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Abstract

With the fast increasing demands of location-based service and the proliferation of smart-

phones and other mobile devices, accurate indoor localization has attracted great interest. In

this thesis, we present DeepML, a deep long short-term memory (LSTM) based system for

indoor localization using smartphone magnetic and light sensors. We verify the feasibility of

using bimodal magnetic and light data for indoor localization through experiments. We then

design the DeepML system, which first builds bimodal images by data preprocessing, and then

trains a deep LSTM network to extract the location features. Newly received magnetic field

and light intensity data are then exploited for estimating the location of the mobile device using

an improved probabilistic method. Our extensive experiments verify the effectiveness of the

proposed DeepML system.
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Chapter 1

Introduction

Indoor localization has been a research hotspot for decades [1–3]. However, unlike outdoor

GPS navigation systems, there are still no robust indoor localization systems widely adopted by

now. In fact, people still cannot use the popular Google Maps to navigate to a meeting room in

an unfamiliar office building. Recently, there is considerable new interest in indoor localization

techniques, driven by the proliferation of smartphones and other mobile devices, which, on one

hand, makes it possible to enable many location based services, and on the other hand, provides

an array of embedded sensors that can be exploited for indoor localization. Specifically, many

researchers focus on WiFi [4] based fingerprinting indoor localization using received signal

strength (RSS) [5–7] or Channel State information (CSI) [8–18]. These methods can achieve

robust meter-level accuracy but cannot work effectively when the WiFi signal is weak or not

available in some scenarios, such as underground parking areas.

In contrast, the geomagnetic field is omnipresent and thus can be considered as a ubiq-

uitous signature for indoor localization. In the past, geomagnetism basically needs to be used

with special equipments for robot tracking [19] and navigation [20]. In [20], researchers em-

ploy the leader-follower model in a navigation system, where customized magnetic sensing

devices are used for blind people. On the other hand, for magnetic field based localization

with smartphones, the authors in [21] use mobile phones to measure magnetic field intensity

and use them as magnetic signatures for identifying locations and rooms. However, according

to its strategy, this system depends heavily on pillars in the building and only achieves room-

level accuracy. Recently, the Magicol system combines magnetism and WiFi RSSI to build

a fingerprint map, which is designed with a particle-filtering based inertial measurement unit

(IMU) engine for localization and tracking [22]. Other systems based on magnetic sequences
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matching are proposed for improving tracking accuracy [23]. The above magnetic field based

smartphone localization systems require the user to walk around for data collection and online

localization.

In addition, visible light is also omnipresent and has been exploited for localization, due

to the density and stability of lighting infrastructures. For example, visible light intensity in

an underground parking area usually does not changed over time, and is not influenced by the

outdoor sunlight, which can be thus leveraged for indoor localization. Existing visible light lo-

calization systems, such as polarized LEDs [24] and collocated LEDs [25], require customized

LED drivers to emit identity beacons, which increases the system cost. To eliminate the need for

customized LEDs, LiTell system [26] extracts high-frequency features from fluorescent light

for localization. Other visible light localization systems for smartphones are based on particle-

filtering and light intensity data sequence, for which there is still room for improvement by

exploiting movement sensors [27, 28].

1.1 Approach

In this thesis, we exploit bimodal magnetic field and ambient light data for indoor localization

with a deep learning approach. The proposed scheme is motivated by the following observa-

tions. First, the magnetic field and light intensity at each location are highly stable and robust

over time. Second, magnetic field and light intensity are complementary to each other at many

locations. For example, magnetic field does not perform well at some locations, while these

locations may have different light intensities, which can be used to distinguish them. Using

the bimodal data can enhance magnetic field based indoor localization schemes. Third, us-

ing bimodal data with magnetic field and light intensity can increase the size of input data,

thus improving location diversity and recognition performance. Moreover, we incorporate a

deep long-short term memory (LSTM) network to train the bimodal data, which is a popu-

lar recurrent neural network (RNN) to deal with long-range dependencies [29, 30]. The deep

LSTM network has been successfully employed for speech recognition [31] and human activ-

ity recognition [32]. Compared to conventional fingerprinting based methods, the deep LSTM

network only requires one group of weights trained for all training locations, instead of creating
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a database for each training location. This feature can accelerate location prediction and reduce

the data storage requirement.

In particular, we design DeepML, a Deep LSTM network based indoor localization sys-

tem using smartphone Magnetic and Light sensors. The proposed DeepML system includes a

data preprocessing module for collecting magnetic field and light intensity data, and to create

bimodal image data with a sliding window method. DeepML also has an offline training phase

that includes feature extraction, the deep LSTM network, and a softmax classifier. A fully

connected layer is implemented for extracting features from bimodal image data. The deep

LSTM network consists of two layers of LSTM networks to achieve a stonger learning and

representation ability. The softmax classifier employs the cross-entropy to measure the differ-

ence between true labeled data and the normalized output data, as well as the L2 regularization

hyperparameter to avoid over-fitting. The back propagation through time (BPTT) algorithm,

which is a gradient-based technique for training certain types of RNNs, is used for training

the deep LSTM network. For online location prediction, an improved probabilistic method is

leveraged for estimating the location of the target smartphone using newly received magnetic

field and light intensity data.

