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Abstract

Profile monitoring has been extensively studied when the profile of a quality
characteristic is normally distributed. There are a limited number of studies for the case
when a profile follows other distributions such as Weibull, lognormal or Gamma. A
profile, having these last three distributions, has many practical applications. It is also of
interest to determine how well profile-monitoring of estimators can detect changes in
parameters of an underlying distribution. Control chart methods are utilized to monitor
such parameter estimates. The performance of a few monitoring statistics is investigated
in this dissertation. A form of the Hotelling’s T2 statistic and another that utilizes the
concept of an exponentially weighted moving average are investigated. As a performance
measure, the mean and standard deviation of the time to first detection of shift in process
parameters, are explored. We also investigated a method that utilizes estimated

percentiles of the distribution for profile monitoring.
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Chapter 1

Introduction

Measurement data and information availability has been increasing in the
manufacturing environment today because of increased usage of sensors for automatic
collection of data/measurements in industries. Transactional and customer relevant
information is also growing at a rapid rate in service industries. It is important to monitor
and control processes in such an environment. Often, quality of a process can be
characterized by some relationship between a response variable and explanatory
variable(s). Such a relationship is also referred to as a profile (Kang & Albin, 2000).
Profile monitoring is a technique to monitor such profiles instead of monitoring

individual quality characteristics.

As an example, a machine vision system is used in the electronics manufacturing
industry to check the quality of LCD displays. A typical LCD consists of thousands of
pixels which are individually lit and are independent of each other. As explained by
Wang and Tsung (2005), amount of luminance of each pixel follows a normal
distribution. Hence testing of a typical LCD display would involve measuring luminance
of thousands of pixels. Presence of any defects in LCD display would result in violation
of normality on measured luminance. Luminance measurement here is an example of a

profile and quality testing of LCDs to make sure luminance measurement for each LCD



display follows a normal distribution, with known parameters, is an example of profile

monitoring.

As discussed by Walker and Wright (2002), in manufacturing of particleboard and
fiberboard, the density of a board is very important for its machinability. A profilometer
with a laser device is used to measure the density of board at fixed depths across
thickness. A sample of 2 square inch board would consist of 314 vertical density profile
(\VDP) at every 0.002 inches distance. Monitoring VDP, in this case, is another example

of profile monitoring.

Profile monitoring generally consists of two phases. In Phase I, stability of a
process is evaluated, any outliers with assignable causes are removed and in-control
process parameters are estimated. Hence, the characteristics of an in-control profile are
estimated in phase I. Phase Il is used to either verify that the process or profile of the
quality characteristic is still in control or to detect shifts in the quality characteristics from

an in-control state.

In Phase I, often distribution parameters are used to monitor profiles given that
parameter estimates are independent. Traditional control charting techniques like
Shewhart chart, exponentially weighted moving average (EWMA) chart or cumulative
sum (CUSUM) charts are used with control limits set at a specified distance from the
mean to detect shifts in the mean. Mean of the parameter estimates that fall within control

limits normally indicate that process is in control and indicates presence of common



cause variation only. If the mean of parameter estimates falls outside the control limits or
if there are non-random patterns it indicates the likely presence of special causes. Such a

process is considered to be out of control.

Chicken et al. (2009) and Wang and Tsung (2005) have indicated that there is a
possibility that profile parameters or estimates may be the same even though the profile
has changed. Sometimes it may be difficult to estimate parameters because of the
difficulty in identification of the correct model that fits the quality characteristic. Wang
and Tsung (2005) have shown an example of a machine vision system for inspecting
phone display where 5000 points are measured at the rate of 10 seconds per display.
Because of a huge amount data in their case, dark corners and bad pixels could be
averaged out failing to be detected by conventional charting method. Hence they
suggested that instead of monitoring summary statistics, a profile could be characterized
by a Quantile-Quantile (Q-Q) plot and a Q-Q plot could be monitored through profile
monitoring techniques. Wang and Tsung (2005) proposed monitoring the slope and
intercept of a Q-Q plot by using EWMA charts for the quality characteristic which is
normally distributed. Since the normal distribution is a two-parameter distribution, a Q-Q
plot using the slope and intercept is adequate in representing the distribution. Estimates of
the mean and standard deviation of the normal distribution uniquely impacts the slope

and intercept in a Q-Q plot.



In profile monitoring in a data-rich environment, a quality characteristic or a
dependent variable could come from any of the defined distributions. For example,
mobile phone display inspection by a machine vision system as used in Wang and Tsung
(2005) follows a normal distribution. Physiological measurements like blood pressure of
adult humans seem to follow a normal distribution. Over-voltage occurring in an
electrical system, manufacturing and delivery times in the case of industrial engineering,
and wind speeds are often seen to match a Weibull distribution (Jangamshetti & Rau,
1999; Osmokrovic, Krivokapic, MatijaSevic, & Kartalovic, 1996). Exchange rates, price
indices, and stock market indices have been seen to follow a lognormal distribution. In
reliability analysis, time to repair a maintainable system is seen to follow a lognormal
distribution. A Gamma distribution has been used to model aggregate insurance claims

and amount of rainfall accumulated in a reservoir.

Though there are several studies that have monitored linear and non-linear
profiles, there are very few studies that have been performed to monitor a profile which
could be modeled by a known distribution such as a Weibull, lognormal, Gamma or a

general profile in a data-rich environment.

There are many cases where quality characteristics could be correlated. As an
example, extrusion is widely used in plastic manufacturing. Flow rate per unit length and
mass per unit area are two important quality characteristics affected by mold

temperatures. These quality characteristics are correlated (Rauwendaal, 2013). Customer



evaluation of a product may be characterized by numerous quality characteristics that are
correlated. Functional performance of an automotive component may be characterized by
multiple correlated quality characteristics. In such cases monitoring individual quality
characteristics may be misleading. Multivariate control charts like Hotelling T2 chart and
multivariate EWMA charts are commonly used to monitor correlated quality

characteristics.

In the manufacturing context, as production rate increases and cost per part is
high, it becomes more and more important for any shift in process parameters, due to
special causes, to be detected as soon as possible. The cost of non-detection or slower

detection may result in increased scrap or additional cost related to customer complaints.
This study aims to address the following research question:

Demonstration of profile monitoring when the profile is known to follow known
distribution such as normal, Weibull, lognormal or gamma. Through the use of
simulation, the study will compare various techniques of profile monitoring and detection
of shift in process parameters. The objective will be to propose a method that is
faster/efficient in detection. Some new monitoring statistics will be proposed, and their
performance will be investigated via a simulation procedure. Also, for unknown
distributions that are estimated through a chosen number of percentiles, similar

monitoring techniques may be used.



Chapter 2

Literature Review

2.1 Control Charts

The use of statistical control charts to monitor processes has been quite common
since Shewhart (1931) introduced the technique. Since then, product and process quality
characteristics have been monitored by using various forms of univariate and multivariate
control charting techniques. Using profiles to monitor a quality characteristic (QCH) is
relatively new. This last method is becoming more and more common with the volume
and ease of capturing measurement data where corresponding variables may be correlated

and/or follow a certain statistical distribution.

A Shewhart control chart is a technique that displays a quality characteristics vs
sample or subgroup number i (i=1,2,....... , M), where random samples, either
individual observations or m subgroups are chosen from a process at intervals (such as
hourly, daily, or per shift, etc. ). A Shewhart chart consists of a Center Line (CL), Lower

Control Limit (LCL) and Upper Control Limit (UCL) calculated as

LCL = u,, — Lo, (2.1)
CL = p, (2.2)
UcL = u,, + Loy, (2.3)



where w is a QCH, p,, is the mean of w, g,, is the standard deviation of w and L is the
distance of control limits from the center line in units of standard deviations of the
monitoring statistic w. There are two types of control charts: 1: for targeted parameters,
and 2: developed from an initial observations of m subgroups each of size n. When
subgroups of observations are selected, a measure of variability of observations is the
sample range (R) given by (X;qx — Xmin), the difference between the maximum and the

minimum values of observations in a subgroup.

Traditionally, two of the most common control charts to monitor a process are the
Rand X charts. The multiplier “3” in the equations for the lower and upper control limits
is based on the assumption of normality of a charting statistic. When control limits are
placed at the three (so-called) standard deviations (sigma) away from the mean, the
probability of a “false alarm” is roughly 0.0027. This implies the probability of reaching
a false conclusion that the process is out of control is approximately 0.27%. Such an error
is labeled as a Type I in the context of decision making from control charts. Tightening of
control limits, say to two sigma around the mean, will increase the chances of a “false
alarm” or Type I error. A Type Il error in the context of decision making from control
charts, is to conclude that the process is in-control when it actually is out-of-control.
Tightening of the control limits will lead to reducing the probability of a type Il error.
Hence, an inverse relationship exists between the probabilities of a Type | and Il errors

assuming other parameters of a control chart, such as n are held constant.



Two systems of causes are assumed in a control charting scheme — common or
chance causes, and special or assignable causes. Common causes are inherently part of a
system. They occur because of confounding effects that may impact process parameters.
They are assumed to be random in nature. Special (or assignable) causes are due to
underlying changes in the process that, when identified, lead to remedial actions that

must be taken. Their effect is not generally random in nature.

2.2 Phases of Monitoring

In Phase | of process monitoring, observations from an assumed “in-control”
process are obtained and monitored via the corresponding control charts. Suppose, for
example, R and X charts are being used to monitor process variability and mean. If some
values of R or (X) fall outside control limits and assignable causes are removed, then the
corresponding observations are deleted leading to a recalculation of center line and the
control limits. Further, based on recalculated control limits, if other values of R or (X) are
outside the revised limits, they are consequently deleted under the assumption of
presence of assignable causes. When no further values of the monitoring statistic, R and
(X), fall outside revised control limits, the revision process is terminated. At this juncture,
we assume that observations originate from an “in-control” process. This revision-
procedure of limits until no further values of the monitoring statistics are outside control
limits is termed as Phase I. Hence, at the end of Phase I, estimates of process parameters,

such as the process standard deviation (o) and the process mean (|1) are obtained. These



estimates are used to calculate control limits at the end of Phase |. Further, the control

limits found at the end of Phase I, are used to monitor a process in the next phase.

2.3 Common Rules of Detection of Process Changes

In Phase |1, as new observations are taken from a process, they are monitored
using the control limits obtained at the end of Phase I. Hence, a determination is now
made to identify if there has been a change in process parameters. If a monitoring statistic
plots outside control limits or an identifiable pattern is observed, the inference is made
that the associated process parameter has changed from its “in-control” value, only if

assignable causes are found.

A Shewhart control chart has a major disadvantage that ignores information from
a sequence of m (rational) subgroups but uses the very last sample or subgroup to decide
whether the process is in-control. This makes the Shewhart chart insensitive to shifts
smaller than 1.5 standard deviations in magnitude Montgomery (2013). In order to
overcome this disadvantage, several supplemental sensitizing rules have been proposed
since the mid-1950’s, e.g., Page (1955), Western Electric (1956), Roberts (1958), and
Bissel (1978). According to Montgomery (2013) and Minitab documentation, the most
widely used runs rules, in addition to the first four suggested by Western Electric, are as

follows:

1) One or more points greater than 3-sigma from the center line (where sigma

represents the standard deviation of the monitoring statistic)



2) Two out of three points greater than 2-sigma from the center line on the same
side within 3-sigma limit

3) Four out of five points greater than 1-sigma from the center line on the same
side but within 3-sigma limit

4) Eight points in a row on one side of the center line (i.e., a run of length 8)

5) Six points in a row all increasing or all decreasing (runs of length 6 up or
down)

6) Fifteen points in a row within 1-sigma of the center line on either side

7) Fourteen consecutive points occurring up and down from the center line

8) Eight points in a row greater than 1-sigma on either side

9) Any non-random pattern in the data

10) One or more points near a warning limit (placed at + 2-sigma from the center

line).

Use of all of the above sensitizing techniques can reduce the average run length of
detecting change in a process parameter and improve the ease of decision making using
Shewhart control charts (Montgomery, 2013). However, the chance of a “false alarm”

also increases with an increase in the number of rules that are used.

Two other control charts to magnify the degree of change in a monitoring statistic
have been subsequently developed. They are the cumulative sum (CUSUM) control chart

and the exponentially weighted moving average (EWMA) control chart. CUSUM charts

10



were developed by Page (1954), while EWMA charts were developed by Roberts (1959).
In an EWMA chart, the weight given to the past observations decreases as the time from
the current period increases. Hence, observations that occur 20 periods prior to the
current will receive a weight that is much smaller than the weight given to an observation
that occurs 10 periods prior to the current. The past weights decrease exponentially with
time, in a geometric fashion, and hence the name EWMA given to the associated control
chart. CUSUM and EWMA charts are used to detect smaller shifts in process parameters

of a quality characteristics being monitored.

2.4 Cumulative Sum (CUSUM) Control Chart
A CUSUM uses two statistics: One sided lower C™and one-sided upper C*, which

are calculated by accumulating deviations from the mean that are below and above a

specified target, respectively. They are defined as follows:
¢ =max[0, (uo — K) — X; + Ci14] (2.4)

C;" = max[0,X; — (uo + K) + CL4] (2.5)

where X; (i=1, 2, ....) is the i" observation from a process. At an in-control state, it is
assumed that X; follows a normal distribution with targeted mean u, and standard
deviation co. The starting values of C;” and C;* are 0, K is the reference value and is one

half of the magnitude of the shift that we wish to detect. The statistics C;” and C;

11



accumulate deviations from the target value that are greater than K and are reset to zero
when they become negative. When C;” and C;* exceed the desired interval, the process
is considered to be out of control. The desired interval, H, is generally considered to be 5
times co. Since the deviations from a chosen target are being accumulated successively,
as the monitoring statistics C;” and C;* are calculated, the CUSUM statistic may inflate
the impact of a shift in a process parameter. Usually, for small shifts, the average run
length (ARL) for detection using the CUSUM chart is smaller than that for a

corresponding Shewhart chart.

According to Montgomery (2013), subgroups should be selected in such a manner
that maximize variability between subgroups and simultaneously minimize variation
within a subgroup. Grouping of observations in the above manner is known as rational
subgrouping. In case of monitoring rational subgroups where more than one observation
is chosen in a subgroup, X; in the above equations for CUSUM statistics is replaced by

X; , which is the average of the observations in subgroup i and sigma is replaced by oz =

=le

2.5 Exponentially Weighted Moving Average (EWMA) Chart
EWMA charts, like CUSUM charts, are also used to detect smaller shifts in a

process mean. EWMA charts are easier to set up and their performance is comparable to
CUSUM charts. The EWMA monitoring statistic in period i is defined by the following

equation (Montgomery, 2013)

12



Mi = /1X,_ + (1 - A)Ml'—l (26)

where 0 < A < 1 is a charting constant and M, = y, is the target-value . The constant, A,
is often termed as the smoothing constant. When 4 = 1, the EWMA chart reduces to the

appropriate Shewhart chart.

If the observations X; are independent random variables with variance o2, then

the variance of M; is given by

o, =0?(55)[1- (1 - 0% @.7)

The control limits for the targeted EWMA control chart are given by

LCL = py — La\/(zfl) [1— (1= 2] (2.8)
CL = po (2.9)

2 .
UCL = pg + La\/(z_m [1—(1-2)2] (2.10)

where L is the selected number of standard deviations away from the mean based on a
chosen level of Type | error. As the time period i increases, the term [1 -(1- }\)2"]

approaches 1, hence the EWMA chart parameters reduce to

LCL = py — Lo (2.11)

2-2)

CL = p, (2.12)

13



UCL =py+ Lo

e (2.13)

2.6 Control Charts for Multivariate Observations

There are numerous manufacturing processes where simultaneous monitoring of
more than one quality characteristic is necessary. As pointed out by Montgomery (2013),
monitoring two or more QCH that are correlated, with individual control charts can be
misleading. Hence when two or more QCH are measured from the same sampling unit,
multivariate quality control techniques are used to monitor a process. Hotelling (1947)

introduced a method also known as Hotelling T2 control chart using bombsight data.

For individual observations, Hotelling’s multi-variate T? is calculated as

T2 = (X — X)'S~1(X — X) (2.14)
where X is the sample observations vector given by [X;, X, , ......, X,] and S s the
variance - covariance matrix respectively of the observations, and X = [X;, X5, ....., ?p]T

is the mean vector of the p quality characteristics. Hotelling T? requires the assumption

that underlying distribution is multivariate normal.

For Phase I, the control limits are given by the following equation (Tracy, Young, &

Mason, 1992)
LCL=0 (2.15)

(m-1)?
m

UCL =

Ba,pj2,(m-p-1)/2 (2.16)

14



where m is the number of subgroups, a is the chosen level of significance, and g

represents the upper o' percentile of the Beta distribution with appropriate parameters.

For Phase 11, control limits are given by

LCL =0 (2.17)

p(m+1)(m-1)
m2-mp

UCL = Fypm—p (2.18)

where F, ,, .m—p, represents the upper percentile of the F-distribution with an upper tail

probability of a, numerator df = p, and denominator df =m - p.

In the event that the number of preliminary subgroups m is large, i.e., say greater than 30,

the control limits can be approximated as

LCL =0 (2.19)
(m-1)

UCL = %Fa,p,m_p (2.20)
or

UCL = x2, (2.21)

For data collected using subgroups, the Hotelling T2 is calculated as
T?=nX -X)s(X-X), (2.22)

where X is the mean vector of p quality characteristics, and X is the mean vector of )?J

and S is the sample covariance matrix of the vector of means.

15



Alt (1985) proposed control limits based on the phase in which the chart is used.
In Phase I, stability of a process is evaluated using historical data, where outliers with
assignable causes are removed and process parameters are re-estimated. Process
parameters estimated from Phase | are subsequently used to obtain revised control limits.
Phase Il is used to either verify that the process is still in control or to detect shifts in

process parameters from an in-control state.
In Phase I, the control limits are given by

LCL =0 (2.23)

ucL = B e mepi (2.24)

mn-m-p+1
The control limits in Phase 1l are given by

LCL =0 (2.25)

UCL = plmt V(1) Fa,p,mn—m—p+1 (2-26)

mn-m-p+1
2.7 Monitoring of Profiles
As discussed in Chapter 1, a profile is defined as a relationship between a
response variable and explanatory variable(s) that characterizes the quality of a process
(Kang & Albin, 2000). LCD display, for example, consists of thousands of pixels each
having luminance that are independently and normally distributed. A defect in an LCD

display may show a shift in distribution parameters on luminance measurements.

16



Many studies in the past have used Hotelling T2 in some form to monitor a profile.
Multiple researchers have proposed using T2 control charts differently. For example,
Stover and Brill (1998) proposed a T2 calculation for a linear profile using a regression

line represented by y = ax + b as

T2 = [sp (a; = 0)? +5q (b — by)? — el 0 (2.27)

[sasp—s3s]

where, a; and b; are the slope and intercept based on the i observation, a, and b, are the
average slope and intercept over all the observations, s2 is the slope variance, s? is the
intercept variance, and s, is the covariance between slope and intercept. The upper

control limit for the T2 control chart is calculated as

T?~[p(n + D(n— DF(p,n —p,a)]/[n(n - p)] (2.28)

where, F(p, n-p) has p numerator df and (n - p) denominator df. Dimension number in
each multivariate observation is represented by p, the number of estimated parameters,

and n is the number of vector observations in each subgroup.

