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Abstract 

 

 

Profile monitoring has been extensively studied when the profile of a quality 

characteristic is normally distributed. There are a limited number of studies for the case 

when a profile follows other distributions such as Weibull, lognormal or Gamma. A 

profile, having these last three distributions, has many practical applications. It is also of 

interest to determine how well profile-monitoring of estimators can detect changes in 

parameters of an underlying distribution. Control chart methods are utilized to monitor 

such parameter estimates. The performance of a few monitoring statistics is investigated 

in this dissertation. A form of the Hotelling’s T2 statistic and another that utilizes the 

concept of an exponentially weighted moving average are investigated. As a performance 

measure, the mean and standard deviation of the time to first detection of shift in process 

parameters, are explored.  We also investigated a method that utilizes estimated 

percentiles of the distribution for profile monitoring.  
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Chapter 1 

Introduction 

Measurement data and information availability has been increasing in the 

manufacturing environment today because of increased usage of sensors for automatic 

collection of data/measurements in industries. Transactional and customer relevant 

information is also growing at a rapid rate in service industries. It is important to monitor 

and control processes in such an environment. Often, quality of a process can be 

characterized by some relationship between a response variable and explanatory 

variable(s). Such a relationship is also referred to as a profile (Kang & Albin, 2000). 

Profile monitoring is a technique to monitor such profiles instead of monitoring 

individual quality characteristics. 

As an example, a machine vision system is used in the electronics manufacturing 

industry to check the quality of LCD displays. A typical LCD consists of thousands of 

pixels which are individually lit and are independent of each other. As explained by 

Wang and Tsung (2005), amount of luminance of each pixel follows a normal 

distribution. Hence testing of a typical LCD display would involve measuring luminance 

of thousands of pixels. Presence of any defects in LCD display would result in violation 

of normality on measured luminance. Luminance measurement here is an example of a 

profile and quality testing of LCDs to make sure luminance measurement for each LCD 
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display follows a normal distribution, with known parameters, is an example of profile 

monitoring.  

As discussed by Walker and Wright (2002), in manufacturing of particleboard and 

fiberboard, the density of a board is very important for its machinability. A profilometer 

with a laser device is used to measure the density of board at fixed depths across 

thickness. A sample of 2 square inch board would consist of 314 vertical density profile 

(VDP) at every 0.002 inches distance.  Monitoring VDP, in this case, is another example 

of profile monitoring.  

Profile monitoring generally consists of two phases. In Phase I, stability of a 

process is evaluated, any outliers with assignable causes are removed and in-control 

process parameters are estimated. Hence, the characteristics of an in-control profile are 

estimated in phase I. Phase II is used to either verify that the process or profile of the 

quality characteristic is still in control or to detect shifts in the quality characteristics from 

an in-control state.   

In Phase II, often distribution parameters are used to monitor profiles given that 

parameter estimates are independent. Traditional control charting techniques like 

Shewhart chart, exponentially weighted moving average (EWMA) chart or cumulative 

sum (CUSUM) charts are used with control limits set at a specified distance from the 

mean to detect shifts in the mean. Mean of the parameter estimates that fall within control 

limits normally indicate that process is in control and indicates presence of common 
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cause variation only. If the mean of parameter estimates falls outside the control limits or 

if there are non-random patterns it indicates the likely presence of special causes. Such a 

process is considered to be out of control.  

Chicken et al. (2009) and Wang and Tsung (2005) have indicated that there is a 

possibility that profile parameters or estimates may be the same even though the profile 

has changed. Sometimes it may be difficult to estimate parameters because of the 

difficulty in identification of the correct model that fits the quality characteristic. Wang 

and Tsung (2005) have shown an example of a machine vision system for inspecting 

phone display where 5000 points are measured at the rate of 10 seconds per display. 

Because of a huge amount data in their case, dark corners and bad pixels could be 

averaged out failing to be detected by conventional charting method. Hence they 

suggested that instead of monitoring summary statistics, a profile could be characterized 

by a Quantile-Quantile (Q-Q) plot and a Q-Q plot could be monitored through  profile 

monitoring techniques. Wang and Tsung (2005) proposed monitoring the slope and 

intercept of a Q-Q plot by using EWMA charts for the quality characteristic which is 

normally distributed. Since the normal distribution is a two-parameter distribution, a Q-Q 

plot using the slope and intercept is adequate in representing the distribution. Estimates of 

the mean and standard deviation of the normal distribution uniquely impacts the slope 

and intercept in a Q-Q plot. 
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In profile monitoring in a data-rich environment, a quality characteristic or a 

dependent variable could come from any of the defined distributions. For example, 

mobile phone display inspection by a machine vision system as used in Wang and Tsung 

(2005) follows a normal distribution. Physiological measurements like blood pressure of 

adult humans seem to follow a normal distribution. Over-voltage occurring in an 

electrical system, manufacturing and delivery times in the case of industrial engineering, 

and wind speeds are often seen to match a Weibull distribution (Jangamshetti & Rau, 

1999; Osmokrovic, Krivokapic, MatijaSevic, & Kartalovic, 1996). Exchange rates, price 

indices, and stock market indices have been seen to follow a lognormal distribution. In 

reliability analysis, time to repair a maintainable system is seen to follow a lognormal 

distribution. A Gamma distribution has been used to model aggregate insurance claims 

and amount of rainfall accumulated in a reservoir.  

Though there are several studies that have monitored linear and non-linear 

profiles, there are very few studies that have been performed to monitor a profile which 

could be modeled by a known distribution such as a Weibull, lognormal, Gamma or a 

general profile in a data-rich environment. 

There are many cases where quality characteristics could be correlated. As an 

example, extrusion is widely used in plastic manufacturing. Flow rate per unit length and 

mass per unit area are two important quality characteristics affected by mold 

temperatures. These quality characteristics are correlated (Rauwendaal, 2013). Customer 
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evaluation of a product may be characterized by numerous quality characteristics that are 

correlated. Functional performance of an automotive component may be characterized by 

multiple correlated quality characteristics. In such cases monitoring individual quality 

characteristics may be misleading. Multivariate control charts like Hotelling T2 chart and 

multivariate EWMA charts are commonly used to monitor correlated quality 

characteristics. 

In the manufacturing context, as production rate increases and cost per part is 

high, it becomes more and more important for any shift in process parameters, due to 

special causes, to be detected as soon as possible. The cost of non-detection or slower 

detection may result in increased scrap or additional cost related to customer complaints.  

This study aims to address the following research question: 

Demonstration of profile monitoring when the profile is known to follow known 

distribution such as normal, Weibull, lognormal or gamma. Through the use of 

simulation, the study will compare various techniques of profile monitoring and detection 

of shift in process parameters. The objective will be to propose a method that is 

faster/efficient in detection. Some new monitoring statistics will be proposed, and their 

performance will be investigated via a simulation procedure. Also, for unknown 

distributions that are estimated through a chosen number of percentiles, similar 

monitoring techniques may be used.  
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Chapter 2 

Literature Review 

2.1 Control Charts 

The use of statistical control charts to monitor processes has been quite common 

since Shewhart (1931) introduced the technique. Since then, product and process quality 

characteristics have been monitored by using various forms of univariate and multivariate 

control charting techniques. Using profiles to monitor a quality characteristic (QCH) is 

relatively new. This last method is becoming more and more common with the volume 

and ease of capturing measurement data where corresponding variables may be correlated 

and/or follow a certain statistical distribution. 

A Shewhart control chart is a technique that displays a quality characteristics vs 

sample or subgroup number i (i = 1, 2,……., m), where random samples, either 

individual observations or m subgroups are chosen from a process at intervals (such as 

hourly, daily, or per shift, etc. ). A Shewhart chart consists of a Center Line (CL), Lower 

Control Limit (LCL) and Upper Control Limit (UCL) calculated as  

𝐿𝐶𝐿 = 𝜇𝑤 −  𝐿 𝜎𝑤     (2.1) 

𝐶𝐿 =  𝜇𝑤     (2.2) 

𝑈𝐶𝐿 = 𝜇𝑤 +  𝐿 𝜎𝑤     (2.3) 
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where w is a QCH, 𝜇𝑤 is the mean of w, 𝜎𝑤 is the standard deviation of w and L is the 

distance of control limits from the center line in units of standard deviations of the 

monitoring statistic w. There are two types of control charts: 1: for targeted parameters, 

and 2: developed from an initial observations of m subgroups each of size n. When 

subgroups of observations are selected, a measure of variability of observations is the 

sample range (R) given by (𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛), the difference between the maximum and the 

minimum values of observations in a subgroup.  

Traditionally, two of the most common control charts to monitor a process are the 

R and 𝑋̅  charts. The multiplier “3” in the equations for the lower and upper control limits 

is based on the assumption of normality of a charting statistic. When control limits are 

placed at the three (so-called) standard deviations (sigma) away from the mean, the 

probability of a “false alarm” is roughly 0.0027. This implies the probability of reaching 

a false conclusion that the process is out of control is approximately 0.27%. Such an error 

is labeled as a Type I in the context of decision making from control charts. Tightening of 

control limits, say to two sigma around the mean, will increase the chances of a “false 

alarm” or Type I error. A Type II error in the context of decision making from control 

charts, is to conclude that the process is in-control when it actually is out-of-control. 

Tightening of the control limits will lead to reducing the probability of a type II error. 

Hence, an inverse relationship exists between the probabilities of a Type I and II errors 

assuming other parameters of a control chart, such as n are held constant. 
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Two systems of causes are assumed in a control charting scheme – common or 

chance causes, and special or assignable causes. Common causes are inherently part of a 

system. They occur because of confounding effects that may impact process parameters. 

They are assumed to be random in nature. Special (or assignable) causes are due to 

underlying changes in the process that, when identified, lead to remedial actions that 

must be taken. Their effect is not generally random in nature.  

2.2 Phases of Monitoring 

In Phase I of process monitoring, observations from an assumed “in-control” 

process are obtained and monitored via the corresponding control charts. Suppose, for 

example, R and 𝑋̅ charts are being used to monitor process variability and mean. If some 

values of R or (𝑋̅) fall outside control limits and assignable causes are removed, then the 

corresponding observations are deleted leading to a recalculation of center line and the 

control limits. Further, based on recalculated control limits, if other values of R or (𝑋̅) are 

outside the revised limits, they are consequently deleted under the assumption of 

presence of assignable causes. When no further values of the monitoring statistic, R and 

(𝑋̅), fall outside revised control limits, the revision process is terminated. At this juncture, 

we assume that observations originate from an “in-control” process. This revision-

procedure of limits until no further values of the monitoring statistics are outside control 

limits is termed as Phase I. Hence, at the end of Phase I, estimates of process parameters, 

such as the process standard deviation (σ) and the process mean (µ) are obtained. These 
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estimates are used to calculate control limits at the end of Phase I. Further, the control 

limits found at the end of Phase I, are used to monitor a process in the next phase. 

2.3 Common Rules of Detection of Process Changes 

In Phase II, as new observations are taken from a process, they are monitored 

using the control limits obtained at the end of Phase I. Hence, a determination is now 

made to identify if there has been a change in process parameters. If a monitoring statistic 

plots outside control limits or an identifiable pattern is observed, the inference is made 

that the associated process parameter has changed from its “in-control” value, only if 

assignable causes are found. 

A Shewhart control chart has a major disadvantage that ignores information from 

a sequence of m  (rational) subgroups but uses the very last sample or subgroup to decide 

whether the process is in-control. This makes the Shewhart chart insensitive to shifts 

smaller than 1.5 standard deviations in magnitude Montgomery (2013). In order to 

overcome this disadvantage, several supplemental sensitizing rules have been proposed 

since the mid-1950’s, e.g., Page (1955), Western Electric (1956), Roberts (1958), and 

Bissel (1978). According to Montgomery (2013) and Minitab documentation, the most 

widely used runs rules, in addition to the first four suggested by Western Electric, are as 

follows: 

1) One or more points greater than 3-sigma from the center line (where sigma 

represents the standard deviation of the monitoring statistic)  
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2) Two out of three points greater than 2-sigma from the center line on the same 

side within 3-sigma limit 

3) Four out of five points greater than 1-sigma from the center line on the same 

side but within 3-sigma limit 

4) Eight points in a row on one side of the center line (i.e., a run of length 8) 

5) Six points in a row all increasing or all decreasing (runs of length 6 up or 

down) 

6) Fifteen points in a row within 1-sigma of the center line on either side 

7) Fourteen consecutive points occurring up and down from the center line 

8) Eight points in a row greater than 1-sigma on either side 

9) Any non-random pattern in the data 

10) One or more points near a warning limit (placed at ± 2-sigma from the center 

line). 

