kerns et al. 2006). Notably, however, increases in 

invasive species are not universal as species vary in their response to disturbance.  
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 Disturbance is just one of multiple environmental factors that can influence the presence 

and success of invasive species on a landscape (Tschinkel 1998). Other factors include direct 

variables (e.g., land use and disturbance events) and indirect variables (e.g., site disturbance 

history, climate, and local animal and plant communities; Porter and Tschinkel 1987, Tschinkel 

1988, Korzukhin et al. 2001). Differentiating the effects of some environmental variables is 

difficult, as they can be confounded by interactions (Beketov and Liess 2008). Testing variables 

of potential biological significance in relation to each other and management practices could 

provide information to improve management.   

  Red imported fire ants (Solenopsis invicta; hereafter, RIFA) provide a model taxon for 

assessing of how different environmental variables, such as land cover, disturbance regimes, and 

soil characteristics, interact with an invasive species and their subsequent impacts on native 

fauna. RIFA are generalist foragers that readily colonize disturbed areas (Tschinkel 1988), and 

their abundance is likely linked to depredation rates on ground nesting species, such as northern 

bobwhite quail (Colinus virginianus; Mueller et al. 1999, Dabbert et al. 2002, Haines et al. 

2017). However, considerable uncertainty remains about long-term rates of RIFA-caused 

mortality and competition at various life stages. This uncertainty reduces the ability of managers 

to identify the conditions (i.e. when and where) under which RIFA depredation warrants higher 

concern. While some research exists on the effect of prescribed burning on RIFA abundance and 

distribution (Forbes 2002), it has not focused on areas with decades of burn history. Furthermore, 

RIFA depredation rates can vary markedly between landscapes that are similarly managed with 

prescribed burning (Haines et al. 2017). These results suggest that there are other factors 

influencing RIFA presence and depredation, such as soil properties and site disturbance history 

(Keeley 2005). 
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 Given the lack of understanding about how environmental variables affect the presence 

and success of invasive species, the overarching goal of my research is to quantify which 

variables have the largest influence on RIFA. A commonly used indicator of RIFA presence and 

density in past research is RIFA mound number. Therefore, I hypothesize that RIFA mound 

density is driven by soil type, groundcover type, and burn interval.  From my hypothesis, I had 

three predictions. Specifically, I predicted that RIFA mound numbers and density will increase 

as sand content increases and bulk density decreases. This prediction is based on research 

indicating that properties with sandier, looser soil experiences higher rates of RIFA depredation 

in quail nests (Haines et al. 2017). Additionally, properties with old field (historically 

agricultural) groundcover are predicted to have a higher number and density of RIFA mounds 

than properties where native groundcover has been preserved, as areas of old field groundcover 

tend to have a higher number of non-native or invasive species present (Keeley 2005). I also 

predict that areas burned within a survey year will increase RIFA mound numbers and overall 

density when compared to areas not burned during the survey year (number of mounds/ha). This 

third prediction is based on the tendency of RIFAs to colonize disturbed areas (Tschinkel 1988) 

and past research on their relationship with prescribed fire (Forbes 2002). 

Methods 

Study Area 

 

 I evaluated RIFA presence on 11 properties in two study regions in the southeastern US 

(Figure 2.1). One region is in Baker and Dougherty counties in southwest Georgia (hereafter, 

Albany region), and the other in Leon and Jefferson counties near the Georgia/Florida border 

(hereafter, Tallahassee region). In the Albany region, I surveyed three hunting properties with 

old field groundcover, embedded in a 120,000 ha landscape of similar properties. These 
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properties consist of low basal area (9.2–13.8 m2 per ha), old field pine forests in an open pine-

grassland structure maintained through commercial thinning and prescribed fire, with small 

fallow fields throughout the area (Palmer et al. 2012). The majority of trees are longleaf pine 

(Pinus palustris) and slash pine (P. elliottii), with scattered hardwoods such as live oak (Quercus 

virginia), southern red oak (Q. falcata), and water oak (Q. nigra). Herbaceous cover is 

predominantly warm season grasses, such as broomsedge (Andropogon sp.), annual broad-leaved 

forbs, and legumes (Burger et al. 1998). These three old field properties in the Albany region 

were converted to agricultural fields in the 1800s, but after agriculture was abandoned in the 

1900s these lands were seeded back to pine and native vegetation maintained by prescribed fire. 

Also in the Albany region are two properties with native groundcover (predominately mature 

longleaf pine and wiregrass (Aristida stricta)), specifically in the Dougherty and Worth counties.  

 The average growing season for the Albany region during this study was mid-March to the 

end of November, with an average temperature of 24.4o C (NOAA, Weather Underground). The 

average annual precipitation for Albany was 127 cm, with an average of about 69 cm during the 

May-August field season (NOAA, Weather Underground). Topography on all Albany properties 

is relatively flat with few to no hardwood drains.  

 In the Tallahassee Region, I surveyed three properties with old field groundcover in Leon 

and Jefferson counties near the city of Tallahassee, Florida. The two old field properties in Leon 

county are embedded in an approximately 161,874 ha landscape of bobwhite management 

properties. The property in Jefferson County is approximately 3,682 ha surrounded by properties 

of similar land management. All three old field properties consist of old field pine forests, mostly 

loblolly pine (P. taeda) and shortleaf pine (P. echinata), interspersed with hardwood drains, 

hammocks, and small fallow fields. Pine forests are maintained for an open pine-grassland 
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structure through prescribed fire. Herbaceous groundcover is a mix of warm season grasses, 

legumes, and forbs (Hammond 2001). Also in the Tallahassee region are four properties with 

native groundcover (predominately mature longleaf pine and wiregrass), specifically in Thomas 

county, Georgia, and Jefferson county, Florida.  

 The average growing season for the Tallahassee region was mid-March to the end of 

October. The counties around Tallahassee had an average temperature of 25.6o C and an average 

annual precipitation of 158 cm, with an average of about 66 cm during the May-August field 

season (NOAA, Weather Underground).  

 All properties are similarly managed with prescribed fire, typically occurring in March 

and April of each year. Old field properties burn on a rotation, with managers burning ~50 - 70% 

of the property and then burning the unburned area the following year (Palmer et al. 2012). 

Properties with native groundcover varied, most being burned on a similar rotation to the old 

field properties. However, two native groundcover properties are burned completely each year 

(properties RH4 and RH5, see Table 2.1). 

 Soils on the Albany properties are classified as Orangeburg-Lucy-Grady and Norfolk-

Wagram-Grady soil associations, which are predominantly sandy-loam textured soils with 

moderate permeability and low natural fertility (Palmer et al. 2012). Soils in the Tallahassee 

region are of the Fuquay-Orangeburg-Faceville soil association, characterized by well drained, 

moderately fertile fine-loam soils with varying amounts of sand and clay (Palmer et al. 2012). 

The Orangeburg series is common in both the Albany and Tallahassee regions, but otherwise 

there are no shared soil families, meaning soils between regions vary in characteristics like 

horizonation, mineral composition, and permeability. 

RIFA Surveys 
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On each of six properties in the Albany region and five properties in the Tallahassee 

Region, I randomly sampled six plots (50 × 50 m each, Figure 2.2). Of the 11 total properties, 8 

were sampled in 2016 and 3 were added in 2017 (plots: 2016 n = 60, 2017 n = 78, Table 2.1). In 

areas with two burn types, I surveyed three burned and three unburned plots per property (2016: 

burned n = 36, unburned n = 24; 2017: burned n = 44, unburned n = 34). Burned plots had been 

burned during March or April of the survey year, while unburned plots were last burned March 

or April of the previous year. Because I sampled for two consecutive years, most of the initially 

burned plots in 2016 became unburned plots in 2017. To choose study plots, I generated 100 

random points on property shapefiles in ArcGIS (ESRI 2016), then selected the first three points 

in burned and unburned areas that were 50 m from known roadways. Old field properties (~9 ha) 

have annual burns in the spring on a rotating schedule, allowing both burned and unburned areas 

to be sampled. The native ground properties (~10.5 ha) serve as an example of less disturbed 

landscapes, as they have minimal sources of disturbance beyond prescribed fire.  

Ant mound counts were recorded in plots once per year from May-August in 2016 and 

2017. Inside plots, I established six 50 m transects per plot (Forbes et al. 2000), 10 m apart and 

oriented north to south (Figure 2.3). While randomly placed, the edges of plots were all roughly 

50 m away from any road-ways to reduce the possibility of disturbance impact of roads (Forbes 

et al. 2000).  Once the outline of the plot was flagged, an observer walked transects and searched 

for mounds that were within 5 m of transects. When located, a mound was tested for occupancy 

by probing the top several times. If ants swarmed, they were examined to determine species. 

Mounds of RIFA were marked as active, measurements were taken for mound dimensions and 

perpendicular distance (m) from transect, and GPS coordinates were gathered using a Trimble 

GEO Explorer 7x unit with 1 - 100 cm accuracy. GPS coordinates for the corners of plots were 
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also recorded so that surveys could be repeated in the same areas (on a different burn interval) in 

both years. The mound dimensions were also measured and recorded to the nearest cm. 

Environmental Variables 

During 2017, I evaluated canopy closure from the center of the plot were determined with 

a canopy densitometer. I also collected soil cores from a subset of randomly selected plots (n = 

50), using both a soil auger and a bulk density probe at the depths of 15 - 25 cm and 40 - 60 cm. 

The first depth was selected based on the depth RIFA make their forager tunnels (Tschinkel 

2006). The second depth was commonly where clay horizonation began for soils in the area and 

influences moisture retention of the soil, a quality known to influence RIFA (Korzukhin et al. 

2001). For each plot, two independent samples were taken at both depths. The independent 

samples were homogenized with a mortar and pestle, then combined to make a representative 

sample for their respective plots. Soil samples were then analyzed by the Auburn Cooperative 

Extension Soil Testing Laboratory to determine pH and particle size (Gee and Bauder 1986). 

Bulk density samples gathered in the same way as the previous soil samples, but were dried and 

weighed to determine bulk density for plots (McKenzie et al. 2002). Property disturbance level 

was also categorized into low, moderate, and high levels by percentage of disking and 

agricultural land use according to management records and satellite data. 

Data Analysis 

All analyses were performed in R (R Core Team 2018). Before exploring which variables 

could be impacting RIFA mound abundance, I first investigated whether I could adequately test 

my hypotheses using raw mound counts per plot as my response variable. Using standard 

distance-sampling models (Buckland et al 2012) in package distance, I first examined whether 

detection probabilities (specifically the probability of detecting a mound as a function of its 
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distance from the closest transect line) varied systematically with factors of interest. Distance 

analysis (Appendix 1) indicated that detection probability varied between years and increased 

with increasing mound height. . However, detection did not vary with groundcover, burn 

interval, or canopy closure. Therefore, I used mound counts as my response variable in later 

models to avoid the additional complexity of simultaneously modeling detection probability and 

factors affecting mound density in an integrated analysis (Buckland et al. 2009, Oedekoven et al. 

2014).  

To quantify the relationship of variables to RIFA mound counts, I ran generalized linear 

mixed effects models with a Poisson distribution and log link (Bates et al. 2015). In a 

preliminary analysis, I examined whether mound counts varied within each survey season by 

fitting models with an effect of Julian date or an interaction of year × Julian date. Neither Julian 

date nor its interaction with year were significant, and thus Julian date was not considered 

further. I then performed two sets of analyses. The first set used mound counts from all plots and 

omitted all soil variables. The random effects were individual property and plot, with the fixed 

effects of region, year, canopy closure, burn interval, groundcover, and disturbance level. Four 

two-way interactions were included in a preliminary full model because of hypothesized 

biological importance: year with groundcover, burn interval, and canopy closure, and burn 

interval with groundcover (code in Appendix 2). To reduce model complexity, I fit a full model 

with all main effects and the four interactions, and then removed any interactions with p > 0.15 

(Harrell 2001). I report Type II tests of significance for the resulting final model (Table 2.2), and 

provide parameter estimates scaled as overall or year-specific proportional effects on expected 

abundance. Based on low occurrence of zero counts in my data set and low overdispersion 
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(overdispersion = 1.15 for full model), I did not examine zero-inflated or negative-binomial 

models. 

