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Abstract 
 

 
 This research was motivated by two key facts: There are over 9.2 million horses in the 

United States and over 64% of adults own a smartphone.  Blending these two ideas led to the 

genesis of this research by asking the question: “Can an unmodified, off-the-shelf smartphone be 

used to detect and categorize behavior of an equine in a controlled setting?”  This research used 

computer vision techniques and extended game-based modeling to describe patterns of behavior 

that are considered normal, to determine when observed behavior falls outside those patterns, 

and to diagnose the possible cause of the anomaly.  The research resulted in a proof-of-feasibility 

system that demonstrated use of a smartphone to differentiate normal behavior from abnormal 

behavior – pawing, in this case – of an equine while in a stall. 
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CHAPTER ONE: INTRODUCTION 

 

NEED FOR THE RESEARCH 

 

Having an automated way for equine1 owners to be quickly notified of their equine exhibiting 

abnormal behavior in their equine affords the opportunity for early intervention in potentially 

life-threatening situations.  

 

“There are 9.2 million horses in the United States” (American Horse Council, 2005, p. 1).  

Although the per-year weighted average of veterinary services per equine is $251, emergencies 

can quickly run into the thousands of dollars (American Horse Council, 2005).  Quick detection 

of anomalous behavior of an equine can lead to catching problems early while they can still be 

corrected quickly and inexpensively. 

 

Smartphones are prevalent in the United States with “64% of American adults” owing a 

smartphone (Smith, 2015, para. 5).  The idea of this research was to combine these two pieces of 

information by developing a simple, easy-to-use system to detect abnormal behavior in equines 

using something most equine owners have -- a smartphone.  This system allows the average 

equine owner to monitor equines behavior without specialized expensive equipment – just 

common self-adhering bandages.   

 

                                                
1 For the purpose of this dissertation the broader term equine is used except when horse occurs in 
direct quotes.  The term equine encompasses both horses and mules.   
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Equines can exhibit a wide variety of abnormal behaviors in a stall: pawing, cribbing, weaving, 

pacing, rearing and striking, just to name a few.  This research focused on detecting pawing and 

distinguishing it from normal stall behaviors such as walking and standing.   

 

Pawing can be a sign of stress or pain.  It can also be a sign of colic  which is a collection of 

symptoms that alert the equine owner to abdominal pain in an equine (Butler & Houpt, 2014).  

Colic can range from mild to severe, and can rapidly turn fatal (UC Davis Center for Equine 

Health, 2008). Colic is “the most common cause of death in adult horses and accounts for a large 

proportion of emergencies for horse owners and veterinarians” (UC Davis Center for Equine 

Health, 2008, p. 1).  If caught early enough, medication alone can often halt the progress of colic.  

If not caught early, surgery is frequently the only way to save the equine.  The majority of equine 

colic surgeries range from $3500 - $5,500 (Colorado State University, 2014). 

 

BASIC APPROACH 

 

Using the onboard camera of a smartphone, this research focused on detecting the differences 

between normal and abnormal behavioral patterns by using the onboard camera of a smartphone 

to track behavioral markers. This research focused on the behavior exhibited by an equine in a 

stall.  The research and development were divided into three phases: modeling, data 

acquisition/behavior recognition, and analysis.      

 

Modeling Phase 

During the modeling phase, video of an equine in a stall was taken using a smartphone mounted 

in the equine’s stall.  This video was used to determine the equine’s behavioral patterns while in 
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a stall. These behavioral patterns were further synthesized into behaviors markers that were 

encoded into a software behavioral model.   

 

Data Acquisition/Behavior Recognition Phase 

During this phase, the smartphone captured images of the equine at short discrete intervals, 

isolated behavioral markers, postulated observed behavior based on a best match to modeled 

behaviors, and reported the results in near real-time.  A second smartphone was placed in the 

stall next to the first smartphone and continuously recorded the equine’s behavior.   

 

Analysis Phase 

During the analysis phase, each frame of the video recording was compared to the smartphone’s 

output to ensure behavior was properly identified.   
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CHAPTER TWO: LITERATURE REVIEW 

 

OVERVIEW 

 

The long-range aim of this research was to employ low-cost consumer electronic products to 

detect and diagnose equine abnormalities.  The immediate term goal was to use a commercial 

off-the-shelf smartphone to determine if an equine in a confined area -- a stall, in this case -- is 

behaving abnormally and to diagnose the possible cause.  The research elements of this work are:  

1) Model the equine in such a way that it can be represented in a logical form suitable 

for computation. 

2) Acquire data for the model in real time from an actual animal using sensors available 

on a smartphone. 

3)  Recognize abnormal behavior and diagnose the possible cause.   

Figure 2.1 illustrates the relationship among these research elements. 

 

Figure 2.1: Relationships Among Research Elements 
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MODEL 

 

A model is an abstract representation of an object being observed.  It embodies information at a 

level of specificity that was sufficient to describe, in this case, what constitutes abnormal equine 

behavior, while excluding details that were deemed extraneous.     

 

Modeling an equine at the subatomic particle level would provide the greatest fidelity to 

detecting abnormalities, but doing so would require a level of granularity that is not 

computationally feasible, much less fully understood.  The modeling process is thus a balance of 

determining what equine properties were needed to identify abnormal behavior, what properties 

could be captured by a sensing device, how to represent those properties, and so forth.     

Three primary means are used to model living beings:  kinematic, shape, and appearance.  

Kinematics expresses the geometry of motion, typically in terms of joints and their respective 

degrees of freedom (Beatty, 1986).  The most important areas of kinematic research are the 

number of joints and degrees of freedom the subject under study has.  With a kinematic model, 

the goal is to find and estimate the limb lengths of the subject (Moeslund et al., 2006). The 

papers surveyed in (Moeslund & Granum, 2001; Moeslund et al., 2006) deal with a human 

model, which does not directly translate to this dissertation’s area of research since the number 

of joints and degrees of freedom in a human is vastly different than those in other animals.   

 

Shape models represent objects with various shapes that can be either simple (such as cylinders 

and cones) or complex (such as a polygonal mesh).  An important consideration of a shape 

model is how much fidelity is needed in the model to ascertain the behavior being examined.  

For example, representing the horse as a collection of cylinders and cones would be appropriate 



6 
 

to describe large-muscle movements such as pawing but might not have enough fine-grain detail 

to capture the blinking of an eye.  Computational power also limits the complexity of the shape 

model.  Detailed shapes demand more computational resources than do simple shapes.  

Regardless of the complexity of the shape chosen, the goal in shape modeling is to fit a generic 

model to the actual subject in the image (Moeslund & Granum, 2001). 

 

Appearance models make certain assumptions about the images being examined.  The 

assumptions can be related to the subject (known starting pose, markers placed on the subject, 

special colored clothes, etc.) or the environment (uniform background, constant lighting, static 

background, etc.) (Moeslund & Granum, 2001). An example of using an appearance model with 

an equine in a stall is to make the assumption about what color belongs to the horse and what 

belongs to the stall. One difficulty of appearance modeling is choosing something the equine will 

display that the background will not.  For example, bright red is seldom the color of a stall or a 

color that is natural to equines, making it feasible to assume that it is some sort of purposely-

placed positional marker if detected.  This assumption may not be generalizable to all settings.  

Having a water bucket in the stall that is close to the same bright red color would cause the 

appearance model to mistake the bucket as being part of the equine. 

 

SENSOR ACQUISITION 

 

Model acquisition populates a model with information about a specific subject (in this research 

the specific subject was an equine).  It entails collecting information about the subject using 

sensors and then interpreting the collected sensor information into the model.  There are two 

broad categories of sensors: optical and non-optical. 
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Non-Optical Sensors 

Non-optical sensors include any sensors that do not detect wavelengths of light and “include 

magnetic sensors, inertial sensors, pressure sensors, and temperature sensors, among others” 

(Persistence, 2015, para. 1).  

 

An example of a non-optical sensor technique is electromagnetic tracking. The Polhemus’ 

Fasttrack electromagnetic tracking system was used to study the kinematics of snowboarder’s 

ankles (Delorme et al., 2002; Polhemus, 2016).  This particular technology appears to be 

sensitive to the environment in which measurements are taken, especially if tracking is done near 

large metal objects (Dutta, 2012).  While there is an indication that only certain metals affect 

accuracy, the efficacy of electromagnetic tracking seems marginal in an equine environment that 

includes a metal barn (Milne et al., 1996).  

 

An application of non-optical sensors to equine research is the prototype MVN Equine suit 

developed by Xsens.  “The system utilizes inertial sensors located on the horse’s body and GPS 

to track full-body motion in any environment, indoors and outdoors, allowing the horse’s innate, 

voluntary movements to be recorded and viewed on a standard PC in real-time” (Xsens, 2016, 

para. 2). 

 

A force plate is a type of non-optical sensor used with horses to measure how the horse 

distributes weight across its hoof.  Penn works on a system that uses a force place to help farriers 

in the future “develop orthotics that help horses distribute weight more evenly across their feet”  

(Penn, 2012, para. 19).  This technology could be used to detect pawing in equines as the pawing 

hoof would be hitting the surface with a greater force than the other non-pawing hooves.    
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An active area of research with non-optical sensors and smartphones involve using the data from 

built-in smartphone sensors (such as the accelerometer) to recognize the activity of the human 

user (Anguita et al., 2012; Dernbach et al, 2012; He & Li, 2013; Khan et al., 2010; Ouchi & Doi, 

2012).  However, the research literature shows no application of smartphones for tracking the 

movement of equines.  A comparable approach pursued by researchers is to attach sensors to the 

human and feed the data into an application on a smartphone or a specialized computer 

(Győrbíró et al., 2009).  This approach is used with equines for heart rate monitoring during 

training.  With a current system available from Polar, sensors are attached to the equine and the 

equine’s heart rate is displayed on a specialized computer worn by the rider on the wrist (Polar, 

2016).  Such a system could be useful for behavior monitoring in equines since heart rate 

increases when an equine is in pain or stressed.      

 

Optical Sensors 

An optical sensor is a sensor that measures the wavelength of light.  Optical sensors specifically 

measure wavelengths found in the visible, ultraviolet, or infrared regions of the electromagnetic 

spectrum (Melexis, 2016).  Optical systems can be divided into markerless and marker-based 

systems.  Marker-based systems can be further divided into those that use active markers versus 

those that use passive markers.  Active markers are markers that emit light while passive markers 

only reflect light (Barca et al., 2006; Endgadget, 2016; Qualisys, 2016).  Marker-based systems 

are the most popular systems for capturing human motion (Corazza et al., 2006).  

 

Depending on the application, markerless and marker-based approaches can provide similar 

results.  For example, Rosenhahn et al. (2006)  compare their markerless system with a 



9 
 

commercially available marker-based system. Their research found the root mean square (RMS) 

errors between the marker-based approach and the markerless approach were typically within 

three degrees of each other (Rosenhahn et al., 2006). 

 

Similarly active markers and passive markers can give comparable results (again, depending on 

the application).  Wiles et al. (2004) discuss the differences between surgical tools tracked with 

active markers versus surgical tools tracked with passive markers.  The authors discuss a 

common misconception that tools equipped with active markers are more accurate than tools 

equipped with passive markers.  However, the researchers found for the brand of sensors they 

used in the study “tools equipped with passive markers can be tracked as accurately as similar 

tools equipped with active markers, contrary to beliefs held by many users” (Wiles, et al., 2004, 

p. 427). 

 

Markerless Systems 

As the name implies markerless systems do not use any sort of marker on the subject, relying, 

instead on a kinematic or shape-based model of the subject to initialize the system (De Aguiar et 

al., 2007).   Markerless systems require more computational steps than marker-based approaches 

because in marker-based approaches the markers are identified externally from the algorithm but 

in markerless systems the algorithm must first determine what are good markers of the object to 

track.  As Bregler (2007) states, it is “more difficult to track pixels with arbitrary surface texture 

than with retro-reflective balls” [i.e. markers](Bregler, 2007, p. 156). 

 

There have been a variety of algorithms proposed for markerless systems.  The algorithms can be 

placed into two general categories: 1) Algorithms which involve statistical training based on 



10 
 

local features and 2) Algorithms which involve extracting interest points in the image.  Xia et al. 

(2011) reports markerless methods can provide accurate results when detecting a human in a 

scene but have limitations especially when the background is cluttered.  Accuracy drops and the 

computational intensity increases as the background becomes more cluttered (especially with 

objects similarly colored to the human) (Xia et al., 2011). 

 

Usually, markerless systems use two or more synchronized cameras to capture the motion of the 

subject. However, researchers like Okada & Stenger (2008) have been investigating how to 

apply markerless techniques to single camera images. Researchers at Disney developed a process 

to estimate human motion using only video captured from a single video camera.    This process 

is computationally intensive with optimization of 200 frames taking 2.75 hours (Vondrak et al., 

2012).   

 

There are several commercial systems which provide markerless motion capture. For example, 

Organic Motion’s OpenStage motion capture system has “8 cameras to 24 cameras and can cover 

areas ranging from four-square feet to 30-square feet”. (Takahashi, 2011, para. 4).  The starting 

price of $40,000 places such systems out of the reach of the consumer electronic market.   

 

ProAnalyst, another commercial product, is a software tool that has been used by researchers to 

analyze the gait of a racehorse.  A video of a racehorse is taken and the ProAnalyst software 

performs markerless feature tracking to measure the racehorse’s strides from a video of a 

racehorse.  Although less expensive than the OpenStage capture systems, ProAnalyst is still 

beyond the cost of ordinary consumer electronics.  The introductory software is $1,795 while the 

3-D professional version is $13,195.  The base model of hardware is $2,795 while the most 
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expensive is $8,295.  There are also various add-on software packages at roughly $1,000 a piece 

(Xcitex, 2016).   