The main contributions of this paper include:

• We experimentally validate the feasibility of using magnetic field and light intensity data

for indoor localization. We show that both data are stable over time, and the fusion of

magnetic field and light intensity data can improve location diversity and accuracy. To

the best of our knowledge, this is the first work to employ bimodal magnetic field and

light intensity data for indoor localization with a deep LSTM network approach.

• We present the DeepML system design, which first builds bimodal images to train the

deep LSTM network, and then employs newly received magnetic field and light data for

estimating the location of the target mobile device.

• We implement the proposed DeepML system with Android smartphones, and validate its

performance in two typical indoor environments with extensive experiments. DeepML
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outperforms the baseline scheme that uses magnetic field data only with considerable

gains in all the experiments.

1.2 Organization

In the remainder of this paper, we present the research background in Chapter 2. Preliminaries

and motivation are showed in Chapter 3. We describe the DeepML design in Chapter 4 and

demonstrate its performance in Chapter 5. Chapter 6 presents the conclusion and discuss our

future work.
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Chapter 2

Background

Although indoor positioning technology is called extension of outdoor positioning technology,

because of its application scenarios and accuracy requirements, it has not achieved much com-

mercial value for a long time. In recent years, especially due to the development of consumer-

grade market positioning technology led by Ibeacon and the marketization of centimeter-level

ultra-precision positioning technology led by UWB technology, the indoor positioning technol-

ogy has attracted more and more researchers’ attention. At present, researchers have proposed

radio frequency identification (RFID), Bluetooth, WLAN (Wireless Local Area Networks),

ultra-wideband (Ultra-Wideband, UWB),visible light, magnetic and other technologies based

systems. In this section, we will emphatically introduce visible light and magnetic field based

indoor localization technologies.

2.1 Positioning System With Visible Light

2.1.1 Visible Light Communication

With the development and popularization of smart devices, wireless network technology has

been a frontier hot research topic [33–52], such as 5G technology [53–59], Radio Frequency

technology and visible light communication (VLC). The visible light communication technol-

ogy uses a high-speed light and dark flashing signal which are invisible to the naked eye to

transmit information, such as a fluorescent lamp with 10 kbit/s or a light-emitting diode (LED)

for up to 500 Mbit/s over short distances. Compared with traditional radio frequency technol-

ogy in which the spectrum is controlled strictly, VLC leverages the rich visible light spectrum to
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Figure 2.1: System architecture of the ByteLight.

communicate. This spectrum corresponds to the vicinity of 430790 THz in terms of frequency

which is almost ten thousands times of radio spectrum. Moreover, VLC is able to transfer data

at extremely high speed. In [60], Wang et al. proposed a hybrid post equalizer in a high-order

s carrier-less amplitude and phase modulation based VLC system, which successfully achieved

data rate of 8 Gbit/s over 1-meter indoor free space transmission. Visible light communication

can be applied to the fields of lighting Internet access, visible light radio broadcasting, precise

positioning of visible light, etc.

2.1.2 Visible Light Positioning

As a result of lacking GPS signal in indoor environment, the visible light positioning (VLP)

has been an appealing research topic in recent years. Many researchers believe VLP technology

could be a key solution to 5 billion ”indoor localization market”. VLP technologies applied on

smartphones can be roughly divided into two categories according to its beaconing devices:

light-emitting diodes (LEDs) based and fluorescent lights (FLs) based.

LEDs based VLP System:

VLP utilizes modulated light-emitting diode (LED) transmitters at known locations to estimate

the position of VLC receivers. Besides the primary fuction of providing illumination, LEDs

are also used for data transmission and localization because of its long life span, low cost and

power consumption. Additionally, LEDs can be switched to different light intensity level very
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fast and modulated to various frequencies, which is suitable for building fingerprinting maps.

ByteLight [61] is one of most successful application of using LEDs for indoor localization.

In fact, this system is based on an imaging principle of the complementary metaloxidesemi-

conductor (CMOS) camera which is called rolling shutter. CMOS camera does not capture

the whole picture at one time but scans across the picture rapidly, either horizontally or verti-

cally.Therefore, the rolling shutter effect causes predictable pictures’ distortion when capturing

fast moving objects or high frequency flashing lights. Then based on this rolling shutter, it can

be found that the images obtained by CMOS cameras also have distortions in captured images

under the LEDs with certain frequency information. Images obtained from different frequen-

cies of LEDs have their unique patterns, such as the spacing between shadows on the image.

As we all know, almost all of commercial-off-the-shelf(COTS) smartphones are implemented

with CMOS cameras. Then the frequency information can be obtained by doing a refined im-

age processing with performing fast fourier transform (FFT). ByteLight enables smartphones

to demodulate the frequency information and communicates with the server to finally get the

specific location. As shown in Fig.2.1, ByteLight is basically consists of three modules. This

type of VLP system has relatively sub-meter level high positioning accuracy. However, due to

customized LEDs are needed to beam identity frequency beacons, implementation and replace-

ment of system’s hardware usually cost a lot.

