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Abstract

Plenoptic PIV was recently introduced as a viable three-dimensional, three-component

velocimetry technique based on light field cameras. One of the main benefits of this technique

is its single camera configuration allowing the technique to be applied in facilities with limited

optical access. The main drawback of this configuration is decreased accuracy in the out-of-

plane dimension. This dissertation presents a solution with the addition of a second plenoptic

camera in a stereo-like configuration. A framework for reconstructing volumes with multiple

plenoptic cameras including the volumetric calibration and reconstruction algorithms are

presented. It is shown that the addition of a second camera doubles the reconstruction

quality and removes the ‘cigar’-like elongation associated with the single camera system.

In addition, it was found that adding a third camera provided minimal benefit for the

reconstruction quality of sparse particle fields. Further metrics of the reconstruction quality

are quantified in terms of particle density, number of cameras, camera separation angle,

voxel size, and the effect of common image noise sources. In addition, a synthetic Gaussian

ring vortex is used to compare the accuracy of the single and two camera configurations. It

was determined that the addition of a second camera reduces the RMSE velocity error from

0.85 to 0.23 voxels. Finally, the technique is applied experimentally on a ring vortex and

comparisons are drawn from the four presented reconstruction algorithms.

The trade-off between spatial and angular resolution is the main consideration when

designing a plenoptic camera. This dissertation provides guidelines for the selection of the

microlens array using theoretical analysis as well as synthetic and experimental data for

validation. It was determined that the optimal selection of the microlens size depends heavily

on the desired volume depth and a good rule-of-thumb is the span of the volume should be

∼ 1.1 DoFp (single pixel, or perspective, depth-of-field). It was also determined that while
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this is the optimal selection, the robustness of the cross-correlation algorithm mitigates the

effect of sub-optimal microlens selection allowing for a single configuration to be used in a

wide variety of situations.
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Chapter 1

Introduction

Throughout history, the curiosity of our species has constantly pushed the boundaries of

exploration, expediting innovation in the design and construction of aerodynamic vehicles.

From sea-faring vessels which allowed our ancestors to sail around the world to the Saturn V

which propelled man to the moon exploration is truly our hallmark. Unfortunately the design

of these vehicles has often been the result of trial-and-error experimentation and incomplete

mathematical models as our fundamental understanding of fluid mechanics has lagged behind

the ingenuity of the engineers and the bravery of the explorers. Mathematical descriptions

of fluid mechanics have existed for centuries with an inviscid/incompressible solution given

by Euler in the mid 1700’s, termed the Euler equations, and a mathematically complete

description given by Claude-Louis Navier and George Gabriel Stokes in the early 1800’s,

termed the Navier-Stokes equations. Derived by applying the principles of conservation of

mass, momentum, and energy to a fluid element, the Navier-Stokes equations yield an exact

expression for fluid motion; however in the following two-hundred years no general solution

has been found; in fact, there is not proof that a solution always exists, or if a solution

does exist that it would be void of mathematical singularities. This lack of an analytical

solution has led to two complimentary fields of study: experimental fluid dynamics (EFD)

and computational fluid dynamics (CFD).

The field of computational fluid dynamics focuses on modeling the Navier-Stokes equa-

tions such that they can be solved numerically with a computer. Since a computer can

only operate on discrete elements, these computations are, typically, performed at particular

points in a Eulerian (not changing with time) mesh, with some predefined spacing. The most
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accurate model, which can resolve the full temporal and spatial scales of the turbulence, in-

volves a full numerical simulation of the Navier-Stokes equations termed the direct numerical

simulation (DNS). While very accurate, this solution is, unfortunately, very computationally

expensive requiring the smallest scales of the flow to be resolved by the computational mesh

and the time integration. Both of these issues scale poorly with Reynolds number, limiting

this technique to low Reynolds number flows. The two most common models for use with

real-world applications are the large eddy simulation (LES), and Reynolds averaged Navier-

Stokes equations (RANS). The RANS model is created by decomposing the instantaneous

Navier-Stokes equations into time-averaged and fluctuating components. The solution given

by the RANS model is approximately the time-averaged solution to the Navier-Stokes equa-

tions. Alternatively, the LES model is able to provide simulations of instantaneous flow-fields

and their topology as a function of time. This method seeks to reduce the computational

burden of DNS by removing the smallest turbulent scales from the simulation via filtering,

effectively yielding a low-pass filter effect on the solution. It is noted, that the strict removal

of these scales will affect the solution since the energy cascade from large eddies to smaller

eddies, which is fundamental to turbulence, is artificially broken. Therefore modeling of

these effects is typically added, and is a very active area of research.

1.1 Survey of Velocity Measurements Techniques

Experimental fluid dynamics is the direct study of fluid mechanics via a real-world

experiment. A lot of research effort, including this work, has been done to develop techniques

to accurately measure the properties of the fluid flow. One of the most sought after properties

is the vector velocity of the fluid, from which derivative quantities such as the Reynolds

stress tensor and vorticity vector can be calculated. The earliest of these techniques utilized

physical probes such as the pitot tube and hot wire. More recently, non-intrusive, laser

based measurements have become the norm and a lot of work has been done to extend these

methods to two and three dimensions.
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A pitot tube is able to measure the velocity of a gas by measuring the stagnation pressure

and the static pressure simultaneously. Using Bernoulli’s equation a simple relationship

between the velocity and the difference of these quantities can be found for incompressible

flows. A more complex relationship exists for compressible flows known as Rayleigh’s pitot

tube formula. Several of these devices form a pitot-static system which can be found on most

aircraft and are used to determine airspeed, Mach number, altitude, and altitude trend. The

major limitation for this system is its inability to measure very low speed flows and velocity

fluctuations to a high precision.

Hot-wire anemometry is a technique which utilizes a very thin wire (several microns)

that is electrically heated. Since the electrical resistance of most metals is temperature

dependent, as the flow moves around the wire, cooling the wire, a relationship between the

electrical resistance and the flow velocity can be determined. These instruments tend to be

very delicate, but provide high frequency response and spatial resolution of the flow velocity

for one component of the velocity field. Additional components can be determined by adding

additional wires. One such configuration is the so-called ‘x’ wire, where two wires are placed

orthogonal forming an ‘x’ shape allowing for two components of velocity to be determined.

This technique is still used extensively in turbulence studies, and the validation of other

techniques due to its high frequency response and spatial resolution. The main limitations

of this technique are its inability to measure reverse flow as well as its delicate nature.

These probes, while still used today, create issues due to their physical presence in

the flow-field causing disturbances in the flow making measurements near or behind the

device inaccurate. This limits the amount of these devices that can be used simultaneously

resulting in long test times if more than a single point of data is desired. Non-intrusive,

laser-based diagnostics have been developed to augment these devices and are typically

based on inferring the motion from illuminated tracer particles or atomic/molecular species

undergoing excitation.
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The first class of non-intrusive laser-diagnostics for velocimetry are those based on the

imaging of particles. The most direct of these approaches is particle image velocimetry (PIV,

Adrian and Yao [7]) which directly measures the motion of the individual tracer particles or

small groups of particles from two images taken with a small time delay. This method, like all

particle-based techniques, assume that the tracer particles accurately follow the flow. This

technique has seen widespread use do to its ability to measure a 2D plane of velocity with a

relatively simple experimental arrangement and straightforward data processing. Recently,

there has been a concerted effort in the community to extend this technique to 3D, including

this work, allowing for the full velocity field to be captured. A more complete survey of PIV

is given in the following chapter.

The other major set of particle-based velocimetry techniques are based on measuring the

frequency shift that occurs when light is scattered off of a moving particle. This frequency

shift, caused by the Doppler effect, can be directly related to the particle velocity. There

are several techniques which measure this shift. The first, a point measurement, known as

laser Doppler anemometry/velocimetry (LDA/LDV, Tropea et al. [8]) is based on crossing

two coherent laser beams, which are focused at the point of intersection, generating a set of

straight fringes forming the probe volume. As a particle crosses into the probe volume, the

light is scattered onto a photo detector where the resultant fringe pattern (spacing) can be

analyzed to determine the Doppler-shifted frequency. Then by comparing this frequency to

the frequency of the incident laser light the Doppler shift and thus the particle’s velocity can

be determined. Planar Doppler velocimetry (PDV), or Doppler global velocimetry (DGV,

Komine et al. [9]), is able to measure this Doppler shift in a 2D plane. This technique,

however, measures the Doppler shifted frequency using light-frequency discriminators which

absorb light as a function of frequency. Typically, these systems employ a reference cam-

era which simply images the scattered light from the particles, and a signal camera which

measures the scattered light after it has been filtered via a light-frequency discriminator,

typically an iodine vapor cell. The difference between these two images can be related to
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the absorption characteristics of the iodine cell which is a function of frequency. From this

relationship the Doppler shift, and therefore velocity, can be derived.

The second class of methods is based on exciting atoms/molecules, either already present

in or added to the flow, then tracking their motion. One such method is termed molecu-

lar tagging velocimetry (MTV, Hiller et al. [10]). This technique utilizes a ‘write’ laser to

excite or ‘tag’ lines of molecules turning them into long lifetime tracers. These lines are

then recorded by a camera at two successive times after excitation. The motion of the lines

between the two frames yields the motion of the fluid. The 2D velocity can be determined

by using two write lasers forming crossing lines. The major benefit to this method is that,

often, the molecules are already present in the flow allowing this technique to be used in

facilities where adding particles is problematic. The drawback is the limited amount of ve-

locity information that can be obtained in a single snapshot, since you need to write discrete

lines and thus the information in-between the lines is not resolved. Another method which

uses excitation is called femtosecond laser electronic excitation tagging (FLEET, Michael et

al. [11]). This technique focuses a femto-second laser to a point in the flow-field disassoci-

ating Nitrogen molecules into Nitrogen atoms, which when they recombine fluoresce. This

fluorescence can be recorded for multiple frames allowing for the velocity to be determined.

The benefit of this technique is its experimental simplicity requiring a single laser, camera,

and focusing optics; however FLEET is only able to measure a point or line and is typically

limited to flows with a very high, or even pure, Nitrogen concentration.

1.2 Roadmap

This work focuses on the adaptation of tomographic reconstruction to the multiple

plenoptic camera solution. Adding a second plenoptic camera increases the experimental

complexity of the overall system; however, this increase is only marginal when compared to

other multi-camera techniques such as tomo-PIV (3-5 cameras) or synthetic aperture PIV

(9 cameras). Moreover, additional plenoptic cameras provide an increase in robustness and
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accuracy to the technique, but are not explicitly necessary unlike the aforementioned tech-

niques. This flexibility allows the plenoptic PIV system to be easily tailored to a given

experiment whether experimental complexity/optical access or accuracy is more important.

The focus of this dissertation is on the development of a general framework for the recon-

struction of 3D intensity fields from multiple plenoptic cameras, in this case for 3D PIV,

but it could also be used for the development of other techniques such as volumetric scalar

imaging. During the completion of this work software was necessarily developed including:

an implementation of the VODIM cross-correlation based PIV algorithm, development and

implementation of the refocusing/perspective image synthesis capabilities unique to light-

field cameras, development of a tool used to simulate plenoptic images, and the development

and adaptation of reconstruction algorithms suitable for plenoptic PIV. In addition, smaller

but significant software programs were developed for calibration, image processing, and data

post-processing among many others. The majority of this work focuses on the develop-

ment and implementation details; as such, an emphasis is placed on synthetic data, with a

known solution, allowing quantitative assessments on the accuracy of the technique. Further

development is done on the design on plenoptic cameras, specifically for particle imaging

applications, and an experimental validation is performed.

Chapter 2 presents an overview of the traditional particle image velocimetry technique.

Including detailed information on the experimental considerations (tracer particles, laser

illumination) and the post-processing algorithms which were implemented for this work.

Validation of the algorithm’s implementation is provided using sample data from the PIV

Challenge database. Finally, a brief survey of the current 3D/3C PIV methods are presented.

Chapter 3 provides an overview of light field imaging, and, in particular, the plenoptic

camera. The algorithms used to decode the plenoptic image sensor into a light field as

well as the algorithms used to synthesize images from the light field data are detailed. In

addition, a tool used to generate synthetic plenoptic images, used for testing the plenoptic

PIV algorithms, is presented.
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Chapter 4 begins with a description of the necessary steps for processing a raw plenoptic

image into a 3D/3C vector field. Two of those steps, volumetric calibration and volumetric

reconstruction, are then described in detail; including three different reconstruction tech-

niques: filtered refocusing, multiplicative refocusing, and tomographic reconstruction. A

numerical assessment of the plenoptic-PIV technique including the effect of many experi-

mental configurations as well as noise sources on the reconstruction quality is performed.

In addition, a simulated Gaussian ring vortex is used to determine the benefit of a second

camera on the 3D/3C velocity field. Finally, an experimental validation is performed using

a ring vortex generated in a purpose-built water tank.

Chapter 5 describes the effect that the microlens size has on the reconstructed particle

volume. First, the two depths-of-field associated with plenoptic cameras are related to the

spatial blur and particle elongation effects common to the single-camera configuration. Then,

a theoretical analysis was performed which relates the theoretical particle reconstruction

error with the optimal microlens size for an arbitrary configurations. Synthetic particle

reconstructions and vector fields are then used to validate this model. Finally, experimental

data is presented using a modified version of the experiment from Chapter 4.

Chapter 6 provides concluding remarks.
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Chapter 2

Particle Image Velocimetry

Particle image velocimetry (PIV) refers to a measurement technique, used in experimen-

tal fluid mechanics, that infers the instantaneous vector velocity of a flow field by capturing

the motion of tracer particles immersed in the working fluid. Historically, the roots of PIV

can be traced to laser speckle velocimetry (LSV, Meynart [12]) which measures high concen-

trations of tracer particles such that observing individual particles is impossible; instead the

speckle pattern created by coherent light reflecting off the dense particle field is measured.

Using the same operating principles, with reduced seeding density, a new technique known as

pulsed laser velocimetry was developed by Adrian and Yao [7] which would later that year be

referred to as particle image velocimetry (Adrian [13]). A modern traditional or planar-PIV

system consists of a double-pulsed laser, light-sheet-forming optics, tracer particles, a digital

camera capable of frame-straddling, and a computer for image post-processing. Each aspect

of this system has received a great deal of research over the past 30 years and will be touched

on briefly in this work. For a more detailed overview the reader is referred to Adrian and

Westerweel [14], Raffel et al. [15], and Tropea et al. [8].

2.1 Working Principle of PIV

The process of extracting the velocity of a flow field using PIV is shown in Figure 2.1.

To visualize the motion of the flow field, tracer particles are immersed in the working fluid

(air, water, etc...). These particles must be small enough such that they closely follow the

motion of the fluid, but large enough such that when illuminated they scatter enough light to

be recorded by a camera. A double pulsed laser is used to illuminate the particles twice such

that two images are recorded: one for each laser pulse. Then, the motion of the particles
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Figure 2.1: Schematic illustrating the working principle of PIV.

between the two images is determined using cross-correlation algorithms yielding the final

velocity field.

Fundamentally the measurement acquired by a PIV system is the displacement of small

groups of particles inferred from the acquisition of images at, typically, two distinct instances

in time, t and t + ∆t where ∆t is the known as the pulse separation. From the observed

displacement and the pulse separation the velocity can be determined from its fundamental

definition; however since there are only two data points the extracted velocity is temporally

averaged over the pulse separation as expressed in equation 2.1.

V =
∆x

∆t
=

1

∆t

∫ t+∆t

t

V (t) dt (2.1)

In addition to the temporal averaging, the velocity, V , is spatially averaged since the data

was extracted from a group of particles instead of the individual particles directly. These

properties represent the fundamental assumptions in PIV: small groups of particles have the

same, or very similar, velocities and that with a small enough pulse separation the motion

of the particles is accurately approximated as a straight line. Additional assumptions and

sources of error will be detailed as each part of the measurement technique is discussed.
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2.2 Tracer Particles

One of the fundamental assumptions used in PIV is that the motion of the particles

accurately represents the motion of the fluid. The equations of motion governing a particle

immersed in a fluid are very complex and require assumptions to solve. One such approxi-

mation is known as the Boussinesq-Ossen equation, whose derivation can be found in Crowe

et al. [16], which is predicated on the approximation of small spherical particles at low par-

ticle Reynolds numbers. For more information on the equations of motion governing tracer

particles the reader is referred to Mei [17], for a solution to this equation in the context

of turbulent flows, and Melling [18] for a detailed discussion on tracer particle tracking in

general. In addition a broad review of tracers can be found in Adrian and Westerweel [14]

and Tropea et al. [8].

The fidelity of a tracer particle can be characterized by the difference between its velocity

(up) and the fluid velocity (uf ), known as the slip velocity (us). Due to the use of very small

particles in PIV applications the particle motion is dominated by Stokes drag. Neglecting

the other terms in the Boussinesq-Oseen equation, the slip velocity can be calculated as

us = up − uf = d2p
(ρp − ρf )

18µ

dup

dt
(2.2)

where dp is the diameter of tracer particle, ρp and ρf are the densities of the particle and

fluid respectively, and µ is the dynamic viscosity of the fluid. From equation 2.2 the most

readily apparent way to reduce the slip velocity is to use neutrally buoyant particles (ρp

= ρf ) which would reduce the slip velocity to zero. For liquid flows, this condition can be

easily met allowing for large (∼50 µm) particles to be used. Unfortunately for gas flows the

particle density is generally much larger (O(103)) than the density of the gas. Therefore

smaller particles must be used to minimize the slip velocity (dp < 5 µm).

For a specific flow field, the ability of the tracer to follow the flow can be determined by

comparing the response time of the tracer (τp) to the smallest time scales of the flow (τk). In
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particular the tracers response time must be less than the smallest times scales of the flow

in order to capture their motion. For the case of gas flows (ρp ≫ ρf ) the particle response

to a step change in the flow velocity can be modeled by exponential decay and is given by

τp =
(ρp − ρf )d

2

18µ
(2.3)

The smallest times scales of the flow can be easily calculated as the Kolmogorov time scale

(τk = ℓ/u) of the relevant flow features. Typically the fidelity of a tracer particle in turbulent

flows is presented as the Stokes number (St), which is defined as the ratio of the particle

response time and the characteristic flow times scale as shown in equation 2.4. As a guide,

acceptable tracer accuracy (< 1% error) can be met using the following condition: St < 0.1

[8].

St =
τp
τk

(2.4)

The preceding analysis suggests to use very small particle to decrease the particle re-

sponse time; however, the particles must also scatter enough light such that they can be

recorded by a camera. Micrometer sized particles scatter light in the Mie regime and there-

fore the ability to scatter light is a function of particle diameter, wavelength of light, and

relative refractive index of the particle with respect to the refractive index of the fluid. In

this regime the intensity of scattered light is roughly proportional to d2p and therefore careful

particle selection is required such that the particle properly follows the flow and scatters

enough light to be recorded.

2.3 Illumination

General considerations for illumination in PIV applications are the ability to shape the

light, a narrow pulse width, and enough intensity to image the scattered light of particles.

The ability to shape light is important since, for a 2D/2C PIV system, only a single plane

or slice of the flow field is desired. As shown in Figure 2.1, the laser light is formed into a
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thin sheet, such that all illuminated particles are in the same plane. This is required since

the measurement is inherently 2D; if there is motion in the third dimension it will create a

bias in the 2D/2C vector field. The narrow pulse width is required to create sharp particle

images. If the light source has a large pulse and the particles are illuminated for the entire

exposure of the camera, they would blur and create streaks. This would significantly hinder

the cross-correlation analysis and lead to spurious vectors. These requirements can be easily

met with the use of double pulsed Nd:YAG lasers which create coherent light that can be

shaped using appropriate optics, have a narrow pulse width (∼10 ns), and have ample energy

(typically 10-400 mJ/pulse).

2.4 Image Processing

The image processing algorithms used in this work are implementations of the WIDIM

algorithm (Scarano and Reithmuller [19]) and their 3D extension VODIM (Scarano and

Poelma [20]). Figure 2.2 shows the steps in the predictor-corrector iteration of the WIDIM

algorithm. This algorithm relies on iteratively updating the velocity estimation (predictor,

vkp) using a cross-correlation correction vkc . For the first iteration large windows are used

such that the 1/4 window rule is observed. In subsequent iterations the images are deformed

such that the particle displacement should be zero allowing for smaller windows to be used.

This process repeats for a desired number of iterations or until a convergence criteria is met.

2.4.1 Cross Correlation

The industry standard for determining the displacement of particles for high density PIV

images is cross correlation. The use of correlation based analysis was originally developed

using spatial correlation for double-exposed photographs by Adrian [13] and later for digital

image pairs using cross correlation by Willert and Gharib [21]. For digital cross-correlation,

each image is first subdivided into interrogation windows, then the corresponding windows

between each frame are processed using a normalized 2D cross correlation. Mathematically,
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Figure 2.2: Flow chart showing the processing steps of the WIDIM/VODIM algorithm.

the normalized 2D cross correlation coefficient is shown in equation 2.5

ϕfg(m,n) =

∑
i,j

(
f(i, j)− f

)
· (g(i−m, j − n)− g)√∑

i,j

(
f(i, j)− f

)2 ·∑i,j (g(i−m, j − n)− g)2
(2.5)

where f and g are the interrogation windows of image I1 and I2 respectively. Note that g

is the average of the shifted window. This function has values between 1 and -1 where a

value of 1 corresponds to f = g and -1 to f = −g. An example correlation map (ϕfg) and

the interrogation windows that produced it are shown in Figure 2.3. The flow field in this

example is a linear shift imaged by noiseless synthetic images which is shown to generate

a very strong correlation peak (ϕfg ≈ 0.9) whose location is the estimate of the particle

displacement.

While the direct cross correlation (DCC) approach provides an accurate method of

determining the displacement of a group of particles it is computationally expensive. Com-

putationally, the operation shown in equation 2.5 takes O(d4w) operations where dw is the

size of the interrogation window in pixels. An alternative approach is to do the correlation in

the frequency domain utilizing the convolution theorem, which states that convolution in the

spatial/time domain is multiplication in the frequency domain. This new formulation relies
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Figure 2.3: Example correlation map ϕfg (right) produced from 32 x 32 pixel interrogation
windows extracted from f (t, left) and g (t+∆t, middle)

on computing the fast Fourier transform (FFT) on each interrogation window, multiplying

one times the complex conjugate of the other (turning convolution into cross correlation),

then taking the inverse FFT to return to the spatial domain. This process is mathematically

given by

ϕfg = F−1 {F∗(f) · F(g)} (2.6)

where F is the FFT operator and F∗(f) is the complex conjugate of F(f). Due to the

properties of the FFT this process only takes O(d2w log2 d
2
w) operations. For a typical window

size of 32 x 32 pixels this corresponds to a 100 times speedup over using the DCC algorithm;

because of this, the FFT-based approach is used in this work.

Once the correlation map has been calculated the estimation of the displacement is

calculated from the location of the tallest peak in the map. This is typically done by, first,

finding the location of the largest value in ϕfg, then fitting a function around this element

to determine the location to sub-pixel accuracy. The performance of some typical peak-fit

functions (centroid, parabola, and a Gaussian) were evaluated by Scarano and Reithmuller

[22] where they found that the use of a 3-point Gaussian fit yields the best result. In addition

if the proper sub-pixel window shift is applied the bias error for the Gaussian fit is reduced to

0.011 pixels which is significantly less than expected random error [22]. The 3-point Gaussian

peak-fit function is given in equation 2.7 where the subscripts −1, 0, and +1 indicate the
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position in the correlation map relative to the maximum value. It is noted that this function

is applied to the vertical and horizontal directions independently.

ϵ =
lnϕ−1 − lnϕ+1

2 lnϕ−1 − 4 lnϕ0 + 2 lnϕ+1

(2.7)

In addition to the primary peak, several weaker secondary peaks are shown throughout

the map in Figure 2.3. One method of characterizing the quality of the correlation is the ratio

between the primary peak and the largest secondary peak, known as the signal-to-noise ratio

(SNR). Typically SNR values above 1.5 produce an accurate particle displacement estimate

(Keane and Adrian [23]).

As outlined in Keane and Adrian [23] and Adrian and Westerweel [14] the three major

factors which reduce the detectability of the correlation peak are in-plane displacement, out-

of-plane displacement, and the displacement gradient within the interrogation window. The

loss-of-correlation due to in-plane displacement FI is shown in Figure 2.4 where the SNR is

shown to reduce as the in-plane displacement ∆x increases. This source of loss of correlation

is particularly problematic when using the FFT-based correlation since FFT’s are explicitly

defined for periodic signals. To alleviate this the interrogation windows are typically zero-

padded to at least twice their original size reducing the likelihood that the correlation signal

wraps around to the other size of the interrogation window. In addition, a rule-of-thumb

is to select window sizes such that the particle displacement is less that 1/4 of the window

size, termed the quarter-window rule (Adrian and Westerweel [14]). This source of error can

also be mitigated by using the DCC approach with large window sizes or using multi-pass

method such as WIDIM which will be discussed in a later section.

