

Maintaining the Security and Availability of a Stream of
Time-Dependent Secret Information in an Ad-Hoc Network.

by

John David S. Sprunger

A thesis submitted to the Graduate Faculty of
Auburn University

in partial fulfillment of the
requirements for the Degree of

Master of Science in Computer Science

Auburn, Alabama
December 15, 2018

Keywords:
Network Security, Threshold Cryptography, Ad-Hoc Networking

Copyright 2018 by John David S. Sprunger

Approved by

Dr. Alvin Lim, Professor of Computer Science and Software Engineering
Dr. David Bevly, Bill and Lana McNair Endowed Distinguished Professor

Dr. David Umphress, COLSA Corporation Cyber Security and Information Assurance Professor
Dr. Xiao Qin, Director of Computer Science and Software Engineering Graduate Programs

ii

Abstract

 In this thesis we present a system called Ad Hoc Security for maintaining the security and

availability of a stream of time-dependent secret data in an ad-hoc network. Time-dependence

refers to how each piece of data is only useful during a unique time window. The goal is to

determine the effectiveness of the Ad Hoc Security system for distributing and securing secret

information in a mobile ad-hoc network under a variety of connectivity scenarios, with different

sets of behavior parameters. Ad Hoc Security makes use of threshold cryptography for both

decryption of the data as well as authentication of the participating devices. It is implemented

and tested in the network simulator called ns3. The results of these tests are compared to show

how different connectivity scenarios and behavior parameters affect the overall performance and

security. The tests demonstrate its ability to adaptively shift between higher security and higher

reliability based on its surroundings. Ad Hoc Security is compared to a similar, theoretical

system that is tuned for perfect reliability at the cost of security. Compared to the perfectly

reliable system, Ad Hoc Security consistently has half the vulnerable time1 and half as much

decryption material saved2 with a minimum (and often avoidable) decrease in reliability. Most of

the unreliability was from rapid, random group separation that the system could not predict or

adapt to fast enough. At the end we also present three potential ways of improving reliability.

1 Local Decrypt Time, or LDT. Defined in Section 5.4.
2 Key Time. Defined in Section 5.3.

iii

Table of Contents

Abstract ... ii

List of Tables ... vi

List of Illustrations .. vii

List of Abbreviations ... ix

Chapter 1 Introduction .. 1

 1.1 Background ... 1

 1.2 Motivation ... 1

 1.3 Assumptions .. 2

 1.4 Problem Statement .. 2

 1.5 Related Work .. 3

Chapter 2 The Solution: Ad Hoc Security .. 5

 2.1 Design Principles .. 5

2.2 Ad Hoc Security Overview ... 5

2.3 Heartbeat and Trusted Peers ... 6

2.4 Trusted Peers and a Mobile Certificate Authority .. 6

2.5 Secret Encryption .. 8

2.6 Threshold Cryptography in Ad-Hoc Networks ... 8

2.7 Threshold Cryptography Reliability Enhancements ... 9

Chapter 3 Implementation Details .. 13

 iv

3.1 Overview ... 13

3.2 Behavior Parameters ... 13

3.3 Heartbeat Loop and Memory Wipe .. 14

3.4 Load Current Secret and Check Secret Buffer .. 17

3.5 Crypto Status and Redundancy Check .. 17

3.6 Prepare Next Secret ... 19

3.7 Maintain Authentication ... 21

Chapter 4 Testing Methodology ... 22

4.1 Overview ... 22

4.2 Device Groups and Movement ... 23

4.3 Major Version List .. 24

4.4 Minor Version List .. 25

Chapter 5 Testing Methodology ... 29

5.1 Data Collection Overview ... 29

5.2 Downtime .. 29

5.3 Key Time .. 30

5.4 Local Decrypt Time .. 30

Chapter 6 Results and Analysis .. 32

6.1 Overview ... 32

6.2 Illustration of Data .. 32

6.3 Perfectly Reliable System ... 32

6.4 Major Version 004: Basic Disconnection and Reconnection 34

 6.4.1 Overview .. 34

 v

 6.4.2 Analysis of Results .. 35

6.5 Major Version 005: Split Group Disconnection and Reconnection 37

 6.5.1 Overview .. 37

 6.5.2 Analysis of Results .. 38

6.6 Major Version 007: Small Group Disconnection and Reconnection 40

 6.6.1 Overview .. 40

 6.6.2 Analysis of Results .. 40

6.7 Major Version 009: Linear Chain of Group Connections .. 42

 6.7.1 Overview .. 42

 6.7.2 Analysis of Results .. 43

6.8 Major Version 011: Wide Area Random Movement .. 45

 6.8.1 Overview .. 45

 6.8.2 Analysis of Results .. 45

Chapter 7 Conclusions and Summary ... 48

 7.1 Conclusions ... 48

 7.2 Secret Buffer Improvement ... 48

 7.3 Redundancy Factor Improvement ... 49

 7.4 Small Group Disconnection Reliability Improvement ... 50

References ... 70

vi

List of Tables

Table 1. Example falloff factor matrix. .. 10

Table 2. Default falloff factor matrix. ... 27

Table 3. More aggressive falloff factor matrix. .. 28

Table 4. Less aggressive falloff factor matrix. ... 28

Table 5. Major Version 004 movement definition. .. 35

Table 6. Major Version 005 movement definition. .. 38

Table 7. Major Version 007 movement definition. .. 40

Table 8. Major Version 009 movement definition. .. 42

Table 9. Shadow function availability in test run 009.000.000. ... 44

Table 10. Shadow function availability in test run 009.009.000. ... 45

Table 11. Major Version 011 movement definition. .. 45

vii

List of Illustrations

Figure 1. Major Version 004 Downtime Delta. .. 52

Figure 2. Major Version 004 Key Time Delta. ... 52

Figure 3. Major Version 004 Local Decrypt Time Delta. ... 53

Figure 4. Total number of Shadow Functions for Device 3 in test run 004.000.000. 53

Figure 5. Total number of Shadow Functions for Device 6 in test run 004.001.000. 54

Figure 6. Total number of Shadow Functions for Device 6 in test run 004.002.001. 54

Figure 7. Major Version 005 Downtime Delta. .. 55

Figure 8. Major Version 005 Key Time Delta. ... 55

Figure 9. Major Version 005 Local Decrypt Time Delta. .. 56

Figure 10. Version 005.000 Trial Runs 000 and 001. .. 56

Figure 11. RFC for Device 16’s 4hr to 6hr cryptosystem during run 005.000.000. 57

Figure 12. RFC for Device 16’s 6hr to 8hr cryptosystem during run 005.000.000. 57

Figure 13. RFC for Device 16’s 4hr to 6hr cryptosystem during run 005.000.000. 58

Figure 14. RFC for Device 16’s 6hr to 8hr cryptosystem during run 005.000.001. 58

Figure 15. Major Version 007 Downtime Delta. ... 59

Figure 16. Major Version 007 Key Time Delta. .. 59

Figure 17. Major Version 007 Local Decrypt Time Delta. .. 60

Figure 18. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.000. 60

Figure 19. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.001. 61

 viii

Figure 20. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.002. 61

Figure 21. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.003. 62

Figure 22. Major Version 009 Downtime Delta. ... 62

Figure 23. Major Version 009 Key Time Delta. .. 63

Figure 24. Major Version 009 LDT Delta. .. 63

Figure 25. Runs 000 and 001 for versions 009.000 and 009.009. ... 64

Figure 26. RFC for Device 24’s 6hr to 8hr cryptosystem during run 009.004.003. 65

Figure 27. Major Version 011 Downtime Delta. ... 65

Figure 28. Major Version 011 Key Time Delta. .. 66

Figure 29. Major Version 011 LDT Delta. .. 66

Figure 30. Version 011.000 Trial Runs 000 and 001. .. 67

Figure 31. Version 011.000 Trial Runs 005 and 007. .. 68

Figure 32. Version 011.009 Trial Runs 000 and 001. .. 69

ix

List of Abbreviations

GPS Global Positioning System

OLSR Optimized Link State Routing

CA Certificate Authority

TC Threshold Cryptography

MOCA Mobile Certificate Authority

RFI Redundancy Factor for Individual Shadow Functions

RFC Redundancy Factor for Threshold Cryptosystem

LDT Local Decrypt Time

KT Key Time

1

Chapter 1

Introduction

1.1 Background

The United States military and many NATO allies use a precise, encrypted GPS signal

for geolocation. This signal is only able to be decrypted by GPS receivers that have loaded a

GPS decryption key corresponding to the current time. This GPS key typically comes from either

a secure, physical device (such as a Simple Key Loader) or from a server with secure wireless

transmission capabilities. These decryption keys are only valid for certain periods of time, after

which a new key is required.

1.2 Motivation

Because these GPS keys need to be kept secret, there is a large amount of administrative

overhead that is applied to every GPS receiver, especially ones loaded with a valid GPS key. The

manufacturing facilities that produce the GPS receivers must be secured against vulnerabilities

such as hardware backdoors. The receivers must be tracked and accounted for while being

moved through the logistics system. The end users must not lose their GPS receivers while in

theatre, or else they may be required to backtrack and retrieve one that is lost. Loading GPS keys

only as needed, and requiring external authentication and assistance for decrypting those keys

would help to relax these requirements. Furthermore, while the valid time periods for these keys

may be very long (one or more days) there is an issue that arises: How are the receivers rekeyed

when a changeover occurs and the server or key loader are unavailable? This leads to the more

general problem that is the title of this thesis: How can we maintain the security and availability

of a stream of time-dependent secret information while part of an ad-hoc wireless network? This

is the situation we wish to analyze and provide a solution for.

 2

1.3 Assumptions

First, we must state every assumption that we are making. The first assumption is that the

devices will form groups and ad-hoc networks. To be exact, we are assuming that there will be

some form of ad-hoc routing protocol running on all of the devices. We use OLSR, but any ad-

hoc routing protocol that maintains a routing table should work. In the real situation stated

above, there was no mention of devices forming ad-hoc networks. We make this assumption

because lone devices have fewer and much less creative options for dealing with security. Here,

we are trying to leverage the power of the group to provide a better solution than could be

achieved without any cooperation. Next, we are assuming that the devices may become

disconnected from any infrastructure for extended periods of time. This is reasonable for any

wireless network, but even more so in environments where a military would be operating. Also,

everything required to load the secret will come from the “key server.” It is named as such

because, as mentioned above, in the original situation the secret was a GPS key. Here, it provides

both the secret, as well as any cryptographic keys necessary to decrypt it. Lastly, we are

assuming that the key server is always connected to a trusted upstream source for the GPS keys,

etc. The primary point of this last assumption is that the devices can always validate their trust in

both the key server and the data that it provides.