Kang and Albin (2000) may be one of the earliest researchers to propose profile
monitoring. They propose two control charting methods where quality characteristics of
interest could be characterized by a profile. Their study focused on a profile that was
linear in nature. They discuss the application of linear profiles in semiconductor

manufacturing where a mass flow controller (MFC) regulates the flow of gases. The
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pressure in the chamber is a linear function of flow rate, X. Their linear profile is

expressed as

P =P, + (Lnext) x (2.29)

where the intercept Po is the base pressure and the slope consists of Qmax Which is the
maximum flow rate, R is the type of gas, T is temperature, t represents time, and V is the

volume of chamber.

First they proposed the use of Hotelling T? control chart to monitor the slope and

intercept of linear profiles. Their proposed T? statistic is
T
T? = (M; —U) =Y (M; — U) (2.30)

— T H
where the vector M; = (agj,a4j)", agj, a,; are least squares estimators for slope and

intercept, vector U = (4,,4,)7, A, is the mean intercept, A, is the mean slope, the

2 2
) ) ) o, o . . . .
variance-covariance matrix £ = < ) 021> o¢ is the variance of ao, of is the variance
0p1 01

of a1, and o, is the covariance of agj and au;.

Kang and Albin (2000) used an upper control limit as a chi-square variable with 2

degrees of freedom for a bivariate response for a specified significance level a.
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Their second method was to use an EWMA chart and an R-chart based on
regression residuals between sample and reference line to detect shifts in the intercept,

slope, and residual variance.

Jin and Shi (2001) proposed monitoring process-faults using wavelet analysis for
diagnostic systems without prior information. They indicated that tapping torque signals,
welding force signals, and stamping tonnage signals are in waveform that are cycle based

and each cycle has different segments representing process stages.

Walker and Wright (2002) discuss numerous examples including manufacturing
of particleboard and fiberboard where the density of a board is very important for its
machinability. A profilometer with a laser device is used to measure the density of board
at fixed depths across thickness. A sample of 2 square inch board would consist of 314
vertical density profile (VDP) at every 0.002 inches distance. The profile, in this case,
has a complicated form having hundreds of points of interest which cannot be modeled
by a polynomial profile. They proposed the use of generalized additive models (GAMS)
to monitor a profile. Complicated curves are fit using GAMs and difference between the

curves were evaluated using parametric models.

Kim, Mahmoud and Woodall (2003) propose an alternate approach to Kang and
Albin (2000). Instead of considering residuals between sample and reference line to
detect a shift in intercept, slope and variance as proposed by Kang and Albin (2000), they

propose to code the independent variables in their simple linear regression model. Coding
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makes estimators of y-intercept and slope independent and thereby allowing separate

Shewhart type chart for regression parameters.

Mahmoud and Woodall (2004) proposed a method based on a multiple regression
model using indicator variables. Using simulation, they compared the performance of
their proposed F test method based on indicator variables with the performance of a T2
control chart proposed by Stover and Brill (1998), T2 control chart proposed by Kang and
Albin (2000), and Shewhart type control charts proposed by Kim et al. (2003). Through
simulation they showed the effectiveness of their method, as determined by the overall
probability of an out-of-control signal, is better than that of the T2 control chart proposed
by Stover and Brill (1998). The method proposed by Kang and Albin (2000) was also

ineffective in detecting shifts in process standard deviation.

Wang and Tsung (2005) discussed the application in a machine vision system
used in electronics manufacturing industry to check the quality of an LCD display. They
indicated homogeneity of the quality characteristic within a sample, such as luminance of
the pixels in this context, may be violated when the sample size is large. Traditional
control charting techniques to monitor process variability and mean are less effective as
measured by the average run length to detection of out-of-control condition. They

proposed the usage of a Quantile-Quantile (Q-Q) plot to monitor a profile.

Gupta et al. (2006) compared the performance of a control charting method

proposed by Croarkin and Varner (1982) with Kim et al. (2003) using a simulation
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method. Their simulation study showed that Croarkin and Varner’s method performed

poorly compared to the control charting scheme proposed by Kim et al.

Mahmoud et al. (2007) proposed a change point approach based on a segmented
regression technique to detect changes in Phase | linear profiles. Using simulation, they
compared their proposed method with an F-test proposed by Mahmoud and Woodall
(2004) and a method proposed by Kim et al. (2003). The authors concluded that the
change point method performs better under sustained step shift in a regression parameter.
But, the change point method proposed by Mahmoud et al. (2007) was insensitive to
randomly scattered un-sustained shifts in process parameters in which case the method by

Kim et al. (2003) and the F-test performed better than the change point method.

Majority of research on profile monitoring till 2007 was focused mainly on a
simple linear profile. Zou, Tsung and Wang (2007) proposed a multivariate exponentially
weighted moving average method based on Lowry et al. (1992) to monitor general linear
profiles that can be represented by multiple linear regression models. Lowry et al. (1992)

defined a multivariate EWMA model as

Mi = RXL + (I - R)Mi—l (231)

where M; is the EWMA statistic in period i, X; = observation in period i,i= 1,2, ......
Mo=0and R =diag (rs, r, ...... rp), 0<r;<1,j=12,.....p, where p represents the

number of independent variables. An out-of-control signal is determined by the
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monitoring statistic, T7, if it exceeds a chosen upper bound, hs. This is given by the

relation :
T? = M{ZytM; > h, (2.32)

where hy is chosen based on a desired in-control ARL (Average Run Length), X, is the

variance covariance matrix of Mi. The weights ry, r>....rp are generally considered equal
unless there is a reason to consider different weights based on a sequence of individual
observations. Considering equal weights where r1 = r> = r, a multivariate EWMA statistic

in Eq. (2.31) reduces to
M =rX;+ (1 —-r)M;_, (2.33)
The covariance matrix of M is given by
Iy, ={r[1- A -n?]/2 -}z (2.34)

For the larger values of i, the above covariance matrix simplifies to

S, = { (zir)}z (2.35)

Zou, Tsung and Wang (2008) proposed a multivariate exponentially weighted
moving average procedure along with a generalized likelihood ratio test to monitor non
linear profiles. Saghaei, Mehrjoo and Amiri (2009) proposed a method based on

cumulative sum statistics to monitor linear profiles in Phase II.
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Zhang and Albin (2009) proposed using a chi-square control chart to monitor
complex profiles to detect outliers. Their proposed method does not require fitting a
regression model. They compared their method with a non-linear regression method and

showed that their method performed better and had a lower level of mis-identification.

Many studies on profile monitoring have been based on the assumption that the
corresponding response variable is normally distributed. However, some researchers have
studied profile monitoring when a response variable follows a distribution other than
normal. Amiri et al. (2011) proposed a method where the response variable is binary. The
number of responses for a given occurrence rate is described by a Poisson distribution.
They use the log link function to model a failure rate as a function linked to the number
of occurrences. The authors monitor a process through a T?- type statistic that uses the
estimated parameters of the log link function. This was proposed for Phase | analysis.
Later in 2012, Amiri et al. (2012) used a T? based method for monitoring a Gamma

response profile in Phase .

Zhang and Albin (2009) used a y2control chart to identify outliers for the case
where profiles could not be characterized by a specific function. They used pairwise
differences among medians to estimate the variance of profiles. Their method showed
better performance with fewer false alarms compared to other existing non-linear

regressions method.
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Noorossana and Ayoubi (2011) propose a hon-parametric bootstrap control chart
for simple linear profiles in Phase 11 based on the T statistic. Their simulation showed
that the bootstrap control chart performed better with increasing data size. They
indicated that their method was applicable to multiple, polynomial, and nonlinear profiles
in addition to simple linear profiles. Nikoo and Noorossana (2012) used nonparametric

regression with wavelets for monitoring nonlinear profiles in Phase II.

Adibi et al. (2014) use a p-value approach to monitor linear profiles in Phase II.
Out-of-control state is determined when the p-value is less than some pre-determined
significance level. They compared their procedure with a Shewhart-based method, and

their simulation showed that their method performed satisfactorily.

Mitra and Clark (2014) propose an aggregate method instead of individual control
charts for each element of variance-covariance matrix for monitoring variability in
multivariate processes. They also compared the performance of their method with that of

the traditional method using mean time to first detection of shift in process variability.

While comparing the performance of different methods in profile monitoring,
majority of research have focused on ARL or mean time to first detection of shift in
process mean. Limited research has focused on the standard deviation of run length
(SDRL) as a performance metric. Aly et al. (2015) used SDRL as a performance metric

in Phase 11 to compare methods proposed by Kang and Albin (2000), Kim et al. (2003)
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and Mahmoud et al. (2010) and their findings indicated that the method proposed by Kim

et al. (2003) performed better in terms of SDRL.

Kazemzadeh et al. (2016) proposed using an adaptive variable sample size
scheme to monitor simple linear profiles to improve the performance of conventional
control charts. Their study showed that using an adaptive feature improves the

performance in detecting parameter shifts.

Ghashghael and Amiri (2017a) propose a Max-MEWMA (Multivariate
Exponentially Weighted Moving Average) and a Max-MCUSUM control charts for
multivariate linear regression profiles in Phase 11. Ghashghael and Amiri (2017b) also
proposed a sum of squares control charts for Phase 11 monitoring of multivariate linear
regression profiles. Both of their proposed control charts detects whether an out-of-

control signal is caused by a location shift or scale shift.

The objective of this dissertation is to develop techniques to monitor profiles from
known or unknown distributions. Four forms of the T statistic will be used. Details of the

four monitoring methods are described in Chapter 3.
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Chapter 3

Profile Monitoring Through Control Charts

3.1 Methodology
The T2 chart was introduced by Hotelling (1947) to jointly monitor multiple

quality characteristics at least two of which are correlated. Control charts based on T2
have been used in several studies including those by Alt and Smith (1988) and Wierda

(1994).

Without loss of generality, consider distributions that are from the two-parameter
family. The normal distribution, the two-parameter Weibull, the lognormal, and the two-
parameter Gamma are examples of such distributions. A profile random variable (prv)
following a known underlying distribution may be monitored by using control charts that
utilize the distribution parameters estimated from chosen sample or subgroups. A T2 chart
may be used for this purpose. Another approach is to monitor a chosen number of
quantiles of the selected distribution through a joint T2 control chart. These approaches

are subsequently described.

3.2 Monitoring Methods

We first present two methods of jointly monitoring estimated parameters from a

selected distribution.
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For a j™ subgroup, let the parameter estimates of the distribution be represented
by the vector M= (agj, a1j)"; further the estimated variance-covariance matrix of the
vector M;j is denoted by Si. The monitoring sample statistic, T}-Z, for the j™ subgroup is

given by
T;? = (M; — M)TS7(M; — M) (3.1)

where M represents the estimated average value of the vector M over all subgroups. The

corresponding variance-covariance matrix Si is given by

Sy = ——3™M (M; — M)(M; — M)" (32)

~ m-n“

Wierda (1994) concluded that a T2 control chart has the advantage over univariate

charts since it takes the correlation structure into account.

A chart statistic, for monitoring a target parameter vector Mo, for a univariate

EWMA chart is given by
Mewmaj = T(Xj) +(1- T)Mewmaj_l (33)

where r represents a smoothing constant, 0 < r < 1. Usually Mewmao IS chosen as X3, the

first observed value of the estimated statistic at subgroup j =1.

A multivariate EWMA chart, which we will refer here-after as T>-EWMA
(MEWMA), is an extension of a univariate EWMA. The MEWMA —statistic is calculated

as suggested by Lowry et. al. (1992):
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Mewmaj = RXj + - R)Mewmaj_l’ (3.4)

where X; is the estimated parameter for subgroup j, and R is a diagonal matrix of the

smoothing constants. In the special case when the smoothing constants have a common

value r, the charting statistic for subgroup j is given by
Tewmaj2 = (Mewmaj - Mewma)Tsz_l(Mewmaj = Meywma), (3.5)

where,

1 S
S2 = (m-1) lnil(Mewmaj - Mewma)(Mewmaj - Mewma)T (3.6)

M., ma represents the average value of the vector Mewma, and S, represents the

estimated variance-covariance matrix of the vector M., 4

When a profile function is distribution free, a general approach can be used to
estimate the unknown distribution characteristics. In this context, the corresponding
quantiles serve to identify the profile. For the case of general profiles, instead of using
parameter estimates, quantile estimates can be used to calculate the corresponding T2 and
T2-EWMA statistics. Such statistics may also be calculated using quantile estimates from

a known underlying distribution to determine the performance of the monitoring method.

For the vector Mp;j = (ayj, ...... ,ap), letag, ...... , apj represent the estimates of
the selected p quantiles from an empirical distribution. The sample statistic, ijz, for

subgroup j, is given by
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ijz = (Mp; — M—p)TSS_l(ij - M—p)v 3.7

where M, represents the average value of the vector M,,. The variance-covariance matrix
Sz is given by

1 PR N
S5 = Gaogy Zi=1(Mpj = Mp) (M — Mp)", (3.8)

The statistic in Eq. (3.7) represents the third monitoring method considered in this

dissertation for detecting shifts in process parameters.

Using a similar concept as before, an EWMA of estimated quantiles will be
developed and statistically examined. An EWMA extension of the above equations is

given by
Mpewmaj = Rij + (- R)I\/Ipewmaj_1 ) (3.9)
where X,,; is the estimated percentile for subgroup j. In the special case, when the

smoothing constants have a common value r, we have, the fourth monitoring statistic for

subgroup j, as
Tpewmaj2 = (Mpewmaj - Mpewma)TSAITl(Mpewmaj - Mpewma)a (310)

where,

_ 1
© (m-1)

54 Z;'nzl(Mpewmaj - Mpewma)(Mpewmaj - Mpewma)Ti (3-11)
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M,.wmq represents the average value of the vector Mpewma, and S, represents the

estimated variance-covariance matrix of the vector My,eyymq -
]

3.3 Simulation Procedure

A simulation will be used to calculate the control chart limits for monitoring each

of the above four statistics. Figure 1 describes the flow chart for calculation of limits. The

limits are calculated using the following steps:

1)

2)

3)

4)

5)

6)

7)

Let number of rows represent the number of subgroups, m.

Generate n observations from a specified statistical distribution with known
parameters.

The model error € is assumed N(0, 0.01).

Distribution parameter and percentiles are estimated using the results from
step 2, for each subgroup j.

The four monitoring statistics, T;?, Tewmajzv T,;* and Tpewmajz,

respectively, are calculated as described in the previous equations.
Steps 2 — 4 are replicated 10,000 times.

For a chosen level of significance o, say, of 5%, the 95" percentiles of sz,

Tewmajz, T,;* and Tpe‘,vmj2 respectively, are recorded for a given number of

subgroups, say m = 100.
Steps 1 — 6 are repeated with the number of subgroups varying between 100 —
500 with an increment of 1such as 101, 102.....500. Clearly, this procedure
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provides the empirical limits of a monitoring statistic, for a chosen level of

significance as well as a chosen number of subgroups.

In order to detect a shift in process parameters, it is important to first have an in-

control process. Outliers are removed (by utilizing the established empirical control

limits) and in control process parameters are estimated. The flow chart for removing

outliers and obtaining parameter estimates, in Phase I, is shown in Figure 2 described in

the following steps:

1)

2)

3)

4)

5)

6)

Let number of rows represent the number of subgroups, m.

Generate n observations from a given distribution with known parameters
for each subgroup.

The model error € is assumed N(0, 0.01).

Distribution parameters are estimated using the results from step 2, for
each subgroup j.

The four monitoring statistics, 7%, Towma,”, Tp;” and Tpewma,”;

respectively, are calculated as described in previous equations.

The previously described monitoring statistic calculated in step 4 is
compared with empirical limits, for the appropriate subgroup size for the
corresponding distribution (normal or Weibull).

The subgroups that are detected out-of-control are removed.
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7) The remaining subgroups are considered to represent an in-control state of
the process. Estimates of in-control process parameters are calculated

using remaining observations.

The flow chart for detecting shifts in parameter estimates is shown in Figure 3.

Phase Il is a continuation of Phase | and is simulated using the following steps:

8) A sample of n observations are generated from a specified statistical

distribution with predetermined shift in process parameters.

9) The four monitoring statistics, T;%, Tewma,”, Tp;* @ Tpewma,”

respectively are calculated using the addition of the subgroup data from a
distribution with shifted parameters and each is compared with their
respective control limits calculated from the Matlab program as described

in Figure 1.

10) The RL to first detection is recorded for T;?, Tewmajz’ Tp;* and

Tpewmajz, respectively, when each monitoring statistic is greater than its
respective limit. Note that the monitoring statistics may first detect the
shift at different (times) subgroups. So, to monitor the performance of the
statistic, records are maintained for the first time that particular statistic
detects the shift.

11) Steps 9 — 10 are repeated until each method has a first detection.
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12) Steps 9 — 11 are repeated 10,000, 20,000 or 50,000 times to determine the
mean time to first detection and the standard deviation of the time to first
detection (SDRL) for each method. The mean time to first detection for an
out-of-control state is often represented as the ARL for detection and used
as a measure of performance.

13) All the steps in Phase I, and Steps 9 — 12 in Phase Il are repeated for the
values of exponentially weighted moving average constant (r) ranging
from 0.1 to 0.9, at an increment of 0.1.

14) The ARL and SDRL are used to evaluate the performance of each of the

four monitoring methods.

3.4 Applications of Profile Monitoring to Different Distributions

The normal distribution is one of the most widely used distribution in
manufacturing settings. The probability density function (pdf) of a random variable X for

a normal distribution is given by

1

Fo0) = () (3.12)

oV2m

where, |1 represents the mean and ¢ represents the variance of the random variable. The

notation N(, &%) is used to represent a normal distribution with mean p and variance ¢°.

A quality characteristic or a dependent variable can originate from any

distribution. For example, mobile phone display inspection by a machine vision system of
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the variable luminance, as used in Wang and Tsung (2005), can be modeled by a normal
distribution. Physiological measurements such as blood pressure of adult humans seem to

closely follow a normal distribution.

A Weibull distribution, on the other hand, is widely used in reliability engineering
to model time to failure. The pdf of a Weibull random variable T with minimum life zero

IS given by
0= 59 e[ (). 619

where k is a shape parameter and A is a scale parameter. Both parameters are greater than

zero. The mean and variance of a Weibull distribution are given by

w=ar(1+3), (3.14)

g% = )2 [r (1+ %) -{r (1 + %)}2] (3.15)

Over-voltage occurrence in an electrical system, manufacturing and delivery
times in the case of industrial engineering, and wind speeds are often found to fit a
Weibull distribution (Jangamshetti & Rau, 1999; Osmokrovic, Krivokapic, MatijaSevic,

& Kartalovic, 1996).

Exchange rates, price indices, and stock market indices have been found to follow
a lognormal distribution. In reliability analysis, time to repair of maintainable systems has

been established to follow a lognormal distribution. A Gamma distribution has been used
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to model aggregate insurance claims and amount of rainfall accumulated in a reservoir. In
this dissertation, monitoring profiles of characteristics from some selected distributions,

such as the normal and Weibull, are considered.

3.5 Performance Measures

The ARL for first detection of an out-of-control condition along with SDRL will be used

as measures of performance of the monitoring statistics.

3.5.1 Confidence Intervals for ARL

Confidence intervals for ARL may be computed, using principles from the Central Limit

Theorem, as :

ARL * to/, * SDRL/\[Nyrep, (3.16)

where N,..,, represents the number of replications to compute ARL, for a given parameter
combination of the distribution, and t,, is the quantile of the t-distribution, with a
confidence level of (1- a) and degrees of freedom of (N,..,, — 1). Since the number of

simulation replications for a given parameter combination, is quite large (at least 10,000),

the t-statistic can be replaced by the corresponding standard normal (z,,) statistic.