The out-of-plane loss-of-correlation, FO, is due to the particles moving out of the laser

sheet in between the two frames such that a particle appears in one frame and not the other.

The effect of this error is shown in Figure 2.5 where four correlation maps are shown with

increasing out-of-plane motion given as the ratio of the z-displacement ∆z and the laser sheet
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(a) ∆x/dw = 0.0 (b) ∆x/dw = 0.17

(c) ∆x/dw = 0.30 (d) ∆x/dw = 0.42

Figure 2.4: Correlation map for increasing in-plane displacement error, FI , for FFT based
cross-correlation.

thickness ∆z0. It is shown that as this ratio increases the SNR of the correlation decreases

and at significantly high out-of-plane displacements the correlation peak is impossible to

determine. This is a hard limitation of 2D/2C PIV measurements that cannot be solved

with post-processing.

One inherent assumption made when using cross-correlation is that the motion within

the window is constant. Unfortunately, real world flows have large-scale in-plane and out-

of-plane velocity gradients which will cause a loss-of-correlation. Figure 2.6 shows the loss-

of-correlation due to the spatial velocity gradient within the interrogation window, F∆. It

is shown that as the gradient increases the amplitude of correlation peak reduces while

the width broadens and the SNR decreases. It was shown in Adrian and Westerweel [14]
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(a) ∆z/∆z0 = 0.0 (b) ∆z/∆z0 = 0.25

(c) ∆z/∆z0 = 0.5 (d) ∆z/∆z0 = 0.75

Figure 2.5: Correlation map for increasing out-of-plane displacement error, FO, for FFT
based cross-correlation.

that if the velocity gradient ∆u is less than the particle diameter the loss-of-correlation is

negligible. For stronger gradients window deformation methods have been developed to warp

the interrogation regions to match the local gradients and are the topic of a later section.

2.4.2 Outlier Detection and Removal

Validation of the velocity prediction is performed every iteration in an attempt to mit-

igate spurious correlation due to image artifacts affecting subsequent iterations. This is

particularly important in the WIDIM algorithm since the images for the next iteration are

deformed based on the previous iteration. This process is broken up into two steps: outlier

detection and outlier removal.
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(a) ∆u/dw = 0.0 (b) ∆u/dw = 0.0625

(c) ∆u/dw = 0.125 (d) ∆u/dw = 0.25

Figure 2.6: Correlation map for increasing spatial gradient within the interrogation window,
F∆, for FFT based cross-correlation.

To detect spurious vectors the universal outlier detection developed by Westerweel and

Scarano [24] is applied. This method compares the median residual of each vector’s velocity

relative to a robust estimate of the local velocity variation. The method is considered

universal in the fact that a single threshold value can be used to detect spurious vectors for

any flow-field. For a displacement vector, v0, the median of its KxK neighborhood is given

by um = median{u1, u2, ..., u2K−1} where K is the kernel size (for this work K = 2). For

each neighboring vector, ui, the residual ri = |ui − um| is calculated and the median of the

residual rm = median{r1, r2, ..., r2K−1} is determined. This value is then used to normalize
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the residual of u0, r0, which is given by

r0 =
|u0 − um|

rm
(2.8)

For areas of low turbulence intensities (i.e. uniform flows) this value can become artificially

high as rm → 0. To mitigate this effect a minimum normalization level, ε is added to

equation 2.8 giving

r∗0 =
|u0 − um|
rm + ε

(2.9)

It was determined by Westerweel and Scarano [24] that a suitable value of ε = 0.1 pixels

representing typical cross correlation fluctuation levels. Once r∗0 has been calculated it is

compared to a predetermined threshold, whose value is typically ∼2, which removes the

largest 10% of residuals [24] and if the value is less than the threshold the vector is retained;

otherwise the vector is invalid and replaced.

Once a spurious displacement vector is identified, two methods of replacement are used

in this work. The first is to simply try to use an alternate peak from the correlation map.

For this process the normalized residual test is applied to the displacement determined via

the second and third highest peaks. The alternate peaks are considered in order (i.e if they

both pass the test the second highest peak will be chosen) and if one of the alternate peak

passes the test it is used in lieu of the first and the vector is labeled valid. If all three of the

highest peaks are invalid, the vector displacement is determined by calculating the weighted

average of its valid neighboring vectors.

2.4.3 High-Order Correlation via Image Deformation

Mitigation of the loss of correlation associated with large in-plane displacement, FI and

the displacement gradient within an interrogation window, F∆ is accomplished by applying

the preceding algorithm iteratively. The method referred to as window displacement iterative
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Figure 2.7: Schematics showing the motion of a fluid element and tracers (left) the effect of
truncation order on the window deformation (right). From Scarano [1]

multigrid (WIDIM, Scarano and Riethmuller [22]) has become the defacto standard algo-

rithm using this approach. The WIDIM algorithm starts with large interrogation windows

(observing the 1/4 window rule) to initialize the predictor vkp . For each subsequent iteration

the interrogation regions in the two input images I1 and I2 are shifted/deformed using the

predictor such that, if correct, the images will be identical. In effect, this shifts the corre-

lation peak to the center of the correlation map eliminating the effect of FI in subsequent

iterations. Furthermore, moving the correlation peak to the center of the correlation map

allows for much smaller windows to be used and in general each iteration reduces the size of

the windows and the spacing between them. The process of mitigating F∆ by deforming the

interrogation windows, as detailed in Scarano [1], is the focus for the rest of this section.

Figure 2.7 (left) shows the motion of a cluster of particles tracing a fluid element through

three time instants. For each instant in time, t1, t2, t3, there exists some displacement

d(x, y, t) that describes the motion to the next instant in time. Using the cross-correlation

algorithm described earlier, the displacement can be estimated, in a general sense, with the

following expression

max
d

∫
W

f(x, y)g(x+∆x, y +∆y) dx dy (2.10)

where the displacement, d, is determined by maximizing the correlation between f and

g, displaced by (∆x,∆y), over the interrogation region W . The displacement given from

this formula represents the most probable displacement of the particle field within the in-

terrogation region. If the displacement (∆x,∆y) is a uniform shift, it is obvious that the
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displacement would yield an exact match. The more general formulation, shown in equation

2.11, is when the applied shift varies as a function of position within the interrogation region.

max
∆x,∆y

∫
W

f(x, y)g [x+∆x(x, y), y +∆y(x, y)] dx dy (2.11)

This formula suggests that in order to obtain the correct displacement we must consider the

velocity gradient across the interrogation window; otherwise the estimated displacement will

be some weighted average of the particle ensemble. To obtain a more accurate estimate, the

images can be deformed prior to the cross-correlation analysis using a prediction of ∆x(x, y)

and ∆y(x, y). Mathematically, this is shown in equation 2.12 where the displacement distri-

bution over the finite interrogation region can be estimated using a Taylor series

u(x, y) = u(x0, y0) +

(
∂u

∂x

)
(x− x0) +

(
∂u

∂y

)
(y − y0) + . . .

+
1

2!

[(
∂2u

∂x2

)
(x− x0)

2 +

(
∂2u

∂x∂y

)
(x− x0)(y − y0)

+

(
∂2u

∂y2

)
(y − y0)

2

]
+ . . .

+ o(x− x0)
3

(2.12)

where x ∈ [x0−0.5W,x0+0.5W ], y ∈ [y0−0.5W, y0+0.5W ], and (x0, y0) denotes the center

of the interrogation region. Since the cross-correlation algorithm can only yield the zeroth

order term in the Taylor series, image deformation techniques are used to compensate for the

higher order terms such that the correction made by the cross-correlation algorithm should

be a simple uniform shift. Therefore, the cross-correlation function in equation 2.5 can be

rewritten using the velocity predictor as

ϕfg(m,n) =

∑
i,j

(
f(i− up∆t

2
, j − vp∆t

2
)− f

)
·
(
g(i−m+ up∆t

2
, j − n+ up∆t

2
)− g

)
√∑

i,j

(
f(i− up∆t

2
, j − vp∆t

2
)− f

)2
·
∑

i,j

(
g(i−m+ up∆t

2
, j − n+ up∆t

2
)− g

)2
(2.13)
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where up and vp are the predicted spatial velocity determined from the previous iteration. If

the prediction was correct the resultant correlation peak would be located at the origin of the

correlation map, indicating zero additional shift, and would have a value of approximately

one.

In order to apply equation 2.13 a predictor field must be built using some number of

the parameters given from the Taylor series expansion. The effect of the first three terms

are given in Figure 2.7 (right). It is shown that using a zeroth order predictor is equivalent

to a uniform shift, a first order predictor is equivalent to a piecewise-linear interpolation,

and so on. Several methods have been developed utilizing varying orders of the Taylor series

expansion focusing mostly on the zeroth order and first order approximations as the higher

order approximation add significant computational complexity for minimal gain.

For brevity, only the linear displacement predictor used in the WIDIM algorithm is

considered here. For a full review of the deformation methods the reader is referred to

Scarano [1]. For the first order deformation methods the velocity predictor is interpolated

at each pixel using bilinear interpolation. Typically this is done using the central difference

interrogation such that the deformed images are expressed as Ĩ1(x, y) = I1(x−uk
p/2, y−vkp/2)

and Ĩ2(x, y) = I2(x+ uk
p/2, y+ vkp/2). The advantage of using the central difference over the

forward difference is that it is second order time accurate (FD is 1st order), which improves

the accuracy when using large pulse separations.

Algorithmically, each pixel has a unique predicted displacement interpolated from the

surrounding vectors. Then, using this displacement, the irradiance value for that pixel is

determined from the original image using interpolation. Due to the high-frequency content

in PIV images the use of linear interpolation is not appropriate; instead the pixel intensities

are interpolated using the cardinal function interpolation formula [1] which is given by

Ĩ(x, y) = I(x′, y′) =
i=+∞∑
i=−∞

j=+∞∑
j=−∞

f(i, j)× sin[π(i− x′)]

π(i− x′)

sin[π(j − y′)]

π(j − y′)
(2.14)
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where (x′, y′) is the sub-pixel location determined from the bilinear interpolation scheme.

Computationally, it is impractical to consider all pixels from negative to positive infinity. As

such, only a limited number of pixels (a 7x7 kernel is used in this work) are considered. One

side effect of truncating the interpolation domain is an excessive rippling in the pass-band.

One method of mitigating this effect is to multiply the truncated-sinc with a window function

to smooth the response. For more information on the use of weighting windows with image

deformation the reader is referred to Nogueira et al. [25] and Astarita [26].

An alternative approach is to filter the velocity predictor or corrector as shown in Schrijer

and Scarano [27]. They showed the use of several filter techniques and identified critical

values for the filter strength. In this work the use of the non-linear regression predictor filter

is used. This can be shown to augment the predictor update to the following form

vk+1
p = Fregr

(
vkp
)
+ rc

[
v0 − Fregr

(
vkp
)]

(2.15)

where Fregr

(
vkp
)
is the velocity field filtered with a two-dimensional least squares regression,

rc is the characteristic response of the window filter (sinc(dw/λ) here), and v0 is the exact

particle displacement. Computationally this step is performed by computing the 2D least-

square regression on a k by k region around each vector, then setting the velocity of each

vector to the zeroth order coefficient.

2.5 Example Data

In order to provide additional validation for the particular implementation of the WIDIM

algorithm used in this work it has been applied to several test cases from the PIV Challenge

(pivchallenge.org) database. The PIV challenge database provides a set of well-designed

test cases designed to test specific aspects, challenges, and limitations of the PIV processing

algorithms. A small subset of the database has been chosen, focusing on 2D/2C PIV, to be

presented in this work.
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Figure 2.8: Results from processing 2003 PIV Challenge (Case A) data. Shown are an
example instantaneous velocity field (image pair A100, left) and the ensemble average (right).

2.5.1 2003 PIV Challenge: Case A

The first test case presented is an experimental data set from a self-similar turbulent

jet (case A from the 2003 PIV Challenge, Stanislas et al. [2]). This data set was designed to

test the performance of the different algorithms relative to each other in non-ideal imaging

conditions. Contained in the dataset are 100 image pairs of size 992 x 1004 pixels. An

example instantaneous vector field is shown in Figure 2.8 (left) and an average of all 100

pairs is shown in Figure 2.8 (right). For more information on the experimental arrangement

and to see the original results the reader is referred to Stanislas et al. [2].

This analysis was performed with initial window sizes of 64 x 64 and final windows of 32

x 32 with 50% overlap after 4 iterations using FFT based cross-correlation. For comparison,

the data presented in Figure 2.8 (right) is compressed into a single one-dimensional profile.

This is done by fitting, in a least-squares sense, the 2D mean displacement field to

U(x− x0, y − y0) = Uc(x) exp

[
−(y − y0)

2

λ(x)2

]
with:


Uc(x) =

A
(x−x0)

λ(x) = B · (x− x0)

(2.16)
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Table 2.1: Parameters for analysis of 2003 PIV Challenge Case A.

Resolution Num. Vectors x0 y0 A B

32x32 1357200 2163.5 500 -7703 0.1031

where (x0, y0) is the virtual jet origin, Uc(x) is the mean centerline velocity, λ(x) is the mean

jet width, and B is the jet spreading rate. First the virtual jet origin was determined, for

x0, using the 1/5 rule and, for y0, using the center of the streamwise displacement of the jet

at x = 956 pixels. Then the fitted values A and B could be determined and are listed in

Table 2.1. The data is then presented as a scaled mean velocity (u/Uc) as a function of the

reduced radial coordinate (η = (y − y0)/λ(x)) and is shown in Figure 2.9 where each data

point is the average of all downstream locations. The mean axial velocity (top, left), mean

radial velocity (top, middle) and the rms axial velocity fluctuations (top right) are presented

in Figure 2.9. Comparing to the results published in Stanislas et al. [2], presented in the

bottom row of Figure 2.9 for convenience, the mean axial velocity profile matches well. The

mean radial velocity shows the same general trends, but due to the increased scatter between

the methods its hard to obtain any notion of accuracy. For the rms axial fluctuations a close

match between this implementation and the presented PIV data is observed.

2.5.2 2003 PIV Challenge: Case B

The second test case, from the same PIV Challenge, is a synthetic data set generated

from a DNS simulation of a turbulent open channel flow. Unlike the first test, this test

was designed to test each algorithm compared to a known solution not simply their perfor-

mance relative to each other. The dataset contains 100 image pairs of size 1536 x 512 pixels.

Sample results using 32 x 32 pixel windows with 75% offset are shown in Figure 2.10. This

figure shows an example instantaneous pair (image pair B001) with Figure 2.10 (top) show-

ing the instantaneous streamwise displacement contours and Figure 2.10 (middle) showing

the instantaneous wall-normal displacement contours. In addition, the average streamwise
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Figure 2.9: Results from processing 2003 PIV Challenge (Case A) data. Top row is data pro-
cessed using the algorithms implemented for this work and bottom row is from the 2003 PIV
Challenge [2]. Shown are the scaled results (as a function of the reduced radial coordinate
η = (y − y0)/λ(x)) for the mean axial velocity (top left), mean radial velocity (top right),
rms axial velocity fluctuations (bottom left). A detail of the rms axial velocity fluctuations
for −4 < η < −2 is shown in (bottom right).

displacement contours are shown in Figure 2.10 (bottom). From Figures 2.10 (top & bottom)

the stratification of the boundary layer is easily identified.

In addition to the contour maps, the data is presented as mean line plots (averaged in

x) which are shown in Figure 2.11. In Figure 2.11 (top left) the mean streamwise velocity

profile showing the turbulent boundary layer profile. Figures 2.11 (top middle & right) show

the streamwise and wall-normal turbulence intensities (u′ & v′) respectively. Looking at the

data presented in Stanislas et al. [2], presented in the bottom row of Figure 2.11, the profiles

presented here match to the expected results.
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Figure 2.10: Results from processing 2005 PIV Challenge (Case B) data. Shown are the
instantaneous streamwise component u (top) and the instantaneous wall-normal component
v (middle) for image pair B001. In addition the ensemble average streamwise component is
shown (bottom).
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Figure 2.11: Results from processing 2003 PIV Challenge (Case B) data. Top row is data
processed using the algorithms implemented for this work and bottom row is from the 2003
PIV Challenge [2]. Shown are the mean streamwise velocity profile (left), mean streamwise
turbulence intensity (middle), and mean wall-normal turbulence intensity (right).

2.6 Stereoscopic PIV

The move to obtaining a more complete picture of the measured flow-field started with

stereoscopic PIV (Arroyo and Greated [28], Willert [3]) which adds a second camera in

order to resolve the third (out-of-plane) component of velocity. A typical camera config-

uration is shown in Figure 2.12 where the two cameras are imaging the same plane using

the Scheimpflug condition. By enforcing the Scheimpflug condition, which forces the object

plane, aperture plane, and image plane to intersect at a single point, both cameras are able

to focus across the same object plane.

Once the images are recorded, the 2D/2C vector fields are processed separately for each

camera using the traditional PIV algorithms described earlier. To reconstruct the 3C vector

field the vectors from each camera are combined using the geometric relationship between
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Figure 2.12: Typical stereoscopic PIV configuration applying the Scheimpflug condition.
From Willert [3].

the two cameras. The equations used to reconstruct the 3C vector field are given by

∆x =
B(∆x1 +∆x2)− x(∆x1 −∆x2)

2B +∆x1 −∆x2

(2.17)

∆y =
B(∆y1 +∆y2)− y(∆x1 −∆x2)

2B +∆x1 −∆x2

(2.18)

∆z =
H(∆x1 −∆x2)

2B +∆x1 −∆x2

(2.19)

where 2B is the distance between the two cameras, H is the distance from the cameras to

the object plane, (∆x1,∆y1) and (∆x2,∆y2) are the 2D/2C vector fields from camera 1 and

camera 2 respectively, and (x, y) is the position of the particular vector.

The addition of the second camera to resolve the third component of velocity adds new

sources of error. In particular the error associated with the angle between the two cameras

and the registration error from matching the two cameras to each other. As shown in Prasad

[29], for shallow angles θ < ±20◦ the out-of-plane error is significantly higher (> 3 times)

than the in-plane error. As the separation angle increases to θ = ±45◦ the out-of-plane

error becomes equivalent to the in-plane error; however at these high angles the geometric

reconstruction error increases.

To mitigate the error associated with geometrically matching both camera images, an

empirical calibration procedure is required. This procedure generally involves the simulta-

neous imaging of a calibration target (dot card) by both cameras. By using an empirical
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approach all distortions between the image sensor and object plane can be corrected at once.

Two different methods are typically used to apply the warping; the first is to fit a second

or third-order polynomial to the calibration points (Soloff et al. [30]) and the second is to

use functions derived from the camera pinhole model (Willert [3]). One issue with these

techniques is that it is necessary to position the calibration target at the exact same plane

as the light sheet. Due to this, correction schemes, known as self-calibration, have been

developed by Willert [3], Coudert and Schon [31], and Wieneke [32].

2.7 Extension to 3D

To apply the preceding algorithms to the data generated from volumetric particle recon-

structions (see Chapter 4) they must be adapted to 3D. This is done, simply, by extending

the domain of each step to include a third dimension (i.e. adding an additional for loop)

or, when applicable, by using the 3D version of existing algorithms (i.e using a 3D FFT

in lieu of the 2D version). The algorithms and processing steps are the same, but due to

these requirements, the code base for the 3D VODIM is separate from the 2D WINDIM

code and therefore requires additional testing. To test the 3D algorithms a 3D vector field

was generated using the analytical function of a Gaussian ring vortex. This test will be used

extensively in Chapter 4 to evaluate the multi-camera plenoptic PIV technique as a whole so

the discussion of this vortex will be left to section 4.3.4. For this test, the volume of particles

will be artificially generated, bypassing any reconstruction artifacts, by placing 15,000 par-

ticles (3 x 3 x 3 Gaussian spheres) within a discretized volume (30 x 30 x 30 mm, 260 x 260

x 260 voxels) and displacing them via the analytical equation. Then, the 3D VODIM algo-

rithm is used to determine the displacement of these particles. In this case, a 4 pass scheme

with final windows of size 16 x 16 x 16 voxels with 75% overlap was used. The volumes

used, and the resultant vector field are shown in Figure 2.13 where each particle is shown

as an iso-surface for frame A (Figure 2.13, left) and frame B (Figure 2.13, middle). The

3D vector field (Figure 2.13, right) is shown as a 3D iso-surface of vorticity magnitude (0.2
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Figure 2.13: Artificial particle volumes frame A (left) and frame B (middle) processed with
3D VODIM algorithm (right) showing 3D iso-surface of vorticity magnitude (0.2 voxel-
s/voxel) and two slices of velocity vectors.

Figure 2.14: Histograms of displacement error between the 3D VODIM solution and the
analytical solution for the Gaussian ring vortex. From left to right are the error in each of
the velocity components eu, ev, and ew respectively.

voxels/voxel) with two slices of velocity vectors. For comparison, the analytical displacement

was calculated at each vector location, and the error between the analytical and measured

displacement (eu, ev, ew) was calculated and is shown in Figure 2.14. It is shown that the

average error for each component was roughly zero (< 0.002 voxels) with uncertainties of

0.067, 0.109, and 0.071 voxels for u, v, and w respectively. These errors are at or below the

expected value of 0.1-0.2 voxels [14].

Looking closer it can be shown that the areas of high error are concentrated around

in areas of large velocity gradients (i.e. the core of the vortex ring). Figure 2.15 shows

the displacement error extracted from slices of the volume presented as colormaps overlayed
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Figure 2.15: Slices from Gaussian ring vortex processed with 3D VODIM. Vectors show the
measured velocity and colormap shows the error in each component u (left), v (middle), and
w (right).

with the measured velocity vectors. It is shown the for each of the components in areas of

constant velocity (i.e away from the vortex) the error is low, while in areas of high velocity

gradients the error becomes larger. This is likely due the windowing effect of PIV where

each vector is actually the average of its window.

2.8 Current 3D PIV techniques

Due to PIV being an image based technique, the measurements obtained have been

traditionally limited to two dimensions. Consequently, traditional PIV is not capable of cap-

turing the full three dimensional (3D), three component (3C) velocity field instantaneously,

which is important for quantifying the topology and extent of flow structures which pervade

most turbulent flows. Moreover, turbulence is inherently 3D in nature, and a full description

requires a measurement of the 3D velocity field and derivative quantities such as the stress

tensor and vorticity vector.

The desire to capture the full 3D/3C nature of turbulence has led to the development

of several techniques with a visualization of the capabilities of these efforts shown in Figure

2.16. It is noted that advances such as stereoscopic-PIV (Arroyo and Greated [28], Willert

[33]), as described in the previous section, as well as dual-plane stereoscopic PIV (Kähler
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Figure 2.16: Measured components and domain of laser based velocimetry techniques
(adapted from Scarano [4])

and Kompenhans [34]) capture the three components of velocity albeit in a 2D plane and are

therefore not true 3D measurements. The remainder of this section will focus on five different

3D PIV techniques: scanning PIV (Brücker [35]), defocusing PIV (Willert and Gharib [33],

Pereira et al. [36]), holographic PIV (Hinsch [37], Herrman and Hinsch [38]), tomographic

PIV (Elsinga et al. [39]), and synthetic aperture PIV (Belden et al. [40]).

Scanning PIV extends traditional or stereoscopic PIV to three dimensions by recording

and processing multiple planes of the traditional methods. The key to this technique is the

use of high-repetition-rate lasers, high-frame-rate cameras, and high-speed motion-controlled

mirrors to quickly scan and image a 2D light sheet at multiple locations in the third dimen-

sion. This is done, similar to a traditional PIV system, by forming a laser into a thin light

sheet using appropriate optics; however, for scanning PIV, this light sheet will be deflected

by an oscillating mirror such that each pulse will image a slightly different depth plane cre-

ating a ‘stack’ of image pairs which are then processed using traditional cross-correlation.

If the images are sampled finely enough (observing the Nyquist criterion) the full 3D vector

field can be reconstructed. This technique was demonstrated by Brücker [35] on the flow
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around a short cylinder and to obtain the third component of velocity Brücker used the

concept of continuity between neighboring slices to obtain the out-of-plane component. It is

noted that if a stereoscopic PIV system is used the out-of-plane component could be directly

measured. The fundamental limitation of this technique is the repetition/acquisition rate

of the laser/camera system. The scanning system must be able to scan significantly faster

than the characteristic time scales of the flow in order to ‘freeze’ the flow such that the first

and last image in the scan are imaging the same instant in time. As laser technology, in

particular repetition rate, improves this technique becomes more viable; however, even with

kHz rate laser systems scanning PIV is typically limited to low speed applications. The use

of MHz-rate laser systems (Lynch and Thurow [41], Thurow et al. [42]) has potential to

improve scan rates; however, the complexity and expense of the laser and camera systems

are currently too prohibitive for broad application.