1.4 Problem Statement

1. There are secrets provided by a wireless server that must be loaded into devices.

2. Each secret is only useful during a unique time period.

3. The secrets must be protected from unauthorized users.

4. The devices may be disconnected from the server for extended periods of time.

5. The devices will form ad-hoc networks that may merge, split, etc.

 3

6. Device authentication may need to be established or revoked while the devices are

disconnected from infrastructure-bound authentication servers.

7. The system as a whole should be as resistant as possible to small numbers of device

compromises (i.e. having all memory contents read).

8. The system should adapt to the current situation, attempting to maximize both

security and availability of the secrets.

1.5 Related Work

 We have found three papers that propose systems that bear some semblance to our system

that will be outlined in Chapter 2. First is a threshold signature protocol that can increase its

threshold after the cryptosystem has been created [4]. To be more accurate, that threshold

cryptosystem requires the participation of all peers who hold secret shares, but the number of

distinct secret shares can be increased at will. The issue with this system is that the threshold of

the cryptosystem must be equal to the number of distinct secret shares. In their system this

threshold is also equal to the number of peer devices because each device is only permitted to

hold a single secret share. Furthermore, they provide no means of reversing the process, allowing

for better availability at the cost of security. In contrast, our system tries to dynamically adjust

the tradeoff between security and availability.

 Next is a means of creating a CA based around a local cluster which is then able to sign

and trust another cluster’s CA [5]. This system is effectively the Web of Trust model [7] with

each discrete vertex on the graph being replaced by a local cluster of devices. The local clusters

generate basic TC signature schemes to create their CA. This method is similar to how our

system takes into account the locality of the devices, but they consciously leave out the means by

 4

which the devices choose who gets to hold the secret shares of the CA. Our system is intimately

concerned with how to make this choice, as will be outlined below.

 Lastly is a secure, distributed file system for ad-hoc networks [6]. Unlike the previous

two papers, this deals explicitly with the security of data in the face of device loss or capture.

Their system, called Mobile Distributed File System or MDFS, takes the data to be protected and

encrypts, fragments, and then distributes it among the local devices. Each fragment is a piece of

the ciphertext combined with a corresponding secret share. While the system does present some

interesting ideas, they completely ignore the aspect of reliability in potentially volatile networks.

Our system would try to ensure that those fragments were available to devices that need them.

 5

Chapter 2

The Solution: Ad Hoc Security

2.1 Design Principles

As mentioned above, the goal is to only allow authenticated users to access secrets, while

denying secret access to all others while in an ad-hoc network. This would normally require the

devices to have some knowledge of their current user’s state. While there are technologies that

do this directly, such as biometrics and security cards, they are out of the scope of this research.

The goal here is to be able to automatically verify the authenticity of a device with cryptography

while only requiring user interaction for fringe cases. Given the assumption of frequent

disconnection from any infrastructure, the receiver groups must have some way of verifying

authenticity among themselves. Lone receivers would have to rely on the technologies

mentioned above (biometrics, cards) along with whatever other external information they could

gather in order to verify their user. The assumption that devices will form groups allows for more

creative solutions.

2.2 Ad Hoc Security Overview

The terminology used in this overview will be explained in detail in the sections below.

1. Use broadcast heartbeat messages to continuously push back the time when a device will

wipe its own memory of all secrets (including decryption materials).

2. Have the devices continuously sign each other’s identifying certificates using threshold

cryptography with short time validity signatures. A certificate with no signature or an

expired signature requires other users to manually tell their devices to trust the unsigned

certificate. Each device holds a fixed number of signature functions (normally 1, unless

under special circumstances).

 6

3. Use threshold cryptography to decrypt the secrets. Each secret is encrypted with a

different threshold cryptosystem. Each device can hold a variable number of decryption

functions. The number held is based on the current Redundancy Factor of that

cryptosystem.

2.3 Heartbeat and Trusted Peers

Ensuring that only the intended users are granted access to secrets starts by ensuring that

adversaries are denied access to secrets. We use heartbeat messages as a kind of dead-man

switch. These messages contain the current time as well as a cryptographic signature to prevent

spoofing or replay attack. If a device goes for too long without receiving one or more heartbeats

from trusted peers, it will empty its memory of all secrets. This is because a normal user will be

within communication range of at least a few peers, and an abnormal user will likely try to take

the device to another location. If the device remains in communication range of its peers, then it

is the responsibility of the other users to proactively tell that device to wipe its memory of any

secrets. Thus, adversaries are put into a no-win situation: whether they leave or stay, the secrets

should be wiped. However, all of this relies on knowledge of which peers to trust.

2.4 Trusted Peers and a Mobile Certificate Authority

In an infrastructure network system, knowing which peers to trust usually involves an

implicitly trusted certificate authority (CA) signing the identifying certificate of everybody

involved. It is assumed that the reader is familiar with the basic function of a CA, as well as the

properties of a cryptographic signature. This method of verification could be used as an absolute

baseline of trust. However, as mentioned in the problem statement, there may be situations where

the devices are disconnected from all infrastructure-bound resources and need to modify a peer’s

trust status. This is where a Mobile Certificate Authority (MOCA) system can be used.

 7

A MOCA is a kind of flexible, distributed CA. This will be a brief description, see [2] for

details. At its core, MOCA is threshold cryptography applied to cryptographic signatures.

Threshold cryptography will be explained in detail in the Threshold Cryptography section below.

In short, so long as a device can communicate with at least a threshold number of designated

MOCA signing peers, it can have its identifying certificate signed by the MOCA. This signature

works the same as any other CA signature, just the means of acquiring it is different. In [2] the

authors only designate a subset of the devices as MOCA signers. However, we opted to make

every device a MOCA signer, mostly for simplicity. The distributed nature of MOCA also

enhances security. As will be explained in the Threshold Cryptography section, the MOCA

system can only be fully compromised if a threshold number of participating devices are

compromised. This fits with the last goal in the problem statement above: it should be resistant to

small numbers of device compromises.

The primary change to the MOCA system used here is the duration of a signature’s

validity. To ensure that up-to-date authentication is maintained, the signatures must be valid for

reasonably short amounts of time. The signatures are normally renewed automatically, but if it is

unable to do so before the current signature expires then the users must manually authenticate the

device. This continuous “check-in” kind of scheme is similar to the heartbeat system. It forces

compromised devices to eventually become untrusted, whether automatically or manually.

Furthermore, recall that the heartbeat system only recognizes heartbeats from trusted peers. This

forms another layer of security: if a device is untrusted, then it cannot push back its wipe time

even if it is within range of other devices.

 8

2.5 Secret Encryption

A trusted device can receive secrets from either the central server or its peers. But, as

mentioned in the problem statement, the secrets must be protected from unauthorized users. This

means that the secrets should at least be encrypted. However, decrypting the secrets when they

are needed poses a challenge. Traditional single key decryption schemes would make each

device a single point of failure. A distributed decryption system is then needed. In a similar

fashion as the authentication system, distributing the decryption power among multiple devices

can protect the encrypted secret from single point compromises. Like with MOCA, we can make

use of threshold cryptography for this task, with a few twists to enhance reliability.

2.6 Threshold Cryptography in Ad Hoc Networks

Threshold cryptography (TC) is a type of multi key cryptography that only requires the

participation of a threshold number of peers out of the total number (t out of n) to complete a

cryptographic function [1]. The term “participation” refers to the use of a secret function,

sometimes called a secret share or shadow function, on the message to be signed or decrypted.

We will use the term shadow function from here on. As seen with MOCA, TC provides a

cryptographically verifiable and highly flexible way to enforce the number of peer contributions

required, instead of relying on some kind of counter value saved in the software, or a multi-

layered encryption.

The main difficulty of designing a system for ad-hoc networks is the connection volatility

and unreliability. Devices may become connected or disconnected at random, and there is no

guarantee that a specific peer will be available when needed. Traditional TC is synchronous [1],

meaning that participating peers must be present throughout the entire process to be successful.

While TC is better than other options, synchronous TC is far from ideal. In this system,

 9

asynchronous TC is a much better option. Asynchronous TC allows for participation at any time

by producing “decryption shares” [3] which are single messages that encapsulate a peer’s entire

contribution to the decryption. These decryption shares will be referred to as “partial

decryptions” from here on, because the term is more true to its use. These partial decryptions are

later verified and combined to produce the decryption or signature. This property allows for

much needed flexibility on when the decryption can take place, because devices can simply store

partial decryptions for later use.

However, if a device cannot contact at least a threshold number of peers, then the

decryption or signature will always fail. One solution to this would be to reduce the threshold of

the cryptosystem. This incurs obvious security detriments and does nothing to address the

inflexibility of the threshold value. It would be better for the solution to be adaptable to the

network’s current state. This is where Redundancy Factor comes into play.

2.7 Threshold Cryptography Reliability Enhancements

Redundancy Factor is essentially a measure of confidence based on the status of nearby

peers. It is the confidence that a threshold cryptosystem’s functionality will be available by the

time it is needed. There are two parts to Redundancy Factor: one for individual shadow functions

and one for whole cryptosystems. Their formulations are given in Equations 1 and 2.

Equation 1: RF Individual, for individual shadow functions.

𝑅𝐹𝐼 𝑖, 𝑁, 𝐷, 𝐹, 𝑡, 𝑋, 𝑥, 𝑇 =
min	(1, 𝑇

𝐶 𝑛, 𝑋)𝑃(𝑛, 𝑥)

𝐹(𝑑(𝑖, 𝑛), 𝑡)
8∈:(;,<)

Equation 2: RF Cryptosystem, for entire threshold cryptosystems.