For a given parameter combination, comparison of the relative performances of
four monitoring statistics maybe accomplished through a comparison of the confidence

intervals for ARL for statistical significance.
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Results from the simulations conducted in the study, as will be discussed in the
next chapter, will indicate ARL and SDRL of the time to first detection of an out-of-
control condition for each monitoring statistic. Obviously, smaller values of ARL are
desirable as they will indicate a faster detection of out-of-control conditions in the
process. A smaller value of SDRL is also desirable as this will indicate the consistency or

precision with which detection of an out-of-control condition is accomplished.
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Figure 1: Flow chart for calculation of control limit, based on a chosen level of
significance
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Figure 2: Flow chart of Phase | removing outliers and defining in-control process
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Figure 3: Flow chart of Phase Il for detection of shifts in process parameters
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Chapter 4

Results and Conclusion

4.1 Control Limits

For each parameter combination, the upper control limits for each monitoring
statistic, are first determined. These limits are then utilized in Phase 11 of the monitoring

process to determine the time to detection of an out-of-control condition.

As described in Chapter 3, Figure 1: Flow chart for calculation of limits based on
a chosen level of significance, a Matlab program was run to calculate control limits and
are reported in Appendix A. The number of individual observations in each subgroup was
considered to be 150 in order to ensure a sufficient subgroup size for estimation of the
distribution parameters. The Simulation was replicated 10,000 times to calculate the 95%

percentile of the T2 statistic for each method of the four monitoring statistics, T;,

2
Tewma i Tp j

% and Tpewmajz. The control limits calculation was repeated for number of
subgroups within 100 — 500 in steps of 1, and for EWMA constant values r ranging from

0.1to 0.9 at an increment of 0.1.

4.2 Discussion of Simulation Runs

Simulation runs of 10,000, 20,000 and 50,000 were compared to determine if the
results from 10,000 runs were sufficiently close to those of the other two runs. A
conservative approach of simulation runs as high as 50,000 was chosen based on control

chart type simulations performed by other researchers such as Mahmound and
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Maravelakis (2010), Amin and Miller (1993) and Tatum (1997). After comparing results
of the three run sizes, we determined that 10,000 replications were sufficiently large to
compare performance ranking between the four methods. See Figure 4 below for an
illustrative example. The figure shows the distribution of ARL as a function of the size of
shift in the process mean. The empirical distribution of the ARL exhibits a similar
behavior for each of three simulation runs. Due to the fact that 50,000 replications have
already been run for the evaluation of all desired shifts, results from 50,000 will be
discussed in this chapter.

ARL vs Shift in Mean
r=0.9

-0.2 0.0 0.2
10000 20000 50000 Method

-0.2 0.0 0.2 -0.2 0.0 0.2
Shift in Mean

Panel variable: runs

Figure 4: Comparison of ARL distributions between 10,000, 20,000 and 50,000 runs
for the shift in mean with exponentially weighting constant of r = 0.9
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4.3

Repeatability of Simulation

In order to ensure that performance ranking observed is repeatable, simulation of

each of 10,000, 20,000 and 50,000 runs was repeated for the mean shift of a Normal

distribution from zero. The relative performance ranking amongst the four methods was

found to be repeatable; see Figure 5, where the ARL as a function of the shift in the

mean, from a normal distribution, is shown. Note a similar pattern in the distribution for

the two replicates.

ARL

ARL vs Shifts in Mean

r=09
0.2 0.0 0.2
1, 10000 1, 20000 1, 50000 - Method
* _ e PTSq
N _m - P_T_Sq_EWMA
; * 75 — ¢ - T_5q
‘ol A T SqEWMA

50

s
2.5
2, 10000 2,20000 2, 50000 00
100 ' ' '
75 ,* *
i, 2
T [y 2 4
50 ; i oty
By
25 ..
0.0
0.2 0.0 02 -0.2 0.0 0.2

Shifts in Mean

Panel variables: Replicate, runs

Figure 5: Comparison of two replicates for the mean shift with exponentially
weighted moving average constant r = 0.9
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It is observed from figure 5 that using the ARL as a performance measure determined
that the monitoring statistic szewmaj performs best for smaller shifts within 0.15. For
shifts in the process mean of magnitude greater than 0.15, the performance of all four
monitoring statistics are similar in nature. The next two sections will evaluate shifts in
process parameters for the two underlying distributions.

4.4 Shifts in the Normal Distribution Parameters

4.4.1 Shift in the Mean N(, 1)

In order to detect a shift in the mean, simulations were run 50,000 times for

different shifts. In-control state of the process was the N(0, 1). Shifts in the mean from

—0.2 to +0.2, at an increment of 0.02, were systematically varied. The ARL and SDRL of
were found for each of the four monitoring statistics. Only two of the monitoring

statistics, i.e., Tezwma]_ and szewmaj , are impacted by the chosen value of the weighting

constant, r. The value of r was varied between 0.1 to 0.9, in an increment of 0.1.

Simulation results from 50,000 runs showed that szewmaj performed best

compared to all other methods for all higher values of r > 0.40 (See Figure 6a). Asr
decreases below 0.4, both EWMA methods showed inconclusive results (See Figure 6b).
The monitoring statistic sz, which does not incorporate the weighting constant, seemed
to be the next best statistic for faster detection. Simulation results showed that the
performance of all four methods were practically the same when the shift in mean was at
least 0.2.
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In order to determine if there is a significant difference in the ARLs of the 4
monitoring statistics, for a given shift in the process mean. Confidence intervals may be
obtained using Equation (3.16), for a chosen level of confidence. If the confidence
intervals do not overlap, it may be concluded that a difference exists in the corresponding

ARLs of the monitoring statistics.

_ ARL vs shift in Mean Scatterplot of ARL vs Shiftin Mean
r = 0.9 (Distribution = Normal, Runs = 50,000) r=01 (Distribution = Normal, Runs = 50,000)
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Figure 6: ARL for the shift in mean for different r

Figures 7a and 7b show the confidence intervals for the ARLSs for the case when
the smoothing constant r is 0.9 and 0.1, respectively. For a given choice of the mean
shift, say 0.02, it is found that the confidence intervals do not overlap, indicating a
significant difference in the performance of the monitoring statistics when measured by
ARL. As an example, 95% confidence limits for the ARLs of all four methods, when the

mean shift is 0.02, using Equation (3.16) are shown in Table 1.
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Note that it is sufficient for the confidence intervals not to overlap but not
necessary to indicate a significant difference (Maghsoodloo & Huang, 2010). A

conservative approach is taken by checking confidence interval not overlapping.

Method ARL |SDRL | LCL ucL

;% (T_Sq) 6.330 | 5.793 6.279 6.380
Téwma, (T_SA_EWMA) 5.748 | 5.229 5.702 5.794
T3, (P_T_Sq) 4.847 | 4.301 4.809 4.884
Tpewma, (P_T_Sq_EWMA) 2.665 | 2.117 2.647 2.684

Table 1: Example of confidence interval calculation (r=0.9, shift in mean 0.02,
number of simulations = 50,000)

Scatterplot of ARL LCI_ARL UCI ARL vs Shift in Mean Scatterplot of ARL, LCIARL, UCI_ARL vs Shift In Mean
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Figure 7: ARL for the shift in mean for different r with confidence interval

Figures 8a, 8b, 8c and 8d show the effect of r on ARL performance of different methods.
Figure 8a and 8c, and similarly, Figures 8b and 8d, indicate the same values of ARL but

different scales for ARL. Note that Figures 8c and 8d do not show the ARL at r = 0.2 for
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visual comparison of ARLSs at different r. These four figures clearly show that, for

smaller shifts, the method szewmajperforms better, compared to all others, when r is

greater than 0.5. For larger shifts, e.g. 0.2 or beyond shown in the following Figures 8b

and 8d, all methods perform equally well for r greater than 0.3.

Scatterplot of ARL vs r ARLvsT
Shift in Mean = 0.04 Shift in Mean = 0.20
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Shift in Mean = 0.20

Figure 8c Figure 8d

Figure 8: ARL vs r for different shifts in mean

4.4.2 Shifts in Standard Deviation o
The impact of a shift in the standard deviation, with the mean being kept at the in-

control value, is also investigated. The standard deviation was varied from the in-control
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value of 1, in increments of 0.02. For the two EWMA-type monitoring statistics, the
impact of the weighting constant r was studied. Figures 9a, 9b, 9c, and 9d show the
performance of the statistics, for shifts in standard deviation, for large values of r (0.9 and

0.8) and small values of r (0.2 and 0.1), respectively.

For higher values of r and shifts beyond ¢ =1 in standard deviation,

szewma,- seemed to have smaller ARL for smaller shifts. As the shift in standard deviation

gets larger, all methods seemed to perform equally as well. For smaller values of r (0.2
and 0.1), both T2 statistics with exponentially weighted moving average showed

inconsistent results. The ARLs were exceedingly high being greater than 40.

For higher values of r and shifts below ¢ =1 (i.e., decrease in process standard
deviation), Tewmaj2 seemed to perform better than Tpewmj2 in terms of ARL (See

Figures 9a and 9b)
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Figure 9: ARL for shift in standard deviation for different r

As before, differences in the ARLs of the monitoring statistics are investigated

using confidence intervals given by Equation (3.16). Figures 10a, 10b, 10c and 10d, show

the ARLs and the confidence intervals for specified shifts in o. It was found that the

confidence intervals do not overlap for standard deviation values in the range of 0.9 to

1.1.
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Figure 10: ARL for the shift in standard deviation for different r with CI

4.5 Weibull Distribution
4.5.1 Shifts in the Scale Parameter A

The two-parameter Weibull distribution is impacted by the scale parameter A and
the shape parameter k; see Equation (3.13). We first determine the impact of a change in
the scale, where A is varied from 0.4 to 0.6, in increments of 0.02. The in-control value of
Ais 0.5. As before, the impact of the weighting constant, r, on the EWMA-type

monitoring statistics is explored.

Simulation results with 50,000 runs showed that TZK,ewmaj2 performed better than

all the other methods, for higher values of r and smaller shift in scale (see Figures 11a
and 11b). For larger shifts in A beyond 0.2, all four methods performed equally well.
From our simulation results, it is not recommended to use either of the EWMA methods

for smaller values of r and smaller shifts in A (shifts smaller than 0.05 in magnitude). All
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methods performed equally well for larger shifts in A even when chosen value of r is very

small —say 0.1 or 0.2 (See Figures 11a, 11b, 11c and 11d).
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Figure 11: ARL for the shift in scale factor for different r

ARL comparisons between the four monitoring methods are conducted using
confidence intervals as given by Equation (3.16). Figures 12a, 12b, 12c¢ and 12d show the

ARLSs as well as their corresponding confidence intervals. For small shifts in A (between
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+ 0.05 from the target value), the confidence intervals of the monitoring methods do not

overlap, indicating a significant difference in the ARLSs.
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Figure 12: ARL for the shift in scale factor for different r with CI

4.5.2 Shifts in the Shape Parameter

The shape parameter k was varied from 1.6 to 2.4, in increments of 0.08. The in-
control value of k is 2, although our program can handle other values of k. As before, the

impact of the weighting constant, r, on the EWMA-type monitoring statistics is explored.

Simulation results with 50,000 runs showed that T, ,,maq.> performed better than all the
p j
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other methods for higher values of r > 0.6 and smaller shift (= 0.08) in the shape

parameter (see Figures 13a and 13b). For larger shifts in shape parameter all four

methods performed equally well.
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Figure 13: ARL for the shift in shape factor for different r

From our simulation results, it is not recommended to use either of the
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shifts in scale. All methods performed equally well for larger shifts in shape even when

chosen value of r is very small —say 0.1 or 0.2 (See Figures 13c and 13d).

ARL comparisons between the four monitoring methods are conducted using
confidence intervals as given by Equation (3.16). Figures 14a, 14b, 14c and 14d show the
ARLs as well as their corresponding confidence intervals. For small shifts in shape
parameter (between + 0.3 from the target value), the confidence intervals of the
monitoring methods do not overlap, indicating a significant difference in the ARL of the

monitoring statistics.
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Figure 14: ARL for the shift in shape factor for different r with CI
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Chapter 5

Limitations and Further Study

5.1 Number of Percentile Points

In this dissertation, two percentile-based monitoring methods i.e., T, jz and
Tpewmaj2 used five estimated percentile points (10", 30™", 50" , 70" and 90" percentiles)
to represent a profile. The result showed Tpewmaj2 method performed better in terms of

ARL to detect out-of-control points when the choice of weighting constant r was greater
than 0.5. Effect of the change in the number of estimated percentile points on the

performance of T, jz and Tzﬁ,ev,,maj2 was not explored. The 5 percentiles used ignored

the tails of the underlying distribution; however, increasing the number of percentile-
points will increase the computation time and false-alarm rate. As the number of
estimated percentile points in the monitoring statistic increases, a better representation of
the profile should be obtained. Hence, an area of further research will be to determine an

optimal number of percentile points in a monitoring statistic.

5.2 Application of Monitoring Methods to Unknown Distributions

Two percentile-based monitoring methods i.e., T, jz and Tpewmaj2 were explored

for two underlying distributions; however, the methodology could have potential

application for cases where the underlying distribution is unknown.
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5.3 Other Distributions

Performance comparison of the four monitoring methods for other underlying
distributions than the normal and Weibull was not explored. Profile monitoring when the
underlying distribution is Lognormal may have applications in finance when monitoring
exchange rates, price indices, and stock market indices. The lognormal underlying
distribution has also applications in time to repair maintainable systems. Similarly, in an
insurance industry, it may be important to monitor aggregate insurance claims. This

characteristic is known to follow a Gamma distribution.

5.4 CUSUM Control Chart

Some authors have used CUSUM-based methods in profile monitoring.
Performance comparison of our methods with those of CUSUM-based have not been

explored. This will be another area of future research.

5.5 Effect of Skewness

The Weibull distribution has a wide-range of skewness depending on its shape
parameter k, which can be used to study the impact of skewness on performance of the
four profile-monitoring methods. Other skewed distributions such as Lognormal and
Gamma also provide wide-range of skewness. Effects of skewness on ARL performance
has not been explored and may be an area for future study.

5.6 Error Distribution

In this dissertation, the error distribution was assumed to be normal with a mean

of 0 and a standard deviation of 0.01. The effect of varying the standard deviation from
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0.01 on performance of the four methods was not explored. This may constitute a future

area of research.

5.7 Simultaneous Shifts in Parameters

This dissertation results are based on shift in only one parameter at a time. In real-
life situations, it may be possible for two or more parameters to shift simultaneously. The

Effect of such shifts on performance of the methods has not been explored.
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Appendix A: Control Limits for Monitoring Statistics

Appendix A.1: Limits for Normal Distribution

Limits for Normal Distribution

Weighting [Number of

Constant r |Subgroups |Limits T |Limits T ewwa |Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.1 500 5.9773 5.8601 11.0956 10.8563
0.1 490 5.9647 5.8434 11.0720 10.6415
0.1 480 5.9627 5.8361 11.0695 10.4316
0.1 470 5.9609 5.8296 11.0688 10.2261
0.1 460 5.9604 5.8228 11.0658 10.0257
0.1 450 5.9595 5.8155 11.0628 9.8302
0.1 440 5.9584 5.8086 11.0607 9.6404
0.1 430 5.9572 5.8029 11.0576 9.4559
0.1 420 5.9562 5.7983 11.0560 9.2763
0.1 410 5.9546 5.7912 11.0524 9.1031
0.1 400 5.9538 5.7844 11.0510 8.9358
0.1 390 5.9523 5.7783 11.0482 8.7747
0.1 380 5.9513 5.7741 11.0473 8.6195
0.1 370 5.9502 5.7693 11.0436 8.4713
0.1 360 5.9490 5.7643 11.0407 8.3300
0.1 350 5.9479 5.7586 11.0388 8.1941
0.1 340 5.9470 5.7539 11.0350 8.0656
0.1 330 5.9451 5.7489 11.0321 7.9451
0.1 320 5.9443 5.7441 11.0299 7.8314
0.1 310 5.9440 5.7391 11.0276 7.7247
0.1 300 5.9423 5.7338 11.0248 7.6256
0.1 290 5.9410 5.7285 11.0215 7.5329
0.1 280 5.9401 5.7228 11.0196 7.4477
0.1 270 5.9388 5.7173 11.0153 7.3695
0.1 260 5.9374 5.7115 11.0115 7.2985
0.1 250 5.9355 5.7053 11.0068 7.2335
0.1 240 5.9330 5.6996 11.0033 7.1747
0.1 230 5.9309 5.6937 10.9993 7.1215
0.1 220 5.9295 5.6863 10.9937 7.0740
0.1 210 5.9270 5.6819 10.9898 7.0305
0.1 200 5.9263 5.6758 10.9843 6.9904
0.1 190 5.9248 5.6691 10.9799 6.9540
0.1 180 5.9222 5.6656 10.9756 6.9202
0.1 170 5.9202 5.6600 10.9713 6.8880
0.1 160 5.9179 5.6542 10.9648 6.8571
0.1 150 5.9158 5.6486 10.9577 6.8269
0.1 140 5.9123 5.6429 10.9503 6.7959
0.1 130 5.9100 5.6379 10.9429 6.7646