Use of all of the above sensitizing techniques can reduce the average run length of 

detecting change in a process parameter and improve the ease of decision making using 

Shewhart control charts (Montgomery, 2013). However, the chance of a “false alarm” 

also increases with an increase in the number of rules that are used. 

Two other control charts to magnify the degree of change in a monitoring statistic 

have been subsequently developed. They are the cumulative sum (CUSUM) control chart 

and the exponentially weighted moving average (EWMA) control chart. CUSUM charts 
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were developed by Page (1954), while EWMA charts were developed by Roberts (1959). 

In an EWMA chart, the weight given to the past observations decreases as the time from 

the current period increases. Hence, observations that occur 20 periods prior to the 

current will receive a weight that is much smaller than the weight given to an observation 

that occurs 10 periods prior to the current. The past weights decrease exponentially with 

time, in a geometric fashion, and hence the name EWMA given to the associated control 

chart. CUSUM and EWMA charts are used to detect smaller shifts in process parameters 

of a quality characteristics being monitored.  

2.4 Cumulative Sum (CUSUM) Control Chart 

A CUSUM uses two statistics: One sided lower C- and one-sided upper C+, which 

are calculated by accumulating deviations from the mean that are below and above a 

specified target, respectively. They are defined as follows: 

𝐶𝑖
− = 𝑚𝑎𝑥[0, (𝜇0 − 𝐾) − 𝑋𝑖 + 𝐶𝑖−1

+ ]    (2.4) 

𝐶𝑖
+ = 𝑚𝑎𝑥[0, 𝑋𝑖 − (𝜇0 + 𝐾) + 𝐶𝑖−1

+ ]    (2.5) 

 

where 𝑋𝑖 (i= 1, 2, ….) is the ith observation from a process. At an in-control state, it is 

assumed that 𝑋𝑖 follows a normal distribution with targeted mean 𝜇0 and standard 

deviation 0. The starting values of 𝐶𝑖
− 𝑎𝑛𝑑 𝐶𝑖

+ are 0, K is the reference value and is one 

half of the magnitude of the shift that we wish to detect. The statistics  𝐶𝑖
− 𝑎𝑛𝑑 𝐶𝑖

+  
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accumulate deviations from the target value that are greater than K and are reset to zero 

when they become negative. When  𝐶𝑖
− 𝑎𝑛𝑑 𝐶𝑖

+  exceed the desired interval, the process 

is considered to be out of control. The desired interval, H, is generally considered to be 5 

times 0. Since the deviations from a chosen target are being accumulated successively, 

as the monitoring statistics 𝐶𝑖
− 𝑎𝑛𝑑 𝐶𝑖

+  are calculated, the CUSUM statistic may inflate 

the impact of a shift in a process parameter. Usually, for small shifts, the average run 

length (ARL) for detection using the CUSUM chart is smaller than that for a 

corresponding Shewhart chart.  

According to Montgomery (2013), subgroups should be selected in such a manner 

that maximize variability between subgroups and simultaneously minimize variation 

within a subgroup. Grouping of observations in the above manner is known as rational 

subgrouping. In case of monitoring rational subgroups where more than one observation 

is chosen in a subgroup, 𝑋𝑖 in the above equations for CUSUM statistics is replaced by 

𝑋̅𝑖 , which is the average of the observations in subgroup i and sigma is replaced by 𝜎𝑥 ̅ =

𝜎

√𝑛
.  

2.5 Exponentially Weighted Moving Average (EWMA) Chart 

EWMA charts, like CUSUM charts, are also used to detect smaller shifts in a 

process mean. EWMA charts are easier to set up and their performance is comparable to 

CUSUM charts. The EWMA monitoring statistic in period i is defined by the following 

equation (Montgomery, 2013)  
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𝑀𝑖 = 𝜆𝑋𝑖 + (1 − 𝜆)𝑀𝑖−1     (2.6) 

where 0 < 𝜆 < 1 is a charting constant and 𝑀0 = 𝜇0 is the target-value . The constant, 𝜆, 

is often termed as the smoothing constant. When 𝜆 = 1, the EWMA chart reduces to the 

appropriate Shewhart chart. 

If the observations 𝑋𝑖 are independent random variables with variance 𝜎2, then 

the variance of 𝑀𝑖 is given by 

𝜎𝑀𝑖

2 = 𝜎2 (
𝜆

2−𝜆
) [1 − (1 − λ)2𝑖]    (2.7) 

The control limits for the targeted EWMA control chart are given by 

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆

(2−𝜆)
[1 − (1 − λ)2𝑖]   (2.8) 

𝐶𝐿 = 𝜇0      (2.9) 

𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√
𝜆

(2−𝜆)
[1 − (1 − λ)2𝑖]   (2.10) 

where L is the selected number of standard deviations away from the mean based on a 

chosen level of Type I error. As the time period i increases, the term [1 − (1 − λ)2𝑖]  

approaches 1, hence the EWMA chart parameters reduce to  

𝐿𝐶𝐿 = 𝜇0 − 𝐿𝜎√
𝜆

(2−𝜆)
    (2.11) 

𝐶𝐿 = 𝜇0     (2.12) 
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𝑈𝐶𝐿 = 𝜇0 + 𝐿𝜎√
𝜆

(2−𝜆)
    (2.13) 

2.6 Control Charts for Multivariate Observations 

There are numerous manufacturing processes where simultaneous monitoring of 

more than one quality characteristic is necessary. As pointed out by Montgomery (2013), 

monitoring two or more QCH that are correlated, with individual control charts can be 

misleading. Hence when two or more QCH are measured from the same sampling unit, 

multivariate quality control techniques are used to monitor a process. Hotelling (1947) 

introduced a method also known as Hotelling T2 control chart using bombsight data.  

For individual observations, Hotelling’s multi-variate T2 is calculated as 

𝑇2 = (𝑋 − 𝑋̅)′𝑆−1(𝑋 − 𝑋̅)    (2.14) 

where X is the sample observations vector given by [𝑋1, 𝑋2 , … … , 𝑋𝑝]
𝑇
and S is the 

variance - covariance matrix respectively of the observations, and 𝑋̅ = [𝑋̅1,  𝑋̅2, … . . ,  𝑋̅𝑝]
𝑇
 

is the mean vector of the p quality characteristics. Hotelling T2 requires the assumption 

that underlying distribution is multivariate normal. 

For Phase I, the control limits are given by the following equation (Tracy, Young, & 

Mason, 1992) 

𝐿𝐶𝐿 = 0     (2.15) 

𝑈𝐶𝐿 =
(𝑚−1)2

𝑚
𝛽𝛼,𝑝/2,(𝑚−𝑝−1)/2   (2.16) 
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where m is the number of subgroups, α is the chosen level of significance, and β 

represents the upper αth percentile of the Beta distribution with appropriate parameters. 

For Phase II, control limits are given by  

𝐿𝐶𝐿 = 0     (2.17) 

𝑈𝐶𝐿 =
𝑝(𝑚+1)(𝑚−1)

𝑚2−𝑚𝑝
𝐹𝛼,𝑝,𝑚−𝑝    (2.18) 

where 𝐹𝛼,𝑝,𝑚−𝑝 represents the upper percentile of the F-distribution with an upper tail 

probability of α, numerator df = p, and denominator df = m - p.   

In the event that the number of preliminary subgroups m is large, i.e., say greater than 30, 

the control limits can be approximated as  

𝐿𝐶𝐿 = 0     (2.19) 

𝑈𝐶𝐿 =
𝑝(𝑚−1)

𝑚−𝑝
𝐹𝛼,𝑝,𝑚−𝑝    (2.20) 

or 

𝑈𝐶𝐿 = 𝜒𝛼,𝑝
2      (2.21) 

For data collected using subgroups, the Hotelling T2 is calculated as  

𝑇2 = 𝑛(𝑋̅ − 𝑋̿)′𝑆−1(𝑋̅ − 𝑋̿) ,   (2.22) 

where 𝑋̅ is the mean vector of p quality characteristics, and 𝑋̿ is the mean vector of 𝑋𝑗̅ 

and S is the sample covariance matrix of the vector of means. 
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Alt (1985) proposed control limits based on the phase in which the chart is used. 

In Phase I, stability of a process is evaluated using historical data, where outliers with 

assignable causes are removed and process parameters are re-estimated. Process 

parameters estimated from Phase I are subsequently used to obtain revised control limits. 

Phase II is used to either verify that the process is still in control or to detect shifts in 

process parameters from an in-control state.  

In Phase I, the control limits are given by  

𝐿𝐶𝐿 = 0     (2.23) 

𝑈𝐶𝐿 =
𝑝(𝑚−1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝐹𝛼,𝑝,𝑚𝑛−𝑚−𝑝+1   (2.24) 

The control limits in Phase II are given by  

𝐿𝐶𝐿 = 0     (2.25) 

𝑈𝐶𝐿 =
𝑝(𝑚+1)(𝑛−1)

𝑚𝑛−𝑚−𝑝+1
𝐹𝛼,𝑝,𝑚𝑛−𝑚−𝑝+1   (2.26) 

2.7 Monitoring of Profiles 

As discussed in Chapter 1, a profile is defined as a relationship between a 

response variable and explanatory variable(s) that characterizes the quality of a process 

(Kang & Albin, 2000). LCD display, for example, consists of thousands of pixels each 

having luminance that are independently and normally distributed. A defect in an LCD 

display may show a shift in distribution parameters on luminance measurements. 
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Many studies in the past have used Hotelling T2 in some form to monitor a profile. 

Multiple researchers have proposed using T2 control charts differently. For example, 

Stover and Brill (1998) proposed a T2 calculation for a linear profile using a regression 

line represented by y = ax + b as  

𝑇𝑖
2 = [𝑠𝑏 (𝑎𝑖 − 𝑎0)2 +𝑠𝑎 (𝑏𝑖 − 𝑏0)2 −

2𝑠𝑎𝑏(𝑎𝑖−𝑎0)(𝑏𝑖−𝑏0)

[𝑠𝑎𝑠𝑏−𝑠𝑎𝑏
2 ]

  (2.27) 

where, 𝑎𝑖 and 𝑏𝑖 are the slope and intercept based on the ith observation, 𝑎0 and 𝑏0 are the 

average slope and intercept over all the observations, 𝑠𝑎
2 is the slope variance, s𝑏

2 is the 

intercept variance, and 𝑠𝑎𝑏 is the covariance between slope and intercept. The upper 

control limit for the T2 control chart is calculated as  

𝑇2~[𝑝(𝑛 + 1)(𝑛 − 1)𝐹(𝑝, 𝑛 − 𝑝, 𝛼)]/[𝑛(𝑛 − 𝑝)]   (2.28) 

where, F(p, n-p) has p numerator df and (n - p) denominator df. Dimension number in 

each multivariate observation is represented by p, the number of estimated parameters, 

and n is the number of vector observations in each subgroup. 

Kang and Albin (2000) may be one of the earliest researchers to propose profile 

monitoring. They propose two control charting methods where quality characteristics of 

interest could be characterized by a profile.  Their study focused on a profile that was 

linear in nature. They discuss the application of linear profiles in semiconductor 

manufacturing where a mass flow controller (MFC) regulates the flow of gases. The 
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pressure in the chamber is a linear function of flow rate, X. Their linear profile is 

expressed as  

P = 𝑃0 + (
𝑄𝑚𝑎𝑥𝑅𝑇𝑡

𝑉
) 𝑋     (2.29)  

where the intercept P0 is the base pressure and the slope consists of Qmax which is the 

maximum flow rate, R is the type of gas, T is temperature, t represents time, and V is the 

volume of chamber.  

 First they proposed the use of Hotelling T2 control chart to monitor the slope and 

intercept of linear profiles. Their proposed T2 statistic is  

𝑇𝑗
2 = (𝑀𝑗 − 𝑈)

𝑇
Σ−1(𝑀𝑗 − 𝑈)     (2.30) 

where the vector  𝑀𝑗 = (𝑎0𝑗, 𝑎1𝑗)𝑇, 𝑎0𝑗, 𝑎1𝑗 are least squares estimators for slope and 

intercept, vector 𝑈 = (𝐴0, 𝐴1)𝑇,  𝐴0 is the mean intercept, 𝐴1 is the mean slope, the 

variance-covariance matrix Σ = (
𝜎0

2 𝜎01
2

𝜎01
2 𝜎1

2 ), 𝜎0
2 is the variance of a0, 𝜎1

2 is the variance 

of a1, and 𝜎01
2 is the covariance of a0j and a1j. 