The computational requirements of markerless systems have placed them outside the capabilities 

of smartphones.  We found no instances in which smartphones performed markerless sensing.  

The closest was research performed by Quesada & León (2011) which used an external USB 

webcam, a laptop integrated webcam, or a HD camcorder to perform markerless optical motion 

tracking. They did not discuss what hardware was running their algorithms, but pointed out that 

“We plan to optimize the system so that it can run in low processing power devices such as 

smartphones” (Quesada & León, 2011, p. 10).  In subsequent work, they replaced the ray-casting 

technique in the original research with a grid-filling technique in order to reduce computational 

requirements for low-budget hardware (Quesada & León, 2012).   Quesada & León (2012) 

presents no further evidence of the system working on a smartphone.    

Although smartphones are not currently conducive to markerless techniques, one system that has 

gained a lot of attention lately in markerless research is the Microsoft Kinect.  The Kinect 

combines “depth sensing technology, built-in color camera, infrared (IR) emitter, and 

microphone array” into a single system (Kinetisense, 2018), para. 5). 

 

Unlike the traditional markerless based approaches discussed above that only use visible-light 

cameras, the Kinect adds the important element of depth which humans (and most animals) use 

to help distinguish objects.  Cameras that add this depth information are referred to as RGB-D 

cameras   

Research with the Kinect sensor has been done in fields ranging from gaming to health care to 

robotics.  One use of the Kinect presented by Rocca et al. (2016) is to identify when the user is 
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watching TV versus when the user is not paying attention and instead staring at a secondary 

device like a tablet or smartphone (Rocca et al., 2016).  In the healthcare industry, the Kinect is 

being evaluated for its use in physical therapy.   Garrido et al. (2013) used the Kinect sensor to 

develop a system for patients with a balance disorder to perform rehabilitation exercises at home 

instead of having to stay at a rehabilitation facility. 

The Kinect is an array of sensors and does not have onboard processing.  It either must be 

attached to a PC running Windows or be used as part of Microsoft’s gaming system, XBOX.  

Additionally, RGB-D cameras (such as the Kinect) have the following operational limitations: 

“1. Limited field of view preventing an agile operation.  2. Short range, not providing the scale 

for typical outdoor applications.  3. Infrared saturation in direct sunlight” (Abbas & Muhammad, 

2012, p. 1). 

There has been some published research on use of the Kinect with animals.  Stavrakakis et al. 

(2015) uses the Kinect sensor to detect the normal walking pattern of pigs. They compared a 

marker-based Vicon system (consider the gold standard) to a marker-based Kinect system to a 

markerless Kinect system.  Both marker-based systems outperformed the markerless system and 

showed a “high level of agreement” with each other (Stavrakakis et al., 2015, p. 6).   They stated 

the following about the markerless approach: “Thus fully automated and marker-free tracking of 

relevant dorsal mid-line point trajectories for a relatively modest cost appears to be feasible, but 

the technology requires refinement and further software development before it can be 

recommended for commercial use” (Stavrakakis et al., 2015, p. 6). With a similar highly 

controlled set-up, such an approach could be possibly be applied to equines as well.   

One use of an RGB-D camera with equines was done by Ku (2014).  He used a Structure Sensor, 

which is an RGB-D sensor similar to the Kinect, to perform a 3D scan of an equine (Structure, 
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2016) (Ku, 2014).  The data obtained from this 3D scan was used to estimate the body condition 

of the equine (Ku, 2014).   

 

Marker-Based Systems:  Active  

Because active systems rely on markers that emit light, they require the device to have a power 

source (such as a battery) or to emit light through a chemical reaction.  There are a variety of 

different types of active markers as demonstrated through the selection of papers below.   

 

Barca et al. (2006) developed a new active marker system that “supports active tracking through 

the use of a battery- driven low power color marker and is ideal for tracking non-rigid motion” 

(Barca et al., 2006, p. 2).  Kumar et al. (2010) uses light-emitting diodes (LEDs) as active 

markers to perform kinematic analysis of human’s gait.  Conceivably such a system could also 

be used to monitor equine’s gaits. 

 

Smyth et al. (2015) used an active marker-based system to study whether injuries to the 

temporomandibular joint (TMJ) affect how equines eat hay. “Kinematics of the head and 

mandible were recorded using an active- marker motion capture system (Visualeyez VZ3000) a 

that tracks the 3-dimensional (3D) locations of small (~5 mm diameter) infrared emitting 

markers (nominal resolution of 0.3 mm)” (Smyth et al., 2015, p. 1).  Figure 2.2 shows the 

location of the markers they used to track the equine’s jaw movements. 
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Figure 2.2: Equine Jaw Marker Locations from (Smyth et al., 2015, p. 2) 
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Marker-Based Systems:  Passive 

Passive Marker-based approaches use markers that only reflect light.  Reflective markers are 

used to make it easier for the camera to detect the markers since non-reflective markers are 

affected by lighting conditions.  

 

In passive marker-based systems used to detect human or animal motion, markers are placed on 

“the locations of characteristic parts on the human [or animal] body such as joints or the joint 

angles” (Kapsouras & Nikolaidis, 2014, p. 1432).  Often the markers cannot be placed directly at 

the center of the joint so “the geometric parameters of a human skeletal system and the offsets of 

each marker from the center of the nearest joint are also needed to be known in the computation 

process” (Ayusawa et al., 2014, p.274). This information is used to populate a kinematic model 

of the body or to provide reference points for shape or appearance models. 

Weber et al. (2008) start with an initial skeleton model, then capture joints and joint angles to 

track motion.  Weber et al. (2008) and Meyer et al. (2014) note that although this approach is 

effective, matching makers to a skeletal model is time consuming.  Krayevoy & Sheffer (2005) 

overcomes this disadvantage by building a skeletal model based on information captured from 

markers. 

Marker-based passive systems have been used in the entertainment industry for years and are 

nicknamed MoCap (short for Motion Capture).  Currently “Passive optical motion capture is the 

most accurate, flexible and common type of mocap” (Vicon, 2016, para. 17).  Typically, such 

systems use between 6 and 50 cameras placed on the walls and ceilings of a recording studio 

(Bregler, 2007). A body suit is worn by the actor and reflective markers are placed on key 

locations (typically, the joints); it takes about 50 markers to cover the entire body (Bregler, 
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2007). “Triangulating the tracked two-dimensional (2-D) marker locations of each camera allows 

for very accurate 3-D reconstruction of the markers in the recording studio” (Bregler, 2007, p. 

156). 

Several commercial systems for commercial capture exist.  Two of the most prominent 

manufacturers are Vicon and Qualisys.  Both of these systems consist of multiple synchronized 

cameras, markers, and a computer where the data gets stored (Vicon, 2016) (Qualisys, 2016).   

Qualisys has a system designed to work with equine kinematics with algorithms tuned to 

measure “the kinematics of the joints of the distal limb [i.e. the legs] and the spine” (Qualisys-

PDF, 2012, p. 1).  The spine analysis is designed to be used on an equine treadmill only 

(Qualisys-PDF, 2012).  Figure 2.3 shows a Qualisys system being used to capture a Harness 

racehorse’s motion.   

 

Figure 2.3: Capturing Harness Racehorse Motion from (QualisysPicture, 2016). 

Qualisys is not the only company to produce systems for equine analysis based on marker-based 

techniques.  Motion Imaging Corporation (MIC) developed the Equine Gait Trax system which 

was “designed to aid in the evaluation and assessment of gait in horses” by “utilizing a specific 
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set up of markers” (MI-AS, 2016, para. 4-5).  It also has a version for dogs called Canine Gait 

Trax (MI-AS, 2016). 

Most of the commercial motion capture systems use multiple cameras since “a multi-camera 

system is required to provide some 3D information” (Rougier & Meunier, 2010, p. 505).  Single 

camera systems have seen less use due to challenges of “depth ambiguities, high-dimensional 

representation of human pose, self-occlusion, unconstrained motions, observation ambiguities, 

motion blurs and unconstrained lighting” (Hen & Paramesran, 2009, p. 1).  Even with these 

difficulties, there have been several studies using a single camera system.  One area that has been 

particularly successful is head-pose tracking using a single-camera system (Tariq & Dellaert, 

2004). Since “the human head is an easy human body part to track in a scene as it is usually 

visible from different camera points of view and its shape is relatively simple” (Rougier & 

Meunier, 2010, p. 505). 

Research has emerged that combines smartphones with marker-based systems.  Lee et al. (2015) 

uses a smartphone mounted on a robot to navigate a known indoor course with the use of QR 

markers mounted on the ceiling.  The smartphone serves as the QR marker reader and 

communicates over WiFi to a computer which maintains the database of the next QR location 

based on the current QR marker position (Lee et al., 2015). 

 

Kim et al. (2015) created a system called SmartGait which uses a smartphone’s camera to assess 

the gait of a human.  With SmartGait, users wear two green colored circular makers on the top of 

their shoes.  The smartphone is outfitted with a specialized 90 degree, wide angle lens produced 

by Hilo (Hilo, 2016). The smartphone is mounted to a customized belt worn around the waist 

with the camera lens pointed down toward the feet. “The on-board software is designed to avoid 
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computational demand on the smartphone’s CPU and is only used for data collection and 

providing a raw assessment of SL [Step Length], SW [Step Width], ST [Step Time], and speed” 

(Kim et al., 2015, p. 140). The data is recorded so off-board analysis can be performed to 

increase accuracy (Kim et al, 2015).  

Cha et al. (2014) present a system that is similar to the traditional marker-based systems out 

there.  Their system, named SmartPTA, uses two smartphones and a notebook computer that 

functions as the server.  The user wears 13 reflective markers.  The smartphones are mounted on 

independent tripods with their cameras aimed at the subject wearing the markers.  “Each 

smartphone transmits detected 2D marker positions to the server using Wi-Fi at 15 frames per 

second” (Cha et al., 2014, p. 44).  The server then reconstructs the 3D pose of the subject based 

on the received marker positions (Cha et al., 2014). 

Hybrid Systems 

Hybrid systems combine both optical and non-optical sensors.  Tao et al., (2007) used a hybrid 

system of inertial sensors and optical cameras to track a human’s arm movement for providing 

feedback to a patient performing home-based physical therapy.  Olsen et al. (2012) used a similar 

approach to model equine’s movements, employing inertial measurement sensors mounted on an 

equine and optical motion-capture cameras to detect variations in equine gaits. 

 

INFORMATION ACQUISITION 

 

In its most fundamental form, tracking can be defined as capturing the motion of a subject over 

time.   Motion capture in its purest sense dates back to the 1870s.   Eadweard Muybridge used 

multiple cameras to take photographs of a galloping horse (Back & Clayton, 2013).   Étienne-
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Jules Marey used a single camera to “record several phases of movement on one photographic 

surface” (Back & Clayton, 2013; Étienne-Jules_Marey, 2016, p. 2).  With the advances of 

technology, tracking has become more sophisticated but the fundamental goal of capturing a 

subject’s motion over time remains unchanged since Muybridge and Marey’s time.    

 

Segmentation 

The first step in the tracking phase is concerned with separating the main subject of the image 

from the remainder of the image.  This is especially important in markerless systems.  There are 

several different approaches to accomplishing this:  background subtraction, motion-based 

segmentation, appearance-based segmentation, shape-based segmentation, and depth-based 

segmentation (Moeslund et al., 2006).  Stauffer & Grimson (1999) introduced a background 

subtraction approach that uses a mixture of Gaussians to model each pixel and then use on-line 

approximations to update the model.  Motion-based segmentation approaches are based on the 

idea that the differences between one frame and the next is a moving object.  Appearance-based 

segmentation approaches focus on a specific aspect of the object.  Approaches in this category 

assume the appearance of a human is different from the appearance of the background if using a 

markerless system.  Both active and passive marker-based systems would be considered 

appearance-based segmentation as the subject of the image is segmented based on the marker’s 

appearance.  Shape-based segmentation assumes the object of interest’s shape is different enough 

from the background as to be distinguishable.  Depth-based segmentation requires multiple 

cameras (unless using a depth sensing device such as the Kinect) and relies on the concept that 

the object of interest will stand out in a 3D environment (Moeslund et al., 2006). 
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Pose Estimation 

After the subject is separated from the background the next step is pose estimation.  Pose 

estimation is the technique of determining the subject’s position and orientation in an image and 

“is the process in which the configuration of body parts is estimated from sensor input” (Poppe, 

2007, p. 4). 

 

Tracking adds the temporal component to pose estimation because in tracking poses are 

estimated from frame to frame (Poppe, 2007).  This tracking of poses from frame to frame is 

how the motion of the subject is captured.  Pose estimation and tracking can be performed for the 

entire body or for just a segment of the body.  The algorithms for performing pose estimation can 

be divided into three areas: model-free, indirect use of a model, and direct use of a model 

(Moeslund & Granum, 2001; Moeslund et al., 2006). 

 

Model-Free 

Model-free techniques do not rely on a predefined description, but, instead use data collected 

from sensors to infer a model. The model-free approach consists of two different methods for 

determining the pose:  probabilistic assembly and training.   

Probabilistic assembly of parts entails detecting the individual parts of the subject and then 

assembling them into the pose (Moeslund et al., 2006).  Ramanan and Baker (2011) uses this 

approach by assuming the human body can be roughly modeled as a series of rectangles.  In each 

frame, candidate body segments are identified and grouped together to form a rough block 

diagram of a human. 
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The second technique, training a system with truth data to recognize poses of the subject, 

involves a database of samples that is compared with the current image.  Howe et al. (1999) 

reconstruct a 3D motion from video taken from a single camera.  Training data gathered from a 

3D motion capture system (like VICON or Qualisys discussed above)  provided “frame-by-frame 

3D coordinates for 20 tracked body points at 20-30 frames per second” (Howe et al., 1999, p. 