𝑅𝐹𝐶 𝑖, 𝑁, 𝐷, 𝐹, 𝑡, 𝑋, 𝑇 =
min(1, 𝑅𝐹𝐼(𝑖, 𝑁, 𝐷, 𝐹, 𝑡, 𝑋, 𝑥, 𝑇))

𝑇
=∈>

 10

Terms used in Equations 1 and 2:

i: our particular node in N

N: the set of all nodes in the network

N(i,D): set of nodes no further than D network hops from node i, includes node i at d = 0

x: individual shadow function in X

X: set of all shadow functions in the threshold cryptosystem

C(n,X): the number of shadow functions that node n has from cryptosystem X

D: maximum distance considered, also maximum distance in F

d(i,n): distance from i to n

T: threshold number of unique shadow functions needed for this cryptosystem

F(d,t): falloff factor matrix for distance (in terms of network hops) and time, see Table 1.

P(n,x): presence of shadow function x in node n, returns true (1) or false (0)

t: time until the secret is no longer needed3

Time Before
Secret End

Falloff Factor for
d = 0

Falloff Factor for
d = 1

Falloff Factor for
d = 2

t > 160 minutes 1.0 1.0 2.0
160 minutes > t > 140 minutes 1.0 2.0 4.0
140 minutes > t > 60 minutes 1.0 4.0 8.0
60 minutes > t > 0 minutes 1.0 1.0 2.0

Table 1. Example falloff factor matrix.

3 The falloff factor’s time parameter is in reference to the time when the secret is no longer
needed, called the secret’s “end time,” as opposed to when the secret is first needed, called the
secret’s “start time.” This is because nodes may still request and load the secret after its start
time. The falloff factor matrix must be aware of the secret duration so that it can offset its times
accordingly.

 11

 A falloff factor matrix is a way of defining what level of redundancy is acceptable, given

the amount of time before needing the cryptosystem. To be more precise, it says how many

copies of a shadow function are needed at certain distance to feel confident that this particular

shadow function will be available when it is needed. While in this implementation the falloff

factor only considers distance and time, its position should be seen as a more general scaling

factor given the state of the device in question. In Table 1, the falloff factor increases as the

secret’s start time approaches, and then decreases once the start time has passed. The decrease at

the end is not used in the simulations (because they will almost never encounter such idyllic

scenarios) but is shown here as an example of a more general form that the matrix might take.

This kind of falloff factor assumes that the vast majority of devices will load the secret on time,

so maintaining the elevated redundancy afterwards would be unnecessary. The falloff factor

matrix is what defines the devices’ behavior towards security and availability, and should be the

factor that is changed first when tuning the system.

In Equation 1, all that is happening is that our node is looking at its network neighbors

and checking if they have a certain shadow function. If they do, then it considers how far away

that neighbor is as well as how long until the function is needed. If a neighbor is further away

and the deadline is very soon, then the falloff factor will probably be much higher, resulting in a

lower confidence contribution. In Equation 2 we are asking whether we are confident in our

ability to access at least a threshold number of functions, given our individual confidence in each

of those functions. The minimum acceptable confidence level for both equations is 1. These two

equations form the backbone of the solution, but they have some context-dependent issues that

require explanation.

 12

The minimum function in Equation 1 is to limit the contribution by nodes that hold a

large number of shadow functions. Specifically, the nodes affected are those that have at least a

threshold number of functions. With at least a threshold number of functions and a sufficiently

small falloff factor, a single peer node can produce a RFC that is unreasonably high compared to

a qualitative analysis. Multiplying all of its contributions by the threshold and then dividing by

the number of functions held results in a maximum total contribution towards the RFC of 1

divided by its falloff factor. Thus, falloff factor dictates not only the minimum number of

function copies required to be confident, but also the minimum number of peers as well. The

minimum function in Equation 2 is to limit the contribution of a single function. Because the

goal is to maintain the availability of a threshold number of different functions, it is necessary to

put a cap on the contribution of each individual function. This does result in the loss of some

information, but there would be little benefit gained from extending the confidence range beyond

whatever is deemed acceptable.

 13

Chapter 3

Implementation Details

3.1 Overview

 The solution outlined above is the skeleton of the full implementation. Here we will flesh

out the important implementation details. The actual implementation was written in C++ for the

network simulator called ns3. We will skip over the minutiae of the actual statements in favor of

a more pseudo-code type of approach. These details are important to the success of the

application, as will be explained in their respective sections. There are six “major behavior

loops” present in this implementation:

1. Heartbeat. Regularly sending heartbeat messages to prevent memory wiping.

2. Load Current Secret. Attempting to load the currently applicable secret.

3. Check Secret Buffer. Ensuring the secret buffer is filled to capacity.

4. Redundancy Check. Checking RFC and requesting more shadow functions if needed.

5. Prepare Next Secret. Gathering partial decryptions for decrypting the next secret.

6. Maintain Authentication. Ensure the device has a signature that is trusted by others.

3.2 Behavior Parameters

 Every device in the ns3 simulation has a variety of behavior parameters. These

parameters are modified in the test cases to compare performance differences. Below is a list of

the parameters and their purpose.

1. server: Whether or not this device is acting like a key server. If it is then certain functions

are disabled, such as heartbeat broadcasting and memory wiping. This should only be

present for the simulation.

 14

2. signing_cert: The unique identifying certificate of the device. This is the cert that is

signed by the MOCA.

3. signing_key: The key associated with the signing cert.

4. heartbeat_cert: The cert for the threshold cryptosystem that dictates the number of unique

heartbeats required to push back the wipe time.

5. heartbeat_keys: The TC shadow functions used for the heartbeat cryptosystem. Each

device typically has only one function.

6. moca_cert: The cert that identifies the MOCA cryptosystem.

7. moca_keys: The shadow functions used for the MOCA. Each device typically has only

one function. The number of MOCA functions is not checked or modified by any kind of

redundancy factor calculation.

8. server_ips: The list of IP addresses that identify key servers.

9. falloffs: The list of falloff factor objects. Each falloff factor object lists the falloff values

for different distances with respect to its single time offset value. In Table 1, every row

would be a falloff factor object.

10. olsr_routing_protocol: A pointer to the routing protocol this device uses. This is

necessary as several functions use the routing table for calculating distance.

11. broadcast_port: The port that the device listens on.

12. maxNumHops: The maximum number of network hops that broadcasts will travel over.

This applies to both heartbeats and crypto statuses.

13. heartbeat_delay: The delay between sending heartbeat messages.

14. heartbeat_power: The amount of time (past the time of sending) that a heartbeat will push

back the current wipe time.

 15

15. auth_delay: The delay between sending MOCA signature requests, if it is time to start re-

authenticating.

16. auth_start: The amount of time before the current MOCA signature expires that the

device will begin sending MOCA signature requests.

17. auth_power: The amount of time that the requested MOCA signature will be valid for.

Note: In this implementation MOCA signatures are only valid for auth_power duration

time blocks that are the same for every device, instead of adding auth_power to the

current time. This was done purely for simplicity of implementation.

18. status_delay: The delay between sending crypto status messages.

19. status_power: The amount of time that a crypto status message is considered valid.

20. secret_interval: The useful duration of each secret. Note: Every secret object also

contains their start and end times, but this is just a simple way to get that information.

21. secret_buf: The length of the buffer of secrets. This buffer includes the currently loaded

secret, so there are secret_buf - 1 extra secrets queued up.

22. load_secret_delay_short: A short delay between checking whether the currently

applicable secret can be loaded (i.e. is able to be decrypted locally). Earlier in

development there was a load_secret_delay_long, but it was found to be unnecessary

when the next check can be scheduled for the current secret’s end time.

23. check_buf_delay_short/long: The short and long delays between checking if the device’s

secret buffer is filled to capacity. The short delay is for when the buffer is not full, and

the long delay is for when the buffer is currently full. We cannot simply schedule the next

check around the current secret’s end time as a memory wipe may occur at any point.

 16

24. prep_delay_short/long: The short and long delays between checking on the status of the

next secret to be loaded. The short delay is used when there is still work to do, and the

long delay is for when there is nothing for the loop to do for a long time.

25. prep_start/finish_decrypt: The start and finish time offsets for secret loading. They are

both in terms of time before the secret is first needed. The purpose of these values will be

described in detail later.

26. check_delay: The delay between checking the redundancy factor of each secret’s

encryption cryptosystem.

3.3 Heartbeat Loop and Memory Wipe

 The heartbeat system exists as a way of automatically wiping secret information if a

device strays from the group for too long. Every device broadcasts heartbeats at regular intervals

defined by heartbeat_delay. The broadcast distance is reduced to be no more than maxNumHops.

Each heartbeat contains a timestamp that states the new memory wipe time requested by the

device. If a device receives a heartbeat request from a peer that they trust, then they will send

back that heartbeat message with a cryptographic signature and a flag indicating that it is a

response. In this implementation, the heartbeats also make use of a threshold cryptosystem to

allow for the requirement that multiple peers approve the device’s heartbeats. However, this was

added for flexibility and generality and is not a strict requirement.

 The memory wipe event is a ns3 event that is deleted and recreated every time enough

heartbeats responses are received. Its time is pushed back based on the timestamp in the last

valid heartbeat received (or heartbeats, if more than one are necessary). The memory wipe event

removes all buffered secrets and decryption shadow functions from memory. It does not remove

authentication information such as certificates or MOCA shadow functions, nor does it remove

 17

the currently loaded secret. It is assumed that a loaded secret is either stored in a secure enclave

or already consumed by the user or the device. The presence of a secret in the “loaded secret”

memory location is more of a way of keeping track of whether or not one is loaded for the

current time slot.

3.4 Load Current Secret and Check Secret Buffer

 The secret loading system is what ultimately loads the currently applicable secret. It is

effectively a polling loop that checks the device’s secret buffer for the currently applicable

secret. If that secret is unencrypted or can be decrypted using locally available functions and

partial decryptions, then it decrypts and loads. It then schedules the next run for the end time of

the current secret. If the currently applicable secret is not loaded and cannot be loaded, then it

waits a short amount of time and tries again.

 The secret buffer checking system is what ensures that the device’s secret buffer is filled

to maximum capacity. It will keep the buffer filled with the secrets that are applicable for the

current time block, the next time block, etc. If any secret that should be buffered is missing, it

will attempt to retrieve it from the key server. If the key server is not in the routing table, then it

will broadcast the request to its 1-hop neighbors. Because every device will be attempting to get

the same secrets, it is unnecessary to extend the request beyond immediate neighbors. The secret

buffer checker will check quickly again if it is missing any secret, and will check after a longer

duration if the buffer is full.