Kang and Albin (2000) used an upper control limit as a chi-square variable with 2 

degrees of freedom for a bivariate response for a specified significance level 𝛼. 
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Their second method was to use an EWMA chart and an R-chart based on 

regression residuals between sample and reference line to detect shifts in the intercept, 

slope, and residual variance.  

Jin and Shi (2001) proposed monitoring process-faults using wavelet analysis for 

diagnostic systems without prior information. They indicated that tapping torque signals, 

welding force signals, and stamping tonnage signals are in waveform that are cycle based 

and each cycle has different segments representing process stages.  

Walker and Wright (2002) discuss numerous examples including manufacturing 

of particleboard and fiberboard where the density of a board is very important for its 

machinability. A profilometer with a laser device is used to measure the density of board 

at fixed depths across thickness. A sample of 2 square inch board would consist of 314 

vertical density profile (VDP) at every 0.002 inches distance.  The profile, in this case, 

has a complicated form having hundreds of points of interest which cannot be modeled 

by a polynomial profile. They proposed the use of generalized additive models (GAMs) 

to monitor a profile. Complicated curves are fit using GAMs and difference between the 

curves were evaluated using parametric models.   

 Kim, Mahmoud and Woodall (2003) propose an alternate approach to Kang and 

Albin (2000). Instead of considering residuals between sample and reference line to 

detect a shift in intercept, slope and variance as proposed by Kang and Albin (2000), they 

propose to code the independent variables in their simple linear regression model. Coding 
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makes estimators of y-intercept and slope independent and thereby allowing separate 

Shewhart type chart for regression parameters.  

 Mahmoud and Woodall (2004) proposed a method based on a multiple regression 

model using indicator variables. Using simulation, they compared the performance of 

their proposed F test method based on indicator variables with the performance of a T2 

control chart proposed by Stover and Brill (1998), T2 control chart proposed by Kang and 

Albin (2000), and Shewhart type control charts proposed by Kim et al. (2003). Through 

simulation they showed the effectiveness of their method, as determined by the overall 

probability of an out-of-control signal, is better than that of the T2 control chart proposed 

by Stover and Brill (1998). The method proposed by Kang and Albin (2000) was also 

ineffective in detecting shifts in process standard deviation. 

Wang and Tsung (2005) discussed the application in a machine vision system 

used in electronics manufacturing industry to check the quality of an LCD display. They 

indicated homogeneity of the quality characteristic within a sample, such as luminance of 

the pixels in this context, may be violated when the sample size is large. Traditional 

control charting techniques to monitor process variability and mean are less effective as 

measured by the average run length to detection of out-of-control condition. They 

proposed the usage of a Quantile-Quantile (Q-Q) plot to monitor a profile.   

Gupta et al. (2006) compared the performance of a control charting method 

proposed by Croarkin and Varner (1982) with Kim et al. (2003) using a simulation 
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method. Their simulation study showed that Croarkin and Varner’s method performed 

poorly compared to the control charting scheme proposed by Kim et al. 

Mahmoud et al. (2007) proposed a change point approach based on a segmented 

regression technique to detect changes in Phase I linear profiles. Using simulation, they 

compared their proposed method with an F-test proposed by Mahmoud and Woodall 

(2004) and a method proposed by Kim et al. (2003). The authors concluded that the 

change point method performs better under sustained step shift in a regression parameter. 

But, the change point method proposed by Mahmoud et al. (2007) was insensitive to 

randomly scattered un-sustained shifts in process parameters in which case the method by 

Kim et al. (2003) and the F-test performed better than the change point method. 

Majority of research on profile monitoring till 2007 was focused mainly on a 

simple linear profile. Zou, Tsung and Wang (2007) proposed a multivariate exponentially 

weighted moving average method based on Lowry et al. (1992) to monitor general linear 

profiles that can be represented by multiple linear regression models. Lowry et al. (1992) 

defined a multivariate EWMA model as 

𝑀𝑖 = 𝑅𝑋𝑖 + (𝐼 − 𝑅)𝑀𝑖−1    (2.31) 

where 𝑀𝑖 is the EWMA statistic in period i, 𝑋𝑖 = observation in period i, i =  1,2 , ……, 

M0 = 0 and R = diag (r1, r2, ……rp), 0 < rj  1, j = 1,2,…..p, where p represents the 

number of independent variables. An out-of-control signal is determined by the 
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monitoring statistic, 𝑇𝑖
2, if it exceeds a chosen upper bound, h4. This is given by the 

relation : 

𝑇𝑖
2 = 𝑀𝑖

′Σ𝑀𝑖

−1𝑀𝑖 > ℎ4     (2.32) 

where h4 is chosen based on a desired in-control ARL (Average Run Length), Σ𝑀𝑖
 is the 

variance covariance matrix of Mi. The weights r1, r2….rp are generally considered equal 

unless there is a reason to consider different weights based on a sequence of individual 

observations. Considering equal weights where r1 = r2 = r, a multivariate EWMA statistic 

in Eq. (2.31) reduces to   

𝑀𝑖 = 𝑟𝑋𝑖 + (1 − 𝑟)𝑀𝑖−1   (2.33) 

The covariance matrix of Mi is given by 

Σ𝑀𝑖
= {𝑟[1 − (1 − 𝑟)2𝑖]/(2 − 𝑟)}Σ   (2.34) 

For the larger values of i, the above covariance matrix simplifies to  

Σ𝑀𝑖
= {

𝑟

(2−𝑟)
} Σ    (2.35) 

Zou, Tsung and Wang (2008) proposed a multivariate exponentially weighted 

moving average procedure along with a generalized likelihood ratio test to monitor non 

linear profiles. Saghaei, Mehrjoo and Amiri (2009) proposed a method based on 

cumulative sum statistics to monitor linear profiles in Phase II.  
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Zhang and Albin (2009) proposed using a chi-square control chart to monitor 

complex profiles to detect outliers. Their proposed method does not require fitting a 

regression model. They compared their method with a non-linear regression method and 

showed that their method performed better and had a lower level of mis-identification.  

 Many studies on profile monitoring have been based on the assumption that the 

corresponding response variable is normally distributed. However, some researchers have 

studied profile monitoring when a response variable follows a distribution other than 

normal. Amiri et al. (2011) proposed a method where the response variable is binary. The 

number of responses for a given occurrence rate is described by a Poisson distribution. 

They use the log link function to model a failure rate as a function linked to the number 

of occurrences. The authors monitor a process through a T2- type statistic that uses the 

estimated parameters of the log link function. This was proposed for Phase I analysis. 

Later in 2012, Amiri et al. (2012) used a T2 based method for monitoring a Gamma 

response profile in Phase I. 

Zhang and Albin (2009) used a 𝜒2control chart to identify outliers for the case 

where profiles could not be characterized by a specific function. They used pairwise 

differences among medians to estimate the variance of profiles. Their method showed 

better performance with fewer false alarms compared to other existing non-linear 

regressions method. 
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Noorossana and Ayoubi (2011) propose a non-parametric bootstrap control chart 

for simple linear profiles in Phase II based on the T2 statistic. Their simulation showed 

that the bootstrap control chart performed better with increasing data size.  They 

indicated that their method was applicable to multiple, polynomial, and nonlinear profiles 

in addition to simple linear profiles. Nikoo and Noorossana (2012) used nonparametric 

regression with wavelets for monitoring nonlinear profiles in Phase II.  

Adibi et al. (2014) use a p-value approach to monitor linear profiles in Phase II. 

Out-of-control state is determined when the p-value is less than some pre-determined 

significance level. They compared their procedure with a Shewhart-based method, and 

their simulation showed that their method performed satisfactorily. 

Mitra and Clark (2014) propose an aggregate method instead of individual control 

charts for each element of variance-covariance matrix for monitoring variability in 

multivariate processes. They also compared the performance of their method with that of 

the traditional method using mean time to first detection of shift in process variability. 

While comparing the performance of different methods in profile monitoring, 

majority of research have focused on ARL or mean time to first detection of shift in 

process mean. Limited research has focused on the standard deviation of run length 

(SDRL) as a performance metric. Aly et al. (2015) used SDRL as a performance metric 

in Phase II to compare methods proposed by Kang and Albin (2000), Kim et al. (2003) 
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and Mahmoud et al. (2010) and their findings indicated that the method proposed by Kim 

et al. (2003) performed better in terms of SDRL. 

Kazemzadeh et al. (2016) proposed using an adaptive variable sample size 

scheme to monitor simple linear profiles to improve the performance of conventional 

control charts.  Their study showed that using an adaptive feature improves the 

performance in detecting parameter shifts. 

Ghashghael and Amiri (2017a) propose a Max-MEWMA (Multivariate 

Exponentially Weighted Moving Average) and a Max-MCUSUM control charts for 

multivariate linear regression profiles in Phase II. Ghashghael and Amiri (2017b) also 

proposed a sum of squares control charts for Phase II monitoring of multivariate linear 

regression profiles. Both of their proposed control charts detects whether an out-of-

control signal is caused by a location shift or scale shift. 

The objective of this dissertation is to develop techniques to monitor profiles from 

known or unknown distributions. Four forms of the T2 statistic will be used. Details of the 

four monitoring methods are described in Chapter 3. 
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Chapter 3 

Profile Monitoring Through Control Charts 

3.1 Methodology 

The T2 chart was introduced by Hotelling (1947) to jointly monitor multiple 

quality characteristics at least two of which are correlated. Control charts based on T2 

have been used in several studies including those by Alt and Smith (1988) and Wierda 

(1994).  

Without loss of generality, consider distributions that are from the two-parameter 

family. The normal distribution, the two-parameter Weibull, the lognormal, and the two-

parameter Gamma are examples of such distributions. A profile random variable (prv) 

following a known underlying distribution may be monitored by using control charts that 

utilize the distribution parameters estimated from chosen sample or subgroups. A T2 chart 

may be used for this purpose. Another approach is to monitor a chosen number of 

quantiles of the selected distribution through a joint T2 control chart. These approaches 

are subsequently described. 

3.2 Monitoring Methods 

We first present two methods of jointly monitoring estimated parameters from a 

selected distribution. 
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For a jth subgroup, let the parameter estimates of the distribution be represented 

by the vector Mj = (a0j, a1j)
T; further the estimated variance-covariance matrix of the 

vector Mj is denoted by S1. The monitoring sample statistic, 𝑇𝑗
2, for the jth subgroup is 

given by  

𝑇𝑗
2 = (𝑀𝑗 − 𝑀̅)𝑇𝑆1

−1(𝑀𝑗 − 𝑀̅)    (3.1) 

where 𝑀̅ represents the estimated average value of the vector M over all subgroups. The 

corresponding variance-covariance matrix S1 is given by  

𝑆1 =
1

(𝑚−1)
∑ (𝑀𝑗 − 𝑀̅)(𝑀𝑗 − 𝑀̅)𝑇𝑚

𝑗=1    (3.2) 

Wierda (1994) concluded that a T2 control chart has the advantage over univariate 

charts since it takes the correlation structure into account. 

A chart statistic, for monitoring a target parameter vector M0, for a univariate 

EWMA chart is given by  

𝑀𝑒𝑤𝑚𝑎𝑗
= 𝑟(𝑋𝑗) + (1 − 𝑟)𝑀𝑒𝑤𝑚𝑎𝑗−1

    (3.3) 

where r represents a smoothing constant, 0 ≤  r  ≤  1. Usually Mewma0 is chosen as X1, the 

first observed value of the estimated statistic at subgroup j =1. 

A multivariate EWMA chart, which we will refer here-after as T2-EWMA 

(MEWMA), is an extension of a univariate EWMA. The MEWMA –statistic is calculated 

as suggested by Lowry et. al.  (1992): 
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 𝑀𝑒𝑤𝑚𝑎𝑗
= 𝑅𝑋𝑗 + (I − 𝑅)𝑀𝑒𝑤𝑚𝑎𝑗−1

,    (3.4) 

where 𝑋𝑗 is the estimated parameter for subgroup j, and R is a diagonal matrix of the 

smoothing constants. In the special case when the smoothing constants have a common 

value r, the charting statistic for subgroup j is given by 

           𝑇𝑒𝑤𝑚𝑎𝑗

2 = (𝑀𝑒𝑤𝑚𝑎𝑗
− 𝑀𝑒𝑤𝑚𝑎

̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑇𝑆2
−1(𝑀𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅),   (3.5) 

where,  

𝑆2 =
1

(𝑚−1)
∑ (𝑀𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑀𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑇𝑚

𝑖=1   (3.6) 

 𝑀𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅ represents the average value of the vector 𝑀𝑒𝑤𝑚𝑎𝑗

 and 𝑆2 represents the 

estimated variance-covariance matrix of the vector 𝑀𝑒𝑤𝑚𝑎. 