63



Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.1 120 5.9066 5.6332 10:9357 6.7333
0.1 110 5.9028 5.6252 10.9289 6.7010
0.1 100 5.8990 5.6158 10.9211 6.6680
0.2 500 5.9716 5.9191 11.0899 10.9262
0.2 490 5.9588 5.9045 11.0662 10.7097
0.2 480 5.9579 5.8995 11.0643 10.4977
0.2 470 5.9569 5.8957 11.0634 10.2903
0.2 460 5.9560 5.8909 11.0598 10.0875
0.2 450 5.9553 5.8883 11.0579 9.8896
0.2 440 5.9548 5.8854 11.0557 9.6980
0.2 430 5.9536 5.8808 11.0524 9.5117
0.2 420 5.9519 5.8778 11.0511 9.3306
0.2 410 5.9509 5.8732 11.0480 9.1555
0.2 400 5.9493 5.8677 11.0455 8.9867
0.2 390 5.9491 5.8650 11.0423 8.8240
0.2 380 5.9491 5.8624 11.0408 8.6677
0.2 370 5.9475 5.8585 11.0389 8.5183
0.2 360 5.9469 5.8542 11.0371 8.3745
0.2 350 5.9451 5.8504 11.0350 8.2365
0.2 340 5.9450 5.8476 11.0336 8.1066
0.2 330 5.9435 5.8434 11.0310 7.9843
0.2 320 5.9418 5.8387 11.0275 7.8698
0.2 310 5.9398 5.8343 11.0239 7.7612
0.2 300 5.9393 5.8302 11.0203 7.6620
0.2 290 5.9380 5.8265 11.0157 7.5697
0.2 280 5.9367 5.8214 11.0121 7.4845
0.2 270 5.9357 5.8172 11.0070 7.4072
0.2 260 5.9343 5.8111 11.0037 7.3381
0.2 250 5.9324 5.8062 11.0018 7.2762
0.2 240 5.9300 5.8004 10.9982 7.2213
0.2 230 5.9271 5.7963 10.9938 7.1740
0.2 220 5.9241 5.7905 10.9892 7.1331
0.2 210 5.9227 5.7851 10.9850 7.0980
0.2 200 5.9208 5.7806 10.9798 7.0674
0.2 190 5.9183 5.7765 10.9755 7.0419
0.2 180 5.9160 5.7696 10.9713 7.0194
0.2 170 5.9140 5.7629 10.9656 7.0002
0.2 160 5.9122 5.7582 10.9615 6.9831
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.2 150 5.9101 5.7539 10.9566 6.9675
0.2 140 5.9065 5.7486 10.9495 6.9529
0.2 130 5.9032 5.7421 10.9422 6.9380
0.2 120 5.9001 5.7370 10.9344 6.9242
0.2 110 5.8971 5.7310 10.9281 6.9107
0.2 100 5.8936 5.7260 10.9194 6.8961
0.3 500 5.9755 5.9565 11.0896 10.9898
0.3 490 5.9629 5.9422 11.0647 10.7719
0.3 430 5.9620 5.9394 11.0630 10.5586
0.3 470 5.9604 5.9359 11.0596 10.3498
0.3 460 5.9587 5.9324 11.0581 10.1461
0.3 450 5.9584 5.9314 11.0560 9.9476
0.3 440 5.9579 5.9288 11.0548 9.7547
0.3 430 5.9570 5.9262 11.0514 9.5666
0.3 420 5.9554 5.9239 11.0493 9.3842
0.3 410 5.9537 589211 11.0464 9.2079
0.3 400 5.9529 5.9196 11.0437 9.0379
0.3 390 5.9524 5.9169 11.0420 8.8739
0.3 380 5.9506 5.9147 11.0392 8.7166
0.3 370 5.9496 5.9117 11.0354 8.5657
0.3 360 5.9485 5.9101 11.0319 8.4204
0.3 350 5.9482 5.9078 11.0304 8.2828
0.3 340 5.9472 5.9045 11.0280 8.1521
0.3 330 5.9469 5.9018 11.0252 8.0276
0.3 320 5.9451 5.8981 11.0208 7.9111
0.3 310 5.9436 5.8944 11.0175 7.8017
0.3 300 5.9426 5.8915 11.0134 7.6988
0.3 290 5.9416 5.8893 11.0110 7.6049
0.3 280 5.9401 5.8871 11.0071 7.5189
0.3 270 5.9391 5.8862 11.0026 7.4409
0.3 260 5.9378 5.8826 11.0008 7.3712
0.3 250 5.9358 5.8801 10.9989 7.3088
0.3 240 5.9360 5.8765 10.9961 7.2551
0.3 230 5.9340 5.8728 10.9919 7.2095
0.3 220 5.9320 5.8698 10.9877 7.1705
0.3 210 5.9309 5.8659 10.9828 7.1372
0.3 200 5.9281 5.8604 10.9772 7.1100
0.3 190 5.9257 5.8555 10.9753 7.0879
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.3 180 5.9236 5.8520 10:9712 7.0694
0.3 170 5.9213 5.8488 10.9665 7.0534
0.3 160 5.9183 5.8424 10.9603 7.0412
0.3 150 5.9165 5.8367 10.9532 7.0309
0.3 140 5.9146 5.8335 10.9464 7.0220
0.3 130 5.9114 5.8274 10.9400 7.0133
0.3 120 5.9077 5.8228 10.9342 7.0061
0.3 110 5.9040 5.8168 10.9265 6.9985
0.3 100 5.9009 5.8129 10.9173 6.9922
0.4 500 5.9707 5.9642 11.0842 11.0278
0.4 490 5.9581 5.9494 11.0611 10.8093
0.4 480 5.9575 5.9479 11.0587 10.5954
0.4 470 5.9575 5.9468 11.0564 10.3858
0.4 460 5.9559 5.9445 11.0538 10.1812
0.4 450 5.9552 5.9430 11.0517 9.9817
0.4 440 5.9542 5.9409 11.0494 9.7886
0.4 430 5.9540 5.9397 11.0462 9.6006
0.4 420 5.9523 59375 11.0438 9.4182
0.4 410 5.9518 5.9351 11.0408 9.2411
0.4 400 5.9510 5.9334 11.0396 9.0691
0.4 390 5.9502 5.9311 11.0369 8.9028
0.4 380 5.9491 5.9288 11.0350 8.7443
0.4 370 5.9480 5.9263 11.0327 8.5926
0.4 360 5.9473 5.9243 11.0293 8.4471
0.4 350 5.9473 5.9223 11.0271 8.3086
0.4 340 5.9466 5.9204 11.0246 8.1767
0.4 330 5.9463 5.9182 11.0224 8.0523
0.4 320 5.9450 5.9163 11.0201 7.9350
0.4 310 5.9438 5.9136 11.0160 7.8254
0.4 300 5.9428 5.9107 11.0129 7.7218
0.4 290 5.9419 5.9076 11.0106 7.6270
0.4 280 5.9405 5.9056 11.0059 7.5402
0.4 270 5.9391 5.9029 11.0037 7.4615
0.4 260 5.9365 5.9003 11.0004 7.3905
0.4 250 5.9345 5.8982 10.9974 7.3279
0.4 240 5.9328 5.8955 10.9926 7.2736
0.4 230 5.9317 5.8936 10.9885 7.2268
0.4 220 5.9294 5.8896 10.9847 7.1867
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.4 210 5.9285 5.8872 10.9822 7.1532
0.4 200 5.9268 5.8846 10.9787 7.1270
0.4 190 5.9251 5.8803 10.9728 7.1061
0.4 180 5.9231 5.8762 10.9692 7.0901
0.4 170 5.9210 5.8729 10.9624 7.0773
0.4 160 5.9197 5.8702 10.9563 7.0670
0.4 150 5.9167 5.8656 10.9506 7.0589
0.4 140 5.9148 5.8613 10.9440 7.0526
0.4 130 5.9117 5.8578 10.9383 7.0473
0.4 120 5.9079 5.8512 10.9304 7.0429
0.4 110 5.9040 5.8459 10.9230 7.0392
0.4 100 5.9014 5.8411 10.9134 7.0360
0.5 500 5.9747 5.9732 11.0885 11.0546
0.5 490 5.9624 5.9610 11.0650 10.8355
0.5 480 5.9618 5.9594 11.0628 10.6210
0.5 470 5.9608 5.89581 11.0611 10.4106
0.5 460 5.9604 5.9557 11.0603 10.2060
0.5 450 5.9588 5:9533 11.0577 10.0064
0.5 440 5.9571 5.9509 11.0569 9.8121
0.5 430 5.9556 5.9498 11.0546 9.6234
0.5 420 5.9552 5.9486 11.0507 9.4399
0.5 410 5.9542 5.9467 11.0478 9.2617
0.5 400 5.9519 5.9443 11.0444 9.0896
0.5 390 5.9517 5.9429 11.0423 8.9230
0.5 380 5.9506 5.9407 11.0401 8.7631
0.5 370 5.9492 5.9395 11.0378 8.6101
0.5 360 5.9483 5.9370 11.0363 8.4639
0.5 350 5.9473 5.9354 11.0318 8.3254
0.5 340 5.9461 5.9342 11.0286 8.1937
0.5 330 5.9452 5.9330 11.0258 8.0691
0.5 320 5.9439 5.9313 11.0225 7.9521
0.5 310 5.9429 5.9299 11.0211 7.8427
0.5 300 5.9421 5.9271 11.0174 7.7402
0.5 290 5.9421 5.9255 11.0147 7.6454
0.5 280 5.9402 5.9235 11.0120 7.5591
0.5 270 5.9383 5.9215 11.0085 7.4807
0.5 260 5.9360 5.9190 11.0044 7.4104
0.5 250 5.9350 5.9169 11.0009 7.3481
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.5 240 5.9342 5.9134 10.9963 7.2937
0.5 230 5.9327 5.9105 10.9926 7.2466
0.5 220 5.9301 5.9081 10.9867 7.2063
0.5 210 5.9283 5.9053 10.9814 7.1732
0.5 200 5.9272 5.9037 10.9759 7.1470
0.5 190 5.9261 5.9011 10.9714 7.1267
0.5 180 5.9240 5.8976 10.9669 7.1109
0.5 170 5.9207 5.8929 10.9623 7.0988
0.5 160 5.9186 5.8906 10.9578 7.0898
0.5 150 5.9168 5.8865 10.9503 7.0829
0.5 140 5.9136 5.8819 10.9431 7.0779
0.5 130 5.9111 5.8761 10.9363 7.0744
0.5 120 5.9090 5.8722 10.9297 7.0717
0.5 110 5.9062 5.8670 10.9211 7.0695
0.5 100 5.9030 5.8626 10.9138 7.0681
0.6 500 5.9746 58716 11.0936 11.0740
0.6 490 5.9617 5.9586 11.0696 10.8546
0.6 480 5.9613 5.9586 11.0695 10.6396
0.6 470 5.9593 5.9568 11.0662 10.4295
0.6 460 5.9584 5.9546 11.0639 10.2246
0.6 450 5.9575 5.9523 11.0602 10.0250
0.6 440 5.9555 5.9506 11.0590 9.8304
0.6 430 5.9533 5.9484 11.0561 9.6405
0.6 420 5.9513 5.9470 11.0533 9.4565
0.6 410 5.9514 5.9462 11.0504 9.2787
0.6 400 5.9515 5.9455 11.0484 9.1071
0.6 390 5.9503 5.9438 11.0459 8.9412
0.6 380 5.9495 5.9418 11.0434 8.7816
0.6 370 5.9483 5.9409 11.0396 8.6289
0.6 360 5.9473 5.9395 11.0375 8.4833
0.6 350 5.9467 5.9385 11.0358 8.3437
0.6 340 5.9454 5.9363 11.0331 8.2117
0.6 330 5.9448 5.9350 11.0304 8.0857
0.6 320 5.9441 5.9337 11.0281 7.9677
0.6 310 5.9425 5.9317 11.0249 7.8573
0.6 300 5.9421 5.9301 11.0221 7.7548
0.6 290 5.9400 5.9274 11.0195 7.6601
0.6 280 5.9388 5.9257 11.0157 7.5737
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.6 270 5.9370 5.9239 110131 7.4944
0.6 260 5.9358 5.9216 11.0102 7.4231
0.6 250 5.9338 5.9180 11.0052 7.3595
0.6 240 5.9332 5.9168 11.0014 7.3043
0.6 230 5.9306 5.9146 10.9959 7.2567
0.6 220 5.9282 5.9111 10.9915 7.2176
0.6 210 5.9270 5.9093 10.9868 7.1845
0.6 200 5.9254 5.9076 10.9828 7.1583
0.6 190 5.9227 5.9045 10.9792 2.3377
0.6 180 5.9215 5.9028 10.9741 7.1218
0.6 170 5.9201 5.9011 10.9682 7.1106
0.6 160 5.9178 5.8975 10.9628 7.1024
0.6 150 5.9147 5.8949 10.9560 7.0969
0.6 140 5.9128 5.8905 10.9495 7.0931
0.6 130 5.9110 5.8880 10.9430 7.0906
0.6 120 5.9074 5.8837 10.9361 7.0891
0.6 110 5.9039 5.8788 10.9271 7.0881
0.6 100 5.9017 5.8739 10.9184 7.0874
0.7 500 5.9740 5.9699 11.0882 11.0727
0.7 490 5.9609 5.9567 11.0639 10.8533
0.7 480 5.9596 5.9552 11.0608 10.6388
0.7 470 5.9589 5.9553 11.0585 10.4288
0.7 460 5.9574 5.9535 11.0563 10.2234
0.7 450 5.9565 5.9525 11.0552 10.0232
0.7 440 5.9555 5.9519 11.0520 9.8294
0.7 430 5.9560 5.9523 11.0514 9.6404
0.7 420 5.9559 5.9527 11.0505 9.4564
0.7 410 5.9548 5.9519 11.0483 9.2780
0.7 400 5.9544 5.9502 11.0459 9.1064
0.7 390 5.9529 5.9484 11.0433 8.9411
0.7 380 5.9519 5.9467 11.0420 8.7827
0.7 370 5.9500 5.9452 11.0376 8.6303
0.7 360 5.9491 5.9441 11.0350 8.4837
0.7 350 5.9475 5.9423 11.0328 8.3441
0.7 340 5.9458 5.9404 11.0282 8.2116
0.7 330 5.9444 5.9390 11.0243 8.0857
0.7 320 5.9429 5.9362 11.0222 7.9684
0.7 310 5.9417 5.9339 11.0186 7.8583
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.7 300 5.9408 5.9328 110155 7.7549
0.7 290 5.9376 5.9305 11.0118 7.6603
0.7 280 5.9354 5.9278 11.0085 7.5729
0.7 270 5.9340 5.9254 11.0047 7.4938
0.7 260 5.9328 5.9242 11.0035 7.4218
0.7 250 5.9319 5.9234 10.9993 7.3582
0.7 240 5.9296 5.9211 10.9966 7.3029
0.7 230 5.9276 5.9183 10.9935 7.2560
0.7 220 5.9266 5.9165 10.9891 7.2170
0.7 210 5.9249 5.9137 10.9836 7.1855
0.7 200 5.9233 5.9115 10.9794 7.1598
0.7 190 5.9214 5.9094 10.9762 7.1398
0.7 180 5.9199 5.9067 10.9720 7.1250
0.7 170 5.9179 5.9044 10.9666 7.1143
0.7 160 5.9158 5.9013 10.9608 7.1068
0.7 150 5.9131 5.8978 10.9553 7.1017
0.7 140 5.9103 5.8943 10.9482 7.0987
0.7 130 5.9081 5.8917 10.9439 7.0967
0.7 120 5.9045 5.8878 10.9357 7.0953
0.7 110 5.9012 5.8834 10.9276 7.0946
0.7 100 5.8971 5.8805 10.9199 7.0944
0.8 500 5.9692 5.9685 11.0863 11.0797
0.8 490 5.9558 5.9554 11.0619 10.8601
0.8 480 5.9544 5.9536 11.0601 10.6455
0.8 470 5.9536 5.9523 11.0590 10.4354
0.8 460 5.9529 5.9518 11.0568 10.2303
0.8 450 5.9520 5.9513 11.0535 10.0303
0.8 440 5.9514 5.9497 11.0513 9.8358
0.8 430 5.9502 5.9483 11.0503 9.6460
0.8 420 5.9495 5.9478 11.0483 9.4620
0.8 410 5.9492 5.9476 11.0452 9.2837
0.8 400 5.9476 5.9463 11.0429 9.1113
0.8 390 5.9465 5.9450 11.0406 8.9464
0.8 380 5.9458 5.9441 11.0371 8.7872
0.8 370 5.9452 5.9431 11.0350 8.6337
0.8 360 5.9433 5.9410 11.0318 8.4875
0.8 350 5.9423 5.9398 11.0288 8.3480
0.8 340 5.9413 5.9390 11.0252 8.2157
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.8 330 5.9407 5.9396 11.0226 8.0909
0.8 320 5.9396 5.9379 11.0196 7.9739
0.8 310 5.9385 5.9363 11.0170 7.8638
0.8 300 5.9383 5.9352 11.0130 7.7616
0.8 290 5.9365 5.9335 11.0100 7.6673
0.8 280 5.9352 5.9319 11.0083 7.5809
0.8 270 5.9337 5.9303 11.0055 7.5014
0.8 260 5.9316 5.9288 11.0029 7.4307
0.8 250 5.9296 5.9265 10.9998 7.3683
0.8 240 5.9281 5.9251 10.9957 7.3141
0.8 230 5.9267 5.9234 10.9911 7.2676
0.8 220 5.9245 5.9221 10.9868 7.2281
0.8 210 5.9221 5.9195 10.9831 7.1970
0.8 200 5.9209 5.9163 10.9781 7.1707
0.8 190 5.9195 5.9145 10.9724 7.1505
0.8 180 5.9183 5.9132 10.9689 7.1352
0.8 170 5.9166 5.9141 10.9629 7.1246
0.8 160 5.9153 5.9094 10.9582 7.1172
0.8 150 5.9125 5.9067 10.9522 7.1119
0.8 140 5.9099 5.9036 10.9461 7.1087
0.8 130 5.9066 5.9006 10.9392 7.1069
0.8 120 5.9041 5.8979 10.9320 7.1060
0.8 110 5.9018 5.8949 10.9235 7.1055
0.8 100 5.8973 5.8908 10.9163 7.1053
0.9 500 5.9762 5.9738 11.0910 11.0913
0.9 490 5.9642 5.9614 11.0667 10.8713
0.9 480 5.9636 5.9612 11.0642 10.6558
0.9 470 5.9636 5.9605 11.0628 10.4451
09 460 5.9622 5.9591 11.0605 10.2397
0.9 450 5.9610 5.9584 11.0592 10.0395
0.9 440 5.9602 5.9577 11.0568 9.8451
0.9 430 5.9588 5.9564 11.0544 9.6556
0.9 420 5.9568 5.9543 11.0513 9.4720
0.9 410 5.9560 5.9532 11.0494 9.2938
0.9 400 5.9549 5.9519 11.0478 9.1216
0.9 390 5.9544 5.9512 11.0458 8.9558
0.9 380 5.9528 5.9501 11.0440 8.7962
0.9 370 5.9509 5.9487 11.0412 8.6442
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Limits for Normal Distribution

Weighting |[Number of

Constant r |Subgroups |Limits T |Limits T ewwa [Limits sz Limits szewma

(A) (B) (C) (D) (E) (F}
0.9 360 5.9507 5.9476 11.0390 8.4982
0.9 350 5.9498 5.9471 11.0366 8.3595
0.9 340 5.9481 5.9464 11.0320 8.2283
0.9 330 5.9463 5.9444 11.0292 8.1027
0.9 320 5.9460 5.9439 11.0269 7.9829
0.9 310 5.9447 5.9417 11.0227 7.8717
0.9 300 5.9437 5.9401 11.0196 7.7689
09 290 5.9425 5.9391 11.0168 7.6736
0.9 280 5.9418 5.9375 11.0132 7.5862
0.9 270 5.9395 5.9356 11.0091 7.5073
0.9 260 5.9388 5.9353 11.0057 7.4365
09 250 5.9373 5.9334 11.0005 7.3742
0.9 240 5.9358 5.9326 10.9965 7.3204
0.9 230 5.9332 5.9307 10.9933 7.2741
0.9 220 5.9321 5.9293 10.9901 7.2350
0.9 210 5.9313 58275 10.9865 7.2029
0.9 200 5.9289 5.9248 10.9822 7.1773
0.9 190 5.9269 5.9238 10.9795 7.1575
0.9 180 5.9259 5.9220 10.9751 7.1429
0.9 170 5.9233 5.9187 10.9699 7.1324
0.9 160 5.9211 5.9167 10.9637 7.1250
0.9 150 5.9182 5.9145 10.9584 7.1201
0.9 140 5.9151 5.9112 10.9512 7.1170
0.9 130 5.9126 5.9093 10.9452 7.1153
0.9 120 5.9096 5.9058 10.9386 7.1144
0.9 110 5.9066 5.9020 10.9289 7.1140
0.9 100 5.9042 5.8979 10.9207 7.1138
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Appendix A.2: Limits for Weibull Distribution

Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T TZEWMA Limits sz szewma

(A) (B) (C) (D) (E) (F)
0.1 500 5.9965 5.8742| 11.0661 10.8503
0.1 490 5.9839 5.8576| 11.0424 10.6354
0.1 480 5.9826 5.8524| 11.0399 10.4251
0.1 470 5.9820 5.8476 11.0385 10.2197
0.1 460 5.9809 5.8423 11.0380 10.0195
0.1 450 5.9797 5.8374| 11.0347 9.8238
0.1 440 5.9791 5.8308| 11.0331 9.6333
0.1 430 5.9780 5.8269 11.0305 9.4485
0.1 420 5.9774 5.8235| 11.0287 9.2690
0.1 410 5.9765 5.8199 11.0261 $5.0950
0.1 400 5.9757 5.8138| 11.0248 8.9270
0.1 390 5.9748 5.8073 11.0217 8.7657
0.1 380 5.9734 5.8012| 11.0190 8.6107
0.1 370 5.9730 5.7971 11.0170 8.4625
0.1 360 5.9709 5.7921| 11.0141 8.3203
0.1 350 5.9697 5.7868 11.0117 8.1859
0.1 340 5.9694 5.7806| 11.0094 8.0581
0.1 330 5.9681 5.7751] 11.0062 7.9368
0.1 320 5.9666 5.7705| 11.0034 7.8229
0.1 310 5.9657 5.7664 11.0011 7.7170
0.1 300 5.9646 5.7629| 10.9991 7.6183
0.1 290 5.9636 5.7576 10.9941 7.5270
0.1 280 5.9624 5.7514| 10.9912 7.4436
0.1 270 5.9610 5.7453 10.9883 7.3676
0.1 260 5.9593 5.7404| 10.9864 7.2987
0.1 250 5.9581 5.7372 10.9837 7.2357
0.1 240 5.8575 5.7336 10.9800 7.1776
0.1 230 5.9567 5.7280 10.9764 7.1256
0.1 220 5.9544 5.7219| 10.8721 7.0797
0.1 210 5:9527 5.7144| 10.9671 7.0381
0.1 200 5.9500 5.7077| 10.9614 7.0001
0.1 190 5.9493 5.7012 10.9576 6.9648
0.1 180 5.9478 5.6948 10.9534 6.9310
0.1 170 5.9457 5.6881 10.9486 6.8993
0.1 160 5.9432 5.6811| 10.9431 6.8680
0.1 150 5.9404 5.6755| 10.9372 6.8375
0.1 140 5.9381 5.6688| 10.9312 6.8070
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.1 130 5.9354 5.6625 10.9244 6.7758
0.1 120 5.9330 5.6564 10.9177 6.7446
0.1 110 5.9302 5.6487 10.9070 6.7125
0.1 100 5.9266 5.6398 10.8991 6.6795
0.2 500 5.9927 5.9287 11.0625 10.9204
0.2 490 5.9797 5.9142 11.0382 10.7039
0.2 480 5.9802 5.9121 11.0362 10.4920
0.2 470 5.9790 5.9083 11.0341 10.2849
0.2 460 5.9786 5.9024 11.0333 10.0829
0.2 450 5.9780 5.8988 11.0313 9.8860
0.2 440 5.9771 5.8970 11.0303 9.6939
0.2 430 5.9756 5.8930 11.0267 9.5078
0.2 420 5.9747 5.8889 11.0250 9.3271
0.2 410 5.9738 5.8852 11.0237 9.1522
0.2 400 5.9739 5.8824 11.0214 8.9830
0.2 390 5.9725 5.8785 11.0185 8.8192
0.2 380 5.9719 5.8757 11.0153 8.6620
0.2 370 5.9711 5.8724 11.0129 8.5111
0.2 360 5.9700 5.8694 11.0113 8.3662
0.2 350 5.9693 5.8661 11.0096 8.2293
0.2 340 5.9687 5.8635 11.0068 8.0990
0.2 330 5.9683 5.8595 11.0047 7.9759
0.2 320 5.9676 5.8555 11.0007 7.8612
0.2 310 5.9667 5.8514 10.9981 7.7535
0.2 300 5.9654 5.8470 10.9949 7.6527
0.2 290 5.9639 5.8434 10.9922 7.5593
0.2 280 5.9628 5.8402 10.9876 7.4742
0.2 270 5.9616 5.8374 10.9853 73971
0.2 260 5.9612 5.8336 10.9811 7.3285
0.2 250 5.9596 5.8299 10.9768 7.2667
0.2 240 5.9584 5.8248 10.9732 7.2120
0.2 230 5.9573 5.8215 10.9698 7.1636
0.2 220 5.9557 5.8171 10.9659 7.1225
0.2 210 5.9544 5.8119 10.9615 7.0877
0.2 200 59527 5.8062 10.9562 7.0581
0.2 190 5.9501 5.8013| 10.9526 7.0321
0.2 180 5.9489 5.7973 10.9479 7.0102

74




Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.2 170 5.9463 5.7927 10.9427 6.9915
0.2 160 5.9436 5.7858 10.9369 6.9744
0.2 150 5.9416 5.7802 10.9311 6.9587
0.2 140 5.9392 5.7756 10.9233 6.9449
0.2 130 5.9355 5.7705 10.9170 6.9310
0.2 120 59337 5.7653 10.9102 6.9171
0.2 110 5.9297 5.7593 10.9017 6.9035
0.2 100 5.9272 5.7528 10.8937 6.8899
0.3 500 5.9972 5.9626 11.0704 10.9855
0.3 490 5.9852 5.9499 11.0449 10.7679
0.3 480 5.9848 5.9475 11.0441 10.5550
0.3 470 5.9841 5.9459 11.0413 10.3463
0.3 460 5.9833 5.9436 11.0388 10.1426
0.3 450 5.9826 5.9417| 11.0368 9.9443
0.3 440 5.9811 5.9394 11.0339 9.7509
0.3 430 5.9807 5.9383 11.0317 9.5628
0.3 420 5.9793 5.9354 11.0282 9.3807
0.3 410 5.9779 5.9331 11.0264 9.2051
0.3 400 5.9768 5.9310 11.0237 9.0348
0.3 390 5.9761 5.9290 11.0227 8.8700
0.3 380 5.9754 5.9261 11.0209 8.7110
0.3 370 5.9749 5.9242 11.0189 8.5593
0.3 360 5.9745 5.9211 11.0171 8.4144
0.3 350 5.9732 5.9180 11.0143 8.2765
0.3 340 5.9719 5.9141 11.0115 8.1457
0.3 330 5.9707 5.9129 11.0088 8.0216
0.3 320 5.9695 5.9106 11.0052 7.9056
0.3 310 5.9686 5.9078 11.0025 77959
0.3 300 5.9675 5.9045 10.9985 7.6942
0.3 290 5.9659 5.9007 10.9954 7.6008
0.3 280 5.9645 5.8970 10.9919 7.5159
0.3 270 5.9625 5.8933 10.9868 7.4387
0.3 260 5.9626 5.8897 10.9826 7.3694
0.3 250 5.9607 5.8873 10.9788 7.3080
0.3 240 5.9590 5.8844 10.9754 7.2546
0.3 230 5.9575 5.8812| 10.9723 7.2086
03 220 5.9555 5.8753 10.9683 7.1700
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.3 210 5.9548 5.8727 10.9640 7.1369
0.3 200 5.9524 5.8673 10.9593 7.1102
0.3 190 5.9500 5.8629 10.9524 7.0878
0.3 180 5.9480 5.8602 10.9490 7.0698
0.3 170 5.9461 5.8549 10.9431 7.0548
0.3 160 5.9450 5.8513 10.9374 7.0430
03 150 5.9425 5.8471 10.9315 7.0331
0.3 140 5.9402 5.8449 10.9249 7.0243
0.3 130 5.9373 5.8386 10.9174 7.0162
0.3 120 5.9344 5.8331 10.9103 7.0089
0.3 110 5.9314 5.8279 10.9015 7.0017
0.3 100 5.9281 5.8216 10.8936 6.9954
0.4 500 5.9926 5.9773 11.0676 11.0188
0.4 490 5.9800 5.9635| 11.0433 10.8005
0.4 480 5.9777 5.9620 11.0409 10.5870
0.4 470 5.9767 5.9604 11.0405 10.3780
0.4 460 5.9767 5.9580 11.0383 10.1731
0.4 450 5.9758 5.9564 11.0352 9.9740
0.4 440 5.9756 5.9563 11.0333 9.7810
0.4 430 5.9748 5.9541 11.0310 9.5933
0.4 420 5:9735 5.9523 11.0284 9.4111
0.4 410 5.9727 5.9510 11.0258 9.2346
0.4 400 5.9721 5.9493 11.0236 9.0641
0.4 390 5.9721 5.9479 11.0218 8.8994
0.4 380 5.9707 5.9455 11.0190 8.7413
0.4 370 5.9696 5.9430 11.0161 8.5891
0.4 360 5.9695 5.9414 11.0136 8.4418
0.4 350 5.9676 5.9374 11.0113 8.3020
0.4 340 5.9662 5.9359 11.0089 8.1704
0.4 330 5.9654 5.9343 11.0069 8.0444
0.4 320 5.9639 5.9319 11.0031 7.9282
0.4 310 5.9621 5.9278 10.9995 7.8196
0.4 300 5.9608 5.9261 10.9980 7.7175
0.4 290 5.9597 5.9233 10.9950 7.6228
0.4 280 5.9588 5.9210 10.9916 #5371
0.4 270 5.9568 5.9164| 10.9883 7.4596
0.4 260 5.9552 5.9139 10.9842 7.3900
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.4 250 5.9545 5.9122 10.9799 7.3288
0.4 240 5.9534 5.9098 10.9769 742757
0.4 230 5.9520 5.9071 10.9719 7.2300
0.4 220 5.9498 5.9050 10.9682 7.1913
0.4 210 5.9490 5.9035 10.9651 7.1591
0.4 200 5.9472 5.9005 10.9608 7.1332
0.4 190 5.9451 5.8968 10.9560 7.1120
0.4 180 5.9432 5.8937 10.9532 7.0961
0.4 170 5.9409 5.8891 10.9483 7.0833
0.4 160 5.9390 5.8848 10.9429 7.0731
0.4 150 5.9361 5.8812 10.9352 7.0656
0.4 140 5.9343 5.8774 10.9299 7.0593
0.4 130 5.9315 5.8730 10.9219 7.0543
0.4 120 5.9281 5.8682 10.9147 7.0498
0.4 110 5.9248 5.8628 10.9055 7.0458
0.4 100 5.9211 5.8577 10.8971 7.0426
0.5 500 5.9959 5.9892 11.0665 11.0406
0.5 490 5.9827 5.9764 11.0422 10.8218
0.5 480 5.9823 5.9758 11.0396 10.6078
0.5 470 5.9810 5.9733 11.0371 10.3984
0.5 460 5.9805 5.9723 11.0356 10.1941
0.5 450 5.9803 5.9714 11.0345 9.9944
0.5 440 5.9794 5.9697 11.0308 9.8001
0.5 430 5.9786 5.9683 11.0291 9.6103
0.5 420 5.9779 5.9664 11.0268 9.4268
0.5 410 5.9764 5.9636 11.0248 9.2488
0.5 400 5.9753 5.9618 11.0238 9.0772
0.5 390 5.9744 5.9602 11.0205 8.9118
0.5 380 5.9734 5.9590 11.0196 8.7528
0.5 370 5.9713 5.9564 11.0179 8.6005
0.5 360 5.9710 5.9546 11.0150 8.4550
0.5 350 5.9714 5.9547 11.0120 8.3141
0.5 340 5.9712 5.9542 11.0104 8.1815
0.5 330 5.9701 5.9535 11.0082 8.0570
0.5 320 5.9686 5.9517 11.0044 79397
0.5 310 5.9675 5.9495| 11.0015 7.8302
0.5 300 5.9669 5.9474 10.9969 7.7281
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.5 290 5.9666 5.9458 10.9934 7.6336
0.5 280 5.9659 5.9433 10.9898 7.5465
0.5 270 5.9642 5.9408 10.9863 7.4685
0.5 260 5.9630 5.9383 10.9822 7.3980
0.5 250 5.9607 5.9363 10.9791 7.3358
0.5 240 5.9597 5.9345 10.9759 7.2816
0.5 230 5.9587 5.9328 10.9725 7.2349
0.5 220 5.9570 5.9299 10.9689 7.1949
0.5 210 5.9557 5.9271 10.9652 7.1638
0.5 200 5.9544 5.9256 10.9604 7.1385
0.5 190 5.9518 5.9226 10.9557 7.1185
0.5 180 5.9497 5.9208 10.9514 7.1029
g5 170 5.9437 5.9174 10.9450 7.0911
0.5 160 5.9461 5.9133| 10.9399 7.0816
05 150 5.9440 5.9086 10.9338 7.0752
0.5 140 5.9414 5.9044 10.9261 7.0708
0.5 130 5.9376 5.9002 10.9191 7.0672
0.5 120 5.9343 5.8960 10.9133 7.0643
0.5 110 5.9316 5.8914 10.9068 7.0622
0.5 100 5.9278 5.8851 10.8980 7.0605
0.6 500 5:9920 5.9877 11.0614 11.0525
0.6 490 5.9802 5.9751 11.0384 10.8334
0.6 480 5.9779 5.9735 11.0358 10.6188
0.6 470 5.9768 5.9729 11.0335 10.4091
0.6 460 5.9759 5.9721 11.0319 10.2049
0.6 450 5.9752 5.9700 11.0294 10.0055
0.6 440 5.9743 5.9692 11.0270 9.8116
0.6 430 59739 5.9683 11.0250 9.6227
0.6 420 5.9729 5.9669 11.0226 9.4396
0.6 410 5.9723 5.9655 11.0212 9.2623
0.6 400 5.9720 5.9640 11.0177 9.0902
0.6 390 5.9708 5.9618 11.0158 8.9241
0.6 380 5.9694 5.9609 11.0138 8.7652
0.6 370 5.9684 5.9595 11.0117 8.6125
0.6 360 5.9666 5.9581 11.0084 8.4662
0.6 350 5.9648 5.9563| 11.0058 8.3261
0.6 340 5.9642 5.9551 11.0040 8.1928
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.6 330 5.9636 5.9539 11.0021 8.0668
0.6 320 5.9622 5.9529 11.0005 7.9495
0.6 310 5.9603 5.9514 10.9983 7.8397
0.6 300 5.9598 5.9506 10.9956 7.7388
0.6 290 5.9580 5.9485 10.9921 7.6456
0.6 280 5.9579 5.9465 10.9875 7.5591
0.6 270 5.9564 5.9436 10.9843 7.4806
0.6 260 5.9552 5.9407 10.9800 7.4105
0.6 250 5.9542 5.9385 10.9760 7.3477
0.6 240 5.9513 5.9358 10.9721 7.2934
0.6 230 5.9503 5.9338 10.9673 7.2469
0.6 220 5.9500 5.9324 10.9646 7.2086
0.6 210 5.9473 5.9290 10.9598 7.1756
0.6 200 5.9460 5.9265| 10.9554 7.1493
0.6 190 5.9449 5.9240 10.9503 7.1288
0.6 180 5.9426 5.9208 10.9460 7.1133
0.6 170 5.9401 5.9176 10.9393 7.1020
0.6 160 5.9377 5.9141 10.9356 7.0938
0.6 150 5.9354 5.9112 10.9302 7.0879
0.6 140 5.9335 5.9088 10.9221 7.0840
0.6 130 5:9317 5.9045 10.9156 7.0813
0.6 120 5.9298 5.9003 10.9090 7.0798
0.6 110 5.9259 5.8946 10.8994 7.0788
0.6 100 5.9225 5.8897 10.8910 7.0781
0.7 500 5.9987 5.9932 11.0695 11.0564
0.7 490 5.9862 5.9803 11.0446 10.8374
0.7 480 5.9852 5.9788 11.0420 10.6228
0.7 470 5.9851 5.9783 11.0401 10.4130
0.7 460 5.9844 5.9783 11.0381 10.2087
0.7 450 5.9837 5.9772 11.0361 10.0094
0.7 440 5.9834 5.9764 11.0343 9.8158
0.7 430 5.9821 5.9746 11.0317 9.6281
0.7 420 5.9815 5.9740 11.0288 9.4454
0.7 410 5.9802 5.9728 11.0266 9.2689
0.7 400 5.9750 5.9718 11.0229 9.0974
0.7 390 5.9781 5.9704| 11.0213 8.9308
0.7 380 5.9772 5.9683 11.0181 8.7708
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.7 370 5.9759 5.9666 11.0164 8.6178
0.7 360 5.9747 5.9656 11.0139 8.4716
0.7 350 5.9733 5.9643 11.0119 8.3326
0.7 340 5.9727 5.9626 11.0095 8.2006
0.7 330 5.9715 5.9621 11.0070 8.0746
0.7 320 5.9706 5.9606 11.0055 7.9551
0.7 310 5.9698 5.9590 11.0046 7.8442
0.7 300 5.9683 5.9572 10.9998 7.7423
0.7 290 5.9666 5.9552 10.9957 7.6473
0.7 280 5.9657 5.9537 10.9920 7.5603
0.7 270 5.9647 5.9516 10.9893 7.4814
0.7 260 5.9636 5.9509 10.9863 7.4104
0.7 250 5.9624 5.9485 10.9820 7.3470
0.7 240 5.9613 5.9465 10.9784 7.2921
0.7 230 5.9590 5.9452 10.9737 7.2457
0.7 220 5.9575 5.9442 10.9697 7.2067
0.7 210 5.9567 5.9422 10.9654 7.1750
0.7 200 5.9553 5.9395 10.9622 7.1498
0.7 190 5.9530 5.9368 10.9572 7.1294
0.7 180 5.9509 5.9339 10.9510 7.1148
0.7 170 5.9482 5.9308 10.9454 7.1046
0.7 160 5.9467 5.9286 10.9395 7.0975
0.7 150 5.9441 5.9244 10.9319 7.0929
0.7 140 5.9423 5.9222 10.9263 7.0901
0.7 130 5.9400 5.9193 10.9209 7.0882
0.7 120 5.9371 5.9162 10.9137 7.0871
0.7 110 5.9340 5.9133 10.9063 7.0865
0.7 100 5.9304 5.9067 10.8977 7.0862
0.8 500 5.9949 5.9943 11.0611 11.0604
0.8 490 5.9825 5.9817 11.0369 10.8413
0.8 480 5.9817 5.9809 11.0353 10.6273
0.8 470 5.9811 5.9802 11.0337 10.4175
0.8 460 5.9796 5.9786 11.0313 10.2123
0.8 450 5.9793 5.9792 11.0286 10.0126
0.8 440 5.9793 5.9788 11.0277 9.8186
0.8 430 5.9780 5.9769| 11.0241 9.6302
0.8 420 5.9775 5.9758 11.0218 9.4471
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.8 410 5.9765 5.9740 11.0199 9.2702
0.8 400 5.9756 5.9729 11.0170 9.0990
0.8 390 5.9749 5.9717 11.0143 8.9337
0.8 380 5.9746 5.9719 11.0113 8.7750
0.8 370 5.9747 5.9698 11.0084 8.6211
0.8 360 5.9735 5.9687 11.0065 8.4743
0.8 350 5.9727 5.9677 11.0034 8.3347
0.8 340 5.9711 5.9662 11.0005 8.2025
0.8 330 5.9697 5.9650 10.9979 8.0769
0.8 320 5.9692 5.9642 10.9952 7.9587
0.8 310 5.9686 5.9631 10.9914 7.8487
0.8 300 5.9680 5.9631 10.9838 7.7470
0.8 290 5.9666 5.9608 10.9846 7.6519
0.8 280 5.9652 5.9587| 10.9820 7.5653
0.8 270 5.9630 5.9575 10.9796 7.4862
0.8 260 5.9616 5.9554 10.9760 7.4168
0.8 250 5.9600 5.9539 10.9713 7.3547
0.8 240 5.9590 5.9529 10.9673 7.3013
0.8 230 5.9578 5.9515 10.9631 7.2560
0.8 220 5.9571 5.9491 10.9583 7.2172
0.8 210 5.9554 5.9473 10.9551 7.1862
0.8 200 5.9537 5.9450 10.9519 7.1616
0.8 190 5.9521 5.9438 10.9464 7.1424
0.8 180 5.9505 5.9418 10.9419 7.1279
0.8 170 5.9483 5.9389 10.9353 7.1176
0.8 160 5.9472 5.9365 10.9307 7.1099
0.8 150 5.9434 5.9339 10.9255 7.1050
0.8 140 5.9413 5.9316 10.9196 7.1019
0.8 130 5.9391 5.9279 10.9108 7.1001
0.8 120 5.9352 5.9245 10.9042 7.0990
0.8 110 5.9322 5.9205 10.8968 7.0984
0.8 100 5.9298 5.9179 10.8890 7.0983
0.9 500 5.9970 5.9972 11.0633 11.0627
0.9 490 5.9837 5.9844 11.0392 10.8433
0.9 480 5.9839 5.9842 11.0385 10.6287
0.9 470 5.9831 5.9832| 11.0350 10.4183
0.9 460 5.9824 5.9829 11.0330 10.2132
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Limits for Weibull Distribution