821).  They assembled the data into snippets, each containing a vector of the “positions of each 

tracked body point in each frame of the snippet” (Howe et al., 1999, p. 822).  They used the 

training data to interpret the 3D motion of the subject given a 2D image from a single camera 

(Howe et al., 1999). 

 

Indirect Model Use 

In indirect model use, a model is used as a look-up into a database where more information can 

be found. For example, “[a] simple human model is the aspect ratios between the various limbs 

which may be used to guide the pose estimation” (Moeslund & Granum, 2001, p. 244).  

Shubert et al. (2015) use such an approach to perform automatic initialization of a skeleton 

tracked by a marker-based system.  They use the first frame to query a large database of 

previously observed poses to narrow down the possible poses to approximately 100; then they 

select the pose that has the best tracking performance over that sequence of frames (Shubert et 

al., 2015).  They tested their system on sheep and humans and found their system to be accurate 

within 10 centimeters 81.55% of the time although the initialization took approximately 

anywhere between 3-9 minutes to determine the best starting pose  (Shubert et al., 2015). 
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Direct Model Use 

Direct model use consists of techniques that explicitly use a subject’s kinematics, shape or 

appearance to determine the pose of the subject.  Moeslund et al. (2006) indicate that this is the 

most widely used research technique. 

 

Abson & Palmer (2015) demonstrate the complexities involved in creating a direct model for use 

in a marker-based system by creating a whole body equine skeletal model created from a detailed 

biomechanical study of the equine.  Suggesting that “a sound understanding of the animal is 

required to inform bone creation, marker placement as well as marker and bone constraint 

relationships,” the researchers studied anatomy books and consulted with veterinarians to gain an 

understanding of the equine’s skeleton to determine the key joints whose motion needs to be 

captured to accurately model the equine’s movement (Abson & Palmer, 2015, p. 344).  They also 

took into consideration the effects skeletal motion has on the movement of fat, muscle, and skin 

and used this data to inform them on the placement of markers for tracking joint movement so as 

to minimize extraneous movement caused by matter between the marker and the underlying bone 

(Abson & Palmer, 2015).  They decided 75 marker locations were required to capture the whole 

body movement of the equine – although 3 had to be removed to accommodate a rider; 75 

markers allowed for two to three markers per bone segment which provided redundancy in case 

one of the markers fell off during the data capture (Abson & Palmer, 2015).  Figure 2.4 below 

shows where they placed markers on the horse. 
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Figure 2.4:  Equine Marker Locations from (Abson & Palmer, 2015, p. 347) 

 

Smartphones 

Typically, smartphone-based applications for tracking rely on internal built-in sensors such as 

the GPS and accelerometer to track a subject’s movement; however, there has been some 

research done using the smartphone’s camera to detect changes in the environment (including 

motion).   

 

Roters et al. (2011) use video taken by a smartphone’s camera to help a vision-impaired 

pedestrian to know when it is safe to cross the road based on the color of the traffic light.  They 

discuss three aspects of smartphones that limit the application of traditional computer vision 

algorithms: “The resolution of the capture device is relatively low.  Mobile devices often provide 

only poor image quality, e.g., falsified colors and unsharpened images due to automatic white 
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balance and auto focus.  Computation power and memory resource are restricted. (Roters et al., 

2011, p. 1498)”    

 

Shang et al. (2012) proposes a system which uses smartphones networked together to detect the 

location of a subject.  They propose an algorithm to estimate the location of a subject based on a 

single image taken from a calibrated smartphone’s camera.  When the image is taken, the GPS 

reading of the phone and the phone’s orientation (based on the internal compass) is recorded. 

After the image is taken, the user draws a bounding box around the subject in the image. The 

algorithm computes the location of the subject based on the image, GPS reading, orientation, 

bounding box, and true size of the subject (Shang et al., 2012). 

 

Wang et al. (2012) agree with Roters et al. (2011) assessment that “due to the limited 

computation power of smartphones, complex algorithms requiring high time complexity and 

space complexity will not fit” (Wang, 2012, p. 693).  They developed a lightweight 

computationally efficient subject tracking algorithm that runs on a smartphone.  Their system 

targets “vehicles or rigid moving objects that are at about the same level as the smartphone 

camera” (Wang et al., 2012, p. 697).  Similar to the approach described by Shang et al. (2012), 

the user draws a bounding box in the first frame around the subject to be tracked and the 

algorithm assumes the physical size of the subject is known.  The algorithm draws a bounding 

box around the tracked subject in subsequent frames and employs this information to estimate a 

trajectory and velocity of the tracked subject (Wang et al., 2012). 
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RECOGNITION 

 

Recognizing Behavior 

The goal of recognition is to determine what the subject is actually doing.  Recognition 

techniques can be broadly divided into static recognition and dynamic recognition.  Static 

recognition techniques primarily use spatial data while dynamic recognition techniques primarily 

rely on temporal characteristics (Moeslund & Granum, 2001).  The distinction between the two 

techniques is not pure; algorithms consider both spatial and temporal characteristics.   

 

More interesting is how the recognition is done.  Some of the more common approaches are 

action hierarchies, scene interpretation, holistic recognition approaches and recognition based on 

body parts (Moeslund et al., 2006).  

 

An action hierarchy is the concept that each high-level activity can be broken down into smaller 

actions, which are, in turn, broken down into action primitives.  For example, the activity of 

playing tennis has as one if its actions return the ball whose action primitives could be forehand, 

backhand, run left, run right, etc (Moeslund et al., 2006). 

 

Scene interpretation are techniques that “consider the camera view as a whole and attempt to 

learn and recognize activities simply by observing the motion of objects without necessarily 

knowing their identity” (Moeslund et al., 2006, p. 111). 

 

Holistic recognition approaches consider the entire subject and attempt to recognize what the 

subject is doing based on the entire body.  In contrast, recognition based on body parts 
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techniques focus on recognizing individual parts and then determining what the subject is doing 

based on what the individual parts are doing (Moeslund et al., 2006). 

 

Miller (2012) suggests that “smartphones offer huge potential to gather precise, objective, 

sustained, and ecologically valid data on the real-world behaviors and experiences of millions of 

people where they already are, without requiring them to come into labs” (Miller, 2012, p. 221).   

The author argues that not only could context-aware surveys be presented to the users based on 

their GPS location but behavioral information could be gathered from the variety of sensors built 

into the smartphone.  As examples, he provides a table of 13 different research projects from 

2005 – 2011 that uses the smartphone to gather behavioral data of the human user such as 

emotional recognition from microphone input, GPS correlation and ambient noise monitoring 

correlated with self-entered mood report and combining GPS and GIS data to predict the 

person’s environmental impact (Miller, 2012).  

 

There have also been studies using videos taken by smartphones to analyze animal’s movement 

from which the researchers can then manually recognize the animal’s behavior.  Pittman & 

Ichikawa (2013) used two commercial applications, SwingReader (bought out in 2014 and now 

sold under the name of Hudl  and Sports Motion Analyzer to track the movement of zebrafish to 

quantify behavioral changes following psychoactive drug exposure (Crunchbase, 2016; Sports 

Motion Analyzer, 2016).  Their work demonstrates the feasibility of using a video from a 

smartphone and an application running on the same smartphone to quantify the behavior of an 

animal (Pittman & Ichikawa, 2013).    
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Conklin et al. (2015) use OpenCV and Python to develop a video tracking system to track animal 

movement.  Their system processes video from smartphones, laptops, or webcams but runs on a 

computer.  It detects motion by first converting the frames to grayscale and then performing a 

pixel-by-pixel subtraction.  This operation results in an image with black pixels representing no 

movement detected and white pixels representing movement. The resulting data can be analyzed 

to determine the behavior of the animal.   They applied their system to determine what type of 

food do birds like by counting the number of times movement is detected at four different food 

offerings.  To do this, they pointed a webcam at 4 different bowls: one contained raisins, the next 

contained sunflower seeds, the third miscellaneous small seeds, and the fourth peanuts. Detection 

of movement as well as timing of movement was recorded for each bowl.  Based on the number 

of seconds of movement detected for each dish, it was determined the birds prefer the 

miscellaneous small seeds.  They also used their system to quantify the movement of adult 

zebrafish treated with ethanol, a Siberian dwarf hamster navigating a maze, and how larval 

zebrafish respond to tricaine and heat. This approach is sensitive to any source of “motion 

artifacts, such as moving shadows, glare, changes in light intensity, or warping in the image 

resulting from lens curvature” (Conklin et al., 2015, A120-A121).   

 

Anomaly Detection 

Not only is it necessary to detect behavior, but it is imperative that normal behavior be 

distinguished from abnormal behavior.  “Anomaly detection refers to the problem of finding 

patterns in data that do not conform to expected behavior” (Chandola et al., 2009, p. 15:2).  

Numerous anomaly detection methods have been developed; some anomaly detection techniques 

are tailored to a particular domain while others are generic and can be used across multiple 

domains (Chandola et al., 2009; Gogoi et al., 2011).  Although generic techniques do exist, there 
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is not one anomaly detection method that works for all situations (Hodge & Austin, 2004).  

Researchers must carefully consider the domain of their research area and weigh the benefits and 

drawbacks of each anomaly detection method before selecting the best one.  

Shown in Figure 2.5 are the three main components (Application Domain, Research Area, and 

Characteristics to Consider) that go into selecting which anomaly detection technique to use.  

The Characteristics to Consider area is further divided into the key characteristics a researcher 

must contemplate when selecting an anomaly detection technique.  

  

Figure 2.5: Anomaly Detection Techniques (adapted from (Chandola et al., 2009, p. 15:4) 

 

Application Domain refers to the type of system anomaly detection technique is employed.  

Some examples of common systems utilizing anomaly detection techniques include fraud 

detection, network intrusion detection, health monitoring, etc (Hodge & Austin, 2004; Song et 

al., 2007). 
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Research Area is the particular focus area of the researcher selecting the anomaly detection 

technique.  Some examples of research areas commonly using anomaly detection techniques 

include machine learning, statistics, neural networks, and data mining (Chandola et al., 2009; 

Hodge & Austin, 2004). 

 

The Characteristics to Consider area represents the key characteristics to consider when selecting 

an anomaly detection technique and are divided into four regions:  Output, Availability of 

Training Labels, Anomaly Type, and Input (Chandola et al., 2009). 

 

The output of an anomaly detection technique can vary based on whether the technique defines a 

hard or soft boundary (Hodge & Austin, 2004).  In a hard boundary system, the anomaly 

techniques categorize each output instance as either normal or abnormal.  This is helpful when 

all the system cares about is whether something falls above or below a predetermined threshold.  

Other techniques use a soft boundary where the degree of abnormality is recorded; these 

techniques determine the likelihood each output is an anomaly and produce a ranked list of 

anomalies (Gogoi et al., 2011).  A ranked list would be important in a system where it’s hard to 

determine if an output is truly important or not and relies on the user to investigate.  With a 

ranked list, the user knows what items he or she should focus on first.  The ranked list concept 

can be combined with a threshold – for example the system would only show the user the top 10 

anomalies detected by the system (Gogoi et al., 2011).  

 

Anomalies can be separated into two broad types: simple anomalies (also called point anomalies) 

and complex anomalies that are further sub-divided into contextual anomalies and collective 

anomalies (Chandola et al., 2009; Gogoi et al., 2011).  Point anomalies are single items detected 
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as outliers.  In contextual anomalies (also called conditional anomalies), the context of the 

situation is taken into account to determine whether an item is an anomaly or not.  For example, 

a rapid heart rate would not be considered anomalous for a person running a sprint but would be 

considered anomalous for a person sleeping.  Collective anomalies occur when the combination 

of points is considered anomalous but the individual points forming that combination might not 

be considered anomalous when viewed independently (Chandola et al., 2009) (Gogoi et al., 

2011). 

 

Availability of Training Labels is categorized into three areas – supervised, semi-supervised, and 

unsupervised (Chandola et al., 2009; Gogoi et al., 2011; Hodge & Austin, 2004). The differences 

between these categories are the amount of training data required for the algorithms to work.  

With supervised techniques, training data is available for both normal and abnormal behaviors. 

Semi-supervised techniques assume training data is available for either the normal behaviors or 

the abnormal behaviors but not both (Chandola et al., 2009; Hodge & Austin, 2004). Typically, 

normal behaviors are used for the training data in the semi-supervised techniques; using only the 

abnormal behavior for the training data is rare (Hodge & Austin, 2004).  Unsupervised 

techniques do not assume training data is available but do have the implied assumption that 

normal data is more frequently observed than abnormal behavior (Chandola et al., 2009; Gogoi 

et al., 2011). 

 

Finally, researchers must consider the nature of the input data.  Input data can be numeric or non-

numeric (also called symbolic) (Agyemang et al., 2006).  Numeric data can be either single 

points or ranges.  Non-numeric is typically textual or imagery data.  The researcher needs to 

consider what input data is available before selecting an anomaly detection technique.  For 
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example, if the researcher implements a numerical technique but then has only image data 

available, the researcher must then implement the added step of converting the image data to a 

numerical representation or switch to a different technique. 