3.5 Crypto Status and Redundancy Check

A crypto status message lists a device’s address, decryption shadow functions, and

MOCA shadow functions. Each device broadcasts this message at a regular interval to all

neighbors within its max number of hops range, and it serves as the basis for redundancy check

 18

calculations. A crypto status message will expire after a set amount of time, or will be replaced if

the device receives a new status before the previous status expires.

A redundancy check is when a device looks through its crypto status messages, calculates

the RFC, and then makes requests to nearby peers for additional shadow functions if necessary.

A redundancy check loop is running for every encrypted secret in the buffer, and is started as

soon as the secret is first received. The redundancy check loop continues as long as the secret’s

end time has not yet passed. The control flow of a redundancy check is as follows:

1. Get the falloff factor with the time that is closest to, but still less than, the current

time, defaulting to the falloff factor with the earliest time.

2. If our device does not have any locally saved shadow functions for this secret that

have not already been applied (in the form of partial decryptions), then add a request

for one unapplied shadow function from our peers.

3. Calculate RFC for this cryptosystem.

4. If the RFC is between 0.5 and 1, then add requests for 1/16th of a threshold number of

shadow functions with the lowest RFI.

5. Else if the RFC is between 0.25 and 0.5, then add requests for 1/8th of a threshold

number of shadow functions with the lowest RFI.

6. Else if the RFC is lower than 0.25, then add requests for 1/4th of a threshold number

of shadow functions with the lowest RFI.

7. Send the shadow function requests.

One important detail is in how the lowest redundancy shadow functions are chosen. In an

earlier version, it would simply request the functions with the lowest redundancy and the lowest

identifier number. This lead to two issues. First, the lowest redundancy functions are inevitably

 19

the ones with RFIs of 0. It is useless to attempt to request these functions, as a RFI of 0 indicates

that it is completely unavailable. The solution was to only request the lowest non-zero RFI

functions. Second, selecting the lowest redundancy and lowest identifier function caused every

device in a group to mostly request the same functions. Then there would not be enough variety

to reach the decryption threshold, despite every device locally storing more functions that

necessary. The solution was to apply some controlled randomness to the selection process. To

select the lowest RFI functions, first the functions are grouped by RFI value. Starting from the

lowest RFI value group, the device would randomly pick functions to request, only moving to a

higher RFI value group once the current one is empty. This lead to devices choosing a wider

variety of functions, thus reaching the required threshold with less unnecessary duplication of

functions.

Another issue encountered was in the treatment of the key server’s crypto status

messages. Since the key server has all the shadow functions for every cryptosystem, it could

easily saturate the RFC of nearby devices. This could lead to those devices choosing to not

request any functions before becoming disconnected, and then being unable to decrypt the

applicable secret. This issue was corrected by applying a special case to the key server where it

adds a negligible, but non-zero, value to each function’s RFI instead of the normal 1/falloff

value. This problem later lead to the realization that there should be per-device cutoffs for RFC

contributions, culminating in the inclusion of the min function in Equation 1.

3.6 Prepare Next Secret

The “Prepare Next Secret” loop is what prepares the next secret for decryption. It

accomplishes this through the limited gathering of partial decryptions. Recall that a partial

 20

decryption is the culmination of a single shadow function’s contribution towards a decryption or

signature. The basic control flow is as follows:

1. If the currently applicable secret is not loaded, try to find the current secret.

2. Else find the secret for the next time slot.

3. If we found a secret from either of the above searches, check the current time.

a. If it is time to finish decryption, then request partial decryptions until the

secret can be decrypted locally or until it requires only one more shadow

function contribution. The partial decryptions requested will never be for a

function that is locally saved4.

b. Else if it is time to start decryption, then request partial decryptions until

either the secret can be decrypted locally or half of a threshold number of

partial decryptions have been acquired.

4. Else, wait for either a long or short time, depending on whether we are ahead or

behind on decrypting the next secret.

The goal was to limit the risks posed by possession of decryption material (shadow

functions and partial decryptions). Because each device must eventually save enough decryption

material to decrypt the secret, the only way to limit the risk is by controlling the amount of time

that the material is in memory. If every device has some probability of compromise for every

point in time, then lowering the time that the device holds sensitive information will lower the

overall probability of that information being compromised. Of course, this method does come

with reliability detriments, as will be explored in Chapter 6, Results and Analysis.

4 As stated in Crypto Status and Redundancy Check, the device will always try to keep at least
one unapplied shadow function locally saved.

 21

It should be noted that while Prepare Next Secret and Check Redundancy may seem to do

the same thing, they actually have different goals. Prepare Next Secret works for the benefit of

only the local device. Partial decryptions are not gathered with the intent of distributing to others.

Check Redundancy works for the benefit of the group. It works to gather shadow functions that

are exceptionally rare not only so that the local device can have access to them, but also so that

its peers can access them as well.

3.7 Maintain Authentication

The “Maintain Authentication” loop is what ensures the device has a valid MOCA

signature on its identifying certificate. The MOCA signature request method and timing is

simpler than the Heartbeat or Redundancy methods. This is due to the fact that MOCA signatures

were implemented to expire at the end of pre-defined time blocks. For example, the default

MOCA signature duration (auth_power) is one hour, so the device would need a new signature

that expires at hours 1, 2, 3, etc. It starts requesting new partial signatures from its peers at

auth_start amount of time before the start of the next time block. The signature starts being valid

from the time it is completed, regardless of the time that it expires. This is because only the

expiration date is recorded in the signature. If it is unable to acquire a new MOCA signature

before the next time block starts, then it waits until it is time to start requesting for the next time

block. This leads to “chunks” of “unauthorized time” that are usually about auth_power –

auth_start in size, or 30 minutes by default. This method was used for simplicity of

implementation. The device uses the list of crypto status messages as a way of deciding which

peer to send the next partial signature request to. Recall that crypto status messages also contain

the sending device’s list of MOCA functions, allowing the requesting device to ensure it is not

requesting from the same device more than once.

 22

Chapter 4

Testing Methodology

4.1 Overview

 The testing methodology used was designed around confirming basic functionality and

finding failure points. Comparing the performance between different sets of behavior parameters

was a secondary goal. Since this is the first complete version of the system, it would not make

sense to fine tune the behavior parameters when it is expected that the system behavior may

change drastically. There are two parts to each test: the major and minor version. The major

version (denoted by the first three numbers in the simulation filename) defines the macro-scale

movements, timings, and sizes of device groups. There are 12 major versions, with many of them

being slight variations of others. The minor version (denoted by the second three numbers in the

simulation filename) defines the behavior parameter that is changed relative to the baseline.

There are 11 minor versions, with the first being the baseline and every consecutive pair

afterwards moving a single parameter in opposite directions. This means that every simulation

file has a name like “sim.004.003.json” which means it is testing major version 004 with minor

version 003. Here we will refer to tests by their major and minor versions. For brevity, a full

scenario may be referred to as simply “version 004.003” for major version 004 with minor

version 003. If a third trio of numbers is present, then this refers to a specific run of that

particular major/minor version pair. For example, 005.000.001 would refer to major version 005

with minor version 000 and run number 001. As will be mentioned later, the tests are run

multiple times to find inconsistencies due to randomness.

One final note on the testing methodology: the MOCA/authorization system is not tested

heavily or put under much scrutiny. It was originally going to serve as a more static point of

 23

comparison against the more dynamic decryption system. However, the authentication system is

so static that measuring its effectiveness is trivial. It will be successful if, given a certain time

window, the device in question is able to communicate with a threshold number of different

trusted peers. If that time window is extended, or the density of the network increased, or the

threshold of the cryptosystem reduced, then the system’s likelihood of success will increase. The

effect that density has on reliability is seen in the MOCA paper’s success ratio graphs [2]. The

only simulation to see authentication failures was the final simulation (major version 011) with

its highly mobile, widely spread out group of devices. Even then, failing to get a MOCA

signature on time is exceedingly rare. Furthermore, it would not be fair to compare a static

system against a dynamic system. In major version 007, three devices split off from a group and

become disconnected. With a single decryption function per device and a decryption threshold of

eight, these three devices would be guaranteed to never be able to decrypt any of the secrets

within their buffer, unless they request partial decryptions during their connected period. With

these issues in mind, the authentication system’s performance will be omitted from the analysis.

4.2 Device Groups and Movement

 The way we defined movement was heavily influenced by the assumption that devices

would form groups which would, for the most part, move together. The devices are generated by

defining groups in the simulation file. Each group has a size, which says how many devices are

in it. When the simulation file is parsed, this will tell the simulation program to generate that

many devices and to apply the same movement timings to them. Each group also has a

dispersion value, which says how randomly spread out they can be. This dispersion value is

actually the side length of a square. This square is the area that the devices can move within.

More accurately, it is the range of values that a random number generator can produce. The

 24

random number generator is used to offset the device’s position from the position of the bottom

left corner of the box. The three arrays named “X,” “Y,” and “T” define the position of the

bottom left corner of the box at a certain time. The position values generated for each device

become waypoints that they move between. Note that a new waypoint is only calculated for

every X,Y,T triple. If there is a single triple, then only a single waypoint will be calculated, and

the devices will not move from that position. This is why, for stationary boxes, we repeat the

same X,Y value for consecutive times. It will cause the devices to randomly move within their

box, which is more in line with expected behavior. The key server is always positioned at point

(0,0). The communication range of all devices is approximately 120 units. A distance of 150

units is often used to enforce disconnection.

4.3 Major Version List

The list of major versions is as follows:

000. Fully connected device network within range of the key server.

001. Partially connected device network within range of the key server.

002. Fully connected device network that starts within range of the server. It later

disconnects from the server for a time less than its internally buffered secret time. It

then reconnects to the server.

003. Same as 002, but the device network is partially disconnected.

004. Same as 002, but the device network is disconnected for longer than its internally

buffered time.

005. Same as 004, but the device network is partially disconnected.

 25

006. A group of devices just large enough to self-authenticate becomes disconnected from

the rest of the device network and key server for a time less than its internally

buffered secret time. Afterwards they reconnect to the main group and server.

007. Same as 006, but the moving group stays disconnected for longer than their internally

buffered secret time.

008. One device group is connected to the server. Another device group is directly

connected to the first group but not directly connected to the server, i.e. a straight line

of two device groups.

009. Same as 008, but it is a straight line of 3 device groups.

010. One device group is disconnected from the server. Another device group “ferries”

data between the server and the disconnected group every other hour.