Weighting [Number of Limits Limits

Constant r [Subgroups |Limits T T eva Limits sz szewma

(A) (8) (C) (D) (E) (F)
0.9 450 5.9811 5.9820 11.0314 10.0134
0.9 440 5.9804 5.9815 11.0293 9.8191
0.9 430 5.9799 5.9810 11.0272 9.6302
0.9 420 5.9794 5.9803 11.0267 9.4476
0.9 410 5.9772 5.9793 11.0236 9.2715
0.9 400 5.9768 5.9784 11.0206 9.1000
0.9 390 5.9761 5.9762 11.0182 8.9343
0.9 380 5.9743 5.9752 11.0165 8.7756
0.9 370 5.9731 5.9741 11.0140 8.6229
0.9 360 5.9710 5.9721 11.0092 8.4761
0.9 350 5.9691 5.9711 11.0071 8.3360
0.9 340 5.9682 5.9693 11.0042 8.2028
0.9 330 5.9673 5.9689 11.0012 8.0777
0.9 320 5.9662 5.9674 11.0001 7.9599
0.9 310 5.9656 5.9661 10.9985 7.8498
0.9 300 5.9655 5.9664 10.9951 7.7482
0.9 290 5.9655 5.9653 10.9911 7.6531
0.9 280 5.9635 5.9637 10.9884 7.5665
0.9 270 5.9617 5.9625 10.9836 7.4890
0.9 260 5.9600 5.9601 10.9818 7.4194
0.9 250 59595 5.9580 10.9769 7.3570
0.9 240 5.9579 5.9575 10.9725 7.3033
0.9 230 5.9566 5.9555 10.9675 7.2578
0.9 220 5.9544 5.9538 10.9642 7.2192
0.9 210 5.9529 5.9528 10.9590 7.1879
0.9 200 5.9513 5.9507 10.9545 7.1627
0.9 190 5.9499 5.9493 10.9490 7.1431
0.9 180 5.9430 5.9471 10.9420 7.1284
0.9 170 5.9448 5.9440 10.9369 7.1178
0.9 160 5.9424 5.9413 10.9321 7.1106
0.9 150 5.9411 5.9387 10.9257 7.1061
0.9 140 5.9379 5.9363 10.9199 7.1030
0.9 130 5.9359 5.9328 10.9123 7.1014
0.9 120 5.9325 5.9297 10.9050 7.1006
0.9 110 5.9287 5.9251 10.8969 7.1000
0.9 100 5.9247 5.9220| 10.8892 7.0999
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Appendix B: Comparison of ARL for Detecting Shift in Mean,
Normal Distribution, 50,000 runs for Different VValues of r

ARL vs Shift in Mean
r = 0.9 (Distribution = Normal, Runs = 50,000)
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ARL vs Shift in Mean

r = 0.5 (Distribution = Normal, Runs = 50,000)
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ARL vs Shift in Mean
r = 0.3 (Distribution = Normal, Runs = 50,000)

25

20

q
P_T_Sq EWMA
—&— T.5q

— A T.5qEWMA

Shift in Mean

ARL vs Shift in Mean
r = 0.2 (Distribution = Normal, Runs = 50,000)

50

40

30

20

10 -

I
oA

e >
—

>

Method
—e PTSq
—u P_T_Sq EWMA
—4— T.5q
A T SqEWMA

Shift in Mean

86




ARL

20

ARL vs Shift in Mean

r = 0.1 (Distribution = Normal, Runs = 50,000)
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ARL, LCI_ARL, UCI_ARL vs Shift in Mean
r = 0.8 (Distribution = Normal, Runs = 50,000)
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ARL, LCI_ARL, UCI_ARL vs Shift in Mean
r = 0.6 (Distribution = Normal, Runs = 50,000)
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ARL, LCI_ARL, UCI_ARL vs Shift in Mean
r = 0.4 (Distribution = Normal, Runs = 50,000)
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ARL, LCI_ARL, UCI_ARL vs Shift in Mean
r = 0.2 (Distribution = Normal, Runs = 50,000)
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Appendix C: Comparison of ARL for Detecting Shift in
Standard Deviation, Normal Distribution, 50,000 runs for
Different VValues of r

ARL vs Shift in Standard Deviation
r=0.9
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ARL vs Shift in Standard Deviation
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Appendix D: Comparison of ARL for Detecting Shift in Scale
Parameter, Weibull Distribution, 50,000 runs for Different
values of r

ARL vs Scale
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ARL vs Scale
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Appendix E: Comparison of ARL for Detecting Shift in Shape
Parameter, Weibull Distribution, 50,000 runs for Different
Values of r

ARL vs Shape
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ARL vs Shape
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ARL vs Shape
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Appendix F: Results

Appendix F.1 ARL for Shift in Mean, Normal Distribution, 50,000 runs
r =0.1, Shift in Mean =-0.2

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0314 | 0.1792 1.0298 1.0330
Tjewma; (P_T_Sq_EWMA) 1.0146 | 0.1219 1.0136 1.0157
T,* (T.Sq) 1.0116 | 0.1091 1.0106 1.0125
Towma, (T_SA_EWMA) 1.0205 | 0.1463 1.0193 1.0218

r =0.1, Shiftin Mean =- 0.18

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0678 | 0.2686 1.0655 1.0702
Tjewma; (P_T_Sq_EWMA) 1.0286 | 0.1716 1.0271 1.0301
T,* (T.Sq) 1.0315 | 0.1807 1.0299 1.0331
Towma, (T_SA_EWMA) 1.0454 | 0.2159 1.0435 1.0473

r =0.1, Shiftin Mean =- 0.16

Method ARL |SDRL |LCL ucL

Ty, (P_T_Sq) 1.1412 | 0.4022 1.1377 1.1447
Tpewma,; (P_T_Sq_EWMA) 1.0516 | 0.2314 1.0496 1.0536
T;* (T.Sq) 1.0761 | 0.2861 1.0736 1.0786
Towma, (T_SA_EWMA) 1.0920 | 0.3157 1.0892 1.0947
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r = 0.1, Shift in Mean =-0.14

Method ARL |SDRL | LCL ucL

T3, (P_T_Sq) 1.2574 | 0.5696 1.2524 1.2624
Thewma, (P_T_Sq_EWMA) 1.0894 | 0.3112 1.0867 1.0921
T,-2 (T Sq) 1.1532 | 0.4215 1.1495 1.1569
Téwma, (T_S4_EWMA) 1.1726 | 0.4467 1.1686 1.1765

r = 0.1, Shift in Mean = - 0.12

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.4458 | 0.8035 1.4388 1.4528
Tjewma; (P_T_Sq_EWMA) 1.1405 | 0.3980 1.1370 1.1440
T,* (T.Sq) 1.2987 | 0.6237 1.2933 1.3042
Towma, (T_SA_EWMA) 1.3019 | 0.6271 1.2964 1.3074

r =0.1, Shiftin Mean =- 0.10

Method ARL |[SDRL |LCL uCL

T3, (P_T_Sq) 1.7367 | 1.1363 1.7268 1.7467
Tjewma; (P_T_Sq_EWMA) 1.2176 | 0.5140 1.2131 1.2221
T,* (T.Sq) 1.5413 | 0.9155 1.5333 1.5493
Towma, (T_SA_EWMA) 1.4942 | 0.8511 1.4867 1.5016
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r = 0.1, Shift in Mean = - 0.08

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 2.1817 | 1.6023 2.1677 2.1958
Thewma, (P_T_Sq_EWMA) 1.3224 | 0.6524 1.3167 1.3281
T,-2 (T Sq) 1.9696 | 1.3872 1.9574 1.9817
Téwma, (T_S4_EWMA) 1.8131 | 1.2139 1.8024 1.8237

r = 0.1, Shift in Mean = - 0.06

Method ARL |SDRL |LCL uCL

T3, (P_T_Sq) 2.8100 | 2.2450 2.7903 2.8297
Tjewma; (P_T_Sq_EWMA) 1.4675 | 0.8334 1.4602 1.4748
T,* (T.Sq) 2.6565 | 2.0889 2.6382 2.6748
Towma, (T_SA_EWMA) 22925 | 17354 2.2773 2.3078

r =0.1, Shift in Mean =- 0.04

Method ARL |[SDRL |LCL ucL

T3, (P_T_Sq) 3.5605 | 3.0231 3.5340 3.5870
Tjewma; (P_T_Sq_EWMA) 1.6509 | 1.0409 1.6418 1.6601
T,* (T.Sq) 3.6340 | 3.0947 3.6069 3.6611
Towma, (T_SA_EWMA) 2.9953 |  2.4465 2.9738 3.0167
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r = 0.1, Shift in Mean = - 0.02

Method ARL | SDRL | LCL ucL

T3, (P_T_Sq) 4.1988 | 3.6792 4.1666 4.2311
Thewma, (P_T_Sq_EWMA) 1.8570 | 1.2730 1.8458 1.8681
T, (T.Sq) 4.7259 | 4.2033 4.6890 4.7627
Téwma, (T_S4_EWMA) 3.9594 | 3.4301 3.9293 3.9894

r=0.1, Shiftin Mean =0

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 4.4468 | 3.9260 4.4124 4.4812
Tjewma; (P_T_Sq_EWMA) 2.1360 | 1.5614 2.1223 2.1497
T,-2 (T 5q) 5.2039 | 4.7014 5.1627 5.2451
Towma, (T_SA_EWMA) 53828 | 4.8550 5.3402 5.4253

r = 0.1, Shift in Mean = 0.02

Method ARL [SDRL | LCL ucL

Ty, (P_T_Sq) 4.0808 | 3.5414 4.0497 41118
Tjewma; (P_T_Sq_EWMA) 2.4536 | 1.8890 2.4371 2.4702
T,” (T.Sq) 45617 | 4.0412 4.5263 4.5971
Towma, (T_SA_EWMA) 7.2647 | 6.7897 7.2052 7.3242
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r = 0.1, Shift in Mean = 0.04

Method ARL |SDRL |LCL uCL

T3, (P_T_Sq) 3.3245 | 2.7637 3.3003 3.3488

Thewma, (P_T_Sq_EWMA) 2.8044 | 2.2821 2.7844 2.8244

T, (T.Sq) 3.4470 | 2.8944 3.4216 3.4724

Téwma, (T_S4_EWMA) 9.6622 | 9.1019 9.5824 9.7420
r = 0.1, Shift in Mean = 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 2.6071 | 2.0510 2.5892 2.6251

Tyewma; (P_T_Sq_EWMA) 3.1800 | 2.6608 3.1567 3.2033

T;* (T.Sq) 2.4993 | 1.9286 2.4824 2.5162

Towma; (T_SA_EWMA) 12.3890 | 11.9503 12.2843 12.4938
r = 0.1, Shift in Mean = 0.08

Method ARL SDRL | LCL ucCL

Ty, (P_T_Sq) 2.0532 | 1.4688 2.0403 2.0661

Tyewma; (P_T_Sq_EWMA) 3.5492 | 3.0731 3.5223 3.5761

T;* (T.Sq) 1.8978 | 1.3019 1.8864 1.9092

Towma; (T_SA_EWMA) 15.3162 | 15.0683 15.1842 15.4483
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r = 0.1, Shift in Mean = 0.10

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.6439 | 1.0323 1.6349 1.6530

Tjewma; (P_T_Sq_EWMA) 3.8412 | 3.3660 3.8117 3.8707

T, (T.Sq) 1.5030 | 0.8689 1.4954 1.5107

Téwma; (T_Sq_EWMA) 17.6692 | 17.3295 17.5173 17.8211
r = 0.1, Shift in Mean = 0.12

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 13801 | 0.7287 1.3738 1.3865

Tyewma; (P_T_Sq_EWMA) 4.0755 | 3.5962 4.0440 4.1070

T;* (T.Sq) 1.2700 | 0.5931 1.2648 1.2752

Towma; (T_SA_EWMA) 19.0253 | 18.6144 18.8621 19.1884
r = 0.1, Shift in Mean =0.14

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 1.2181 | 0.5154 1.2136 1.2226

Tyewma; (P_T_Sq_EWMA) 41535 | 3.6741 4.1213 4.1857

T;* (T.Sq) 1.1407 | 0.3978 1.1372 1.1442

Towma; (T_SA_EWMA) 18.9613 | 18.4670 18.7995 19.1232
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r = 0.1, Shift in Mean = 0.16

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.1125 | 0.3533 1.1094 1.1156

Tjewma; (P_T_Sq_EWMA) 4.0791 | 3.6037 4.0476 4.1107

T,* (T.Sq) 1.0637 | 0.2605 1.0615 1.0660

Téwma; (T_Sq_EWMA) 17.4281 | 17.1052 17.2782 17.5781
r = 0.1, Shift in Mean = 0.18

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0583 | 0.2498 1.0561 1.0604

Tyewma; (P_T_Sq_EWMA) 3.8139 | 3.3408 3.7846 3.8432

T;* (T.Sq) 1.0283 | 0.1708 1.0268 1.0298

Towma; (T_SA_EWMA) 14.8082 | 14.4030 14.6820 14.9345
r = 0.1, Shift in Mean = 0.20

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 1.0255 | 0.1608 1.0241 1.0269

Tyewma; (P_T_Sq_EWMA) 3.4503 | 2.9686 3.4243 3.4763

T;* (T.Sq) 1.0102 | 0.1023 1.0093 1.0111

Towma; (T_SA_EWMA) 11.7084 | 11.2922 11.6094 11.8073
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r=0.9, Shiftin Mean=-0.2

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0379 | 0.1986 1.0362 1.0397
Thewma, (P_T_Sq_EWMA) 1.0187 | 0.1381 1.0175 1.0200
T,-2 (T Sq) 1.0147 | 0.1214 1.0137 1.0158
Téwma, (T_S4_EWMA) 1.0204 | 0.1437 1.0192 1.0217

r = 0.9, Shift in Mean = - 0.18

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0815 | 0.2954 1.0789 1.0841
Tjewma; (P_T_Sq_EWMA) 1.0417 | 0.2085 1.0399 1.0435
T,* (T.Sq) 1.0372 | 0.1946 1.0355 1.0389
Towma, (T_SA_EWMA) 1.0505 | 0.2289 1.0485 1.0525

r=0.9, Shiftin Mean =- 0.16

Method ARL |[SDRL |LCL ucL

T3, (P_T_Sq) 1.1623 | 0.4332 1.1585 1.1661
Tjewma; (P_T_Sq_EWMA) 1.0870 | 0.3101 1.0842 1.0897
T,* (T.Sq) 1.0841 | 0.3034 1.0815 1.0868
Towma, (T_SA_EWMA) 1.1088 | 0.3485 1.1058 1.1119
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r =0.9, Shift in Mean =-0.14

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.2984 | 0.6211 1.2930 1.3039
Thewma, (P_T_Sq_EWMA) 1.1661 | 0.4371 1.1622 1.1699
T, (T.Sq) 1.1774 | 0.4549 1.1734 1.1813
Téwma, (T_S4_EWMA) 1.2267 | 0.5249 1.2221 1.2313

r =0.9, Shift in Mean =-0.12

Method ARL | SDRL | LCL ucL

T3, (P_T_Sq) 15179 | 0.8862 1.5101 1.5257
Tjewma; (P_T_Sq_EWMA) 1.2931 | 0.6168 1.2877 1.2985
T,* (T.Sq) 1.3529 | 0.6908 1.3468 1.3589
Towma, (T_SA_EWMA) 1.4408 | 0.7954 1.4338 1.4478

r=0.9, Shiftin Mean =-0.10

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.8541 | 1.2593 1.8430 1.8651
Tyewma; (P_T_Sq_EWMA) 1.4791 | 0.8457 1.4717 1.4866
sz (T Sq) 1.6451 | 1.0240 1.6361 1.6541
Towma; (T_SA_EWMA) 1.8024 | 1.2036 1.7918 1.8129
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r = 0.9, Shift in Mean = - 0.08

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 2.3660 | 1.7996 2.3502 2.3818
Tjewma; (P_T_Sq_EWMA) 1.7630 | 1.1597 1.7529 1.7732
T,-2 (T Sq) 2.1592 | 1.5827 2.1453 2.1731
Téwma; (T_Sq_EWMA) 2.4343 | 1.8805 2.4178 2.4508

r = 0.9, Shift in Mean = - 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.1298 | 2.5891 3.1071 3.1525
Tyewma; (P_T_Sq_EWMA) 2.1250 | 1.5628 2.1113 2.1387
T;* (T.Sq) 3.0549 | 2.5186 3.0328 3.0769
Towma; (T_SA_EWMA) 3.5090 | 2.9735 3.4829 3.5351

r =0.9, Shift in Mean =- 0.04

Method ARL [SDRL |LCL ucL

Ty, (P_T_Sq) 4.0461 | 3.5026 4.0154 4.0768
Tyewma; (P_T_Sq_EWMA) 2.5289 | 1.9907 2.5115 2.5463
T,” (T.Sq) 45237 | 3.9946 4.4886 4.5587
Towma; (T_SA_EWMA) 5.2083 | 4.6910 5.1672 5.2494
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r = 0.9, Shift in Mean = - 0.02

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 4.9122 | 43972 4.8736 4.9507
Tjewma; (P_T_Sq_EWMA) 2.8330 | 2.2811 2.8130 2.8530
T;* (T.Sq) 6.3393 | 5.8558 6.2879 6.3906
Téwma; (T_Sq_EWMA) 6.9391 | 6.4695 6.8824 6.9958

r=0.9, Shiftin Mean =0

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 5.2611 | 4.7683 5.2193 5.3029
Tyewma; (P_T_Sq_EWMA) 2.8820 | 2.3409 2.8615 2.9026
sz (T Sq) 7.3848 | 6.8754 7.3245 7.4450
Towma; (T_SA_EWMA) 7.2761 | 67476 7.2169 7.3352

r =0.9, Shift in Mean = 0.02

Method ARL |[SDRL | LCL ucL

Ty, (P_T_Sq) 4.8467 | 4.3009 4.8090 4.8844
Tyewma; (P_T_Sq_EWMA) 2.6651 | 2.1171 2.6465 2.6837
T;* (T.Sq) 6.3297 | 5.7927 6.2789 6.3805
Towma; (T_SA_EWMA) 5.7479 | 5.2286 5.7020 5.7937
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r = 0.9, Shift in Mean = 0.04