Defocusing PIV attempts to image the 3D position of the particles directly by using

a modified aperture. For the single camera configuration, presented by Willert and Gharib

[33], a mask was placed in front of a conventional lens with 3 pinholes arranged in a triangular

pattern. If a particle is located at the focal plane a single particle image is recorded; however,

if the particle is located elsewhere three particle images are created forming an equilateral

triangle. The 3D position of the particle can then be calculated based on the location of

the encoded pattern on the image sensor as well as the distance between each of the particle

images using simple geometry. The major benefit to this technique is the use of a single

camera that can intrinsically measure the 3D location of particles, which drastically reduces

the experimental complexity when compared to a multi-camera technique. One drawback

is the use of pinhole apertures which significantly reduce the amount of light imaged by

the camera and therefore increase the power requirement of the laser. In addition, since

each particle is imaged as a particle triplet, the sensor can become overcrowded at higher

particle densities making the triplets difficult to identify. A solution to this problem was

given by Pereira et al. [36] where they used three separate lens/camera systems to image
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the particle triplet pattern. Furthermore by using three cameras the parallax of the imaging

system (separation of the pinhole apertures) was increased, increasing the accuracy of the 3D

particle tracking. This system, however, has the obvious requirement of precise alignment

of three camera systems which drastically increases the experimental complexity.

Holographic PIV utilizes the concept of optical holography to image the amplitude and

phase of the scattered particle light (objective wave) when it is superimposed with a second

wave termed the reference wave. This image, called an interference pattern or hologram,

can then be used to reconstruct the particle field by illuminating it with a replica of the

reference wave. The two main configurations for the recording of a hologram are the so

called in-line holography (Sheng et al. [43]) and off-axis holography (Zhang et al. [44]). The

fundamental trade-off between the two techniques are the amount of scattered light and the

resolution of the interference pattern. For off-axis holography the camera is placed normal

to the laser generating an objective wave via side scattering. In contrast, in-line holography

places the camera, as its name suggests, in line with the laser such that the object wave is

created using forward scattering. Since PIV particles are used, which scatter light in the

Mie regime, in-line holography is able to capture a significant amount more light than the

off-axis configuration. The main benefit to off-axis holography is the increased resolution

due to increased angular range of the recorded light. Historically, holographic PIV has been

performed using photographic plates due to their high resolution when compared to digital

CCD/CMOS cameras. In particular, when a hologram is created in the off-axis configuration

the narrow fringe spacing requires photographic plates. As such, the move to digital cameras

has focused on the so called digital in-line holography (DiH) method. In particular, the work

of Sheng et al. [43] is noted for the development of a DiH microscope for 3D particle tracking.

Due to the resolution requirements to resolve the fringe patterns, holographic PIV is typically

limited to small-scale laboratory experiments.

Tomographic PIV represents the current standard of the 3D PIV techniques. From its

inception (Elsinga et al. [39]) it has seen rapid development and widespread adoption in the
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scientific community. A more complete survey of the technique is given by Scarano [4] where

numerous experimental studies are presented. Briefly, tomographic PIV is a technique that

utilizes 3 or more (typically 4) standard CCD/CMOS PIV cameras to image a very thick laser

sheet (∼ 10 mm). Then using tomographic reconstruction the set of images corresponding to

the two distinct instances in time are reconstructed into two discretized intensity fields. These

reconstructed volumes are then processed using 3D cross-correlation algorithms resulting in

a 3D/3C vector field. Much of the current work is focused on using kHz rate cameras to

obtain sequences of time-resolved images. Using this additional information (the knowledge

of particles over time) the accuracy of the technique can be improved through changes to

the tomographic reconstruction algorithms (Novara et al. [45], Lynch and Scarano [46]) or

by directly tracking their motion throughout the sequence (Schanz et al. [47]). The major

limitation of this technique are the large optical access needed to image with four cameras

at large angular separation, high laser power due to the use of small apertures, complexity

of the experimental arrangement, and the overall expense of the system. Nonetheless, tomo-

PIVs success in obtaining 3D/3C velocity measurements in a multitude of facilities is notable

and has revitalized recent research in 3D flow diagnostics.

Synthetic aperture PIV (SAPIV) is a multi-camera technique based on similar principles

(light field imaging) to the work presented here. Typical applications of light field imaging

use a dense sampling of the angular space to reconstruction the light field (in this case the

scattered light from particles). To do this a large multi-camera array (Belden et al. [40] uses

8 cameras) is used. In contrast, the work presented here utilizes plenoptic cameras which

are able to densely sample the angular space (∼ 100 views) albeit with a much smaller

angular range. In SAPIV, the reconstructed particle volumes are computed using the map-

shift-average algorithm which allows for the particle images to be computationally refocused

throughout the volume. Since in-focus particles form sharp peaks and out-of-focus particles

blur over multiple voxels, a simple intensity threshold can be applied to remove the out-of-

focus particles. The reconstruction can then be processed using cross-correlation yielding a
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3D/3C vector field. The number of cameras and their associated experimental complexity

(alignment, optical access, cost, etc.) is the main limitation of this technique.
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Chapter 3

Light Field Imaging

The field of light field imaging has experienced significant growth over the last couple

decades and has evolved into a rich and active area of research. In this chapter, a basic

overview of the history and fundamental concepts of light field imaging are presented; how-

ever, the reader is encouraged to consult other sources, such as Adelson et al. [48, 49], Levoy

et al. [50, 5], Ng et al. [6], and Lumsdaine and Georgiev [51], for more detailed information.

Historically, the notion of a light field is over a century old with its roots outlined in

Lippman [52]. The modern definition of a light field comes from Adelson and Bergen [48]

where space is described as being filled with a dense array of light rays of varying intensities.

These light rays contain information about our world and can be described in a systematic

manner using the plenoptic function. The plenoptic function refers to the parameterization

of the light field, where each light ray is represented by its 3D position in space (x, y, z)

and its angle of propagation (θ, ϕ), thus forming a 5D function 1 representing all light rays

traveling through space. Assuming constant intensity, or more precisely irradiance, of a

light ray along its path of propagation, the plenoptic function is typically reduced to a 4D

function, denoted as L(x, y, θ, ϕ). In this context, a conventional photograph or image can

be thought of as a 2D projection of the 4D light field where the angular dimensions have

been integrated out at the sensor plane.

Adelson and Wang [49] utilized this concept to estimate the depth and shape of objects

by measuring the plenoptic function with a single camera, referred to as a plenoptic camera.

1In a general sense, one can also include the wavelength, polarization and time dependency of light in
space such that the full light field may be considered as an 8D function. This is known as the radiance
function.
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The camera utilized a specialized optical design to encode both the spatial (x, y) and angu-

lar (θ, ϕ) components of the light field onto a 2D image sensor. In a conventional camera, a

main lens collects light across a range of input angles bounded by the size of the aperture

and focuses the light directly onto the image sensor, which records the total light intensity

at each pixel regardless of the angle of incidence. In contrast, in a plenoptic camera the

main lens focuses the entire angular distribution of light onto an array of microlenses. Each

microlens covers a small number of pixels on the image sensor and can be thought of as

forming a macropixel. In this configuration, the microlenses capture the spatial information

contained in the light field, while the pixels contained under the microlens record the angu-

lar distribution. This relationship will be described in greater detail later in this chapter.

Adelson and Wang’s version of the plenoptic camera utilized a 500 x 500 pixel CCD with a

microlens array of 100 x 100 microlenses. This results in a camera with a spatial resolution

of 100 x 100 pixels with an angular sampling of 5 x 5.

Capturing and altering the light field is not limited to using a plenoptic camera. Levoy

[50, 5] describes several methods of obtaining the light field in order to computationally

generate an image or rendering of an object. One method places the object of interest at

the center of a sphere, then, using a spherical gantry, thousands of images can be taken at

different positions along the spheres surface. The resulting collection of 2D images taken

at discrete angles is a representation of the 4D light field. Another method is to mount

multiple cameras, Levoy [5] used 128, in an array allowing an instantaneous light field to be

acquired. These techniques utilize multiple 2D images to build the 4D light field. In this

vein, it is noted that defocusing-PIV, tomo-PIV, and SAPIV are implicitly measuring the

light field, albeit with relatively low angular resolution. In contrast, the plenoptic camera

directly captures the 4D light field on a single image sensor in a single snapshot, with a fairly

dense angular sampling over a limited angular range.

39



Figure 3.1: Computationally refocused images generated from a single exposure, focused:
(left) on an alarm clock that is in front of the nominal focal plane, (center) at the nominal
focal plane, and (right) on a student behind the nominal focal plane.

As camera and microlens technology has improved, the interest in plenoptic cameras

has grown. Of the more recent developments the work of Ng [53, 54] who designed a hand-

held plenoptic camera for digital photography is of particular note. The camera consisted

of a modified DSLR with a 16 megapixel image sensor and a microlens array of 296 x 296

microlenses. Ng’s research focused on computationally rendering conventional 2D images

from the light field data collected by the plenoptic camera in a single snapshot. They

demonstrated the ability to computationally generate, after the fact, photographs with a

different focal position or a shift in the perspective. Examples of refocused images acquired

with our plenoptic camera (described later) are shown in Figure 3.1. The three images

represent the focus shifted toward the camera, stationary, and shifted away from the camera

relative to the nominal focal plane. In Figure 3.2, the perspective of the observer is shifted

with one image showing a left view and the other showing a right view. These images

serve to illustrate the unique information obtained by a plenoptic camera and how it can be

used for computational imaging. Recently, commercial variants of plenoptic cameras have

become available. For consumer photography, Lytro (Founded by Ng) offers a point-and-

shoot plenoptic camera with built in refocusing capabilities. In the field of machine vision

Raytrix offers a plenoptic 2.0 camera that offers a similar ability to change the perspective

of an image after the fact.

More recently, Levoy et al. [55, 56] has developed a light field microscope based on

the plenoptic camera. The fundamental principle remains the same; however, their work
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Figure 3.2: Computationally rendered image where the viewpoint of the observer has been
changed to (left) the left side of the aperture and (right) the right side of the aperture.

focused on additional challenges associated with microscopic imaging. For one, wave optics

and diffraction must be considered in a microscopic environment whereas geometrical optics

is sufficient for macroscopic imaging. In addition, a typical microscope objective functions

differently than a normal camera lens, producing orthographic rather than perspective views.

Next, most objects in microscope images are partially transparent whereas the previous effort

had focused on scenes with opaque objects.

3.1 The Plenoptic Camera

As alluded to earlier, the plenoptic camera differs from a conventional camera with

its ability to not only capture the spatial information about a scene, but also capture the

angular information. In a conventional camera this information is integrated at the image

sensor. This is shown schematically in Figure 3.3. The left most section of the figure shows

light emanating from a point (x, z) on the nominal focal plane of the camera. An objective

lens captures this light and focuses it, for the conventional camera, onto an image sensor,

which then records a single value. Thus, the angular information is integrated and therefore

lost. In contrast, for a plenoptic camera, the objective lens focuses the incoming light onto

a microlens array. This microlens array then distributes the light onto several pixels on the
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Figure 3.3: Illustration of the differences between a conventional camera and a plenoptic
camera in how they sample the light field.

image sensor. As indicated by the different colors, each pixel represents a different section

of the angular distribution.

3.1.1 Prototype Camera

As part of the development of the plenoptic PIV technique, a prototype plenoptic camera

was constructed using an Imperx Bobcat ICL-4820 camera, which uses a Kodak KAI-16000

image sensor, that was the highest resolution interline CCD available at the time of con-

struction. The microlens array was fabricated by Adaptive Optics Associates, a subsidiary

of Northrup Grumman. Specifically, the microlenses are manufactured using a proprietary

process where an epoxy filled mold is used to print the microlenses onto the glass surface.

The primary challenge faced in constructing the prototype camera was fabricating a custom

mounting device for the microlens array to position it accurately over the sensor. A custom

mount was designed by Light Capture, Inc. and manufactured in-house. The mount consists

of a series of positioning screws to adjust the height of the microlens array above the sensor

and to adjust the orientation of the array with respect to the sensor. Due to the availability

of a higher resolution interline image sensor, a second generation camera was designed and

constructed. This camera was based on the Imperx Bobcat B6620 camera, which uses a

Kodak KAI-29050 image sensor. The microlens array is manufactured by Jenoptik Inc using

gray-scale photo-lithography on a fused silica substrate and was mounted using a modified
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Table 3.1: List of fixed (unmodifiable once constructed) plenoptic camera parameters.

Parameter Symbol 16 Mp 29 Mp

Microlens Array Layout - Rectangular Hexagonal
Microlens Pitch (flat to flat) pµ 0.125 mm 0.077 mm
Microlens Focal Length fµ 0.500 mm 0.308 mm
Number of Microlenses: X-direction nµx 289 471
Number of Microlenses: Y-direction nµy 193 362
Pixel Pitch pp 0.0074 mm 0.0055 mm
Number of Pixels: X-direction npx 4820 6600
Number of Pixels: Y-direction npy 3280 4400
Microlens Array Material - BK7/Epoxy Fused silica

version the original microlens mount. In this camera the microlenses are packed hexagonally

instead of rectilinearly to decrease the wasted pixels in between the sub-aperture images. The

full list of the camera parameters for the both the original (16 Mp) and second generation

(29 Mp) cameras are listed in Table 3.1.

3.2 Building the Light Field

As mentioned earlier, the information stored in the light field recorded by the plenoptic

camera can be manipulated in post-processing to create synthetic images whose focus or

perspective has been changed. In order to do this the raw image data must be molded into a

more computationally friendly format. This process, termed building the light field requires

a precise calibration of the microlens and pixel positions and is detailed herein.

3.2.1 Two-Plane Parameterization

The preceding discussion parameterizes a light ray by its position on the world focal

plane and angle of propagation. An alternative, and often times more convenient, way to

parameterize the light field is known as the two-plane parameterization. The discussion

herein is derived from Levoy [50]. Figure 3.4 (left) describes a light ray by its position

(x, z) and its angle of propagation θ. Figure 3.4 (right) shows a light ray that is defined by

pairs of points, u and s, located on two planes separated by a known distance. These two
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Figure 3.4: Two geometric representations of a light ray. The first parameterizes the light
ray by its position and angle of propagation (left) and the second parameterizes the same
light ray by a pair of points on two planes (right). Adapted from Levoy [5]

descriptions of the light ray are equivalent, since they can be derived from each other using

simple trigonometric relations.

The plenoptic camera lends itself to this type of parameterization due to it inherently

having two primary planes that light rays intersect: the microlens plane and the aperture

plane, separated by a fixed distance, li. As discussed previously, the microlenses are re-

sponsible for discretizing the spatial location of all incoming light rays. The second plane,

the aperture, represents the angular information where each microlens is effectively forming

an image of the aperture on the image sensor. Therefore each pixel of the image sensor is

associated with a discretized point on the microlens plane (s, t coordinate) as well as a point

on the aperture plane (the u, v coordinate) separated by the image distance of the main lens.

The two-plane parameterization offers a more straightforward and convenient represen-

tation of the light field as the upper and lower bounds of the aperture plane are fixed and

constant for every microlens. This is in contrast to the angular parameterization, where the

range of sampled angles varies with each microlens.
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3.2.2 Microlens Registration

Using the aforementioned two-plane parameterization, the recorded light field can be

fully described through determination of the (u, v, s, t) position of each pixel. For experimen-

tally obtained images, the exact locations of the microlenses relative to the image sensor are

not known. As such, a registration procedure was developed to determine the positions of

the microlenses, and the pixels beneath them. This procedure begins by taking a registration

image. This image is obtained by minimizing the aperture of the camera (i.e. increasing the

f-stop to its maximum value) and imaging a uniformly illuminated white surface, such as a

piece of paper, while keeping the focal position of the camera constant. The last statement is

very important as the positions of the microlens images on the CCD shift depending on the

main lens configuration. A sample registration image is shown in Figure 7, left. The white

dots are the centers of the reduced aperture image formed by each microlens. In terms of

the two-plane parameterization these dots represent the center of the aperture (u0, v0, s, t).

Since the aperture is not closed to a perfect point and the center of a microlens may not

fall directly on a single pixel, the exact location of each microlens is calculated to sub-pixel

accuracy using a simple centroid fit. An example of the centroid fit is shown in Figure 7,

right where the center of each group of pixels is shown as a green “x”.

This registration procedure results in a list of microlens positions in image coordinates.

For ease of calculation these are converted to physical units using a priori knowledge of

the microlens array, specifically the layout of the array (rectangular or hexagonal) and the

microlens pitch. For this conversion the center of the CCD is considered to be the origin of

the coordinate system. Mathematically, the conversion is given in equations 3.1 and 3.2.

s = spix · pp − 0.5(npx · pp) (3.1)

t = tpix · pp − 0.5(npy · pp) (3.2)
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Figure 3.5: Subset of an experimental registration image (left) and corresponding centroid
fit (right).

3.2.3 Pixel-Aperture Registration

Corresponding to each microlens (s, t) there are an associated set of pixels beneath it.

Using the two-plane parameterization each of these pixels represents light that entered the

camera through a specific section of the aperture. Determining the exact location of this

section for each pixel requires knowledge of the image distance. The image distance can be

determined from the nominal magnification of the imaging system as well as the focal length

of the main lens. Experimentally, this can be calculated by simply imaging a ruler that

is located at the focal plane. Then using the definition of the magnification and the thin

lens equation the image distance can be determined. Using similar triangles, the distance

between each pixel’s position and the center of the microlens can then be converted to a

position on the aperture plane. This assumes that the origin of the (u, v) coordinate system

is the center of the main lens. This conversion is given in equations 3.3 and 3.4 where the

subscript i represents the current pixel.

ui = (s− xi)
ppli
fµ

(3.3)

vi = (t− yi)
ppli
fµ

(3.4)
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Since the microlens spacing does not necessarily line up with the image sensor (i.e. one

microlens is not an integer number of pixels in size) each set of pixels beneath different

microlenses image different chunks of the aperture, making interpolation more complicated.

Therefore the (u, v) data will be resampled onto a uniform grid bounded by the minimum and

maximum u’s and v’s imaged by any pixel. This is done using a simple bilinear interpolation

on each set of pixels behind each microlens. At this point the building of the 4D light field

data structure is complete.

3.3 Image Synthesis

The images shown in Figures 3.1 and 3.2 are illustrations of synthetically generating

images from a recorded light field. Mathematically, these images are the result of simulating

the imaging process on a synthetic light field, L′, which is defined by a synthetic aperture

plane (u′, v′) and a synthetic film plane (s′, t′). This can be expressed as

E(s′, t′) =

∫∫
L′(u′, v′, s′, t′)A(u′, v′) du dv (3.5)

where A(u′, v′) is an aperture function (1 inside the aperture, 0 otherwise). In order to create

an actual image, however, this synthetic light field must be written in terms of the recorded

light field. The relationship between L′ and L is shown in Figure 3.6 where α and β are

implicitly defined and γ and δ are defined as

γ =
α+ β − 1

β
(3.6)

δ =
α + β − 1

α
(3.7)

The blue line in this schematic is representative of a single light ray, which is defined by

its position on the synthetic aperture plane (u′, v′), its position on the synthetic film plane

(s′, t′), and the distance seperating them (α+ β +1)li. Projecting the ray onto the recorded
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Figure 3.6: Schematic showing the relationship between the desired synthetic light field L′

and the recorded light field L. Adapted from Ng et al. [6]

aperture and film planes allows for the synthetic light ray L′(u′, v′, s′, t′) to be rewritten as

L′(u′, v′, s′, t′) = L

(
s′ +

u′ − s′

δ
, t′ +

v′ − t′

δ
, u′ +

s′ − u′

γ
, v′ +

t′ − v′

γ

)
(3.8)

Rewriting equation 3.5 in terms of the recorded light field yields the synthetic imaging

equation:

E(s′, t′) =

∫∫
L

(
s′ +

u′ − s′

δ
, t′ +

v′ − t′

δ
, u′ +

s′ − u′

γ
, v′ +

t′ − v′

γ

)
A(u′, v′) du dv (3.9)

Computationally probing the recorded light field at arbitrary locations requires interpo-

lation since the original light field was recorded at discrete locations. To make this process

easier the 4D interpolation procedure is broken up into two 2D interpolation steps. Given an

arbitrary light ray, (u2, v2, s2, t2), where the subscript 2 refers to the point of interpolation

in interpolation space, the contribution of the neighboring microlenses (s, t) is considered

first and is separated due to the different microlens layouts (hexagonal or rectangular). The

rectangular layout will be used here for illustration; however, the formulation required for

48



Figure 3.7: Interpolation of the light field data structure. (left) 2D bilinear interpolation on
rectilinear (s, t) data. (center) 2D bilinear interpolation on (u, v) data. (right) Illustration
of 4D interpolation for the rectangular microlens array.

the hexagonal layout is given in Appendix 7. The second interpolation is on the (u, v) space

which is independent of the layout of the microlens array. This process will result in 16

coefficients that are used to interpolate the irradiance of the light ray from the measured

light field.

First, we consider the intersection of the light ray with the (s, t) plane to determine the

distribution of the light ray on the nearest four microlenses. This is represented schematically

in Figure 3.7 (left) where the green “x” is the point where the projection strikes the microlens

plane, the blue dots represent the center of each microlens, and the shaded area enclosed by

the dotted lines is the interpolation domain. In this representation, each ray is implicitly

assumed to have a finite width equal to the size of one microlens, which is consistent with the

physical function of the microlenses within the camera. The surrounding microlens positions

are determined, in microlens coordinates, by using the floor and ceiling operators, where

the subscript 0 is associated with the floor operator and the subscript 1 with the ceiling

operator. This allows the relative position of the light ray to the neighboring microlens

centers to be easily calculated, and it has the benefit of auto-normalizing the coefficient

since the separation is equal to one (i.e. ceil(s2) − floor(s2) = 1). Once the interpolation

coefficient for the four microlenses have been calculated the u, v interpolation can take place.
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Figure 3.7 (center) shows the discretization of the aperture plane as viewed from the

pixel behind microlens (s1, t0). The green “x” refers to where the projection strikes the

aperture plane. The red dots represent the centers of each (u, v) location on the aperture.

As with the (s, t) interpolation (u2, v2) is expressed in terms of pseudo-pixel coordinates

using the floor/ceiling operators.

Once the sixteen locations for which we need to calculate a coefficient have been found,

the value of the coefficient must be determined. To do this we employ a simple linear

interpolation scheme in which the coefficient is a combined value of the (s, t) and (u, v)

interpolation steps. The distance from the (0, 0) point in both interpolation schemes is all

that is needed to calculate the coefficient. The relative distances, d, are given by

ds = s2 − s0 dt = t2 − t0 du = u2 − u0 dv = v2 − v0 (3.10)

Using these and simple geometry the sixteen coefficients can be calculated. The interpolation

coefficients, Nuvst, have subscripts that represent their location relative to the voxel to be

interpolated. For example N0000, is the coefficient for point (u0, v0, s0, t0). The coefficients

are calculated by using the normalized distances and are shown to be

N0000 = (1− du)(1− dv)(1− ds)(1− dt)

N0001 = (1− du)(1− dv)(1− ds)(dt)

...

N1111 = (du)(dv)(ds)(dt) (3.11)

The result of this procedure can be seen in Figure 3.7 (right) where the red boarder represents

the four microlenses shown in Figure 3.7 (left) with the (u, v) distribution behind it. The

sixteen interpolation coefficients are shown as the shaded squares with intensity depending

on their weight (white = 0, black = 1). In other words, Figure 3.7 (right) shows the relative
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distribution of intensity on the image sensor that results from a single light ray. The final

irradiance value associated with the light ray would be then be determined by

L′(u′, v′, s′, t′) =

u1∑
u=u0

v1∑
v=v0

s1∑
s=s0

t1∑
t=t0

Nuvst · L(u, v, s, t) (3.12)

3.3.1 Computational Refocusing

A simple introduction into manipulating a light field is to resample the light field at a

new synthetic focal plane. This process, termed computational refocusing, has been adapted

from the work of Ng [53] and relies on the two-plane parameterization of the light field.

For computational refocusing the synthetic imaging equation is restricted by only moving

the synthetic film plane (i.e. β = 1) and using the full aperture (i.e A(u′, v′) = 1). The

composite terms γ and δ then reduce to γ = α and δ = 1, which simplifies the synthetic

imaging equation to the synthetic refocusing equation

E(s′, t′) =

∫∫
L

(
u, v, u

(
1− 1

α

)
+

s′

α
, v

(
1− 1

α

)
+

t′

α

)
du dv (3.13)

A simplified version of the light field representation is shown in Figure 3.6 is shown

in Figure 3.8. This schematic shows the rendering of a synthetically refocused image at s′.

Each light-ray (blue line) is projected from a position on the aperture plane u through s′ and

onto the original film plane s. Then using the interpolation procedure detailed earlier, the

light ray is assigned an irradiance value. For the point (s′, α) the final intensity is the sum

of all the projections, whose intensity is indicated by L(u, s′). Therefore if each of the gray

values indicates a value of one, and the white values hold a value of zero, the final intensity

of (s′, α) would be seven. This process is repeated for every (s′, t′) location to create the full

image.