 My second set of analyses integrated soil covariates with the other variables. Because soil 

samples were collected from a subset of total survey plots, I used the final model from the first 

set of analyses, and refit that model to data from the subset of plots where soil was measured. I 

added one soil variable at a time to that full model and assessed the corresponding parameter 

estimate and statistical significance for that variable’s effect. 

RESULTS 

In 2016, 191 total RIFA mounds were found (burned n = 86, unburned n = 105), and in 

the following year 266 total RIFA mounds were found (burned n = 147, unburned n = 119). Of 

the four two-way interactions considered in the full model, none were retained (Table 2.2).  

Ignoring interactions, overall expected RIFA mound counts in 2016 were 0.96 [𝑒𝛽 = 

1.83, (0.786, 1.19)] times the expected count in 2017. The main effect of region indicated 0.58 

[𝑒𝛽 = 0.580, (0.339, 0.967)] times the expected RIFA mound counts in Albany than in 

Tallahassee (Figure 2.5). Pooled across years, the overall main effect of burn type estimated 62% 

[𝑒𝛽 = 1.62, (1.07, 3.78)] higher expected RIFA mound counts in unburned grids than in burned 

grids (Figure 2.4). For disturbance level, expected RIFA mound count increased 75% [𝑒𝛽 = 1.75, 

(0.975, 2.89)] in moderately disturbed areas over the expected counts in low disturbance areas. 

Based on the results of this analysis, I wanted to investigate if soil variables explained the 

influence of region. 

Therefore, my second set of analyses explored the relationship of with soil variables with 

RIFA mound counts, specifically the percentage of sand, percentage of clay, pH, and bulk 

density (Table 2.3). For every 1 unit increase in pH at 15 - 25 cm, the expected number of RIFA 
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mounds decreased by 51% [𝑒𝛽 = 0.513, (0.264, 0.996; Figure 2.7). However, RIFA mound 

counts were not related to percentage of sand, percentage of clay, or bulk density (Appendix 3). 

DISCUSSION 

The number of RIFA mounds was related to both year and region, as well as the 

interactions of year with burn interval and year with canopy cover. While year, region, and 

canopy closure were not included in my hypotheses, the hypothesis that mound counts would be 

related to burn interval did receive support. Evaluating the interaction of year and burn interval 

revealed conflicting trends. In 2016, higher RIFA mound abundance was found in unburned 

plots, but in 2017 higher RIFA mound abundance was found in burned plots. These conflicting 

trends could be a results in climatic differences between years, as 2016 had a drought during the 

survey period (GEPD 2016). Drought could have influenced the intensity and effectiveness of 

burns during individual years. Excluding burn interval effects, the variable of year was likely 

influenced by my level of experience, as mound detectability was higher in 2017 than 2016 

(Appendix Table 1.1). 

Past research has examined the independent impact of prescribed burns and other 

disturbance-mediated management (e.g., disking) and found little influence on RIFA presence 

(Forbes et al. 2002). However, my measures of burn interval and disturbance level, which 

includes the effect of disking, both had significant effects on the expected RIFA mound number 

in my study. The significance of burn intervals on properties could be a result of 2016 being a 

drought year, as mentioned before. The significance of disturbance level could be from higher 

percentages of disking than what was tested in past studies. However, the variable of disturbance 

level also included percentage of agricultural land use, and it has not yet been tested if 

agricultural land use or disking has a stronger impact on RIFA. 



 

 

  20 

 

My hypothesis regarding soil was not supported, as RIFA mound abundance was not 

influenced by any of the soil variables measured. This lack of a relationship is intriguing, as there 

is a debate in the literature on the impacts of soil characteristics on RIFA abundance (Ali et al. 

1986, Porter et al. 1991, Wangberg et al. 1980). Soil was the major factor thought to differentiate 

the Albany and Tallahassee regions, but results do not seem to support this hypothesis. However, 

it is worth noting that my range of soils did not contain much variety in percentage of clay or 

sand. For example, none of the surveyed properties contained areas classified as sand hills, 

which can be found in longleaf pine in Georgia and Florida and support gopher tortoise and 

eastern indigo snake populations (Stevenson et al. 2003). There were also no properties with 

heavy amounts of clay. Surveying a wider range in soil particle size and bulk density could alter 

my results. 

My prediction regarding ground cover was also not supported. Properties with old field 

(historically agricultural) groundcover were expected to have a higher RIFA mounds abundance, 

as old field properties typically have higher numbers of invasive species (Keeley 2005). 

However, groundcover did not demonstrate a significant influence. While the lack of 

groundcover influence could imply that RIFA are an invasive adept at colonizing in both old 

field and native groundcovers, several factors may contribute to groundcover’s low influence. 

First, all sites were regularly burned with no long-term, unburned properties available to 

compare RIFA abundance. Second, there were differences in both the age and management of 

native groundcover properties. For example, property RH4 has been maintained consistently as a 

virgin longleaf pine tract for ~50 years. RH5 was comparable in age, but had a disruption in burn 

interval when the property owner changed (Terhune, personal communication). The RH5 burn 

interval was restored several years ago, but the impacts of an extended unburned period could be 
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significant. Also, some properties that were considered native groundcover in the Albany region 

had randomly selected plots where hardwoods and other brush encroached on the longleaf pine 

and seasonal grasses. Future work could include measurements of basal area and hardwood 

presence within plots to determine the influence of these variables.  

There was also variability in expected RIFA abundance among properties with similar 

groundcover (Table 2.5). For example, property RH4 had native groundcover and only 1 of 6 

plots had RIFA present. In contrast, nearby property RH5 had native groundcover and 5 of 6 

plots had RIFA present. The difference between these two native ground properties could be due 

to inconsistency in land management. Property RH5 had a period of years where prescribed 

burns were conducted sporadically due to changes in property ownership. While RH5 burned on 

a regular schedule during my study, the high number of RIFA mounds could be due to this lapse 

in burn regimes. 

Region did influence RIFA mound numbers, but what is driving this impact can be 

difficult to characterize. Differences in climate and property management may contribute. 

Climate varied between regions, so including measures of temperature or drought (e.g., Keetch-

Byram Drought Index) in future analyses could better explain the influence of region. Property 

management also varies by region. Specifically, properties in the Albany region typically had 

smaller patches of landscape due to timber harvesting practices (Terhune, personal 

communication). Future research could include specific percentages of disking and other land 

use, as well as patch size, to understand if this explains regional effect. Surveying areas with 

greater diversity in disturbance and soil characteristics would also refine our understanding of 

the variables influencing RIFA. Identifying these variables could not only aid land managers 
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considering control efforts for RIFA, but could also be influencing other invasive invertebrates 

and help us isolate invasion pathways. 
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TABLES AND FIGURES 

Figure 2.1. My two study regions (Albany and Tallahassee) with stars representing the 11 

properties surveyed. 
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Figure 2.2.  Tall Timber Research Station and the distribution of randomized plots within the 

property (represented by squares colored by burn interval). 
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Figure 2.3. A plot with six 50 m line transects running north to south, each spaced 10 m apart. 

RIFA mounds within 5 m of line transect were recorded.  
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Figure 2.4. The influence of burn interval on expected RIFA mound number varied between the 

two study years. In 2016, unburned plots had higher expected RIFA mound numbers, but in 2017 

burned plots had higher expected RIFA mound numbers.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Error bars represent 95% confidence limits.   
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Figure 2.5. Expected RIFA mound number was higher in the Albany region when compared to 

the Tallahassee region.1 

 

1Error bars represent 95% confidence limits.   
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Figure 2.6. Expected RIFA mound number was higher in plots with moderate disturbance level, 

but there was large overlap of confidence intervals.1,2 

 

1Low: Little to no disking or agriculture (mostly native ground properties); Moderate: Moderate 

percentage of land disked or used for agriculture; High: High percentage of land disked or used 

for agriculture. 

2Error bars represent 95% confidence limits.   
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Figure 2.7. As the pH of soil increased, the expected RIFA mound number decreased.1 

 

1Light blue polygon represents 95% confidence limits.  
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Table 2.1. Abbreviations and characteristics for the properties surveyed in my study regions of 

Albany and Tallahassee during 2016 and 2017. 

 

Year Region Property1 Groundcover2 Burned3 Unburned4 

2016 

Albany 

ALB 1 OF 3 3 

ALB 2 OF 3 3 

ALB 3 OF 3 3 

Tallahassee 

RH 1 OF 3 3 

RH 2 OF and NG 6 6 

RH 3 OF and NG 6 6 

RH 4 NG 6 0 

RH 5 NG 3 3 

2017 

Albany 

ALB 1 OF 3 3 

ALB 2 OF 3 3 

ALB 3 OF 3 3 

ALB 4 NG 3 3 

ALB 5 NG 3 3 

ALB 6 NG 3 3 

Tallahassee 

RH 1 OF 3 3 

RH 2 OF and NG 6 6 

RH 3 OF and NG 6 6 

RH 4 NG 6 0 

RH 5 NG 3 3 

1 ALB= Albany region; RH= Tallahassee region 
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2 OF= Oldfield groundcover; NG= Native groundcover 

3 Number of burned plots 

4 Number of unburned plots 
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Table 2.2. Estimated effects and Type II likelihood ratio tests for terms included in final model 

for red imported fire ant mound counts at 78 sample grids in Florida and Georgia. 

Parameter β S.E.2 

95% Confidence 

Limits 

LRT 

Statistic4 

P 

Year 0.546 0.401 -0.014, 1.11 0.238 0.631 

Groundcover  0.006 0.229 -0.451, 0.477 0.001 0.525 

Burn Interval 0.485 0.199 0.097, 0.880 2.64 0.052 

Canopy Closure 0.167 0.509 -0.843, 1.16 0.390 0.435 

Region -0.826 0.269 -1.37, -0.291 9.44 0.002* 

Disturbance level 

(Moderate) 

0.558 0.250 -0.026, 1.06 7.98 0.019* 

Disturbance level  

(High) 

0.044 0.391 -0.803, 0.826 7.98 0.019* 

Interaction of 

year and burn interval 

-0.592 0.317 -1.23, 0.033 3.48 0.062 

Interaction of 

year and canopy closure 

-0.717 0.476 -1.65, -0.215 2.15 0.132 

1Random effects= Property (variance=0.000, standard deviation=0.000),  

 Grid (variance=0.300, standard deviation =0.548) 

2 All degrees of freedom = 1, with the exception of Disturbance level (degrees of freedom = 2) 

3 Standard error 

4Likelihood ratio test statistic 

*Statistically significant  
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Table 2.3. How the percentage of RIFA mounds observed on a survey property would compare 

to the baseline estimate. 