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.9301 | 3.3985 3.9003 3.9599
Tjewma; (P_T_Sq_EWMA) 2.2761 | 1.7098 2.2612 2.2911
T;* (T Sq) 4.4324 | 3.9103 4.3981 4.4666
Téwma; (T_Sq_EWMA) 3.9064 | 3.3731 3.8768 3.9360

r = 0.9, Shift in Mean = 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.0330 | 2.4689 3.0113 3.0546
Tyewma; (P_T_Sq_EWMA) 1.8913 | 1.3024 1.8799 1.9028
T;* (T.Sq) 2.9948 | 2.4456 2.9733 3.0162
Towma; (T_SA_EWMA) 2.6682 | 2.1090 2.6497 2.6867

r =0.9, Shift in Mean = 0.08

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 2.3072 | 1.7405 2.2920 2.3225
Tyewma; (P_T_Sq_EWMA) 1.5796 | 0.9608 1.5711 1.5880
T;* (T.Sq) 2.1367 | 1.5631 2.1230 2.1504
Towma; (T_SA_EWMA) 1.9386 | 1.3507 1.9267 1.9504
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r =0.9, Shift in Mean = 0.10

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.8078 | 1.2079 1.7972 1.8184
Tjewma; (P_T_Sq_EWMA) 1.3533 | 0.6852 1.3473 1.3593
T,-2 (T Sq) 1.6256 | 1.0067 1.6168 1.6344
Téwma; (T_Sq_EWMA) 1.5183 | 0.8867 1.5105 1.5261

r =0.9, Shift in Mean = 0.12

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.4926 | 0.8598 1.4851 1.5002
Tyewma; (P_T_Sq_EWMA) 1.2073 | 0.4985 1.2030 1.2117
T;* (T.Sq) 1.3382 | 0.6728 1.3323 1.3441
Towma; (T_SA_EWMA) 1.2758 | 0.5924 1.2706 1.2810

r=0.9, Shiftin Mean =0.14

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 1.2812 | 0.6033 1.2760 1.2865
Tyewma; (P_T_Sq_EWMA) 1.1131 | 0.3550 1.1100 1.1162
T;* (T.Sq) 11754 | 0.4568 1.1714 1.1794
Towma; (T_SA_EWMA) 1.1403 | 0.4021 1.1367 1.1438
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r =0.9, Shift in Mean = 0.16

Method ARL SDRL | LCL ucL

Ty, (P_T_Sa) 1.1544 | 0.4216 1.1507 1.1581
Tjewma; (P_T_Sq_EWMA) 1.0577 | 0.2451 1.0555 1.0598
T,-2 (T Sq) 1.0846 | 0.3014 1.0819 1.0872
Téwma; (T_Sq_EWMA) 1.0668 | 0.2665 1.0644 1.0691

r=0.9, Shift in Mean = 0.18

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0778 | 0.2900 1.0753 1.0803
Tyewma; (P_T_Sq_EWMA) 1.0257 | 0.1616 1.0243 1.0272
T;* (T.Sq) 1.0361 | 0.1930 1.0344 1.0378
Towma; (T_SA_EWMA) 1.0274 | 0.1683 1.0259 1.0289

r =0.9, Shift in Mean = 0.20

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0367 | 0.1945 1.0350 1.0384
Tyewma; (P_T_Sq_EWMA) 1.0107 | 0.1034 1.0098 1.0116
T;* (T.Sq) 1.0137 | 0.1180 1.0127 1.0148
Towma; (T_SA_EWMA) 1.0099 | 0.1002 1.0090 1.0108
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Appendix F.2 ARL for Shift in Standard Deviation, Normal Distribution,

50,000 runs

r = 0.1, Shift in Standard Deviation = - 0.2

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0005 | 0.0219 1.0003 1.0007

Tjewma; (P_T_Sq_EWMA) 1.1849 | 0.4677 1.1808 1.1890

T,* (T.Sq) 1.0000 |  0.0000 1.0000 1.0000

Towma; (T_SA_EWMA) 42281 | 3.7085 4.1956 4.2606
r = 0.1, Shift in Standard Deviation = - 0.18

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0043 |  0.0654 1.0037 1.0048

Tyewma; (P_T_Sq_EWMA) 1.3464 | 0.6869 1.3404 1.3525

T;* (T.Sq) 1.0001 | 0.0077 1.0000 1.0001

Towma; (T_SA_EWMA) 10.9768 | 10.5579 10.8843 11.0694
r = 0.1, Shift in Standard Deviation = - 0.16

Method ARL SDRL | LCL uCL

T, (P_T_Sa) 1.0185 | 0.1375 1.0173 1.0197

Tyewma; (P_T_Sq_EWMA) 1.5671 | 0.9443 1.5588 1.5754

T;* (T.Sq) 1.0003 | 0.0173 1.0001 1.0005

Towma; (T_SA_EWMA) 33.2947 | 31.9318 33.0148 33.5745
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r = 0.1, Shift in Standard Deviation = - 0.14

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0633 | 0.2591 1.0610 1.0656

Tjewma; (P_T_Sq_EWMA) 1.8629 | 1.2678 1.8518 1.8740

T,-2 (T Sq) 1.0037 | 0.0604 1.0031 1.0042

Téwma; (T_Sq_EWMA) 55.8010 | 53.5902 55.3313 56.2707
r = 0.1, Shift in Standard Deviation = - 0.12

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.1694 |  0.4440 1.1655 1.1733

Tyewma; (P_T_Sq_EWMA) 2.1664 | 1.6012 2.1524 2.1805

T;* (T.Sq) 1.0186 | 0.1385 1.0174 1.0199

Towma; (T_SA_EWMA) 36.1758 | 54.7271 35.6961 36.6555
r = 0.1, Shift in Standard Deviation = - 0.10

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.3884 | 0.7332 1.3819 1.3948

Tyewma; (P_T_Sq_EWMA) 24593 | 1.9338 2.4424 2.4763

sz (T 5q) 1.0810 | 0.2953 1.0784 1.0836

Towma; (T_SA_EWMA) 27.9866 | 51.2993 27.5370 28.4363
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r = 0.1, Shift in Standard Deviation = - 0.08

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.7807 | 1.1803 1.7704 1.7911

Tjewma; (P_T_Sq_EWMA) 2.6599 | 2.1277 2.6413 2.6786

T, (T.Sq) 1.2544 | 0.5630 1.2494 1.2593

Téwma; (T_Sq_EWMA) 41.5965 | 56.4779 41.1015 42.0916
r = 0.1, Shift in Standard Deviation = - 0.06

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 2.4689 | 1.8943 2.4523 2.4855

Tyewma; (P_T_Sq_EWMA) 2.7086 | 2.1771 2.6895 2.7277

T;* (T.Sq) 1.6630 | 1.0429 1.6539 1.6722

Towma; (T_SA_EWMA) 55.6301 | 51.3466 55.1800 56.0802
r = 0.1, Shift in Standard Deviation = - 0.04

Method ARL SDRL | LCL UCL

Ty, (P_T_Sa) 3.4209 | 2.8740 3.3957 3.4461

Tyewma; (P_T_Sq_EWMA) 2.6152 | 2.0814 2.5970 2.6334

sz (T 5q) 2.5495 | 1.9770 2.5322 2.5668

Towma; (T_SA_EWMA) 31.2938 | 30.2591 31.0286 31.5590
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r = 0.1, Shift in Standard Deviation = - 0.02

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 4.2941 | 3.7420 4.2613 4.3269
Tjewma; (P_T_Sq_EWMA) 2.4015 | 1.8665 2.3852 2.4179
T,-2 (T Sq) 41097 | 3.5720 4.0784 4.1410
Téwma; (T_Sq_EWMA) 11.8314 | 11.4935 11.7306 11.9321

r = 0.1, Shift in Standard Deviation =0

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 4.4363 | 3.8922 4.4022 4.4704
Tjewma; (P_T_Sq_EWMA) 2.1360 | 1.5660 2.1222 2.1497
T,* (T.Sq) 5.1687 | 4.6280 5.1281 5.2093
Towma, (T_SA_EWMA) 5.3638 | 4.8525 5.3212 5.4063

r = 0.1, Shift in Standard Deviation = 0.02

Method ARL |[SDRL |LCL ucL

T3, (P_T_Sq) 3.6509 | 3.0966 3.6237 3.6780
Tjewma; (P_T_Sq_EWMA) 1.8717 | 1.2760 1.8605 1.8828
T,* (T.Sq) 3.9823 | 3.4422 3.9521 4.0125
Towma, (T_SA_EWMA) 2.9050 | 2.3480 2.8844 2.9255
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r = 0.1, Shift in Standard Deviation = 0.04

Method ARL |SDRL |LCL uCL

T3, (P_T_Sq) 2.7250 | 2.1656 2.7060 2.7440

Thewma, (P_T_Sq_EWMA) 1.6469 | 1.0302 1.6379 1.6559

T,” (T.5q) 2.5206 | 1.9566 2.5035 2.5378

Téwma, (T_S4_EWMA) 1.8725 | 1.2851 1.8612 1.8837
r = 0.1, Shift in Standard Deviation = 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 2.0244 | 1.4411 2.0117 2.0370

Tyewma; (P_T_Sq_EWMA) 1.4543 | 0.8122 1.4472 1.4614

T;* (T.Sq) 1.7161 | 1.1114 1.7064 1.7258

Towma; (T_SA_EWMA) 1.4001 | 0.7535 1.3935 1.4067
r = 0.1, Shift in Standard Deviation = 0.08

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 1.5735 | 0.9471 1.5652 1.5818

Tyewma; (P_T_Sq_EWMA) 1.3107 | 0.6394 1.3051 1.3163

T;* (T.Sq) 1.3167 | 0.6457 1.3111 1.3224

Towma; (T_SA_EWMA) 1.1727 | 0.4497 1.1688 1.1766
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r = 0.1, Shift in Standard Deviation = 0.10

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 13079 | 0.6343 1.3024 1.3135

Tjewma; (P_T_Sq_EWMA) 1.1964 | 0.4854 1.1922 1.2007

T;* (T.Sq) 1.1297 | 0.3828 1.1263 1.1331

Téwma; (T_Sq_EWMA) 1.0687 | 0.2717 1.0663 1.0711
r = 0.1, Shift in Standard Deviation = 0.12

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.1655 | 0.4400 1.1617 1.1694

Tyewma; (P_T_Sq_EWMA) 11234 | 0.3737 1.1201 1.1267

sz (T_5q) 1.0496 | 0.2282 1.0476 1.0516

Towma; (T_SA_EWMA) 1.0245 | 0.1599 1.0231 1.0259
r = 0.1, Shift in Standard Deviation = 0.14

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0821 | 0.2981 1.0794 1.0847

Tyewma; (P_T_Sq_EWMA) 1.0716 | 0.2753 1.0691 1.0740

T;* (T.Sq) 1.0180 | 0.1359 1.0168 1.0192

Towma; (T_SA_EWMA) 1.0086 | 0.0927 1.0078 1.0094
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r = 0.1, Shift in Standard Deviation = 0.16

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0362 | 0.1936 1.0345 1.0379

Tjewma; (P_T_Sq_EWMA) 1.0396 | 0.2042 1.0378 1.0414

T, (T.Sq) 1.0053 | 0.0727 1.0047 1.0060

Téwma; (T_Sq_EWMA) 1.0022 | 0.0477 1.0018 1.0027
r = 0.1, Shift in Standard Deviation = 0.18

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0167 | 0.1305 1.0155 1.0178

Tyewma; (P_T_Sq_EWMA) 1.0219 | 0.1503 1.0205 1.0232

T, (T_Sq) 1.0012 | 0.0346 1.0009 1.0015

Towma; (T_SA_EWMA) 1.0004 | 0.0210 1.0003 1.0006
r = 0.1, Shift in Standard Deviation = 0.20

Method ARL SDRL | LCL UCL

T, (P_T_Sq) 1.0063 | 0.0798 1.0056 1.0070

Tyewma; (P_T_Sq_EWMA) 1.0103 | 0.1015 1.0094 1.0112

T;* (T.Sq) 1.0002 | 0.0155 1.0001 1.0004

Towma; (T_SA_EWMA) 1.0002 | 0.0126 1.0000 1.0003
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r = 0.9, Shift in Standard Deviation = - 0.2

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0021 | 0.0460 1.0017 1.0025

Thewma, (P_T_Sq_EWMA) 1.0004 | 0.0190 1.0002 1.0005

T;* (T Sq) 1.0000 |  0.0000 1.0000 1.0000

Téwma, (T_S4_EWMA) 1.0000 | 0.0000 1.0000 1.0000
r = 0.9, Shift in Standard Deviation = - 0.18

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.0124 | 0.1125 1.0114 1.0134

Tjewma; (P_T_Sq_EWMA) 1.0030 | 0.0547 1.0025 1.0034

T,* (T.Sq) 1.0001 | 0.0077 1.0000 1.0001

Towma, (T_SA_EWMA) 1.0001 | 0.0077 1.0000 1.0001
r = 0.9, Shift in Standard Deviation = - 0.16

Method ARL |[SDRL |LCL ucL

Ty, (P_T_Sq) 1.0471 | 0.2203 1.0451 1.0490

Tjewma; (P_T_Sq_EWMA) 1.0141 | 0.1188 1.0130 1.0151

T,* (T.Sq) 1.0006 | 0.0245 1.0004 1.0008

Towma, (T_SA_EWMA) 1.0006 | 0.0237 1.0004 1.0008
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r = 0.9, Shift in Standard Deviation = - 0.14

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.1325 | 0.3901 1.1290 1.1359

Thewma, (P_T_Sq_EWMA) 1.0493 | 0.2295 1.0473 1.0514

T;* (T Sq) 1.0058 | 0.0759 1.0051 1.0065

Téwma, (T_S4_EWMA) 1.0057 | 0.0750 1.0050 1.0063
r = 0.9, Shift in Standard Deviation = - 0.12

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 1.3143 | 0.6444 1.3087 1.3199

Tjewma; (P_T_Sq_EWMA) 1.1285 | 0.3790 1.1252 1.1319

T,* (T.Sq) 1.0288 | 0.1723 1.0273 1.0304

Towma, (T_SA_EWMA) 1.0284 | 0.1711 1.0269 1.0299
r = 0.9, Shift in Standard Deviation = - 0.10

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 1.6599 | 1.0511 1.6507 1.6691

Tyewma; (P_T_Sq_EWMA) 1.2882 | 0.6129 1.2829 1.2936

sz (T Sq) 1.1114 | 0.3499 1.1084 1.1145

Towma; (T_SA_EWMA) 1.1094 | 0.3462 1.1063 1.1124
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r = 0.9, Shift in Standard Deviation = - 0.08

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 2.2806 | 1.7154 2.2656 2.2957

Tjewma; (P_T_Sq_EWMA) 1.5725 | 0.9472 1.5642 1.5808

T,* (T.Sq) 13337 | 06713 1.3278 1.3395

Téwma; (T_Sq_EWMA) 1.3289 | 0.6656 1.3230 1.3347
r = 0.9, Shift in Standard Deviation = - 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.2797 | 27192 3.2559 3.3036

Tyewma; (P_T_Sq_EWMA) 2.0238 | 1.4443 2.0112 2.0365

sz (T_5q) 1.8300 | 1.2365 1.8192 1.8409

Towma; (T_SA_EWMA) 1.8237 | 1.2342 1.8129 1.8345
r = 0.9, Shift in Standard Deviation = - 0.04

Method ARL SDRL | LCL ucCL

Ty, (P_T_Sq) 4.6447 | 41042 4.6087 4.6807

Tyewma; (P_T_Sq_EWMA) 2.5895 | 2.0354 2.5716 2.6073

T;* (T.Sq) 2.9165 | 2.3547 2.8959 2.9372

Towma; (T_SA_EWMA) 2.9061 | 2.3464 2.8856 2.9267
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r = 0.9, Shift in Standard Deviation = - 0.02

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 5.8313 | 5.3439 5.7845 5.8782

Tjewma; (P_T_Sq_EWMA) 3.0841 | 2.5859 3.0615 3.1068

T, (T.Sq) 4.8555 | 4.2985 4.8178 4.8931

Téwma; (T_Sq_EWMA) 4.8750 | 43125 4.8372 4.9128
r = 0.9, Shift in Standard Deviation = 0

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 5.8600 | 5.3196 5.8134 5.9066

Tyewma; (P_T_Sq_EWMA) 3.2049 | 2.6919 3.1813 3.2285

T;* (T.Sq) 6.2391 | 5.7273 6.1889 6.2893

Towma; (T_SA_EWMA) 6.3946 | 5.8593 6.3432 6.4459
r = 0.9, Shift in Standard Deviation = 0.02

Method ARL SDRL | LCL ucCL

Ty, (P_T_Sq) 4.8467 | 4.3009 4.8090 4.8844

Tyewma; (P_T_Sq_EWMA) 2.6651 | 2.1171 2.6465 2.6837

T;* (T.Sq) 6.3297 | 5.7927 6.2789 6.3805

Towma; (T_SA_EWMA) 5.7479 | 5.2286 5.7020 5.7937
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r = 0.9, Shift in Standard Deviation = 0.04

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 3.4672 | 2.9398 3.4414 3.4929

Tjewma; (P_T_Sq_EWMA) 2.2906 | 1.7332 2.2754 2.3058

T;* (T.Sq) 2.9961 | 2.4340 2.9748 3.0175

Téwma; (T_Sq_EWMA) 3.1227 | 2.5584 3.1003 3.1452
r = 0.9, Shift in Standard Deviation = 0.06

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 2.4971 | 1.9207 2.4803 2.5140

Tyewma; (P_T_Sq_EWMA) 1.8384 | 1.2463 1.8275 1.8493

sz (T Sq) 1.9340 | 1.3465 1.9222 1.9458

Towma; (T_SA_EWMA) 1.9912 | 1.4084 1.9789 2.0036
r = 0.9, Shift in Standard Deviation = 0.08

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.8636 | 1.2683 1.8524 1.8747

Tyewma; (P_T_Sq_EWMA) 1.4996 | 0.8731 1.4919 1.5072

sz (T Sq) 1.4279 | 0.7832 1.4211 1.4348

Towma; (T_SA_EWMA) 1.4554 | 0.8154 1.4483 1.4626
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r = 0.9, Shift in Standard Deviation = 0.10

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.4847 | 0.8472 1.4773 1.4922

Tjewma; (P_T_Sq_EWMA) 1.2834 | 0.6045 1.2781 1.2887

T, (T.Sq) 1.1859 | 0.4684 1.1818 1.1900

Téwma; (T_Sq_EWMA) 1.1995 | 0.4881 1.1952 1.2037
r = 0.9, Shift in Standard Deviation = 0.12

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.2722 | 0.5889 1.2670 1.2773

Tyewma; (P_T_Sq_EWMA) 1.1538 | 0.4205 1.1501 1.1575

T;* (T.Sq) 1.0732 | 0.2802 1.0707 1.0756

Towma; (T_SA_EWMA) 1.0788 | 0.2917 1.0763 1.0814
r = 0.9, Shift in Standard Deviation = 0.14

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.1386 | 0.3948 1.1351 1.1420

Tyewma; (P_T_Sq_EWMA) 1.0773 | 0.2875 1.0748 1.0798

T;* (T.Sq) 1.0259 | 0.1628 1.0245 1.0273

Towma; (T_SA_EWMA) 1.0285 | 0.1714 1.0270 1.0300
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r = 0.9, Shift in Standard Deviation = 0.16

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0697 | 0.2756 1.0673 1.0721

Tjewma; (P_T_Sq_EWMA) 1.0370 | 0.1978 1.0352 1.0387

T;* (T Sq) 1.0078 | 0.0888 1.0070 1.0086

Téwma; (T_Sq_EWMA) 1.0089 | 0.0948 1.0080 1.0097
r = 0.9, Shift in Standard Deviation = 0.18