Fluorescent Lights based VLP System:

Compared with LEDs, the biggest advantage of fluorescent lights is the universality. Although

LEDs technology has achieved great improvement, regardless of indoors or outdoors, the first

choice of illumination is still fluorescent light because of its better floodlight and low price.

In [26], the authors proposed a simple and robust indoor localization system which is called

LiTell. The system architecture is shown in the Fig.2.2. They leverages unmodulated fluo-

rescent lights(FLs) as location landmarks and commercial off-the-shelf(COTS) smartphones’

cameras as light sensors. The key point of this LiTell system is the hypothesis that each flu-

orescent light has its unique and stable characteristic frequency(CF). As their observation, the

FLs waveforms display like quasi-periodic patterns at both ms and µs scale. The periodicity
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Figure 2.2: System architecture of the LiTell.

becomes noticeable in frequency domain. The researchers discovered the dominate frequency

always occurs at 2 times of the fundamental frequency and denoted that as characteristic fre-

quency. The characteristic frequency can keep stable and only have small amount of collisions

with an acceptable range. Due to low sampling rate and sensitivity to high frequency light sig-

nals of COTS smartphones, another crucial contribution of this paper is the designed sampling

and signal amplification mechanism which is used to enable smartphone’s camera to extract

high-frequency features from FLs. Finally, the researchers utilized corresponding FLs’ loca-

tions and characteristic frequencies to build simple fingerprinting map on server for indoor

localization. In comparison with the ByteLight, LTtell does not need any extra hardware im-

plemented in both transmitter and receiver sides which means it is zero cost because everyone

have smartphones.

Universal Light Sources based VLP System:

Unlike the two VLP systems aforementioned, this basically has no light source limitation and

mostly uses light intensity to make fingerprints. This kind of VLP system does not need any

modified devices in both transmiter and receiver sides. Zhao et al. proposed a generic light

intensity based indoor localization and navigation system called NaviLight, which is the most
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Figure 2.3: System architecture of the NaviLight.

representative one of universal light sources based VLP systems. Figure. 2.3 depicts how it

works vividly. The researchers leveraged a vector of multiple light intensity values collected by

smartphone during users walks to create fingerprint map which denoted as LightPrint. Mean-

while, they use collected light intensity value to construct a light intensity field map(LIF).

Moreover, the localization process was divided into two parts. One is the coarse-grained lo-

calization via which is aimed to determine which subarea of the floor the LightPrint belongs

to. Then they matched the LightPrint with the pre-populated LIFs. Due to uncontrollable walk

9



speed of human when collecting the LightPrint, it is impossible to be the same as that when

LIFs were built. In order to eliminate this uncontrollable variable, they calculated the Dynamic

Time Warping(DTW) distance to align and measure the similarity between two time sequences

with different speed. Finally, the other part of localization process is based on the computed

DTW distance to get the fine-grained localization results.

2.2 Positioning System with Magnetic Field

The Earth itself is a giant magnet that forms a basic magnetic field between the north and

south poles of the geography. The earth’s geomagnetic field can be disturbed by metal objects,

especially when passing through a reinforced concrete structure. Buildings’ metal structure

disturb and distort the original geomagnetic field, which forms a unique specific indoor mag-

netic field. Moreover, if the building does not undergo structural changes in the steel body,

the characteristics of the indoor magnetic field are robust. The indoor geomagnetic position-

ing is accomplished by extracting the characteristic features of the ”indoor magnetic field” and

matching with specific location and orientation information. However, the localization systems

based on single geomagnetic field input can not achieve sub-meter level positioning. There-

fore, more and more bimodal strategies have been proposed. The most practical and appealing

scheme is combining Wifi signals and geomagnetic field as location landmarks [22]. The ac-

curacy of Wifi in positioning and the sensitivity of the magnetic field in the orientation forms a

great complementary relationship in positioning system.

2.3 Deep Learning

The concept of deep learning stems from the study of artificial neural networks. It is an al-

gorithm that attempts to do high-level abstraction of data by using multiple processing layers

consisting of complex structures or multiple nonlinear transformations. ”Deep Learning” has

been a term which is rebranding of neural network to some extent. The advantage of deep

learning is to replace the manual acquisition of features with unsupervised or semi-supervised

feature learning and hierarchical feature extraction efficient algorithms. In recent years, Deep
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Figure 2.4: Recurrent Neural Network (RNN) Structure.

learning has been applied in computer vision, speech recognition, indoor localization [62],

wireless network [63] and has achieved excellent results.

2.3.1 Recurrent Neural Networks (RNNs)

The purpose of RNNs is to process sequence data. In a traditional neural network we assume

that all inputs (and outputs) are independent of each other. Moreover, the layers are fully

connected from the input layer to the hidden layer to the output layer, and the nodes between

each layer are disconnected. However, it is a bad idea and powerless for many tasks. For

example, if you want to predict what the next word of a sentence is, you usually need to use the

previous word due to the words in a sentence are not independent. RNNs are called recurrent

neural networks because they perform the same task for every element of a sequence, where the

current output depends on the previous computations. The specific form of expression is that

the network memorizes the previous information and applies it to the calculation of the current

output, that is, the nodes between the hidden layers are no longer unconnected. Furthermore,

the input of the hidden layer includes not only the output of the input layer but also the output

of the hidden layer at the previous moment. Another way to think about RNNs is that they

have a memory which captures information about what has been calculated so far. In theory

RNNs can make use of information in arbitrarily long sequences. However, they are limited to

looking back only a few steps practically.