 When a profile function is distribution free, a general approach can be used to 

estimate the unknown distribution characteristics. In this context, the corresponding 

quantiles serve to identify the profile. For the case of general profiles, instead of using 

parameter estimates, quantile estimates can be used to calculate the corresponding T2 and 

T2-EWMA statistics. Such statistics may also be calculated using quantile estimates from 

a known underlying distribution to determine the performance of the monitoring method.  

 For the vector Mpj = (a1j, ……, apj)
T, let a1j, ……, apj represent the estimates of 

the selected  p quantiles from an empirical distribution. The sample statistic, 𝑇𝑝𝑗
2, for 

subgroup j, is given by  
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𝑇𝑝𝑗
2 = (𝑀𝑝𝑗 − 𝑀𝑝

̅̅ ̅̅ )𝑇𝑆3
−1(𝑀𝑝𝑗 − 𝑀𝑝

̅̅ ̅̅ ),   (3.7) 

where 𝑀𝑝
̅̅ ̅̅  represents the average value of the vector 𝑀𝑝. The variance-covariance matrix 

S3 is given by  

𝑆3 =
1

(𝑚−1)
∑ (𝑀𝑝𝑗 − 𝑀𝑝

̅̅ ̅̅ )(𝑀𝑝𝑗 − 𝑀𝑝
̅̅ ̅̅ )𝑇𝑚

𝑗=1 ,   (3.8) 

The statistic in Eq. (3.7) represents the third monitoring method considered in this 

dissertation for detecting shifts in process parameters. 

Using a similar concept as before, an EWMA of estimated quantiles will be 

developed and statistically examined. An EWMA extension of the above equations is 

given by 

𝑀𝑝𝑒𝑤𝑚𝑎𝑗
= 𝑅𝑋𝑝𝑗 + (I − 𝑅)𝑀𝑝𝑒𝑤𝑚𝑎𝑗−1

 ,   (3.9) 

where 𝑋𝑝𝑗 is the estimated percentile for subgroup j. In the special case, when the 

smoothing constants have a common value r, we have, the fourth monitoring statistic for 

subgroup j, as 

           𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 = (𝑀𝑝𝑒𝑤𝑚𝑎𝑗
− 𝑀𝑝𝑒𝑤𝑚𝑎

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑇𝑆4
−1(𝑀𝑝𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑝𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), (3.10)  

where, 

            𝑆4 =
1

(𝑚−1)
∑ (𝑀𝑝𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑝𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )(𝑀𝑝𝑒𝑤𝑚𝑎𝑗

− 𝑀𝑝𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝑇𝑚

𝑗=1 , (3.11) 
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𝑀𝑝𝑒𝑤𝑚𝑎
̅̅ ̅̅ ̅̅ ̅̅ ̅̅  represents the average value of the vector 𝑀𝑝𝑒𝑤𝑚𝑎𝑗

 and 𝑆4 represents the 

estimated variance-covariance matrix of the vector 𝑀𝑝𝑒𝑤𝑚𝑎𝑗
. 

3.3 Simulation Procedure 

A simulation will be used to calculate the control chart limits for monitoring each 

of the above four statistics. Figure 1 describes the flow chart for calculation of limits. The 

limits are calculated using the following steps: 

1) Let number of rows represent the number of subgroups, m. 

Generate n observations from a specified statistical distribution with known 

parameters. 

2) The model error ε is assumed N(0, 0.01).   

3) Distribution parameter and percentiles are estimated using the results from 

step 2, for each subgroup j. 

4) The four monitoring statistics, 𝑇𝑗
2, 𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2, 

respectively, are calculated as described in the previous equations. 

5) Steps 2 – 4 are replicated 10,000 times. 

6) For a chosen level of significance α, say, of 5%, the 95th percentiles of 𝑇𝑗
2, 

𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 respectively, are recorded for a given number of 

subgroups, say m = 100. 

7) Steps 1 – 6 are repeated with the number of subgroups varying between 100 – 

500 with an increment of 1such as 101, 102…..500. Clearly, this procedure 
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provides the empirical limits of a monitoring statistic, for a chosen level of 

significance as well as a chosen number of subgroups. 

In order to detect a shift in process parameters, it is important to first have an in-

control process. Outliers are removed (by utilizing the established empirical control 

limits) and in control process parameters are estimated. The flow chart for removing 

outliers and obtaining parameter estimates, in Phase I, is shown in Figure 2 described in 

the following steps: 

1) Let number of rows represent the number of subgroups, m. 

Generate n observations from a given distribution with known parameters 

for each subgroup. 

2) The model error ε is assumed N(0, 0.01).   

3) Distribution parameters are estimated using the results from step 2, for 

each subgroup j. 

4) The four monitoring statistics, 𝑇𝑗
2, 𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2, 

respectively, are calculated as described in previous equations. 

5) The previously described monitoring statistic calculated in step 4 is 

compared with empirical limits, for the appropriate subgroup size for the 

corresponding distribution (normal or Weibull). 

6) The subgroups that are detected out-of-control are removed.  
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7) The remaining subgroups are considered to represent an in-control state of 

the process. Estimates of in-control process parameters are calculated 

using remaining observations. 

The flow chart for detecting shifts in parameter estimates is shown in Figure 3. 

Phase II is a continuation of Phase I and is simulated using the following steps: 

8) A sample of n observations are generated from a specified statistical 

distribution with predetermined shift in process parameters.  

9) The four monitoring statistics, 𝑇𝑗
2, 𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2, 

respectively are calculated using the addition of the subgroup data from a 

distribution with shifted parameters and each is compared with their 

respective control limits calculated from the Matlab program as described 

in Figure 1. 

10) The RL to first detection is recorded for 𝑇𝑗
2, 𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2, respectively, when each monitoring statistic is greater than its 

respective limit. Note that the monitoring statistics may first detect the 

shift at different (times) subgroups. So, to monitor the performance of the 

statistic, records are maintained for the first time that particular statistic 

detects the shift. 

11) Steps 9 – 10 are repeated until each method has a first detection. 
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12) Steps 9 – 11 are repeated 10,000, 20,000 or 50,000 times to determine the 

mean time to first detection and the standard deviation of the time to first 

detection (SDRL) for each method. The mean time to first detection for an 

out-of-control state is often represented as the ARL for detection and used 

as a measure of performance. 

13) All the steps in Phase I, and Steps 9 – 12 in Phase II are repeated for the 

values of exponentially weighted moving average constant (r) ranging 

from 0.1 to 0.9, at an increment of 0.1. 

14) The ARL and SDRL are used to evaluate the performance of each of the 

four monitoring methods. 

3.4 Applications of Profile Monitoring to Different Distributions 

The normal distribution is one of the most widely used distribution in 

manufacturing settings. The probability density function (pdf) of a random variable X for 

a normal distribution is given by  

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥−𝜇

𝜎
)

2

,      (3.12)  

where, µ represents the mean and σ2 represents the variance of the random variable. The  

notation N(µ, σ2) is used to represent a normal distribution with mean µ and variance σ2. 

A quality characteristic or a dependent variable can originate from any 

distribution. For example, mobile phone display inspection by a machine vision system of 
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the variable luminance, as used in Wang and Tsung (2005), can be modeled by a normal 

distribution. Physiological measurements such as blood pressure of adult humans seem to 

closely follow a normal distribution.  

A Weibull distribution, on the other hand, is widely used in reliability engineering 

to model time to failure. The pdf of a Weibull random variable T with minimum life zero 

is given by  

𝑓(𝑡) =  
𝑘

𝜆
(

𝑡

𝜆
)

𝑘−1

𝑒𝑥𝑝 [− (
𝑡

𝜆
)

𝑘

],    (3.13) 

where k is a shape parameter and 𝜆 is a scale parameter. Both parameters are greater than 

zero. The mean and variance of a Weibull distribution are given by 

𝜇 = 𝜆Γ (1 +
1

𝑘
),     (3.14) 

𝜎2 = 𝜆2 [Γ (1 +
2

𝑘
) − {Γ (1 +

1

𝑘
)}

2

],    (3.15) 

Over-voltage occurrence in an electrical system, manufacturing and delivery 

times in the case of industrial engineering, and wind speeds are often found to fit a 

Weibull distribution (Jangamshetti & Rau, 1999; Osmokrovic, Krivokapic, MatijaSevic, 

& Kartalovic, 1996).  

Exchange rates, price indices, and stock market indices have been found to follow 

a lognormal distribution. In reliability analysis, time to repair of maintainable systems has 

been established to follow a lognormal distribution. A Gamma distribution has been used 
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to model aggregate insurance claims and amount of rainfall accumulated in a reservoir. In 

this dissertation, monitoring profiles of characteristics from some selected distributions, 

such as the normal and Weibull, are considered.  

3.5 Performance Measures 

The ARL for first detection of an out-of-control condition along with SDRL will be used 

as measures of performance of the monitoring statistics. 

3.5.1 Confidence Intervals for ARL 

Confidence intervals for ARL may be computed, using principles from the Central Limit 

Theorem, as : 

𝐴𝑅𝐿 ± 𝑡𝛼/2 ∗ 𝑆𝐷𝑅𝐿/√𝑁𝑟𝑒𝑝,     (3.16) 

where 𝑁𝑟𝑒𝑝 represents the number of replications to compute ARL, for a given parameter 

combination of the distribution, and 𝑡𝛼/2 is the quantile of the t-distribution, with a 

confidence level of (1- α) and degrees of freedom of (𝑁𝑟𝑒𝑝 − 1). Since the number of 

simulation replications for a given parameter combination, is quite large (at least 10,000), 

the t-statistic can be replaced by the corresponding standard normal (𝑧𝛼/2) statistic. 

 For a given parameter combination, comparison of the relative performances of 

four monitoring statistics maybe accomplished through a comparison of the confidence 

intervals for ARL for statistical significance.  
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 Results from the simulations conducted in the study, as will be discussed in the 

next chapter, will indicate ARL and SDRL of the time to first detection of an out-of-

control condition for each monitoring statistic. Obviously, smaller values of ARL are 

desirable as they will indicate a faster detection of out-of-control conditions in the 

process. A smaller value of SDRL is also desirable as this will indicate the consistency or 

precision with which detection of an out-of-control condition is accomplished. 
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Figure 1: Flow chart for calculation of control limit, based on a chosen level of 

significance 
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Figure 2: Flow chart of Phase I removing outliers and defining in-control process 
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Figure 3: Flow chart of Phase II for detection of shifts in process parameters 
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Chapter 4 

Results and Conclusion 

4.1 Control Limits 

For each parameter combination, the upper control limits for each monitoring 

statistic, are first determined. These limits are then utilized in Phase II of the monitoring 

process to determine the time to detection of an out-of-control condition. 

As described in Chapter 3, Figure 1: Flow chart for calculation of limits based on 

a chosen level of significance, a Matlab program was run to calculate control limits and 

are reported in Appendix A. The number of individual observations in each subgroup was 

considered to be 150 in order to ensure a sufficient subgroup size for estimation of the 

distribution parameters. The Simulation was replicated 10,000 times to calculate the 95th 

percentile of the T2 statistic for each method of the four monitoring statistics, 𝑇𝑗
2, 

𝑇𝑒𝑤𝑚𝑎𝑗

2, 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2. The control limits calculation was repeated for number of 

subgroups within 100 – 500 in steps of 1, and for EWMA constant values r ranging from 

0.1 to 0.9 at an increment of 0.1. 

4.2 Discussion of Simulation Runs 

Simulation runs of 10,000, 20,000 and 50,000 were compared to determine if the 

results from 10,000 runs were sufficiently close to those of the other two runs. A 

conservative approach of simulation runs as high as 50,000 was chosen based on control 

chart type simulations performed by other researchers such as Mahmound and 
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Maravelakis (2010), Amin and Miller (1993) and Tatum (1997). After comparing results 

of the three run sizes, we determined that 10,000 replications were sufficiently large to 

compare performance ranking between the four methods.  See Figure 4 below for an 

illustrative example. The figure shows the distribution of ARL as a function of the size of 

shift in the process mean. The empirical distribution of the ARL exhibits a similar 

behavior for each of three simulation runs. Due to the fact that 50,000 replications have 

already been run for the evaluation of all desired shifts, results from 50,000 will be 

discussed in this chapter.  