011. One large node group that is very spread out but can still be within range of the

server.

4.4 Minor Version List

For the minor versions, only the baseline will list every parameter. Every subsequent

version will only list the parameter that is changed. The list of minor versions is as follows:

000. Baseline.

• 6 secrets with 2 hour durations for a total of 12 simulated hours.

• Heartbeat threshold of 2 (not including self-signature).

• MOCA threshold of 3 (including 1 self-signature).

• Secret decryption threshold is 8 out of a total of 16 shadow functions.

• Falloff factor: See Table 2.

• maxNumHops = 2.

 26

• heartbeat_delay = 1 minute.

• heartbeat_power = 120 minutes.

• auth_delay = 1 minute.

• auth_start = 30 minutes.

• auth_power = 60 minutes.

• status_delay = 1 minute.

• status_power = 10 minutes.

• secret_buf = 3, 1 loaded and 2 buffered.

• load_secret_delay_short = 5 minutes.

• check_buf_delay_short = 2 minutes.

• check_buf_delay_long = 10 minutes.

• prep_delay_short = 1 minute.

• prep_delay_long = 10 minutes.

• prep_start_decrypt = 90 minutes.

• prep_finish_decrypt = 30 minutes.

001. Lower secret encryption threshold:

• Threshold = 4, Total = 16.

002. Higher secret encryption threshold:

• Threshold = 12, Total = 16.

003. More aggressive falloff factor: See Table 3.

004. Less aggressive falloff factor: See Table 4.

005. Longer secret time, smaller secret buffer:

• 3 secrets with 4 hour durations.

 27

• secret_buf = 2 (one loaded and one buffered).

• 120 minutes added to all falloff factor times.

006. Shorter secret time, larger secret buffer:

• 12 secrets with 1 hour durations.

• secret_buf = 5 (one loaded and four buffered).

• 60 minutes subtracted from all falloff factor times.

007. Earlier start and finish decrypt times:

• prep_start_decrypt = 180 minutes.

• prep_finish_decrypt = 60 minutes.

008. Later start and finish decrypt times.

• prep_start_decrypt = 45 minutes.

• prep_finish_decrypt = 15 minutes.

009. Larger number of hops for heartbeat, crypto status, and falloff.

• maxNumHops = 4.

010. Smaller number of hops for heartbeat, crypto status, and falloff.

• maxNumHops = 1.

Time Before
Secret End

Falloff Factor for
d = 0

Falloff Factor for
d = 1

Falloff Factor for
d = 2

t > 160 minutes 1.0 1.0 2.0
160 minutes > t > 140 minutes 1.0 2.0 4.0
140 minutes > t > 0 minutes 1.0 4.0 8.0

Table 2. Default falloff factor matrix.

 28

Time Before
Secret End

Falloff Factor for
d = 0

Falloff Factor for
d = 1

Falloff Factor for
d = 2

t > 160 minutes 1.0 2.0 4.0
160 minutes > t > 140 minutes 1.0 4.0 8.0
140 minutes > t > 0 minutes 1.0 8.0 16.0

Table 3. More aggressive falloff factor matrix.

Time Before
Secret End

Falloff Factor for
d = 0

Falloff Factor for
d = 1

Falloff Factor for
d = 2

t > 160 minutes 1.0 1.0 1.0
160 minutes > t > 140 minutes 1.0 1.0 2.0
140 minutes > t > 0 minutes 1.0 2.0 4.0

Table 4. Less aggressive falloff factor matrix.

 29

Chapter 5

Data Collection and Measured Metrics

5.1 Data Collection Overview

 The data collection method is a log file that records the events that occur on each

device in the simulation. Each event contains a timestamp relative to the simulation time, a

device ID (which is just the memory location of the ns3::Application object), and an identifier

string that states which kind of event is occurring, like loading a secret or calculating the

RFI/RFC. Most events contain extra information after this, such as which secret is being loaded

or the value of the calculated RFI/RFC. These event statements are later parsed by a separate

program to produce four metrics: downtime, key time, local decrypt time, and unauthorized time.

As unauthorized time was not tested, it will be omitted from most of the analysis. These metrics

are calculated for each device, giving insight into how the movement and parameters affect the

different groups. Each test is run multiple times, because of the randomness in the movement and

behavior. Most of the tests are run four times, but some of the tests with more varied results are

run eight times. The three metrics are then averaged across each device and test run before

finally being compared to the other tests in the graphs that will be shown Chapter 6, Results and

Analysis.

5.2 Downtime

 Downtime is the sum of the amount of time that a device does not have a currently

applicable secret loaded. For example, say there are two secrets with start times of 0s and 7200s.

The device loads them at 600s and 7300s, respectively. The device’s total downtime thus far is

700s. Note the loss of information that comes with the aggregation of those two values. Also, at

the beginning of every simulation the devices are completely empty. This means that there will

 30

always be some amount of downtime due to startup. However, this starting downtime is usually

no more than 900s, or 15 minutes. Generally speaking, downtime is the most important metric. A

system that is secure yet provides no benefit to its users is effectively worthless. Downtime is

analogous to availability: being unable to decrypt a secret leads to downtime, which means the

decryption system was unavailable.

5.3 Key Time

 Key time is the integral with respect to time of the number of shadow functions a device

has locally saved. Shadow functions are called keys in the implementation because they

effectively do the same job as a normal cryptographic key. Because of key time’s formulation, it

has a somewhat strange unit of “key seconds” or key*s. This unit is actually quite useful. Recall

the way that a threshold cryptosystem can be compromised. If a threshold number of its shadow

functions are viewed by an adversary, then the system’s security is lost. In this situation, every

device that is lost could have its memory contents, including saved shadow functions, exposed to

an enemy. It is similar to the situation of carrying a briefcase filled with money. More money in

the briefcase means more financial loss if it is stolen. Carrying the briefcase for a longer time

means there is a greater chance of encountering someone who will try to steal it. Thus,

minimizing the number of shadow functions and/or the amount of time that those functions are in

memory will help reduce the risk of full cryptosystem compromise. Key time is half of the

equation for determining security. A decryption system can only be compromised by way of

devices exposing the shadow functions in their memories.

5.4 Local Decrypt Time

 Local decrypt time (LDT) is the integral with respect to time of the number of secrets a

device can decrypt using only locally available materials (i.e. shadow functions and partial

 31

decryptions). LDT is similar to key time in that its unit is “secret seconds” or secret*s. This is

because a secret will likely be loaded (and thus implicitly locally decrypt-able) while

accumulating partial decryptions and shadow functions for the next secret or two. Thus there is

expected to be overlap between one or more secrets that are locally decrypt-able. The LDT

presented here is a worst case scenario. It is assumed that the device will not remove partial

decryptions from memory once a secret is loaded. In the best case scenario, the device would

scrub its memory of all partial decryptions once the secret is loaded, since they will not use

partial decryptions to assist peers in decryption. Calculating the LDT of the best case scenario

would require making the distinction between being able to decrypt a secret using partial

decryptions, and being able to decrypt a secret using only shadow functions. Currently, the

logging system does not make this distinction. However, in Results and Analysis we will

examine LDT in greater detail to show its relationship with the Redundancy Factor system.

Local decrypt time is the other half of the security equation. Depending on how secrets are

loaded and how partial decryptions are handled, having a larger LDT could indicate increased

risk of secret compromise.

5.5 Unauthorized Time

 Unauthorized time is the sum of time that a device does not have a certificate with a valid

MOCA signature. This metric is not tested as heavily as the previous three, but it does allow for

some knowledge of how volatile the ad-hoc network is, given that it uses static shadow function

allocation. Major version 011 is the only test that had appreciable unauthorized time, which lead

to some devices wiping their own memories.

 32

Chapter 6

Results and Analysis

6.1 Overview

The results presented below are a selected subset of all the data gathered from the

simulations. The results of many of the simulations are either too similar or provide no insight

into the successes and failures of the Ad Hoc Security system. Furthermore, the averages

presented in the graphs should be viewed as very coarse comparisons of performance. This is

because the averages are over every device in a simulation run. Some of the device groups have

wildly different connectivity experiences, and thus the average cannot accurately represent the

overall performance. The real insight comes from examining the per-device performance and

events. As such the graphs will be used as ways of comparing basic performance trends across

minor versions, while the log files and per-device aggregates will be used to see real

performance as well as failure points.

6.2 Illustration of Data

The performance data will be presented using three different bar graphs. The graphs are

for downtime delta, key time delta, and local decrypt time delta. These three graphs illustrate the

difference in performance that their minor version causes, relative to minor version 000. The

value above minor version 000 in these graphs is its raw performance number. This value was

included to provide a sense of scale to the compared values.

6.3 Perfectly Reliable System

First, we need a point of comparison. If this system were tuned for absolute reliability,

then we can calculate the key time and local decrypt time and compare them to the experimental

results. We will not need to consider the heartbeat or authentication systems, as we can assume

 33

that the perfectly reliable system will simply lower the thresholds and/or increase the

moca/heartbeat_power parameter to render both systems inconsequential.

To ensure a fair comparison, the perfectly reliable system will behave the same as the

normal system. The only difference being that it has parameters and internal data tuned for

perfect reliability. This means:

1. Every device will hold every secret needed for the duration of the simulation.

2. Every device will hold a threshold number shadow functions for every secret.

3. The devices will only delete secrets and shadow functions once the secret has expired.

The perfectly reliable system could delete the shadow functions after loading the secret.

However, the normal system does not do this as it may need to assist a peer with decryption after

the secret’s start time. As such, for fairness, this behavior will be left unchanged.

 Because every encrypted secret has a corresponding threshold number of shadow

functions to decrypt it, every secret is able to be locally decrypted from the start time. Thus,

calculating the local decrypt time means summing up the total amount of time that each secret is

in memory. So, for N secrets with duration x, the local decrypt time is given by Equation 3.

The key time is related to the local decrypt time in that a threshold number of shadow functions

are saved for each secret. Thus, for N secrets with duration x and decryption threshold T, the key

time is given by Equation 4. Calculating LDTP and KTP for the baseline secret time, longer

secret time, shorter secret time, baseline threshold, higher threshold, and lower threshold results

in the values listed below.