2.3.2 Long Short-Term Memory (LSTM)

As mentioned at Section 2.3.1, RNN can not handle long-term dependencies when processing

variable-length sequence inputs. The dependencies cause the gradient of the loss functions to
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Figure 2.5: Long Short-term Memory (LSTM) Structure.

be either diffuse or explode which makes the network could not be trained successfully. In order

to counter such drawbacks, researchers proposed long short-term memories architecture [64].

The biggest difference between RNN and LSTM is that there is a message conveyor called

cell state at the top of LSTM, which is actually the place of information memory. Certainly,

the conveyor is unable to determine what information to be added or deleted by itself, but

through the structure called control gates. As shown in Fig. 2.5 LSTM network has three

control gates: forget gate, input gate and output gate respectively. The forget gate determines

which information from last cell state to continue to pass through the current cell. The input

gate controls if a new data could flow into the memory and updates the cell state. The output

gate decides which part of the cell state to be exported as output. These three control gates

confirm the feasibility of using gradient-based optimization methods and avoid the diffusion

and explosion of gradient. The LSTM network has been widely used in speech recognition,

language modeling, sentiment analysis, human activity identification and text prediction. In

recent years, many researchers introduced many LSTM-like deep learning networks, such as

Gated Recurrent Unit (GRU) proposed by J.Chung et al [65]. at 2014. It combines the forget

gate and the input gate into a separate ”update gate”. It also incorporates the cell state and the

12



hidden state and makes some other changes. The resulting model is simpler than the standard

LSTM model and is becoming more popular.
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Chapter 3

Preliminaries and Motivation

3.1 Magnetic Field Preliminaries

The magnetic field of the earth, i.e., the geomagnetic field, is ubiquitous on the surface of the

earth, with magnitude ranging from 0.25 to 0.65 Gauss. The magnetometer in most smart-

phones can measure the magnetic field, in the form of a vector with three elements (mx, my,

mz), which describes the magnetic field component for north, east, and vertical directions, re-

spectively. For studying the stability and location diversity of magnetic field data, we measure

the magnetic field data (mx, my, mz) at 10 different locations selected in a corridor of 20 me-

ters long in the Broun Hall on Auburn University Campus. We obtain five different datasets

collected at five different times. Fig. 3.1 shows the magnetic field data components (mx, my,

mz) for different locations and times. We find that for any fixed location, all the three elements

(mx, my, mz) exhibit small variations over time, as indicated by the negligible error bars. This

validates the stability of magnetic field data with respect to location, which can guarantee the

reliability of fingerprinting based indoor localization using magnetic field data.

In addition, we also find good diversity of magnetic field data for different locations. In

Fig. 3.1, the magnetic field data exhibits sufficient variations for different locations. For ex-

ample, each of the three elements (mx, my, mz) has different values for locations 1 and 2.

Specifically, we can see that at least one element of the magnetic field data changes for a dif-

ferent location. The indoor magnetic field has local anomalies (or, local disturbances), because

modern buildings generally have many ferromagnetic structures. The ambient magnetic field

leads to geomagnetic anomalies, which can be leveraged for accurate indoor localization.
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Figure 3.1: Characteristics of magnetic field data.

3.2 Light Intensity Preliminaries

Modern buildings usually use several types of light bulbs, such as the compact fluorescent lamp

(CFL) and light-emitting diode (LED) [66]. Most smartphones can capture light intensity from

such bulbs. In fact, light propagates in the air from the light bulbs to the smartphone light

receiver, with different radiant intensity measurements for different locations, which are sus-

ceptible to the indoor propagation environment, such as shadowing, scattering, and reflection

for different surfaces. This motivates the work on light intensity based fingerprinting localiza-

tion technique [67].

To study the stability and location diversity of light intensity at different times and lo-

cations, we measure the light intensities at 10 different locations in the same corridor, and

collected five datasets at different times. Fig. 3.2 presents the characteristics of light intensity

data at different locations and times. Similarly, we find light intensity data is quite stable for

any given location, as indicated by the negligible error bars. Furthermore, light intensity mea-

surements take different values for some different locations, e.g., see neighboring locations 1

and 2, 4 and 5, and 9 and 10. But for some other neighboring locations, e.g., 3 and 4, and 7 and

8, the light intensity values are very close. Thus, unlike magnetic field data, it is difficult to use

light intensities only as fingerprints for indoor localization.
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Figure 3.2: Characteristics of light intensity data.

3.3 Fusion of Magnetic Field and Light Intensity Data

Our measurement study of magnetic field and light intensity motivates us to use them as bi-

modal data for indoor localization. This is because we can use the different light intensities at

different locations to improve the accuracy of magnetic field based indoor localization. By fus-

ing the magnetic field and light intensity data, the dimension of input data is increased, making

it suitable for the proposed deep LSTM based scheme, to strengthen the uniqueness of location

features.

