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Abstract

Authorship Attribution is a well-studied topic with deep roots in the field of Stylometry.

This thesis examines three less traditional feature sets for the purpose of Authorship Attribu-

tion. Each feature set is examined alone as well as in combination with the other features.

We examine the performance of features derived from Sentiment Analysis, LIWC (Linguis-

tic Inquiry and Word Count), and Topic Models. Using methods from Multimodal Machine

Learning, these feature sets are combined in an effort to improve the performance of Author-

ship Attribution systems. Then a feature selection method based on a Steady-State Genetic al-

gorithm known as GEFeS (Genetic and Evolutionary Feature Selection) is used examine many

different subsets of the total feature sets and further improve the performance of the Authorship

Attribution Systems.
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Chapter 1

Introduction

With the increased usage of the internet comes the increase in electronic texts found online.

These texts appear in many forms such as emails, blogs, or online forums. One problem with

text found online is that determining the author can be a difficult task. Documents found online

could easily be presented anonymously or even worse presented as having been written by a

different author altogether. The ability to determine the true author of a given text is becoming

increasingly more useful.

1.1 Authorship Attribution

This thesis focuses on a process known as, Authorship attribution [1, 2, 3, 4], which is a pro-

cess used to determine the true author of an unknown text. An Authorship Attribution system

focuses on characterizing writing styles of a number of authors in an effort to determine which

is the author of an unknown text by looking for these defining characteristics. Traditionally,

Stylometry Analysis [1, 3, 4] is the preferred method for defining an author’s style. Measuring

stylometric traits, such as the occurrence of words or characters, of a set of documents with

known authors can create quantifiable representations of these documents which would hold

information of these authors’ styles. These documents could then be compared to documents

with unknown authors to determine the most probable author of the unknown text.
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1.2 Non-Traditional Feature Sets

A large focus of this thesis is on the representation of the documents. A representation is com-

prised of a set of features extracted from a document. Researchers have determined a few main

categories of features such as lexical, syntactic, semantic, structural, domain-specific, and ad-

ditional features [3, 4, 5]. These categories are ordered based on their difficulty of extraction

from text. Lexical features, such as the counts of word or character occurrences, are the easiest

to extract. Other features, like Topic Models and readability metrics which appear in the ad-

ditional feature category, are more difficult to extract because they require more sophisticated

natural language processing techniques. The current state-of-the-art representation is the Bag

of Words representation [3] where in a group of documents is represented as a word frequency

vector that is comprised of all the words found in the set of documents. Being in the lexical

category, not only is it one of the better performing representations it is also one of the easiest

to extract from a set of data. This thesis investigates a group of less traditionally used rep-

resentations. Representations derived from Sentiment Analysis [5, 6, 13, 17, 27, 28], LIWC

(Linguistic Inquiry and Word Count) [7, 27, 28], and Topic Models [25, 26, 28] are all exam-

ined in this thesis. Subsets, combinations, and combinations of these subsets are examined as

well. A feature selection method known as GEFeS (Genetic and Evolutionary Feature Selec-

tion) [8, 9, 10] allows many different subsets of each of the feature sets to examined in order

to find the most salient features. Concepts from Multimodal Machine Learning [11, 12] are

used to fuse the different feature sets together in order to make use of complementary features

between feature sets. The combination of these feature selection and feature fusion can be used

to not only decrease the size of the feature space but also boost the performance of Authorship

Attribution systems. Each feature set is described in more depth in their respective Chapters.

1.3 GEFeS

The feature selection method known as GEFeS uses a Steady-State Genetic Algorithm [9, 10]

to evolve a population feature masks. These GEFeS feature masks act as a feature selection

method by turning off and on certain features. The chosen features that are turned on and
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off are evolved based on a fitness function. The function used to determine the fitness of the

feature masks took the form of a value preference structure [8] and is based on not only the

accuracy obtained by the mask but also the amount of features used. This multi-objective fitness

function is designed such that a better fitness is assigned to feature masks that produce a high

accuracy and use small percent of the total features. The removal of features not only reduces

the computational power needed to classify each instance but also increases the accuracy of the

Authorship Attribution system by removing noisy features and leaving only the most salient

features behind. More concrete details on the settings used in GEFeS are described in Chapter

2.

1.4 Multimodal Machine Learning

Multimodal Machine Learning is a field of Machine Learning that deals with data that can

be captured in different representations or modalities. Traditionally in multimodal machine

learning each representation would be associated with a different sensory modality such as

visual and auditory sensations. [11] gives examples of modalities such as visual signals like

videos, vocal signals like sounds, and natural language like text, with the latter being the main

focus of this work. Research in this field deals with datasets such as videos with both visual

and auditory signals.

In [11], Baltruaitis et al. lists the five core challenges of multimodal machine learning as

Representation, Translation, Alignment, Fusion, and Co-Learning. This work focuses on the

Fusion challenge. There are two main Feature fusion schemes, identified by [12], known as

early fusion and late fusion. Early fusion is described as occurring in the feature space before

any learning is performed. In early fusion, feature sets are combined before being given to

a single classifier. Late fusion is the process of training separate learners on each unimodal

representation and then combining these learned scores later to a multimodal representation

which can then be used to produce a classification. The work in this thesis focuses on early

fusion of modalities. As noted in [11] the benefits of multimodal machine learning can be seen

in the increase in performance due to the exploitation of complementary information found in

different modalities such as the speech information found in visual images of someone speaking
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along with an audio signal. Along with the complementary information, there is the benefit of

the information provided by the other modalities if one modality is degraded. These two points

show that being able to combine modalities will create much more robust systems than their

unimodal counterparts. The process of feature fusion used in this work is described in more

depth in Chapters 3 and 4.

1.5 Datasets

The dataset used in this thesis, the CASIS-25 dataset, is a subset of the CASIS-1000 dataset

[2, 19]. The CASIS-1000 dataset is composed of online blog entries from 1000 authors. For

each author in this dataset, there are 4 writing samples for a total of 4000 writing samples in the

entire dataset. The CASIS-25 dataset consists of the first 25 authors of the CASIS-1000 dataset.

Given the 25 authors with 4 writing samples per author, the CASIS-25 dataset consisted of a

total of 100 writing samples. The average number of sentences for a writing sample is 12,

and the maximum and minimum number of sentences are 37 and 4. On average each writing

sample has 390 words with a maximum number of words in a given sample being 963 and a

minimum of 114. Finally, there is an average of 25 words per sentence with a minimum of 2

words in a sentence and a maximum of 116 in a sentence. The difficulty of this dataset comes

from the relatively small number of samples for each author and the relatively small size of the

samples. This dataset is used to obtain the results in sections 2, 3, and 4.

1.6 Scope of Work

This work in this thesis seeks to examine the performance of the Sentiment Analysis, LIWC,

and Topic Model representations for Authorship Attribution. Each representation will be evalu-

ated individually as well as in combination with one or more of the other representations. Each

of the representations will first be created for each writing sample by extracting the different

features sets from the CASIS-25 dataset. Each individual feature set will be evaluated in a

small-scale Authorship Attribution system. Subsets of these features will be evaluated using

the feature selection method known as GEFeS. Then the combinations of the feature sets will
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be evaluated using the combination of GEFeS and the feature fusion techniques derived from

Multimodal Machine Learning concepts. The remainder of the work is as follows. Chapter 2

will discuss the performance of the Sentiment Analysis feature set and its performance. Chap-

ter 3 will discuss the LIWC feature set and its performance alone and in combination with

the Sentiment Analysis features. Chapter 4 will discuss the Topic Model feature set and its

performance alone and in combination with both the Sentiment Analysis and LIWC feature

sets. Finally, Chapter 5 will provide a summary of the work accomplished as well as future

directions of the work.
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Chapter 2

Sentiment Analysis

OpinionFinder 2.0 [13, 14, 15, 16] was used to create a representation based on Sentiment

Analysis. This program goes through a few steps to determine the sentiment of a given doc-

ument. This program first uses the Stanford POS Tagger to tokenize the text and then uses a

set of dictionaries to label the tokens found. After this it uses a set of classifiers to create more

robust sentiment labels. The features [17] used in this thesis only rely on the output from the

tagger and the labels generated from the internal dictionaries and were generated using feature

engineering techniques [18]. The labels used to generate the features come from the ”subj-

clueslen1polar.tff” [14, 15, 16] dictionary. This dictionary provides two sets of labels which

tag words in terms of their subjectivity and their polarity. Table 2.1 shows each of the subjec-

tive and polar labels provided in the dictionary. Each token matched in the dictionary is labeled

with one of the two subjectivity labels and one of the six polarity labels.