 Region Property1 Groundcover2 Property Effect 

Albany 

ALB 1 OF 0.967 

ALB 2 OF 0.892 

ALB 3 OF 0.929 

ALB 4 NG 0.998 

ALB 5 NG 1.11 

ALB 6 NG 1.29 

Tallahassee 

RH 1 OF 1.12 

RH 2 OF and NG 1.25 

RH 3 OF and NG 0.898 

RH 4 NG 0.771 

RH 5 NG 1.19 

1 ALB= Albany region; RH= Tallahassee region 

2 OF= Oldfield groundcover; NG= Native groundcover 
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Abstract 

 

 

Invasive invertebrates are often a subject of study due to their impacts on human and ecosystem 

health, but their impacts on local invertebrates are less known. Using the red imported fire ant 

(RIFA, Solenopsis invicta) as a model species, I investigated how RIFA or other environmental 

variables, such as habitat disturbance, influenced native and non-native ant biodiversity. 

Specifically, I hypothesized that as RIFA mound and forager abundance (i.e. level of activity) 

increased, there would be a decrease in native and increase in non-native ant species richness. To 

test my hypothesis, I sampled ants on 11 properties in Florida and Georgia managed with 

frequent fire. Variables affecting ant biodiversity were analyzed with Poisson models and 

Akaike’s information criterion. Results indicate that as the number of RIFA increase, there is a 

decrease in native and increase in non-native ant species richness. This implies that RIFA may be 

impacting ecosystem services from native ants and are not displacing non-native ants. 

Key words: ant biodiversity, pine savannah, pitfall trapping, red imported fire ants 

*Correspondent: amh0130@auburn.edu 

  



 

 

  41 

 

 Invasive species are one of the biggest threats to biodiversity in our time (Bellard et al. 

2016, Clavero et al. 2009, MEA 2005). Biological invaders increase animal extinctions (Clavero 

and García-Berthou 2005), compete with native species for resources (Wojcik et al. 2001), and 

impair ecosystem services (Pejchar and Mooney 2009, Pyšek and Richardson 2010). However, 

the severity of impact from invasive species varies across region and taxa (Bellard et al. 2016), 

making it difficult for conservation efforts to determine where and when management is 

necessary, as high costs of invasive control are an additional draw on the limited resources 

available for conservation efforts.   

 Research on invasive species has been prolific in the recent decades, but gaps still remain 

in our knowledge of how invasion can impact local species assemblages and the ecosystem 

services they provide. Invertebrate invaders are a serious threat around the world to the health of 

both humans and ecosystems, but research involving invasive invertebrates commonly focuses 

on their impact on vertebrate or plant species (Green and O’Dowd 2009). For example, invasive 

mosquitoes are frequently studied for their potential of transmitting disease to vertebrates 

(Juliano and Lounibos 2005), while other invertebrates such as invasive wasps and moths are 

studied for negative impacts on plant species (Beggs 2001, Lovett et al. 2006). The 

approximately 1.1 million known arthropods (predominantly insects) make up half of the 

described species on Earth (Hawksworth and Kalin-Arroyo 1995, Hamilton et al. 2010), but 

large-scale invertebrate monitoring is uncommon and therefore the influence of invasive 

invertebrates on their native equivalents is poorly understood. Native invertebrates provide 

important ecosystem services such as seed dispersal (Heithaus 1981, Kalisz et al. 1999), 

decomposition (Lavelle et al. 2006), and soil aeration (Stork and Eggleton 1992). If these native 

invertebrates are displaced by invasive invertebrates, it is possible that ecosystem services will 
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be lost (Stuble et al. 2005). The potential loss of ecosystem services, as well as potential loss of 

biodiversity, warrants more research into relationships of competing invasive and native 

invertebrates. 

 Red imported fire ants (Solenopsis invicta; hereafter, RIFA) provide a model taxon for 

examining the relationships between invasive and native invertebrates. RIFA have historically 

been linked to decreased native ant diversity, primarily through competition (Tschinkel 1988, 

Porter and Savignano 1990, Plowes et al. 2007). However, the mechanisms underlying the 

impacts on native ant communities remains uncertain (Hill et al. 2013). Current research 

suggests that RIFA may weakly influence native ant communities through superior competition 

for resources, while soil disturbance or disruption in native vegetation from disturbance regimes, 

such as prescribed burning, have greater impacts (King and Tschinkel 2006 and 2013a). 

However, there is no consensus on this topic (Stubble et al. 2013, King and Tschinkel 2013b), 

indicating that more research is needed. 

 The majority of past research investigating RIFA impacts on native ants has been done in 

small scale studies. Using a larger scale may reveal relationships that are harder to define at a 

small scale and allow use of greater environmental gradients. Also, while there has been research 

investigating the effect of prescribed burning has on RIFA abundance and native ants (Forbes 

2002), scant information exists on what environmental variables interact with prescribed burning 

and its frequency. High variability in RIFA depredation on ground-nesting birds between 

landscapes managed with prescribed burning (Haines et al. 2017) suggest that other variables, 

such as soil properties or site disturbance history (Keeley 2005), influence colonization and 

persistence of RIFAs. 

 Therefore, similar variation may exist in RIFA numbers and local ant community 
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assemblage. I hypothesize that RIFA abundance will impact the forager abundance of native and 

non-native ant species.  Specifically, I predict that as RIFA mounds and foragers increase, there 

will be a decreased in native and increase in non-native ant foragers. My study will shed light on 

the role of RIFAs in biodiversity loss, and if native ant assemblages are negatively impacted the 

results will inform management and conservation efforts for native ants and the ecosystem 

services they provide. 

METHODS 

Study Area 

 My study was conducted on 11 private properties in in southwest Georgia and north 

Florida (Figure 3.1), which is a large ecoregion compared to past research (Figure 3.1). On each 

property, 6 plots were randomly sampled for ant using a randomized block design (Figure 3.2). 

Each study site occurred in one of two regions: Albany and Tallahassee. Albany study sites were 

located in Baker and Dougherty counties, Georgia, and the other in Leon and Jefferson counties, 

Florida. In the Albany region, I surveyed three hunting properties with old-field groundcover, 

embedded in a 120,000 ha landscape of similar properties. These properties consist of low basal 

area (9.2–13.8 m2 per ha), old field pine forests in an open pine-grassland structure maintained 

through commercial thinning and prescribed fire, with small fallow fields throughout the area 

(Palmer et al. 2012). Predominant timber among uplands includes longleaf pine and slash pine 

(P. elliottii), with scattered hardwoods such as live oak (Quercus virginia), southern red oak (Q. 

falcata), and water oak (Q. nigra). Herbaceous cover is predominantly warm season grasses, 

such as broomsedge (Andropogon sp.), annual broad-leaved forbs, and legumes (Burger et al. 

1998). Old-field habitats are designated by land-use change such that they were converted to 

agricultural fields, in the 1800s, followed by agricultural abandonment, in the 1900s, and seeded 
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back to pine and native vegetation maintained by prescribed fire. I also sampled three properties 

with native groundcover (predominately mature longleaf pine and wiregrass (Aristida stricta)) 

individual, specifically in the Dougherty and Worth counties.  

 The average growing season for the Albany region during this study was mid-March to the 

end of November, with an average temperature of 24.4o C (NOAA, Weather Underground). The 

average annual precipitation for Albany was 127 cm, with an average of about 69 cm during the 

May-August field season (NOAA, Weather Underground). Topography on all Albany properties 

is relatively flat with few to no hardwood drains.  

 In the Tallahassee Region, I surveyed three properties in the Leon and Jefferson counties 

near Tallahassee, Florida. The two old field properties in Leon county are embedded in an 

approximately 161,874 ha landscape of bobwhite management properties. The property in 

Jefferson County is approximately 3,682 ha surrounded by properties of similar land 

management. All three old field properties consist of old field pine forests, mostly loblolly pine 

(P. taeda) and shortleaf pine (P. echinata), interspersed with hardwood drains, hammocks, and 

small fallow fields. Pine forests are maintained for an open pine-grassland structure through 

prescribed fire. Herbaceous groundcover is a mix of warm season grasses, legumes, and forbs 

(Hammond 2001). Also in the Tallahassee region are four properties with native groundcover 

(predominately mature longleaf pine and wiregrass), specifically in Thomas county, Georgia, and 

Jefferson county, Florida.  

   The average growing season for the Tallahassee region was mid-March 15 to the end 

of October. The counties around Tallahassee had an average temperature of 25.6o C and an 

average annual precipitation of 158 cm, with an average of about 66 cm during the May-August 

field season (NOAA, Weather Underground).  
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 Properties in both regions are similarly managed with prescribed fire, typically occurring 

in March and April of each year. Old field properties burn on a rotation, with managers burning 

~50-70% of the property and then burning the unburned area the following year (Palmer et al. 

2012). Properties with native groundcover varied, most being burned on a similar rotation to the 

old field properties. However, two native groundcover properties are burned completely each 

year (properties RH4 and RH5, see Table 3.1). 

 Soils on the Albany properties are classified as Orangeburg-Lucy-Grady and Norfolk-

Wagram-Grady soil associations, which are predominantly sandy-loam textured soils with 

moderate permeability and low natural fertility (Palmer et al. 2012). Soils in the Tallahassee 

region are of the Fuquay-Orangeburg-Faceville soil association, characterized by well drained, 

moderately fertile fine-loam soils with varying amounts of sand and clay (Palmer et al. 2012). 

The Orangeburg series is common in both the Albany and Tallahassee regions, but otherwise 

there are no shared soil families, meaning soils between regions vary in characteristics like 

horizonation, mineral composition, and permeability. 

Ant Surveys 

On each of six properties in the Albany region and five properties in the Tallahassee 

Region, I randomly sampled six plots (50 × 50 m each, Figure 2.2) with six transects each 

(Figure 2.3, Table 2.1). Of the 11 total properties, 8 were sampled in 2016 and 3 were added in 

2017 (plots: 2016 n = 60, 2017 n = 78). In areas with two burn types, I surveyed three burned 

and three unburned plots per property (2016: burned n = 36, unburned n = 24; 2017: burned n = 

44, unburned n = 34). Burned plots had been burned during March or April of the survey year, 

while unburned plots were last burned March or April of the previous year. Because I sampled 

for two consecutive years, most of the initially burned plots in 2016 became unburned plots in 
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2017. To choose study plots, I generated 100 random points on property shapefiles in ArcGIS 

(ESRI 2016), then selected the first three points in burned and unburned areas that were 50 m 

from known roadways. Old field properties (~9 ha) have annual burns in the spring on a rotating 

schedule, allowing both burned and unburned areas to be sampled. The native ground properties 

(~10.5 ha) serve as an example of less disturbed landscapes, as they have minimal sources of 

disturbance beyond prescribed fire.  

Data were collected from May-August for all properties, with eight sites surveyed in both 

years and three only surveyed in 2017. I systematically sampled each plot using 6, 50 m transects 

per plot (Forbes et al. 2000), 10 m apart and oriented north to south (Figure 3.3). While 

randomly placed, the edges of plots were all roughly 50 m away from any road-ways to reduce 

disturbance associated with roads (Forbes et al. 2000).   

To quantify RIFA mound numbers, an observer walked transects inside a plot and 

searched for mounds that were within 5 m of each transect. When located, a mound was tested 

for occupancy by probing the top several times with a trekking pole. If ants swarmed, they were 

examined to determine species. Mounds of RIFA were marked as active, measurements were 

taken for mound dimensions and perpendicular distance (m) from transect, and GPS coordinates 

were gathered using a Trimble GEO Explorer 7x unit with 1 - 100 cm accuracy. GPS coordinates 

for the corners of plots were also recorded so that surveys could be repeated in the same areas 

(on a different burn interval) in both years. The mound dimensions were also measured and 

recorded to the nearest cm. 

To identify local ant assemblages, I deployed pitfall trap transects 25 m north and south 

of the mound survey plots (Figure 3.3). Both pitfall transects were 50 m long, with six Norlander 

pitfall traps placed 10 m apart (2016: n = 576, 2017: n = 792; see Figure 3.4). To reduce lab 
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processing of 2017 samples, ants were identified from even numbered traps from each line of 

pitfall traps (n = 396) for all properties. In pitfall analysis, ants were isolated from trap contents 

and then identified to species using the southeastern ant identification key created by MacGowan 

(2018). 