To measure the location diversity of the bimodal data with magnetic field and light inten-

sity, we define the confusion matrix for N different locations as

D =



d11 d12 d13 . . . d1N

d21 d22 d23 . . . d2N
...

...
... . . . ...

dN1 dN2 dN3 . . . dNN


, (3.1)

where dij denotes the Euclidean distance between the two signal vectors of locations i and

j, which can be computed by dij = ||Si − Sj||2, where Si is the signal vector of location i,
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Figure 3.3: Confusion matrix of the bimodal data with magnetic field vector and light intensity.

including both the magnetic field vector and light intensity. To measure the performance of

different datasets, we need to normalize the confusion matrix with the same metric.

Fig. 3.3 presents the confusion matrix of the bimodal data with magnetic field vector and

light intensity for an experiment with 10 locations in the corridor. We can see that the fusion

of magnetic field and light intensity achieves great location diversity with large distances for

most location pairs, which is different from using magnetic field vector only or light intensity

only in Sections 3.1 and 3.2. Such enhanced diversity is highly desirable for the training and

location estimation of the proposed deep LSTM network for indoor localization.
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Chapter 4

The Proposed DeepML System

4.1 DeepML System Architecture

We design the DeepML system and prototype it with a Samsung Galaxy S7 Edge smartphone

with an Android 7.0 platform. The Android application is developed with Android Studio 2.3.3

for data collection and preprocessing. The proposed DeepML system employs both magnetic

field data and ambient light for two main reasons. First, as discussed in Chapter 3, the variance

in magnetic field and light intensity at each location is generally very small; they are both

highly stable over time for each given position. Second, magnetic field measurements may not

show sufficient location diversity in some areas. Incorporating the bimodal data could exploit

the different light intensities for enhanced location diversity for such areas. Magnetic field and

light intensity are complementary to each other for many locations. Using the bimodal data can

improve the localization performance.

The design of DeepML is presented in Fig. 4.1. The most salient features include the use

of bimodal magnetic and light data, and the deep LSTM network used for extracting location

features from the bimodal data. DeepML first performs data preprocessing of collected mag-

netic field and light data, to build bimodal images using a sliding window method. During the

offline training phase, we implement feature extraction for the bimodal images for effectively

training the deep LSTM network. Compared to conventional fingerprinting based methods,

DeepML does not need to establish a database for each training location, where either raw data

or extracted features are stored as fingerprints. Rather, our DeepML system only requires one
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Figure 4.1: The DeepML system architecture.

group of weights to be trained for all training locations. In the online testing phase, we in-

corporate an improved probabilistic approach for location estimation, based on newly received

magnetic and light bimodal data from the target mobile device.
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4.2 Data Preprocessing

We first collect and record real-time readings from the smartphone magnetic field ambient

light sensors. Due to the sequence size requirement of the deep LSTM network, we need to

reduce the sampling rate of the magnetic field sensor, to make its readings in-sync with that

from the ambient light sensor. Specifically, we obtain 1500 rows of magnetic field and light

intensity combined patterns for each training location. For example, the size of training data is

about 15000 rows for the 10 training locations in the corridor, and 18000 rows for the 12 train

locations in the laboratory scenario. For online location estimation, the data size is about 400

rows for each test location.

We next employ a sliding window to build bimodal image data. For both training and

testing phases, we set the size of the sliding window to 20. Thus, we can obtain the bimodal

image data with size 20 × 4, with 20 measured data points in the column dimension and 4

feature values in the row dimension, including mx, my, mz for magnetic field and l for light.

4.3 Offline Training

For offline training, we propose a deep LSTM approach to extract location features from the

bimodal image data with magnetic field and light intensity. The offline training module includes

feature extraction, the deep LSTM network, and the Softmax classifier.

4.3.1 Feature Extraction

For better feature extraction, we implement one fully connected layer for extracting features

from raw magnetic fields and light intensity data, which is formulated as

zt = ReLU(Wxt + b), (4.1)

where xt and zt are the input and output of the fully connected layer, respectively, W and b are

the weights and biases of the fully connected layer, respectively. ReLU(·) is the rectified linear

unit, which is considered as the activation function with ReLU(x) = max(x, 0). The ReLU(·)
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Figure 4.2: Structure of Deep LSTM network.

function has several advantages such as sparse representations, efficient gradient propagation

and computation.