”subjclueslen1polar.tff” Labels
Subjectivity strongsubj weaksubj

Polarity strongpos weakpos neutral weakneg strongneg both

Table 2.1: The Subjectivity and Polarity Labels Provided by ”subjclueslen1polar.tff”.

In Table 2.1 the first row shows the two Subjectivity labels which are ”strongsubj” and

”weaksubj”. The Subjectivity labels denote whether the found token is either strongly subjec-

tive or weakly subjective respectively. The second row then shows each of the Polarity labels

which are ”strongpos”, ”weakpos”, ”neutral”, ”weakneg”, ”strongneg”, and ”both”. The Po-

larity labels denote whether the found token is positive, neutral, negative or both in terms of
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polarity. Using the OpinionFinder labels a total of 176 features are created. The first eight fea-

tures are the individual probabilities of each label occurring. Specifically, each of the first eight

features are P(strongsubj), P(weaksubj), P(strongpos), P(weakpos), P(neutral), P(weakneg),

P(strongneg), and P(both). The next 24 labels consisted of each combination of conditional

probability in the form of P(Subjectivity — Polarity) and P(Polarity — Subjectivity). An

example of each respectively would be P(strongsubj — weakpos) and P(strongneg — weak-

subj). With two Subjectivity labels and six Polarity labels there are twelve features of the form

P(Subjectivity — Polarity) and twelve more features of the form P(Polarity — Subjectivity) for

a total of 24 conditional probability features. The remaining 144 features are counted features

based on the number of state transitions that occur in a given document. In this context a state

is the combination of Subjectivity and Polarity label of the form (Subjectivity, Polarity). An

example of a single feature would be the number of transitions from (strongsubj, strongpos) to

(strongsubj, weakneg).

2.1 Genetic and Evolutionary Feature Search

As described in the Introduction, GEFeS is a feature selection algorithm that uses a Steady-

State Genetic Algorithm to evolve feature masks that turn features on or off. GEFeS starts with

a population of 100 feature masks. Each of these feature masks are mutants generated from a

feature masks of all one’s which uses all of the features. An initial mutant rate is used to remove

a certain percentage of features from this feature mask of all one’s to produce the mutants. The

initial population is evaluated using stratified 4-fold cross validation which is described further

in the Experiment Section. After the initial population is evaluated the evolutionary algorithm

loop begins. For each generation two features masks are chosen using tournament selection

with a tournament size of 2 to be the parents. First two feature masks are chosen at random

and the feature mask with the highest fitness score is chosen to be the first parent. The fitness

function used to determine the fitness of the feature masks is described in more detail in the

next paragraph. This process is repeated again to choose the second parent. With these two

parent feature masks a single offspring feature mask is generated using uniform crossover and

then mutated with a mutation rate of 2%. Then this offspring feature mask will replace the
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feature mask with the worst fitness from the population. This is repeated for 14900 times to

create 14900 offspring feature masks. There is a total of 15000 function evaluations between

the initial population of 100 and the 14900 offspring feature masks created.

The fitness function is defined as Fitness(fmi) = αi − wβi. fmi is a feature mask,

αi is the accuracy of fmi, and βi is the percentage of the features used by fmi. The last

variable w is the feature reduction weight where 0 ≥ w ≥ 1. This value tells how strongly

the fitness function should value the reduction of features compared to the accuracy. The use

of this fitness function has two benefits. With an emphasis on removing features while also

retaining a relatively high accuracy GEFeS will remove unnecessary or noisy features which

do not provide much information while allowing only the most salient features to propagate

up. This fitness function also gives the SSGA direction in the search space. As shown in the

results, a purely accuracy-based fitness function, or a feature reduction weight of 0.0, will tend

to use roughly the same amount of features as the initial mutant rate and will not perform as

well as other feature reduction weights.

2.2 Experiment

To examine the performance of the Sentiment Analysis features for Authorship Attribution,

features are extracted from a set of documents and then evaluated on three classifiers using

stratified four-fold cross validation. The high-level classification pipeline is shown in Figure

2.1. The set of documents are passed through the feature extraction module to retrieve the

Sentiment Analysis features. Then these features are preprocessed and passed to the classifier

to determine the most probable author.

The set of documents comes from the CASIS-25 dataset which is described above in the

introduction. The preprocessing consisted of converting the extracted feature vectors into TF-

IDF representations, standardization, and then normalization. The three classifiers used in this

thesis are the MLP (multilayer perceptron), and two variants of a support vector machine. The

MLP is composed of a single hidden layer with 100 units and rectified linear unit activation

functions. The two variants of the support vector machine are referred to as the LSVM (linear

support vector machine) and the RBFSVM (radial basis function support vector machine). The

8



Figure 2.1: Classification Pipeline

LSVM employs a linear kernel while the RBFSVM employs a radial basis function kernel. The

use of stratified four-fold cross validation ensures that each classifier is trained and evaluates

each writing sample. Since each author has four writing samples, each test fold will contain

one writing sample from each author while the training fold will contain the remaining three

writing samples for each author.

2.3 Results

The results of the baseline evaluation for each classifier can be seen in Table 2.2. The first

row shows the classifier and the second row shows the cross-validation accuracy. The LSVM

performs the worst at 18% accuracy and the RBFSVM performs only slightly better at 19%

accuracy. Since the MLP classifier is non-deterministic and can produce different weights after

each training run, its performance was examined over 30 instances. The maximum accuracy

achieved from the MLP is 22% and the average accuracy over the 30 instances is 19% shown

in parentheses.

Classifier Accuracy
LSVM 18%

RBFSVM 19%
MLP 22% (19%)

Table 2.2: The Baseline Accuracy of Sentiment Analysis Features on the CASIS-25 Dataset.

Using GEFeS, feature masks are generated for each classifier on the CASIS-25 dataset.

The initial population consisted of 100 feature masks which were created using an initial mu-

tant rate of 50% so each feature mask used roughly 50% of the total 176 features. Tables 2.3,

2.4, and 2.5 show the performance of the feature masks generated with GEFeS for the MLP,
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RBFSVM, and LSVM. The first column in each of these tables shows the GEFeS feature re-

duction weights that were tested. For each a weight a total of 30 masks were generated. The

second column shows the maximum and average accuracy that was achieved for a given weight.

The average accuracy is displayed in parentheses. The third column shows the percentage of

the total features that were used. The value in parentheses is the average percent of features

used by masks generated from that feature reduction weight. The other value is the percent of

features used by the mask that achieved the maximum accuracy.

Feature Reduction Weight Accuracy Features Used
0.0 49.0%(46.6%) 39.8%(43.9%)
0.1 51.0%(47.8%) 36.9%(37.1%)
0.3 52.0%(49.6%) 29.0%(29.0%)
0.5 53.0%(49.9%) 24.4%(24.5%)
0.7 52.0%(48.7%) 22.2%(21.9%)
0.9 52.0%(48.3%) 17.6%(17.9%)
1.0 51.0%(48.1%) 16.5%(17.5%)

Table 2.3: The Comparison of Different Feature Reduction Weights in the GEFeS-MLP Clas-
sifier.