Environmental Variables 

During 2017, I evaluated canopy closure from the center of the plot were determined with 

a canopy densitometer. Property disturbance level was also categorized into low, moderate, and 

high levels. These levels were characterized by percentage of disking and agricultural land use 

according to management records and satellite data. 

Data Analysis 

 In 2016, 23,799 total ant foragers were collected (burned n = 12,403, unburned n = 

11,396), and in the following year 10,580 total ant foragers were collected (burned n = 6,620, 

unburned n = 3,960) from my subset of pitfalls. Of these ants, I collected 64 native species and 

11 non-native species (excluding RIFA, Appendix Table 4.1). All analyses were performed in R 

(R Core Team 2018, Appendix 2). Based on low occurrence of zero counts in my data set and 

low overdispersion (overdispersion = 1.15 for full model), I used Poisson models with trap effort 

per plot × year as an offset. I outlined the a priori hypotheses about the eight variables 

incorporated in my model suites (Table 3.2).  

Sequential model fitting was used to evaluate the relative importance of covariates based 

on my candidate hypotheses in each modeling step (Dinsmore et al. 2002, Conkling et al. 2015). 

Each model set was composed of explicit candidate hypotheses established a priori where the 

best fitting model was used as the baseline model in the next model set to evaluate additional 

hypotheses relative to explicit variables related to ant assemblages. I first fit a set of models 
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(Suite 1) examining large-scale effects (region and year) on my response variables. The second 

model set included the best model from Suite 1 as a baseline model, with Suite 2 models formed 

by adding alternative combinations of other covariates based on a priori hypotheses. I applied 

this sequential modeling approach into two separate sets of analyses for each of the two primary 

response variables: total observed native richness in a plot × year sample, and total observed 

non-native richness (excluding RIFA, code in Appendix 2).  

Using an information-theoretic approach, I compared candidate models by employing 

Akaike’s Information Criterion (AIC) such that the model with the lowest AIC value was 

considered the best approximating model (Akaike 1973, Burnham and Anderson 1998, Johnson 

and Omland 2004, Anderson et al. 2000).  I further assessed the relative plausibility of each 

model using Akaike model weights (wi, Anderson et al. 2000, Burnham and Anderson 2002), 

where the model with the higher weight value was the best approximating model. As such, I 

report proportional effects by exponentiating beta estimates and respective 95% confidence 

intervals for variables in my top models (e.g., season, precipitation, temperature) to provide 

additional inference on their biological importance to survival (Nakagawa and Cuthill 2007). To 

further compare and isolate individual parameter effects, I summed model weights while keeping 

the number of candidate models similar for all parameters of interest (Terhune et al. 2007).  

RESULTS 

The top three models indicated a relationship between RIFA mound number and native 

ant species richness (Table 3.4). The interaction of RIFA mounds and region had the largest 

impact on native ants (Table 3.5). In the Albany region, as RIFA mound counts increased by 1, 

the expected native ant species richness decreased by 5% [𝑒𝛽 = 0.950 (0.919, 0.983)]. In the Red 

Hills region, as RIFA mound counts increased by 1, the expected native ant richness decreased 
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by 2% [𝑒𝛽 = 0.982 (0.956, 1.01)]. Ignoring interactions, the overall expected native ant species 

richness was 53% [𝑒𝛽 = 1.53, (0.991, 2.39)] higher in the Red Hills region than in Albany. In 

terms of year, the expected native ant species richness was 37% [1.37, (1.24, 1.51)] higher in 

2017 than in 2016 (Table 3.6).  

The second top model for native ant numbers was very similar to the first model in AICc 

weight, and did not include an interaction with region. In 2017, the expected native ant species 

richness was 36% [𝑒𝛽 = 1.36, (1.23, 1.51)] higher than in 2016. For the Albany region, overall 

expected native ant species richness was 43% [𝑒𝛽 = 1.43, (0.946, 2.19)] higher than expected 

numbers in the Tallahassee region. As RIFA mound counts increased by 1, the expected native 

ant species richness decreased by 3% [𝑒𝛽 = 0.969 (0.949, 0.991)]. 

In terms of variables impacting the number of non-native ant species richness, three 

different variables were found in the top three models (Table 3.7). The top model included the 

interaction of the number of RIFA foragers and region and had a much higher AICc weight than 

the other two models (Table 3.8, Table 3.9). In 2017, the expected non-native ant species 

richness was 78% [𝑒𝛽 = 1.78, (1.44, 2.19)] higher than in 2016 (Table 3.10). In the Albany 

region, as RIFA forager number increased by 10% the expected non-native ant species richness 

increased by 0.4% [𝑒𝛽 = 0.969 (0.949, 0.991)]. In the Tallahassee region, as RIFA forager 

number increased by 10% the expected non-native ant species richness increased by 0.3% [𝑒𝛽 = 

0.969 (0.949, 0.991)]. Ignoring interactions, the overall expected non-native ant species richness 

was 5% [𝑒𝛽 = 0.474, (0.318, 0.706)] higher in the Tallahassee region than in Albany. 

DISCUSSION 

My results support the predictions that with higher RIFA numbers, there would be a 

decrease in native and increase in non-native ant species richness. Specifically, RIFA mounds 
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explained variation in native ant species richness while number of RIFA foragers explained 

variation in expected non-native ant species richness. Disturbance level had minimal effect on 

native or non-native ants. My results support arguments that RIFAs are drivers of biodiversity 

loss in my study sites, which agrees with some past findings (Stubble et al. 2013).Notably, 

disturbance level had minimal effects of ant assemblages, which differs from previous findings 

(King and Tschinkel 2013b). The seemingly low impact of disturbance level could be a result of 

partial confounding between region and disturbance level. All properties with high disturbance 

levels were located in the Albany region. To address this confounding relationship, further 

analyses will be conducted to isolate the effects of my categorical variables.  

If RIFAs are impacting native ant assemblages, then it is likely that RIFAs are also 

impacting the ecosystem services native ants provide. The potential for RIFA impacts on 

ecosystem services has implications for overall ecosystem health, as native ants are important for 

seed dispersal and soil quality (Heithaus 1981, Zettler et al. 2001). There is currently a debate in 

the literature on how effective RIFAs are at fulfilling these ecosystem services if native ants are 

displaced. Specifically, RIFAs could increase seed dispersal (Stuble et al. 2010), but other 

studies have yielded increased amounts of seed destruction or dispersal in areas that are not ideal 

for germination (Zettler et al. 2001). 

The impact of RIFAs on non-native ant species could also have implication on ecosystem 

services, as both may impact native ant species. However, the relationship between RIFA and 

non-native ant species richness could be due to a variety of reasons. For example, RIFA 

displacing native ants could provide more invasion opportunities for non-native ants. RIFAs and 

other non-native ants could also be taking advantage of similar environmental variables to 

colonize an area (Tschinkel 2006). These variables would be harder to identify, as variables of 



 

 

  51 

 

disturbance level, groundcover, and burn interval did not have much impact on these two groups 

of ants. 

Several variables related to ant biology could have influenced my overall results and 

warrant further analysis. For example, foraging guild may be influencing what ant species are 

present, as the majority of non-native ant species were predatory. It would also be helpful in 

future research to identify if RIFA colonies were monogynous (single queen) or polygynous 

(multiple queen; Porter and Savignano 1990, Helms and Vinson 2001). While polygynous 

colonies have not been documented in my study area, it is possible that they are present and their 

social behavior does influence the competitiveness of these RIFA with other ant species (Helms 

and Vinson 2001).  

Another important variable that could be examined further is time of RIFA introduction 

to my study regions. Time of introduction has been a strong influence in native ant biodiversity 

recovering from RIFAs in past studies (Helms and Vinson 2001, Strayer et al. 2006). While 

several studies on RIFA have taken place in Georgia and Florida, it is difficult to find a well-

documented time of RIFA introduction in my study regions. To better understand the temporal 

trends of RIFA invasion, future research could better isolate the impact of RIFA on native ants 

by using an experimental control area to exclude RIFA. Surveying an area that excludes RIFA 

for several years would help quantify how an ant community changes over time when not 

competing with RIFA. 

Outside of variables related to ant biology, having wider variety in environmental 

variables could help future research. For example, disturbance level was a categorical variable 

that gave a rough estimate of disking and agricultural land use in my study regions. With more 

landscape data, I could use more precise estimates of disking and agricultural area which could 
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influence my model results. Surveying sites with more varied burn interval (e.g., one year, two 

years, three years, etc.) could also better isolate in influence of burning on ant communities and 

non-native ant success. Better quantifying environmental variables like these will be important in 

future control efforts of RIFA as they gradually spread northward with climate change (Gotelli 

and Arnett. 2002, Morrison et al. 2005). 

Management decisions based off my results would need detailed cost-benefit analysis. 

Stakeholders that want to conserve the ecosystem services provided by native ant species by 

controlling RIFA would need to use precise methods to remove RIFA while not harming native 

ants. For example, treating a whole property for RIFA usually involved aerial dispersal of 

chemical agents, which can be harmful to native ant species. More targeted control of RIFA is 

possible, but can have high labor and monetary costs. Whether this option is worth the 

investment would need to be determined on a case-by-case basis. 

Despite the complexity of management decisions that can come from this project, my 

results adds exciting information to the conversation surrounding RIFA and their impacts on 

biodiversity. RIFA provide an ideal model species for invasive species and can be invaluable for 

advancing invasion ecology, particularly as RIFA spread northward from the southeastern U.S. 

(Morrison et al. 2005). Identifying what environmental variables facilitate invasion by RIFA and 

other non-native invertebrates can help improve efforts to conserve global biodiversity. 
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TABLES AND FIGURES 

Figure 3.1. My two study regions (Albany and Tallahassee) with stars representing the 11 

properties surveyed. 
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Figure 3.2. Tall Timber Research Station and the distribution of randomized plots within the 

property (represented by squares colored by burn interval). 
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Figure 3.3. A plot with six 50 m line transects running north to south, each spaced 10 m apart. 

RIFA mounds within 5 m of line transect were recorded.  
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Figure 3.4. (A) The Nordlander pitfall trap design with ~24 4 cm holes drilled along the top rim 

of the trap to allow invertebrates to enter but exclude vertebrate species. (B) Nordlander pitfall 

trap deployed in the field.  

(A) 
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Figure 3.5. Relationship between predicted native ant species as the number of RIFA mound 

increase for both the Albany and Tallahassee regions. The colored sections represent the 

confidence limits of the data.1 

 

1Error polygons represent 95% confidence limits.   

Number of RIFA Mounds 
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Figure 3.6. Relationship between the predicted native ant species richness and disturbance level. 

The lowest disturbance level includes my native groundcover areas, while the moderate and high 

levels include increasing percentages of property disking.1,2

 

1Low: Little to no disking or agriculture (mostly native ground properties); Moderate: Moderate 

percentage of land disked or used for agriculture; High: High percentage of land disked or used 

for agriculture. 

2Error bars represent 95% confidence limits. 
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Figure 3.7. Predicted non-native ant species in relation to the number of RIFA mound for both 

the Albany and Tallahassee regions. The colored sections represent the confidence limits of the 

data.1 

 
 

1Error bars represent 95% confidence limits.   
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Figure 3.8. Relationship between the predicted non-native ant species richness and disturbance 

level.1,2 

 
1Low: Little to no disking or agriculture (mostly native ground properties); Moderate: Moderate 

percentage of land disked or used for agriculture; High: High percentage of land disked or used 

for agriculture. 