 

Figure 4: Comparison of ARL distributions between 10,000, 20,000 and 50,000 runs 

for the shift in mean with exponentially weighting constant of r = 0.9 
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4.3 Repeatability of Simulation 

In order to ensure that performance ranking observed is repeatable, simulation of 

each of 10,000, 20,000 and 50,000 runs was repeated for the mean shift of a Normal 

distribution from zero. The relative performance ranking amongst the four methods was 

found to be repeatable; see Figure 5, where the ARL as a function of the shift in the 

mean, from a normal distribution, is shown. Note a similar pattern in the distribution for 

the two replicates. 

 

Figure 5: Comparison of two replicates for the mean shift with exponentially 

weighted moving average constant r = 0.9 
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It is observed from figure 5 that using the ARL as a performance measure determined 

that the monitoring statistic 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  performs best for smaller shifts within 0.15.  For 

shifts in the process mean of magnitude greater than 0.15, the performance of all four 

monitoring statistics are similar in nature.  The next two sections will evaluate shifts in 

process parameters for the two underlying distributions.  

4.4 Shifts in the Normal Distribution Parameters 

4.4.1 Shift in the Mean N(µ, 1) 

In order to detect a shift in the mean, simulations were run 50,000 times for 

different shifts. In-control state of the process was the N(0, 1). Shifts in the mean from 

−0.2 to +0.2, at an increment of 0.02, were systematically varied. The ARL and SDRL of 

were found for each of the four monitoring statistics. Only two of the monitoring 

statistics, i.e., 𝑇𝑒𝑤𝑚𝑎𝑗

2  and 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  , are impacted by the chosen value of the weighting 

constant, r. The value of r was varied between 0.1 to 0.9, in an increment of 0.1. 

Simulation results from 50,000 runs showed that 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  performed best 

compared to all other methods for all higher values of r  0.40 (See Figure 6a). As r 

decreases below 0.4, both EWMA methods showed inconclusive results (See Figure 6b). 

The monitoring statistic 𝑇𝑝𝑗

2 , which does not incorporate the weighting constant, seemed 

to be the next best statistic for faster detection.  Simulation results showed that the 

performance of all four methods were practically the same when the shift in mean was at 

least 0.2. 
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In order to determine if there is a significant difference in the ARLs of the 4 

monitoring statistics, for a given shift in the process mean. Confidence intervals may be 

obtained using Equation (3.16), for a chosen level of confidence. If the confidence 

intervals do not overlap, it may be concluded that a difference exists in the corresponding 

ARLs of the monitoring statistics. 

  

Figure 6a      Figure 6b 

Figure 6: ARL for the shift in mean for different r 

 Figures 7a and 7b show the confidence intervals for the ARLs for the case when 

the smoothing constant r is 0.9 and 0.1, respectively. For a given choice of the mean 

shift, say 0.02, it is found that the confidence intervals do not overlap, indicating a 

significant difference in the performance of the monitoring statistics when measured by 

ARL. As an example, 95% confidence limits for the ARLs of all four methods, when the 

mean shift is 0.02, using Equation (3.16) are shown in Table 1.  
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Note that it is sufficient for the confidence intervals not to overlap but not 

necessary to indicate a significant difference (Maghsoodloo & Huang, 2010). A 

conservative approach is taken by checking confidence interval not overlapping.   

Method ARL SDRL LCL UCL 

𝑇𝑗
2 (T_Sq) 6.330 5.793 6.279 6.380 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.748 5.229 5.702 5.794 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.847 4.301 4.809 4.884 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.665 2.117 2.647 2.684 
 

Table 1: Example of confidence interval calculation (r=0.9, shift in mean 0.02, 

number of simulations = 50,000) 

  

Figure 7a      Figure 7b 

Figure 7: ARL for the shift in mean for different r with confidence interval 

 

Figures 8a, 8b, 8c and 8d show the effect of r on ARL performance of different methods. 

Figure 8a and 8c, and similarly, Figures 8b and 8d, indicate the same values of ARL but 

different scales for ARL. Note that Figures 8c and 8d do not show the ARL at r = 0.2 for 
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visual comparison of ARLs at different r. These four figures clearly show that, for 

smaller shifts, the method 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 performs better, compared to all others, when r is 

greater than 0.5.  For larger shifts, e.g. 0.2 or beyond shown in the following Figures 8b 

and 8d, all methods perform equally well for r greater than 0.3. 

   

Figure 8a      Figure 8b 

  

Figure 8c      Figure 8d 

Figure 8: ARL vs r for different shifts in mean 

4.4.2 Shifts in Standard Deviation  

The impact of a shift in the standard deviation, with the mean being kept at the in-

control value, is also investigated. The standard deviation was varied from the in-control 
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value of 1, in increments of 0.02. For the two EWMA-type monitoring statistics, the 

impact of the weighting constant r was studied. Figures 9a, 9b, 9c, and 9d show the 

performance of the statistics, for shifts in standard deviation, for large values of r (0.9 and 

0.8) and small values of r (0.2 and 0.1), respectively. 

For higher values of r and shifts beyond  =1 in standard deviation, 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  seemed to have smaller ARL for smaller shifts. As the shift in standard deviation 

gets larger, all methods seemed to perform equally as well. For smaller values of r (0.2 

and 0.1), both T2 statistics with exponentially weighted moving average showed 

inconsistent results. The ARLs were exceedingly high being greater than 40. 

For higher values of r and shifts below  =1 (i.e., decrease in process standard 

deviation), 𝑇𝑒𝑤𝑚𝑎𝑗

2 seemed to perform better than 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 in terms of ARL (See 

Figures 9a and 9b) 

  

Figure 9a      Figure 9b 
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Figure 9c      Figure 9d 

Figure 9: ARL for shift in standard deviation for different r 

As before, differences in the ARLs of the monitoring statistics are investigated 

using confidence intervals given by Equation (3.16). Figures 10a, 10b, 10c and 10d, show 

the ARLs and the confidence intervals for specified shifts in . It was found that the 

confidence intervals do not overlap for standard deviation values in the range of 0.9 to 

1.1.  

   

Figure 10a      Figure 10b 
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Figure 10c      Figure 10d 

Figure 10: ARL for the shift in standard deviation for different r with CI 

4.5 Weibull Distribution  

4.5.1 Shifts in the Scale Parameter  

The two-parameter Weibull distribution is impacted by the scale parameter λ and 

the shape parameter k; see Equation (3.13). We first determine the impact of a change in 

the scale, where λ is varied from 0.4 to 0.6, in increments of 0.02. The in-control value of 

λ is 0.5. As before, the impact of the weighting constant, r, on the EWMA-type 

monitoring statistics is explored. 

Simulation results with 50,000 runs showed that 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 performed better than 

all the other methods, for higher values of r and smaller shift in scale (see Figures 11a 

and 11b). For larger shifts in  beyond 0.2, all four methods performed equally well. 

From our simulation results, it is not recommended to use either of the EWMA methods 

for smaller values of r and smaller shifts in  (shifts smaller than 0.05 in magnitude). All 
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methods performed equally well for larger shifts in  even when chosen value of r is very 

small – say 0.1 or 0.2 (See Figures 11a, 11b, 11c and 11d). 

  

Figure 11a      Figure 11b 

  

Figure 11c      Figure 11d 

Figure 11: ARL for the shift in scale factor for different r 

ARL comparisons between the four monitoring methods are conducted using 

confidence intervals as given by Equation (3.16). Figures 12a, 12b, 12c and 12d show the 

ARLs as well as their corresponding confidence intervals. For small shifts in  (between 
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± 0.05 from the target value), the confidence intervals of the monitoring methods do not 

overlap, indicating a significant difference in the ARLs.  

   

Figure 12a      Figure 12b 

   

Figure 12c      Figure 12d 

Figure 12: ARL for the shift in scale factor for different r with CI 

4.5.2 Shifts in the Shape Parameter 

The shape parameter k was varied from 1.6 to 2.4, in increments of 0.08. The in-

control value of k is 2, although our program can handle other values of k.  As before, the 

impact of the weighting constant, r, on the EWMA-type monitoring statistics is explored. 

Simulation results with 50,000 runs showed that 𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 performed better than all the 
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other methods for higher values of r ≥ 0.6 and smaller shift (= 0.08) in the shape 

parameter (see Figures 13a and 13b). For larger shifts in shape parameter all four 

methods performed equally well. 

  

Figure 13a      Figure 13b 

  

Figure 13c      Figure 13d 

Figure 13: ARL for the shift in shape factor for different r 

From our simulation results, it is not recommended to use either of the 

exponentially weighted moving average type methods for smaller values of r and smaller 
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shifts in scale. All methods performed equally well for larger shifts in shape even when 

chosen value of r is very small – say 0.1 or 0.2 (See Figures 13c and 13d). 

ARL comparisons between the four monitoring methods are conducted using 

confidence intervals as given by Equation (3.16). Figures 14a, 14b, 14c and 14d show the 

ARLs as well as their corresponding confidence intervals. For small shifts in shape 

parameter (between ± 0.3 from the target value), the confidence intervals of the 

monitoring methods do not overlap, indicating a significant difference in the ARL of the 

monitoring statistics. 

 

  

Figure 14a      Figure 14b 
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Figure 14c      Figure 14d 

Figure 14: ARL for the shift in shape factor for different r with CI 
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Chapter 5 

Limitations and Further Study 

5.1 Number of Percentile Points 

In this dissertation, two percentile-based monitoring methods i.e., 𝑇𝑝𝑗
2 and   

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 used five estimated percentile points (10th , 30th , 50th , 70th and 90th percentiles) 

to represent a profile. The result showed  𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 method performed better in terms of 

ARL to detect out-of-control points when the choice of weighting constant r was greater 

than 0.5. Effect of the change in the number of estimated percentile points on the 

performance of  𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 was not explored.  The 5 percentiles used ignored 

the tails of the underlying distribution; however, increasing the number of percentile- 

points will increase the computation time and false-alarm rate. As the number of 

estimated percentile points in the monitoring statistic increases, a better representation of 

the profile should be obtained.  Hence, an area of further research will be to determine an 

optimal number of percentile points in a monitoring statistic. 

5.2 Application of Monitoring Methods to Unknown Distributions 

Two percentile-based monitoring methods i.e., 𝑇𝑝𝑗
2 and   𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2 were explored 

for two underlying distributions; however, the methodology could have potential 

application for cases where the underlying distribution is unknown.   
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5.3 Other Distributions 

Performance comparison of the four monitoring methods for other underlying 

distributions than the normal and Weibull was not explored. Profile monitoring when the 

underlying distribution is Lognormal may have applications in finance when monitoring 

exchange rates, price indices, and stock market indices. The lognormal underlying 

distribution has also applications in time to repair maintainable systems. Similarly, in an 

insurance industry, it may be important to monitor aggregate insurance claims. This 

characteristic is known to follow a Gamma distribution.  

5.4 CUSUM Control Chart 

 Some authors have used CUSUM-based methods in profile monitoring.  

Performance comparison of our methods with those of CUSUM-based have not been 

explored. This will be another area of future research. 

5.5 Effect of Skewness 

The Weibull distribution has a wide-range of skewness depending on its shape 

parameter k, which can be used to study the impact of skewness on performance of the 

four profile-monitoring methods.  Other skewed distributions such as Lognormal and 

Gamma also provide wide-range of skewness.  Effects of skewness on ARL performance 

has not been explored and may be an area for future study. 

5.6 Error Distribution  

In this dissertation, the error distribution was assumed to be normal with a mean 

of 0 and a standard deviation of 0.01.  The effect of varying the standard deviation from 
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0.01 on performance of the four methods was not explored. This may constitute a future 

area of research. 