 

Detecting Abnormal Behavior 

Although anomaly detection techniques are typically thought of as only applying to computer-

based applications such as fraud detection and network intrusion detection, the basic concepts 

apply for algorithms detecting abnormal behavior in both humans and animals.  Zanero (2004) 

considers “anomaly-based intrusion detection in the more general frame of behavior detection 

problems” (Zanero, 2004, p. 658).  He proposes a general framework for performing behavioral 

detection using anomaly detection methods. The three high-level steps of his framework are: “1) 

Specify which kind of displays of behavior we can detect and build appropriate sensors for 

detecting them.  2) Choose an appropriate model for representing the behavior. 3) Set thresholds 

and logics that help us extract useful information from the observed behavior” (Zanero, 2004, p. 

660-661). 

 

Pannell & Ashman (2010) present a similar approach based on user models.  They build a model 

based on each individual’s behavior while using a computer and focus on “some user feature [i.e. 

behavior], such as typing habits and Web page usage, more so than application-specific features 

which only indirectly reflect user activity” (Pannell & Ashman, 2010, p. 208). To detect 

anomalous behavior, they compare the user’s current activity to the activity reflected in the user 

model.  Although they apply this approach to an intrusion detection system, they argue it could 

also be beneficial in health monitoring activities such as “detecting degradation in a user’s skills 

over time” (Pannell & Ashman, 2010, p. 208). 
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Roshtkhari & Levine (2013) present a model-free, unsupervised learning algorithm to detect 

anomalous behavior in videos. They use “densely sampled spatio-temporal video volumes 

(STVs)” to “construct a set of behavior patterns for each pixel” (Robert & Levine, 2013, p. 

2611).   Then they use this information to classify normal (aka dominant behaviors) in a video as 

those occurring frequently and separate them from anomalous behavior which they define as 

behavior occurring infrequently. “A limitation of the current approach is that it does not account 

for trajectories and hence, long term behaviors are not learnt” (Roshtkhari & Levine, 2013, p. 

2618). 

 

Nie et al. (2009) developed an algorithm to detect in real-time the abnormal behavior of 

scratching in laboratory mice.  Their algorithm is designed to distinguish scratching from other 

behaviors displayed by mice such as grooming and rearing.  The algorithm is intended to be used 

in a very controlled environment which includes a transparent acrylic cage, a high-speed vision 

system operating at 240 fps, and an IR illuminator which the cage sits on. 
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CHAPTER THREE: RESEARCH APPROACH 

 

OVERARCHING GOAL 

 

The overarching goal of this research was to find an easily-accessible, low-cost way to automate 

the detection of abnormal behavior.   Smartphones are ubiquitous in today’s society, but are 

associated with humans and human behavior – not animals.  We wanted to use an unmodified 

commercial-off-the-shelf (COTS) smartphone to detect when an animal – an equine in this case – 

exhibits abnormal behavior.  This required novel approaches as the behavior between a human 

and an equine are different with each requiring different models to represent their normal and 

abnormal behavior.  This research focused on modeling an equine in such a way as to detect its 

behavior using only a smartphone.  

 

OBJECTIVES 

 

The primary objectives in support of the research’s overarching goal were to model equine 

behavior in such a fashion as to:  

1. Model behavior of the animal (Develop the Model) 

2. Use ubiquitous sensors to acquire information on the animal (Acquire Information) 

3. Analyze data and identify in near real-time behavior that deviated from normal (Identify 

Behavior) 

In our research the first objective was performed in the modeling phase.  The second and third 

objective were performed in the data acquisition/behavior recognition phase. These three 

objectives can be broadly divided into two categories as follows: 
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1) Modeling  

• First Objective: Represent the Model 

2) Simulation 

• Second Objective: Acquire Information 

• Third Objective:  Identify Behavior 

 

Schwendimann (2010) describes a model as “a product (physical or digital) that represents a 

system of interest (Schwendimann, 2010, para. 1).  A model is similar to but simpler than the 

system it represents, while approximating most of the same salient features of the real system as 

close as possible.”  He describes a simulation as the “process of using a model to study the 

behavior and performance of an actual or theoretical system” (Schwendimann, 2010, para. 3).  In 

its simplest representation a simulation can be viewed as the following: 

 

 

 

Figure 3.1: Diagram of a Simulation  

 

Overlaying our objectives on Figure 3.1 gives us the following: 

 

 

 

Figure 3.2: Diagram of a Simulation with Overlaid Objectives  
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MODELING 

 

First Objective: Develop the Model 

Modeling Questions  

The questions that informed our model building process were as follows: 

• What is the platform the model will run on? 

• What is the physiology and behavior of the subject to be modeled? 

• What is the purpose of the model? 

• What is the environment of the subject? 

• What data is available to inform the model? 

 

The answers to these questions greatly influence the model that can be built.  None of these 

questions can be considered independently because a decision made in one area can impact 

answers in the other areas.   

 

Answering the question of what type of platform the model runs on constrains the development 

of the model.  A model that runs on a high performance computing platform has much more 

processing power available to it than a model running on a smartphone.  The high performance 

computing platform would be able to run more processing intensive algorithms than the 

smartphone.  

 

To answer the second question a study of the subject must be done.  Depending on what the 

purpose of the model is this study might be extremely detailed or more general.  For example, to 

build a model of a cat’s tail a researcher could observe a cat moving its tail and then mimic the 
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observed behavior in a model as a simple string.  Alternatively the cat’s tail could be modeled at 

the cellular level depicting which nerves fire on which muscles to cause the tail’s movement.  

Modeling at the cellular level requires a more detailed study into the subject’s kinematics than a 

simple string approach.  Which approach chosen depends on how the model is going to be used 

(i.e. the model’s purpose).    

 

The environment of the subject guides the model to be built.  To build an aerodynamics model of 

an aircraft, the environment the aircraft is going to operate in greatly influences the model.  If the 

aircraft is going to be used in outer space, a different model will be needed than if the aircraft is 

going to be used in the Earth’s atmosphere.    

 

Similarly, the data available to inform the model must be taken into account.  For example, if the 

only sensor available to gather real-time data on the subject is a smartphone building a model 

that requires input data at the sub-cellular level is not realistic. 

  

Model Representation 

Once the subject to be modeled, its associated behaviors, and physiological characteristics are 

known, they have to be combined into a cohesive usable whole.  One methodology for doing this 

is to use a framework.  PCMag (2018) describes a framework as “a set of common software 

routines that provides a foundation structure for developing an application. Frameworks take the 

tedium out of writing all the program code for an application from scratch (PCMag, 2018, para. 

2).”  For this research we took the novel tactic of using a gaming framework for our modeling 

approach.  As the name implies, a gaming framework is typically used for developing games and 

is not traditionally associated with behavioral modeling and certainly not behavioral modeling of 
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an animal.  However, upon closer inspection a gaming framework provides the key components 

needed for behavioral modeling.  One of the key components provided by most gaming 

frameworks is a Component/Entity System (C/ES).   

 

According to the Entity Systems Wiki (2014), a C/ES is based on the principle of composition.  

An entity is a container into which components can be added.  These components represent the 

behaviors, looks and/or data associated with the entity (Entity Systems Wiki, 2014).  House 

(2012) uses the analogy of a key to explain the relationship between entities and components.  

He explains: “the teeth of our entity key is the components that make it up. You can tell entities 

apart by their ID, even if they have the same teeth (House, 2012, para. 3).”   

 

 

Figure 3.3: Component/Entity Relationship (House, 2012, Fig. 1) 

 

Since our specific platform was an iPhone 6, we used Apple’s gaming framework, GameplayKit.  

Apple’s GameplayKit is “a general architecture for designing composable, reusable gameplay 

logic” (Apple, 2018b, para. 5).  As part of GameplayKit, Apple provides a C/ES consisting of a 

GKComponent and a GKEntity.  Although developed for use with games, Apple’s generic 

architecture for designing composable entities was perfect for behavioral modeling of animals.  

The animal was modeled as a GKEntity.   The corresponding behaviors to be detected and the 

actions to take based on those behaviors were modeled in separate GKComponents.   

Components 
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To model behavior with a C/ES a researcher has to: 

1) Determine what actions each component will take when it is executed  

2) Come up with a theoretical behavioral pattern that is representative of each behavior to be 

modeled  

 

The actions each component performs when it is executed is based on the purpose of the model.  

Examples of such actions are logging data to a file, playing a sound, or sending a text message.  

 

Developing the theoretical behavioral pattern requires determining what each of the modeled 

physiological characteristics of the subject is doing for each behavior to be modeled.  This data is 

gathered via observation and analysis when preexisting data is not available.  How this 

observation and analysis is performed depends on the purpose of the model.  For example, if the 

purpose of the model is to distinguish how a dog wags its tail based on certain stimuli, a study 

such as that described in (Quaranta et al., 2007) could be performed.  Quaranta et al., (2007) 

placed thirty dogs one at a time in a box and exposed them to different stimuli.  A video was 

taken of how the dog’s tail reacted for each stimulus.  The researchers analyzed the video data 

and determined a composite amplitude of tail wagging that corresponded to each stimulus.  This 

amplitude data forms the theoretical behavioral pattern.   

 

SIMULATION 

 

Second Objective: Acquire Information 

Objective 2 is associated with acquiring information from sensors and inputting this information 

into a model.  Google’s dictionary describes a sensor as “a device that detects or measures a 
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physical property and records, indicates, or otherwise responds to it” (Google, 2018, para. 1).  

Raw data from sensors is either fed directly into a model or sent into a processing routine to 

reduce the raw data into a format useable by the model. Our proof of feasibility was focused on 

visual acquisition, so the input for our model consisted of images.  Typically an image’s raw data 

contains both areas of interest and non-interest and must be processed before it is useable by the 

model. For example, if the purpose was to build a model to count how many times a basketball 

bounced, the basketball (area of interest) must first be separated from the background scenery 

and from the player’s hands bouncing the ball.  Then the basketball’s information could be fed 

into a model where the bouncing behavior was counted.   

 

One of the critical pieces of using image data for modeling is to determine at what interval (i.e. 

framerate) with which to sample the data.  Per Pueo (2016) to calculate the minimum framerate 

required for perfect detection accuracy one needs to know the velocity of the object and the size 

of the object.  The smaller the object and the faster the velocity the higher the minimum 

framerate required.  Pueo’s (2016) formula for calculating the minimum frame rate is shown 

below: 

 

 

 

Figure 3.4:  Minimum framerate formula (Pueo, 2016, p.57) 

 

A corollary question is what is the slowest framerate the model can receive input and still 

distinguish normal from abnormal behaviors.  This question is more experimental in nature as 

there is not a formula available to calculate it.   The slowest framerate is dependent on the 
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domain of the research and on the subject’s specific behaviors.  The slowest framerate will fall 

somewhere between 0 and Pueo’s (2016) minimum framerate.  Since the purpose is to calculate 

the slowest possible framerate, we start at 0 and work our way up and evaluate the accuracy of 

the output at each increase in framerate.  As the framerate is increased towards Pueo’s (2016) 

minimum, the accuracy should increase.  Once the accuracy has reached a pre-determined 

threshold the slowest possible framerate has been achieved.  The pre-determined threshold is set 

based on the purpose of the system.  For example, a proof-of-feasibility system will require a 

much lower accuracy threshold than a production system. 

 

Another key component provided by most gaming frameworks is a methodology to receive 

inputs in real-time, update the state of the system based on those inputs, and then take actions 

based upon the inputs received.  This process is what Trochim (1989) describes as the  

“acquisition of an observed pattern” (Trochim, 1989, p. 1).  While the simulation is running, it is 

receiving processed inputs from the sensors at pre-determined interval and feeds this data into 

the gaming framework.  The gaming framework this updates the state of the simulation based on 

these inputs.  To determine what actions to take based on the updated state, Apple’s gaming 

framework provides a built-in rule-based system.  According to Lengyel (2015), “a rule-based 

system is a series of if-then statements that utilizes a set of assertions, to which rules are created 

on how to act upon those assertions” (Lengyel , 2015, p. 1).   To develop a rule, a series of 

assertions (also called predicates) are developed and then combined to form a rule.   A simple 

example of how this might be used in a game is as follows: 

If ((player’s number of lives > 1) AND (players health is < 10%)) then 

 decrement the player’s entity number of lives.   
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In the above example (player’s number of lives > 1) and (players health is < 10%)  are examples 

of assertions and the entire statement is the rule to be evaluated.   

 

Third Objective: Identify Behavior 

According to Trochim (1989), pattern matching is the “specification of a theoretical pattern, the 

acquisition of an observed pattern, and an attempt to match the two” (Trochim, 1989, p. 1).  The 

theoretical behavioral pattern was developed during objective 1, the acquisition of an observed 

behavioral pattern was accomplished in objective 2, objective 3 deals with the final part of 

Trochim’s definition -   “an attempt to match the two” (Trochim, 1989, p. 1).  Similar to 

objective 2,  a rule system can be used to accomplish this objective.  The general structure for 

such rules is as follows: 

If the theoretical pattern  equals the observed pattern then  

  A pattern match has occurred 

Once the rule has been successfully executed (i.e. a match has been found), the entity’s 

component corresponding with the matched behavior is called.   The gaming framework transfers 

control to the component to execute its actions defined during the modeling phase. 

 

RESEARCH CONTRIBUTIONS 

 

The two primary contributions of this research were: 

1) Employed a gaming framework on a relatively low-power/low-capability devices to 

monitor animal behavior.   

2) A means to describe and detect anomalous animal movement using a rule-based pattern 

matching methodology. 
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CHAPTER FOUR: RESEARCH VALIDATION 

 

RESEARCH HYPOTHESES 

 

This research has two competing hypotheses.  The null hypothesis (H0) assumes the smartphone 

cannot detect nor distinguish between normal or abnormal behavior while the positive hypothesis 

(H1) assumes the smartphone can detect and distinguish between normal and abnormal behavior.  