2Error bars represent 95% confidence limits.   
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Table 3.1. Abbreviations and characteristics for the properties surveyed in my study regions of 

Albany and Tallahassee during 2016 and 2017. 

Year Region Property1 Groundcover2 Burned3 Unburned4 

2016 

Albany 

ALB 1 OF 3 3 

ALB 2 OF 3 3 

ALB 3 OF 3 3 

Tallahassee 

RH 1 OF 3 3 

RH 2 OF and NG 6 6 

RH 3 OF and NG 6 6 

RH 4 NG 6 0 

RH 5 NG 3 3 

2017 

Albany 

ALB 1 OF 3 3 

ALB 2 OF 3 3 

ALB 3 OF 3 3 

ALB 4 NG 3 3 

ALB 5 NG 3 3 

ALB 6 NG 3 3 

Tallahassee 

RH 1 OF 3 3 

RH 2 OF and NG 6 6 

RH 3 OF and NG 6 6 

RH 4 NG 6 0 

RH 5 NG 3 3 

1 ALB= Albany region; RH= Tallahassee region 

2 OF= Oldfield groundcover; NG= Native groundcover 
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3 Number of burned plots 

4 Number of unburned plots 
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Table 3.2. Variables included in my model suites and a priori predictions. 

Variable Prediction 

Year This variable captured year to year variation in both biotic (i.e. 

predator fluctuation) and abiotic (i.e. changes in weather patterns). I 

hypothesized that year effects would account for variation not 

explained by my other variables. 

Region  Site can be a source of variation in species assemblages from 

differences in resource availability habitat suitability and weather. I 

hypothesized that species assemblages would change due to these 

regional characteristics. 

Burn interval  This variable represented areas that were either burned the year of 

the surveys (burned) or the previous year (unburned) capturing 

variation in ant assemblages specifically caused by prescribed fire. I 

hypothesized that areas more recently burned would have higher 

numbers of non-native ants. 

Number of RIFA 

foragers 

The number of RIFA foragers served to represent the presence of 

RIFA but did not correlate with the number of RIFA mounds. 

Therefore this variable was included separately. I hypothesized that 

higher number of RIFA foragers would increase non-native ant 

species richness and native ant species richness would decrease. 

Number of RIFA 

mounds 

I hypothesized that with higher number of RIFA mounds non-native 

ant species richness would increase and native ant species richness 

would decrease. 
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Canopy closure This variable captured variation in ant assemblages that resulted 

from difference in canopy closure. I hypothesize that as canopy 

closure increased non-native ant species richness would decrease 

and native ant species richness would increase. 

Groundcover type This variable explained variation in ant assemblages due to old field 

and native groundcover. I hypothesized that old field areas would 

have higher non-native ant species richness and lower native ant 

species richness while the reverse would be found in native ground 

areas. 

Disturbance level This variable categorically captured variation in soil disturbance 

caused by differing management practices (e.g. annual disking) 

beyond prescribe fire. I hypothesized that higher levels of 

disturbance would increase non-native ant and decrease native ant 

species richness. 
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Table 3.3. Model Suite 1 selection for baseline parameters influencing predicted native ant 

species richness.  

Model parameter K AICc ΔAICc wi 

Year + Region 5 1256.94 0.00 0.49 

Year × Region 6 1257.98 1.03 0.29 

Year 4 1258.57 1.63 0.22 

Region 4 1293.01 36.06 0.00 
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Table 3.4. Model Suite 2 selection for parameters influencing predicted native ant species 

richness.  

Model parameter K AICc ΔAICc wi 

Number of RIFA mounds × Region 7 1251.25 0.00 0.33 

Number of RIFA mounds 6 1251.37 0.11 0.31 

Number of RIFA mounds × Year 7 1252.14 0.88 0.21 

Null (Year + Region) 5 1256.94 5.69 0.02 

Number of non-native species 6 1257.29 6.03 0.02 

Groundcover × Region 7 1257.82 6.57 0.01 

Groundcover 6 1257.96 6.70 0.01 

Number of non-native species × Region 7 1258.00 6.74 0.01 

Disturbance level × Year 9 1258.07 6.81 0.01 

Groundcover × Year 7 1258.08 6.82 0.01 

Burn interval 6 1258.31 7.05 0.01 

Disturbance level × Region 8 1258.45 7.20 0.01 

Number of non-native species × Year 7 1258.46 7.20 0.01 

Number of RIFA foragers × Year 7 1258.94 7.69 0.01 

Burn interval × Region 7 1258.98 7.72 0.01 

Number of RIFA foragers 6 1259.02 7.77 0.01 

Disturbance level 6 1260.00 8.75 0.00 

Burn interval × Year 7 1260.40 9.15 0.00 

Number of RIFA foragers × Region 7 1261.12 9.86 0.00 
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Table 3.5. Top model of Suite 2 demonstrate that the number of RIFA mounds has the most 

weight of all included variables for explaining variation in expected native ant species  

richness.1 

Model parameter No. of candidate models Sum of importance wi 

Number of RIFA mounds 3 0.85 

Number of non-native species 3 0.04 

Groundcover 3 0.03 

Disturbance level 3 0.03 

Burn interval 3 0.03 

Number of RIFA foragers 3 0.03 

1All models include Year and Region. 
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Table 3.6. Estimated effects and Type II likelihood ratio tests for terms included in final Poisson 

model for number of native ant species at xx sample plots in Florida and Georgia.1 

Parameter β S.E.2 95% C.L.3 P 

Year 1.37 0.051 1.24, 1.51 1.18e-9* 

Region 1.28 0.206 0.833, 1.99 0.236 

Albany region 

with RIFA mound 

number 

0.950 0.017 0.919, 0.983 

0.003* 

Tallahassee 

region with RIFA 

mound number 

0.982 0.014 0.956, 1.01 

0.180 

1All degrees of freedom = 1. 

2Standard error. 

3Confidence limit. 

4Likelihood ratio test statistic. 

*Statistically significant. 

  

                                                 
1 Random effects: 

Property (variance=0.087, standard deviation=0.294), Plot (variance=0.005, standard deviation =0.070) 
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Table 3.7. Model Suite 1 selection for baseline parameters influencing predicted non-native ant 

species richness. 

Model parameter K AICc ΔAICc wi 

Year + Region 5 1256.94 0.00 0.49 

Year × Region 6 1257.98 1.03 0.29 

Year 4 1258.57 1.63 0.22 

Region 4 1293.01 36.06 0.00 
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Table 3.8. Model Suite 2 selection for parameters influencing predicted non-native ant species 

richness.  

Model parameter K AICc ΔAICc wi 

Number of RIFA foragers × Region  7 823.07 0.00 0.86 

Groundcover × Year 7 829.95 6.87 0.03 

Disturbance level × year   9 830.84 7.77 0.02 

Burn interval × Year 7 831.29 8.22 0.01 

Number of RIFA foragers 6 831.58 8.51 0.01 

Groundcover 6 831.59 8.52 0.01 

Number of RIFA mounds 6 832.36 9.29 0.01 

Groundcover × Region  7 832.52 9.45 0.01 

Null (Year + Region)  5 832.76 9.69 0.01 

Number of RIFA foragers × Year    7 833.30 10.23 0.01 

Number of native species 6 833.31 10.24 0.01 

Number of RIFA mounds × Region 7 833.82 10.75 0.00 

Number of RIFA mounds × Year   7 833.96 10.89 0.00 

Burn interval 6 834.46 11.39 0.00 

Disturbance level 7 834.91 11.83 0.00 

Number of native species × Region   7 835.40 12.32 0.00 

Number of native species × Year     7 835.42 12.34 0.00 

Burn interval × Region 7 836.06 12.98 0.00 

Disturbance level × Region   8 837.02 13.95 0.00 
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Table 3.9. Top model of Suite 2 demonstrate that the number of RIFA mounds has the most 

weight of all included variables for explaining variation in expected native ant species  

richness.1 

Model parameter No. of candidate models Sum of importance wi 

Number of RIFA Foragers 3 0.88 

Groundcover 3 0.05 

Disturbance level 3 0.02 

Burn Interval 3 0.01 

Number of native species 3 0.01 

Number of RIFA mounds 3 0.01 

1All models include Year and Region. 
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Table 3.10. Estimated effects and Type II likelihood ratio tests for terms include in final Poisson 

model for number of non-native ant species at 78 sample plots in Florida and Georgia.1  

Parameter β S.E.2 95% C.L.3 P 

Year 1.78 0.105 1.45, 2.19 3.49e-8* 

Region 0.433 0.182 0.294, 0.633 4.01e-6* 

Albany region with 

RIFA forager number 

1.06 0.094 0.867, 1.26 0.548 

Tallahassee region 

with RIFA forager 

number 

2.19 0.185 1.49, 3.09 2.08e-5* 

1All degrees of freedom = 1. 

2Standard error. 

3Confidence limit. 

*Statistically significant. 
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Chapter 4: Synthesis and conclusions 

 Overall, my first hypothesis was partially supported and my second hypothesis was fully 

supported. Expected RIFA density was influenced by region and other environmental variables, 

including survey year and burn interval. Higher mound numbers were found the Albany region, 

areas that had not been burned in a year, and 2017. Regionally, this result correlates with higher 

rates of bobwhite nest depredation seen in the Albany (Haines et al. 2017). I was expecting areas 

more recently burned to have higher RIFA numbers, but they could need several months to 

establish colonies after a burn clears vegetation from an area. In terms of year, it could be that 

RIFA colonies were not doing well in 2016 as it was a drought year with high temperatures, and 

RIFA tend to be sensitive to low moisture and extreme temperatures.  

For local ant assemblages, my hypothesis that RIFA would impact both native and non-

native ant species richness was supported. Native ant species richness decreased, which makes 

sense due to the aggressive nature of RIFAs and past research supporting the argument that they 

are drivers of biodiversity loss.  I found it interesting that higher RIFA presence correlated with 

higher non-native ant species richness. This relationship could mean that RIFAs and other non-

native ants are taking advantage of similar environmental variables to invade. This relationship 

could also mean that non-native ants are more competitive than natives, or perhaps exploit 

different resources so that there is less competition with RIFA.   

Future Research   

In relation to my mound research, more work needs to be done to isolate what about 

“Region” is influencing RIFA density. Including a climate variable, such as the Keetch-Byram 
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Drought Index, could be helpful. I also wish to quantify disturbance levels beyond generic 

categories and include annual disking percentages in my analysis. Further research should also 

be done to isolate the influence of RIFA on local ant communities. Setting up experimental plots 

where RIFA are controlled with boiling water and not chemicals, which could kill other ant 

species, quantify how an ant community changes over time when not competing with RIFA. 

Over time, this could also be used to see how quickly native ant communities can recover from 

competition with RIFA. On a larger scale, using study sites with a wider range of disturbance, 

climate, and soil would determine their respective influence on RIFA density and impacts in 

other regions. Building upon our understanding of RIFA invasion is important, as RIFA are 

gradually expanding their range northward with climate change (Morrison et al. 2005). Not only 

that, but there is a deficit of research quantifying how invasive invertebrates impact native 

invertebrates. This is quite the gap of knowledge, especially considering that approximately 1.1 

million known arthropods (predominantly insects) make up half of the described species on 

Earth (Hawksworth and Kalin-Arroyo 1995, Hamilton et al. 2010). Native invertebrates also 

provide important ecosystem services such as seed dispersal (Heithaus 1981, Kalisz et al. 1999), 

decomposition (Lavelle et al. 2006), and soil aeration (Stork and Eggleton 1992). If these native 

invertebrates are displaced by invasive invertebrates, it is possible that ecosystem services will 

be lost (Zettler et al. 2001, Stuble et al. 2005). The potential loss of ecosystem services, as well 

as potential loss of biodiversity, warrants more research into relationships of competing invasive 

and native invertebrates. 
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APPENDIX 1: RESULTS OF DISTANCE ANALYSIS 

Appendix Table 1.1. Distance analysis of variables to estimate impairment of RIFA mound 

detection. 