5.7 Simultaneous Shifts in Parameters  

This dissertation results are based on shift in only one parameter at a time. In real-

life situations, it may be possible for two or more parameters to shift simultaneously. The 

Effect of such shifts on performance of the methods has not been explored. 
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Appendix A: Control Limits for Monitoring Statistics 

Appendix A.1: Limits for Normal Distribution 
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Appendix A.2: Limits for Weibull Distribution
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Appendix B: Comparison of ARL for Detecting Shift in Mean, 

Normal Distribution, 50,000 runs for Different Values of r 
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Appendix C: Comparison of ARL for Detecting Shift in 

Standard Deviation, Normal Distribution, 50,000 runs for 

Different Values of r 

 

 



 

 

93 

 

 

 



 

 

94 

 

 

 



 

 

95 

 

 

 



 

 

96 

 

 

 

  



 

 

97 

 

Appendix D: Comparison of ARL for Detecting Shift in Scale 

Parameter, Weibull Distribution, 50,000 runs for Different 

values of r 
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Appendix E: Comparison of ARL for Detecting Shift in Shape 

Parameter, Weibull Distribution, 50,000 runs for Different 

Values of r 

 

 



 

 

103 

 

 

 



 

 

104 

 

 

 



 

 

105 

 

 

 



 

 

106 

 

 

 

 

  



 

 

107 

 

Appendix F: Results 

Appendix F.1 ARL for Shift in Mean, Normal Distribution, 50,000 runs 

r = 0.1, Shift in Mean = - 0.2 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0314 0.1792 1.0298 1.0330 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0146 0.1219 1.0136 1.0157 

𝑇𝑗
2 (T_Sq) 1.0116 0.1091 1.0106 1.0125 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0205 0.1463 1.0193 1.0218 
 

r = 0.1, Shift in Mean = - 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0678 0.2686 1.0655 1.0702 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0286 0.1716 1.0271 1.0301 

𝑇𝑗
2 (T_Sq) 1.0315 0.1807 1.0299 1.0331 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0454 0.2159 1.0435 1.0473 
 

r = 0.1, Shift in Mean = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1412 0.4022 1.1377 1.1447 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0516 0.2314 1.0496 1.0536 

𝑇𝑗
2 (T_Sq) 1.0761 0.2861 1.0736 1.0786 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0920 0.3157 1.0892 1.0947 
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r = 0.1, Shift in Mean = - 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2574 0.5696 1.2524 1.2624 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0894 0.3112 1.0867 1.0921 

𝑇𝑗
2 (T_Sq) 1.1532 0.4215 1.1495 1.1569 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1726 0.4467 1.1686 1.1765 
 

r = 0.1, Shift in Mean = - 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.4458 0.8035 1.4388 1.4528 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1405 0.3980 1.1370 1.1440 

𝑇𝑗
2 (T_Sq) 1.2987 0.6237 1.2933 1.3042 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.3019 0.6271 1.2964 1.3074 
 

r = 0.1, Shift in Mean = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.7367 1.1363 1.7268 1.7467 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2176 0.5140 1.2131 1.2221 

𝑇𝑗
2 (T_Sq) 1.5413 0.9155 1.5333 1.5493 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4942 0.8511 1.4867 1.5016 
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r = 0.1, Shift in Mean = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.1817 1.6023 2.1677 2.1958 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3224 0.6524 1.3167 1.3281 

𝑇𝑗
2 (T_Sq) 1.9696 1.3872 1.9574 1.9817 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.8131 1.2139 1.8024 1.8237 
 

r = 0.1, Shift in Mean = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.8100 2.2450 2.7903 2.8297 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.4675 0.8334 1.4602 1.4748 

𝑇𝑗
2 (T_Sq) 2.6565 2.0889 2.6382 2.6748 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.2925 1.7354 2.2773 2.3078 
 

r = 0.1, Shift in Mean = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.5605 3.0231 3.5340 3.5870 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.6509 1.0409 1.6418 1.6601 

𝑇𝑗
2 (T_Sq) 3.6340 3.0947 3.6069 3.6611 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.9953 2.4465 2.9738 3.0167 
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r = 0.1, Shift in Mean = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.1988 3.6792 4.1666 4.2311 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8570 1.2730 1.8458 1.8681 

𝑇𝑗
2 (T_Sq) 4.7259 4.2033 4.6890 4.7627 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 3.9594 3.4301 3.9293 3.9894 
 

r = 0.1, Shift in Mean = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.4468 3.9260 4.4124 4.4812 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.1360 1.5614 2.1223 2.1497 

𝑇𝑗
2 (T_Sq) 5.2039 4.7014 5.1627 5.2451 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.3828 4.8550 5.3402 5.4253 
 

r = 0.1, Shift in Mean = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.0808 3.5414 4.0497 4.1118 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.4536 1.8890 2.4371 2.4702 

𝑇𝑗
2 (T_Sq) 4.5617 4.0412 4.5263 4.5971 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 7.2647 6.7897 7.2052 7.3242 
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r = 0.1, Shift in Mean = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.3245 2.7637 3.3003 3.3488 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.8044 2.2821 2.7844 2.8244 

𝑇𝑗
2 (T_Sq) 3.4470 2.8944 3.4216 3.4724 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 9.6622 9.1019 9.5824 9.7420 
 

r = 0.1, Shift in Mean = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.6071 2.0510 2.5892 2.6251 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.1800 2.6608 3.1567 3.2033 

𝑇𝑗
2 (T_Sq) 2.4993 1.9286 2.4824 2.5162 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 12.3890 11.9503 12.2843 12.4938 
 

r = 0.1, Shift in Mean = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.0532 1.4688 2.0403 2.0661 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.5492 3.0731 3.5223 3.5761 

𝑇𝑗
2 (T_Sq) 1.8978 1.3019 1.8864 1.9092 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 15.3162 15.0683 15.1842 15.4483 
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r = 0.1, Shift in Mean = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.6439 1.0323 1.6349 1.6530 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.8412 3.3660 3.8117 3.8707 

𝑇𝑗
2 (T_Sq) 1.5030 0.8689 1.4954 1.5107 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 17.6692 17.3295 17.5173 17.8211 
 

r = 0.1, Shift in Mean = 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.3801 0.7287 1.3738 1.3865 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 4.0755 3.5962 4.0440 4.1070 

𝑇𝑗
2 (T_Sq) 1.2700 0.5931 1.2648 1.2752 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 19.0253 18.6144 18.8621 19.1884 
 

r = 0.1, Shift in Mean = 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2181 0.5154 1.2136 1.2226 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 4.1535 3.6741 4.1213 4.1857 

𝑇𝑗
2 (T_Sq) 1.1407 0.3978 1.1372 1.1442 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 18.9613 18.4670 18.7995 19.1232 
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r = 0.1, Shift in Mean = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1125 0.3533 1.1094 1.1156 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 4.0791 3.6037 4.0476 4.1107 

𝑇𝑗
2 (T_Sq) 1.0637 0.2605 1.0615 1.0660 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 17.4281 17.1052 17.2782 17.5781 
 

r = 0.1, Shift in Mean = 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0583 0.2498 1.0561 1.0604 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.8139 3.3408 3.7846 3.8432 

𝑇𝑗
2 (T_Sq) 1.0283 0.1708 1.0268 1.0298 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 14.8082 14.4030 14.6820 14.9345 
 

r = 0.1, Shift in Mean = 0.20 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0255 0.1608 1.0241 1.0269 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.4503 2.9686 3.4243 3.4763 

𝑇𝑗
2 (T_Sq) 1.0102 0.1023 1.0093 1.0111 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 11.7084 11.2922 11.6094 11.8073 
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r = 0.9, Shift in Mean = - 0.2 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0379 0.1986 1.0362 1.0397 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0187 0.1381 1.0175 1.0200 

𝑇𝑗
2 (T_Sq) 1.0147 0.1214 1.0137 1.0158 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0204 0.1437 1.0192 1.0217 
 

r = 0.9, Shift in Mean = - 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0815 0.2954 1.0789 1.0841 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0417 0.2085 1.0399 1.0435 

𝑇𝑗
2 (T_Sq) 1.0372 0.1946 1.0355 1.0389 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0505 0.2289 1.0485 1.0525 
 

r = 0.9, Shift in Mean = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1623 0.4332 1.1585 1.1661 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0870 0.3101 1.0842 1.0897 

𝑇𝑗
2 (T_Sq) 1.0841 0.3034 1.0815 1.0868 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1088 0.3485 1.1058 1.1119 
 

 

 

 



 

 

115 

 

r = 0.9, Shift in Mean = - 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2984 0.6211 1.2930 1.3039 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1661 0.4371 1.1622 1.1699 

𝑇𝑗
2 (T_Sq) 1.1774 0.4549 1.1734 1.1813 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.2267 0.5249 1.2221 1.2313 
 

r = 0.9, Shift in Mean = - 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.5179 0.8862 1.5101 1.5257 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2931 0.6168 1.2877 1.2985 

𝑇𝑗
2 (T_Sq) 1.3529 0.6908 1.3468 1.3589 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4408 0.7954 1.4338 1.4478 
 

r = 0.9, Shift in Mean = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.8541 1.2593 1.8430 1.8651 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.4791 0.8457 1.4717 1.4866 

𝑇𝑗
2 (T_Sq) 1.6451 1.0240 1.6361 1.6541 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.8024 1.2036 1.7918 1.8129 
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r = 0.9, Shift in Mean = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.3660 1.7996 2.3502 2.3818 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.7630 1.1597 1.7529 1.7732 

𝑇𝑗
2 (T_Sq) 2.1592 1.5827 2.1453 2.1731 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.4343 1.8805 2.4178 2.4508 
 

r = 0.9, Shift in Mean = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.1298 2.5891 3.1071 3.1525 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.1250 1.5628 2.1113 2.1387 

𝑇𝑗
2 (T_Sq) 3.0549 2.5186 3.0328 3.0769 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 3.5090 2.9735 3.4829 3.5351 
 

r = 0.9, Shift in Mean = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.0461 3.5026 4.0154 4.0768 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.5289 1.9907 2.5115 2.5463 

𝑇𝑗
2 (T_Sq) 4.5237 3.9946 4.4886 4.5587 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.2083 4.6910 5.1672 5.2494 
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r = 0.9, Shift in Mean = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.9122 4.3972 4.8736 4.9507 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.8330 2.2811 2.8130 2.8530 

𝑇𝑗
2 (T_Sq) 6.3393 5.8558 6.2879 6.3906 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 6.9391 6.4695 6.8824 6.9958 
 

r = 0.9, Shift in Mean = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 5.2611 4.7683 5.2193 5.3029 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.8820 2.3409 2.8615 2.9026 

𝑇𝑗
2 (T_Sq) 7.3848 6.8754 7.3245 7.4450 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 7.2761 6.7476 7.2169 7.3352 
 

r = 0.9, Shift in Mean = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.8467 4.3009 4.8090 4.8844 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.6651 2.1171 2.6465 2.6837 

𝑇𝑗
2 (T_Sq) 6.3297 5.7927 6.2789 6.3805 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.7479 5.2286 5.7020 5.7937 
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r = 0.9, Shift in Mean = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.9301 3.3985 3.9003 3.9599 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.2761 1.7098 2.2612 2.2911 

𝑇𝑗
2 (T_Sq) 4.4324 3.9103 4.3981 4.4666 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 3.9064 3.3731 3.8768 3.9360 
 

r = 0.9, Shift in Mean = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.0330 2.4689 3.0113 3.0546 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8913 1.3024 1.8799 1.9028 

𝑇𝑗
2 (T_Sq) 2.9948 2.4456 2.9733 3.0162 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.6682 2.1090 2.6497 2.6867 
 

r = 0.9, Shift in Mean = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.3072 1.7405 2.2920 2.3225 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.5796 0.9608 1.5711 1.5880 

𝑇𝑗
2 (T_Sq) 2.1367 1.5631 2.1230 2.1504 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.9386 1.3507 1.9267 1.9504 
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r = 0.9, Shift in Mean = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.8078 1.2079 1.7972 1.8184 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3533 0.6852 1.3473 1.3593 

𝑇𝑗
2 (T_Sq) 1.6256 1.0067 1.6168 1.6344 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.5183 0.8867 1.5105 1.5261 
 

r = 0.9, Shift in Mean = 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.4926 0.8598 1.4851 1.5002 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2073 0.4985 1.2030 1.2117 

𝑇𝑗
2 (T_Sq) 1.3382 0.6728 1.3323 1.3441 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.2758 0.5924 1.2706 1.2810 
 

r = 0.9, Shift in Mean = 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2812 0.6033 1.2760 1.2865 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1131 0.3550 1.1100 1.1162 

𝑇𝑗
2 (T_Sq) 1.1754 0.4568 1.1714 1.1794 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1403 0.4021 1.1367 1.1438 
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r = 0.9, Shift in Mean = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1544 0.4216 1.1507 1.1581 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0577 0.2451 1.0555 1.0598 

𝑇𝑗
2 (T_Sq) 1.0846 0.3014 1.0819 1.0872 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0668 0.2665 1.0644 1.0691 
 

r = 0.9, Shift in Mean = 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0778 0.2900 1.0753 1.0803 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0257 0.1616 1.0243 1.0272 

𝑇𝑗
2 (T_Sq) 1.0361 0.1930 1.0344 1.0378 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0274 0.1683 1.0259 1.0289 
 

r = 0.9, Shift in Mean = 0.20 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0367 0.1945 1.0350 1.0384 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0107 0.1034 1.0098 1.0116 

𝑇𝑗
2 (T_Sq) 1.0137 0.1180 1.0127 1.0148 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0099 0.1002 1.0090 1.0108 
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Appendix F.2 ARL for Shift in Standard Deviation, Normal Distribution, 