Both hypotheses can be stated as follows: 

 

H0 – Smartphones cannot detect an equine pawing in a stall and cannot distinguish the 

pawing from an equine walking around or standing still in a stall. 

 

H1 – Smartphones can detect an equine pawing in a stall and can distinguish the pawing 

from an equine walking around or standing still in a stall. 

 

LIGHTING 

 

Lighting conditions played a significant role in the computer vision techniques utilized for this 

application.  Shifting shadows and changes in the sun’s illumination can throw the algorithms 

off.   For example, Figure 4.1 shows a picture taken in the stall at 8am on a bright sunny 

morning.  Figure 4.2 shows a picture taken in the same stall with the same camera at 8pm that 

evening when the sun is gone over the horizon and the barn’s electric lighting is providing most 

of the illumination.  Because of these changes, the software had to be manually calibrated each 

time the program was run.   
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Figure 4.1:  Lighting in Stall at 8am 

 

 

Figure 4.2:  Lighting in Stall at 8pm 
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MODELING PHASE 

 

Equipment Used for Modeling 

The modeling effort used the following equipment: 

•   One iPhone 6 

•   Flexible Tripod Mount 

•   Lightning to USB transfer cable 

•   MacBook Pro laptop 

The iPhone 6 was developed by Apple and released on 19 September 2014 (iPhone, 2016). It 

features an 8-megapixel back facing camera (Apple, 2016).  We used an iKross Universal 

smartphone Flexible Tripod Stand Holder to mount the iPhone 6 to the stall (Amazon.com, 

2016).  The iKross has bendable legs that can be manipulated to fit around objects (such as the 

top wood beam of the stall) and does not require a permanent mounting method.  This flexibility 

allowed us to experiment with the best placement of the smartphone to capture images of the 

equine.  The Lightning to USB transfer cable was used to transfer the video taken with the 

iPhone 6 to the MacBook Pro for analysis.  We used a circa 2013 MacBook Pro with a 2.4 GHz 

Intel Core i5 processor and 8 GB of 1600 MHz DDR3 memory.  The MacBook Pro was used to 

analyze the video and develop the model.   

 

Steps in the Modeling Phase 

The following steps were used to collect data for building the model: 

1) Mount the iPhone in the stall using the iKross tripod. 

2) Put equine in the stall. 

3) Set the iPhone’s back camera to video mode and start recording. 
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4) After the video has run long enough to capture the desired behavior (the equine has 

pawed, walked, or stood still), stop the video. 

5) Download the video onto the laptop for analysis. 

 

We analyzed the video frame-by-frame and through this analysis discovered an equine’s front 

legs displayed a distinct pattern of movement for the pawing, walking, and standing behaviors.  

An equine pawing in a stall shows a pattern of no movement on the non-pawing leg with 

movement on the front leg that is doing the pawing.  An equine walking around in the stall 

shows a pattern of movement on both front legs.  An equine standing still in a stall shows a 

pattern of no movement on both front legs.  These behavioral patterns were synthesized into 

markers.  We used a 1 to represent movement on a leg while a 0 represented no movement.  

These markers were then combined to form a theoretical pattern for each of the behaviors:  

10 = Right leg moved while left leg stayed still (Behavior = Pawing Right Leg) 

01 = Left leg moved while right leg stayed still (Behavior = Pawing Left Leg) 

11 = Both legs moved (Behavior = Walking) 

 00 = Both legs did not move (Behavior = Standing Still) 

 

We used Apple’s Component/Entity System (C/ES) to encode our model of an equine.  The 

equine was modeled as a GKEntity.  The pawing, walking, and standing still’s behaviors were 

embedded into separate GKComponents.  As discussed in chapter 3, another important part of 

developing a component is to determine what actions will be performed when the component is 

executed.  For this research, each GKComponent performs a logging action and records its data 

to a text file.  
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DATA ACQUISITION/BEHAVIOR RECOGNITION PHASE 

 

Equipment Used for Data Acquisition 

The data acquisition effort used the following equipment: 

•   Two iPhone 6  

•   Custom-Built Mounting Board 

•   Self-Adhering bandages 

To run the custom-built software and collect the validation video, two iPhones 6 were used.  One 

iPhone 6 ran the custom-built software and the other iPhone 6 took a video of what the equine 

was doing while the software was running on the other phone.  Two iPhones were necessary 

since a single iPhone cannot take video and photos with the same camera at the same time.  The 

researcher used a handheld custom-built mounting board so the two iPhones remained lined up 

and stable while the software and video camera were collecting data. 

 

This research employed 3M’s VetRap ®, a brand commonly used to bandage equines because it 

sticks to itself without sticking to the equine's fur.  A red bandage marked the right front leg and 

a green bandage marked the left front leg.  See Figure 4.3 for an example of how the VetRap ®, 

was applied to the equine’s legs. 
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Figure 4.3: Equine’s Front Legs with VetRap ®  

 

Steps in the Data Acquisition/Behavior Recognition Phase 

The following steps were used to acquire the data: 

6) Mount both iPhone 6s to the custom-built mounting board. 

7) Wrap the equine’s front legs – red for the right and green for the left. 

8) Put equine in the stall. 

9) Start the custom-built software and adjust for lighting conditions. 

10) Set the second iPhone’s camera to video mode. 

11) Start the custom-built software on the first iPhone and record video on the second iPhone.  

12) After the software has run long enough to detect the desired behavior (the equine has 

pawed, walked, or stood still), stop both the custom software and the video. 

13) Download both the data and video onto the laptop for analysis. 

 

After the data had been collected a transfer cable was used to transfer the data from the first 

iPhone and the video from the second iPhone to a laptop for analysis.  

 

The software program produces three key outputs: 
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1) The photos taken with the iPhone camera through the custom software. 

2) The output photos created by the custom software that displays the location of each leg 

with a red or green colored circle. 

3) A text file that contains the movement pattern detected, what the algorithm determined 

the equine to be doing in the last second, the corresponding filename of the last photo the 

movement is associated with, and a summary of the movement detected to date.   
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An example of each of the three key outputs produced by the software is below: 

1) The software took two photos, shown in Figure 4.4. 

 

Figure 4.4:  Input Photos Taken by Software Program 
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2) The software isolated the markers, as shown in Figure 4.5. 

 

Figure 4.5:  Output Photos Produced by Software Program 
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3) The information was codified in a text file as follows: 

******************** 
Movement Pattern: 1010 
In the last second: the horse pawed with the right leg 
 
Horse Summary Stats 
24.jpg 
0 seconds horse has been pawing with left leg. 
2 seconds horse has been pawing with right leg. 
3 seconds horse has been still. 
6 seconds horse has been moving. 
******************** 

 

The video was taken using the iPhone 6 default of 1080p at 30 frames per second (fps) to record 

video and was stored in the Moving Picture Experts Group version 4 (MPEG-4) format the 

default video encoding format used by the iPhone 6.     

 

The video provided the truth data for assessing the acuity of the software.  For each one-second 

segment of the video, an equine expert recorded one of the following observed behaviors as 

shown in Table 4.1:     

0 Lost Data on Both Legs 
1 Lost Data on Right Leg 
2 Lost Data on Left Leg 
3 Horse Stood Still 
4 Horse Pawed Right Leg 
5 Horse Pawed Left Leg 
6 Horse Moved 

 

Table 4.1: Behavior Categories 

 

The behaviors were corroborated separately by an equine veterinarian2. 

                                                
2 Dr. Jennifer S. Taintor, DVM, MS, DACVIM, DACVSMR of Auburn Veterinary School 
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The behavior detected by the software was matched against the behavior observed in the video at 

each time interval, resulting in a spreadsheet along the lines of Table 4.2. 

 

Time 
Interval 

Observed Behavior Detected Behavior 

0:00 Horse Moved Lost Data on Right Leg 
0:01 Horse Moved Horse Moved 
0:02 Horse Moved Horse Moved 
0:03 Horse Moved Horse Moved 
0:04 Horse Pawed Right Leg Horse Pawed Right Leg 

Table 4.2: Observed vs. Detected Behavior 

 

SYNOPSIS OF DATA – FAST & SLOW MOVING EQUINES 

 

One Second Synopsis – Fast Moving Equine 

Configuring the tracking and detection algorithm to use one second of data for the equine that 

moves rapidly in the stall produced the results visualized in Figure 4.6. 
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Figure 4.6:  Results of One Second Synopsis – Fast Moving Equine 

 

Twenty-five discrepancies were detected across the 103 total possible points for comparing 

observed and detected behavior, yielding a 24.3% error rate.  These mismatches fall into broad 

categories as show in table 4.3.   Analysis pointed to the following discrepancies between the 

observed and detected behaviors: 

1. The detection mechanism lost track of the test subject’s orientation in 13 of the 25 

observation intervals.   

2. The observed behavior was not accurately determined in 12 of the 25 cases.  Ten of the 

faults diagnosed the test subject as moving when it was observed to be pawing.   In the 

remaining two faults, the test subject was observed to be pawing and was identified as 

doing something else.   
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The analysis also indicated that the detected behavior lags the observed behavior by a slight 

amount, typically less than a second.  The delay was caused by the time required to process the 

image of the test subject and locate the leg markers.  The latency was minimal and did not have 

an impact on the functionality of the software.   

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 11 
Pawing/Movement 10 
Data Loss Type Mismatch  2 
Pawing/Standing Still 1 
Movement/Pawing 1 
Standing Still/Movement 0 

Table 4.3:  Mismatch Categories for One Second Synopsis – Fast Moving Equine3 

 

One Second Synopsis – Slow Moving Equine 

Configuring the tracking and detection algorithm to use one second of data for the equine that 

moves that moves very little in the stall produced the results visualized in Figure 4.7. 

                                                
3 There are three additional potential categories for mismatches: Lost Data (all types)/Movement, 
Standing Still/Pawing, Movement/Standing Still.   However, no mismatches in these categories 
occurred during my research so were intentionally omitted from this and subsequent tables.  
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Figure 4.7:  Results of One Second Synopsis – Slow Moving Equine 

 

The detected behavior in 91 of the 92 possible intervals matched the observed behavior, yielding 

a 1.1% error rate.  The one exception arose when the software mistakenly diagnosed movement 

as pawing (second 11 of Figure 4.7).  This is due to how the algorithm detects pawing.  If the 

equine takes a very slow step and its leg is suspended above the ground when an observation is 

made, the program categorizes the action as pawing.    

   

The image processing latency issue noted above became evident at between time intervals 65 and 

66.  The equine’s movement ended on the boundary between 65 seconds and 66 seconds, 
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whereas the program categorized the movement occurring over both 65 seconds and 66 seconds.   

We felt this was a minor issue, one that did not merit being categorized as a misclassification.  

Even counting it as a mismatch, the error rate increases slightly to 2.2%.  Table 4.4 shows the 

one misclassification. 

 

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 0 
Pawing/Movement 0 
Data Loss Type Mismatch  0 
Pawing/Standing Still 0 
Movement/Pawing 1 
Standing Still/Movement 0 

Table 4.4:  Mismatch Categories for One Second Analysis – Slow Moving Equine 

 

Two Second Synopsis – Fast Moving Equine 

Configuring the tracking and detection algorithm to use two seconds of data for the equine that 

moves rapidly in the stall (as opposed to one second) produced the results visualized in Figure 

4.8. 
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Figure 4.8:  Results of Two Second Synopsis – Fast Moving Equine 

 

The right leg pawing detection rate dramatically decreased when taking the extra second's worth 

of information into consideration.  It went from 11 detections on the one second algorithm to 4 

detections on the two second algorithm.  The two-second algorithm did not detect the left leg 

pawing at all compared with the 3 detections of the one-second algorithm. The error rate jumped 

from 24.3% to 40.2%.  Embracing the data in the additional second corrected the one false 

detection of the equine taking a step and the software mis-categorizing it as pawing.  

 

Since the reconfigured algorithm required two seconds of data to complete, the number of 

comparison points decreased from 103 to 102.   The observed versus detected behavior failed to 
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match 41 times, yielding an error rate of 40.2%.  The mismatches fall into broad categories, as 

shown in Table 4.5. 

 

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 13 
Pawing/Movement 21 
Data Loss Type Mismatch  5 
Pawing/Standing Still 0 
Movement/Pawing 0 
Standing Still/Movement 2 

Table 4.5:  Mismatch Categories for Two Second Analysis – Fast Moving Equine 

  

Two Second Synopsis – Slow Moving Equine 

Configuring the tracking and detection algorithm to use two seconds of data for the equine that 

moves very little in the stall (as opposed to one second) produced the results visualized in Figure 

4.9. 
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Figure 4.9:  Results of Two Second Synopsis – Slow Moving Equine 

 

The two-second algorithm remedied the single categorization mismatch of the one-second 

algorithm at the expense of introducing enough processing latency to mistakenly diagnose five 

comparison intervals.  In all five instances, the software diagnosed the test subject as moving 

when it was observed to be standing still; this is due to the inherent processing latency in the 

software.  If the equine’s movement stopped within the first few frames of the two seconds the 

software would categorize the entire two seconds as movement; however to the observer the 

equine was standing still.  
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Counting the five discrepancies as diagnosis failures presents an error rate of 5.4%.  The five 

mismatches fall into broad categories, as shown in Table 4.6. 