The results for the GEFeS-MLP classifier are shown in Table 2.3. Using feature reduction

weights ranging from 0.0 to 1.0, GEFeS generates features masks which use anywhere from

16.5% to 43.9% of the total 176 features. The accuracy achieved by the feature masks on

average are greater than that of the baseline MLP accuracy. A feature reduction weight of

0.5 produced the best performing feature mask. This mask achieved a maximum accuracy of

53% by using 24.4% of the total features. This is an increase of 31 percentage points from

the MLP baseline accuracy. The results for the GEFeS-RBFSVM classifier are shown in Table

2.4. The feature mask produced with a feature reduction weight of 0.5 was able to achieve

an accuracy of 54% while only using 21% of the total features. Once again, this is more

than twice as accuracy as the baseline RBFSVM which used all Sentiment Analysis features.

Finally, the GEFeS-LSVM results are shown in Table 2.5. Feature masks produced for this

classifier achieve an accuracy ranging from 50.6% all the way to the highest accuracy achieved

using Sentiment Analysis features which was 57%. The best performing feature weight here
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was the weight of 0.7. A mask produced by this weight achieved the highest accuracy by only

using 21.6% of the total features.

Feature Reduction Weight Accuracy Features Used
0.0 51.0%(49.5%) 39.8%(42.7%)
0.1 53.0%(51.1%) 34.7%(36.2%)
0.3 54.0%(50.9%) 32.4%(29.1%)
0.5 54.0%(50.9%) 21.0%(23.4%)
0.7 53.0%(50.2%) 20.5%(21.1%)
0.9 51.0%(48.5%) 18.8%(17.5%)
1.0 52.0%(48.7%) 18.2%(17.0%)

Table 2.4: The Comparison of Different Feature Reduction Weights in the GEFeS-RBFSVM
Classifier.

Feature Reduction Weight Accuracy Features Used
0.0 54.0%(51.1%) 44.3%(42.4%)
0.1 56.0%(52.3%) 30.1%(35.5%)
0.3 56.0%(53.0%) 24.4%(28.2%)
0.5 56.0%(53.2%) 21.0%(24.5%)
0.7 57.0%(52.8%) 21.6%(20.9%)
0.9 54.0%(51.0%) 15.9%(16.8%)
1.0 54.0%(50.6%) 17.6%(16.2%)

Table 2.5: The Comparison of Different Feature Reduction Weights in the GEFeS-LSVM clas-
sifier.

Finally, the most consistent features were found. This involved examining the best per-

forming feature mask from each of the 30 runs, a total of 30 feature masks, and determining

how often each feature occurs out of the 30 masks. The features used in the masks generated

from GEFeS-LSVM with a feature reduction weight of 0.7 since it produced the highest accu-

racy using Sentiment Analysis features. 47 features did not occur at all in the best performing

feature masks while the other features ranged anywhere from 3% to 100%. Table 2.6 shows the

6 features that occurred 100% of the time out of all of the 30 runs. Each of these state transition

features occurred in the 30 of the best performing feature masks and are considered to be the

most stable. A full list of the features and their consistency is shown in Appendix A.
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Feature Name
(StrongSubj,StrongPos)→ (StrongSubj,StrongPos)

(StrongSubj,Neutral)→ (StrongSubj,StrongPos)
(StrongSubj,Neutral)→ (WeakSubj,StrongPos)

(StrongSubj,Neutral)→ (WeakSubj,Neutral)
(WeakSubj,Neutral)→ (WeakSubj,WeakPos)

(WeakSubj,WeakNeg)→ (WeakSubj,WeakNeg)

Table 2.6: Most Consistent Sentiment Analysis Features.
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Chapter 3

Linguistic Inquiry and Word Count

The LIWC program [7] is a sophisticated application that is able to extract information from

text to provide insight about its author from a psychological standpoint. The heart of the LIWC

program is the internal dictionary. This dictionary is comprised of almost 6400 words that are

placed in different hierarchical categories. Similar to OpinionFinder, LIWC processes each

word in a document individually to find matches of words in the document to words in the

internal dictionary.

The first four features extracted by LIWC are the word count of the document as well

as three language metrics which consist of the average number of words per sentence, the

number of words with greater than six letters, and the number of words found that are actually

matched in the dictionary. The next 85 features come from the different categories in the

LIWC dictionary. Each LIWC category is a set of hand-picked words. These categories can

range from objective categories like punctuation or articles to more subjective categories like

positive or negative emotion. The features extracted using the different categories are based on

the percentages of words found in the given category out of the total number of words found

in the document. These categories are hierarchical as well. The category Total pronouns is

divided into Personal pronouns and Impersonal pronouns, and the Personal pronouns category

is divided further into subcategories. If a word is found in a subcategory of Personal pronouns

then the percentages for that given subcategory, the Personal pronouns category, and the Total

pronouns category are all increased.

The last four features produced by LIWC are summary variables which come from pro-

prietary algorithms that work on other LIWC variables. These four summary variables are
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Analytical thinking, Clout, Authenticity, and Emotional tone each of which are on a range of 0

to 100. Analytical thinking [20] is derived from eight function word categories. A higher use

of auxiliary verbs, pronouns, adverbs, conjunctions, and negations suggests the writer gener-

ally thinks in a narrative style and about personal experiences. This is considered to be on the

lower end of the spectrum of Analytical thinking. A higher use of articles and prepositions,

however, indicated more categorical thinking or more complexly organized concepts. This is

considered to be on the higher end of the spectrum of Analytical thinking. Clout [21] denotes

the relative rank or status in a group based on pronoun usage. Higher ranked individuals or

individuals with higher Clout scores tend to be more focused on others which is shown by their

higher usage of first-person plural and second-person singular pronouns. While, lower ranked

individuals tend to be more focused on self which is shown in their usage of more first-person

singular pronouns. Authenticity [22] shows whether the author is honest, high in Authenticity,

or deceptive, low in Authenticity. This is derived from a number of other LIWC categories

but according to [23] deceptive authors are characterized by lower cognitive complexity, used

fewer self-references and other-references, and had a larger number of negative emotion words

in their writings. Finally, Emotional Tone [24] denotes whether the document has a positive or

negative overall tone. This is scored is produced from the two of the categorical features known

as Positive Tone and Negative Tone. When this variable is high the overall tone of the document

is positive while when this variable is low the overall tone of the document is negative.

In total LIWC provides 93 features from a given document. While these features are for

the most part just word frequencies, LIWC claims that the hand-picked word categories can

point to a deeper psychological insight of the author. This is especially true in the case of the

summary variables which are built from other LIWC features.

3.1 Experiment

The evaluation process was similar to that of the process describe in Section 2 and the same

classification pipeline shown in Figure 2.1 is used as well. The dataset used was the CASIS-

25 dataset. LIWC features are extracted from these documents and evaluated on the MLP,
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RBFSVM, and LSVM classifiers using stratified 4-fold cross validation. The same prepro-

cessing method is used wherein the feature vectors extracted from the CASIS-25 dataset are

transformed in TF-IDF representation, standardized, and then normalized. GEFeS is also used

as a feature selection method to look at different subsets of the total feature set. However, in

this chapter, the performance of the fusion of the LIWC feature set and the Sentiment Anal-

ysis feature set is examined along with the performance of the LIWC feature set alone. This

feature fusion process is shown in Figure 3.1. First both the LIWC feature vector and the Sen-

timent Analysis Feature vector are extracted from a document. Then the two feature vectors

are concatenated as a single feature vector before being preprocessed and then classified.