An additional consideration is how the aperture plane (u, v) is sampled. The simplest

method would be to use the same number of samples as the original recording (number
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Figure 3.8: Schematic showing projection of x′ and u onto original light field.

of pixels beneath a microlens). This method, however, fails at large distances away from

the original film plane due to undersampling of the (s, t) plane. In essence, the distance

between two neighboring projections becomes greater than a single microlens which results

in a loss of information, and creates banding in the image. To overcome this an algorithm

has been developed to dynamically super-sample the aperture ensuring that the maximum

difference between two neighboring projections is less than a microlens (shown in Figure

3.8). In addition, the algorithm does not sample values outside the circular aperture. More

information on this algorithm is available in Appendix 8.

3.3.2 Computational Perspective Generation

Another benefit of capturing the entire light field, is the ability to change perspective

of the scene, or in other words to change the angle at which the scene is observed. These

images are generated by only considering a single angle (i.e. aperture position) in the light

field. Similar to the refocused image, a single value is used to represent a microlens however,

instead of summing the angular information into a single value, a specific angle (u, v) is

chosen and that value is used. Mathematically, the synthetic imaging is restricted by only

considering a single angle (i.e. we do not integrate over the aperture). As such the position of
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the focal plane is irrelevant and we therefore set α = 1. The resulting synthetic perspective

equation is

E(s′, t′) = L

(
s′ +

u′ − s′

β
, t′ +

v′ − t′

β
, s′, t′

)
(3.14)

For the work presented here, β = 1 is chosen such that we are sampling the original aperture

plane. Therefore, we can generate perspectives where the viewer is located at different points

across the aperture. Some sample images of this effect are shown in Figure 3.2.

3.4 Particle Image Simulation

While the previous discussion about manipulating the light field is useful for understand-

ing its unique capabilities, it does not directly apply to 3D fluid velocimetry measurements.

To develop this technique synthetic data is needed to test the overall accuracy of the particle

reconstruction algorithms. Specifically, synthetic data allows the reconstructed volumes to

be compared against a known solution, whereas experimental data does not allow for such

a comparison. To do this a plenoptic camera simulator has been developed and is detailed

herein.

As mentioned previously the optical configuration for a plenoptic camera differs from

a conventional camera with the addition of a microlens array. In order to construct the

simulator, the following variables and relationships are defined in Figure 3.9. Due to the

nature of the simulation all parameters are measured relative to the optical axis in both the

x and y directions. The origin of the z axis is defined at the nominal focal plane of the

camera with positive z pointing away from the camera.

Particle positions are defined by their position relative to the center of a volume posi-

tioned at the nominal focal plane of the main lens, where the main lens is modeled as a thin

lens with focal length, fm, and an aperture with diameter, da. Similarly, the microlenses are

defined by their focal length, fµ, and pitch, pµ. The physical image sensor is defined by a

pixel pitch, pp, which denotes the size of a pixel. The distances separating the elements are
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1 2 3 45

Figure 3.9: Schematic of ray-tracing process for a plenoptic camera.

the object distance, lo, which separates the focal plane of the camera and the main lens and

the image distance, li, which separates the main lens and the microlens array. The image

and object distances are related by the thin lens equation, shown in equation 3.15, which

makes the assumption that the thickness of the lens is negligible relative to the length of the

optical system itself.

1

li
+

1

lo
=

1

fm
(3.15)

We note that modern camera lenses, which typically contain multiple lens elements, can

be approximated by a thin lens where li and lo are measured relative to the principle planes

of the lens. While not considered here, the present framework also allows for more detailed

modeling of these additional lens elements. li and lo are related to the magnification of the

imaging system through equation 3.16.

M = −hi

ho

=
li
lo

(3.16)

In combination with eq. 3.15, this equation allows for the calculation of li and lo knowing

only the magnification, which can be obtained by imaging a ruler, and focal length of the

main lens.
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The optical parameters are now divided into two categories: variable and fixed param-

eters. The variable parameters can change with each experiment and include the main lens

focal length, aperture diameter, and magnification. The object and image distances are also

variable, however, as shown previously, they are dependent on the main lens focal length and

magnification. The second class of parameters are set through hardware design and cannot

be modified once the camera has been assembled. These include microlens pitch, microlens

focal length, pixel pitch, and the number of pixels. These parameters can be modified in the

simulator to accommodate testing and camera design, but are not varied in this work.

One consequence of the microlens parameters being fixed is a forced condition known as

f-number matching. This condition, recognized by Ng et al. [53], states that the image-side

f-number of the main lens must be equal to or greater than the f-number of the microlenses.

This condition prevents any overlap between adjacent microlens images which would other-

wise cause ambiguity in the light field parameterization. The equation for calculating the

image-side f-number, as described by Ng [6], is shown in equation 3.17 where, f is the focal

length, and f/# is the f-number, which is defined as the focal length divided by the size of

the aperture.

(f/#)m = (f/#)µ/(1−M) (3.17)

In this work, we simulate a nominal 1:1 imaging magnification such that hi = ho and

M = −1. In the future, the parameterization of the plenoptic camera as a function of

magnification needs to be considered, however in order to keep the number of variables used

in this work manageable only a single magnification is used. The fixed parameters used in

the present simulation are shown in Table 3.1 and are used throughout this work unless

otherwise noted. The input or variable parameters used throughout this work are shown in

Table 3.2.

In this regards, it is worth commenting that the degree of parallax observed in the

perspective views is limited by the size of the lens aperture used to form the image and
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Table 3.2: Variable parameters for plenoptic camera simulation.

Parameter Symbol Value

Main Lens Focal Length fm 50 mm
Main Lens F-number (f/#)m 2
Magnification M -1
Object Distance lo 100 mm
Image Distance li 100 mm

the objects location relative to the main lens. Ultimately, the aperture size is limited by

the requirement that the f-number of the microlenses must be matched to the image-side

f-number of the main imaging lens. In the work described herein, we focus on 1:1 imaging

with f/4 microlenses. Under these conditions, the f-stop of the imaging lens is set to f/2

with a nominal working distance equal to 2f (i.e. 1:1 magnification is achieved at a working

distance equal to twice the focal length of the imaging lens).

The process of the ray-tracing simulation is shown schematically in Figure 3.9. For

each synthetically generated particle, represented as a point source located at (x, y, z), a

large number of rays (typically > 10,000) are used to simulate the light emanating from that

point. Each light ray is given an initial position, determined from the particles location, as

well as an initial angle. The angle is generated as a random number between θmin and θmax,

which are determined based on the distance to the lens and the aperture size. In Figure

3.9 the maximum angles are shown as the outermost blue rays, and the expressions for the

maximum and minimum angles are given. From this initial state the ray is propagated to

the main lens, labeled as 1. This is done using the simple trigonometric relations given by

x1 = x+ (lo + z) ∗ tan θ (3.18)

y1 = y + (lo + z) ∗ tanϕ (3.19)

Then the ray’s angle needs to be deflected at the main lens, labeled as 2. To do this the

thin lens approximation is strictly enforced, such that the analysis in the previous chapter
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is held true. The new angles of propagation are given by

θ2 = tan−1

(
x1 − x

lo + z
− x1

fm

)
(3.20)

ϕ2 = tan−1

(
y1 − y

lo + z
− y1

fm

)
(3.21)

The ray is then propagated to the microlens array, labeled as 3, using the following trigono-

metric relations

x3 = x1 + li ∗ tan θ2 (3.22)

y3 = y1 + li ∗ tanϕ2 (3.23)

Once the ray is at the microlens plane, the particular microlens struck by the light ray needs

to be determined. Then the distance from the optical axis of the main lens to the optical

axis of the microlens, termed sx, can be determined. The reference frame can then be shifted

to the optical axis of the microlens for the calculation of the deflection of the ray’s angles.

The new angle of propagation for the light ray is given by the following expression.

θ4 = tan−1

(
x1 − x3

li
− x3 − sx

fµ

)
(3.24)

ϕ4 = tan−1

(
y1 − y3

li
− y3 − sx

fµ

)
(3.25)

Finally, the ray is propagated to the image sensor using the following expression.

x5 = x3 + fµ ∗ tan θ4 (3.26)

y5 = y3 + fµ ∗ tanϕ4 (3.27)

At the image sensor, the individual pixel the ray is incident on can be determined and a

count can be added. This process is repeated for all rays for all particles.
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It should be noted that the simulator takes into account diffraction effects by randomiz-

ing the spatial coordinate of each light ray at the microlens plane and sensor plane through a

normally distributed random number generator, set in a manner that the standard deviation

is equal to the diffraction-limited spot size. For both the microlens array as well as the main

lens the diffraction-limited spot size is 5.2 µm. Analysis at the condition presented here

indicates that diffraction does not result in a substantial change in the simulator results.

This is due to the large f-number of the main lens and the microlenses where the diffraction

limited spot size is smaller than the characteristic spatial dimensions (microlens and pixel

pitch) of the camera.

3.4.1 1D Simulations

A 1D simulator was constructed as a simple means to evaluate basic camera concepts

without requiring a full image simulation, and is far easier to visualize. A detailed description

of the simulator construction in Lynch [57], but results are shown here to illustrate the ray

tracing process. Figure 3.10 (top) shows a particle simulated at the focal point of the optical

system. The red lines represent the ray propagation from the particles position through

the entire optical system culminating at the image sensor. The blue line, shown behind the

CCD, is the integrated signal resulting from the ray tracing procedure. In this case the rays

converge onto a single microlens, then spread out onto the image sensor. In Figure 3.10 a-d,

the particle is moved in the volume illustrating the unique signal patterns formed by the

plenoptic camera. In Figure 3.10a, all of the light rays converge in front of the microlens

plane in a manner that is consistent with the image plane moving closer to the main lens

as the object plane moves further away. After passing through this focal point, the rays

spread out and intersect several microlenses. Depending on the incident angle, the microlens

redirect the incident light to different pixels on the image sensor forming a unique image

pattern corresponding to the particle positions. Conversely, in Figure 3.10b, the light rays

are intersected by the microlens array prior to reaching their focal point forming a distinctly
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different image pattern. Figures 3.10c and 3.10d show the effect of shifting the particles

position in the y-direction. The effect shown is that the signal is simply shifted.

3.4.2 2D Simulations

A sample of the full 2D simulator is shown in Figure 3.11 (top). The image provided

is a subset of a full image, whose size is set in accordance with the KAI16000 image sensor

to 4872 x 3248 pixels. This image was generated using a particle volume ranging from z=

-10 mm to +10 mm and a particle density of 0.5 particles per microlens (ppm) or 0.0017

particles per pixel (ppp) resulting in a particle concentration of 2.32 part/mm3. Upon visual

inspection of the image, particles that lie near the focal plane produce nearly circular images

that stand out from the rest of the field. The remaining particle images are distributed across

multiple microlenses and are difficult to distinguish. As a comparison an experimental image

taken with the prototype plenoptic camera is provided in Figure 3.11 (bottom).
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(a) dz = + 30 mm (b) dz = - 30 mm

(c) dy = + 0.1 mm (d) dy = - 0.1 mm

Figure 3.10: 1D simulations at different lateral positions. 1 out of every 100 rays shown.
Integrated signal shown in blue.
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Figure 3.11: Example plenoptic image generated using the ray-tracing simulator (top) as
well as an experimental image taken with the prototype plenoptic camera (bottom).
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Chapter 4

Plenoptic Particle Image Velocimetry

The development of plenoptic particle image velocimetry is the focus of this dissertation;

in particular, using multiple plenoptic cameras to obtain a 3D/3C vector field. Previous work

by Lynch [57] and Fahringer et al. [58] has focused on the development of a 3D/3C measure-

ment technique using a single plenoptic camera. This effort has included both development

of the hardware necessary to capture image pairs in high-speed flows and the corresponding

volume reconstruction algorithms. Both aspects have been explored using a combination of

synthetic and experimental data with the basic concept demonstrated in a variety of flow

fields ranging from low speed boundary layer flows to heated supersonic jets.

Other notable works with plenoptic-PIV include Skupsch and Brücker [59] who per-

formed multi-plane PIV using a plenoptic camera applied to a convective flow. They utilized

a refocusing and thresholding approach to mitigate the effect of out-of-focus particles similar

to SAPIV. Ostmann et al.[60] utilized a 3x3 doublet microlens array in combination with a

shadowgraphy technique to track the 3D path of particles in a swirling flow. Additionally,

La Foy and Vlachos [61] demonstrated the capabilities of using multiple plenoptic cameras

to reconstruct synthetic particle volumes. Specifically, they noticed a substantial improve-

ment in depth resolution with the addition of a second camera. Cenedese et al. [62] focused

specifically on using the plenoptic camera to determine the 3D position of a particle. To do

this they generated a series of refocused images and found the image (corresponding to a

specific depth location) in which the particle had the smallest area. In addition to the work

done using the traditional plenoptic concept, other groups have utilized the plenoptic 2.0

[51], or focused plenoptic, concept to obtain 3D/3C velocimetry data. [63, 64, 65]
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The focus of this chapter is on the reconstruction algorithms used to generate the

particle volumes which are processed with cross-correlation analysis to yield a 3D/3C vector

field. The working principle is described and the steps necessary for processing experimental

reconstructions are detailed. The unique aspects of this process, volumetric calibration and

reconstruction, are discussed in detail and a parametric study of their performance is given

including particle density, number of plenoptic cameras, grid resolution, and various sources

of experimental error. In addition a detailed discussion of the reconstruction artifacts known

as ghost particles is given and the influence of the particle reconstruction on the final 3D/3C

vector field is evaluated via a synthetic 3D Gaussian vortex. Finally, modified versions of

the MART algorithm, specifically designed to decrease reconstruction time, are presented as

well as a reconstruction of a scalar field showing the potential of this technique beyond PIV

applications.

The process of obtaining a 3D/3C vector field from a set of plenoptic images is shown

in Figure 4.1. Much like 2D PIV, as discussed in Chapter 2, the working fluid is seeded

with tracer particles which are illuminated by a pulsed light source, generally an Nd:YAG

laser. The scattered light is then recorded by 2 plenoptic cameras in double-frame mode,

requiring a double pulsed laser. Once the images are acquired they are preprocessed in

order to mitigate the effects of background noise associated with reflections and the image

sensor. In addition a volumetric calibration is needed in order to map multiple cameras

to a common grid. Therefore a volumetric calibration algorithm was developed where each

camera is calibrated to a single set of object points. Using the calibration the images are

reconstructed into a volume of particles which is fed into a 3D cross-correlation technique

based on the VODIM algorithm to obtain the final vector field.

In order to facilitate the reconstruction of particle volumes from multiple cameras, a

common coordinate system must be used. An illustration of the convention used in this

work is presented in Figure 4.2 where three configurations (1-3 cameras) are presented. For

each configuration, regardless of the number of cameras or their angles of separation, the
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Figure 4.1: Working principle of plenoptic-PIV

world coordinate system (x, y, z) is aligned to the single-camera configuration (or in the case

of two cameras, a virtual single-camera configuration which bisects the angle of separation,

θ). This means that for the multi-camera configurations a relationship must be developed

to relate each camera to the common coordinate system and is the focus of the following

section. The remainder of the light field coordinates (u, v, s, t) are defined in the same way

as the single-camera configuration and are unique to each camera as illustrated in Figure

3.6.

Figure 4.2: Illustration of plenoptic-PIV reconstruction process with multiple cameras.
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4.1 Direct Light Field Calibration

The volumetric calibration procedure has two purposes: one to describe the imaging

process of the camera and two to ensure both cameras reconstruct the same volume. One

such calibration procedure was described earlier (in chapter 3) analytically, where each point

in object space (x, y, z) was mapped into the camera to (s′, t′, α) using the thin lens approx-

imation and the magnification relation. Then, by isolating a particular aperture position

(u, v), the location in the original light field that the point in object space was recorded can

be determined using a simple linear projection operator as given by

s = u

(
1− 1

α

)
+

s′

α
t = v

(
1− 1

α

)
+

t′

α
(4.1)

Thus providing a map from (x, y, z, u, v) → (s, t). Using this simple calibration volumetric

reconstruction can be performed; however, due to the assumptions of a perfect lens in both

the thin-lens approximation and linear projection the presence of any optical distortions will

cause errors in the reconstruction. In addition, this formulation assumes that the coordinate

system is aligned with the camera (z is along the optical axis) making it impossible for two

cameras to use a common coordinate system. A more advanced calibration technique which

can correct for these assumptions was developed based on empirically imaging a known

calibration target, derived from a similar technique developed for stereo-PIV (Soloff et al.

[30]). The result of the calibration procedure, termed direct light field calibration (DLFC) as

outlined in Hall et al. [66], is the replacement of the (x, z, u) → s′ → s and (y, z, v) → t′ → t

projections in the synthetic light field with a third-order polynomial. Using this formulation

equation 3.13 can be rewritten for an arbitrary location (x, y, z) as

E(x, y, z) =

∫∫
L (u, v,Ps(x, y, z, u, v),Pt(x, y, z, u, v)) du dv (4.2)
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where these polynomials are defined as

P(x, y, z, u, v) = a0 + a1x+ a2y + a3z + a4u+ a5v + a6x
2 + a7xy + a8xz + a9xu

+ a10xv + a11y
2 + a12yz + a13yu+ a14yv + a15z

2 + a16zu+ a17zv

+ a18u
2 + a19uv + a20v

2 + a21x
3 + a22x

2y + a23x
2z + a24x

2u+ a25x
2v

+ a26xy
2 + a27xyz + a28xyu+ a29xyv + a30xz

2 + a31xzu+ a32xzv

+ a33xu
2 + a34xuv + a35xv

2 + a36y
3 + a37y

2z + a38yz
2 + a39yzu

+ a40yzv + a41y
2u+ a42yu

2 + a43yuv + a44y
2v + a45yv

2 + a46z
3

+ a47z
2u+ a48zu

2 + a49zuv + a50z
2v + a51zv

2 + a52u
3 + a53u

2v

+ a54uv
2 + a55v

3 (4.3)

where a0 → a55 are the calibration coefficients (note that there are two sets of calibration

coefficients: one for s and one for t). The process for obtaining the coefficients for the

polynomial is given by the following procedure which is performed independently for each

camera.

1. Acquire images of calibration target (x, y) at multiple depth locations (z) spanning the

volume of interest.

2. Generate perspective views Euv(s, t) of each calibration image where each pixel in every

perspective view is a unique sample of the light field L(u, v, s, t)

3. Locate every calibration point in each perspective view

4. Build vectors (s, t) containing the locations of the calibration points found in step 3

using the following expressions:

s = [s0(u0, v0), s1(u0, v0), · · · , sn(u0, v0), s0(u1, v0), s1(u1, v0), · · · , sn(u1, v0), · · · , sn(um, vm)]
T

t = [t0(u0, v0), t1(u0, v0), · · · , tn(u0, v0), t0(u1, v0), t1(u1, v0), · · · , tn(u1, v0), · · · , tn(um, vm)]
T
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where n is the number of calibration points, and m is the number of perspective views

in each direction.

5. Build a matrix (A) from the known location of the calibration points as defined by the

manufacturing of the calibration target and the depth location the image was acquired

at using the following expression:

A =



1 x0(u0, v0) y0(u0, v0) z0(u0, v0) u0 v0 x0(u0, v0)
2 · · · v30

1 x1(u0, v0) y1(u0, v0) z1(u0, v0) u0 v0 x1(u0, v0)
2 · · · v30

1 x2(u0, v0) y2(u0, v0) z2(u0, v0) u0 v0 x2(u0, v0)
2 · · · v30

...

1 x0(u1, v0) y0(u1, v0) z0(u1, v0) u1 v0 x0(u1, v0)
2 · · · v30

1 x1(u1, v0) y1(u1, v0) z1(u1, v0) u1 v0 x1(u1, v0)
2 · · · v30

1 x2(u1, v0) y2(u1, v0) z2(u1, v0) u1 v0 x2(u1, v0)
2 · · · v30

...

1 xn(um, vm) yn(um, vm) zn(um, vm) um vm xn(um, vm)
2 · · · v3m


6. Solve the system of equations as = A/s and at = A/t in a least square sense to obtain

the calibration coefficients a0 → a55 for both Ps and Pt.

For synthetic data, the same procedure is repeated, but using a modified version of the

synthetic image generation tool outlined in Fahringer et al. [58] to complete a Monte-Carlo

simulation. This is necessary due to the calibration’s presence in reconstruction process as

discussed in the following section. In addition, using the calibration in the synthetic tests

makes the processing more analogous to real-world experiments. This modified procedure is

given by:

1. A large number (1,000 in this study) of synthetic particles are generated at random

locations (x, y, z) in the volume.
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2. A number of light rays (100 in this study) with random angles are generated and

propagated from each particle to the main lens, where their location (u, v) is recorded

and then to the microlens array where there location is recorded (s, t).

3. Build vectors (s, t) using the recorded microlens location for each ray of each particle.

4. Build a matrix (A) from the locations of each particle (x, y, z) and the location on the

main lens (u, v) of each light ray from each particle.

5. Solve the system of equations as = A/s and at = A/t in a least square sense to obtain

the calibration coefficients a0 → a55 for both Ps and Pt.

It is noted that an increased number of simulated calibration points and angles was tested

with inconsequential change in the coefficients.

4.2 Volumetric Reconstruction Algorithms

The biggest difference between 3D PIV techniques and the traditional planar-PIV meth-

ods is the need to resolve the 3D particle field. In this work the individual particle locations

are not determined; instead the particle distribution is reconstructed using one of two sets

of techniques described herein. The first set of techniques, are based on the computational

refocusing ability of plenoptic cameras, with some modifications. The second technique,

the Multiplicative Algebraic Reconstruction Technique (MART), is based on tomographic

reconstruction of a 3D particle field from its 2D projections which has been used with great

success in tomo-PIV [39].

Figure 4.2 illustrates the geometry of the reconstruction problem. Regardless of the

number of cameras or their angle of separation, θ, the voxel grid is defined with respect to

the single camera configuration. Using the DLFC calibration method described previously

we can relate each camera to this grid explicitly.

The reconstruction process begins, for all algorithms discussed herein, by building the

light field for each camera (i.e. assigning a u, v, s, t value to each pixel). Then a sweep of
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perspective images are generated for each camera fixing the (u, v) sampling for the recon-

struction process. Cycling through each voxel, the contributions from each perspective view

are determined by projecting that voxel onto the imaging plane (s, t) at the angle (u, v) given

by the perspective view using the DLFC data. Then using a simple bilinear interpolation

the perspective views contribution can be evaluated by the particular algorithm. This is

repeated for all perspective views for all cameras for a given voxel.

4.2.1 Integral refocusing

To illustrate the effects of the modified refocusing-based reconstruction algorithms, the

baseline un-modified case is also presented. The computational framework for this algo-

rithm was presented previously. In short, the original radiance of a location in space can

be estimated by integrating over the angular space recorded by the light field at a partic-

ular location. For volumetric reconstruction the angular space is limited by the generated

perspective views for each camera. This is shown in the modified computational refocusing

equation.

E(x, y, z) =
∑
c

∑
uv

L (u, v,Ps(x, y, z, u, v),Pt(x, y, z, u, v)) (4.4)

4.2.2 Filtered Refocusing

The filtered refocusing algorithm uses the same formulation as the standard integral

based refocusing, with the addition of a post reconstruction filter. The filter is based upon

the principle that if a particle exists inside of a voxel, then the pixel whose intensity con-

tributes to that voxel’s refocused intensity will be non-zero. Instead of only calculating the

refocused intensity E(x, y, z) during the reconstruction process, a second value V (x, y, z) is

also calculated. This value is given as the percentage of projections whose value is above a

SNR threshold. Schematically this can be shown in Figure 3.8 where if we take the eleven

projections through point (s′, α) we can see that seven of them yield a non-zero value from

the original light field L(u, s′). Therefore the percentage of valid (projections above zero)
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for this location V (x, y, z) = 0.63. In equation form this is given by

V (x, y, z) =
nproj,valid

nproj,total

(4.5)

Therefore all voxels are represented as two values, their intensity and the percentage of

valid projections. To get the final reconstructed volume, all voxel’s that have less than a

desired percentage of valid projections are set to zero. Mathematically, the final intensity is

determined by

E(x, y, z) =


E(x, y, z) if V (x, y, z) > desired percentage

0 otherwise

(4.6)

In theory, if a particular location is occupied by a particle, then all the light rays passing

through that point should have a finite irradiance value such that a threshold of 100% can

be set as the pass/fail condition for whether a particle occupies that position in space.

In practice, however, there are several reasons why this threshold needs to be lowered in

order to yield a useful reconstruction. The first reason is due to the discrete nature of the

refocusing procedure and the grid upon which the refocusing procedure is applied. In the

current implementation of the refocusing algorithm, a uniform grid of points is created and

all light rays passing through those points are determined. Nominally, the spacing between

grid points is one microlens diameter as each microlens samples all light rays incident upon

it. The true position of a particle, however, is not expected to match up perfectly with this

grid. As such, when the recorded light field is interrogated at this position, some of the

interpolated irradiance values might fall below the threshold due to subgrid positioning of

the particle relative to the grid.