4.3.2 Deep LSTM Network

After feature extraction, we next use the deep LSTM algorithm for training optimal weights,

where the LSTM network is a popular recurrent neural network (RNN) that can effectively

deal with long-range dependency [29, 30]. It can solve the problems of exploding or vanishing

gradients found in RNNs. Moreover, LSTM can exploit temporal information of magnetic

field and light intensity data through recursively mapping the input sequence to output label by

using the hidden LSTM units. Each LSTM unit has a built-in memory cell to store information

over time using non-linear gate units, which can control the change of values and memory

contents. For the proposed DeepML system, we stack two layers of the LSTM network to

obtain a stronger learning and representation ability for magnetic and light sensor data, thus

improving the localization performance. Figure. 4.2 clearly exhibits what the structure of Deep

LSTM network looks like.
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4.3.3 Softmax Classifier

The output of the final cell’s hidden state in the second LSTM network is the input to a fully

connected layer, which uses a basic neural network with one hidden layer to train the output data

using the Softmax classifier. Moreover, the input data to the Softmax function is in the form of a

N dimensional vector q = [q1, q2, ..., qN ], where N is the number of training locations. The ith

input data can be obtained as qi = hTf wi, where hf is the output vector of the final cell’s hidden

state in the second LSTM network, and wi is the weight vector of the fully connected layer. The

Softmax function then maps the N dimensional vector to normalized data p = [p1, p2, ..., pN ],

that is

pi =
eqi∑N
n=1 e

qn
=

eh
T
f wi∑N

n=1 e
hTf wn

, for i = 1, 2, ..., N. (4.2)

Let J(θ) be the loss function with the weight parameter θ. We adopt the cross-entropy to

measure the difference between the true labeled data and the normalized output data, and use

the L2 regularization hyperparameter to avoid over-fitting. To obtain the optimal weights, the

training loss is minimized as

min
θ
J(θ) = −

N∑
i=1

yi log(pi) +
λ

2
‖θ‖22 , (4.3)

where yi denotes the true labeled data for the ith location, and λ is the L2 regularization hy-

perparameter. We then train the parameters in the deep LSTM using Backpropagation Through

Time (BPTT) of LSTM. We also use the Adam Optimizer for improving the efficiency of opti-

mization [68].

4.4 Online Location Estimation

For online location test, we first build M bimodal images with magnetic and light sensor data

(as shown in the data preprocessing section), each of which has the same size as training images.

Then, we leverage a probabilistic method for estimating the location of the target mobile device

by feeding the M bimodal images to the trained deep LSTM network.
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Let ω denote the output results of the Softmax classifier using the deep LSTM network

for N training locations with M newly measured bimodal images. We have

ω =



ω11 ω12 ω13 . . . ω1M

ω21 ω22 ω23 . . . ω2M

...
...

... . . . ...

ωN1 ωN2 ωN3 . . . ωNM


. (4.4)

We then compute the average result for M output data at every location, thus reducing the

variance of the output results. Let ω̄n be the mean of the output data vector [ωn1, ωn2, ..., ωnM ]

in the nth row. The mean vector can be obtained as ω̄ = [ω̄1, ω̄2, ..., ω̄N ].

Finally, the position of the target mobile device is estimated as a weighted average of all

the N training locations, as

L̂ =
N∑
i=1

ln × ω̄n, (4.5)

where ln is the nth training location.
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Chapter 5

Experimental Study

5.1 Experiment Setup

We prototype the DeepML system with a Samsung Galaxy S7 Edge smartphone on the Android

7.0 platform. Moreover, we implement an Android application with Android Studio 2.3.3 for

data collection and preprocessing. We compare DeepML with a benchmark that uses magnetic

field data only. To guarantee a fair comparison, we use for these two approaches the same

magnetic field dataset and the same deep LSTM parameters to estimate the location of the

mobile device. We experiment with the two methods in two different indoor scenarios.

5.1.1 Lab Scenario

Laboratory: This is a 6×12 m2 computer laboratory in Broun Hall on the Auburn University

campus. The lab is a cluttered environment with tables, chairs, and computers. The floor plan

is shown in Fig. 5.1. We choose 12 training locations, which are marked as red squares. The

distance between two neighboring training locations is 1.6 m. We collect 1800 rows of light

intensity and magnetic field combined pattern for each training location, and 400 rows of data

for each test location. Note that each test location is different from the known training locations.
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Figure 5.2: Layout of the corridor scenario: training locations are marked as red squares.

5.1.2 Corridor Scenario

Corridor: This is a 2.4 × 20 m2 corridor in Broun Hall. As shown in Fig. 5.2, we employ 10

training locations along a straight line with 1.6 m separation. The training data size is 1500

rows and the testing data size is 400 rows.

For online test, we leverage an LSTM deep leaning model using Tensorflow on a computer

with CPU 4720HQ and then integrate it with the data collection Android application, which

achieves localization estimation in real-time.

5.2 Localization Performance

Figure. 5.3 illustrates the training loss over epoches of the DeepML for the laboratory and

corridor scenarios. We set the epoch to 200 for preventing overfitting of training network with
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Figure 5.3: Training errors for the laboratory and corridor experiments.
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Figure 5.4: CDF of localization error of the lab experiment.

light intensity and magnetic field datasets. As depicted in Fig. 5.3, the train loss curve almost

reaches about 0.05 for both the corridor and the lab scenarios.

Figure 5.4 plots the cumulative distribution function (CDF) of localization errors of the

two schemes in the lab experiment. For this environment with complex light intensity and

magnetic field distribution, DeepML is able to leverage bimodal magnetic-light features to

predict location accurately. Figure. 5.4 shows that about 58% of the location errors with the
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Figure 5.5: CDF of localization error of the corridor experiment.

proposed DeepML system are under 0.5 m, while 20% of the location errors with the magnetic

field only scheme are under 0.5 m. Moreover, DeepML has 82% of the test locations with

location errors less than or equal to 2 m, while it is 50% for the magnetic field only scheme.