Figure 3.1: Feature Combination Process

3.2 Results

The results of the stratified 4-fold cross validation accuracy for each classifier are shown in

Table 3.1. Each classifier uses all 93 LIWC features. The RBFSVM performs the worst out

of the three with an accuracy of 71%. This however is a large improvement compared to the

Sentiment Analysis features. Next the results of the MLP are examined for 30 instances of

the MLP classifier due to its non-deterministic behavior. Out of the 30 the average accuracy is

73%, shown in parentheses, and the maximum accuracy achieved is 78% on a single instance.

Finally, the LSVM performs the best out of the three classifiers with an accuracy of 84%.

The accuracy of the combination of the feature sets is shown in Table 3.2. The MLP clas-

sifier performed the worst on average at 57% accuracy, but it did achieve a maximum accuracy
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Classifier Accuracy
RBFSVM 71%

MLP 78% (73%)
LSVM 84%

Table 3.1: The Baseline Accuracy of LIWC Features on the CASIS-25 Dataset.

of 62% on a single run. The RBFSVM achieved an accuracy in between the MLP classifier’s

maximum and average accuracy at 58%. The LSVM performed this best with an accuracy of

68%. The combination of the two features sets did perform better than the Sentiment Analysis

features alone as shown in Table 2.2. It appears that the LIWC features were able to provide

some extra information that the Sentiment Analysis features did not capture. However, the

combination performed worse than the LIWC features alone shown above in Table 3.1. The

Sentiment Analysis features added too much noise compared to the LIWC features.

Classifier Accuracy
RBFSVM 58%

MLP 62% (57%)
LSVM 68%

Table 3.2: The Baseline Accuracy of the Concatenation of Sentiment Analysis and LIWC
Features on the CASIS-25 Dataset.

The results for GEFeS-LSVM features masks on the LIWC feature set is shown in 3.3. An

initial mutant rate of 50% was used and similar to the other GEFeS tables the feature reduction

weight is shown in the first column, in the accuracy column the maximum and average accu-

racy are shown, and in the Features Used column the percentage of features used for the best

performing feature mask and the average percentage of features used is shown. This table also

lists the equivalence classes for Accuracy and Percentage of features used. With 30 instances

for each feature reduction weight, equivalence classes can be derived by determining which

feature reduction weights produce feature masks that have a statistically significant difference

in terms of accuracy or Percentage of features used. Feature reduction weights of 0.0, 0.1, and

0.3 are all in Equivalence Class I in terms of accuracy. This means that they all produce feature

masks that provide the highest accuracy but have no statistically significant different between

them. A feature reduction weight of 1.0 is in Equivalence Class I in terms of percentage of
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features used because it was able to use the least number of features. However, it is in Equiva-

lence Class V in terms of accuracy which means that while it was able to reduce the amount of

features used the accuracy suffered.

Feature Reduction Weight
Equivalence Class

Accuracy Features Used
Accuracy Features

0.0 I VII 96.0% (95.4%) 52.6% (59.7%)
0.1 I VI 96.0% (95.4%) 47.3% (57.5%)
0.3 I V 97.0% (95.1%) 41.9% (47.8%)
0.5 II IV 96.0% (93.7%) 33.3% (37.2%)
0.7 III III 94.0% (92.6%) 25.8% (29.9%)
0.9 IV II 94.0% (92.1%) 23.6% (28.4%)
1.0 V I 93.0% (90.9%) 21.5% (25.8%)

Table 3.3: The Comparison of Different Feature Reduction Weights in the GEFeS-LSVM Clas-
sifier on LIWC Features.

The feature set combination method can also be applied when using GEFeS. Table 3.4

shows the results of using the combined feature sets with GEFeS-LSVM. Similar to the previ-

ous GEFeS-LSVM above an initial mutant rate of 50% is used. In this table feature reduction

weights of 0.3-0.9 are all in Equivalence Class I in terms of accuracy. Using more features with

the combined feature set required a greater feature reduction weight than when only the LIWC

feature set is used. The combined feature set was also able to increase the accuracy slightly as

well. Feature reduction weights 0.3-0.9 were able to increase the accuracy from 97% to 98%.

Feature Reduction Weight
Equivalence Class

Accuracy Features Used
Accuracy Features

0.0 III VII 96.0% (94.0%) 42.8% (47.6%)
0.1 II VI 97.0% (95.3%) 37.2% (41.2%)
0.3 I V 98.0% (96.1%) 34.2% (34.2%)
0.5 I IV 98.0% (96.2%) 29.0% (29.3%)
0.7 I III 98.0% (96.5%) 24.5% (26.6%)
0.9 I II 98.0% (95.9%) 21.9% (23.4%)
1.0 II I 98.0% (95.6%) 23.8% (22.6%)

Table 3.4: The Comparison of Different Feature Reduction Weights in the GEFeS-LSVM Clas-
sifier on the Concatenation of Sentiment Analysis and LIWC Features.

Once again, the most consistent features were examined for the LIWC features. The same

procedure used to determine the most consistent features for Sentiment Analysis was used to
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determine the most consistent LIWC features. This was only performed for the LIWC features

alone in this chapter and not for the combination of LIWC and Sentiment Analysis features. In

this case GEFeS-LSVM with a feature reduction weight of 0.3 was examined since it performed

the best on LIWC features alone. 28 of the 93 LIWC features were unused in all of the best

performing features masks from the 30 runs. The remaining features are used anywhere from

3% to 100%. Table 3.5 shows the 12 features that were used 100% of the time in each of the

30 best feature masks. A full list of features and their consistency is shown in Appendix B.

Feature Name
Word Count

Words per Sentence
Six Letter

Female Referents
Insight
Cause
Power
Work

Money
Period
Dash

Apostrophe

Table 3.5: Most Consistent LIWC Features.
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Chapter 4

Topic Modeling

Topic Models are generative models based on the idea that documents are created from a mix-

ture of topics. The procedure for generating documents is described in [25] as choosing a

distribution over topics, which are distributions over words. In order to generate new words for

a document, a topic is sampled from the distribution of topics and then a word is sampled from

the chosen topic. This is the process for generating new documents, however, given a set of

already generated documents this process can be reversed using statistical techniques to infer

topics from the set of given documents.

MALLET [26] is a program that implements this reverse procedure. MALLET is able to

infer topics from a given set of documents by utilizing an algorithm described in [25] which

uses a technique known as Gibbs sampling. This program takes in a set of documents as input

and will return the topic that each word found in the set of documents is most likely associated

with as well as the distribution of topics within each document. It also outputs the top words in

each topic to give an idea of what the topic is about.

In order to use Topic Models for Authorship Attribution, the MALLET program is used to

extract a given number of topics in an unsupervised fashion from a group of documents. After

extracting the topics from a group of documents, each of the documents can be characterized

as a feature vector that consists of the frequency of each topic in the document. This method is

similar to that of the other feature extractors described in this thesis in that words are grouped

into higher level categories and the frequencies of these categories are used as features. The

difference in the case of Topic Modeling is that categories are discovered in an unsupervised
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way. The categories in the Sentiment Analysis and LIWC feature extractors are explicitly

defined.

The benefit of the implicit categories derived from Topic Models is that each topic or

category will be specific to the given set of documents. Each word found in the set documents

will likely be present in at least one category and can provide information to better attribute

the document. In the case of hand-crafted categories with explicitly defined words, such as the

Sentiment Analysis and LIWC features, there could be many words that do not match to any

category in the dictionary. This means that fewer words will be available to provide information

to attribute the document. On the other hand, the drawback is that common problem of Topic

Models that is actually choosing the correct number of topics for a given set of documents.

Choosing too few topics will produce topics that are general and are not able to characterize

the documents as well while choosing too many topics will create topics that capture the same

information and will be less meaningful individually.