A second reason for relaxing the threshold is due to practical elements in construction of

the camera and image sensor. Pixel defects or the presence of dust on the image sensor can

lead to reduced or non-existent signal levels for particular pixel locations. The sensitivity
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of each pixel can depend on the incident angle of light rays striking that pixel. In addition,

the alignment of the microlens images with the image sensor is imperfect such that one

pixel might sample only a small portion of the main lens aperture leading to a reduced

signal. In the case of coherent illumination, such as with a laser, constructive and destructive

interference could affect the signal measured at the image sensor surface. These effects have

yet to be explored in detail, but could represent practical reasons to reduce the pass/fail

threshold below 100%.

4.2.3 Multiplicative Refocusing

Another adaptation of the refocusing algorithm, first introduced by La Foy and Vlachos

[61], is multiplicative refocusing, which is based, conceptually, on the multiplied-line-of-

sight (MLOS, Atkinson and Soria [67]) algorithm. This method attempts to remove the

blur associated with out-of-focus particles with the scaling of multiplication. Effectively,

the reconstructed signal is equivalent to the projection intensity raised to the power of the

number of views, nuv. If the irradiance generated from particles is significantly higher than

the background noise, the refocused signal, generated by multiplicative refocusing, will be

significantly higher. (i.e. 1000nuv >> 10nuv). Due to this scaling, some consideration must

be made to ensure that a computer can store a very large number. If this goes untreated

voxels will erroneously contain infinite radiance. Appropriate signal attenuation is obtained

by raising each projection by the inverse of the number of views. Additionally to mitigate a

similar effect due to a large number of cameras the contribution from each camera is raised

by the inverse of the number of cameras, nc. The multiplicative refocusing equation is given

by:

E(x, y, z) =
∏
c

(∏
uv

[L (u, v,Ps(x, y, z, u, v),Pt(x, y, z, u, v))]
1/nuv

)1/nc

(4.7)
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4.2.4 Tomographic Reconstruction

Tomographic reconstruction of plenoptic-PIV particle fields is in general an ill-posed

problem whose system of equations is underdetermined leading to ambiguity in the solution.

A special class of reconstruction algorithms are better suited for these problems and are

known as algebraic methods as described by Herman and Lent [68]. These methods rely

on iteratively solving a system of linear equations which model the imaging system. The

problem can be stated as the projection of the volumetric intensity distribution E(x, y, z)

onto a pixel located at (s, t) yields the known intensity of that pixel, I(s, t). In equation

form this is given by ∑
j

wi,jEj = Ii (4.8)

where Nj represents the number of voxels in the line-of-sight of the ith pixel. The weighting

function wi,j describes the relationship between the recorded image (ith pixel) and the 3D

volume of interest (jth voxel), and is detailed later in this section. In order to solve this set of

equations, iterative techniques have been developed that update the current solution for E

based on the previous solution. For additive techniques such as the algebraic reconstruction

technique (ART [68]) the update is based on the difference between the image intensity

data and the projection of the volume such that when they are equal the update added

to the solution is zero. For multiplicative techniques such as the multiplicative algebraic

reconstruction technique (MART [68]) the update is based on the ratio of the image intensity

data to the projection of the volume such that when they are equal the update multiplied

to the solution is unity.

The algorithm used in this work is the standard MART algorithm, which was shown by

Elsinga et al. [39] to work well in multi-camera tomo-PIV. Starting from an initial guess of

the volume E0 = 1 MART is updated via the following expression

Ek+1
j = Ek

j

(
Ii∑

j wi,jEk
j

)µwi,j

(4.9)
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Where k is the number of iterations and µ is a relaxation parameter which must be less than

or equal to two. The exponent restricts updates to parts of the volume affected by the ith

pixel by raising the argument to 0, therefore multiplying the current voxel by 1, if the voxel

is not affected by the ith pixel.

In order to use tomographic reconstruction, a weighting function describing the unique

relationship between the plenoptic camera and the volume must be determined. In techniques

such as tomo-PIV, the weighting function is based on a straight line projection of a pixel

through the volume. The weighting coefficients are calculated as the overlapping volume

between the pixels line-of-sight and the voxel elements normalized by the volume of a voxel.

This weighting function works well when the entire volume is in focus, such that the line-

of-sight of the pixel is a decent approximation for the formation of the image. Due to the

unique point spread function of the plenoptic camera as well as the fact that the volume is

ideally out-of-focus (at least in a conventional sense), this method of calculating the weights

is not applicable. With this in mind, a method for determining the weighting function

was developed in Fahringer et al. [58] by considering the unique nature of the plenoptic

camera. Due to the complex nature of the plenoptic camera this was a complex process that

resulted in a large weighting matrix (roughly 360 GB). An alternate method for calculating

the weighting matrix is to simply use the DLFC data as it fundamentally describes the

imaging process of the plenoptic camera. In essence, the DLFC data provides a model which

relates arbitrary locations in the volume, Ej, to their imaged positions in perspective views

Ii. Therefore for each Ej the location on the image sensor for each perspective view is

determined (s, t). Since this value will, most likely, not align with a single pixel the four

nearest pixels are considered. The weights are generated as the interpolation coefficients

from a bilinear interpolation scheme for each pixel, and the contribution of the four pixels

are processed with the MART equation. Similar approaches have been taken in tomo-PIV.

This simpler approach is used in the remainder of the thesis.
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4.3 Synthetic test results

In order to facilitate a parametric study of the multi-camera plenoptic system, synthetic

images are used such that the accuracy of the reconstruction can be compared to a known

solution. For more information on the specifics of generating synthetic particle images used

in this work the reader is referred to Fahringer et al. [58]. To reduce the number of per-

mutations in the parametric study, some of the variables will be held constant. First, the

simulated cameras are the same as the 29 Mp second generation plenoptic cameras used in

the experimental portion of this work. Second, the multi-camera system will operate at 1:1

imaging conditions using a 50 mm focal length lens to mirror the single camera work done

previously [58, 69]. In addition, Table 4.1 gives a list of all the default simulation parameters

used in this section. Unless otherwise stated these are the values used.

4.3.1 Qualitative analysis

To visually demonstrate the volumetric reconstruction capabilities of these techniques,

a volume containing 319 synthetically generated particles was imaged by both one and two

plenoptic camera systems. Each case was then reconstructed with the four techniques. Fig-

ure 4.3 (left) shows the projection (summation of all signal) of the 3D volume, created with

two-camera MART, along the y-direction. The colormap starts at white (0 counts) and

increases to black (max counts) while the red circles indicate the actual location of the par-

ticles. This figure shows that the MART algorithm, using two cameras, reconstructs the

positions and shape (spherical) of the particles accurately. A subset of the larger volume

was extracted for ease of visualization and comparison of the 8 different camera and re-

construction combinations. For integral refocusing, each particle spans the entire volume

(along depth) creating the black streaks visible in the insets. In the two camera configu-

ration, the intersection of these streaks creates a clear ‘x’ shape at each particle location.

The two modified refocusing techniques perform markedly better, removing most of the blur

associated with traditional refocusing. In the single-camera configuration, both techniques
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Table 4.1: Default simulation parameters. Parameter types: ‘Fixed’ parameters set based
on the manufacturing of the current plenoptic cameras available for this study, ‘Constant’
parameters remain unchanged throughout the simulations, but could be changed in future
work, and ‘Variable’ are changed throughout this work. Unless otherwise specified these are
the parameters used in every study.

Parameter Type Symbol Value

Number of pixels Fixed - 6600 x 4400
Pixel pitch Fixed pp 0.0055 mm
Microlens packing Fixed - Hexagonal
Number of microlenses Fixed - 471 x 362
Microlens pitch Fixed pµ 0.077 mm
Microlens focal length Fixed fµ 0.308 mm
Main lens focal length Constant fm 50 mm
Main lens f-number Constant (f/#)m 2
Magnification Constant M -1
Reconstructed volume size Constant - 20 x 20 x 20 mm3

Number of cameras Variable Nc 2
Camera separation angle Variable θ 90◦

Reconstructed grid density Variable - 260 x 260 x 260
Reconstruction algorithm Variable - MART
Relaxation parameter Variable µ 1.0
Number of iterations Variable - 5
s, t sampling Variable - 2.0pµ
u, v sampling Variable - 1.75∆u
Particle density Variable Np 0.0125 ppµ

perform very similarly clearly showing the ‘cigar’-like particle elongation associated with the

single-camera configuration. Similar performance between the algorithms is noted in the

two-camera configuration, with multiplicative refocusing showing more noise throughout the

volume. The MART algorithm shows smaller particle reconstructions in both the one and

two camera configurations, which can be attributed to MART’s iterative nature.

4.3.2 Quantitative analysis

For dense particle fields, the presence of other particles makes calculating the error of

the particle positions difficult. Therefore, to determine the accuracy of the reconstruction

process, a statistical measure, known as the reconstruction quality factor, is used. This work

utilizes the zero-mean reconstruction quality factor Q∗, as defined in La Foy and Vlachos
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Figure 4.3: Visual comparison of volumetric reconstruction techniques: integral refocusing,
filtered refocusing, multiplicative refocusing, and MART. Image on left is a projection (sum-
mation of all signal along y-direction) of the full reconstructed volume with two camera
MART with insets showing the different reconstruction techniques with 1 or 2 cameras. The
colormap starts at white (0 counts) scaling to black (max counts) and the red circles indicate
the location of the particles.

[61], where the term zero-mean specifies that the volumes have a mean of zero, which is done

by subtracting the mean from the original volume. They demonstrated that as the parti-

cle density increased the zero-mean reconstruction quality factor became a more accurate

measure than the standard reconstruction quality factor defined in Elsinga et al. [39]. The

zero-mean quality factor is defined as:

Q∗ =

∑
Ẽ(x, y, z) · Ẽ0(x, y, z)√∑

Ẽ(x, y, z)2 ·
∑

Ẽ0(x, y, z)2
(4.10)

Where Ẽ(x, y, z) and Ẽ0(x, y, z) are the zero-mean reconstructed intensity field and the zero

mean exact intensity field respectively. The exact intensity volume was created using 3x3x3

voxel Gaussian blobs consistent with the shape of a spherical particle.

Particle density is one of the main parameters to be tested throughout the remainder

of this work. Typically, this parameter is given in terms of particles-per-pixel; however due

to the unique multiplexing of spatial and angular information onto the plenoptic image sen-

sor, this is better expressed in units of particles-per-microlens (ppµ) since the microlenses
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Figure 4.4: Comparison of volumetric reconstruction techniques: integral refocusing, filtered
refocusing, multiplicative refocusing, and MART.

govern the spatial sampling in plenoptic cameras. More importantly, this formulation al-

lows for a more direct comparison to conventional imaging techniques, such as tomo-PIV,

where the volumetric particle density (particles-per-mm3) would typically be higher, but the

performance of the two techniques in terms of particles-per-pixel/microlens is similar.

A comparison of the four proposed algorithms, using the Q∗-factor criterion, is shown

in Figure 4.4 where each algorithm is compared as a function of particle density in the

two-camera configuration with 90◦ of separation. It is clear that integral refocusing does

not yield viable accurate particle reconstructions due to reconstructed particles blurring

across the entire volume as shown previously. The other two refocusing techniques perform

similarly to each other with multiplicative having the slight edge. The MART algorithm is

the best performer in the group especially at higher particle densities. Assuming Q∗ > 0.75

(Elsinga et al. [39]) as the cutoff MART is able to yield viable reconstructions at six times

the particle density of filtered and multiplicative refocusing. This can be attributed to

the iterative nature of MART allowing for corrections to the initial projection. Using this

conclusion MART will be the algorithm of choice for the remainder of this work.
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Figure 4.5: Effect of the relaxation parameter and number of iterations on MART recon-
struction quality (left) and normalized residual (right).

The first set of parametric studies is on the tunable parameters for the MART algorithm.

Due to the iterative nature of the MART algorithm it is necessary to test that the algorithm

converges to the optimal solution. The first test, shown in Figure 4.5, left, shows how the

solution converges with three different relaxation parameters. It is shown that for µ = 0.5

or 1 the solution converges quickly (∼ 5 iterations) and does not diverge from that solution.

For the µ = 0.2 case the solution converges slower (∼ 15 iterations) but to the same solution.

The fact that MART converges to a solution does not mean it necessarily converges to the

optimal solution. This can be tested using the normalized residual (or root mean square

difference) of the pixel intensity compared to the volume projection (i.e. Euvi −
∑

j wi,jEj).

MART is shown to converge to the same solution after 20 iterations for all three relaxation

parameters. For µ = 1 the solution oscillates briefly around iteration 5 but quickly converges

thereafter.

In addition to the relaxation parameter and the number of iterations, the effect of

sampling density of the perspective views used in the reconstruction process needs to be

determined. It is noted that the sampling density (i.e. number of views ∆u,∆v and pixel

density ∆s,∆t) used to extract data from the light field can be arbitrarily chosen using

interpolation. Nominally, the choice for ∆s and ∆t is the size of a microlens and ∆u and
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Figure 4.6: Effect of u, v sampling (left) and s, t sampling (right) on reconstruction quality.

∆v are chosen based on the number of pixels behind each microlens. In Figure 4.6, left

the effect that the number of views of a single camera has on the reconstruction quality is

shown. In this figure the number of views is expressed as the sampling rate normalized by

nominal sampling rate (∆u = lipp/fµ). In addition, the total resulting number of views used

in the reconstruction is given on a second axis. It is shown that for both separation angles

shown here reducing the sampling rate to 1.75∆u has minimal effect on the quality of the

reconstruction, but has the benefit of a near 2x speed up in the reconstruction time. Figure

4.6 (right) shows the effect of the resolution of the perspective views on the reconstruction

quality for both the 1.0∆u and 1.75∆u cases illustrating the compound effect of reducing both

resolutions. It is shown that super-sampling the perspective views by 2 times (decreasing

the normalized sampling rate of the s, t samples) increases Q∗ by 0.1 (13% increase) and

that the decrease in quality due to the u, v sampling is minimal.

Experimental configurations are examined and shown in Figure 4.7. Figure 4.7 (top

left) shows the effect of the number of cameras on the reconstruction quality. It is shown

that the addition of a second camera is a significant improvement over a single camera, and

the addition of a third camera provides some improvement, particularly at higher particle

densities, but there are diminishing returns with the addition of the third camera. The

effect that the angle of separation, θ as referenced in Figure 4.2, has on the reconstruction
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is shown in Figure 4.7 (top right). The maximum quality is shown to be approximately

75◦; however the acceptable range (Q∗ > 0.75) is shown to be between 40◦ and 120◦. The

resolution of the reconstructed voxel grid is explored in Figure 4.7 (bottom right) by holding

the pixel (in this case the nominal pixel size of the perspective views i.e. one microlens)

size constant and varying the size of the voxels. The comparison volume, in this case, was

created with identical particle sizes equal to the nominal 3 x 3 x 3 voxel Gaussian shape

from the 1:1 case. It is shown that values between 1.0 and 2 are acceptable with the best

solution being a 1:1 voxel to pixel ratio. In real experiments the DLFC calibration data may

not yield a perfect calibration. To test the effect of errors in the calibration procedure, after

the images were recorded, one camera was displaced along its x-axis during the calculation

of the calibration coefficients. From Figure 4.7 (bottom right) it is shown that the maximum

acceptable calibration error is 0.75 microlenses. It was shown that the DLFC calibration

method was able to reduce the calibration errors to less than 0.3 microlenses [66].

The effect of noise on the MART reconstructions is shown in Figure 4.8. The first type

of noise is the addition random Gaussian noise on the raw plenoptic image. The noise was

generated with a mean of zero and a variance equal to a percent of the peak image intensity

(shown as the x-axis of Figure 4.8 (left)). This noise was added to the noise-free raw images

and all resulting negative values were set to 0 prior to reconstruction. It is shown that left

untreated image noise is highly detrimental to the reconstruction quality. After 1-2% the

data falls below the allowable quality. To mitigate this effect a sliding mean subtraction

was added to the perspective views generated for the reconstruction process. The results,

using a 32x32 pixel window, are shown in Figure 4.8 (left). The addition of the sliding mean

subtraction mitigates the effect of the noise allowing for accurate particle reconstruction even

up to 90%.

The second type of noise, shown in Figure 4.8, right, is the addition of background

particles. For this simulation the background particles are added in a 1 mm region around

the reconstructed volume and for comparison the addition of the same amount particles
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Figure 4.7: Reconstruction quality as a function of number of cameras (top left), camera
separation angle (top right), voxel-pixel ratio (bottom left), and calibration error (bottom
right).

inside the volume (equivalent to increasing the particle density) is considered. It is shown

that particles outside the volume reduce the quality of the reconstruction more than ones in

the volume. This is due to the fact that the irradiance from the out-of-volume particles is

still used in the reconstruction process and that intensity must be placed somewhere inside

the volume. Having a large amount of particles outside the bounds of the volume increase the

noise floor in the reconstruction essentially adding a low intensity smear across the volume.
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Figure 4.8: The effect of two type of noise on the MART reconstruction: white image noise
(left) and additional particles (right).

4.3.3 Ghost Particles

Due to the fact that the reconstruction process is undetermined there exists multiple

intensity fields, E, that solve the system of equations given by equation 4.8. This results in

the formation of reconstruction artifacts known as ghost particles, which were first discovered

in the context of 3D particle triangulation by Maas et al. [70] for 3D PTV and tomographic

reconstruction by Elsinga et al. [39] for tomo-PIV. For single camera plenoptic-PIV the

formation of discrete ghost particles was not observed. This was a direct result of the

elongation of the particle reconstructions. In essence, at the location where a ghost particle

would have formed the elongated particle reconstructions from the actual particles smeared

together. For the two camera configuration, discrete ghost particles are shown to exist. The

presence and number of ghost particles can be determined, for synthetic data, by counting

the peaks of intensity in the reconstructed volume. For this analysis, true reconstructed

particles are considered to be intensity peaks located within 1 voxel of a simulated particle

and all other peaks (with a value greater than 6 in arbitrary units) are considered ghosts.

Several metrics are presented in Figure 4.9 to show the amount of these artifacts as well as

their effect on the particle reconstructions.
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Plotted in the top row of Figure 4.9 is the amount of detected true particles (left) and

ghost particles (right) as a function of particle density. It is shown that as the particle density

increases the number of detected true particles decreases for all algorithms with MART and

multiplicative refocusing performing the best for the majority of particle densities. This

decrease as a function of particle density is caused by the ghost particles stealing intensity

from real particles, and in some cases, overwhelming them entirely. It is also shown that

as particle density increases the number of detected ghost particles generally increases with

MART outperforming the refocusing based techniques. It is noted that the refocusing based

methods deviate from this trend, with the number of detected ghost particles decreasing

after 0.05 ppµ for both filtered and multiplicative refocusing. In addition, all three curves are

shown to merge toward the same solution as was shown in Figure 4.4 for the reconstruction

quality factor. Essentially filtered and multiplicative refocusing are smearing all the intensity

across the whole volume ala integral refocusing such that a discernible peak does not occur.

In addition, the number of ghost particles detected using integral refocusing is constantly

decreasing, starting at a value of 400. Since all particles span the entire volume, the volume

is filled with signal even at low particle densities. As the number of true particles increase,

the voxels available to contain a ghost decrease resulting in the curve presented here. Just as

important as the number of detected true/ghost particles is their relative intensity. Ideally,

the true particles would have significantly higher intensities such that the cross-correlation

algorithms would favor the true particles. This ratio is presented in Figure 4.9 (bottom left)

and it is shown that MART performs better than the other algorithms for all particle densities

and the ghost-to-true intensity ratio is always less than 0.6. The refocusing based methods

are shown to merge to the same solution as described earlier, and perform significantly worse

after ppµ = 0.05. The effect of ghost particles on the reconstruction is shown in Figure

4.9 (bottom right) as the RMSE of the true reconstructed particle locations is presented

as a function of particle density. It is shown that all algorithms perform similarly with

multiplicative refocusing yielding better results for low particle densities and MART for
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Figure 4.9: Effect of ghost particles on the two-camera reconstruction in terms of: (top
left) percentage of true particles detected, (top right) percentage of ghost particles detected,
(bottom left) ghost-to-true particle intensity ratio, and (bottom right) mean error of true
particles as a function of particle number density.

high densities. This figure along with figure 4.9 (top right) illustrate the influence of ghost

particles has on the true particle reconstructions. For the refocusing based algorithms, these

ghosts tend to merge with true particles directly shifting the peaks causing this error. While

this effect may occur at high densities for MART, the main source of error is the algorithm

shifting the intensities of true particles such that the volume can satisfy equation 4.8.

As an visual example of ghost particles, the formation and suppression of a ghost particle

is shown in Figure 4.10. This figure is a zoomed in version of Figure 4.3 at x = −4, z = 8.5

where a ghost particle is located surrounded by actual particles. Figure 4.10a shows the
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(a) truth (b) 1 camera (c) Mult. Ref. (d) MART 1 iter (e) MART 5 iter

Figure 4.10: The effect of iterations on ghost particle suppression. From left to right: the
truth, single camera MART reconstruction, two camera multiplicative refocusing, two camera
MART after 1 iteration, and two camera MART after 5 iterations.

exact particle distribution for comparison. Figure 4.10b shows the reconstruction by a single

camera configuration illustrating the lack of a discrete ghost particle due to the overlap

of the elongated particle reconstructions. Using a non-iterative method like multiplicative

refocusing (Figure 4.10c) yields a very strong ghost particle whose peak is 50% of surrounding

particles. This is also true of the first iteration of the MART reconstruction (Figure 4.10d),

but further iterations reduce the intensity of the ghost particle and at 5 iterations (Figure

4.10e) the peak of the ghost particle is 14% of the surrounding particles.

4.3.4 Gaussian Ring Vortex

The final test is a synthetic experiment designed to test the two-camera plenoptic PIV

systems ability to produce an accurate velocity field. This test provides an upper limit on

the accuracy of the technique as the images are generated noise free, with zero calibration

error. As such, the only sources of error are those created in the reconstruction process. The

two cameras (θ = 90◦) are imaging a 20 x 20 x 20 mm3 volume randomly seeded with 8500

particles (Np = 0.05 ppµ). Using the analytical equations for a Gaussian ring vortex these

particles are displaced and the image pair is generated, using a synthetic image generation

tool (Fahringer et al. [58]). The MART algorithm (5 iterations, µ = 1, 260 x 260 x 260

voxels) was then applied in the following configurations: only camera A, only camera B,

and both cameras. The resulting volumes were then processed using 3D cross-correlation
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software with final window sizes of 32 x 32 x 32 voxels with 75% overlap. As a means

of comparison, a pair of volumes was generated using the exact position of the particles

(identical to the comparison volumes used for the Q-factor) and were processed using the

same cross-correlation software.

Three-dimensional visualizations of the results for each configuration are shown in Figure

4.11 with an iso-surface of vorticity magnitude at 0.2 voxels/voxel and 2 slices of the velocity

field colored by velocity magnitude. The results of the single camera cases are presented in

Figure 4.11a for Camera A and 4.11b for Camera B. When compared to the actual velocity

(Figure 4.11d) there is noticeable distortion of the vorticity iso-surface. Each case has two

noticeably thinner sections which correspond to the location of the nominal focal plane of

each camera. This effect is due to the depth of field of the main lens, where all particles

image identically onto the image sensor regardless of the z-position in this zone. Note that

the coordinate system is defined at a 45 degree angle between both cameras. Additionally,

there are areas other than the vortex ring that show vorticity, which is related to noise in the

reconstructed velocity field. For the two camera configuration (Figure 4.11c) the vorticity iso-

surface does not have the same distortions as each single camera case and closely resembles

the actual solution. In addition, there are no other sources of vorticity present indicating a

mitigation of the noise seen in the single camera cases.

Slices can be extracted from the full 3D velocity field for easier comparison. Figure

4.12 shows slices of u, v, and w components (rows) for all cases (columns). In the u and w

components of velocity the benefit of the second camera is obvious. The first two columns

(single camera configurations) show a fair amount of noise in the solutions as well as some

asymmetries which are not present in either the two-camera configuration (third column)

or the actual solution (fourth column). In contrast, The v component looks remarkably

similar between all of the cases, at least visually. This is due to the depth direction of both

single cameras being a combination of the x and z axis, which is known to be a problematic

component for the single camera configuration.
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The quantitative benefit of the second camera can be analyzed by presenting the error

of the vector field when compared to the actual solution as shown in Figure 4.13. This

figure plots the absolute error of the w-component versus the u-component for all three

cases. The single camera cases are shown to exhibit large uncertainties along a particular

axis, corresponding to the depth direction for each camera as shown in Fahringer et al. [58].