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0316 | 0.1813 1.0301 1.0332

Tyewma; (P_T_Sq_EWMA) 1.0154 | 0.1248 1.0143 1.0165

T, (T_Sq) 1.0019 | 0.0442 1.0015 1.0023

Towma; (T_SA_EWMA) 1.0022 | 0.0477 1.0018 1.0027
r = 0.9, Shift in Standard Deviation = 0.20

Method ARL SDRL | LCL UCL

T, (P_T_Sq) 1.0130 | 0.1148 1.0120 1.0140

Tyewma; (P_T_Sq_EWMA) 1.0063 | 0.0799 1.0056 1.0070

T;* (T.Sq) 1.0005 | 0.0224 1.0003 1.0007

Towma; (T_SA_EWMA) 1.0005 | 0.0237 1.0003 1.0007
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Appendix F.3 ARL for Shift in Scale Parameter, Weibull Distribution,

50,000 runs
r = 0.1, Shift in Scale Parameter = - 0.10

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0000 | 0.0000 1.0000 1.0000

Tjewma; (P_T_Sq_EWMA) 1.0002 | 0.0134 1.0001 1.0003

T,* (T.Sq) 1.0000 |  0.0000 1.0000 1.0000

Towma; (T_SA_EWMA) 1.0000 | 0.0045 1.0000 1.0001
r = 0.1, Shift in Scale Parameter = - 0.08

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0000 | 0.0045 1.0000 1.0001

Tyewma; (P_T_Sq_EWMA) 1.0202 | 0.1430 1.0189 1.0214

T;* (T.Sq) 1.0000 |  0.0000 1.0000 1.0000

Towma; (T_SA_EWMA) 1.0192 | 0.1403 1.0179 1.0204
r = 0.1, Shift in Scale Parameter = - 0.06

Method ARL SDRL | LCL ucL

T, (P_T_Sa) 1.0064 | 0.0797 1.0057 1.0071

Tyewma; (P_T_Sq_EWMA) 1.3267 | 0.6551 1.3210 1.3324

sz (T 5q) 1.0005 | 0.0214 1.0003 1.0006

Towma; (T_SA_EWMA) 1.6472 | 1.0208 1.6383 1.6561
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r = 0.1, Shift in Scale Parameter = - 0.04

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.2008 | 0.4874 1.1965 1.2051

Tjewma; (P_T_Sq_EWMA) 2.6704 | 2.1561 2.6515 2.6893

T, (T.Sq) 1.0637 | 0.2584 1.0614 1.0659

Téwma; (T_Sq_EWMA) 10.4919 | 10.0325 10.4039 10.5798
r = 0.1, Shift in Scale Parameter = - 0.02

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 2.6645 | 2.1009 2.6461 2.6829

Tyewma; (P_T_Sq_EWMA) 4.6723 | 4.2312 4.6352 4.7094

sz (T Sq) 2.0684 | 1.4913 2.0554 2.0815

Towma; (T_SA_EWMA) 49.5250 | 45.0152 49.1305 49.9196
r = 0.1, Shift in Scale Parameter = 0

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 5.2067 | 4.6770 5.1657 5.2477

Tyewma; (P_T_Sq_EWMA) 3.9374 | 3.4505 3.9072 3.9677

sz (T 5q) 6.5114 | 5.9933 6.4588 6.5639

Towma; (T_SA_EWMA) 15.9962 | 15.5204 15.8602 16.1323
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r = 0.1, Shift in Scale Parameter = 0.02

Method ARL |SDRL |LCL ucL

T3, (P_T_Sq) 23788 | 1.8102 2.3630 2.3947
Thewma, (P_T_Sq_EWMA) 2.1140 | 1.5326 2.1005 2.1274
T,* (T.Sq) 2.1661 | 1.5912 2.1521 2.1800
Téwma, (T_S4_EWMA) 2.5786 | 2.0152 2.5609 2.5962

r = 0.1, Shift in Scale Parameter = 0.04

Method ARL | SDRL | LCL ucL

T3, (P_T_Sq) 1.2133 | 0.5116 1.2088 1.2178
Tjewma; (P_T_Sq_EWMA) 1.2563 | 0.5695 1.2513 1.2613
T,-2 (T 5q) 1.1064 | 0.3455 1.1034 1.1094
Towma, (T_SA_EWMA) 1.1733 | 0.4536 1.1693 11772

r = 0.1, Shift in Scale Parameter = 0.06

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0175 | 0.1334 1.0164 1.0187
Tyewma; (P_T_Sq_EWMA) 1.0339 | 0.1863 1.0323 1.0355
sz (T Sq) 1.0039 | 0.0626 1.0034 1.0044
Towma; (T_SA_EWMA) 1.0094 | 0.0969 1.0085 1.0102
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r = 0.1, Shift in Scale Parameter = 0.08

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0006 | 0.0241 1.0004 1.0008
Tjewma; (P_T_Sq_EWMA) 1.0018 | 0.0424 1.0014 1.0022
T;* (T.Sq) 1.0001 | 0.0077 1.0000 1.0001
Téwma; (T_Sq_EWMA) 1.0001 | 0.0118 1.0000 1.0002

r = 0.1, Shift in Scale Parameter = 0.10

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0000 | 0.0000 1.0000 1.0000
Tyewma; (P_T_Sq_EWMA) 1.0001 | 0.0110 1.0000 1.0002
T;* (T.Sq) 1.0000 |  0.0000 1.0000 1.0000
Towma; (T_SA_EWMA) 1.0000 | 0.0000 1.0000 1.0000

r = 0.9, Shift in Scale Parameter = - 0.10

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 1.0000 | 0.0000 1.0000 1.0000
Tyewma; (P_T_Sq_EWMA) 1.0000 |  0.0000 1.0000 1.0000
T;* (T.Sq) 1.0000 |  0.0000 1.0000 1.0000
Towma; (T_SA_EWMA) 1.0000 |  0.0000 1.0000 1.0000
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r = 0.9, Shift in Scale Parameter = - 0.08

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0000 | 0.0063 1.0000 1.0001
Tjewma; (P_T_Sq_EWMA) 1.0000 |  0.0000 1.0000 1.0000
T;* (T.Sq) 1.0000 | 0.0000 1.0000 1.0000
Téwma; (T_Sq_EWMA) 1.0000 |  0.0000 1.0000 1.0000

r = 0.9, Shift in Scale Parameter = - 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0116 | 0.1081 1.0107 1.0126
Tyewma; (P_T_Sq_EWMA) 1.0022 | 0.0466 1.0018 1.0026
T;* (T.Sq) 1.0010 | 0.0316 1.0007 1.0013
Towma; (T_SA_EWMA) 1.0006 | 0.0249 1.0004 1.0008

r = 0.9, Shift in Scale Parameter = - 0.04

Method ARL SDRL | LCL ucL

Ty, (P_T_Sq) 1.2958 | 0.6184 1.2904 1.3012
Tyewma; (P_T_Sq_EWMA) 1.1069 | 0.3418 1.1039 1.1099
T;* (T.Sq) 1.1140 | 0.3573 1.1108 1.1171
Towma; (T_SA_EWMA) 1.0782 | 0.2905 1.0757 1.0808
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r = 0.9, Shift in Scale Parameter = - 0.02

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.5156 | 2.9832 3.4895 3.5418
Tjewma; (P_T_Sq_EWMA) 2.0117 | 1.4411 1.9991 2.0244
T,-2 (T Sq) 2.6556 | 2.0991 2.6372 2.6740
Téwma; (T_Sq_EWMA) 2.2681 | 1.6947 2.2532 2.2830

r = 0.9, Shift in Scale Parameter =0

Method ARL [SDRL |LCL ucL

T3, (P_T_Sq) 7.4235 | 6.8464 7.3635 7.4835
Tyewma; (P_T_Sq_EWMA) 3.7863 | 3.3236 3.7571 3.8154
T;* (T.Sq) 9.0547 | 8.6075 8.9792 9.1301
Towma; (T_SA_EWMA) 8.7934 | 8.3955 8.7198 8.8670

r = 0.9, Shift in Scale Parameter = 0.02

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 2.7111 | 2.1595 2.6922 2.7300
Tyewma; (P_T_Sq_EWMA) 1.9942 | 1.4160 1.9818 2.0066
T;* (T.Sq) 2.3564 | 1.8089 2.3406 2.3723
Towma; (T_SA_EWMA) 2.7214 | 2.1856 2.7023 2.7406
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r = 0.9, Shift in Scale Parameter = 0.04

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.2537 | 0.5648 1.2488 1.2587
Tjewma; (P_T_Sq_EWMA) 1.1538 | 0.4231 1.1501 1.1575
T,-2 (T Sq) 1.1275 | 0.3789 1.1241 1.1308
Téwma; (T_Sq_EWMA) 1.1709 | 0.4486 1.1670 1.1749

r = 0.9, Shift in Scale Parameter = 0.06

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0213 | 0.1470 1.0200 1.0226
Tyewma; (P_T_Sq_EWMA) 1.0108 | 0.1046 1.0099 1.0117
T;* (T.Sq) 1.0050 | 0.0705 1.0043 1.0056
Towma; (T_SA_EWMA) 1.0079 | 0.0886 1.0071 1.0087

r = 0.9, Shift in Scale Parameter = 0.08

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 1.0006 | 0.0237 1.0004 1.0008
Tyewma; (P_T_Sq_EWMA) 1.0003 | 0.0167 1.0001 1.0004
T;* (T.Sq) 1.0000 | 0.0045 1.0000 1.0001
Towma; (T_SA_EWMA) 1.0000 | 0.0045 1.0000 1.0001

141



r = 0.9, Shift in Scale Parameter = 0.10

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0000 | 0.0045 1.0000 1.0001
Tjewma; (P_T_Sq_EWMA) 1.0000 | 0.0045 1.0000 1.0001
T;* (T.Sq) 1.0000 | 0.0000 1.0000 1.0000
Téwma; (T_Sq_EWMA) 1.0000 | 0.0045 1.0000 1.0001
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Appendix F.4 ARL for Shift in Shape Parameter, Weibull Distribution,
50,000 runs

r = 0.1, Shift in Shape Parameter = - 0.4

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.0031 | 0.0554 1.0026 1.0036
Tjewma; (P_T_Sq_EWMA) 1.0000 |  0.0000 1.0000 1.0000
T;* (T.Sq) 1.0000 | 0.0000 1.0000 1.0000
Towma; (T_SA_EWMA) 1.0028 | 0.0525 1.0023 1.0032

r = 0.1, Shift in Shape Parameter = - 0.32

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.0408 | 0.2055 1.0390 1.0426
Tyewma; (P_T_Sq_EWMA) 1.0001 | 0.0077 1.0000 1.0001
T;* (T.Sq) 1.0031 | 0.0567 1.0026 1.0036
Towma; (T_SA_EWMA) 1.0187 | 0.1378 1.0175 1.0199

r = 0.1, Shift in Shape Parameter = - 0.24

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 1.2375 | 0.5393 1.2328 1.2422
Tyewma; (P_T_Sq_EWMA) 1.0007 | 0.0268 1.0005 1.0010
T;* (T.Sq) 1.0595 | 0.2519 1.0573 1.0617
Towma; (T_SA_EWMA) 1.0761 | 0.2849 1.0736 1.0786
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r = 0.1, Shift in Shape Parameter = - 0.16

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.9031 | 1.3093 1.8916 1.9146

Tjewma; (P_T_Sq_EWMA) 1.0029 | 0.0541 1.0025 1.0034

T, (T.Sq) 1.4556 | 0.8172 1.4484 1.4628

Téwma; (T_Sq_EWMA) 1.1933 | 0.4840 1.1890 1.1975
r = 0.1, Shift in Shape Parameter = - 0.08

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.7552 | 3.2123 3.7271 3.7834

Tyewma; (P_T_Sq_EWMA) 1.0072 | 0.0853 1.0065 1.0080

T;* (T.Sq) 3.3726 | 2.8357 3.3478 3.3975

Towma; (T_SA_EWMA) 1.3601 | 0.6995 1.3539 1.3662
r = 0.1, Shift in Shape Parameter = 0

Method ARL SDRL | LCL ucCL

Ty, (P_T_Sq) 6.0030 | 5.4276 5.9554 6.0506

Tyewma; (P_T_Sq_EWMA) 1.0126 | 0.1134 1.0116 1.0136

T;* (T.Sq) 7.1506 | 6.6261 7.0925 7.2086

Towma; (T_SA_EWMA) 1.4606 | 0.8212 1.4534 1.4678
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r = 0.1, Shift in Shape Parameter = 0.08

Method ARL |SDRL |LCL uCL

T3, (P_T_Sq) 4.5985 | 4.1042 4.5625 4.6345

Thewma, (P_T_Sq_EWMA) 1.0160 | 0.1269 1.0148 1.0171

T, (T.Sq) 3.4080 | 2.8519 3.3830 3.4330

Téwma, (T_S4_EWMA) 1.4171 | 0.7682 1.4103 1.4238
r = 0.1, Shift in Shape Parameter = 0.16

Method ARL |SDRL |LCL uCL

T3, (P_T_Sq) 25211 | 1.9570 2.5040 2.5383

Tjewma; (P_T_Sq_EWMA) 1.0149 | 0.1236 1.0139 1.0160

T,-2 (T Sq) 1.5769 | 0.9482 1.5686 1.5852

Towma, (T_SA_EWMA) 1.2600 | 0.5779 1.2550 1.2651
r = 0.1, Shift in Shape Parameter = 0.24

Method ARL SDRL | LCL ucCL

Ty, (P_T_Sq) 1.5526 | 0.9291 1.5445 1.5608

Tyewma; (P_T_Sq_EWMA) 1.0108 | 0.1051 1.0099 1.0118

sz (T Sq) 1.1061 | 0.3442 1.1031 1.1091

Towma; (T_SA_EWMA) 1.1135 | 0.3524 1.1105 1.1166
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r = 0.1, Shift in Shape Parameter = 0.32

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.1767 | 0.4563 1.1727 1.1807

Tjewma; (P_T_Sq_EWMA) 1.0069 | 0.0831 1.0062 1.0076

T,-2 (T Sq) 1.0137 | 0.1169 1.0127 1.0147

Téwma; (T_Sq_EWMA) 1.0354 | 0.1910 1.0337 1.0371
r = 0.1, Shift in Shape Parameter = 0.4

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.0454 | 0.2187 1.0435 1.0474

Tyewma; (P_T_Sq_EWMA) 1.0031 | 0.0563 1.0026 1.0036

T;* (T.Sq) 1.0006 | 0.0253 1.0004 1.0009

Towma; (T_SA_EWMA) 1.0066 | 0.0813 1.0059 1.0073
r = 0.9, Shift in Shape Parameter = - 0.4

Method ARL SDRL | LCL UCL

T, (P_T_Sa) 1.0023 | 0.0477 1.0019 1.0027

Tyewma; (P_T_Sq_EWMA) 1.0005 | 0.0219 1.0003 1.0007

T;* (T.Sq) 1.0000 | 0.0063 1.0000 1.0001

Towma; (T_SA_EWMA) 1.0000 | 0.0045 1.0000 1.0001
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r = 0.9, Shift in Shape Parameter = - 0.32

Method ARL SDRL | LCL ucCL

T3, (P_T_Sq) 1.0282 | 0.1695 1.0267 1.0297

Tjewma; (P_T_Sq_EWMA) 1.0078 | 0.0883 1.0070 1.0086

T, (T.Sq) 1.0021 | 0.0466 1.0017 1.0025

Téwma; (T_Sq_EWMA) 1.0018 | 0.0424 1.0014 1.0022
r = 0.9, Shift in Shape Parameter = - 0.24

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.1883 | 0.4762 1.1842 1.1925

Tyewma; (P_T_Sq_EWMA) 1.0711 | 0.2766 1.0687 1.0735

T;* (T.Sq) 1.0492 | 0.2262 1.0472 1.0512

Towma; (T_SA_EWMA) 1.0436 | 0.2126 1.0417 1.0455
r = 0.9, Shift in Shape Parameter = - 0.16

Method ARL SDRL | LCL ucCL

T, (P_T_Sa) 1.7600 | 1.1675 1.7498 1.7702

Tyewma; (P_T_Sq_EWMA) 1.3219 | 0.6517 1.3162 1.3276

T,” (T.Sq) 1.4041 | 0.7554 1.3975 1.4107

Towma; (T_SA_EWMA) 1.3659 | 0.7092 1.3596 1.3721
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r = 0.9, Shift in Shape Parameter = - 0.08

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 3.4503 | 2.9316 3.4246 3.4760

Tjewma; (P_T_Sq_EWMA) 2.0436 | 1.4770 2.0307 2.0566

T, (T.Sq) 3.1624 | 2.6136 3.1395 3.1853

Téwma; (T_Sq_EWMA) 2.9894 | 2.4218 2.9682 3.0107
r = 0.9, Shift in Shape Parameter = 0

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 5.8837 | 5.3559 5.8368 5.9306

Tyewma; (P_T_Sq_EWMA) 3.0965 | 2.5790 3.0739 3.1191

T;* (T.Sq) 6.4975 | 6.0070 6.4448 6.5501

Towma; (T_SA_EWMA) 6.7693 | 6.2687 6.7144 6.8243
r = 0.9, Shift in Shape Parameter = 0.08

Method ARL SDRL | LCL ucL

T, (P_T_Sa) 4.4924 | 3.9384 4.4579 4.5269

Tyewma; (P_T_Sq_EWMA) 2.8447 | 23144 2.8244 2.8649

sz (T 5q) 2.9489 | 2.3852 2.9280 2.9698

Towma; (T_SA_EWMA) 3.2632 | 2.7139 3.2394 3.2870
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r = 0.9, Shift in Shape Parameter = 0.16

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 2.4030 | 1.8316 2.3869 2.4190

Tjewma; (P_T_Sq_EWMA) 1.8603 | 1.2672 1.8492 1.8714

T, (T.Sq) 1.4404 | 0.7992 1.4334 1.4474

Téwma; (T_Sq_EWMA) 1.5189 | 0.8901 1.5111 1.5267
r = 0.9, Shift in Shape Parameter = 0.24

Method ARL SDRL | LCL UCL

T3, (P_T_Sq) 1.4903 | 0.8546 1.4828 1.4978

Tyewma; (P_T_Sq_EWMA) 1.3091 | 0.6346 1.3035 1.3146

T;* (T.Sq) 1.0748 | 0.2826 1.0724 1.0773

Towma; (T_SA_EWMA) 1.0923 | 0.3170 1.0895 1.0951
r = 0.9, Shift in Shape Parameter = 0.32

Method ARL SDRL | LCL UCL

Ty, (P_T_Sq) 1.1480 | 0.4124 1.1444 1.1516

Tyewma; (P_T_Sq_EWMA) 1.0878 | 0.3090 1.0851 1.0905

sz (T 5q) 1.0074 | 0.0865 1.0066 1.0081

Towma; (T_SA_EWMA) 1.0102 | 0.1021 1.0093 1.0111
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r = 0.9, Shift in Shape Parameter = 0.4

Method ARL SDRL | LCL ucL

T3, (P_T_Sq) 1.0350 | 0.1891 1.0333 1.0367
Tjewma; (P_T_Sq_EWMA) 1.0200 | 0.1414 1.0187 1.0212
T;* (T.Sq) 1.0004 | 0.0190 1.0002 1.0005
Téwma; (T_Sq_EWMA) 1.0006 | 0.0241 1.0004 1.0008
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