Key function Covariate Model Est P1 SE (P)2 ∆_AIC 

Hazard-rate ~Height + factor(Year) 0.7 0.06 0 

Hazard-rate 

~Height + Ground.cover + 

factor(Year) 0.7 0.07 1.88 

Hazard-rate ~Height + Fire.Type + factor(Year) 0.7 0.06 1.97 

Hazard-rate ~factor(Year) 0.68 0.07 2.36 

Hazard-rate ~Ground.cover * factor(Year) 0.62 0.12 3.51 

Hazard-rate 

~Height + Fire.Type + 

Ground.cover + factor(Year) 0.7 0.07 3.87 

Hazard-rate ~Fire.Type + factor(Year) 0.68 0.08 4.01 

Hazard-rate ~Ground.cover + factor(Year) 0.67 0.08 4.22 

Half-normal ~factor(Year) 0.73 0.03 5.45 

Hazard-rate 

~Fire.Type + Ground.cover + 

factor(Year) 0.66 0.08 5.79 

Hazard-rate ~Fire.Type * factor(Year) 0.68 0.08 6.01 

Half-normal ~Ground.cover + factor(Year) 0.73 0.03 7.34 

Half-normal ~Fire.Type + factor(Year) 0.73 0.03 7.43 



 

 

  85 

 

Half-normal ~Ground.cover * factor(Year) 0.73 0.03 9.07 

Half-normal 

~Fire.Type + Ground.cover + 

factor(Year) 0.73 0.03 9.3 

Hazard-rate ~Ground.cover 0.69 0.07 9.69 

Uniform with cosine 

adjustment term of order 1 

None 

0.71 0.03 9.76 

Half-normal None 0.73 0.03 10.04 

Half-normal ~Ground.cover 0.73 0.03 10.76 

Hazard-rate ~Height + Ground.cover 0.7 0.07 11 

Hazard-rate None 0.71 0.06 11.41 

Hazard-rate ~Fire.Type + Ground.cover 0.68 0.08 11.43 

Half-normal ~Fire.Type 0.73 0.03 11.99 

Hazard-rate ~Height 0.72 0.06 12.4 

Hazard-rate ~Fire.Type * Ground.cover 0.68 0.07 12.56 

Hazard-rate 

~Height + Fire.Type + 

Ground.cover 0.69 0.07 12.71 

Half-normal ~Fire.Type + Ground.cover 0.73 0.03 12.75 

Hazard-rate ~Height * Ground.cover 0.7 0.07 12.8 

Hazard-rate ~Fire.Type 0.7 0.07 13.34 

Hazard-rate ~Height + Fire.Type 0.72 0.06 14.36 

1Est P = average detection probability. 

2SE (P) = standard error of average detection probability.  
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APPENDIX 2: R CODE 

--------------------------------------------------------------------------------------------------------------------- 

Chapter 2 

---------------------------------------------------------------------------------------------------------------------

#refit final model for mound analysis excluding soil variables 

library(lme4) 

library(blmeco) 

library(car) 

mound.fixedburn=read.csv(file.choose()) 

head(mound.fixedburn) 

mound.fixedburn$Year=factor(mound.fixedburn$Year) 

mound.fixedburn$Year 

mound.fixedburn$Canopy.Cover=mound.fixedburn$Canopy.Cover/100 

mound.fixedburn$Canopy.Cover 

mound.fixedburn$DistCAT <- factor(mound.fixedburn$Dist.lvl,levels=c("Low","Mod","High")) 

mound.fixedburn$DistCAT 

model.refit= (glmer(Total.Mounds~Year+Ground.cover+DistCAT+Year/Ground.cover 

+Year/Fire.Type+Year/Canopy.Cover+Region+(1|Plantation)+(1|Plot.name), 

family=poisson,data=mound.fixedburn,control=glmerControl(optimizer="bobyqa")))  

summary(model.refit) 

Anova(model.refit) 
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model.refit.conf=confint(model.refit) 

------------------------------------------------------------------- 

#for canopy closure coef, to balance scaling 

exp(0.1*coef(summary(model.refit))[,1]) 

exp(0.1* model.refit.conf)#for everything else 

exp(coef(summary(model.refit))[,1]) 

exp(model.refit.conf) 

exp(ranef(model.refit)$Plantation) 

------------------------------------------------------------------- 

#models for mound analysis including soil variables 

------------------------------------------------------------------- 

#D1.sand 

mound.soil$D1.Sand=mound.soil$D1.Sand/100 

mound.soil$D1.Sand 

model.soild1sand= 

(glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover+DistCAT 

 +D1.Sand+Year:Fire.Type+Year:Canopy.Cover+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=mound.soil,control=glmerControl(optimizer="bobyqa")))  

summary(model.soild1sand) 

------------------------------------------------------------------- 

#D2.sand 

mound.soil$D2.Sand=mound.soil$D2.Sand/100 

mound.soil$D2.Sand 
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model.soild2sand=(glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover 

 +Canopy.Cover+DistCAT+D2.Sand+Year:Fire.Type+Year:Canopy.Cover+(1|Plantation) 

 +(1|Plot.name),family=poisson,data=mound.soil, 

 control=glmerControl(optimizer="bobyqa")))  

summary(model.soild2sand) 

------------------------------------------------------------------- 

#D1.clay 

mound.soil$D1.Clay=mound.soil$D1.Clay/100 

mound.soil$D1.Clay 

model.soild1clay=(glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover 

 +DistCAT+D1.Clay+Year:Fire.Type+Year:Canopy.Cover+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=mound.soil,control=glmerControl(optimizer="bobyqa")))  

summary(model.soild1clay) 

------------------------------------------------------------------- 

#D2.clay 

mound.soil$D2.Clay=mound.soil$D2.Clay/100 

mound.soil$D2.Clay 

model.soild2clay=(glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover 

 +DistCAT+D2.Clay+Year:Fire.Type+Year:Canopy.Cover+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=mound.soil,control=glmerControl(optimizer="bobyqa")))  

summary(model.soild2clay) 

------------------------------------------------------------------- 

#D1.pH 
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model.soild1pH= (glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover 

 +DistCAT+D1.pH+Year:Fire.Type+Year:Canopy.Cover+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=mound.soil,control=glmerControl(optimizer="bobyqa")))  

summary(model.soild1pH) 

------------------------------------------------------------------- 

#D2.pH 

model.soild2pH= (glmer(Total.Mounds~Year+Ground.cover+Fire.Type+Canopy.Cover 

 +DistCAT D2.pH+Year:Fire.Type+Year:Canopy.Cover+Region+(1|Plantation) 

 +(1|Plot.name),family=poisson,data=mound.soil, 

 control=glmerControl(optimizer="bobyqa")))  

summary(model.soild2pH) 

------------------------------------------------------------------- 

#D1.BD 

model.soild1BD= (glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover 

 +DistCAT+D1.BD+Year:Fire.Type+Year:Canopy.Cover+Region+(1|Plantation) 

 +(1|Plot.name),family=poisson,data=mound.soil, 

 control=glmerControl(optimizer="bobyqa")))  

summary(model.soild1BD) 

------------------------------------------------------------------- 

#D2.BD 

model.soild2BD= (glmer(Total.Mounds~Year+Region+Fire.Type+Ground.cover+Canopy.Cover 

 +DistCAT+D2.BD+Year:Fire.Type+Year:Canopy.Cover+Region+(1|Plantation) 

 +(1|Plot.name),family=poisson,data=mound.soil, 
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 control=glmerControl(optimizer="bobyqa")))  

summary(model.soild2BD) 

--------------------------------------------------------------------------------------------------------------------- 

Chapter 3 

--------------------------------------------------------------------------------------------------------------------- 

library(lme4) 

library(blmeco) 

library(car)   

library(AICcmodavg) 

pitfall.guild=read.csv(file.choose()) 

head(pitfall.guild) 

pitfall.guild$Year=factor(pitfall.guild$Year) 

pitfall.guild$Year 

#pitfall.guild$Canopy.Cover=pitfall.guild$Canopy.Cover*100 

pitfall.guild$Canopy.Cover=pitfall.guild$Canopy.Cover/100 

pitfall.guild$Canopy.Cover 

pitfall.guild$RegionYear=factor(with(pitfall.guild,paste(Region,Year,sep="")))   

mound.fixedburn$DistCAT <- factor(mound.fixedburn$Dist.lvl,levels=c("Low","Mod","High")) 

mound.fixedburn$DistCAT 

---------------------------------------------------------------------------------- 

#Native ant species number analysis 

---------------------------------------------------------------------------------- 

#MS1.1: intercept only 
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model.MS1.1= (glmer(Native.sp~offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(model.MS1.1) 

dispersion_glmer(model.MS1.1) 

model.MS1.1.conf=confint(model.MS1.1) 

model.MS1.1.conf 

exp(coef(summary(model.MS1.1))[,1]) 

exp(model.MS1.1.conf)   

---------------------------------------------------------------------------------- 

#MS1.2: year 

model.MS1.2= (glmer(Native.sp~Year+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(model.MS1.2) 

dispersion_glmer(model.MS1.2) 

model.MS1.2.conf=confint(model.MS1.2) 

model.MS1.2.conf 

exp(coef(summary(model.MS1.2))[,1]) 

exp(model.MS1.2.conf)   

---------------------------------------------------------------------------------- 

#MS1.3: region  

model.MS1.3= (glmer(Native.sp~Region+offset(log(Func.Trap.No)) 
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                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(model.MS1.3) 

dispersion_glmer(model.MS1.3) 

model.MS1.3.conf=confint(model.MS1.3) 

model.MS1.3.conf 

exp(coef(summary(model.MS1.3))[,1]) 

exp(model.MS1.3.conf)    

---------------------------------------------------------------------------------- 

#model.MS1.4: year and region 

model.MS1.4= (glmer(Native.sp~Year+Region+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(model.MS1.4) 

dispersion=glmer(model.MS1.4) 

model.MS1.4.conf=confint(model.MS1.4) 

model.MS1.4.conf 

exp(coef(summary(model.MS1.4))[,1]) 

exp(model.MS1.4.conf)   

---------------------------------------------------------------------------------- 

#model.MS1.5: year, region, and Year*Region 

model.MS1.5= (glmer(Native.sp~Year*Region+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 
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                      control=glmerControl(optimizer="bobyqa")))  

summary(model.MS1.5) 

dispersion_glmer(model.MS1.5) 

model.MS1.5.conf=confint(model.MS1.5) 

model.MS1.5.conf 

exp(coef(summary(model.MS1.5))[,1]) 

exp(model.MS1.5.conf)  

---------------------------------------------------------------------------------- 

#model.MS1.6: add in native species individuals 

model.MS1.6= (glmer(Native.sp~Scaled.Native.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa"))) 

summary(model.MS1.6) 

dispersion_glmer(model.MS1.6) 

model.MS1.6.conf=confint(model.MS1.6) 

model.MS1.6.conf 

exp(coef(summary(model.MS1.6))[,1]) 

exp(model.MS1.6.conf)  

---------------------------------------------------------------------------------- 