 

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 0 
Pawing/Movement 0 
Data Loss Type Mismatch  0 
Pawing/Standing Still 0 
Movement/Pawing 0 
Standing Still/Movement 5 

Table 4.6:  Mismatch Categories for Two Second Synopsis – Slow Moving Equine 

 

SYNOPSIS OF DATA – THIRD EQUINE 

 

To ensure the algorithms weren’t tuned for a specific equine, the research included a third equine 

in the analysis– one that was not used in any previous analyses or testing of the software.  This 

equine also exhibits pawing behavior.   This equine’s activity level in the stall is medium – it is 

neither as fast as the fast moving equine’s activity above nor as slow as the slow moving equine.    

 

One Second Synopsis – Third Equine 

Configuring the tracking and detection algorithm to use one second of data for the third equine 

produced the results visualized in Figure 4.10. 
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Figure 4.10:  Results of One Second Synopsis – Third Equine 

 

Eleven discrepancies were detected across the 36 total possible points for comparing observed 

and detected behavior, yielding a 30.6% error rate.  These mismatches fall into broad categories 

as show in table 4.6.  Analysis pointed to the following discrepancies between the observed and 

detected behaviors: 

 

1. The detection mechanism lost track of the test subject’s orientation in 3 of the 36 

observation intervals.   

 

2. The observed behavior was not accurately determined in 5 of the 36 cases.  Ten of the 

faults diagnosed the test subject as moving when it was observed to be pawing.   In the 
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remaining two faults, the test subject was observed to be pawing and was identified as 

doing something else.   

 

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 3 
Pawing/Movement 5 
Data Loss Type Mismatch  0 
Pawing/Standing Still 0 
Movement/Pawing 3 
Standing Still/Movement 0 

Table 4.7:  Mismatch Categories for One Second Analysis – Third Equine 

 

This equine twice demonstrates the same motion as pawing but never makes contact with the 

ground.  The software diagnosed the equine as pawing but technically its movement.  Even the 

observer had a hard time determining whether to classify it as pawing or movement.  If these two 

mismatches are removed, the error rate decreases to 25%.   

  

Two Second Analysis – Third Equine 

Configuring the tracking and detection algorithm to use two seconds of data for the third equine 

produced the results visualized in Figure 4.11. 
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Figure 4.11:  Results of Two Second Analysis – Third Equine 

 

The detected behavior in 15 of the 36 possible intervals matched the observed behavior, yielding 

a 41.7% error rate.  The motion erroneously detected as pawing with the one second algorithm 

was corrected with the two second algorithm. However this was at the cost of the algorithm 

missing four additional pawing detections. 
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The 15 mismatches fall into broad categories, as shown in Table 4.8 

Type of Mismatch 
(video/program) 

Number of 
Occurrences 

Movement/Lost Data (all types) 5 
Pawing/Movement 9 
Data Loss Type Mismatch  0 
Pawing/Standing Still 0 
Movement/Pawing 0 
Standing Still/Movement 1 

Table 4.8:  Mismatch Categories for Two Second Analysis – Third Equine 

 

DATA ANALYSIS PHASE 

 

Table 4.9 shows the error rates for each of the algorithms.   

Equine One Second Algorithm Two Second Algorithm 
Fast  24.3% 40.2% 
Slow  1.1% 5.4% 
Third  25.0% 41.7% 

Table 4.9:  Error Rates for Algorithms 

 

Table 4.10 shows the percentage of mismatch types for each type of algorithm.   

Type of Mismatch 
(video/program) 

One  
Second 
 Fast 

One 
Second 
Slow 

One 
Second 
Third 

Two 
Second 
Fast 

Two 
Second 
Slow 

Two 
Second 
Third 

Movement/Lost Data (all 
types) 

44% 0% 27% 32% 0% 33% 

Pawing/Movement 40% 0% 46% 51% 0% 60% 
Data Loss Type Mismatch  8% 0% 0% 12% 0% 0% 
Pawing/Standing Still 4% 0% 0% 0% 0% 0% 
Movement/Pawing 4% 100% 27% 0% 0% 0% 
Standing Still/Movement 0% 0% 0% 5% 100% 7% 

Table 4.10:  Percentage Mismatches 
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The software currently collects data at 2 Hz and makes a behavior determination every second.  

A rapidly moving equine can perform several behaviors in this half second lag between frames – 

all of which are not captured by the software.  The observer does not have this problem as the 

observer is watching a video taken at 30Hz.   There are two main challenges faced by the 

software:  Occlusions and Processing Lag.  

 

Occlusions 

An occlusion occurs when something blocks one or both of the legs from the view of the camera 

at the moment the software collected data.  This type of data mismatch accounted for the highest 

mis-categorization for the fast moving equine and the second highest mis-categorization for the 

third equine.  Of the two observations the software used to make a behavior determination, if one 

of the frames included an occlusion then the software could not determine what behavior the 

equine was doing during that second and categorized the behavior as “Lost Data”.  However, the 

observer could see in the video the equine was moving as the leg came back into view.  For 

example, Figure 4.12 shows a common example of an occlusion.  The body of the equine 

blocked the right bandage from the camera’s view.  Figure 4.13 was from three frames earlier in 

the video and shows the right bandage clearly.   The software classifies this as lost data while the 

observer classifies it at movement.  
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Figure 4.12:  Example of an Occlusion 

 

Figure 4.13:  Three Video Frames Earlier than the Occlusion 
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Processing Lag 

The software compares the movement of each individual leg from the previous frame and 

encodes this data into a 1 or 0.  1 represents movement was detected from the previous frame 

while a 0 represents no movement was detected.  

 

When an equine paws, it exhibits a unique movement pattern.  The non-pawing leg (aka the 

standing leg) stays still while the pawing leg moves rapidly back and forth.  For one second’s 

worth of data this can easily be encoded as 1010.  

 

For the software to correctly match the pawing pattern, the software first has to collect the 

correct frames.  This is where processing lag causes mismatches.  For example, figures 4.14 and 

4.15, represent two back-to-back frames (9.jpg and 10.jpg) collected by the software.  As can be 

seen the left leg (green bandage) stayed still while the right leg (red bandage) moved.  The 

encoded data is 1010 which the software correctly matched to pawing.   

 

Figures 4.16 and 4.17 show where processing lag comes into play.  These two figures are the 

next consecutive frames (11.jpg and 12.jpg).  The movement pattern for this second of data is 

1000.  The right leg moves from frames 10.jpg and 11.jpg and is correctly encoded as 10;  

however, the leg doesn’t appear to move between 11.jpg and 12.jpg and is encoded as 00.  This 

creates a movement pattern for this second of data as 1000.  Since movement occurred at some 

point during the interval (as represented by the 1) but does not match the pawing pattern, the 

software categorizes it as movement.  This is due to the processing lag and the way Apple’s 

AVFoundation manages photos.  The method used to take the photo is an asynchronous process 

that “returns immediately after it is invoked, later calling the provided completion handler block 
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when image data is ready” and the developer “should not assume that the completion handler 

will be called on a specific thread” (Apple, 2018a, para. 5-6).  This translates to a system lag if 

image processing does not complete in half a second because the buffer is not updated.    

 

 

 

 

 

 
 
 
 
 
Figure 4.14: 9.jpg 

 
 
 
 
 
Figure 4.15: 10.jpg 

 
 
 
 
 
Figure 4.16: 11.jpg 

 
 
 
 
 
Figure 4.17: 12.jpg 
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SUMMARY 

 

This validation effort confirmed the positive hypothesis: “Smartphones can detect an equine 

pawing in a stall and can distinguish the pawing from an equine walking around in a stall.”  

There were challenges encountered such as lighting, occlusions, and processor lag.  The lighting 

challenge was the easiest to overcome by performing a manual calibration for each run.  

Although nothing could completely eliminate the processor lag and occlusions, the software was 

still able to achieve a 75% - 98.9% success rate for the one second algorithm.   
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CHAPTER FIVE: SUMMARY 

The overarching goal of this research was to use automated techniques to detect anomalous 

behavior exhibited by animals being observed in a controlled setting.   The scholarly contribution 

of the work was in extending game-based modeling to describe patterns of behavior that are 

considered normal, to determine when observed behavior falls outside those patterns, and to 

diagnose the possible cause of the anomaly.   The application domain of this endeavor was 

equine health.  The research resulted in a proof-of-feasibility system that uses an off-the-shelf 

mobile phone to observe an equine while in a stall and detect when the equine is pawing.   

 

The research was conducted in three main phases: 

1. Modeling Phase 

2. Data Acquisition/Behavior Recognition Phase 

3. Analysis Phase 

In the modeling phase, we developed a pattern-based model for describing a specific subset of 

equine behavior that can be delineated using the locomotion of the front two legs.  During the 

data acquisition/behavior recognition phase, computer vision techniques were used to process the 

images in real-time to remove noise and extract the desired features from the images.  Next, we 

used a game-based rule system to determine if the extracted features relocated from the last 

known position.  The analysis phase used pattern matching to compare the a priori models 

developed in the modeling phase to the observed events from the data acquisition/behavior 

recognition phase to diagnosis the equine’ behavior. 

 

The positive hypothesis “H1 – Smartphones can detect an equine pawing in a stall and can 

distinguish the pawing from an equine walking around or standing still in a stall” was confirmed 
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through this research.  A single unmodified smartphone (an iPhone 6) was used to detect 

abnormal behavior with an accuracy of 70-98% depending on the rapidity of the test subject’s 

movement.   

 

CONCLUSIONS   

 

Initially, we attempted to track the equine’s legs without the use of markers.  However, there 

were many challenges to this approach as an equine’s left leg and right leg look very similar 

unless the equine has a unique color pattern on one leg versus another.  Complex algorithms 

would be necessary to distinguish one front leg from another, and these algorithms must be 

tailored to the individual horse.  The algorithms would also have to account for occlusions and 

cross-overs.  Currently such algorithms require high-end workstations; contemporary 

smartphones lack the processing power.  For example, Vicon’s Tracker System requires a 

minimum of a 3.6GHz processor along with a separate 2GB graphics card (Vicon, 2018).  The 

entry-level software package by iPiSoft, which bills itself as Motion Capture for the Masses 

requires a minimum of a 2GHz processor along with a separate gaming-class graphics video card 

with the caveats that this “is an entry-level configuration that works with one depth sensor 

(Kinect 2 or Kinect). Easy to use but applicable for relatively simple motions without rotations” 

(Ipisoft, 2018, para. 1).  In comparison the iPhone 6 has a 1.4Ghz processor with an integrated 

GPU (TechReport, 2018). 

 

Smartphones can detect abnormal behavior using marker-based computer vision techniques 

albeit with less than 100% accuracy. To increase accuracy with the current marker-based 

approach the ability to process higher framerates (60+ fps) in real-time would be required.  
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However, storage capacity and energy consumption must be considered as the processing rate is 

increased.  For example, in this research, an average picture size was 100KB.  At a 2HZ rate, this 

meant 200KB was used every minute.  At 60 HZ, 6MB each minute would be required for 

storage capacity.  Similarly, the energy consumption would need to be monitored closely.   At 

the highest processing peak the program reached 76% CPU utilization, quickly draining the 

battery. 

 

The lowest resolution setting available on the iPhone 6 is 640x480 (Apple, 2018c).  At this 

resolution the camera was able to detect the markers at a distance of 12 feet.  This particular 

application required neither a higher resolution nor increased processing latency and storage 

space to achieve acceptable results.    

 

Three separate test subjects with varying degrees of rapidness of movement were used for the 

data analysis portion with two different algorithms run against each.  The first algorithm 

analyzed one second’s data of movement before determining the behavior being exhibited.  The 

second algorithm used two seconds’ worth of data.  The first test subjected moved very rapidly 

and the error rates were 24.3% for the first algorithm and 40.2% for the second algorithm.  The 

second test subject moved very little in the stall and the error rates were 1.1% for the first 

algorithm and 5.4% for the second algorithm.  The third test subject had a medium movement 

rate and the error rates were 30.6% for the first algorithm and 41.7% for the second algorithm.  

The number of observations made per second and the number of consecutive observations 

considered affect the accuracy of the diagnosis.  Increasing either, or both, improves fidelity and 

provides a sounder basis for diagnosis.  This is done at the cost of increasing the amount of 

computing required to process the data.  
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Apple’s gaming framework, GameplayKit, provided several algorithms and data structures 

useful for building computer vision applications.  First, GameplayKit provided the ability to 

easily build a model where the equine is separated from its associated behaviors.  The equine 

was represented as an entity and the behaviors as components with each behavior being 

segmented into a single component.  This segmentation made the model extensible where 

behaviors can easily be added without effecting the current existing behaviors.  The framework 

takes these rules and determines what behavior is being displayed based on what rules are 

asserted from the current state of the system. Using a rule-based system allows for easier 

maintainability by allowing rules to be easily added, deleted or modified. 

 

FUTURE WORK 

 

Although this endeavor successfully demonstrated the feasibility of monitoring equine behavior, 

it also illustrated the complexity of doing so.  Additional work required to mature this research to 

the level of a useful product include the following: 

• Port software to other platforms.  Currently the software is specifically tied to the Apple 

line of smartphones since it uses Apple’s Gameplay Kit for implementation. 

• Extend Equine Behavior Indicators.  The framework was purposely architected so that 

the detection mechanism was decoupled from the model description.  This allows 

behaviors to be added without having to modify the software that detects those behaviors.  

Candidate equine behaviors for inclusion are foundering, rolling, and kicking. 

• Extend behaviors beyond the equine domain.  This research focused on detection of 

equine behavior.  The same modeling concepts can be used for other animals. 
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• Build a dynamic behavioral model.  Build a model of the behavior of the test subject “on-

the-fly” and use this model as the template for normal behavior.  Flag behavior that falls 

outside this template as abnormal. 