• LDTP(6, 7200s) = 151,200 secret*s

• LDTP(3, 14400s) = 86,400 secret*s

• LDTP(12, 3600s) = 280,800 secret*s

 34

• KTP(6, 7200s, 8) = 1,209,600 key*s

• KTP(6, 7200s, 12) = 1,814,400 key*s

• KTP(6, 7200s, 4) = 604,800 key*s

• KTP(3, 14400s, 8) = 691,200 key*s

• KTP(12, 3600s, 8) = 2,246,400 key*s

Equation 3: Local Decrypt Time for the perfectly reliable system given N secrets with duration x

𝐿𝐷𝑇@ 𝑁, 𝑥 = 𝑛𝑥
:

8AB
=
𝑥𝑁(𝑁 + 1)

2

Equation 4: Key Time for the perfectly reliable system given N secrets with duration x and

decryption threshold T

𝐾𝑇@ 𝑁, 𝑥, 𝑇 = 𝑇 ∗ 𝐿𝐷𝑇@(𝑁, 𝑥)

6.4 Major Version 004: Basic Disconnection and Reconnection

6.4.1 Overview

 Major version 004 is a basic test where a single device group moves away from the key

server and then comes back. This test has the group disconnected for longer than their internal

secret buffers can handle. As such, there will be a guaranteed amount of downtime across every

device. The movement of the group is given by Table 5. Recall that the key server is at (0,0),

every device’s communication range is approximately 120 units, and the positions defined in the

table are for the bottom left corner of the dispersion box. The dispersion value here is 100,

meaning every device will move within a 100 by 100 square, so there is very little chance of a

 35

device becoming disconnected from the rest of the group. The results of the tests on major

version 004 are in Figures 1, 2, and 3.

Group 1
Size: 16

Disp: 100

X 0 0 50 150 150 150 150 150 150 150 50 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 5. Major Version 004 movement definition.

6.4.2 Analysis of Results

 To start, the 7,000s downtime of the baseline is mostly due to the devices running out of

buffered secrets while disconnected from the key server. Normally, about 900s (15 minutes) of

downtime is incurred at startup. The devices are completely empty and must gather secrets,

shadow functions, and partial decryptions for the first secret. A three secret buffer with two

hours each yields six hours of disconnected uptime. Because of the two hour increments, by the

time of the disconnection the first secret’s time has ended and the devices are buffering the

second, third, and fourth secrets, leading to an end time at hour 8. The group does not reconnect

to the key server until a bit after hour 9. To be exact, the log file says that the devices load the

8hr to 10hr secret at 34,500s (9hr 35min). Assuming reconnection at around 33,300s (9hr 15min)

and 600s initial downtime, this means it took about 1200s (20 minutes) to gather and load the 8hr

to 10hr secret.

 Compared to the perfectly reliable system, the LDT and key time are drastically smaller.

An LDT of just over 40,000 secret*s for the default situation is less than a third of the perfect

system’s 151,000 secret*s. The key time fares even better, being just under 200,000 key*s

compared to the perfect system’s 1.2M key*s for the standard case. The lower and higher

threshold cases follow a similar trend.

 36

 An issue to note with the numbers stated above is that LDT and key time are directly

related to downtime. The 8hr to 10hr secret could not be loaded until three quarters of the way

through its duration, and its shadow functions were not in any device’s memory either. However,

this is still useful as a rough comparison, since only one secret out of six was effectively “left

out.” For comparison we can examine the values of major version 003. In version 003.000, the

average key time is about 332,000 key*s and the average LDT is about 53,000 secret*s. While

the key time is 30% higher, it still pales in comparison to the perfectly reliable system’s value.

The most prominent feature at first glance is the drastic increase in downtime that minor

version 006 shows. Minor version 006 is when the secrets have one hour durations instead of

two, and the buffer is increased to five secrets from three. However, with some basic math the

issue becomes clear: three secrets of two hours each means six hours of time, while five secrets

of one hour each means only five hours of time. And the downtime delta perfectly reflects this,

with an increase of approximately 3,000 seconds, or just under one hour. What is interesting,

however, is that there is not a similar decrease with minor version 005, where secret times are

four hours and it buffers only two secrets. This should result in two hours of less downtime,

since it should buffer eight hours instead of just six. Here, the issue is in the timing: the devices

are disconnected from the server by the time the first secret expires. This leaves the second

secret, valid from 4 hours to 8 hours as the only one in the buffer. Minor version 000, with its

trio of two hour secrets, grabs the 6 to 8 hour secret after the first secret expires at 2 hours.

Before the 2 to 4 hours secret expires, the devices are already disconnected and cannot get the 8

to 10 hours secret. In other words, it worked out that the longer secret time did not yield any

downtime benefit due solely to unfortunate timing of the events.

 37

 Another interesting development is in the increase and decrease of key time in minor

versions 001 and 002. Versions 001 and 002 change the threshold to 4 and 12, respectively. This

should intuitively lead to a key time that is either half or half-over that of the default, a threshold

of 8. However, the changes are not as drastic as that, being closer to 30% under or 40% over,

respectively. In a similar vein, minor version 005 does not drop by the expected one third due to

losing one of the three secrets in the buffer, and minor version 006 however, does not increase by

the expected two thirds, corresponding to the gaining of two buffered secrets over the original

three. Instead, 005 drops by about 25% and 006 increases by about 30%. These kind of

inconsistencies are difficult to pin to a specific cause, given the highly random nature of

RFC/RFI and shadow function selection. For example, version 004.000 has devices with key

times of almost 280,000 alongside others with key times of 143,000. To illustrate this point

further, Figures 4, 5, and 6 show the number of shadow functions for devices with key times

close to their respective test’s average. The shape of the graph does not provide much to help in

finding the reason for the inconsistencies. Finding the root cause would likely require analyzing

each device in every run. However, it is very likely minor version 006’s inconsistency is at least

partially due to the extra hour of downtime where it has no shadow functions for any secret.

6.5 Major Version 005: Split Group Disconnection and Reconnection

6.5.1 Overview

Major Version 005 is similar to 004 except that the device group splits into two equally

sized groups after disconnecting from the key server. Table 6 lists the movement of the two

groups. Recall that the position definition is with respect to the bottom left corner of the box. The

Y distance of 250 for Group 2 is necessary for total disconnection because Group 1 will extend

up to a Y of 100. The results of the tests on major version 005 are in Figures 7, 8, and 9. For this

 38

analysis we will be focusing on the baseline, minor version 000. The other minor versions do not

provide much in the way of unexpected results.

Group 1
Size: 8

Disp: 100

X 0 0 50 150 150 150 150 150 150 150 50 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12
Group 2
Size: 8

Disp: 100

X 0 0 50 150 150 150 150 150 150 150 50 0 0
Y 0 0 50 150 250 250 250 250 250 150 50 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 6. Major Version 005 movement definition.

6.5.2 Analysis of Results

 As with major version 004, there is an expected 7,000s downtime on the baseline and an

extra 3,600s downtime on minor version 006. However, the baseline for major version 005

extends up to almost 10,000s of downtime, indicating that there is some kind of issue. Examining

the per-device values, it turns out that this is not a consistent problem. Figure 7 shows the per-

device aggregates for trial runs 000 and 001. Trial runs 002 and 003 exhibit similar outputs,

where one run will be fine and one will have much a larger downtime for the second group.

Figures 8, 9, 10, and 11 illustrate how the RFC of two secrets’ cryptosystems change in time for

the same device across the two trial runs. Total separation of the groups should occur around

hour 4, or 14,400s. In Figure 8 there are two momentary dips for the 4-6hr RFC at around

12,000s and 13,000s. Recall that the falloff factor changes based on time. In particular, it

changes at 40 minutes and 20 minutes before loading. These momentary dips are because of this

changeover and the resulting requests for new shadow functions. These same kind of momentary

dips can be seen in Figure 9 for the 6-8hr RFC. The important thing to note in Figures 8 and 9 is

that every time the RFC dips below 1, it is immediately corrected back to being more than 1.

This means that Group 2 has at least a threshold number of shadow functions available.

 39

 Figures 10 and 11 reveal the issue plaguing Group 2 of run 001. Group 2 does not have

enough shadow function variety for the 4-6hr and 6-8hr cryptosystems to raise their RFCs above

1. There are no momentary dips from falloff factor time changeover because this device has

every shadow function available in Group 2. The log file reveals that for the 6-8hr cryptosystem,

device 16 has shadow functions 0, 1, 6, 7, 11, 13, and 15. Given a consistent falloff factor of 1.0

for locally saved functions, having 7 out of a threshold of 8 leads to the resulting 0.875 RFC for

this cryptosystem. The same is true of the 4-6hr cryptosystem. All but three of the other devices

in Group 2 share this same fate.

 In run 001, devices 11, 12, and 13 all indicate that they were able to decrypt a secret that

their Group 2 peers could not. This type of inconsistency is due to the somewhat random nature

of the Prepare Next Secret loop. Recall that Prepare Next Secret works to gather partial

decryptions from peers in preparation for the next secret’s loading. The default lead times for this

process are 90 minutes for starting and 30 minutes for finishing. In the log file it says that device

13 was first able to decrypt the 4-6hr secret at 9,240s (2hr 34min), or 86 minutes before its start

time. Device 12 could decrypt the 4-6hr secret at 12,000s (3hr 20min) and device 11 could

decrypt it at 12,480s (3hr 28min). As for the question of why the other five devices could not

decrypt the 4-6hr secret, unfortunately the log file cannot say for certain. The event for receiving

a partial decryption does not list which shadow function was used, only that the device now has

some new number of partial decryptions for a certain secret. However, given that the devices

hold seven shadow functions it is reasonable to say that the other five devices in Group 2 were

simply unlucky in their partial decryption requests. This is partly due to the fact that selecting

peers’ functions for decryption does not take into account the RFI of the available shadow

functions. It only cares about which shadow functions are locally saved.

 40

6.6 Major Version 007: Small Group Disconnection and Reconnection

6.6.1 Overview

 Major Version 007 is one of the most punishing tests. A large group stays connected to

the key server while a small group disconnects from everything else for longer than its buffered

secret time. Table 7 lists the movement of the two groups and Figures 15, 16, and 17 show the

average results of the tests. Given the relative sizes of the two groups, it’s expected that the

measurements, especially downtime, will be skewed lower. As such, we will not spend much

time examining the averages. Similar to major versions 004 and 005, there will be an expected

7,000s downtime for Group 2. However, here the disconnection is timed such that minor version

006 will not induce any extra downtime. In short, between hours 3 and 4 the Group 2 devices

have the 3-4hr secret loaded and the secrets for hours 4-8 in the buffer. At hour 4, total

disconnection has occurred and thus the end of the buffered time stays at hour 8, the same as the

baseline (2-4hr loaded with hours 4-8 in the buffer) and minor version 005 (0-4hr loaded with

hours 4-8 in the buffer).