By combining both cameras the effect of the out-of-plane error is mitigated leaving only the

combination of the in-plane error for each camera. To further emphasize the gain of a second

camera the root mean square error of the velocity field is presented in Table 4.2 for all cases

and all velocity components. For the u and w components the error was reduced from 0.6

to 0.14 voxels and 0.16 to 0.09 voxels for the v component, resulting in an overall reduction

in RMSE of 0.85 to 0.23 voxels. In addition Table 4.2, shows the RMSE for the other

three reconstruction methods. It is noted that due to the poor reconstruction performance

at high particle densities the images for the refocusing based methods were generated with

a Np = 0.012 ppµ. It is shown that MART performs better than the three refocusing

based methods for all configurations. For the single camera configuration, multiplicative

performs better than filtered which performs better than integral refocusing. In the two

camera configuration, multiplicative and integral refocusing perform very similarly and both

out-perform filtered refocusing. The ability for integral refocusing to accurately resolve the

3D vector field is likely due to the noise-free recordings used in this study, where the cross-

correlation algorithm is able to accurately correlate the peaks created by the crossing lines-

of-sight as if they were spherical particles. In the presence of noise, such as the experimental

work shown in the next sections, the other algorithms would likely perform better.
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Table 4.2: RMSE for Gaussian vortex velocity field reconstructed with 3 camera configura-
tions.

Configuration
u RMSE [vox] v RMSE [vox] w RMSE [vox]

IR FR MR MART IR FR MR MART IR FR MR MART

Camera A 0.72 0.63 0.57 0.61 0.23 0.32 0.22 0.16 0.73 0.63 0.58 0.59
Camera B 0.77 0.71 0.67 0.60 0.25 0.41 0.24 0.16 0.77 0.70 0.66 0.59
Two Camera 0.16 0.19 0.16 0.14 0.16 0.19 0.16 0.09 0.15 0.19 0.15 0.14

(a) Camera A (b) Camera B

(c) Two camera (d) Actual

Figure 4.11: Gaussian ring vortex velocity fields reconstructed with individual cameras as
well as the two camera system. Each figure shows vector field slices (colored by velocity
magnitude) and a vorticity magnitude iso-surface (0.2 voxels/voxel).
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(a) Camera A (b) Camera B (c) Two camera (d) Actual

Figure 4.12: Slices of Gaussian ring vortex velocity fields reconstructed with individual
cameras as well as the two camera system. Each row shows a different velocity component:
(top) u-component in the YX plane (Z = 130), (middle) v-component in the YZ plane (X
= 130), and (top) w-component in the YZ plane (X = 130). Each column shows a different
reconstruction configuration from left to right: only camera A, only camera B, both cameras,
and the actual answer.
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Figure 4.13: Absolute error in reconstructed Gaussian ring vortex velocity field for each
individual camera as well as the two camera system.
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4.4 Experimental assessment

The experimental validation of the proposed technique was conducted in a 25L purpose

built water tank (based on Gharib et al. [71]) in which a ring vortex was generated as

shown in Figure 5.20. To generate the vortex a pulse triggers the opening of a solenoid

which releases a slug of water (L/D = 4) through a nozzle mounted on the bottom of the

tunnel. Driving the flow is a constant head pressure tank system, consisting of two tanks

and a pump, used to generate a constant 0.1 m head. For this experiment a nozzle with a

diameter of 19 mm and a non-dimensional length of L/D = 12 was used. Illumination was

provided by a Quantel Evergreen HP (400 mJ/pulse, 10 Hz, running at ∼30% max energy)

which scattered light off of silver-coated hollow glass spheres (mean diameter of 10 microns

at an estimated particle density of 0.03 ppµ), onto two plenoptic cameras at a 90◦ angular

separation. The camera sensors and microlens arrays have the same specifications as used

in the simulation section as defined in Table 4.1 by the fixed parameters; however, these

cameras were equipped with 60 mm lenses operating at an f/# = 2.8 and a magnification

of -0.4 which results in an effective depth-of-field of 55 mm. Two-hundred image pairs were

acquired with a pulse separation of 9 ms. The center of each camera’s field of view was

focused to a point roughly 2.6 diameters downstream of the nozzle at which the origin of the

reconstructed volume is defined where the y-axis is aligned along the axis of the nozzle and

the z-axis is aligned between the two cameras.

The raw images were reconstructed using all four of the algorithms in the two camera

configuration. All algorithms were processed using mean subtractions and, specifically, for

filtered refocusing an intensity threshold of 0 (with the use of the mean subtraction filter)

and filter threshold of 0.925 was used, and for MART a relaxation parameter of 1.0 and 5

iterations were used. The reconstructed volumes were 60x60x60 mm3 in physical size and

were discretized into 300x300x300 voxels. To obtain the 3D vector field each volume pair was

processed using the cross-correlation scheme utilizing 4 passes starting with 643 windows and
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Figure 4.14: Experimental Arrangement.

finishing with 323 windows with 50% overlap resulting in 333 vectors with a spatial resolution

of 3.2 mm/vector.

Results from an instantaneous image pair are shown in Figure 4.15. Each column in

this figure depicts a different reconstruction technique, from left to right: integral refocusing,

filtered refocusing, multiplicative refocusing, and MART. Each column shows a different

visualization of the same data, from top to bottom: 3D vorticity magnitude iso-surface (20

s−1), streamwise summation of vorticity magnitude (
∫
ωdy) shown in the cross-stream plane,

and v-velocity contour with vectors. For integral refocusing, the 3D vorticity iso-surface does

not form a well defined ring as expected. Instead,the core appears as a rectangle aligned with

the directions of each camera. In addition, the two planar slices show severe distortions in

the vortex core, particularly in the v component. Filtered refocusing shows an improvement

over the standard integral refocusing. The ‘donut’ vorticity structure created by ring vortex

is clearly visible in the 3D iso-surface. The slices also illustrate the improvement, showing a

more defined vortex pair. It is noted, that there is a significant amount of secondary vorticity

present in the reconstructed flow-field which is not expected. Multiplicative refocusing shows

a very clean flow field, in the 3D iso-surface plot, with the only vorticity present in the ring

vortex itself. In addition, the slices show a much smoother velocity field than filtered or

integral refocusing. The MART reconstruction is similar to the multiplicative refocusing
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(a) IR (b) FR (c) MR (d) MART

Figure 4.15: Instantaneous vector field generated using four reconstruction algorithms: (a)
integral refocusing, (b) filtered refocusing, (c) multiplicative refocusing, and (d) MART.
Top row shows 3D vorticity magnitude iso-surface (20 s−1), middle row shows streamwise
summation of vorticity magnitude shown in the cross-stream plane in arbitrary units, and
bottom row shows v-velocity contour.

results with a clean flow field with the only vorticity present in the vortex ring itself. The

slices show more variation than the multiplicative results, but they both have a very clear

3D vortex ring structure with features that match the expected results.

The relative precision, or uncertainty, of each method can be determined by comparing

the consistency of multiple instantaneous vector fields via the standard deviation of the

vector fields. Unfortunately, averaging multiple instances of the vortex is non-trivial due

to instabilities in the vortex ring causing the vortex to be captured at a different position

and orientation (tilt) for each run of the experiment. Therefore, a process was developed to
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Figure 4.16: Streamwise velocity profiles extracted from 200 instantaneous vector fields with
the average shown as the black line for all four methods.

extract a profile through the core of the vortex. First the vorticity magnitude was calculated

and a slice was extracted at a specified angle using rotation matrices. Then a line was fitted

through the core of the vortex using the two vorticity magnitude peaks (the core of the

vortex ring) as tie points and a streamwise velocity profile was extracted. This process is

repeated for 360 degrees and the results are averaged. The resulting profiles for all 200 runs

are shown in Figure 4.16 as the blue dots and the average for all 200 runs is shown as the

black line. The standard deviations for the four methods was calculated to be 23.62, 16.41,

11.12, and 6.97 mm/s for integral refocusing, filtered refocusing, multiplicative refocusing,

and MART respectively. The results indicate that the MART algorithm has the highest

precision by a significant margin, followed by multiplicative refocusing.

For comparison, a velocity field was generated from a single camera using the MART

algorithm (5 iterations, µ = 0.2) for the same image pair and is shown in Figure 4.17. The

other algorithms are not presented as the same conclusions from the two camera results can

be drawn for the single camera case. It is shown that the single camera technique captures

the overall flow field; however, the second vortex (located at x = 15mm) is shown to be

compressed along the x-axis. This is likely due to the x-component being a function of the

depth direction for the single camera. The v-component shows a more accurate flow-field

as expected for the in-plane velocity component. In addition, the iso-surface of vorticity

magnitude is shown to shrink along the focal plane of the camera, much like the synthetic

data.
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Figure 4.17: Instantaneous vector field generated from single camera configuration using
the MART algorithm. left image shows 3D vorticity magnitude iso-surface (20 s−1), middle
shows the streamwise summation of vorticity magnitude shown in the cross-stream plane in
arbitrary units, and right shows v-velocity contour.

A more detailed comparison of the one versus two camera configuration is presented in

Figure 4.18 where two slices are extracted from each data set. These slices are taken from

a coordinate system aligned with the single camera (i.e. the x, y axis are coplanar with

the focal plane and the z-axis is aligned with the optical axis of the camera), such that the

improvement to the out-of-plane velocity component, which serves as the main motivation for

this work, can be tested. Figure 4.18 (top) shows a slice extracted from the focal plane of this

rotated coordinate system on which the in-plane velocity vectors and vorticity magnitude

contours are plotted. It is shown that the single camera configuration closely matches the

two camera solution. The slices extracted along the optical axis (Figure 4.18, bottom) paints

a different picture with the single camera configuration showing a severely damped out-of-

plane velocity component, clearly illustrating the benefit of adding a second camera.

Streamwise velocity profiles extracted from 200 instantaneous vector fields of the single

camera configuration are shown in Figure 4.19. In comparison to the two camera results

(Figure 4.16), the single camera reconstructions, using the MART algorithm, yields a stan-

dard deviation of 12.31 which is slightly worse than the two camera multiplicative refocusing,

but significantly worse (∼2x) than the two-camera MART results.
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Figure 4.18: Instantaneous vector field generated from single camera configuration (left) and
two camera configuration (right) using the MART algorithm. Data is rotated to be aligned
with the single camera configuration. Top row shows the nominal ’x’ axis of the single camera
(aligned with the focal plane) and bottom row shows data extracted along the optical axis
of camera 1. Contours show vorticity magnitude in units of s−1.
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Figure 4.19: Streamwise velocity profiles extracted from 200 instantaneous vector fields with
the average shown as the black line for the single camera configuration.

4.5 Acceleration of the MART Algorithm

Due to the iterative processing in the MART algorithm it can take several minutes to

compute a single volume. As an example for the default parameters given in Table 4.1 5

iterations of MART would take 6.5 minutes where the refocusing based methods take less

than one minute. A trivial addition to the algorithm that can decrease the reconstruction

time is to set a lower threshold such that if a voxel’s intensity value falls below the threshold

it is no longer processed. More advanced methods have been developed in the tomo-PIV

community to accelerate the MART processing including multiplied first guess (MLG) by

Worth and Nicols [72] and multiplied line-of-sight (MLOS) by Atkinson and Soria [67] which

act as a pre-processing step allowing MART to converge faster. Additionally Discetti and

Astarita [73] applied a multi-grid approach starting with a coarse grid for the first iteration

and refining the voxel grid on each subsequent iteration.

For this work three accelerated versions of MART are considered. The first is simply

applying a lower threshold of 1e-5 while using the standard MART algorithm. The other

two are based on the MLG/MLOS algorithms where the first iteration of MART is replaced

with, in this case, the filtered refocusing and multiplicative refocusing algorithms. Figure
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4.20 show the cumulative time to compute a reconstruction for the default test case for all

4 algorithms. It is shown that the basic MART algorithm takes 386 seconds to complete,

with 13 seconds of pre-calculations (common to all algorithms), the first iteration taking 98

seconds, and each subsequent iteration takes approximately 70 seconds. The first iteration

takes longer because the denominator in the update equation (equation 4.9) must be pre-

calculated since we iterate over the voxels instead of the pixels. Simply adding the lower

threshold reduces the reconstruction time to 255 seconds. It is shown that until the third

iteration the algorithm performs identically to the traditional MART algorithm due to no

voxels falling below the threshold. On the third and later iterations the time to complete

each iteration is reduced to 23 seconds.

With the replacement of the first iteration with multiplicative/filtered refocusing the

cost of that iteration reduces to 30 seconds. In the case of MR-MART the voxels are not

below the threshold after the first 4 iterations such that iterations 2-4 take 70 seconds like

the regular MART, but the final iteration takes just 3 seconds. For FR-MART (V = 0.75)

iterations 2-4 take 11 seconds each and the final iteration only takes 0.7 seconds. This is

because filtered refocusing sets all voxels less than the validity threshold to zero. It is also

shown that the accelerated versions of MART do not produce a lower quality reconstruction

with each algorithms final volume yielding a Q∗ ≈ 0.82.
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Figure 4.20: Comparison of MART with accelerated variations including MART with a
threshold, MR-MART, and FR-MART.

4.6 Scalar Field Reconstruction

Looking more broadly, plenoptic imaging has the potential to be adapted for 3D varia-

tions of a wide variety of optical flow diagnostics including non-particle based measurements

such as laser induced fluorescence and background oriented Schlieren imaging (Klemkowsky

[74]). In general, most other multi-camera techniques represent a sparse angular sampling of

the light field such that specific assumptions (e.g. sparse particle field) are needed in order

to produce a 3D reconstruction of the volume of interest. Due to these assumptions, these

methods cannot easily be extended to provide equivalent 3D information using other types

of measurement. Plenoptic cameras, on the other hand, provide a dense sampling of the

angular space that allows for the development and implementation of novel algorithms that

arent subject to the same constraints and can thus be more easily adapted to provide 3D

information for other types of measurements. Computational refocusing is a clear example of

one such algorithm that might be exploited for such a purpose such that plenoptic cameras

are likely to find a multitude of applications in the future.

As an example, a simple experiment was conducted using two plenoptic cameras imaging

the flame produced by Bunsen burner. The experimental setup can be seen in Figure 4.21
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Figure 4.21: MART reconstruction of a 3D flame produced by a Bunsen burner.

where a 90◦ degree separation between the two cameras is used. Each camera was equipped

with a 60 mm macro lens whose nominal magnification was -0.6. A sample reconstruction

is shown in this figure that was processed using the MART algorithm (µ = 1, 5 iterations).

It is shown that the reconstruction produces a laminar flame as expected; however some

artifacts such as the square shape and the roughness of the reconstruction are shown. The

square shape is caused by only having two views (the flat sides of the views are aligned with

the cameras) and the roughness is attributed to the MART algorithm forcing a maximum

entropy solution. Alternative algorithms exist which do not enforce this condition and are

designed to handle smooth data. Nevertheless, this simple experiment shows promising

results and requires further investigation.
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Chapter 5

Design and optimization of a plenoptic camera for PIV applications

This chapter attempts to provide insight into the inherent trade-off between angular and

spatial resolution associated with plenoptic cameras. As mentioned previously, the spatial

and angular resolution of a plenoptic camera is governed by the size of a microlens; in

particular, the physical size of the microlens dictates the spatial resolution, and the number

of pixels imaging through each microlens controls the angular resolution. The purpose of

this chapter is to establish rules-of-thumb for the selection of a particular microlens size for

a given experiment in the context of particle reconstruction. Previous work by Deem et

al. [75] explored this relationship using geometric optics where they derived a relationship

between the size of a reconstructed particle and the relative microlens size; however this

relationship was only valid at the nominal focal plane of the camera. In addition, they used

the ray-space representation of the light field to indirectly infer the accuracy as a function

of depth. This work aims to augment their original analysis to any arbitrary depth using

numerical simulations and in doing so provide a guide in the design of a plenoptic camera

for particle imaging.

The first part of this chapter describes a fundamental relationship between the camera’s

parameters and the size/shape of reconstructed particles. This analysis begins with a discus-

sion of the multiple depths-of-field associated with plenoptic imaging which is shown as an

accurate model of the blur and elongation of a reconstructed particle. Following this analy-

sis is a theoretical extension of the aforementioned ray-space analysis by Deem et al. where

a prediction of the reconstruction accuracy at an arbitrary depth is given. Then a series

of synthetic experiments are presented to validate this model and finally, an experimental

validation is provided.
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5.1 Depth of Field

The plenoptic camera offers the unique ability to generate two types of images (refocused

and perspective) as described in Chapter 3. One of the major differences between these two

images is the level of blurring that occurs throughout the image. For the refocused images

(Fig. 3.1) the majority of the image is out-of-focus; whereas in the perspective images (Fig.

3.2) the entire field of view is seemingly in-focus. This range, termed depth of field (DoF),

can be calculated for any given imaging system from the near/far depth limits as described

by Kingslake [76] and are given by

zn =
dalo

da + co
(5.1)

zf =
dalo

da − co
(5.2)

where da is the size of the aperture, lo is the object distance, and co is the circle of confusion

in object space. The DoF can then be calculated by taking the difference between the far

and near field depth limits as given by

DoF = zf − zn =
2daloco
d2a + c2o

(5.3)

To obtain the two unique depths of field associated with refocused and perspective views

one must change the aperture diameter accordingly. For refocused views the entire aperture

(summation of all u’s and v’s) is used, similar to traditional imaging, and therefore da = pm.

Perspective views, on the other hand, use only a single pixel (single u,v value), most similar

to a pin-hole camera, and therefore utilize a reduced aperture where da = ∆u = lipp/fµ. The

effect of this reduction in aperture can be seen visually in Figure 5.1 where the blue shaded

region is the full aperture imaging condition, and the green shaded region is the reduced

aperture imaging condition. The depth limits are defined, in this figure, as the intersection

of the field of view (blue/green shaded regions) with the image of the circle of confusion
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Figure 5.1: Schematic illustrating the two unique depths of field using the full aperture
(blue) as well as a single pixel/view (green).

(dotted line). It is shown that the reduced aperture DoF, DoFp, extends far beyond the full

aperture DoF, DoFm, which is consistent with the images shown in Figures 3.1 and 3.2.

In the context of particle reconstructions, both the full and reduced aperture DoF have

an effect. First, since the particle reconstructions are based on the perspective views, as

detailed in Chapter 4, the reduced aperture DoF represents a limit on how deep a volume

can be accurately reconstructed. When the volume extends beyond this range it is expected

that the quality of the particle reconstruction will decrease as the reconstructed particles

blur/elongate. This is similar to other multi-camera techniques such as tomo-PIV where

the entire volume is required to be inside the DoF, which is accomplished by increasing the

f-number, decreasing the aperture diameter, and extending the depth of field. By doing this,

these multi-camera techniques limit the amount of light collected by the imaging system.

For each increase of the f-stop the light intensity drops by a factor of two. For plenoptic

imaging, this effect is mitigated somewhat since the size of the microlenses increase and

therefore the collection area is increased. This would be analogous to increasing the pixel

size in a multi-camera system. In addition, the total amount of collected light remains the

same as the physical f-number is unchanged. Therefore the signal levels in the reconstructed

volumes should be unaffected. Second, the full aperture DoF represents, to some degree, the

elongation of the particle reconstructions as well as producing a region around the nominal

focal plane at which the particle images will look the same, and therefore create identical
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particle reconstructions. This leads to an ambiguous solution in this area for the single-

camera configuration.

In general, a decreased full-aperture DoF and an increased reduced-aperture DoF is

desired for optimal particle reconstructions. There are two options for decreasing the full-

aperture DoF: first is to increase the diameter of the aperture, by decreasing the f-number,

and second is to increase the magnification. The first is limited by available lenses and the

requirement for f-number matching as discussed in Chapter 3. The second can be done,

but at the expense of the size of the field of view/reconstructed volume. To increase the

reduced-aperture DoF the reduced apertured diameter and/or the magnification needs to be

decreased. Decreasing the magnification has the side effect of increasing the field of view

and reducing the resolution (microlenses/mm) of the imaging system and requires a trade-off

between DoFm and DoFp. The diameter of the aperture, however, can be increased easily

by increasing the size of the microlenses. This represents the fundamental trade-off that

will be discussed in this Chapter: small microlenses (greater resolution and smaller circle of

confusion, small DoFp) vs. large microlenses (lesser resolution and larger circle of confusion,

large DoFp).

Figure 5.2 shows the effect of changing the microlens size, presented here as number of

pixels per microlens Npxpµ = pµ/pp assuming a constant pixel size, on the single pixel depth

of field. The figure on the left shows lines plotted along the near and far field limits with

the shaded area in-between indicating the area that is inside the DoF. The figure on the

right shows the total DoF for each magnification. As predicted as the size of the microlens,

and therefore the circle of confusion, increases or the magnification decreases the single pixel

depth of field increases.

5.1.1 Generalized Formulation

The previous formulation is only valid for the nominal focal plane as it was derived in

the context of conventional imaging. Since the plenoptic camera can refocus to other planes
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Figure 5.2: Single pixel DoF as a function of microlens size given in pixels per microlens for
two magnifications.

a more general framework is needed. This idea has been previously explored by Perwaß and

Wietzke [77] from which the following analysis is derived. In particular, they noted that, the

circle of confusion varies with depth as shown in Figure 5.3. It is shown that as the object

moves further away from the nominal focal plane the image blurs to a larger area resulting

in a larger circle of confusion (if it blurs outside the size of a microlens). By calculating the

size of this blur spot, a more general circle of confusion can be defined as

ci(α) = max

(
pµ,∆u

∣∣∣∣ 1α − 1

∣∣∣∣) (5.4)

where α = l′i(z)/li is the non-dimensional image space location of the object (z). It is noted

that within the depth of field this value will be less than the size of a microlens, which

much like the pixel in the conventional imaging scenario is the minimum allowable circle of

confusion. Therefore any value ci(α) that is less than the size of a microlens is set to the
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Figure 5.3: Schematic generalizing the calculation of the circle of confusion in image space
for a perspective view. The colors represent the near field (green), the focal plane (blue),
and the far field (red).

size of a microlens. The object space CoC can then be defined as

co(α) = −ci(α)/M
′(α) (5.5)

where

M ′(α) ≡ (li + z)/(lo + z) = α(1−M)− 1 (5.6)

Using this formulation it is possible to calculate the DoF at any arbitrary refocused plane.

To illustrate how the circle of confusion operates as a function of depth, the theoretical

expression for ci is plotted against depth z in Figure 5.4. In addition, perspective views

of particle simulations (described in the next paragraph) are added for visualization at 7

different depth locations: z = -10, -5, -4, 0, 4, 5, and 10 respectively. This data was

calculated using microlenses of size 14 pxpµ and a nominal magnification of -1. It is shown

that around the focal plane from approximately -4.1 to 4.5 the circle of confusion remains

constant and is given by the size of a microlens. Outside this region the circle of confusion

increases due to the particles being outside the reduced aperture DoF, DoFp. This is clearly
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evident in the perspective view images where z = -4, 0, and 4 have the same size, but z =

-5 and 5 have increased image sizes.

A numerical simulation was performed to test the accuracy of the variable circle of con-

fusion and full aperture depth of field model by simulating the imaging process on synthetic

data. The basis for the simulation, and all simulations in this chapter, is the same as the in

the previous chapter as defined in Table 4.1, but only using a single camera. The data was

generated via the simulation of 1500 individual particles, creating 1500 individual images,

using the plenoptic simulation tool discussed in Chapter 3 for three different microlens sizes:

pµ = 10, 14, and 20 pxpµ. Then two separate analysis were performed: the verification of the

circle of confusion model and testing if the full-aperture depth of field is a reliable predictor

for particle elongation. The circle of confusion model was tested by extracting a perspective

view (u = 0, v = 0) from each particle image, then summing that image along the x-axis

creating an image that is a single pixel wide as shown in Figure 5.5. The final image is then

created by inserting each individual image, at its respective depth location, into a single

continuous image whose boundary should match the variable circle of confusion model. To

test the depth of field as a predictor for particle elongation, each of the 1500 images were

reconstructed into volumes using the MART algorithm. Then following a similar procedure

to the circle of confusion, as illustrated in figure 5.5, the volumes are compressed into a single

pixel image and inserted into a continuous image at their respective depth locations.

The results of the circle of confusion test are shown in Figure 5.6 with the y-axis showing

the blur in the perspective view and the x-axis showing the particles location in depth for

three different microlens sizes of 10, 14, and 20 pxpµ from top to bottom. It is shown that

the circle of confusion illustrated by these plots is greater than what the model predicts,

which is the result of two factors: the discretization of the microlens array as well as using

interpolation in the generation of the perspective views. The discretization error is created

when the incident light does not coincide exactly with a microlens. If a cone of light incident

on the microlens array is smaller than a microlens (nominal circle of confusion) and is centered
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Figure 5.4: Illustration of the generalized circle of confusion, which is constant inside the
DoFp and expands outside of it. Schematic shows ci plotted against volume depth, z and 7
perspective views, from left to right, located at z = -10, -5, -4, 0, 4, 5, and 10 respectively.

on a single microlens only a single pixel on the perspective view will have signal and the

circle of confusion will be equal to one microlens; however, if the cone is centered on the

edge of a microlens there will be signal on multiple microlenses and therefore the circle of

confusion will be two microlenses. In addition, the effect of interpolation in the generation

of the perspective view will be to blur the image on the order of a single pixel. To account

for both of these effects the range of circle of confusion’s we expect to see is between the

theoretical value, defined by equation 5.4, and the theoretical value plus two pixels (in this

case a pixel is equivalent to a microlens). The red line in Figure 5.6 shows the model’s

prediction plus two microlenses and is shown to bound the synthetic data for all cases.