4.1 Multimodal Preprocessing

As discussed in the Introduction, most research in the area of multimodal machine learning

focuses on combining different forms of media such as text, audio, and visual data. However,

these concepts of traditional multimodal machine learning can be applied to the area of multi-

modal authorship attribution were each mode can be viewed as a set of features or representa-

tion. Handling multiple modalities when combining different mediums, such as video, audio

and text, is particularly useful because each medium is going to have its own representation

and most likely will have distinct statistical properties. This thesis only focuses on text which

only has the one representation of counts and frequencies. However based on the nature of

each feature set they could have their own distinct statistical properties even though they share

the same representation. Each feature set in this thesis characterizes the text in a different way

whether it is looking at the sentiment of the text with the sentiment analysis features or the psy-

chological state of the author with the LIWC features. This is achieved by counting the words

found in categories. These categories can be explicitly defined, as in the sentiment analysis

and LIWC features, with dictionaries of words or implicitly defined, as in the Topic Modeling
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features, that create categories in an unsupervised fashion. Given the number of words and

chosen of words in each category, each characterization could potentially have its own distinct

underlying statistical distribution. While not fully explored in this thesis there appears to be

some evidence of this as seen in later in the results. A similar classification pipeline and fu-

sion method are used as described in previous chapters in Figures 2.1 and 3.1. This pipeline

consists of extracting the different feature vectors, preprocessing the feature vectors, and then

passing them through the classifier. The fusion method is a simple concatenation of feature

vectors. Previously feature vectors were fused after the extraction and before the preprocess-

ing so the preprocessing module treated the combined feature vector as if it were unimodal.

In this chapter the fusion is pushed further into the pipeline and the feature vectors are fused

after the preprocessing and before the classification. In this approach, illustrated in Figure 4.1

each representation is preprocessed separately before being combined. This seems like a small

change however this method has improved the performance of all combination of feature sets

used in this thesis as seen in the results. Each of these methods would be classified as early

fusion based on the descriptions in the Introduction since the fusion occurs in the feature space.

However, there is clearly some benefit to recognizing the different modalities in each feature

set and handling that in the preprocessing step.

4.2 Experiment

Once again, the evaluation method used in this section is similar to that of the previous sections.

The CASIS-25 dataset is still used as the dataset. The preprocessing process is the same in that

the features are transformed into tf-idf representation and then standardized and normalized.

Then stratified 4-fold cross validation is used to produce an accuracy score on the MLP, LSVM,

and RBFSVM classifiers. The main difference is the modified feature fusion process discussed

in the previous section and shown in Figure 4.1.
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Figure 4.1: Modified Feature Combination Process

4.3 Results

When extracting Topic Model features, the number of topics is a key factor in getting topics

with the most information. Choosing too low of a number will produce a few general topics

while choosing too many topics will result in a large number of topics with a high potential

for overlap. To find the best number of topics to extract and use as features for the CASIS-

25 dataset, a number of topics was chosen and then evaluated using the evaluation process

described above. This accuracy was then compared to the accuracy of other topic numbers to

determine which produced the highest accuracy. Table 4.1 shows the results of this process. The

first column shows the number of topics used and the other three columns show the evaluation

accuracy from the three base classifiers before any feature selection is performed. The MLP

accuracy once again was evaluated over 30 instances due to the non-deterministic nature of the

MLP. The maximum accuracy achieved out of the 30 instances is shown as well as the average

accuracy which is shown in parentheses. Starting with 10 topics, the number of topics that

was evaluated increased in increments of 5 up until 50 topics. After 50 topics was evaluated, a

decrease in accuracy was noticed so the increment was increased to 10 just to ensure the trend
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downward would continue. 45 topics produced the best accuracy for each of the classifiers at

89% accuracy.

Number of Topics MLP RBFSVM LSVM
10 49% (46.0%) 40% 41%
15 65% (62.8%) 62% 61%
20 79% (77.3%) 76% 76%
25 85% (82.9%) 78% 79%
30 86% (84.8%) 84% 84%
35 82% (80.4%) 82% 82%
40 89% (87.9%) 86% 88%
45 89% (87.4%) 89% 89%
50 78% (77.1%) 80% 77%
60 76% (75.0%) 76% 75%
70 67% (66.2%) 70% 66%
80 60% (58.7%) 63% 63%
90 59% (56.4%) 63% 61%

100 52% (48.6%) 48% 49%

Table 4.1: Evaluation of Different Numbers of Topics on the Three Base Classifiers.

Next the use of GEFeS on the new feature set was investigated. In this section the

RBFSVM classifier produced the best results for the Topic Modeling features so it is the only

one shown in Table 4.2. This Table has similar columns to that of the GEFeS table in the

previous section. The feature reduction weight as well as the equivalence class, accuracy, and

percent of features used are shown. Feature reduction weights of 0.0 and 0.1 are in Equivalence

Class I in terms of accuracy and in Equivalence Classes VI and V respectively in terms of fea-

ture usage. By removing roughly 33.3% of the features the best performing masks generated

by these feature reduction weights were able to achieve an accuracy of 95%.

Next before the use of GEFeS on the combined feature sets is shown, the difference be-

tween the two preprocessing methods is shown in Table 4.3. This table specifically shows the

improvement of accuracy achieved on the different combinations of each feature set shown

in this thesis using the combination method described in Figure 3.1 and the new combination

method described in Figure 4.1. The first column shows the feature sets that are being com-

bined and the second column shows the total amount of features being used. Next the 3 column

shows the classifier and last column shows the accuracy achieved. The unimodal column is
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Feature Reduction Weight
Equivalence Class

Accuracy Features Used
Accuracy Features

0.0 I VI 95.0% (95.0%) 66.7% (70.0%)
0.1 I V 95.0% (95.0%) 66.7% (66.5%)
0.3 II IV 95.0% (94.5%) 66.7% (64.4%)
0.5 III III 92.0% (91.0%) 57.8% (55.6%)
0.7 III III 92.0% (92.1%) 57.8% (55.8%)
0.9 IV II 89.0% (87.3%) 53.5% (51.6%)
1.0 IV I 89.0% (87.1%) 53.3% (51.2%)

Table 4.2: The Comparison of Different Feature Reduction Weights in the GEFeS-RBFSVM
Classifier on Topic Model Features.

the accuracy achieved. using the process shown in Figure 3.1 and the multimodal column is

the accuracy achieved using the process shown in Figure 4.1. Except for the SA and LIWC

feature combination using MLP, the multimodal preprocessing technique was able to achieve

a higher accuracy than the unimodal preprocessing technique. Using an RBFSVM classifier

and the multimodal processing on the LIWC and TM features produces 93% accuracy which

is 15% greater than that of its unimodal counterpart and only 3% less than the accuracy of the

GEFeS-RBFSVM on the TM feature set as shown in Table 4.2. Then adding the SA features

the RBFSVM classifier and the multimodal processing technique increases the accuracy by one

percentage point to 94% which is 21% greater than the accuracy of the unimodal preprocessing

and only 1% less than that of the GEFeS-RBFSVM on the TM features.

Feature Set Total Features Classifier
Accuracy

Unimodal Multimodal

SA and LIWC 269
MLP 63% 60%

RBFSVM 58% 62%
LSVM 68% 74%

SA and TM 221
MLP 67% 86%

RBFSVM 72% 90%
LSVM 80% 88%

LIWC and TM 138
MLP 87% 92%

RBFSVM 88% 93%
LSVM 86% 91%

SA, LIWC and TM 314
MLP 78% 93%

RBFSVM 83% 94%
LSVM 82% 94%

Table 4.3: The comparison of preprocessing methods on each combination of feature sets.
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Finally, the results of GEFeS on the combination of each feature set presented in this

thesis are shown in Table 4.4. As described above the RBFSVM performed the best out of

the classifiers after applying GEFeS so it was the only table featured. The combination of

the GEFeS feature masking and multimodal preprocessing was able correctly classify every

instance in the CASIS-25 dataset. Feature reduction weights of 0.1, 0.3, and 0.5 are all in

Equivalence Class I in terms of accuracy even though every feature reduction weight eventually

produced a feature mask that achieved 100% accuracy. The feature masks ended up using

anywhere from 47.5% to 17.8% of the total features.