Group 1
Size: 13

Disp: 100

X 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12
Group 2
Size: 3

Disp: 70

X 0 0 0 125 250 250 250 250 250 250 125 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 7. Major Version 007 movement definition.

6.6.2 Analysis of Results

 In minor version 000, there were eight total test runs and in three of them Group 2 was

able to decrypt the 6-8hr secret. Figures 18, 19, 20, and 21 show graphs of the RFC for this

secret’s cryptosystem for runs 000 through 003. Note the wide range of final RFC values;

 41

anywhere from 0.375 to 1.000. This makes sense given that we are effectively taking a random

sample of three devices from a pool of 16 and checking how much shadow function variety they

have. What is surprising is that there was any test run, not to mention three out of eight, in which

they could decrypt the 6-8hr secret. The fact that they could consistently decrypt the 4-6hr secret

is somewhat less impressive, given that they start gathering partial decryptions before

disconnecting from the rest of the group.

 Minor versions 001 and 002 had the expected downtime results. The lower threshold of

001 made it so that five out of the eight runs saw Group 2 decrypting the 6-8hr secret, while the

higher threshold of 002 dropped that number to two out of eight. The real star of the show is

minor version 003 with its more aggressive falloff factor. During its eight test runs, only once did

Group 2 fail to decrypt the 6-8hr secret. Minor version 004, with its less aggressive falloff factor,

was a spectacular failure. None of its test runs saw Group 2 decrypting the 6-8hr secret, and in

two different runs one of the devices even failed to decrypt the 4-6hr secret.

Minor version 005 had interesting, though still unsurprising, results. Note that in this

major version, the disconnection is timed such that every minor version will have the same

amount of expected downtime. In six of the eight runs Group 2 performed perfectly. In the other

two, two of the three Group 2 devices were able to decrypt the 4-8hr secret while the third device

was left with a 22,000s downtime (14,400s from the secret and about 7,000s from the expected

downtime). Like with major version 005, this inconsistency is due to the Prepare Next Secret

system. Those devices simply got unlucky with the partial decryption selection. Minor versions

007 and 008 had very minimal effect on the downtime. The 4-6hr secret is the only important

secret affected by this change, because even with the earlier start and finish decrypt times the 6-

8hr secret will not start getting any partial decryptions before the disconnection occurs.

 42

 Minor versions 009 and 010 have unexpected results. Both have larger downtimes

compared to the baseline because there were no test runs where Group 2 managed to decrypt the

6-8hr secret. Given that minor version 009 increases the number of hops that the devices can

communicate over, it would seem reasonable that the downtime should be somewhat lower.

However, the increased falloff distance is likely working against Group 2 in this scenario. The

increased ad-hoc communication range will keep RFC higher than it would be otherwise, leading

to fewer shadow functions requested before disconnection. Even if the falloff factor is large, it

still adds a non-negligible amount to the RFC. Their longer reach makes no difference because

they don’t take advantage of it when it counts. Minor version 010 has the opposite issue, the

shadow functions variety is limited by whatever devices happen to be within direct

communication range right before disconnection.

6.7 Major Version 009: Linear Chain of Group Connections

6.7.1 Overview

 Major version 009 involves no macro scale movement or timing. It is a straight line of

three device groups with only one connected to the key server. Table 8 lists the positions of the

groups. This test is meant to find how well Ad Hoc Security handles static dispersion of devices.

Figures 22, 23, and 24 give the average downtime, key time, and LDT of this test.

Group 1
Size: 8

Disp: 100

X 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12
Group 2
Size: 8

Disp: 100

X 150 150 150 150 150 150 150 150 150 150 150 150 150
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12
Group 3
Size: 8

Disp: 100

X 300 300 300 300 300 300 300 300 300 300 300 300 300
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 8. Major Version 009 movement definition.

 43

6.7.2 Analysis of Results

 The baseline’s downtime is relatively low. In a few of the test runs there could be

upwards of 2,100s of downtime for some devices, but the log files show that it was always for

the first secret. Every secret afterwards would be decrypted and loaded on time. Figure 25 shows

the numbers for the first two runs of minor version 000 on the left, and minor version 009 on the

right. The first eight devices are in Group 1, the next eight are in Group 2, and the last eight are

in Group 3. The key time of the three groups seems to follow a distinct pattern. In minor version

000, Group 1 has the lowest key time at around 25,000-35,000 key*s, while Group 2 has a key

time of around 35,000-50,000 key*s, and Group 3 has the highest key time at 55,000-70,000

key*s. The reason for this is quite simple: lack of variety due to “filtering.” During times when

there is less than a threshold number of different shadow functions available, the devices will

locally save every shadow function available in the local group. This behavior is good for

reliability, but obviously increases key time drastically. For example, Table 9 shows a

comparison of shadow function availability for a device in each Group. As the device gets

further from the key server, the number of available shadow functions becomes “filtered down”

based on what devices nearer the key server have chosen to locally save. As a comparison, Table

10 shows the same availability comparison for minor version 009, where the maximum number

of network hops for requests is four. Notice how version 009.009 does not show decreased

availability with increased distance. The time of 4,740s is arbitrary, but by that time the

dispersion of shadow functions for this cryptosystem had become mostly fixed. Returning to

Figure 25, the right column shows the numbers for the first two runs of version 009.009. Note

the more even distribution of key time, with the highest being just under 60,000 key*s, which is

the average value of Group 3 devices in version 009.000.

 44

 The effects of filtering can be seen most prominently in minor version 004. In minor

version 004 run 003 there are six devices, all in Group 3, that have downtimes of 8,400s or

8,700s. They all fail to decrypt and load the 6-8hr secret because of lack of shadow function

variety. Figure 26 is a graph of the RFC of device 24 in run 009.004.003. Note how the CRF

levels off to be 0.875, indicating that only seven out of the necessary eight shadow functions are

available within two network hops.

Minor version 010, where the maximum number of network hops drops to one, also

suffers somewhat from filtering. Run 009.010.006 has devices in both Groups 2 and 3 with

downtimes between 6,300s and 9,300s. The reason the average downtime is not higher is

because every other run has a max downtime of anywhere from 900s to 3,300s. Like above, all

of these other downtimes are due to startup, and do not occur after the first secret is loaded. In

run 009.010.006 however, several devices have trouble loading later secrets on time, though the

issue does not culminate in an entire secret failing to be loaded like in 009.004.003. Instead, most

of the secrets are simply not loaded on time for several devices in Groups 2 and 3.

Table 9. Shadow function availability for the 4-6hr secret’s cryptosystem for three devices, each

in a separate group, in test run 009.000.000 at 4,740s.

 Shadow Function Availability by ID Number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device
Number

1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
9 Y Y N N N Y Y Y Y Y N Y Y Y Y N
17 Y N N N N Y Y Y Y Y N N Y N Y N

 45

Table 10. Shadow function availability for the 4-6hr secret’s cryptosystem for three devices,

each in a separate group, in test run 009.0009.000 at 4,740s.

6.8 Major Version 011: Wide Area Random Movement

6.8.1 Overview

 Major version 011 is a test of how well Ad Hoc Security can handle rapid changes in

network connections with relatively low connectivity to the key server. The movement timing is

given by Table 10. This test places 32 devices in a 500 by 500 box with the server in the lower

left corner. Recall that every device, including the key server, has a communication range of

approximately 120 units, meaning that less than one fifth of the total area is within

communication range of the key server. Furthermore, the larger movement box will cause the

devices to move faster, increasing connection volatility. Figures 27, 28, and 29 show the deltas

for the downtime, key time, and LDT of major version 011, respectively.

Group 1
Size: 32

Disp: 500

X 0 0 0 0 0 0 0 0 0 0 0 0 0
Y 0 0 0 0 0 0 0 0 0 0 0 0 0

Time (hours) 0 1 2 3 4 5 6 7 8 9 10 11 12

Table 11. Major Version 011 movement definition.

6.8.2 Analysis of Results

 The most noticeable feature of the three performance graphs is the fact that almost none

of the minor versions improve, or even match, the downtime of the baseline. This is likely due to

the increased randomness of the test as compared to the other major versions. Figures 30 and 31

 Shadow Function Availability by ID Number
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Device
Number

1 Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
9 Y Y Y Y Y N Y Y Y N Y Y N Y Y Y
17 Y Y Y Y Y N Y Y Y N Y Y N Y Y N

 46

show the numbers for version 011.000 runs 000, 001, 005, and 007. Note that there is a wide

variance of downtimes between runs and even between devices within the same runs. While

certain minor versions such as 002 (less aggressive falloff factor) and 010 (max number of hops

is 1) increase the overall downtime more than others, it is likely that the baseline simply had

several lucky runs. For example, regardless of what the downtime average says it is unreasonable

to believe that increasing the aggressiveness of the falloff factor (minor version 001) would

directly cause an increase in average downtime.

 While the average downtime may be relatively large, as stated before this value does not

say exactly when the downtime occurs. For every test run in major version 011, the first two to

four hours of the simulation is where all of the downtime is accumulated. After that startup

period, every secret is loaded on time. This makes sense given the way that the devices handle

shadow functions. The first falloff factor value applies as soon as the encrypted secret is

buffered. The secrets that start later in the buffer are given more time to have their shadow

functions distributed compared to secrets that start earlier. Similar to a microprocessor’s pipeline,

the next set of shadow functions are being “processed” (distributed) in the background.

 Recall that one of the initial assumptions was that the devices would form ad-hoc

networks. Ad-hoc networks are far more efficient when their topology changes slowly and for

fewer links. The same is true here: the system becomes less efficient as connectivity changes

faster and more randomly. This is mainly because RFC will be much lower due to much smaller

networks, leading to more shadow functions stored locally. Thus, it is only fitting to compare this

test against the perfectly reliable system, which is immune to any topology changes because each

device is self-sufficient. Even under these conditions, the key time is never more than half of the

perfectly reliable system’s key time except for minor version 005. The LDT as well is under half

 47

the perfectly reliable system’s LDT for all but minor version 005. In minor version 005 the key

time and LDT are both only about 60% that of the perfectly reliable system’s key time and LDT

respectively.