DeepML achieves a maximum error of 3.7 m, which is much better than the 5 m maximum

error of the benchmark scheme. Apparently, the proposed DeepML system is more accurate

for the cluttered lab environment.

Figure. 5.5 presents the CDF of localization errors of both schemes in the corridor sce-

nario. There are about 65% of the test locations that have an estimation error less than or equal

to 0.4 m for DeepML, while it is 25% for the magnetic only scheme. Additionally, we find

DeepML has 87% of the test locations achieving an error under 3 m, comparing to 78% of

the magnetic only scheme. Moreover, for the corridor scenario, the maximum location errors

for DeepML and the magnetic only scheme are 6.5 m and 8.2 m, respectively. The proposed

DeepML system is more robust than the baseline scheme.

The experiments validate that DeepML outperforms the benchmark scheme in both experi-

ment scenarios. The main reason is that dual-module fingerprint has stronger location diversity,

which carries more location features. In many cases magnetic field data and light intensity are

complementary to each other. Furthermore, the proposed deep LSTM network can effectively
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Figure 5.6: The average distance error for different size of test data.

extract the rich location features from the bimodal data, to achieve enhanced localization per-

formance.

5.3 Impact of Different Parameters

5.3.1 Impact of Test Data Size

We test DeepML with test data sized to 120, 180, 240, 300 and 360 to determine how test

data size impacts the accuracy of the indoor localization. Considering variable control, all

other parameters are set same for every training position. Epoch, window size, hidden units

and batch size are set to 200,10,40 and 1500, respectively. As is shown in Fig 5.6, distance

errors of both scenarios are almost same for different test data size. The errors in the lobby

and the lab are about 0.98m meters and 1.36 meters, respectively. This result indicates that

the localization performance of DeepML is robust enough to the test data size. DeepML could

achieve localization with high precision. Due to the testing time of each position is less than

0.1 second, we do not discuss the effect of test data size on time consumption.
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Figure 5.7: The average distance error for different number of LSTM layers.
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Figure 5.8: The average training time for different number of LSTM layers.

5.3.2 Impact of the Number of LSTM Layers

To evaluate how the number of LSTM layers affects the distance error, we build 5 datasets with

different number of LSTM layers in every position. As shown in Fig 5.7, the distance error
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has a downward trend. The lowest distance errors, 1.07 meters for the lab and 1.39 meters

for the corridor, are obtained when the number of LSTM layers is 5 and 4 respectively. This

result indicates that the number of LSTM layers has relation with the localization accuracy.

Furthermore, we notice that the distance error in the corridor is more sensitive to the number of

LSTM layers. When the number of LSTM layer exceeds 1, We can see that all distance errors

for the lab are smaller than 1.18 meter and distance errors for the lab are lower than 1.48 meter.

The result demonstrates the robustness of different numbers of LSTM layers. In addition, it is

necessary to use deep LSTM networks with multiple layers because of the bad performance of

one layer LSTM network.

Figure 5.8 presents the training time across all datasets with different number of LSTM

layers. It directly shows that the number of LSTM layers has great impact on network training

time. We can tell that the training time for corridor is much longer than the training time for

the lab with same number of LSTM layers. Considering the localization performance which

are discussed above, we still select the dataset with 4 LSTM layers pictures in every training

point as the input of DeepML even though it has long training time. Another reason is that

we also take into account the possibility of overfitting. It is well known that higher number

of neural network layers usually leads to more over-fitting possibllity. We can notice that the

slight increasing trend of mean distance error which may caused by overfitting. In order to

maintain the robustness of our system, setting the number of LSTM layers to 4 is a better and

secure choice.

5.3.3 Impact of Hidden Units

The number of hidden units represents the dimensionality of the ’hidden state’ of the lstm. In

order to explore the effect on localization accuracy, we also implement our DeepML model with

five different number of hidden units. The environments where we did comparison experiments

are same with other sections, a long corridor and a teaching laboratory. We can find that the

mean distance error decreases with the increase with the number of hidden units from Fig 5.9.

Obviously, The best localization performance occurred at the 40 hidden units for both lab and

corridor scenarios, 1.02 meters for lab and 1.33 meters for the corridor. Correspondingly,
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Figure 5.9: The average distance error for different hidden units.
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Figure 5.10: The average training time for different number of hidden units.

the greatest mean distance error, 1.39 meters for lab and 1.93 for the corridor, are accessed

with 5 hidden units. Generally, the results of the corridor are worse than the indoors and the

accuracy gap between two scenarios are 0.5 meter roughly. The reason is probably that the lab
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Figure 5.11: The average distance error for different window size.

environment is more complicated so that the light intensity and magnetic field data have more

diversity than the corridor.

As we can see in Fig. 5.10, the training time is positively correlated with the number of

hidden units. Although the longest training time has reached 520.72 seconds, we choose the

dataset with 40 hidden units for training because of the best positioning accuracy.