Feature Reduction Weight
Equivalence Class

Accuracy Features Used
Accuracy Features

0.0 II VI 100.0% (99.4%) 47.5% (50.4%)
0.1 I V 100.0% (99.7%) 27.4% (28.9%)
0.3 I IV 100.0% (99.7%) 22.6% (25.4%)
0.5 I III 100.0% (99.4%) 22.9% (23.2%)
0.7 II II 100.0% (98.9%) 19.4% (20.1%)
0.9 II I 100.0% (98.8%) 18.8% (19.2%)
1.0 II I 100.0% (98.7%) 17.8% (18.9%)

Table 4.4: The comparison of different feature reduction weights in the GEFeS-RBFSVM
classifier on the combination of Sentiment Analysis, LIWC, and Topic Model features using
multimodal preprocessing techniques.

Feature consistency for the Topic Model features looked much different than that of the

Sentiment Analysis and LIWC features. Feature masks generated by GEFeS-RBFSVM with a

feature reduction weight of 0.1 were examined to determine the feature consistency. Unlike the

Sentiment Analysis and LIWC features where features for the most part varied between feature

masks, except for a select few, 28 of the Topic Model features occurred 100% of the time in the

30 masks. Aside from the 28 features that occurred consistently there were two other features

used where one of the features occurred 75% of the time and the other 25% of the time. The

remaining 15 features were not used at all. Unlike the Sentiment Analysis and LIWC features

the Topic Model features seemed to converge fairly consistently to the same masks each time.

A full list of features and their consistency is shown in Appendix C.
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Chapter 5

Conclusions & Future Directions

In this thesis three different representations for textual data were examined for the purposes

of Authorship Attribution. The first was a representation derived from a Sentiment Analysis

feature set, the second was derived from the LIWC feature set, and the third was derived from

a Topic Model feature set. Features from these sets were extracted from the CASIS-25 dataset

to test their performance in a small-scale Authorship Attribution system. Each feature set was

tested on its own and in combination with the other features. A feature selection method known

as GEFeS, which is based on a steady-state genetic algorithm, was used to find the most salient

features in each set, and feature fusion techniques derived from Multimodal Machine Learning

were used to combine the different feature sets.

The results show that Sentiment Analysis features alone perform poorly even with the help

of feature selection. This aligns with the results in [5], however, [6] shows that there could still

potentially be some usefulness in using Sentiment Analysis for Authorship Attribution. LIWC

features alone however prove to be quite informative for Authorship Attribution and with the

help of feature selection can provide close to 100% accuracy. The first feature fusion attempts

with LIWC and Sentiment Analysis performed poorly, but with feature selection the combined

feature sets were able to outperform LIWC features alone. Topic Model features performed the

best on their own before feature selection or fusion. A modification to the feature fusion process

improved the technique overall, and the combination of the feature selection and feature fusion

using all three feature sets was able to correctly classify each of the authors in the give dataset.

In terms of scaling a single feature mask generated on a smaller dataset does not provide

the same performance as shown in Table 5.1. The best performing feature mask generated for
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Sentiment Analysis, LIWC, and Topic Model features is able to achieve 100% cross validation

accuracy. However when this feature mask is applied to larger datasets such as the CASIS-

50 dataset that contains 50 authors it only achieves 59.5% accuracy and when applied to the

CASIS-100 dataset that contains 100 authors it only achieves 50.5% accuracy. The feature

mask generation process itself turns out to be much more viable on larger datasets as seen in

Table 5.2. When applied to the CASIS-25 dataset the process can classify authors correctly

100% of the time. When applied to the CASIS-50 dataset GEFeS-RBFSVM with a weight

of 0.5 is able to achieve 93.5% accuracy and when applied to CASIS-100 dataset GEFeS-

RBFSVM with a weight of 0.1 is able to achieve 79.2% accuracy. The comparison of the

results shows that the process is much more scalable.

Dataset CASIS-25 CASIS-50 CASIS-100
Accuracy 100% 59.5% 50.5%

Table 5.1: The scaling of a feature mask.

Dataset CASIS-25 CASIS-50 CASIS-100
Accuracy 100% 93.5% 79.2%

Table 5.2: The Scaling of the Process.

Future work could involve improving the feature mask generation process and applying

it to larger subsets of the CASIS-1000 dataset. In terms of feature fusion, only early fusion

was examined in this work. Late fusion, which would involve merging the results of different

classifiers trained individually on each feature set, could be examined to see if this would pro-

vide an improvement over early feature fusion which only occurs in the feature space. Other

improvements could be provided by looking into feature weighting instead of feature mask-

ing. The current binary feature masks generated by GEFeS turn features on or off. Feature

weighting techniques [29] could be used generate weights for each feature so that instead of

turning a feature completely off certain features would just provide less weight in terms of the

information used for classification. Other future work will involve the development and testing

of DiNEH (Distributed Neuro-Evolutionary Hybrid). Similar to GEFeS, DiNEH will generate

high performance feature masks for Authorship Attribution. The difference is that GEFeS deals
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with a single classifier trying to classify N authors. DiNEH is a more scalable approach that

splits this problem into N classifiers where each classifier is trained to identify a single author

as a two-class problem. Adding a new author to a GEFeS system would mean starting over and

retraining the single classifier and producing another completely different set of feature masks.

Adding a new author to DiNEH also involves training a new classifier but all of the classifiers

are kept intact and all of the other feature masks are still usable as well. These additions will

hopefully provide a more scalable and robust Authorship Attribution system.
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Appendix A