Figure 5.7 shows the results of the particle elongation tests with the y-axis showing

particle elongation and the x-axis showing the particles location in depth for three different

microlens sizes of 10, 14, and 20 pxpµ from top to bottom. In these figures the red lines
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Figure 5.5: Schematic showing the construction of Figure 5.6 (Circle of Confusion) and
Figure 5.7 (Particle Elongation).

indicate the full aperture depth of field calculation using the average circle of confusion

generated from the previous analysis: two microlens diameters. It is shown that the full

aperture depth of field is a good predictor for the particle elongation for all cases.
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synthetically generated particle images for three different microlens sizes. Red lines show the
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Figure 5.7: Illustration of reconstructed particle elongation as a function of volume depth
for three different microlens sizes. Red lines show the bounds of the predicted theory of the
reduced aperture depth of field with a one microlens buffer for the circle of confusion.
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5.2 Effect on theoretical depth accuracy

The preceding analysis focused on the effect of the camera parameters, in particular

the microlens size, on the size/shape of reconstructed particles. This section shifts the focus

to the effect that the microlenses have on the theoretical positional accuracy of the particle

reconstructions. In order to analyze this effect, a simplified two-dimensional light field is

considered. By reducing the parameterization a simplified model for extracting an objects

position in space directly from the light field can be derived. This model is based on the

ray-space diagrams, introduced by Levoy and Hanrahan [50], which plot the two remaining

light field coordinates against each other: s v. u. This process is shown in Figure 5.8, where

two light rays (blue/green lines) emanate from a common point p, pass through the main

lens at points u− and u+, and then strike the same microlens, s. In a ray-space diagram

these two light rays are depicted as points (u−, s) and (u+, s) as shown in Figure 5.8 (right).

All light rays captured by the light field can be shown in this manner, allowing for the direct

analysis of the captured light field.

The ray-space diagram shown in Figure 5.8 illustrated the concept with a continuous

sampling of the light field; however, when a light field is recorded by an actual plenoptic

camera, it is recorded in discrete samples. This is illustrated in Figure 5.9 where each

rectangle represents one such discrete sample of size: ∆s = pµ by ∆u = lipp/fµ. Additionally,

Figure 5.8: Schematic illustrating the calculation of ray space diagrams. (left) shows the
projection of point p through the u plane onto the s-plane and (right) shows the resultant
ray-space diagram.
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Figure 5.9: Ray-space diagram of a particle on a discretized light-field based on the microlens
array.

this figure depicts a light field that contains all light rays emanating from a single point (i.e.

the entire u distribution), instead of just the two shown previously. This image of a single

object, in ray-space, is shown to form a continuous line spanning the u-coordinates whose

equation is shown to be

s =

(
1− 1

α

)
u+

s′

α
(5.7)

where s′ is the image-space spatial location of point p. Both the slope and y-intercept of this

equation are based on the position of the object. Therefore, if the slope and y-intercept can

be determined, so too can the original position of the object. Using all locations (u, s) in the

light field containing signal, the light field data can be fit, in a least-square sense, weighted

by the intensity of the light field. Then from the measured slope the depth location, α, of

the object can be determined followed by its spatial position using the y-intercept.

To test the performance of this technique, a simulation of the light field recording where

the signal is artificially applied to the ray-space diagram was performed. This is done, by

first defining the ray-space as a rectilinear grid with spacing (∆u,∆s). Then using equation

5.7 a line is written from an initial u0 = −D/2 to a final u0 = D/2 position. At each position

(10,000 in total) the (u, s) sample containing the position is found and its irradiance value
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increased by 1. In addition, Poisson shot-noise is applied to ray-space image to add variation

in the signal. The position can then be estimated via the procedure detailed earlier.

By repeating the simulation and evaluation of the ray-space model the plenoptic cam-

era’s ability to resolve the depth of an object can be determined for a range of depths/mi-

crolens sizes. As an illustration of this, Figure 5.10 shows the measured depth location

versus the actual depth location from -15 to 15 mm (relative to the nominal focal plane) for

6 different microlens sizes at 1:1 magnification. It is shown that all microlens sizes appear

to predict the position accurately; however upon closer inspection, near the focal plane, it is

shown that smaller microlenses perform better, and, conversely, further away from the focal

plane larger microlenses yield a more accurate solution. Moreover, the shape of each line

appears to have the same shape, but scaled based on the microlens size. Therefore, it can be

hypothesized that, the optimal microlens configuration is dependent on the depth of volume

under investigation.

More information can be obtained by looking at the average error over varying volume

spans, Sz, where Sz is the range of all depth positions, z between −Sz/2 and Sz/2, for each

of the different microlens sizes. The depth error as a function of volume span is plotted in

Figure 5.11 (left), which is constructed by calculating the mean of Figure 5.10 for different

volume spans. Initially, the error increases as a function of volume span at the same rate for

each microlens size. This region corresponds to the region inside the full-aperture DoF and

corresponds to the ‘flat’ location around the optical axis illustrated in Figure 5.10. Once

outside the DoFm, the error decreases to a minimum and begins to steadily increase. Each

microlens size is shown to have a unique volume span where it has the minimum average

error; indicating that the selection of the microlens size is depth dependent. Earlier, it was

hypothesized that the maximum volume depth would be a function of the reduced-aperture

DoF. Figure 5.11 (right) shows the mean depth error plotted versus normalized volume span,

where each line was normalized by it’s microlenses DoFp. It is shown that all lines collapse

to a single curve whose minimum is roughly Sz/DoFp = 1.1.
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Figure 5.10: Measured depth location versus actual depth location for 6 different microlens
sizes calculated via numerical simulation of ray-space particle triangulation.

Looking at the measured lateral x, y location versus volume span, plotted in Figure

5.12 (left), shows that the theoretical error for the in-plane components is on the order of

10−4. It is noted that this data only includes the effect of shot noise and is otherwise void

of real-world noise and bit-depth effects which would likely increase this error. In addition,

the error associated with converting the plenoptic image into a ray-space diagram, as well as

the effect of multiple particles, is completely ignored. If applied to real data this conversion

would likely be the main source of error. However, even without these error sources it is

shown, in Figure 5.12 (left), that the error increases as the particle’s depth location moves

away from the nominal focal plane. This is more evident in Figure 5.12 (right) which shows

the mean error as a function of volume span. Where it is shown that each microlens size has
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Figure 5.11: Mean depth error (left) plotted versus volume span, calculated by extracting
the slope and intercept from simulated ray-space data. Mean depth error versus normalized
volume span shown to indicate depth of field dependence (right).

an initial region of very high accuracy, corresponding to the region inside DoFm, and then

increases for the remainder of the volume spans. It is shown that all microlens sizes perform

similarly with the exception of the smallest case. When compared to the lateral error, it can

be inferred that, for the single-camera configuration, the depth error is dominant and can

be used as the sole consideration for microlens size selection.

To further test the depth dependence, a wide range of microlens sizes were tested from 5

to 45 pxpµ at a variety of volume spans of 10 to 30 mm. For each span the following process

was used to determine the optimal microlens size. First the error between the measured and

the actual depth positions were calculated and averaged over the total volume span for each

of the different microlens sizes. Then these values were fit using a rational expression of form

e(N) =
aN2 + bN + c

N + d
(5.8)

where a-d are coefficients determined via the fitting process. An example of the fitting is

shown in Figure 5.13 (left). The optimal microlens can then be determined by finding the
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error versus volume span (right).

N value corresponding to the minimum of equation 5.8 which is given by

N =
−2da+

√
(2da)2 − 4a(bd− c)

2a
(5.9)

While this value represents the absolute optimum it is noted that the difference between

this optimum and the surrounding values is minimal, indicating the average depth error has

a low sensitivity to the microlens size. The cumulative result of this process is shown in

Figure 5.13 (right) where the optimal microlens size is plotted versus total volume span for

four different magnifications. It is shown that as the volume span increases, the optimal

microlens size also increases for all cases. In addition it is shown that as the magnification

increases the optimal microlens size also increases.

As shown previously, the reduced aperture DoF plays a role in the maximum volume

span over which yields an accurate reconstruction. By normalizing the x-axis of Figure 5.13

(right) by each points respective DoFp the effect of this parameter can be identified. Figure
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Figure 5.13: Least-square fitting of rational expression to particle reconstruction error as a
function of microlens size for a volume span, Sz = 20 (left) and the optimal microlens size
for a range of volume depths for 4 different magnifications (right).

5.14 shows this normalization and it is clear that the microlens which yields the optimal

reconstruction is the one in whose DoFp is 1 - 1.1 times the span of the volume in depth.
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Figure 5.14: Optimal microlens size for a range of volume spans normalized by the reduced
aperture DoF for 4 different magnifications.

5.3 Effect on Reconstruction Quality

To test the effect of microlens size on the quality of the particle reconstruction, the

reconstruction quality factor, defined in Chapter 4, is used. Three different magnifications

(M = -0.5, -0.75, and -1), and therefore volume sizes (Sx = Sy = Sz = 40, 26, and 20 mm),

are tested with varying microlens sizes at a constant particle density (Np = 3000). Two

volumes were generated at each condition using the MART algorithm (5 iterations, µ = 1)

and every volume was held to a constant 260x260x260 voxel grid. Adapting the grid to

each different microlens was tested, for a single magnification, and yielded the same trends,

but required a significant amount more computational time. Therefore only the constant

voxel case is presented here. The second volume was displaced using the Gaussian ring

vortex equations as in Chapter 4 and the final quality factor was calculated as the average

of the two. To qualitatively illustrate the effect that the microlens size has on the particle
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reconstructions, slices are extracted from each of the volumes from the M = −1 case and

presented in Figure 5.15. Each sub-image represents a different microlens size starting from

N = 10 ppµ in the top left and ending with N = 29 ppµ in the bottom right as indicated

above each image. Two major trends can be seen from these images. The first is that the

smaller microlenses yield smaller reconstructed particles near the focal plane of the camera,

corresponding to z = 0 mm. The second is that near the edges of the volumes the smaller

microlenses have more elongated reconstructed particles. It is hypothesized that the volume

which will yield the most accurate vector field is the one with the best balance of these

effects, that is the one with the most uniform particle sizes.

Figure 5.16 (left) shows the reconstruction quality factor as a function of microlens size

for all three magnifications. It is shown that all three curves yield different optimal microlens

sizes with the total difference between the best and worst solution being about 0.1 for all

three cases. When compared to the theoretical solution shown in Figure 5.13 (right) it is

shown that the predicted solutions are a close match to the synthetic cases. For M = −0.5

and Sz = 40 the theoretical result is 16.4, via extrapolation, and the synthetic result is 17.4.

Similarly for M = −0.75 and Sz = 26 the theoretical result is 18.3 and the synthetic result

is 18.3 and finally, for M = −1.0 and Sz = 20 the theoretical result is 20.0 and the synthetic

result is 19.3. Further insight can be gained from Figure 5.16 (right) where the x-axis is now

the normalized volume depth. It is shown that the optimal solutions for all three cases fall

between 1.0 and 1.1 depths-of-field with the M = −0.5 case being closer to 1 which is the

same as the synthetic result shown in Figure 5.14.

5.3.1 Synthetic Vector Field

The final synthetic test was designed to illustrate the effect of microlens size on the

final vector field. Using the volumes from the previous section, which were displaced via the

Gaussian ring vortex equation, and the cross-correlation analysis presented in Chapter 2 the

final vector field can be determined. It is noted that the Gaussian ring vortex was scaled
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Figure 5.15: Slices extracted from reconstructed volumes (M = −1) showing the effect of
microlens size on the particle reconstructions. Microlens size indicated above each image
increasing from top left to bottom right.
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Figure 5.16: Reconstruction quality factor vs. microlens size (left) and normalized volume
depth (right).

with magnification such that the vortex was roughly the same relative size for each magni-

fication. This vector field was then compared to a “known” solution which was generated

by creating two volumes using the exact position of the particles and processing them using

the same cross-correlation software exactly as was done in Section 4.3.4. The volumes were

processed using 4 passes of the cross-correlation algorithm starting with 64x64x64 windows

and finishing with 32x32x32 windows with 75% overlap. Slices of the vector fields are pre-

sented in Figure 5.17 showing the v component of velocity and Figure 5.18 showing vorticity

magnitude. Unlike the reconstructed volumes it is difficult to notice any trends with respect

to the size of the microlenses. Some volumes show more spurious vectors than others but

they occur randomly regardless of the microlens size.

The total vector velocity error when compared to the “known” solution, using RMSE, is

shown in Figure 5.19 (left) as a function of microlens size and Figure 5.19 (right) as a function

of normalized volume depth. It is shown that the minimum error is somewhat correlated

to the minimum reconstruction accuracy; however they are not an exact match and there is

more noise in the curves, including multiple minimums for the M = −0.5 and M = −0.75
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Figure 5.17: Slices extracted from reconstructed vector fields (M = −1) showing the effect
of microlens size on the v-component of velocity. Microlens size indicated above each image
increasing from top left to bottom right.
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Figure 5.18: Slices extracted from reconstructed vector fields (M = −1) showing the effect
of microlens size on the vorticity magnitude. Microlens size indicated above each image
increasing from top left to bottom right.
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Figure 5.19: RMSE of vector field vs. microlens size (left) and normalized volume depth
(right).

cases. As the quantitative data suggested the difference between the different microlens sizes

is minimal with roughly a 0.2 pixel difference between the minimum and maximum errors for

each case. This is likely due to the robustness of the cross-correlation algorithm being able

to mitigate the effect of the particle elongation. Additionally it is shown that the minimum

for each case is between 1 and 2 depths-of-field which is consistent with the reconstruction

quality data.

5.4 Experimental Test

The experimental validation of the optimal microlens size theory was conducted in the

same facility as discussed in Chapter 4 using the same laser, and flow conditions. The major

difference is the addition of 2 cameras placed on the remaining sides of the square tank as

shown in Figure 5.20. These cameras differ from the two used previously by having differ-

ent sizes microlenses (pixels-per-microlens) relative to their CCD. Two different plenoptic

camera models were available for testing, the first was the prototype 16 Mp camera used in
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Figure 5.20: Experimental Arrangement.

Fahringer et al. [58] and the second is the second generation 29 Mp camera discussed previ-

ously. In addition to the image sensor differences, these cameras also use different microlens

arrays. Therefore, it is possible to swap the microlens arrays and yield two new camera

configurations. For this experiment, three different configurations (microlens sizes) will be

tested: N = 10, 14, and 20 pxpµ where the 10 and 20 pxpµ were created by swapping the

microlens arrays from the prototype and second generation cameras and the 14 pxpµ is the

standard second generation camera. The full parameters of these cameras are given in Table

5.1. To create the validation measurement a two-camera plenoptic system will be used, as

described in Chapter 4, using Camera’s 2 and 3. This allows for the comparison of three

different configurations on instantaneous data instead of a purely statistical comparison. In

addition, it allows for the particle reconstruction quality to be determined

5.4.1 Reconstruction Analysis

The raw images were reconstructed using the MART algorithm with µ = 0.2 for 5

iterations. The reconstructed volumes were 100x60x100 mm3 in physical size and were

discretized into 500x300x500 voxels. Two metrics are used to determine the best microlens

size to create an accurate reconstruction. The first is the reconstruction quality factor, Q∗, as

defined in equation 4.10, with the comparison volume being generated from the two-camera

data. The second method is known as the normalized intensity variance, NIV, which is a

measure of the sparsity of the reconstruction as detailed by Novara and Scarano [78]. A
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Table 5.1: Camera Parameters

Camera 0 Camera 1 Camera 2 Camera 3

Base Camera Imperx B4820 Imperx B6620 Imperx B6640 Imperx B6640
Number of Pixels 4904 x 3280 6600 x 4400 6600 x 4400 6600 x 4400
Number of Microlenses 471 x 362 289 x 193 471 x 362 471 x 362
Microlens Packing Hexagonal Rectangular Hexagonal Hexagonal
Pixel Pitch 0.0074 mm 0.0055 mm 0.0055 mm 0.0055 mm
Microlens Pitch 0.077 mm 0.125 mm 0.077 mm 0.077 mm
Pixels-Per-Microlens 10 20 14 14
Microlens F-number 4 4 4 4
Main Lens Focal Length 60 mm 60 mm 60 mm 60 mm
Main Lens F-number 2.8 2.8 2.8 2.8
Nominal Magnification -0.4 -0.4 -0.4 -0.4
DoFp 38 mm 118 mm 55 mm 55 mm

higher NIV indicates a more sparse reconstruction with higher-amplitude peaks; whereas a

low NIV indicates a reconstruction the opposite: a dense particle field with low-amplitude

peaks which is characteristic of ghost particles. This value is calculated the variance of the

intensity within the volume and normalizing by the mean as given by

NIV =

√
1
N

∑N
j (Ej − Ē)2

Ē
(5.10)

This metric is particularly useful for experimental analysis since it does not rely on a known

quantity, and will allow for the comparison between the single camera and two camera

reconstructions.

5.4.2 Velocity Analysis

To obtain the 3D vector field each volume pair was processed using the cross-correlation

scheme utilizing 4 passes starting with 64x64x64 windows and finishing with 32x32x32 win-

dows with 75% overlap resulting in 58x33x58 vectors with a spatial resolution of 6.4 mm/vec-

tor. Analysis of the vector fields was performed with two metrics. First the root mean square

error (RMSE) of the velocity and vorticity field was calculated taking the two camera data

126



Table 5.2: Results of the experimental vortex reconstruction quality and vector field accuracy
analysis. Values shown are the average of 200 volumes and 100 vector fields.

Camera 0 Camera 1 Camera 2 Camera 3 Cameras 2/3

Q∗ 0.019 0.148 0.243 0.265 -
NIV 14.44 14.73 13.98 14.04 31.08
evel 0.846 0.912 0.781 0.797 -
evort 0.077 0.079 0.071 0.069 -
e∇ 0.251 0.290 0.281 0.287 0.212

as the truth measurement. The second metric allows for the vector fields to be evaluated

without a comparison field by estimating the velocity error from the error in the divergence.

Since this flow is incompressible, any measured velocity divergence is attributed to measure-

ment error. For such a flow, the velocity error can be related to the standard deviation of

the divergence field by

e∇ =
σ∇√

3
2h2

(5.11)

where σ∇ is the standard deviation of the divergence of the velocity and h is the vector

spacing as described by Atkinson et al. [79].

5.4.3 Experimental Results

The results of the reconstruction quality tests are shown in Table 5.2 for the four single

camera configurations as well as the two camera configuration. The tabulated values indicate

the average values for all 200 volume for each case. For the experimental reconstruction

quality factor cameras 2 and 3 have the highest values of around 0.25 followed by camera

1 with 0.15, then camera 0 with 0.02. There is little difference in the normalized intensity

variance results with all of the single camera cases having values within 0.75 of eachother,

while the two camera configuration resulted in a NIV of greater than two times the single

camera configurations. This is expected since the two camera reconstructions do not exhibit

the same particle elongation as the single camera configuration. Overall, the results indicate

that the camera 2/3 reconstructions are more accurately reconstructing the two camera
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particle field (it is noted that cameras 2 and 3 are used to create the two camera particle

field) and all the single camera configurations produce roughly the same NIV values with

cameras 1 and 0 holding a slight edge over cameras 2/3 with the two-camera configuration

being clearly superior.

An example vector field is presented in Figure 5.21 for 4 cases: camera 0, 1, 3, and the

two camera configuration. Presented in the top row is two slices of the vector field along

with a vorticity magnitude iso-surface at 20 s−1. The middle row shows an xy slice of the

vector field with streamwise velocity contours, and the bottom row shows a zy slice with

cross-stream velocity contours. The results show that cameras 1 and 3 reconstruct a more

similar vortex structure to the two-camera result than camera 0 which is compressed along

its depth direction. The slices show similar features across the board, with the camera 3

results showing slightly less spurious vectors; however all the single camera cases show a

compressed vortex core region when compared to the two camera results.

Further analysis is given in Table 5.2 with the velocity and vorticity RMS as well as

the error based on divergence. It is shown that the vector fields generated by cameras 2

and 3 have lower RMS values (0.79 for velocity and 0.07 for vorticity) than the camera 0

data (0.846 and 0.077) which is better than the camera 1 data (0.912 and 0.079). The error

based on divergence indicates that the camera 0 data has the best results of 0.251 followed

by the camera 2/3 data with 0.284 and then the camera 1 data with a value of 0.29. The

two camera case has an error based on divergence of 0.212. As expected, the camera 2/3

results show the best qualitative and quantitative vector results; however the results of all 4

single camera cases are similar which is expected given the results of the synthetic data.

Overall, both the reconstruction quality and vector field analysis indicate that the cam-

era 2/3 single camera reconstructions produce the most accurate reconstruction and vector

fields, which is consistent with the preceding analysis since cameras 2/3 had the most opti-

mal microlens size based on their single-pixel depth of field. The other two cases, camera 0

and camera 1, were very sub-optimal in terms of their microlens size having DoFp = 1.6Sz
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(a) Camera 0 (b) Camera 1 (c) Camera 3 (d) Two Camera

Figure 5.21: Example instantaneous velocity field shown as 3D vorticity magnitude iso-
surface (top), slices showing velocity vectors with streamwise velocity contours (middle),
and slices showing cross-stream velocity contours (bottom) for four different camera config-
urations.

and 0.5Sz respectively. In spite of this, these configuration were able to produce results

comparable to the more optimal case indicating that while there is an optimal microlens size

the resulting vector fields are not very sensitive to it. Therefore, a single plenoptic camera

design, with a static microlens size, should be a robust system that can handle a wide variety

of different volume sizes with relatively little change in performance.

5.5 Microlens Selection Summary

This chapter provided theory, numerical analysis, and experimental data in an attempt

to determine the optimal microlens size for any given experiment. Using this information
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the following guide provides a step-by-step method for determining which size microlenses

should be selected for a given experiment. As an example the experimental configuration

given in Table 5.1 will be used

1. Determine the size of volume Sx, Sy, and Sz you wish to reconstruct.

Sx = Sy = Sz = 60 mm.

2. Using Sx and Sy and the size of you CCD you can determine the magnification of the

imaging system.

M = −25.4/60 ≈ −0.4

3. From the magnification and some knowledge of the working distance restrictions the

appropriate focal length lens can be determined using the thin lens equation (3.15) and

magnification relation (3.16). For our case we had approximately 200 mm between the

edge of the lens and the center of our water tank.

fm =
loM

M − 1
=

200(−0.4)

−0.4− 1
= 57.1 ≈ 60 mm.

4. A microlens f-number should be selected such that f-number matching can be achieved

(Equation 3.17). Since our microlenses were all fixed at f/4 we chose a main lens

f-number of 2.8. The reverse of this math would be:

(f/#)µ = (f/#)m(1−M) = 2.8(1−−0.4) = 3.92 ≈ 4.

5. Finally solve equation 5.3 for the reduced-aperture DoF (da = ∆u = lipp/fµ) setting

DoFp = 1.1Sz. This was performed by fitting a series of microlens sizes to a 5th

order polynomial where x = Npxpµ and y = DoFp − 1.1Sz, with the real root of this

polynomial yielding the optimal microlens size of 15.68 ≈ 16.
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Chapter 6

Conclusion

In order to mitigate the increased error along the optical axis of a single camera

plenoptic-PIV system a second camera was added in a stereoscopic configuration. The

framework for adding the second camera including the modification of the reconstruction

algorithms and the camera calibration was presented. Four reconstruction algorithms were

tested: three based on the refocusing capabilities of the plenoptic cameras and one based

on tomographic reconstruction. It was found that the MART algorithm was, in general, the

best performer especially at higher particle densities. The stability of the MART algorithm

was tested, concluding that it was stable for a wide range of relaxation parameters with the

only difference being the rate of convergence.

Several tests were performed to determine the optimal configuration with the results

showing a 2-camera configuration with angular separation between 40-120 degrees recon-

structed with a 1:1 voxel to pixel ratio to be the ideal configuration. In addition the effect

of calibration error was determined to be highly detrimental, especially when the error was

> 1 microlens where the reconstruction quality drops below the desired 0.75. In addition, it

was found that particles added outside the volume are slightly more detrimental that ones

added inside the volume and that using sliding mean subtraction can effectively mitigate

image noise.

The presence and effect of reconstruction artifacts, known as ghost particles, was tested.

It was shown that as particle density increases, the number of detected true particles de-

creased, the number of detected ghost particles increased, and the ratio of ghost-to-true
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particle intensity increased. In addition, the RMSE of particle position was presented show-

ing similar performance for all four algorithms, with the error generally increasing as a

function of particle density.

Velocity errors were examined using a synthetic Gaussian ring vortex as the flow field.