 In Figures 30 and 31, the unauthorized time is higher than normal for some devices. This

trend holds true across all of the other minor versions except 009, with an average of about 3200s

for 009 and 2200s for the rest. The unauthorized time induced by the start of the simulation is

1860s, and any time below 3600s indicates that it just took more than one minute to get the first

MOCA signature. In all of the minor versions other than 009, there are usually only two or three

devices per run that have unauthorized times higher than 3600s. In minor version 009 however,

upwards of half the devices have unauthorized times greater than 4000s. Figure 32 shows two

runs of version 011.009. This behavior is counterintuitive at first glance because minor version

009 increases the distance that devices can request MOCA signatures. However, recall that this

major version has much more connection volatility than the others. That, coupled with the longer

reach, means that more MOCA signature requests go unfulfilled due to some disconnection

along the way.

 48

Chapter 7

Conclusions and Summary

7.1 Conclusions

 In conclusion, the Ad Hoc Security system offers a way of adaptively managing the

tradeoff between availability and security of time-dependent secret information while in an ad-

hoc wireless network. In many of the simulations, the main source of non-transient down time is

from group separation. In all of those scenarios a more aggressive falloff factor resulted in far

better reliability. Even with more aggressive falloff factors, the security of Ad Hoc Security is far

better than the perfectly reliable system. In most cases the Key Time and LDT numbers were less

than half of what the perfectly reliable system would have been. Furthermore, there is a

noticeable difference between the Key Time and LDT in scenarios depending on how volatile the

situation is. Less volatile situations (like major version 004) had lower Key Time and LDT while

more volatile situations (like major version 011) had higher Key Time and LDT. This shows that

the system is performing the reliability/security tradeoff as expected. What follows is an

examination of the failure points of the Ad Hoc Security system, and potential means of

correcting or improving the performance.

7.2 Secret Buffer Improvement

 In all of the tests, the LDT and key time were much lower than the perfectly reliable

system’s values. The formulations of the perfectly reliable system’s key time and LDT show

why: there is no limit on the number of secrets, and thus shadow functions, that a device can

hold. The longer the simulation time, the faster those two numbers grow as well. By itself, the

fixed size of the secret buffer puts a hard cap on the key time and LDT. Coupled with the self-

limiting nature of the Redundancy Factor and Prepare Next Secret subsystems, the LDT and key

 49

time values are greatly reduced. However, the fixed secret buffer size also puts a hard cap on the

amount of time the devices can be disconnected from the key server. Simply making the secret

buffer larger would obviously have detrimental effects on the security.

One possibility for extending the disconnection time could be to have an extended secret

buffer which does not store every secret after the main buffer. Effectively, it would be like

applying the Redundancy Factor system to a secret buffer as well as its shadow functions. As the

secret gets closer to being moved into the main buffer, the requisite fraction of devices that store

that secret should increase until that fraction reaches 1. One detriment of this proposal is that

extending the number of secrets in the buffer would increase both the internal storage

requirements as well as the size of the crypto status messages. Larger messages mean more

network congestion and more power consumption.

7.3 Redundancy Factor Improvement

In major version 005, even with group sizes equal to the threshold of the cryptosystem

there still exists the possibility being unable to decrypt a secret. This event was due to the

random division of the larger group into two smaller groups. Without any foreknowledge of

group divisions, the devices had no way to prepare for this. Furthermore, the only indication of

separation was the increased number of two hop neighbors, which may trigger additional shadow

function requests. Of course, the time between seeing more two hop neighbors and then being

disconnected may be very short, leaving the device groups with very little time to prepare for the

separation.

The issue here is of situational awareness. In its current form Ad Hoc Security only takes

into account distance and time. There is no analysis of the topology or reliability of the network.

Topology is important because of single or small number of failure points. To illustrate the

 50

benefits of topology knowledge, imagine the scenario where every two hop neighbor is only

accessible through the same one hop neighbor. It would be reasonable to increase the falloff

factor of those two hop neighbors because of the consequences should that “choke point” link go

down. Network reliability knowledge can be used in a similar way. A two hop neighbor at the

end of a pair of 30% reliable connections should not have the same falloff factor as a two hop

neighbor at the end of a pair of 90% reliable connections. However, this type of system increases

the complexity and amount of information required to be constantly distributed. As with the

extra secret buffer mentioned above, this increases storage requirements and power consumption.

7.4 Small Group Disconnection Reliability Improvement

 In major version 007, the test runs showed that it is sometimes possible to prevent

downtime even when it involves a small groups splitting from a larger one. However, it also

showed that it is definitely not consistent unless we focus less on security and more on

reliability, like having a more aggressive falloff factor. However, this solution would apply to all

of the devices, not just the ones that need the extra reliability. While Ad Hoc Security is

relatively dynamic, the aspect of security vs. reliability through falloff factor is fairly static.

 Ad Hoc Security leveraging the assumption of devices grouping up is, more generally,

leveraging an assumption of some level of organization. In most cases, organization creates

efficiency. If the network of devices were perfectly static, then the distribution of shadow

functions could optimize security with no detriment to reliability. In much the same way, if there

is knowledge or assumptions of organizational divisions, such as platoon, squad, fire team, etc.,

then the system could leverage that knowledge to enhance reliability. For example, a four-man

fire team could have devices that coordinate so that no two devices store the same shadow

 51

functions. With no overlap in function variety, they will be maximizing the probability of being

able to decrypt a secret, instead of semi-randomly selecting functions and hoping for the best.

 Beyond this, if there were a way of manually or automatically detecting the need to go

into a kind of “super high reliability” mode, then the overall security and reliability would stay

intact while only changing for the affected devices. While the Redundancy Factor system

automatically does this to an extent, it is a purely reactive system. Having a proactive solution

would prevent the issue of scrambling to acquire more shadow functions before disconnection

occurs. Of course, this would likely drastically increase complexity or require user intervention,

neither of which is desirable.

 52

Figure 1. Major Version 004 Downtime Delta.

Figure 2. Major Version 004 Key Time Delta.

 53

Figure 3. Major Version 004 Local Decrypt Time Delta.

Figure 4. Total number of Shadow Functions for Device 3 in test run 004.000.000.

 54

Figure 5. Total number of Shadow Functions for Device 6 in test run 004.001.000.

Figure 6. Total number of Shadow Functions for Device 6 in test run 004.002.001.

 55

Figure 7. Major Version 005 Downtime Delta.

Figure 8. Major Version 005 Key Time Delta.

 56

Figure 9. Major Version 005 Local Decrypt Time Delta.

Figure 10. Version 005.000 Trial Runs 000 (left) and 001 (right). From left to right the columns
are: device number, downtime, key time, local decrypt time, and unauthorized time.

 57

Figure 11. RFC for Device 16’s 4hr to 6hr cryptosystem during run 005.000.000.

Figure 12. RFC for Device 16’s 6hr to 8hr cryptosystem during run 005.000.000.

 58

Figure 13. RFC for Device 16’s 4hr to 6hr cryptosystem during run 005.000.000.

Figure 14. RFC for Device 16’s 6hr to 8hr cryptosystem during run 005.000.001.

 59

Figure 15. Major Version 007 Downtime Delta.

Figure 16. Major Version 007 Key Time Delta.

 60

Figure 17. Major Version 007 Local Decrypt Time Delta.

Figure 18. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.000.

 61

Figure 19. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.001.

Figure 20. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.002.

 62

Figure 21. RFC for Device 16’s 6hr to 8hr cryptosystem during run 007.000.003.

Figure 22. Major Version 009 Downtime Delta.

 63

Figure 23. Major Version 009 Key Time Delta.

Figure 24. Major Version 009 LDT Delta.

 64

Figure 25. Runs 000 (top) and 001 (bottom) for versions 009.000 (left) and 009.009 (right). From
left to right the columns are: device number, downtime, key time, local decrypt time, and

unauthorized time.

 65

Figure 26. RFC for Device 24’s 6hr to 8hr cryptosystem during run 009.004.003.

Figure 27. Major Version 011 Downtime Delta.

 66

Figure 28. Major Version 011 Key Time Delta.

Figure 29. Major Version 011 LDT Delta.

 67

Figure 30. Version 011.000 Trial Runs 000 (left) and 001 (right). From left to right the columns
are: device number, downtime, key time, local decrypt time, and unauthorized time

 68

Figure 31. Version 011.000 Trial Runs 005 (left) and 007 (right). From left to right the columns

are: device number, downtime, key time, local decrypt time, and unauthorized time.

 69

Figure 32. Version 011.009 Trial Runs 000 (left) and 001 (right). From left to right the columns

are: device number, downtime, key time, local decrypt time, and unauthorized time.

70

References

[1] De Santis, Alfredo & Desmedt, Yvo & Frankel, Yair & Yung, Moti. (1994). How to share a
function securely. Conference Proceedings of the Annual ACM Symposium on Theory of
Computing. 522-533. 10.1145/195058.195405.

[2] Yi, Seung and Robin Kravets. “MOCA : MObile Certificate Authority for Wireless Ad Hoc
Networks.” (2003).

[3] Libert B., Yung M. (2011) Adaptively Secure Non-interactive Threshold Cryptosystems. In:
Aceto L., Henzinger M., Sgall J. (eds) Automata, Languages and Programming. ICALP 2011.
Lecture Notes in Computer Science, vol 6756. Springer, Berlin, Heidelberg.

[4] Di Pietro, Roberto, Luigi Vincenzo Mancini, and Giorgio Zanin. "Efficient and adaptive
threshold signatures for ad hoc networks." Electronic notes in theoretical computer science
171.1 (2007): 93-105.

[5] Xu, Gang, and Liviu Iftode. "Locality driven key management architecture for mobile ad-hoc
networks." Mobile Ad-hoc and Sensor Systems, 2004 IEEE International Conference on. IEEE,
2004.

[6] Huchton, Scott, Geoffrey Xie, and Robert Beverly. "Building and evaluating a k-resilient
mobile distributed file system resistant to device compromise." MILITARY COMMUNICATIONS
CONFERENCE, 2011-MILCOM 2011. IEEE, 2011.

[7] Caronni, Germano. "Walking the web of trust." Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2000.(WET ICE 2000). Proceedings. IEEE 9th International
Workshops on. IEEE, 2000.