Sentiment Analysis Feature Consistency

Feature Num Feature Name Consistency

33 (StrongSubj,StrongPos)→ (StrongSubj,StrongPos) 1

57 (StrongSubj,Neutral)→ (StrongSubj,StrongPos) 1

63 (StrongSubj,Neutral)→ (WeakSubj,StrongPos) 1

65 (StrongSubj,Neutral)→ (WeakSubj,Neutral) 1

136 (WeakSubj,Neutral)→ (WeakSubj,WeakPos) 1

150 (WeakSubj,WeakNeg)→ (WeakSubj,WeakNeg) 1

88 (StrongSubj,StrongNeg)→ (WeakSubj,WeakPos) 0.966667

89 (StrongSubj,StrongNeg)→ (WeakSubj,Neutral) 0.966667

112 (WeakSubj,StrongPos)→ (WeakSubj,WeakPos) 0.966667

77 (StrongSubj,WeakNeg)→ (WeakSubj,Neutral) 0.866667

90 (StrongSubj,StrongNeg)→ (WeakSubj,WeakNeg) 0.833333

129 (WeakSubj,Neutral)→ (StrongSubj,StrongPos) 0.833333

1 Pr(StrongSubj) 0.8

126 (WeakSubj,WeakPos)→ (WeakSubj,WeakNeg) 0.766667

137 (WeakSubj,Neutral)→ (WeakSubj,Neutral) 0.766667

160 (WeakSubj,StrongNeg)→ (WeakSubj,WeakPos) 0.766667

2 Pr(WeakSubj) 0.7

61 (StrongSubj,Neutral)→ (StrongSubj,StrongNeg) 0.7

3 Pr(StrongPos) 0.666667
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Feature Num Feature Name Consistency

83 (StrongSubj,StrongNeg)→ (StrongSubj,Neutral) 0.666667

70 (StrongSubj,WeakNeg)→ (StrongSubj,WeakPos) 0.633333

127 (WeakSubj,WeakPos)→ (WeakSubj,StrongNeg) 0.633333

105 (WeakSubj,StrongPos)→ (StrongSubj,StrongPos) 0.6

139 (WeakSubj,Neutral)→ (WeakSubj,StrongNeg) 0.6

10 Pr(StrongSubj—WeakPos) 0.566667

114 (WeakSubj,StrongPos)→ (WeakSubj,WeakNeg) 0.566667

17 Pr(WeakSubj—Neutral) 0.533333

29 Pr(Neutral—WeakSubj) 0.533333

4 Pr(WeakPos) 0.466667

36 (StrongSubj,StrongPos)→ (StrongSubj,WeakNeg) 0.466667

121 (WeakSubj,WeakPos)→ (StrongSubj,StrongNeg) 0.466667

131 (WeakSubj,Neutral)→ (StrongSubj,Neutral) 0.466667

39 (StrongSubj,StrongPos)→ (WeakSubj,StrongPos) 0.433333

5 Pr(Neutral) 0.4

28 Pr(WeakPos—WeakSubj) 0.4

34 (StrongSubj,StrongPos)→ (StrongSubj,WeakPos) 0.4

47 (StrongSubj,WeakPos)→ (StrongSubj,Neutral) 0.4

50 (StrongSubj,WeakPos)→ (StrongSubj,Both) 0.333333

106 (WeakSubj,StrongPos)→ (StrongSubj,WeakPos) 0.333333

123 (WeakSubj,WeakPos)→ (WeakSubj,StrongPos) 0.3

143 (WeakSubj,WeakNeg)→ (StrongSubj,Neutral) 0.3

21 Pr(StrongPos—StrongSubj) 0.266667

49 (StrongSubj,WeakPos)→ (StrongSubj,StrongNeg) 0.266667

73 (StrongSubj,WeakNeg)→ (StrongSubj,StrongNeg) 0.266667

117 (WeakSubj,WeakPos)→ (StrongSubj,StrongPos) 0.266667

164 (WeakSubj,StrongNeg)→ (WeakSubj,Both) 0.233333
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Feature Num Feature Name Consistency

26 Pr(Both—StrongSubj) 0.2

44 (StrongSubj,StrongPos)→ (WeakSubj,Both) 0.2

87 (StrongSubj,StrongNeg)→ (WeakSubj,StrongPos) 0.2

100 (StrongSubj,Both)→ (WeakSubj,WeakPos) 0.2

104 (StrongSubj,Both)→ (WeakSubj,Both) 0.2

141 (WeakSubj,WeakNeg)→ (StrongSubj,StrongPos) 0.2

165 (WeakSubj,Both)→ (StrongSubj,StrongPos) 0.2

169 (WeakSubj,Both)→ (StrongSubj,StrongNeg) 0.2

175 (WeakSubj,Both)→ (WeakSubj,StrongNeg) 0.2

9 Pr(StrongSubj—StrongPos) 0.166667

11 Pr(StrongSubj—Neutral) 0.166667

16 Pr(WeakSubj—WeakPos) 0.166667

37 (StrongSubj,StrongPos)→ (StrongSubj,StrongNeg) 0.166667

51 (StrongSubj,WeakPos)→ (WeakSubj,StrongPos) 0.166667

62 (StrongSubj,Neutral)→ (StrongSubj,Both) 0.166667

68 (StrongSubj,Neutral)→ (WeakSubj,Both) 0.166667

101 (StrongSubj,Both)→ (WeakSubj,Neutral) 0.166667

144 (WeakSubj,WeakNeg)→ (StrongSubj,WeakNeg) 0.166667

152 (WeakSubj,WeakNeg)→ (WeakSubj,Both) 0.166667

166 (WeakSubj,Both)→ (StrongSubj,WeakPos) 0.166667

176 (WeakSubj,Both)→ (WeakSubj,Both) 0.166667

23 Pr(Neutral—StrongSubj) 0.133333

43 (StrongSubj,StrongPos)→ (WeakSubj,StrongNeg) 0.133333

80 (StrongSubj,WeakNeg)→ (WeakSubj,Both) 0.133333

86 (StrongSubj,StrongNeg)→ (StrongSubj,Both) 0.133333

93 (StrongSubj,Both)→ (StrongSubj,StrongPos) 0.133333

95 (StrongSubj,Both)→ (StrongSubj,Neutral) 0.133333
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Feature Num Feature Name Consistency

102 (StrongSubj,Both)→ (WeakSubj,WeakNeg) 0.133333

103 (StrongSubj,Both)→ (WeakSubj,StrongNeg) 0.133333

140 (WeakSubj,Neutral)→ (WeakSubj,Both) 0.133333

146 (WeakSubj,WeakNeg)→ (StrongSubj,Both) 0.133333

159 (WeakSubj,StrongNeg)→ (WeakSubj,StrongPos) 0.133333

15 Pr(WeakSubj—StrongPos) 0.1

27 Pr(StrongPos—WeakSubj) 0.1

41 (StrongSubj,StrongPos)→ (WeakSubj,Neutral) 0.1

74 (StrongSubj,WeakNeg)→ (StrongSubj,Both) 0.1

92 (StrongSubj,StrongNeg)→ (WeakSubj,Both) 0.1

94 (StrongSubj,Both)→ (StrongSubj,WeakPos) 0.1

96 (StrongSubj,Both)→ (StrongSubj,WeakNeg) 0.1

98 (StrongSubj,Both)→ (StrongSubj,Both) 0.1

99 (StrongSubj,Both)→ (WeakSubj,StrongPos) 0.1

110 (WeakSubj,StrongPos)→ (StrongSubj,Both) 0.1

134 (WeakSubj,Neutral)→ (StrongSubj,Both) 0.1

162 (WeakSubj,StrongNeg)→ (WeakSubj,WeakNeg) 0.1

168 (WeakSubj,Both)→ (StrongSubj,WeakNeg) 0.1

171 (WeakSubj,Both)→ (WeakSubj,StrongPos) 0.1

173 (WeakSubj,Both)→ (WeakSubj,Neutral) 0.1

6 Pr(WeakNeg) 0.066667

7 Pr(StrongNeg) 0.066667

13 Pr(StrongSubj—StrongNeg) 0.066667

14 Pr(StrongSubj—Both) 0.066667

22 Pr(WeakPos—StrongSubj) 0.066667

25 Pr(StrongNeg—StrongSubj) 0.066667

38 (StrongSubj,StrongPos)→ (StrongSubj,Both) 0.066667
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Feature Num Feature Name Consistency

58 (StrongSubj,Neutral)→ (StrongSubj,WeakPos) 0.066667

119 (WeakSubj,WeakPos)→ (StrongSubj,Neutral) 0.066667

128 (WeakSubj,WeakPos)→ (WeakSubj,Both) 0.066667

135 (WeakSubj,Neutral)→ (WeakSubj,StrongPos) 0.066667

145 (WeakSubj,WeakNeg)→ (StrongSubj,StrongNeg) 0.066667

158 (WeakSubj,StrongNeg)→ (StrongSubj,Both) 0.066667

170 (WeakSubj,Both)→ (StrongSubj,Both) 0.066667

172 (WeakSubj,Both)→ (WeakSubj,WeakPos) 0.066667

20 Pr(WeakSubj—Both) 0.033333

30 Pr(WeakNeg—WeakSubj) 0.033333

32 Pr(Both—WeakSubj) 0.033333

35 (StrongSubj,StrongPos)→ (StrongSubj,Neutral) 0.033333

60 (StrongSubj,Neutral)→ (StrongSubj,WeakNeg) 0.033333

66 (StrongSubj,Neutral)→ (WeakSubj,WeakNeg) 0.033333

69 (StrongSubj,WeakNeg)→ (StrongSubj,StrongPos) 0.033333

71 (StrongSubj,WeakNeg)→ (StrongSubj,Neutral) 0.033333

85 (StrongSubj,StrongNeg)→ (StrongSubj,StrongNeg) 0.033333

91 (StrongSubj,StrongNeg)→ (WeakSubj,StrongNeg) 0.033333

97 (StrongSubj,Both)→ (StrongSubj,StrongNeg) 0.033333

111 (WeakSubj,StrongPos)→ (WeakSubj,StrongPos) 0.033333

116 (WeakSubj,StrongPos)→ (WeakSubj,Both) 0.033333

125 (WeakSubj,WeakPos)→ (WeakSubj,Neutral) 0.033333

132 (WeakSubj,Neutral)→ (StrongSubj,WeakNeg) 0.033333

148 (WeakSubj,WeakNeg)→ (WeakSubj,WeakPos) 0.033333

149 (WeakSubj,WeakNeg)→ (WeakSubj,Neutral) 0.033333

157 (WeakSubj,StrongNeg)→ (StrongSubj,StrongNeg) 0.033333

163 (WeakSubj,StrongNeg)→ (WeakSubj,StrongNeg) 0.033333
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Feature Num Feature Name Consistency