• Add additional sensors.  Add additional sensor inputs to the framework to detect even 

more behavior.  For example, accelerometers could be added to detect how quickly the 

animal is moving.  

• Adjust timing of observations.  Currently, the software takes new observations at preset 

intervals.  Adjust timing of capturing new frames based on the quickness of the 

movement of the animal. 

• Use multiple smartphones.  Use multiple smartphones placed at different locations to 

capture a larger field of view.     

• Automatically adapt to lighting conditions.  Develop an algorithm that would 

automatically adjust to the current lighting conditions. 

• Use active markers.  The current approach uses markers that requires enough light to be 

present for the camera to see the markers.  To adapt this to nighttime use, use markers 

that actively emit light. 

Much of the future work discussed above will require more processing power than smartphones 

currently possess.  However, according to Experts Exchange, the processing power of 

smartphones have increased 1 trillion-fold in the past 60 years(Experts-Exchange, 2018).  If this 

trend continues, the accuracy of detection could be increased as more sophisticated algorithms 

could be developed and utilized on a smartphone.  
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//  PawingComponent.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <Foundation/Foundation.h> 
 
@interface PawingComponent : NSObject 
 
- (void)pawing:(NSString *)whichLeg myFile:(NSFileHandle 
*)myFile; 
 
@end 
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//  PawingComponent.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "PawingComponent.h" 
 
@implementation PawingComponent 
 
- (void)pawing:(NSString *)whichLeg myFile:(NSFileHandle 
*)myFile{ 
    if ([whichLeg isEqualToString:@"Left Front"]){ 
        [myFile seekToEndOfFile]; 
        NSString *leftLeg = @"the horse pawed with the left 
leg\n\n"; 
        [myFile writeData:[leftLeg 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    }else{ 
        [myFile seekToEndOfFile]; 
        NSString *rightLeg = @"the horse pawed with the right 
leg\n\n"; 
        [myFile writeData:[rightLeg 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    } 
} 
 
@end 
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//  StandingStillComponent.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <Foundation/Foundation.h> 
 
@interface StandingStillComponent : NSObject 
 
- (void)still:(NSFileHandle *)myFile; 
 
@end 
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//  StandingStillComponent.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "StandingStillComponent.h" 
 
@implementation StandingStillComponent 
 
- (void)still:(NSFileHandle *)myFile{ 
    [myFile seekToEndOfFile]; 
    NSString *standingStill = @"the horse stood still\n\n"; 
    [myFile writeData:[standingStill 
dataUsingEncoding:NSUTF8StringEncoding]]; 
} 
 
@end 
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//  MovingComponent.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <Foundation/Foundation.h> 
 
@interface MovingComponent : NSObject 
 
- (void)moving:(NSFileHandle *)myFile; 
 
@end 
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//  MovingComponent.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "MovingComponent.h" 
 
@implementation MovingComponent 
 
- (void)moving:(NSFileHandle *)myFile{ 
    [myFile seekToEndOfFile]; 
    NSString *bothLegs = @"the horse moved\n\n"; 
    [myFile writeData:[bothLegs 
dataUsingEncoding:NSUTF8StringEncoding]]; 
} 
 
@end 
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//  HorseEntity.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <Foundation/Foundation.h> 
#import "PawingComponent.h" 
#import "StandingStillComponent.h" 
#import "MovingComponent.h" 
 
@interface HorseEntity : NSObject 
 
@property (readwrite, nonatomic) PawingComponent *pawing; 
@property (readwrite, nonatomic) StandingStillComponent *still; 
@property (readwrite, nonatomic) MovingComponent *moving; 
@property (readwrite, nonatomic) unsigned int pawingLeftCounter; 
@property (readwrite, nonatomic) unsigned int 
pawingRightCounter; 
@property (readwrite, nonatomic) unsigned int stillCounter; 
@property (readwrite, nonatomic) unsigned int movingCounter; 
@property (readwrite, nonatomic)NSArray *paths; 
@property (readwrite, nonatomic)NSString *documentsDirectory; 
@property (readwrite, nonatomic)NSString *documentTXTPath; 
 
- (void)determineHorseBehavior:(NSMutableString *) movPattern; 
- (void)printHorseStats:(NSString *) movPattern; 
 
@end 
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//  HorseEntity.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "HorseEntity.h" 
 
@implementation HorseEntity 
 
 
-(id)init { 
    if ( self = [super init] ) { 
        _pawing = [[PawingComponent alloc] init]; 
        _still = [[StandingStillComponent alloc] init]; 
        _moving = [[MovingComponent alloc] init]; 
        _pawingLeftCounter = 0; 
        _pawingRightCounter = 0; 
        _stillCounter = 0; 
        _movingCounter = 0; 
         
        self.paths = 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,NSUserDo
mainMask, YES); 
        self.documentsDirectory = [self.paths objectAtIndex:0]; 
        self.documentTXTPath = [self.documentsDirectory 
stringByAppendingPathComponent:@"HorseStats.txt"]; 
         
        NSFileManager *fileManager = [NSFileManager 
defaultManager]; 
        if(![fileManager fileExistsAtPath:self.documentTXTPath]) 
        { 
            NSString *savedString = @"Horse 
Stats\n*****START*****\n"; 
            [savedString writeToFile:self.documentTXTPath 
atomically:YES]; 
        } else{ 
            NSFileHandle *myHandle = [NSFileHandle 
fileHandleForWritingAtPath:self.documentTXTPath]; 
            [myHandle seekToEndOfFile]; 
            NSString *start = @"*****START*****\n"; 
            [myHandle writeData:[start 
dataUsingEncoding:NSUTF8StringEncoding]]; 
        } 
    } 
    return self; 
} //end init 
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- (void)determineHorseBehavior:(NSMutableString *) movPattern{ 
    NSFileHandle *myHandle = [NSFileHandle 
fileHandleForWritingAtPath:self.documentTXTPath]; 
    [myHandle seekToEndOfFile]; 
    NSString *savedStringStars = 
@"********************\nMovement Pattern: "; 
    [myHandle writeData:[savedStringStars 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[movPattern 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    NSString *savedString = @"\nIn the last second: "; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    if ([movPattern rangeOfString:@"9" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
        [myHandle seekToEndOfFile]; 
        NSString *lostDataBoth = @"lost data on both legs\n\n"; 
        [myHandle writeData:[lostDataBoth 
dataUsingEncoding:NSUTF8StringEncoding]]; 
         
    }  else if([movPattern rangeOfString:@"8" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
            [myHandle seekToEndOfFile]; 
            NSString *lostDataRight = @"lost data on the right 
leg\n\n"; 
            [myHandle writeData:[lostDataRight 
dataUsingEncoding:NSUTF8StringEncoding]]; 
  
    }  else if([movPattern rangeOfString:@"7" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
        [myHandle seekToEndOfFile]; 
        NSString *lostDataLeft = @"lost data on the left 
leg\n\n"; 
        [myHandle writeData:[lostDataLeft 
dataUsingEncoding:NSUTF8StringEncoding]]; 
 
    }  else if([movPattern rangeOfString:@"0000" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
        [self.still still:myHandle]; 
        self.stillCounter = self.stillCounter + 1; 
     
    }  else if([movPattern rangeOfString:@"1010" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
        [self.pawing pawing:@"Right Front" myFile:myHandle]; 
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        self.pawingRightCounter = self.pawingRightCounter + 1; 
     
    }  else if([movPattern rangeOfString:@"0101" 
options:NSRegularExpressionSearch].location != NSNotFound){ 
        [self.pawing pawing:@"Left Front" myFile:myHandle]; 
        self.pawingLeftCounter = self.pawingLeftCounter + 1; 
    
    }  else{ 
        [self.moving moving:myHandle]; 
        self.movingCounter = self.movingCounter + 1; 
    } 
}  //end determineHorseBehavior 
 
 
- (void)printHorseStats:(NSString *) fileName{ 
    NSString *pawingLeftCount = [NSString 
stringWithFormat:@"\n%d",self.pawingLeftCounter]; 
    NSString *pawingLeftIntro = (@" seconds horse has been 
pawing with left leg.\n"); 
    NSString *pawingLeftMessage = [pawingLeftCount 
stringByAppendingString:pawingLeftIntro]; 
    NSString *pawingRightCount = [NSString 
stringWithFormat:@"%d",self.pawingRightCounter]; 
    NSString *pawingRightIntro = (@" seconds horse has been 
pawing with right leg.\n"); 
    NSString *pawingRightMessage = [pawingRightCount 
stringByAppendingString:pawingRightIntro]; 
    NSString *stillCount = [NSString 
stringWithFormat:@"%d",self.stillCounter]; 
    NSString *stillIntro = (@" seconds horse has been 
still.\n"); 
    NSString *stillMessage = [stillCount 
stringByAppendingString:stillIntro]; 
    NSString *movingCount = [NSString 
stringWithFormat:@"%d",self.movingCounter]; 
    NSString *movingIntro = (@" seconds horse has been 
moving.\n"); 
    NSString *movingMessage = [movingCount 
stringByAppendingString:movingIntro]; 
    NSString *savedString = @"Horse Summary Stats\n"; 
    NSString *endOfLine = @"********************\n\n"; 
     
    NSFileHandle *myHandle = [NSFileHandle 
fileHandleForWritingAtPath:self.documentTXTPath]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
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    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[fileName 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[pawingLeftMessage 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[pawingRightMessage 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[stillMessage 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[movingMessage 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    [myHandle seekToEndOfFile]; 
    [myHandle writeData:[endOfLine 
dataUsingEncoding:NSUTF8StringEncoding]]; 
}  //end fileName 
 
@end 
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//  AppDelegate.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <UIKit/UIKit.h> 
#import <AVFoundation/AVFoundation.h> 
 
@interface AppDelegate : UIResponder <UIApplicationDelegate> 
 
@property (strong, nonatomic) UIWindow *window; 
@property (nonatomic) AVCaptureSession *session; 
@property (nonatomic) AVCaptureDevice *theCamera; 
@property (nonatomic) AVCaptureDeviceInput *theInputSource; 
@property (nonatomic) AVCaptureStillImageOutput 
*theOutputSource; 
@property NSString *documentsPath; 
 
@end 
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//  AppDelegate.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "AppDelegate.h" 
 
@interface AppDelegate () 
 
@end 
 
@implementation AppDelegate 
 
 
- (BOOL)application:(UIApplication *)application 
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions { 
    // Override point for customization after application 
launch. 
    return YES; 
} 
 
 
- (void)applicationWillResignActive:(UIApplication *)application 
{ 
    // Sent when the application is about to move from active to 
inactive state. This can occur for certain types of temporary 
interruptions (such as an incoming phone call or SMS message) or 
when the user quits the application and it begins the transition 
to the background state. 
    // Use this method to pause ongoing tasks, disable timers, 
and invalidate graphics rendering callbacks. Games should use 
this method to pause the game. 
} 
 
 
- (void)applicationDidEnterBackground:(UIApplication 
*)application { 
    // Use this method to release shared resources, save user 
data, invalidate timers, and store enough application state 
information to restore your application to its current state in 
case it is terminated later. 
    // If your application supports background execution, this 
method is called instead of applicationWillTerminate: when the 
user quits. 
} 
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- (void)applicationWillEnterForeground:(UIApplication 
*)application { 
    // Called as part of the transition from the background to 
the active state; here you can undo many of the changes made on 
entering the background. 
} 
 
 
- (void)applicationDidBecomeActive:(UIApplication *)application 
{ 
    // Restart any tasks that were paused (or not yet started) 
while the application was inactive. If the application was 
previously in the background, optionally refresh the user 
interface. 
} 
 
 
- (void)applicationWillTerminate:(UIApplication *)application { 
    // Called when the application is about to terminate. Save 
data if appropriate. See also applicationDidEnterBackground:. 
} 
 
@end 
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//  ViewController.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <UIKit/UIKit.h> 
 
 
@interface ViewController : UIViewController 
 
@property(nonatomic, assign) int hueLow; 
@property(nonatomic, assign) int hueHigh; 
 
@property(nonatomic, assign) int satLow; 
@property(nonatomic, assign) int satHigh; 
 
@property(nonatomic, assign) int valLow; 
@property(nonatomic, assign) int valHigh; 
 
@property(nonatomic, assign) int redHueLow; 
@property(nonatomic, assign) int redHueHigh; 
 
@property(nonatomic, assign) int redSatLow; 
@property(nonatomic, assign) int redSatHigh; 
 
@property(nonatomic, assign) int greenHueLow; 
@property(nonatomic, assign) int greenHueHigh; 
 
@property(nonatomic, assign) int greenSatLow; 
@property(nonatomic, assign) int greenSatHigh; 
 
@end 
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//  ViewController.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "ViewController.h" 
#import <opencv2/core.hpp> 
#import <opencv2/imgproc.hpp> 
#import <opencv2/highgui.hpp> 
#import <opencv2/imgcodecs/ios.h>  //UIImageToMat 
#import <iostream> //used for cout 
#import <fstream> //used to write to file 
#import <GameplayKit/GameplayKit.h> 
#import "HorseEntity.h" 
#import "AppDelegate.h" 
 
 
using namespace std; 
using namespace cv; 
 
@interface ViewController (){ 
 
Mat updatedMat; 
Mat drawing; 
cv::Point prevLFPosition; 
cv::Point currentLFPosition; 
int hLFdiff; 
int vLFdiff; 
int movement; 
int counter; 
cv::Point prevRFPosition; 
cv::Point currentRFPosition; 
int hRFdiff; 
int vRFdiff; 
string prefix; 
string suffix; 
int frameNumber; 
AppDelegate *appDelegate; 
} 
 