5.3.4 Impact of Window Size

To further investigate the parameters impact on localization performance, we also deploy six

datasets with different numbers of window size. The definition of window size is the length

of a sliding window of a time sequence of data. We can understand it as the sentences length

when you are reading a book. Figure 5.11 shows similar results under different window size.

Although there are fluctuation of mean distance error with six different window size, the dif-

ference between the best and worst localization accuracy are only 0.108 meter for the corridor

and 0.103 meter for the lab. Considering the computer laboratory and corridor are 6×12 m2

and 2.4 × 20 m2 respectively, 0.1 meter-level different is acceptable. We can still tell that the

window size does not disturb the localization performance of DeepML. Figure. 5.12 exhibits
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Figure 5.12: The average training time for different window size.

the relations between network training time and window size. Actually, the training time does

not decrease user experience much at practical test because the training process belongs to on-

line stage. Therefore, we usually consider the positioning accuracy firstly. The dataset with

window size of 5 are adopted for each training point finally by reason that the lowest mean

distance error of localization are obtained at both scenarios.

5.3.5 Impact of Batch Size

Batch size denotes the subset size of the training sample (e.g. 100 out of 1000) which is going to

be used in order to train the network during its learning process. We explore the impact of batch

size on localization accuracy under two environments. Figure 5.13 illustrates the mean distance

errors for increasing batch size in the lab and lobby scenarios. As we can see, the mean distance

error increases with the growth of batch size when larger than 1500. This result indicates that

the batch size is related to localization accuracy. The greatest localization performance, 1.08

meters for the lobby and 1.46 meters for the corridor, is achieved when batch size of 1500.

Figure 5.14 presents the training time for different batch size. According to the Fig 5.14,

we know the longest training times are 124.276 seconds and 128.64 seconds in the lab and the
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Figure 5.13: The average distance error for different batch size.
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Figure 5.14: The average training time for different batch size.

corridor, and the shortest training times are 106.70 seconds and 99.42 seconds in the lab and the

corridor, which means the batch size only has small influence on the network’s training time.
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Figure 5.15: The average distance error for different epoch.
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Figure 5.16: The average training time for different epoch.

5.3.6 Impact of Batch Epoch

In training neural network, one epoch means one pass of the full training set. Specifically,

a epoch contains one forward pass and one backward pass. We adjusted the value of epoch
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and prepared six datasets with different numbers of echo to improve our positioning system

accuracy. Figure 5.15 shows the impact of epoch on the mean distance error of positioning

accuracy. Obviously, The highest distance error is achieved when the value of epoch is 30 in

both lab and corridor indoor environment. Moreover, the mean distance error keeps decreasing

along with the growth of the value of epoch. And we can see the error verges to be steady when

the value of epoch is over 150. The mean distance error can remain at a relatively stable level

wait until the network converges. We notice that the lowest error is obtained at the 150 epochs

from the Fig 5.15

Figure 5.16 illustrate the relations between the training time and the value of epoch. As is

shown, the training time increases as the value of the epoch increases in both scenarios. The

result is reasonable that more epoch loops leads to more time consumed. To reach the lowest

distance error, we spend about 429.73 seconds and 408.51 seconds to train the network in the

lab and the corridor respectively.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we presented DeepML, a deep LSTM based system for indoor localization using

the magnetic and light sensors in smartphones. We first experimentally verified the feasibility of

using the magnetic-light bimodal data from magnetic and light sensors for indoor localization.

We then presented the DeepML design, with its data preprocessing, deep LSTM network, and

probabilistic location estimation modules, where data preprocessing was implemented to obtain

bimodal image data, and two layers LSTM network was then trained. For online test phase,

the newly received magnetic field and light data can be used for estimating the location of the

mobile device. Our experiments under two representative indoor environments demonstrated

the effectiveness of the proposed DeepML system.

6.2 Future Work

Even though DeepML is a high accuracy indoor localization using commercial off-the-shelf

smartphone and existing ceiling-implemented lights, there are still many interesting problems

that deserve further study. In the future, we plan to enhance the system performance along the

following three directions.

We conducted several experiments in the corridor and lab with several windows at noon

to evaluate the performance of DeepML. However, the result shows DeepML is sensitive to

the effect from the sun light. The sunlight disturbed the light intensity value collected by light
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sensors of the smartphone which leads to mismatching in the online test. Therefore, an adequate

sunlight elimination and neutralization algorithm is indispensable in our future study.

The DeepML system manifests the feasibilty of using the bimodal dataset. For more ac-

curate indoor positioning, we plan to add in WiFi signals to make trimodal data for network

training. In consideration of good performance in other indoor localization systems, it is possi-

ble that our system will achieve better positioning accuracy. Moreover, collecting WiFi signals

using smartphones is really convenient and fast.

We spent a lot of time on collecting enormous fingerprint data for training the LSTMs

network in both lab and corridor scenarios. We can easily predict this would be a much more

difficult and time-consuming task in a larger environment, such as shopping malls and airports.

We conjecture that generative adversarial nets (GAN) could be a suitable deep learning method

for generating datasets and fingerprints to reduce the data collection effort. We will investigate

the application of GAN in our future work.
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