50,000 runs 

r = 0.1, Shift in Standard Deviation = - 0.2 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0005 0.0219 1.0003 1.0007 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1849 0.4677 1.1808 1.1890 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 4.2281 3.7085 4.1956 4.2606 
 

r = 0.1, Shift in Standard Deviation = - 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0043 0.0654 1.0037 1.0048 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3464 0.6869 1.3404 1.3525 

𝑇𝑗
2 (T_Sq) 1.0001 0.0077 1.0000 1.0001 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 10.9768 10.5579 10.8843 11.0694 
 

r = 0.1, Shift in Standard Deviation = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0185 0.1375 1.0173 1.0197 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.5671 0.9443 1.5588 1.5754 

𝑇𝑗
2 (T_Sq) 1.0003 0.0173 1.0001 1.0005 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 33.2947 31.9318 33.0148 33.5745 
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r = 0.1, Shift in Standard Deviation = - 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0633 0.2591 1.0610 1.0656 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8629 1.2678 1.8518 1.8740 

𝑇𝑗
2 (T_Sq) 1.0037 0.0604 1.0031 1.0042 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 55.8010 53.5902 55.3313 56.2707 
 

r = 0.1, Shift in Standard Deviation = - 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1694 0.4440 1.1655 1.1733 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.1664 1.6012 2.1524 2.1805 

𝑇𝑗
2 (T_Sq) 1.0186 0.1385 1.0174 1.0199 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 36.1758 54.7271 35.6961 36.6555 
 

r = 0.1, Shift in Standard Deviation = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.3884 0.7332 1.3819 1.3948 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.4593 1.9338 2.4424 2.4763 

𝑇𝑗
2 (T_Sq) 1.0810 0.2953 1.0784 1.0836 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 27.9866 51.2993 27.5370 28.4363 
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r = 0.1, Shift in Standard Deviation = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.7807 1.1803 1.7704 1.7911 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.6599 2.1277 2.6413 2.6786 

𝑇𝑗
2 (T_Sq) 1.2544 0.5630 1.2494 1.2593 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 41.5965 56.4779 41.1015 42.0916 
 

r = 0.1, Shift in Standard Deviation = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.4689 1.8943 2.4523 2.4855 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.7086 2.1771 2.6895 2.7277 

𝑇𝑗
2 (T_Sq) 1.6630 1.0429 1.6539 1.6722 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 55.6301 51.3466 55.1800 56.0802 
 

r = 0.1, Shift in Standard Deviation = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.4209 2.8740 3.3957 3.4461 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.6152 2.0814 2.5970 2.6334 

𝑇𝑗
2 (T_Sq) 2.5495 1.9770 2.5322 2.5668 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 31.2938 30.2591 31.0286 31.5590 
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r = 0.1, Shift in Standard Deviation = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.2941 3.7420 4.2613 4.3269 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.4015 1.8665 2.3852 2.4179 

𝑇𝑗
2 (T_Sq) 4.1097 3.5720 4.0784 4.1410 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 11.8314 11.4935 11.7306 11.9321 
 

r = 0.1, Shift in Standard Deviation = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.4363 3.8922 4.4022 4.4704 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.1360 1.5660 2.1222 2.1497 

𝑇𝑗
2 (T_Sq) 5.1687 4.6280 5.1281 5.2093 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.3638 4.8525 5.3212 5.4063 
 

r = 0.1, Shift in Standard Deviation = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.6509 3.0966 3.6237 3.6780 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8717 1.2760 1.8605 1.8828 

𝑇𝑗
2 (T_Sq) 3.9823 3.4422 3.9521 4.0125 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.9050 2.3480 2.8844 2.9255 
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r = 0.1, Shift in Standard Deviation = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.7250 2.1656 2.7060 2.7440 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.6469 1.0302 1.6379 1.6559 

𝑇𝑗
2 (T_Sq) 2.5206 1.9566 2.5035 2.5378 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.8725 1.2851 1.8612 1.8837 
 

r = 0.1, Shift in Standard Deviation = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.0244 1.4411 2.0117 2.0370 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.4543 0.8122 1.4472 1.4614 

𝑇𝑗
2 (T_Sq) 1.7161 1.1114 1.7064 1.7258 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4001 0.7535 1.3935 1.4067 
 

r = 0.1, Shift in Standard Deviation = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.5735 0.9471 1.5652 1.5818 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3107 0.6394 1.3051 1.3163 

𝑇𝑗
2 (T_Sq) 1.3167 0.6457 1.3111 1.3224 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1727 0.4497 1.1688 1.1766 
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r = 0.1, Shift in Standard Deviation = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.3079 0.6343 1.3024 1.3135 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1964 0.4854 1.1922 1.2007 

𝑇𝑗
2 (T_Sq) 1.1297 0.3828 1.1263 1.1331 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0687 0.2717 1.0663 1.0711 
 

r = 0.1, Shift in Standard Deviation = 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1655 0.4400 1.1617 1.1694 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1234 0.3737 1.1201 1.1267 

𝑇𝑗
2 (T_Sq) 1.0496 0.2282 1.0476 1.0516 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0245 0.1599 1.0231 1.0259 
 

r = 0.1, Shift in Standard Deviation = 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0821 0.2981 1.0794 1.0847 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0716 0.2753 1.0691 1.0740 

𝑇𝑗
2 (T_Sq) 1.0180 0.1359 1.0168 1.0192 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0086 0.0927 1.0078 1.0094 
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r = 0.1, Shift in Standard Deviation = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0362 0.1936 1.0345 1.0379 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0396 0.2042 1.0378 1.0414 

𝑇𝑗
2 (T_Sq) 1.0053 0.0727 1.0047 1.0060 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0022 0.0477 1.0018 1.0027 
 

r = 0.1, Shift in Standard Deviation = 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0167 0.1305 1.0155 1.0178 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0219 0.1503 1.0205 1.0232 

𝑇𝑗
2 (T_Sq) 1.0012 0.0346 1.0009 1.0015 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0004 0.0210 1.0003 1.0006 
 

r = 0.1, Shift in Standard Deviation = 0.20 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0063 0.0798 1.0056 1.0070 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0103 0.1015 1.0094 1.0112 

𝑇𝑗
2 (T_Sq) 1.0002 0.0155 1.0001 1.0004 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0002 0.0126 1.0000 1.0003 
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r = 0.9, Shift in Standard Deviation = - 0.2 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0021 0.0460 1.0017 1.0025 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0004 0.0190 1.0002 1.0005 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 
 

r = 0.9, Shift in Standard Deviation = - 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0124 0.1125 1.0114 1.0134 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0030 0.0547 1.0025 1.0034 

𝑇𝑗
2 (T_Sq) 1.0001 0.0077 1.0000 1.0001 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0001 0.0077 1.0000 1.0001 
 

r = 0.9, Shift in Standard Deviation = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0471 0.2203 1.0451 1.0490 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0141 0.1188 1.0130 1.0151 

𝑇𝑗
2 (T_Sq) 1.0006 0.0245 1.0004 1.0008 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0006 0.0237 1.0004 1.0008 
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r = 0.9, Shift in Standard Deviation = - 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1325 0.3901 1.1290 1.1359 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0493 0.2295 1.0473 1.0514 

𝑇𝑗
2 (T_Sq) 1.0058 0.0759 1.0051 1.0065 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0057 0.0750 1.0050 1.0063 
 

r = 0.9, Shift in Standard Deviation = - 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.3143 0.6444 1.3087 1.3199 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1285 0.3790 1.1252 1.1319 

𝑇𝑗
2 (T_Sq) 1.0288 0.1723 1.0273 1.0304 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0284 0.1711 1.0269 1.0299 
 

r = 0.9, Shift in Standard Deviation = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.6599 1.0511 1.6507 1.6691 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2882 0.6129 1.2829 1.2936 

𝑇𝑗
2 (T_Sq) 1.1114 0.3499 1.1084 1.1145 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1094 0.3462 1.1063 1.1124 
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r = 0.9, Shift in Standard Deviation = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.2806 1.7154 2.2656 2.2957 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.5725 0.9472 1.5642 1.5808 

𝑇𝑗
2 (T_Sq) 1.3337 0.6713 1.3278 1.3395 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.3289 0.6656 1.3230 1.3347 
 

r = 0.9, Shift in Standard Deviation = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.2797 2.7192 3.2559 3.3036 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.0238 1.4443 2.0112 2.0365 

𝑇𝑗
2 (T_Sq) 1.8300 1.2365 1.8192 1.8409 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.8237 1.2342 1.8129 1.8345 
 

r = 0.9, Shift in Standard Deviation = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.6447 4.1042 4.6087 4.6807 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.5895 2.0354 2.5716 2.6073 

𝑇𝑗
2 (T_Sq) 2.9165 2.3547 2.8959 2.9372 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.9061 2.3464 2.8856 2.9267 
 

 

 

 



 

 

131 

 

r = 0.9, Shift in Standard Deviation = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 5.8313 5.3439 5.7845 5.8782 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.0841 2.5859 3.0615 3.1068 

𝑇𝑗
2 (T_Sq) 4.8555 4.2985 4.8178 4.8931 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 4.8750 4.3125 4.8372 4.9128 
 

r = 0.9, Shift in Standard Deviation = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 5.8600 5.3196 5.8134 5.9066 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.2049 2.6919 3.1813 3.2285 

𝑇𝑗
2 (T_Sq) 6.2391 5.7273 6.1889 6.2893 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 6.3946 5.8593 6.3432 6.4459 
 

r = 0.9, Shift in Standard Deviation = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.8467 4.3009 4.8090 4.8844 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.6651 2.1171 2.6465 2.6837 

𝑇𝑗
2 (T_Sq) 6.3297 5.7927 6.2789 6.3805 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 5.7479 5.2286 5.7020 5.7937 
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r = 0.9, Shift in Standard Deviation = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.4672 2.9398 3.4414 3.4929 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.2906 1.7332 2.2754 2.3058 

𝑇𝑗
2 (T_Sq) 2.9961 2.4340 2.9748 3.0175 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 3.1227 2.5584 3.1003 3.1452 
 

r = 0.9, Shift in Standard Deviation = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.4971 1.9207 2.4803 2.5140 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8384 1.2463 1.8275 1.8493 

𝑇𝑗
2 (T_Sq) 1.9340 1.3465 1.9222 1.9458 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.9912 1.4084 1.9789 2.0036 
 

r = 0.9, Shift in Standard Deviation = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.8636 1.2683 1.8524 1.8747 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.4996 0.8731 1.4919 1.5072 

𝑇𝑗
2 (T_Sq) 1.4279 0.7832 1.4211 1.4348 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4554 0.8154 1.4483 1.4626 
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r = 0.9, Shift in Standard Deviation = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.4847 0.8472 1.4773 1.4922 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2834 0.6045 1.2781 1.2887 

𝑇𝑗
2 (T_Sq) 1.1859 0.4684 1.1818 1.1900 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1995 0.4881 1.1952 1.2037 
 

r = 0.9, Shift in Standard Deviation = 0.12 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2722 0.5889 1.2670 1.2773 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1538 0.4205 1.1501 1.1575 

𝑇𝑗
2 (T_Sq) 1.0732 0.2802 1.0707 1.0756 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0788 0.2917 1.0763 1.0814 
 

r = 0.9, Shift in Standard Deviation = 0.14 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1386 0.3948 1.1351 1.1420 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0773 0.2875 1.0748 1.0798 

𝑇𝑗
2 (T_Sq) 1.0259 0.1628 1.0245 1.0273 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0285 0.1714 1.0270 1.0300 
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r = 0.9, Shift in Standard Deviation = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0697 0.2756 1.0673 1.0721 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0370 0.1978 1.0352 1.0387 

𝑇𝑗
2 (T_Sq) 1.0078 0.0888 1.0070 1.0086 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0089 0.0948 1.0080 1.0097 
 

r = 0.9, Shift in Standard Deviation = 0.18 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0316 0.1813 1.0301 1.0332 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0154 0.1248 1.0143 1.0165 

𝑇𝑗
2 (T_Sq) 1.0019 0.0442 1.0015 1.0023 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0022 0.0477 1.0018 1.0027 
 

r = 0.9, Shift in Standard Deviation = 0.20 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0130 0.1148 1.0120 1.0140 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0063 0.0799 1.0056 1.0070 

𝑇𝑗
2 (T_Sq) 1.0005 0.0224 1.0003 1.0007 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0005 0.0237 1.0003 1.0007 
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Appendix F.3 ARL for Shift in Scale Parameter, Weibull Distribution, 