#model.MS1.7: add in native species individuals 

model.MS1.7= (glmer(Native.sp~Year+Region+Scaled.Native.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  
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summary(model.MS1.7) 

dispersion_glmer(model.MS1.7) 

model.MS1.7.conf=confint(model.MS1.7) 

model.MS1.7.conf 

exp(coef(summary(model.MS1.7))[,1]) 

exp(model.MS1.7.conf) 

---------------------------------------------------------------------------------- 

#MS1: aic1 

Modnames1 <- c("B0","Year","Region","Year+Region","Year*Region") 

aictab(c(model.MS1.1,model.MS1.2,model.MS1.3,model.MS1.4,model.MS1.5), Modnames1, 

data=pitfall.guild) 

---------------------------------------------------------------------------------- 

#model.MS2.1a: created intercept only 

model.MS2.1a= (glmer(Native.sp~Year+Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.1a) 

dispersion_glmer(model.MS2.1a) 

model.MS2.1a.conf=confint(model.MS2.1a) 

model.MS2.1a.conf 

exp(coef(summary(model.MS2.1a))[,1]) 

exp(model.MS2.1a.conf) 

---------------------------------------------------------------------------------- 
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#model.MS2.1b: add in groundcover 

model.MS2.1b= (glmer(Native.sp~Year+Region+Ground.cover+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.1b) 

dispersion_glmer(model.MS2.1b) 

model.MS2.1b.conf=confint(model.MS2.1b) 

model.MS2.1b.conf 

exp(coef(summary(model.MS2.1b))[,1]) 

exp(model.MS2.1b.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.2: add Ground.cover*Year 

model.MS2.2= (glmer(Native.sp~Year+Region+Ground.cover*Year+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.2) 

dispersion_glmer(model.MS2.2) 

model.MS2.2.conf=confint(model.MS2.2) 

model.MS2.2.conf 

exp(coef(summary(model.MS2.2))[,1]) 

exp(model.MS2.2.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.3: add Ground.cover *Region 
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model.MS2.3= (glmer(Native.sp~Year+Region+Ground.cover*Region+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name),family=poisson, 

 data=pitfall.guild,control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.3) 

dispersion_glmer(model.MS2.3) 

model.MS2.3.conf=confint(model.MS2.3) 

model.MS2.3.conf 

exp(coef(summary(model.MS2.3))[,1]) 

exp(model.MS2.3.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.4: add in Fire.type 

model.MS2.4= (glmer(Native.sp~Year+Region+Fire.Type+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.4) 

dispersion_glmer(model.MS2.4) 

model.MS2.4.conf=confint(model.MS2.4) 

model.MS2.4.conf 

exp(coef(summary(model.MS2.4))[,1]) 

exp(model.MS2.4.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.5: add in Fire.type*Year 

model.MS2.5= (glmer(Native.sp~Year+Region+Fire.Type*Year+offset(log(Func.Trap.No)) 
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                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.5) 

dispersion_glmer(model.MS2.5) 

model.MS2.5.conf=confint(model.MS2.5) 

model.MS2.5.conf 

exp(coef(summary(model.MS2.5))[,1]) 

exp(model.MS2.5.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.6: add in Fire.type*Region 

model.MS2.6= (glmer(Native.sp~Year+Region+Fire.Type*Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.6) 

dispersion=glmer(model.MS2.6) 

model.MS2.6.conf=confint(model.MS2.6) 

model.MS2.6.conf 

exp(coef(summary(model.MS2.6))[,1]) 

exp(model.MS2.6.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.7: add in Scaled.RIFA.no 

model.MS2.7= (glmer(Native.sp~Year+Region+Scaled.RIFA.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 
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                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.7) 

dispersion=glmer(model.MS2.7) 

model.MS2.7.conf=confint(model.MS2.7) 

model.MS2.7.conf 

exp(coef(summary(model.MS2.7))[,1]) 

exp(model.MS2.7.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.8: add in Scaled.RIFA.no*Year 

model.MS2.8= (glmer(Native.sp~Year+Region+Scaled.RIFA.no*Year+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name),family=poisson, 

 data=pitfall.guild,control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.8) 

dispersion_glmer(model.MS2.8) 

model.MS2.8.conf=confint(model.MS2.8) 

model.MS2.8.conf 

exp(coef(summary(model.MS2.8))[,1]) 

exp(model.MS2.8.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.9: add in Scaled.RIFA.no*Region 

model.MS2.9= (glmer(Native.sp~Year+Region+Scaled.RIFA.no*Region+ 

                offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name),family=poisson, 

                data=pitfall.guild, control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.9) 
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dispersion_glmer(model.MS2.9) 

model.MS2.9.conf=confint(model.MS2.9) 

model.MS2.9.conf 

exp(coef(summary(model.MS2.9))[,1]) 

exp(model.MS2.9.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.10: add in Mounds 

model.MS2.10= (glmer(Native.sp~Year+Region+Total.Mounds+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.10) 

dispersion_glmer(model.MS2.10) 

model.MS2.1.conf=confint(model.MS2.10) 

model.MS2.10.conf 

exp(coef(summary(model.MS2.10))[,1]) 

exp(model.MS2.10.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.11: add in Mounds*Year 

model.MS2.11= (glmer(Native.sp~Year+Region+Total.Mounds*Year+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name),family=poisson, 

 data=pitfall.guild, control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.11) 

dispersion_glmer(model.MS2.11) 
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model.MS2.11.conf=confint(model.MS2.11) 

model.MS2.11.conf 

exp(coef(summary(model.MS2.11))[,1]) 

exp(model.MS2.11.conf) 

---------------------------------------------------------------------------------- 

#model.MS2.12: add in Mounds*Region 

model.MS2.12= (glmer(Native.sp~Year+Region+Total.Mounds*Region+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name),family=poisson, 

 data=pitfall.guild,control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.12) 

dispersion=glmer(model.MS2.12) 

model.MS2.12.conf=confint(model.MS2.12) 

model.MS2.12.conf 

exp(coef(summary(model.MS2.12))[,1]) 

exp(model.MS2.12.conf) 

---------------------------------------------------------------------------------- 

#add model with non-native sp richness as a covariate 

#model.MS2.13: add in Exotic.sp 

model.MS2.12= (glmer(Native.sp~Year+Region+Exotic.sp+offset(log(Func.Trap.No)) 

                     +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                     control=glmerControl(optimizer="bobyqa")))  

summary(model.MS2.12) 

dispersion_glmer(model.MS2.12) 
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model.MS2.12.conf=confint(model.MS2.12) 

model.MS2.12.conf 

exp(coef(summary(model.MS2.12))[,1]) 

exp(model.MS2.12.conf) 

---------------------------------------------------------------------------------- 

#MS2: aic2 

Modnames2 <- c("Groundc","Groundc*Year","Groundc*Region","Fire.Type", 

"Fire.Type*Year","Fire.Type+Region","RIFA.no","RIFA.no*Year","RIFA.no*Region", 

"Mound.no", “Mound.no*Year","Mound.no*Region") 

aictab(c(model.MS2.1a,model.MS2.1b,model.MS2.2,model.MS2.3,model.MS2.4,model.MS2.5, 

model.MS2.6,model.MS2.7,model.MS2.8,model.MS2.9,model.MS2.10,model.MS2.11, 

model.MS2.12), Modnames2, data=pitfall.guild) 

---------------------------------------------------------------------------------- 

#Non-native ant species number analysis 

---------------------------------------------------------------------------------- 

#MS1.1: intercept only 

exoticMS1.1= (glmer(Exotic.sp~offset(log(Func.Trap.No)) 

              +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

              control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.1) 

dispersion_glmer(exoticMS1.1) 

exoticMS1.1.conf=confint(exoticMS1.1) 

exoticMS1.1.conf 
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exp(coef(summary(exoticMS1.1))[,1]) 

exp(exoticMS1.1.conf)   

---------------------------------------------------------------------------------- 

#MS1.2: year 

exoticMS1.2= (glmer(Exotic.sp~Year+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.2) 

dispersion_glmer(exoticMS1.2) 

exoticMS1.2.conf=confint(exoticMS1.2) 

exoticMS1.2.conf 

exp(coef(summary(exoticMS1.2))[,1]) 

exp(exoticMS1.2.conf)   

---------------------------------------------------------------------------------- 

#MS1.3: region  

exoticMS1.3= (glmer(Exotic.sp~Region+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.3) 

dispersion_glmer(exoticMS1.3) 

exoticMS1.3.conf=confint(exoticMS1.3) 

exoticMS1.3.conf 

exp(coef(summary(exoticMS1.3))[,1]) 
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exp(exoticMS1.3.conf)    

---------------------------------------------------------------------------------- 

#exoticMS1.4: year and region 

exoticMS1.4= (glmer(Exotic.sp~Year+Region+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.4) 

dispersion_glmer(exoticMS1.4) 

exoticMS1.4.conf=confint(exoticMS1.4) 

exoticMS1.4.conf 

exp(coef(summary(exoticMS1.4))[,1]) 

exp(exoticMS1.4.conf)   

---------------------------------------------------------------------------------- 

#exoticMS1.5: year, region, and Year*Region 

exoticMS1.5= (glmer(Exotic.sp~Year*Region+offset(log(Func.Trap.No)) 

                      +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                      control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.5) 

dispersion_glmer(exoticMS1.5) 

exoticMS1.5.conf=confint(exoticMS1.5) 

exoticMS1.5.conf 

exp(coef(summary(exoticMS1.5))[,1]) 

exp(exoticMS1.5.conf)  
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---------------------------------------------------------------------------------- 

#exoticMS1.6: add in native species individuals 

exoticMS1.6= (glmer(Exotic.sp~Scaled.Native.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa"))) 

summary(exoticMS1.6) 

dispersion_glmer(exoticMS1.6) 

exoticMS1.6.conf=confint(exoticMS1.6) 

exoticMS1.6.conf 

exp(coef(summary(exoticMS1.6))[,1]) 

exp(exoticMS1.6.conf)  

---------------------------------------------------------------------------------- 

#exoticMS1.7: add in native species individuals 

exoticMS1.7= (glmer(Exotic.sp~Year+Region+Scaled.Native.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS1.7) 

dispersion_glmer(exoticMS1.7) 

exoticMS1.7.conf=confint(exoticMS1.7) 

exoticMS1.7.conf 

exp(coef(summary(exoticMS1.7))[,1]) 

exp(exoticMS1.7.conf) 

---------------------------------------------------------------------------------- 



 

 

  105 

 

#MS1: aic1 

Modnames <- c("B0","Year","Region","Year+Region","Year*Region") 

aictab(c(model.MS1.1,model.MS1.2,model.MS1.3,model.MS1.4,model.MS1.5), Modnames, 

data=pitfall.guild) 