167 (WeakSubj,Both)→ (StrongSubj,Neutral) 0.033333

174 (WeakSubj,Both)→ (WeakSubj,WeakNeg) 0.033333

8 Pr(Both) 0

12 Pr(StrongSubj—WeakNeg) 0

18 Pr(WeakSubj—WeakNeg) 0

19 Pr(WeakSubj—StrongNeg) 0

24 Pr(WeakNeg—StrongSubj) 0

31 Pr(StrongNeg—WeakSubj) 0

40 (StrongSubj,StrongPos)→ (WeakSubj,WeakPos) 0

42 (StrongSubj,StrongPos)→ (WeakSubj,WeakNeg) 0

45 (StrongSubj,WeakPos)→ (StrongSubj,StrongPos) 0

46 (StrongSubj,WeakPos)→ (StrongSubj,WeakPos) 0

48 (StrongSubj,WeakPos)→ (StrongSubj,WeakNeg) 0

52 (StrongSubj,WeakPos)→ (WeakSubj,WeakPos) 0

53 (StrongSubj,WeakPos)→ (WeakSubj,Neutral) 0

54 (StrongSubj,WeakPos)→ (WeakSubj,WeakNeg) 0

55 (StrongSubj,WeakPos)→ (WeakSubj,StrongNeg) 0

56 (StrongSubj,WeakPos)→ (WeakSubj,Both) 0

59 (StrongSubj,Neutral)→ (StrongSubj,Neutral) 0

64 (StrongSubj,Neutral)→ (WeakSubj,WeakPos) 0

67 (StrongSubj,Neutral)→ (WeakSubj,StrongNeg) 0

72 (StrongSubj,WeakNeg)→ (StrongSubj,WeakNeg) 0

75 (StrongSubj,WeakNeg)→ (WeakSubj,StrongPos) 0

76 (StrongSubj,WeakNeg)→ (WeakSubj,WeakPos) 0

78 (StrongSubj,WeakNeg)→ (WeakSubj,WeakNeg) 0

79 (StrongSubj,WeakNeg)→ (WeakSubj,StrongNeg) 0

81 (StrongSubj,StrongNeg)→ (StrongSubj,StrongPos) 0
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Feature Num Feature Name Consistency

82 (StrongSubj,StrongNeg)→ (StrongSubj,WeakPos) 0

84 (StrongSubj,StrongNeg)→ (StrongSubj,WeakNeg) 0

107 (WeakSubj,StrongPos)→ (StrongSubj,Neutral) 0

108 (WeakSubj,StrongPos)→ (StrongSubj,WeakNeg) 0

109 (WeakSubj,StrongPos)→ (StrongSubj,StrongNeg) 0

113 (WeakSubj,StrongPos)→ (WeakSubj,Neutral) 0

115 (WeakSubj,StrongPos)→ (WeakSubj,StrongNeg) 0

118 (WeakSubj,WeakPos)→ (StrongSubj,WeakPos) 0

120 (WeakSubj,WeakPos)→ (StrongSubj,WeakNeg) 0

122 (WeakSubj,WeakPos)→ (StrongSubj,Both) 0

124 (WeakSubj,WeakPos)→ (WeakSubj,WeakPos) 0

130 (WeakSubj,Neutral)→ (StrongSubj,WeakPos) 0

133 (WeakSubj,Neutral)→ (StrongSubj,StrongNeg) 0

138 (WeakSubj,Neutral)→ (WeakSubj,WeakNeg) 0

142 (WeakSubj,WeakNeg)→ (StrongSubj,WeakPos) 0

147 (WeakSubj,WeakNeg)→ (WeakSubj,StrongPos) 0

151 (WeakSubj,WeakNeg)→ (WeakSubj,StrongNeg) 0

153 (WeakSubj,StrongNeg)→ (StrongSubj,StrongPos) 0

154 (WeakSubj,StrongNeg)→ (StrongSubj,WeakPos) 0

155 (WeakSubj,StrongNeg)→ (StrongSubj,Neutral) 0

156 (WeakSubj,StrongNeg)→ (StrongSubj,WeakNeg) 0

161 (WeakSubj,StrongNeg)→ (WeakSubj,Neutral) 0
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Appendix B

LIWC Feature Consistency

Feature Number Feature Name Consistency

1 WC 1

6 WPS 1

7 Sixltr 1

39 female 1

42 insight 1

43 cause 1

60 power 1

70 work 1

73 money 1

83 Period 1

89 Dash 1

91 Apostro 1

24 verb 0.933333

49 see 0.933333

54 health 0.933333

19 prep 0.9

85 Colon 0.9

63 focuspast 0.866667

87 Qmark 0.833333
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Feature Number Feature Name Consistency

21 adverb 0.8

71 leisure 0.8

74 relig 0.766667

44 discrep 0.733333

12 i 0.633333

59 achieve 0.633333

66 relativ 0.633333

40 male 0.6

15 shehe 0.566667

52 bio 0.566667

9 function 0.466667

50 hear 0.466667

51 feel 0.433333

78 netspeak 0.433333

31 posemo 0.4

32 negemo 0.4

33 anx 0.4

56 ingest 0.4

5 Tone 0.366667

67 motion 0.366667

82 AllPunc 0.366667

22 conj 0.333333

11 ppron 0.3

30 affect 0.3

4 Authentic 0.233333

58 affiliation 0.233333

64 focuspresent 0.233333
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Feature Number Feature Name Consistency

14 you 0.133333

45 tentat 0.133333

90 Quote 0.133333

62 risk 0.1

20 auxverb 0.066667

41 cogproc 0.066667

48 percept 0.066667

10 pronoun 0.033333

18 article 0.033333

23 negate 0.033333

28 number 0.033333

29 quant 0.033333

35 sad 0.033333

36 social 0.033333

61 reward 0.033333

68 space 0.033333

72 home 0.033333

88 Exclam 0.033333

93 OtherP 0.033333

2 Analytic 0

3 Clout 0

8 Dic 0

13 we 0

16 they 0

17 ipron 0

25 adj 0

26 compare 0
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Feature Number Feature Name Consistency

27 interrog 0

34 anger 0

37 family 0

38 friend 0

46 certain 0

47 differ 0

53 body 0

55 sexual 0

57 drives 0

65 focusfuture 0

69 time 0

75 death 0

76 informal 0

77 swear 0

79 assent 0

80 nonflu 0

81 filler 0

84 Comma 0

86 SemiC 0

92 Parenth 0
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Appendix C

Topic Model Feature Consistency

Topic Number Consistency

1 1

2 1

4 1

5 1

6 1

8 1

10 1

11 1

12 1

13 1

14 1

16 1

17 1

18 1

21 1

22 1

24 1

26 1

27 1
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Topic Number Consistency

29 1

30 1

31 1

32 1

34 1

36 1

37 1

38 1

45 1

25 0.733333

43 0.266667

3 0

7 0

9 0

15 0

19 0

20 0

23 0

28 0

33 0

35 0

39 0

40 0

41 0

42 0

44 0
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