50,000 runs 

r = 0.1, Shift in Scale Parameter = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0002 0.0134 1.0001 1.0003 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0045 1.0000 1.0001 
 

r = 0.1, Shift in Scale Parameter = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0045 1.0000 1.0001 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0202 0.1430 1.0189 1.0214 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0192 0.1403 1.0179 1.0204 
 

r = 0.1, Shift in Scale Parameter = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0064 0.0797 1.0057 1.0071 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3267 0.6551 1.3210 1.3324 

𝑇𝑗
2 (T_Sq) 1.0005 0.0214 1.0003 1.0006 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.6472 1.0208 1.6383 1.6561 
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r = 0.1, Shift in Scale Parameter = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2008 0.4874 1.1965 1.2051 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.6704 2.1561 2.6515 2.6893 

𝑇𝑗
2 (T_Sq) 1.0637 0.2584 1.0614 1.0659 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 10.4919 10.0325 10.4039 10.5798 
 

r = 0.1, Shift in Scale Parameter = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.6645 2.1009 2.6461 2.6829 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 4.6723 4.2312 4.6352 4.7094 

𝑇𝑗
2 (T_Sq) 2.0684 1.4913 2.0554 2.0815 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 49.5250 45.0152 49.1305 49.9196 
 

r = 0.1, Shift in Scale Parameter = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 5.2067 4.6770 5.1657 5.2477 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.9374 3.4505 3.9072 3.9677 

𝑇𝑗
2 (T_Sq) 6.5114 5.9933 6.4588 6.5639 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 15.9962 15.5204 15.8602 16.1323 
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r = 0.1, Shift in Scale Parameter = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.3788 1.8102 2.3630 2.3947 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.1140 1.5326 2.1005 2.1274 

𝑇𝑗
2 (T_Sq) 2.1661 1.5912 2.1521 2.1800 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.5786 2.0152 2.5609 2.5962 
 

r = 0.1, Shift in Scale Parameter = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2133 0.5116 1.2088 1.2178 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.2563 0.5695 1.2513 1.2613 

𝑇𝑗
2 (T_Sq) 1.1064 0.3455 1.1034 1.1094 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1733 0.4536 1.1693 1.1772 
 

r = 0.1, Shift in Scale Parameter = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0175 0.1334 1.0164 1.0187 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0339 0.1863 1.0323 1.0355 

𝑇𝑗
2 (T_Sq) 1.0039 0.0626 1.0034 1.0044 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0094 0.0969 1.0085 1.0102 
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r = 0.1, Shift in Scale Parameter = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0006 0.0241 1.0004 1.0008 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0018 0.0424 1.0014 1.0022 

𝑇𝑗
2 (T_Sq) 1.0001 0.0077 1.0000 1.0001 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0001 0.0118 1.0000 1.0002 
 

r = 0.1, Shift in Scale Parameter = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0001 0.0110 1.0000 1.0002 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 
 

r = 0.9, Shift in Scale Parameter = - 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0000 1.0000 1.0000 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 
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r = 0.9, Shift in Scale Parameter = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0063 1.0000 1.0001 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 
 

r = 0.9, Shift in Scale Parameter = - 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0116 0.1081 1.0107 1.0126 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0022 0.0466 1.0018 1.0026 

𝑇𝑗
2 (T_Sq) 1.0010 0.0316 1.0007 1.0013 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0006 0.0249 1.0004 1.0008 
 

r = 0.9, Shift in Scale Parameter = - 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2958 0.6184 1.2904 1.3012 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1069 0.3418 1.1039 1.1099 

𝑇𝑗
2 (T_Sq) 1.1140 0.3573 1.1108 1.1171 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0782 0.2905 1.0757 1.0808 
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r = 0.9, Shift in Scale Parameter = - 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.5156 2.9832 3.4895 3.5418 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.0117 1.4411 1.9991 2.0244 

𝑇𝑗
2 (T_Sq) 2.6556 2.0991 2.6372 2.6740 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.2681 1.6947 2.2532 2.2830 
 

r = 0.9, Shift in Scale Parameter = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 7.4235 6.8464 7.3635 7.4835 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.7863 3.3236 3.7571 3.8154 

𝑇𝑗
2 (T_Sq) 9.0547 8.6075 8.9792 9.1301 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 8.7934 8.3955 8.7198 8.8670 
 

r = 0.9, Shift in Scale Parameter = 0.02 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.7111 2.1595 2.6922 2.7300 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.9942 1.4160 1.9818 2.0066 

𝑇𝑗
2 (T_Sq) 2.3564 1.8089 2.3406 2.3723 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.7214 2.1856 2.7023 2.7406 
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r = 0.9, Shift in Scale Parameter = 0.04 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2537 0.5648 1.2488 1.2587 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.1538 0.4231 1.1501 1.1575 

𝑇𝑗
2 (T_Sq) 1.1275 0.3789 1.1241 1.1308 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1709 0.4486 1.1670 1.1749 
 

r = 0.9, Shift in Scale Parameter = 0.06 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0213 0.1470 1.0200 1.0226 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0108 0.1046 1.0099 1.0117 

𝑇𝑗
2 (T_Sq) 1.0050 0.0705 1.0043 1.0056 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0079 0.0886 1.0071 1.0087 
 

r = 0.9, Shift in Scale Parameter = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0006 0.0237 1.0004 1.0008 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0003 0.0167 1.0001 1.0004 

𝑇𝑗
2 (T_Sq) 1.0000 0.0045 1.0000 1.0001 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0045 1.0000 1.0001 
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r = 0.9, Shift in Scale Parameter = 0.10 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0000 0.0045 1.0000 1.0001 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0000 0.0045 1.0000 1.0001 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0045 1.0000 1.0001 
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Appendix F.4 ARL for Shift in Shape Parameter, Weibull Distribution, 

50,000 runs 

r = 0.1, Shift in Shape Parameter = - 0.4 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0031 0.0554 1.0026 1.0036 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑗
2 (T_Sq) 1.0000 0.0000 1.0000 1.0000 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0028 0.0525 1.0023 1.0032 
 

r = 0.1, Shift in Shape Parameter = - 0.32 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0408 0.2055 1.0390 1.0426 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0001 0.0077 1.0000 1.0001 

𝑇𝑗
2 (T_Sq) 1.0031 0.0567 1.0026 1.0036 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0187 0.1378 1.0175 1.0199 
 

r = 0.1, Shift in Shape Parameter = - 0.24 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.2375 0.5393 1.2328 1.2422 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0007 0.0268 1.0005 1.0010 

𝑇𝑗
2 (T_Sq) 1.0595 0.2519 1.0573 1.0617 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0761 0.2849 1.0736 1.0786 
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r = 0.1, Shift in Shape Parameter = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.9031 1.3093 1.8916 1.9146 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0029 0.0541 1.0025 1.0034 

𝑇𝑗
2 (T_Sq) 1.4556 0.8172 1.4484 1.4628 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1933 0.4840 1.1890 1.1975 
 

r = 0.1, Shift in Shape Parameter = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.7552 3.2123 3.7271 3.7834 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0072 0.0853 1.0065 1.0080 

𝑇𝑗
2 (T_Sq) 3.3726 2.8357 3.3478 3.3975 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.3601 0.6995 1.3539 1.3662 
 

r = 0.1, Shift in Shape Parameter = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 6.0030 5.4276 5.9554 6.0506 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0126 0.1134 1.0116 1.0136 

𝑇𝑗
2 (T_Sq) 7.1506 6.6261 7.0925 7.2086 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4606 0.8212 1.4534 1.4678 
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r = 0.1, Shift in Shape Parameter = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.5985 4.1042 4.5625 4.6345 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0160 0.1269 1.0148 1.0171 

𝑇𝑗
2 (T_Sq) 3.4080 2.8519 3.3830 3.4330 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.4171 0.7682 1.4103 1.4238 
 

r = 0.1, Shift in Shape Parameter = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.5211 1.9570 2.5040 2.5383 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0149 0.1236 1.0139 1.0160 

𝑇𝑗
2 (T_Sq) 1.5769 0.9482 1.5686 1.5852 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.2600 0.5779 1.2550 1.2651 
 

r = 0.1, Shift in Shape Parameter = 0.24 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.5526 0.9291 1.5445 1.5608 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0108 0.1051 1.0099 1.0118 

𝑇𝑗
2 (T_Sq) 1.1061 0.3442 1.1031 1.1091 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.1135 0.3524 1.1105 1.1166 
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r = 0.1, Shift in Shape Parameter = 0.32 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1767 0.4563 1.1727 1.1807 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0069 0.0831 1.0062 1.0076 

𝑇𝑗
2 (T_Sq) 1.0137 0.1169 1.0127 1.0147 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0354 0.1910 1.0337 1.0371 
 

r = 0.1, Shift in Shape Parameter = 0.4 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0454 0.2187 1.0435 1.0474 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0031 0.0563 1.0026 1.0036 

𝑇𝑗
2 (T_Sq) 1.0006 0.0253 1.0004 1.0009 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0066 0.0813 1.0059 1.0073 
 

r = 0.9, Shift in Shape Parameter = - 0.4 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0023 0.0477 1.0019 1.0027 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0005 0.0219 1.0003 1.0007 

𝑇𝑗
2 (T_Sq) 1.0000 0.0063 1.0000 1.0001 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0000 0.0045 1.0000 1.0001 
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r = 0.9, Shift in Shape Parameter = - 0.32 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0282 0.1695 1.0267 1.0297 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0078 0.0883 1.0070 1.0086 

𝑇𝑗
2 (T_Sq) 1.0021 0.0466 1.0017 1.0025 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0018 0.0424 1.0014 1.0022 
 

r = 0.9, Shift in Shape Parameter = - 0.24 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1883 0.4762 1.1842 1.1925 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0711 0.2766 1.0687 1.0735 

𝑇𝑗
2 (T_Sq) 1.0492 0.2262 1.0472 1.0512 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0436 0.2126 1.0417 1.0455 
 

r = 0.9, Shift in Shape Parameter = - 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.7600 1.1675 1.7498 1.7702 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3219 0.6517 1.3162 1.3276 

𝑇𝑗
2 (T_Sq) 1.4041 0.7554 1.3975 1.4107 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.3659 0.7092 1.3596 1.3721 
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r = 0.9, Shift in Shape Parameter = - 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 3.4503 2.9316 3.4246 3.4760 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.0436 1.4770 2.0307 2.0566 

𝑇𝑗
2 (T_Sq) 3.1624 2.6136 3.1395 3.1853 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 2.9894 2.4218 2.9682 3.0107 
 

r = 0.9, Shift in Shape Parameter = 0 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 5.8837 5.3559 5.8368 5.9306 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 3.0965 2.5790 3.0739 3.1191 

𝑇𝑗
2 (T_Sq) 6.4975 6.0070 6.4448 6.5501 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 6.7693 6.2687 6.7144 6.8243 
 

r = 0.9, Shift in Shape Parameter = 0.08 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 4.4924 3.9384 4.4579 4.5269 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 2.8447 2.3144 2.8244 2.8649 

𝑇𝑗
2 (T_Sq) 2.9489 2.3852 2.9280 2.9698 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 3.2632 2.7139 3.2394 3.2870 
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r = 0.9, Shift in Shape Parameter = 0.16 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 2.4030 1.8316 2.3869 2.4190 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.8603 1.2672 1.8492 1.8714 

𝑇𝑗
2 (T_Sq) 1.4404 0.7992 1.4334 1.4474 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.5189 0.8901 1.5111 1.5267 
 

r = 0.9, Shift in Shape Parameter = 0.24 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.4903 0.8546 1.4828 1.4978 

𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.3091 0.6346 1.3035 1.3146 

𝑇𝑗
2 (T_Sq) 1.0748 0.2826 1.0724 1.0773 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0923 0.3170 1.0895 1.0951 
 

r = 0.9, Shift in Shape Parameter = 0.32 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.1480 0.4124 1.1444 1.1516 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0878 0.3090 1.0851 1.0905 

𝑇𝑗
2 (T_Sq) 1.0074 0.0865 1.0066 1.0081 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0102 0.1021 1.0093 1.0111 
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r = 0.9, Shift in Shape Parameter = 0.4 

Method ARL SDRL LCL UCL 

𝑇𝑝𝑗

2 , (P_T_Sq) 1.0350 0.1891 1.0333 1.0367 
𝑇𝑝𝑒𝑤𝑚𝑎𝑗

2  (P_T_Sq_EWMA) 1.0200 0.1414 1.0187 1.0212 

𝑇𝑗
2 (T_Sq) 1.0004 0.0190 1.0002 1.0005 

𝑇𝑒𝑤𝑚𝑎𝑗

2  (T_Sq_EWMA) 1.0006 0.0241 1.0004 1.0008 
 