#model.MS2.1a: created intercept only  

---------------------------------------------------------------------------------- 

exoticMS2.1a= (glmer(Exotic.sp~Year+Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.1a) 

dispersion_glmer(exoticMS2.1a) 

exoticMS2.1a.conf=confint(exoticMS2.1a) 

exoticMS2.1a.conf 

exp(coef(summary(exoticMS2.1a))[,1]) 

exp(exoticMS2.1a.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.1b: add in groundcover 

exoticMS2.1b= (glmer(Exotic.sp~Year+Region+Ground.cover+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.1b) 

dispersion_glmer(exoticMS2.1b) 

exoticMS2.1b.conf=confint(exoticMS2.1b) 
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exoticMS2.1b.conf 

exp(coef(summary(exoticMS2.1b))[,1]) 

exp(exoticMS2.1b.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.2: add Ground.cover*Year 

exoticMS2.2= (glmer(Exotic.sp~Year+Region+Ground.cover*Year+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.2) 

dispersion_glmer(exoticMS2.2) 

exoticMS2.2.conf=confint(exoticMS2.2) 

exoticMS2.2.conf 

exp(coef(summary(exoticMS2.2))[,1]) 

exp(exoticMS2.2.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.3: add Ground.cover*Region 

exoticMS2.3= (glmer(Exotic.sp~Year+Region+Ground.cover*Region+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.3) 

dispersion_glmer(exoticMS2.3) 

exoticMS2.3.conf=confint(exoticMS2.3) 
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exoticMS2.3.conf 

exp(coef(summary(exoticMS2.3))[,1]) 

exp(exoticMS2.3.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.4: add in Fire.type 

exoticMS2.4= (glmer(Exotic.sp~Year+Region+Fire.Type+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.4) 

dispersion_glmer(exoticMS2.4) 

exoticMS2.4.conf=confint(exoticMS2.4) 

exoticMS2.4.conf 

exp(coef(summary(exoticMS2.4))[,1]) 

exp(exoticMS2.4.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.5: add in Fire.type*Year 

exoticMS2.5= (glmer(Exotic.sp~Year+Region+Fire.Type*Year+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.5) 

dispersion_glmer(exoticMS2.5) 

exoticMS2.5.conf=confint(exoticMS2.5) 

exoticMS2.5.conf 
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exp(coef(summary(exoticMS2.5))[,1]) 

exp(exoticMS2.5.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.6: add in Fire.type*Region 

exoticMS2.6= (glmer(Exotic.sp~Year+Region+Fire.Type*Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.6) 

dispersion_glmer(exoticMS2.6) 

exoticMS2.6.conf=confint(exoticMS2.6) 

exoticMS2.6.conf 

exp(coef(summary(exoticMS2.6))[,1]) 

exp(exoticMS2.6) 

---------------------------------------------------------------------------------- 

#exoticMS2.7: add in Scaled.RIFA.no 

exoticMS2.7= (glmer(Exotic.sp~Year+Region+Scaled.RIFA.no+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.7) 

dispersion_glmer(exoticMS2.7) 

exoticMS2.7.conf=confint(exoticMS2.7) 

exoticMS2.7.conf 

exp(coef(summary(exoticMS2.7))[,1]) 
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exp(exoticMS2.7.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.8: add in Scaled.RIFA.no*Year 

exoticMS2.8= (glmer(Exotic.sp~Year+Region+Scaled.RIFA.no*Year+ 

 offset(log(Func.Trap.No))+(1|Plantation)+(1|Plot.name), 

 family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.8) 

dispersion_glmer(exoticMS2.8) 

exoticMS2.8.conf=confint(exoticMS2.8) 

exoticMS2.8.conf 

exp(coef(summary(exoticMS2.8))[,1]) 

exp(exoticMS2.8.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.9: add in Scaled.RIFA.no*Region 

exoticMS2.9= 

(glmer(Exotic.sp~Year+Region+Scaled.RIFA.no*Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.9) 

dispersion_glmer(exoticMS2.9) 

exoticMS2.9.conf=confint(exoticMS2.9) 

exoticMS2.9.conf 
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exp(coef(summary(exoticMS2.9))[,1]) 

exp(exoticMS2.9.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.10: add in Mounds 

exoticMS2.10= (glmer(Exotic.sp~Year+Region+Total.Mounds+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.10) 

dispersion_glmer(exoticMS2.10) 

exoticMS2.10.conf=confint(exoticMS2.10) 

exoticMS2.10.conf 

exp(coef(summary(exoticMS2.10))[,1]) 

exp(exoticMS2.10.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.11: add in Mounds*Year 

exoticMS2.11= (glmer(Exotic.sp~Year+Region+Total.Mounds*Year+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.11) 

dispersion_glmer(exoticMS2.11) 

exoticMS2.11.conf=confint(exoticMS2.11) 

exoticMS2.11.conf 

exp(coef(summary(exoticMS2.11))[,1]) 
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exp(exoticMS2.11.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.12: add in Mounds*Region 

exoticMS2.12= 

(glmer(Exotic.sp~Year+Region+Total.Mounds*Region+offset(log(Func.Trap.No)) 

                    +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                    control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.12) 

dispersion_glmer(exoticMS2.12) 

exoticMS2.12.conf=confint(exoticMS2.12) 

exoticMS2.12.conf 

exp(coef(summary(exoticMS2.12))[,1]) 

exp(exoticMS2.12.conf) 

---------------------------------------------------------------------------------- 

#add model with exotic sp richness as a covariate 

#exoticMS2.13: add in Native.sp 

exoticMS2.13= (glmer(Exotic.sp~Year+Region+Native.sp+offset(log(Func.Trap.No)) 

                     +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                     control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.13) 

dispersion_glmer(exoticMS2.13) 

exoticMS2.13.conf=confint(exoticMS2.13) 

exoticMS2.13.conf 
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exp(coef(summary(exoticMS2.13))[,1]) 

exp(exoticMS2.13.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.14: add in Native.sp*Year 

exoticMS2.14= (glmer(Exotic.sp~Year+Region+Native.sp*Year+offset(log(Func.Trap.No)) 

                     +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                     control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.14) 

dispersion_glmer(exoticMS2.14) 

exoticMS2.14.conf=confint(exoticMS2.14) 

exoticMS2.14.conf 

exp(coef(summary(exoticMS2.14))[,1]) 

exp(exoticMS2.14.conf) 

---------------------------------------------------------------------------------- 

#exoticMS2.15: add in Native.sp*Region 

exoticMS2.15= (glmer(Exotic.sp~Year+Region+Native.sp*Region+offset(log(Func.Trap.No)) 

                     +(1|Plantation)+(1|Plot.name),family=poisson,data=pitfall.guild, 

                     control=glmerControl(optimizer="bobyqa")))  

summary(exoticMS2.15) 

dispersion_glmer(exoticMS2.15) 

exoticMS2.15.conf=confint(exoticMS2.15) 

exoticMS2.15.conf 

exp(coef(summary(exoticMS2.15))[,1]) 
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exp(exoticMS2.15.conf) 

---------------------------------------------------------------------------------- 

#MS2: aic2 

Modnames2 <- c("Intercept","Groundc","Groundc*Year","Groundc*Region","Fire.Type", 

"Fire.Type*Year","Fire.Type+Region","RIFA.no","RIFA.no*Year","RIFA.no*Region", 

"Mound.no", "Mound.no*Year","Mound.no*Region", "Native", "Native*Year",                   

"Native*Region") 

aictab(c(exoticMS2.1a,exoticMS2.1b,exoticMS2.2,exoticMS2.3,exoticMS2.4,exoticMS2.5, 

exoticMS2.6,exoticMS2.7,exoticMS2.8,exoticMS2.9,exoticMS2.10,exoticMS2.11, 

exoticMS2.12,exoticMS2.13,exoticMS2.14,exoticMS2.15), Modnames2, data=pitfall.guild) 

---------------------------------------------------------------------------------- 
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APPENDIX 3: SOIL RESULTS FOR CHAPTER 2 

Appendix Table 3.1. Results from adding each relevant soil variable individually to my final 

Poisson model. 

Parameter β S.E.1 95% C.L.3 P 

D1 Sand percentage -1.47 2.69 -7.00, 4.03 0.584 

D2 Sand percentage -1.43 1.01 -3.52, 0.608 0.156 

D1 Clay percentage -0.980 4.12 -9.49, 7.37 0.812 

D2 Clay percentage 1.43 1.05 -0.688, 3.60 0.172 

D1 pH -0.669 0.339 -1.33, -0.004 0.049 

D2 pH -0.598 0.499 -1.58, 0.381 0.231 

D1 Bulk Density 0.168 0.723 -1.27, 1.70 0.816 

D2 Bulk Density 0.044 0.665 -1.24, 1.54 0.947 

1Standard error 

2Confidence limit 

*Statistically significant 
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APPENDIX 4: ANT SPECIES IN CHAPTER 3 

Appendix Table 4.1. Taxonomic list of ant species found in pitfall surveys taken in 2016 and 

2017. 

Sub-family Genus Species 

Dolichoderinae Dorymyrmex bureni 

Dolichoderinae Dorymyrmex flavopectus 

Dolichoderinae Dorymyrmex grandulus 

Dolichoderinae Dorymyrmex reginicula 

Dolichoderinae Forelius pruinosus 

Dorylinae Neivamyrmex opacithorax 

Ectatomminae Gnamptogenys triangularis 

Formicinae Brachymyrmex depilis 

Formicinae Brachymyrmex obscurior 

Formicinae Brachymyrmex patagonicus 

Formicinae Camponotus castaneus 

Formicinae Camponotus floridanus 

Formicinae Camponotus sexguttatus 

Formicinae Formica archboldi 

Formicinae Formica biophilica 

Formicinae Formica dolosa 
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Formicinae Nylanderia arenivaga 

Formicinae Nylanderia concinna 

Formicinae Nylanderia faisonensis 

Formicinae Nylanderia parvula 

Formicinae Nylanderia phantasma 

Formicinae Nylanderia querna 

Formicinae Nylanderia sp. 

Formicinae Nylanderia trageri 

Formicinae Nylanderia vividula 

Formicinae Nylanderia wojciki 

Myrmicinae Aphaenogaster ashmeadi 

Myrmicinae Aphaenogaster carolinensis 

Myrmicinae Aphaenogaster flemingi 

Myrmicinae Aphaenogaster fulva 

Myrmicinae Aphaenogaster miamiana 

Myrmicinae Aphaenogaster picea 

Myrmicinae Aphaenogaster rudis 

Myrmicinae Aphaenogaster texana 

Myrmicinae Aphaenogaster treatae 

Myrmicinae Cardiocondyla wroughtonii 

Myrmicinae Crematogaster ashmeadi 

Myrmicinae Crematogaster atkinsoni 

Myrmicinae Crematogaster lineolata 
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Myrmicinae Crematogaster minutissima 

Myrmicinae Crematogaster missuriensis 

Myrmicinae Crematogaster pilosa 

Myrmicinae Crematogaster pinicola 

Myrmicinae Crematogaster sp. 

Myrmicinae Cyphomyrmex minutus 

Myrmicinae Cyphomyrmex rimosus 

Myrmicinae Pheidole adrianoi 

Myrmicinae Pheidole bicarinata 

Myrmicinae Pheidole bilimeki 

Myrmicinae Pheidole crassicornis 

Myrmicinae Pheidole dentata 

Myrmicinae Pheidole dentigula 

Myrmicinae Pheidole metallescens 

Myrmicinae Pheidole morrissii 

Myrmicinae Pheidole navigans 

Myrmicinae Pheidole obscurithorax 

Myrmicinae Pheidole soritis 

Myrmicinae Pheidole sp. 

Myrmicinae Pheidole tetra 

Myrmicinae Pheidole tysoni 

Myrmicinae Pogonomyrmex badius 

Myrmicinae Pogonomyrmex badius 
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Myrmicinae Solenopsis invicta 

Myrmicinae Solenopsis molesta 

Myrmicinae Solenopsis pergandei 

Myrmicinae Solenopsis tonsa 

Myrmicinae Solenopsis xyloni 

Myrmicinae Strumigenys boneti 

Myrmicinae Strumigenys epinotalis 

Myrmicinae Strumigenys louisianae 

Myrmicinae Strumigenys margaritae 

Myrmicinae Strumigenys membranifera 

Myrmicinae Strumigenys sp. 

Myrmicinae Temnothorax texanus 

Myrmicinae Tetramorium immigrans 

Myrmicinae Trachymyrmex septentrionalis 

Ponerinae Hypoponera inexorata 

Ponerinae Hypoponera opaciceps 

Ponerinae Hypoponera opacior 

Ponerinae Odontomachus brunneus 

Ponerinae Odontomachus ruginodis 

 

 