It was found that the addition of a second camera decreased the RMS velocity error from

0.61, 0.16, and 0.59 to 0.14, 0.09, and 0.14 for the u, v, and w components respectively.

The algorithms performed similar to each other with MART and integral refocusing yielding

the lowest RMSE. Additionally, the technique was tested experimentally on a ring vortex

generated in a purpose built water tank where an instantaneous velocity field produced the

expected ring vortex vorticity structure for the modified refocusing methods as well as the

MART algorithm where it was shown that the MART algorithm performed best in terms of

relative uncertainty. In addition, comparison were made to the single camera configuration

where it was shown that the addition of a second camera drastically improved the out-of-

plane velocity accuracy of the technique.

Overall, the addition of a second plenoptic camera drastically increased the reconstruc-

tion quality (by a factor of 2) and decreased the vector velocity error by a factor of 4, by

increasing the overall experimental and computational complexity. With the addition of the

second camera more optical access is required as well as precise alignment of the two cameras;

however, their is no need for Scheimpflug mounts therefore the experimental complexity is

on the order of a stereoscopic PIV system. The computational cost increases linearly as the

number of cameras increase; thus for particularly large data sets or dense reconstruction

grids the, faster, refocusing-based methods may become more desirable. Even so, the bene-

fit of the second camera to produce accurate, 3D/3C velocity measurements is evident and

should be the standard for plenoptic-PIV provided the optical access requirements can be

met.

Following the analysis on the addition of a second plenoptic camera, the effect of the

microlens size was studied. It was determined through numerical analysis that the optimal
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microlens for a given experiment was one in which the single-pixel depth of field spanned 1.1

times the volume depth. Synthetic tests and an additional experiment were performed to

validate this result. It was found that while the optimal microlens size was the same as the

numerical analysis predicted, the performance loss for using a non-optimal microlens was

minimal. Therefore a single microlens array, with a fixed size, should be able to be used for

a multitude of experiments with little loss in performance.

The plenoptic camera, and its ability to perform quantitative 3D/3C velocimetry mea-

surements was tested in this thesis. The future of the technology looks bright as it offers

fundamentally unique features, such as the ability to obtain 3D information behind a single

aperture. Unfortunately, this technology has not seen widespread adoption throughout the

fluid diagnostic community, which is likely tied to the inability to purchase a scientific grade

version of this camera. For example, in this work, we made our own camera by designing

the microlens assembly and sourcing the parts ourselves. Most labs, especially ones more

focused on the fluid physics, are not willing to manufacture the cameras and write all the

necessary code for data processing. Therefore in order for plenoptic-PIV, or other spin-off

technologies, to see wide-spread adoption a commercially available turn-key solution must

become available. For this to happen the technology must be mature enough, or present

a unique capability, for a company to invest the time and money to develop the product.

In my estimation, this will require the development of a time-resolved Lagrangian particle

tracking algorithm, ala shake-the-box [47], for single-camera plenoptic-PIV. This technology

would provide capabilities, by only using a single camera, that other competing technolo-

gies can not match and allow access to facilities where multi-camera systems could not make

measurements. A second or third camera could then be added as a value option for increased

accuracy, or to provide the ability for scalar-field reconstruction.
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Chapter 7

Hexagonal Interpolation

Mathematically, the interpolation algorithm for the hexagonally arranged microlens

array is more complex than the rectilinear case. The procedure detailed here finds the

nearest four microlenses to the point of interest and uses a weighted distance calculation to

determine each microlenses contribution. Schematically this problem is represented in Figure

7.1 where point (x2, y2) represents the location of interpolation and (x0, y0) is the nearest

microlens. For the hexagonal layout there are two types of rows the point can fall on an

offset and a not offset row. These rows are defined based on the position of the first microlens

in the row relative to the row above and below it. An offset row starts to the right (+x)

of the rows adjacent to it. Due to this effect assigning an indexed value is non-trivial and

requires careful treatment. The convention used in this work treats the array as rectilinear

where each element’s index is simply the numbered row where it resides, and the number of

microlenses preceding it in its row. To correct for this indexing a matrix of offsets are used

during the interpolation process.

offset

not offset

Figure 7.1: Schematic of interpolation on a hexagonally arranged microlens array. Illustra-
tion on left shows two point to be interpolated with one being on an offset row, center shows
the different sections corresponding to different groups of neighbors, and right shows the two
interpolants from the left illustration and their corresponding neighbors with indicies.
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Given the point of interest (x2, y2) and arrays containing the coordinates of the microlens

positions X and Y the algorithm is as follows. First we determine if the row is offset

by checking the following expression Y (x0, y0) > Y (x0, y0 + 1) with x0 = Round(x2) and

y0 = Round(y2). If true, then the row is offset. Then we determine which section, illustrated

as dashed lines in Figure 7.1, center, the point falls into. This is done by the following

relations.

∆x = x2 − x0

∆y = y2 − y0

θ = atan2(dy, dx) + 30π/180;

After converting to degrees the section can be determined by.

section = ⌊θd/60⌋

Once the section and whether or not the row is offset is computed the four microlenses to be

interpolated can be found. The relative positions for each of the four microlenses are shown

in table 7.1 as relative coordinates for all possible configurations.

Table 7.1: Relative location of the four nearest microlenses to point (x0, y0) for both not-
offset and offset rows. The offset section only shows the ones that change.

Not-Offset Offset
Section x0 y0 x1 y1 x2 y2 x3 y3 x1 x2 x3

1 0 0 0 1 1 0 0 -1 1 1 1
2 0 0 1 0 0 -1 -1 -1 1 1 0
3 0 0 0 -1 -1 -1 -1 0 1 0 -1
4 0 0 -1 -1 -1 0 -1 1 0 -1 0
5 0 0 -1 0 -1 1 0 1 -1 0 1
6 0 0 -1 1 0 1 1 0 0 1 1
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We can now determine the distance between each microlens center and the point (x2, y2).

Dx0 = x0 − x2

Dx1 = x0 + |0.5 · (y1 − y0)| · (−1 · isOffset)− x2

Dx2 = x0 + |0.5 · (y2 − y0)| · (−1 · isOffset)− x2

Dx3 = x0 + |0.5 · (y3 − y0)| · (−1 · isOffset)− x2

Dy0 = (y0 − y2) · 0.5 ·
√
3

Dy1 = (y1 − y2) · 0.5 ·
√
3

Dy2 = (y2 − y2) · 0.5 ·
√
3

Dy3 = (y3 − y2) · 0.5 ·
√
3

D0 =
√
D2

x0
+D2

y0

D1 =
√
D2

x1
+D2

y1

D2 =
√
D2

x2
+D2

y2

D3 =
√
D2

x3
+D2

y3

Then using the distances to each microlens center the final weighting value can be computed

as the overlapping area of two circles as a function of distance, with r = 0.5 being the radius
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of the circle.

A0 =

(
2 · r2 ∗ cos−1(D0/(2r))− (D0/2) ·

√
4 · r2 −D2

0

)
/(πr2)

A1 =

(
2 · r2 ∗ cos−1(D1/(2r))− (D1/2) ·

√
4 · r2 −D2

1

)
/(πr2)

A2 =

(
2 · r2 ∗ cos−1(D2/(2r))− (D2/2) ·

√
4 · r2 −D2

2

)
/(πr2)

A3 =

(
2 · r2 ∗ cos−1(D3/(2r))− (D3/2) ·

√
4 · r2 −D2

3

)
/(πr2)

Then we normalize the area’s such that
∑3

0Ai = 1 These four values are then used as the

weights in lieu of the dx,y pairs as follows

A0 ≈ (1− dx)(1− dy) A1 ≈ (1− dx)dy A2 ≈ dx(1− dy) A3 ≈ dxdy
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Chapter 8

Dynamic Aperture Sampling

Dynamic aperture sampling is used in the refocusing algorithm to avoid banding due

to under-sampling the s, t plane. This effect is caused when the separation between two

adjacent projections (u, s′) and (u+∆u, s′), ∆s is greater than the original sampling of one

microlens pitch. To illustrate this effect and provide the procedure used to overcome it, the

following illustration and subsequent discussion is given.

Figure 8.1: Dynamic aperture sampling.

The size of a pixel on the main lens can be calculated as

∆u =
lipp
fµ
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using similar triangles. Then using the projection given by equation 3.13, the difference

between two adjacent projections (s1 = f(u, s′) & s2 = f(u+∆u, s′)) can be calculated as

|s2 − s1| =
∣∣∣∣(u+∆u)

(
1− 1

α

)
+

s′

α
−
(
u

(
1− 1

α

)
+

s′

α

)∣∣∣∣
=

∣∣∣∣(u+∆u)

(
1− 1

α

)
− u

(
1− 1

α

)∣∣∣∣
=

∣∣∣∣∆u

(
1− 1

α

)∣∣∣∣
∆s = ∆u

|α− 1|
α

Using this separation we can determine if it is larger than a microlens (i.e. will it skip a

microlens and cause banding.) If this is the case we recalculate ∆u to avoid this.

∆u =


∆u if ∆s < pµ

pµ
α

|α−1| otherwise

Once the separation has been determined the number of samples in u can be determined

nu = ⌈da/∆u+ 1⌉

Then the separation between each point is given by

δu =
uf − ui

nu − 1

The remainder of the algorithm is presented below is pseudocode.

for i = 0; i < nu do

u′ = ui + δu · i

if u′ > ui then

u′ = ui
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else if u′ < uf then

u′ = uf

end if

nv = ⌈2
√

u2
i − u′2/∆u+ 1⌉

d1/2 =
√

(da/2)2 − u′2

for j = 0; j < nv do

if nv == 1 then

v′ = 0

else

v′ = d1/2 − 2 · j · d1/2/(nv − 1)

end if

end for

end for
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Chapter 9

Lens Simulation Derivation

This derivation provides the framework for the handling of the lenses in the plenoptic

simulation tool. In contrast to using ray-transfer matrices, this implementation directly

enforces the thin-lens equation. It was discovered that the small angle approximations used

in the ray-transfer matrices created non-negligible errors in the propagation through a lens.

Figure 9.1 shows the imaging process of a lens.

Figure 9.1: Schematic of a lens

First we define the image distance as

di =

(
1

f
− 1

do

)

where f is the focal length of the lens. Then from the definition of magnification

M = −di
do
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xi = xo ·M

The purpose of this lens function is to determine the angle of propagation leaving the lens.

This angle is defined as

θi = tan−1

(
xi − x

di

)
If we substitute for the known variables

θi = tan−1

(
xoṀ − x

di

)

θi = tan−1

(
−xo

di
do

− x

di

)

θi = tan−1

(
−xo

do
− x

di

)

θi = tan−1

(
−xo

do
− x

(
1

f
− 1

do

))

θi = tan−1

(
x− xo

do
− x

f

)
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Chapter 10

Dragon Software Quick Reference

Dragon is the name of the software suite which implements the algorithms presented

in this dissertation. This appendix describes the purpose of the functions as well as where

they are discussed in this dissertation for reference. A more complete documentation has

been left to the AFDL, which is expected to be continually updated, alongside the software

itself. What is presented here is a snapshot of the code at the time of my graduation and

represents my contribution.

10.1 External Functions

This set of functions represents the API boundary of the Dragon.dll library. All of these

functions are exposed to the user to call at will from C++ as well as through the MATLAB

API.

void DRG initFromJson(char∗ settingsFileName)
Purpose: To load in the settings file for the current process.
Relevant Section: none.
Inputs: char∗ settingsFileName Name of the *.json settings file.
Outputs: 1 if *.json was read successfully, 0 otherwise.
MATLAB Call: DragonInitFromSettingsFile.m

void DRG quit(void)
Purpose: Deallocates the globalLightField, created by DRG buildRadiance,

variable if it exists.
Relevant Section: none.
Inputs: none.
Outputs: none.
MATLAB Call: DragonQuit.m

143



int DRG simulatePlenopticCamera(...)
Purpose: Simulates the imaging process of a plenoptic camera on a particle

field.
Relevant Section: Section 3.4
Inputs: int nParticles Number of particles to be simulated.

float∗ xPos x-position of the particles.
float∗ yPos y-position of the particles.
float∗ zPos z-position of the particles.
float∗ intensity Intensity of the particles.
float∗ imageData Output image data.
char∗ calibrationDir Directory to output microlens calibration file.
float rotAngleX Camera’s angle of rotation about the x-axis.
float rotAngleY Camera’s angle of rotation about the y-axis.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonSimulateImage.m

int DRG buildRadiance(...)
Purpose: Builds the global light field array from raw image and microlens

calibration data.
Relevant Section: Section 3.2
Inputs: int nMicroX Number of microlenses in microlens calibra-

tion along x-axis.
int nMicroY Number of microlenses in microlens calibra-

tion along y-axis.
float∗ cLocX Microlens locations (via calibration) in x-dir.
float∗ cLocY Microlens locations (via calibration) in y-dir.
float∗ imageData Input raw image data.
int nImages Number of raw images.
float∗ threshImage Image used for the intensity threshold value

in filtered refocusing.
Outputs: Error code: 1 if successful.
MATLAB Call: DragonBuildRadiance.m
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int DRG buildRadianceFromBOSVectors(...)
Purpose: Builds the global light field array for Background Oriented

Schlieren via the displacement vectors.
Relevant Section: See Klemkowsky et al. [74]
Inputs: char∗ vectorDir Directory containing the processed vector

fields.
float∗ xVec Vector defining s positions of radiance array,

whose length is defined by the nPixelsX set-
ting.

float∗ yVec Vector defining t positions of radiance array,
whose length is defined by the nPixelsY set-
ting.

float∗ uVec Vector defining u positions of radiance array.
int numU Number of u samples.
float∗ vVec Vector defining v positions of radiance array.
int numV Number of v samples.
int bosRadianceType 0 - u-component, 1 - v-component, and 2 -

magnitude.
Outputs: Error code: 1 if successful.
MATLAB Call: DragonBuildRadianceFromBOSVectors.m

int DRG refocusLightFieldToImage(...)
Purpose: Refocus global light field to an image with alpha scaling.
Relevant Section: Section 3.3.1
Inputs: float alpha Normalized depth location.

int nVoxelsX Number of output pixels x-dir.
int nVoxelsY Number of output pixels y-dir.
float∗ refImage Output refocused image.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonRefocusToImage.m

int DRG refocusLightFieldToFocalStack(...)
Purpose: Refocus global light field to a series of images with alpha scaling.
Relevant Section: Section 3.3.1
Inputs: float∗ alphaVector Normalized depth locations of images in focal

stack.
int nAlphas Number of images in focal stack.
int nVoxelsX Number of output pixels x-dir.
int nVoxelsY Number of output pixels y-dir.
float∗ focalStack Output refocused images.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonRefocusToFocalStack.m
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int DRG generateSinglePerspectiveView(...)
Purpose: Creates a perspective view at a given u, v value.
Relevant Section: Section 3.3.2
Inputs: float∗ xPrimeVector x-locations of output pixels.

int nVoxelsX Number of output pixels x-dir.
float∗ yPrimeVector y-locations of output pixels.
int nVoxelsY Number of output pixels x-dir.
float uPrime u-position.
float vPrime v-position.
float∗ perImage Output perspective image.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonGenerateSinglePerspectiveView.m

int DRG generatePerspectiveViews(...)
Purpose: Creates a sweep of perspective view at given u, v values.
Relevant Section: Section 3.3.2
Inputs: float∗ xPrimeVector x-locations of output pixels.

int nVoxelsX Number of output pixels x-dir.
float∗ yPrimeVector y-locations of output pixels.
int nVoxelsY Number of output pixels y-dir.
float∗ uPrimeVector u-positions.
float∗ vPrimeVector v-positions.
int nVoxelsY Number of perspective views to output.
float∗ perImageSweep Output perspective images.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonGeneratePerspectiveViews.m

int DRG reconstructLightFieldToImage(...)
Purpose: Creates a reconstructed image at a given z location.
Relevant Section: none.
Inputs: float zPosition Depth location of image.

float∗ xVector x-locations of output pixels.
int nVoxelsX Number of output pixels x-dir.
float∗ yVector y-locations of output pixels.
int nVoxelsY Number of output pixels y-dir.
float∗ xCoeff x-coefficients for light field calibration.
float∗ yCoeff y-coefficients for light field calibration.
float∗ filterThreshold Image used for the validation threshold value

in filtered refocusing.
float∗ refImage Output reconstructed image.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonReconstructToImage.m
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int DRG lightFieldReconstruction(...)
Purpose: Reconstructs raw images into volumes.
Relevant Section: Chapter 4
Inputs: float∗ xVector x-locations of output voxels.

int nVoxelsX Number of output voxels x-dir.
float∗ yVector y-locations of output voxels.
int nVoxelsY Number of output voxels y-dir.
float∗ zVector z-locations of output voxels.
int nVoxelsZ Number of output voxels z-dir.
float∗ camAngles Angles of cameras. Only used for synthetic

data.
int nCameras Number of cameras.
int∗ imageNumbers Image numbers to be reconstructed. Its

assumed that the images have the 0000.tif
naming convention.

int nImagesPerCamera Number of images to be reconstructed per
camera.

char∗ image folder Folder containing raw images. Images must
be in subfolders named based on their cam-
era index (i.e. /camera0/)

char∗ mcal folder Folder containing microlens calibration file.
Must be named after camera number (i.e.
camera0.drg-mcal)

char∗ lfcal folder Folder containing light field calibration file.
Must be named after camera number (i.e.
camera0.drg-lfcal)

char∗ iThresh folder Folder containing intensity threshold for fil-
tered refocusing. Must be named after cam-
era number (i.e. camera0.tif)

char∗ fThresh folder Folder containing validation threshold for
filtered refocusing. Must be named fil-
ter0.bin and filter1.bin for first and second
frame.

char∗ vol folder Volume output folder. Volume names will
be the same as the image names.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonLightfieldReconstruction.m

147



int DRG runCrossCorrelation2D(...)
Purpose: Calculates the 2D vector field from a PIV image pair
Relevant Section: Chapter 2
Inputs: float∗ imageA Image data from frame A.

float∗ imageB Image data from frame B.
float∗ imageMask Image Mask.
int nPasses Number of passes in the WIDIM scheme.
int∗ windowSizesX Size of the windows in x-direction.
int∗ windowSizesY Size of the windows in y-direction.
int∗ windowOffsetsX Offsets between windows in x-direction.
int∗ windowOffsetsY Offsets between windows in y-direction.
char∗ outputFileNameVector output file.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonRunCrossCorrelation2D.m

int DRG runCrossCorrelation3D(...)
Purpose: Calculates the 3D vector field from a PIV volume pair
Relevant Section: Chapter 2
Inputs: float∗ volumeA Volume data from frame A.

float∗ volumeB Volume data from frame B.
float∗ volumeMask Volume Mask.
int nPasses Number of passes in the VOLDIM scheme.
int∗ windowSizesX Size of the windows in x-direction.
int∗ windowSizesY Size of the windows in y-direction.
int∗ windowSizesZ Size of the windows in z-direction.
int∗ windowOffsetsX Offsets between windows in x-direction.
int∗ windowOffsetsY Offsets between windows in y-direction.
int∗ windowOffsetsZ Offsets between windows in z-direction.
char∗ outputFileNameVector output file.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonRunCrossCorrelation3D.m
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int DRG runCorrelationAveraging3D(...)
Purpose: Calculates the 3D vector field using correlation averaging from a

series of PIV volume pairs
Relevant Section: none.
Inputs: char∗ volumeFolderNameFolder containing volumes with frames in

sequential order.
int∗ imageNumbers Volume numbers to be processed.
int nImagePairs Number of volume pairs to be processed.
float∗ volMask Volume mask.
int nPasses Number of passes in the VOLDIM scheme.
int∗ windowSizesX Size of the windows in x-direction.
int∗ windowSizesY Size of the windows in y-direction.
int∗ windowSizesZ Size of the windows in z-direction.
int∗ windowOffsetsX Offsets between windows in x-direction.
int∗ windowOffsetsY Offsets between windows in y-direction.
int∗ windowOffsetsZ Offsets between windows in z-direction.
char∗ outputFileName Vector output file.

Outputs: Error code: 1 if successful.
MATLAB Call: DragonRunEnsembleCrossCorrelation3D.m

int DRG calibrateSyntheticCamera(...)
Purpose: Calculates the light field calibration for a synthetic camera
Relevant Section: Section 4.1
Inputs: int nPoints Number of points used in Monte-Carlo

simulation.
float∗ xPos x-location of points used in simulation.
float∗ yPos y-location of points used in simulation.
float∗ zPos z-location of points used in simulation.
float rotAngleX Camera’s angle of rotation about the x-

axis.
float rotAngleY Camera’s angle of rotation about the y-

axis.
char∗ outputFileName Calibration output file.

Outputs: Error code: 1 if successful.
MATLAB Call: none.
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10.2 Internal Functions

These functions are helper functions and not accessible outside the library. They are

listed by the file they are in.

10.2.1 Dragon.cpp

Main compilation file, contains mostly basic math type functions as well as functions used

throughout the library.

isIndeterminate(x): Determines if the variable is a real number.
isInfinite(x): Determines if the variable is infinite.
idx2(dims,d0,d1): Converts 2D array index to linear index.
idx3(dims,d0,d1,d2): Converts 3D array index to linear index.
idx4(dims,d0,d1,d2,d3): Converts 4D array index to linear index.
idx5(dims,d0,d1,d2,d3,d4): Converts 5D array index to linear index.
nnInterp(A,dimX,xi,yi): 2D nearest neighbor interpolation.
bilerp(A,dimX,xi,yi): 2D linear interpolation.
bicubic(A,dimX,xi,yi): 2D cubic interpolation.
clamp(val,min,max): Clamps val between min and max.
randInRange(min,max): Returns random value between min and max.
min(x,n): Returns minimum value of x.
max(x,n): Returns maximum value of x.
mean(x,n): Returns mean of x.
median(x,n): Returns median of x.
dot(x,y,n): Returns dot product of x and y.
slidingMinFilter(...): Filter which subtracts minimum of window from image.
slidingMeanFilter(...): Filter which subtracts mean of window from image.
slidingNormalization(...): Filter which normalizes image with mean of window.
turtle(nTotalSamplesUB,x,y): Turtle marching function.
imageDistanceConversion(zPos): Calculates lo, li, M

′, and α.
apertureFunction(...): Dynamic aperture function. (See Appendix 8).
applyLightFieldCalibration(...): Converts (x, y, z, u, v) to (s, t) (Section 4.1).
gaussianSmoothingFilter(...): Smooths volume with a Gaussian function.

10.2.2 DragonSIM.cpp

File containing code related to the plenoptic simulation tool.
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translate(ray,distance): Function used to translate the light ray (Section 3.4).
lens(...): Function used to propagate the light ray through a lens (Sec-

tion 3.4).

10.2.3 DragonLFT.cpp

File containing code related to manipulation of the light field including: refocusing and

perspective view generation.

getNearestMicrolensIndex(...): Finds the nearest microlens index to point
(x2,y2).

lightFieldInterpLinearInternal(...): Returns the 4 microlens coordinates to (x2,y2)
and their interpolation coefficients. (Section
3.3).

lightFieldInterpLinear(...): Calculates the radiance of the light field at
(x2,y2,u2,v2) via linear interpolation.

lightFieldInterpSINC(...): Calculates the radiance of the light field at
(x2,y2,u2,v2) via cardinal interpolation.

lightFieldInterpIntensityThreshold(...): Calculates the intensity threshold of the light
field at (x2,y2,u2,v2) via linear interpolation.

refocusLightFieldAtPoint(...): Calculates the refocused value at a point
(xPrime, yPrime, alpha).

perspectiveShiftAtPoint(...): Calculates the perspective value at a point
(xPrime, yPrime, uPrime, vPrime).

buildRadiance(...): builds the radiance of the input lightfield.

10.2.4 DragonRCN.cpp

File containing code related to volumetric reconstructions.

monteCarloDLFC(...): Calculates the light field calibration for syn-
thetic data.

perspectiveShiftAtPointIntThresh(...): Calculates the perspective view of the intensity
threshold for filtered refocusing.
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10.2.5 DragonPIV.cpp and DragonPIV3D.cpp

File containing code related to 2D and 3D cross-correlation.

prepareImage(...): Masks and buffers raw image.
generateGrid(...): Calculates locations of vectors for current pass.
generatePredictor(...): Calculates velocity predictor.
interpolateDeformation(...): interpolation functions for image/volume deformation (Sec-

tion 2.4.3).
imageDeformation(...): Deforms images (Section 2.4.3).
performCrossCorrelation(...): Calculates cross-correlation for entire image/volume (Sec-

tion 2.4.1).
findCorrelationPeaks(...): Calculates the correlation peak for each window (Section

2.4.1).
vectorValidation(...): Validates vector field based on normalized median test (Sec-

tion 2.4.2).
vectorReplacement(...): Replaces invalid vectors using interpolation (Section 2.4.2).
regressionFiltering(...): Filters velocity data with linear regression (Section 2.4.3).
exportVectorFieldToFile(...): Exports vector data in Tecplot format.
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