@property IBOutlet UIImageView *imageView; 
@property IBOutlet UIImageView *imageViewOut; 
@property NSTimer *timer; 
@property GKRuleSystem *ruleSystem; 
@property (nonatomic) BOOL didRightMove; 
@property (nonatomic) BOOL didLeftMove; 
@property (readwrite, nonatomic) HorseEntity *horse; 
@property NSMutableString *movementPattern; 
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@property NSTimer *t; 
@property (nonatomic) NSInteger count; 
@property (nonatomic) NSInteger movementCounter; 
 
- (IBAction)buttonTapped:(UIButton *)sender; 
- (void) takePic; 
- (cv::Point)determineRedBlobLocation; 
- (cv::Point)determineGreenBlobLocation; 
- (void) drawBlobs:(cv::Point)red :(cv::Point)green; 
- (IBAction)stopButtonTapped:(id)sender; 
 
@end //end interface declarations 
 
@implementation ViewController 
 
- (void)viewDidLoad { 
    [super viewDidLoad]; 
    prevLFPosition.x = 0; 
    prevLFPosition.y = 0; 
    currentLFPosition.x = 0; 
    currentLFPosition.y = 0; 
    hLFdiff = 0; 
    vLFdiff = 0; 
    movement = 0; 
     
    prevRFPosition.x = 0; 
    prevRFPosition.y = 0; 
    currentRFPosition.x = 0; 
    currentRFPosition.y = 0; 
    hRFdiff = 0; 
    vRFdiff = 0; 
    counter = 0; 
     
    appDelegate = (AppDelegate*)[[UIApplication 
sharedApplication] delegate]; 
     
    self.movementCounter = 0; 
 
    _ruleSystem = [[GKRuleSystem alloc] init]; 
    NSPredicate *rightMovementTest = [NSPredicate 
predicateWithFormat:@"!((($hRFdiff.intValue > -10) && ($hRFdiff 
.intValue < 10)) && (($vRFdiff.intValue > -10) && 
($vRFdiff.intValue < 10)))"]; 
    [_ruleSystem addRule:[GKRule 
ruleWithPredicate:rightMovementTest assertingFact:@"rightMoved" 
grade:1]]; 
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    NSPredicate *leftMovementTest = [NSPredicate 
predicateWithFormat:@"!((($hLFdiff.intValue > -10) && ($hLFdiff 
.intValue < 10)) && (($vLFdiff.intValue > -10) && 
($vLFdiff.intValue < 10)))"]; 
    [_ruleSystem addRule:[GKRule 
ruleWithPredicate:leftMovementTest assertingFact:@"leftMoved" 
grade:1]]; 
     
    _horse = [[HorseEntity alloc] init]; 
    _movementPattern = [NSMutableString new]; 
   
    cout << self.greenHueLow << self.greenHueHigh << 
self.greenSatLow << self.greenSatHigh << endl; 
     
} //end ViewDidLoad 
 
 
- (void) drawBlobs:(cv::Point)red :(cv::Point)green 
{ 
    //Note:  The drawing method will draw the point at 0,0 if no 
data is received.  This is the expected behavior. 
    drawing = Mat::zeros( updatedMat.size(), CV_8UC3 ); 
    Scalar redColor(255,0,0); 
    Scalar greenColor(0,255,0); 
    circle(drawing, red,  10.0 , redColor, -1); 
    circle(drawing, green,  10.0 , greenColor, -1); 
} //end drawBlobs 
 
 
- (cv::Point)determineRedBlobLocation{ 
    Mat red; //holds all the red countours 
    cv::Point center; //contains the center point of the bandage 
 
    inRange(updatedMat, Scalar(self.redHueLow, self.redSatLow, 
0), Scalar(self.redHueHigh, self.redSatHigh, 255), red); 
     
    //Find largest countour - should contain the bandage 
    vector<vector<cv::Point>> redContours; 
    vector<Vec4i> redHierarchy; 
    findContours( red, redContours, redHierarchy, 
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE ); 
     
    int largest_area=0; 
    int largest_contour_index=0; 
    for (int i =0;i<redContours.size(); i++) 
    { 
        double a=contourArea( redContours[i],false); 
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        if(a>largest_area) 
        { 
            largest_area=a; 
            largest_contour_index=i; 
        } 
    } 
     
    //Draw rectangle around the largest contour (should be the 
bandage) and determine the center of the rectangle 
    if (redContours.size() > 0) 
    { 
        cv::Rect box = 
boundingRect(redContours[largest_contour_index]); 
        center = cv::Point(((box.tl().x + box.br().x)/2), 
((box.tl().y + box.br().y)/2)); 
        currentRFPosition.x = ((box.tl().x + box.br().x)/2); 
        currentRFPosition.y = ((box.tl().y + box.br().y)/2); 
    }else{ 
        center = (cv::Point(0), cv::Point(0)); 
        currentRFPosition.x = -1; 
        currentRFPosition.y = -1; 
    } 
     
    return center; //return the center point 
}//end determineRedBlobLocation 
 
 
 
- (cv::Point)determineGreenBlobLocation{ 
    Mat green; //holds all the green countours 
    cv::Point center; //contains the center point of the bandage 
     
    inRange(updatedMat, Scalar(self.greenHueLow, 
self.greenSatLow, 0), Scalar(self.greenHueHigh, 
self.greenSatHigh, 255), green); 
 
    //Find largest countour - should contain the bandage 
    vector<vector<cv::Point>> greenContours; 
    vector<Vec4i> greenHierarchy; 
    findContours( green, greenContours, greenHierarchy, 
CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE ); 
     
    int largest_area=0; 
    int largest_contour_index=0; 
    for (int i =0;i<greenContours.size(); i++) 
    { 
        double a=contourArea( greenContours[i],false); 
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        if(a>largest_area) 
        { 
            largest_area=a; 
            largest_contour_index=i; 
        } 
    } 
     
    //Draw rectangle around the largest contour (should be the 
bandage) and determine the center of the rectangle 
    if (greenContours.size() > 0) 
    { 
        cv::Rect box = 
boundingRect(greenContours[largest_contour_index]); 
        center = cv::Point(((box.tl().x + box.br().x)/2), 
((box.tl().y + box.br().y)/2)); 
        currentLFPosition.x = ((box.tl().x + box.br().x)/2); 
        currentLFPosition.y = ((box.tl().y + box.br().y)/2); 
    }else{ 
        center = (cv::Point(0), cv::Point(0)); 
        currentLFPosition.x = -1; 
        currentLFPosition.y = -1; 
    } 
    return center; //return the center point 
}//end determineGreenBlobLocation 
 
 
 
 
 
- (IBAction)buttonTapped:(UIButton *)sender //start Button 
{ 
    self.t = [NSTimer scheduledTimerWithTimeInterval: 0.5 
target: self selector:@selector(takePic) userInfo: nil 
repeats:YES]; 
} //end buttonTapped 
 
 
- (void)takePic { 
    self.count = self.count + 1; 
 
    //Saving image to the application Sandbox Documents folder 
    NSString *counterStr = [@(self.count) stringValue]; 
    NSString *suf = @".jpg"; 
    NSString *fileName = [NSString stringWithFormat:@"%@%@", 
counterStr, suf]; 
    NSString *filePath = [appDelegate.documentsPath 
stringByAppendingPathComponent:fileName]; 
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    NSString *suf2 = @"_dots.jpg"; 
    NSString *fileName2 = [NSString stringWithFormat:@"%@%@", 
counterStr, suf2]; 
    NSString *filePath2 = [appDelegate.documentsPath 
stringByAppendingPathComponent:fileName2]; 
 
    AVCaptureConnection *theConnection = 
[appDelegate.theOutputSource 
connectionWithMediaType:AVMediaTypeVideo]; 
    theConnection.videoOrientation = 
AVCaptureVideoOrientationLandscapeRight; 
     
    [appDelegate.theOutputSource 
captureStillImageAsynchronouslyFromConnection:theConnection 
completionHandler:^(CMSampleBufferRef imageDataSampleBuffer, 
NSError *error) { 
        NSData *imageData = [AVCaptureStillImageOutput 
jpegStillImageNSDataRepresentation:imageDataSampleBuffer]; 
        UIImage *theImage = [UIImage imageWithData:imageData]; 
 
    if (imageData == NULL){ 
               NSLog(@"Error while taking photo."); 
            } else{ 
                self.movementCounter += 1; 
                 
                //NOTE: This translation keeps the Mat in RGB 
format -- it does NOT store it in BGR format like regular 
OpenCV! 
                UIImageToMat(theImage, updatedMat); //convert 
from iOS imageView to openCV mat format 
                 
                //Must use RBG to HSV NOT the BGR like in the 
non-iOS version! 
                 cvtColor(updatedMat, updatedMat, 
COLOR_RGB2HSV); //convert to a HSV colorspace 
                 
                //Blur the image to remove noise 
                medianBlur(updatedMat, updatedMat, 9); 
         
                cv::Point redBlobLocation = [self 
determineRedBlobLocation]; 
                cv::Point greenBlobLocation = [self 
determineGreenBlobLocation]; 
                [self drawBlobs:redBlobLocation 
:greenBlobLocation]; 
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                [imageData writeToFile:filePath atomically:YES]; 
//Write the file to the application sandbox 
                NSData *convertedDrawing = 
UIImagePNGRepresentation(MatToUIImage(drawing)); 
                [convertedDrawing writeToFile:filePath2 
atomically:YES]; 
 
                self.imageView.image = theImage; 
                self.imageViewOut.image = MatToUIImage(drawing); 
//display the bandage locations 
                 
                if (((currentRFPosition.x == -1) && 
(currentRFPosition.y == -1)) && ((currentLFPosition.x == -1) && 
(currentLFPosition.y == -1))){ 
                    NSString *bothLostData = @"99"; 
                    [self.movementPattern 
appendString:bothLostData]; 
                } else if ((currentRFPosition.x == -1) && 
(currentRFPosition.y == -1)){ 
                    NSString *rightLostData = @"88"; 
                    [self.movementPattern 
appendString:rightLostData]; 
                } else if ((currentLFPosition.x == -1) && 
(currentLFPosition.y == -1)){ 
                    NSString *leftLostData = @"77"; 
                    [self.movementPattern 
appendString:leftLostData]; 
                } else { 
                    hLFdiff = (currentLFPosition.x - 
prevLFPosition.x); 
                    vLFdiff = (currentLFPosition.y - 
prevLFPosition.y); 
                    prevLFPosition = currentLFPosition; 
                     
                    hRFdiff = (currentRFPosition.x - 
prevRFPosition.x); 
                    vRFdiff = (currentRFPosition.y - 
prevRFPosition.y); 
                    prevRFPosition = currentRFPosition; 
                     
                    self.ruleSystem.state[@"hRFdiff"] = 
@(hRFdiff); 
                    self.ruleSystem.state[@"vRFdiff"] = 
@(vRFdiff); 
                    self.ruleSystem.state[@"hLFdiff"] = 
@(hLFdiff); 
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                    self.ruleSystem.state[@"vLFdiff"] = 
@(vLFdiff); 
                     
                    [self.ruleSystem reset]; 
                    [self.ruleSystem evaluate]; 
                     
                    self.didRightMove = ([self.ruleSystem 
gradeForFact:@"rightMoved"] > 0.0); 
                    self.didLeftMove = ([self.ruleSystem 
gradeForFact:@"leftMoved"] > 0.0); 
                    NSString *leftBool2String = 
(self.didLeftMove) ? @"1" : @"0"; 
                    NSString *rightBool2String = 
(self.didRightMove) ? @"1" : @"0"; 
                    [self.movementPattern 
appendString:rightBool2String]; 
                    [self.movementPattern 
appendString:leftBool2String]; 
                } 
             } 
         
        if (self.movementCounter == 2){ 
            [self.horse 
determineHorseBehavior:self.movementPattern]; 
            [self.horse printHorseStats:fileName]; 
            [self.movementPattern setString:@""]; //This resets 
the movementPattern 
            self.movementCounter = 0; 
        } 
    }];  //end asynchronous call 
} //end takePic 
 
 
 
- (IBAction)stopButtonTapped:(id)sender { 
    [self.t invalidate]; 
    self.t = nil; 
    [appDelegate.theCamera unlockForConfiguration]; 
} //end stopButtonTapped 
 
 
- (void)didReceiveMemoryWarning { 
    [super didReceiveMemoryWarning]; 
    // Dispose of any resources that can be recreated. 
} //end didReceiveMemoryWarning 
@end 
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//  InitialViewController.h 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import <UIKit/UIKit.h> 
 
@interface InitialViewController: UIViewController 
 
//Hue 
@property (weak, nonatomic) IBOutlet UISlider *hueLowSlider; 
@property (weak, nonatomic) IBOutlet UILabel *hueLowLabel; 
@property (weak, nonatomic) IBOutlet UISlider *hueHighSlider; 
@property (weak, nonatomic) IBOutlet UILabel *hueHighLabel; 
 
//Saturation 
@property (weak, nonatomic) IBOutlet UISlider *satLowSlider; 
@property (weak, nonatomic) IBOutlet UILabel *satLowLabel; 
@property (weak, nonatomic) IBOutlet UISlider *satHighSlider; 
@property (weak, nonatomic) IBOutlet UILabel *satHighLabel; 
 
@property (readwrite, nonatomic)NSArray *paths; 
@property (readwrite, nonatomic)NSString *documentsDirectory; 
@property (readwrite, nonatomic)NSString *documentTXTPath; 
 
@end 
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//  InitialViewController.m 
//  Final Program for Dissertation 
//  Created by Megan M. Burton 
 
#import "InitialViewController.h" 
#import "ViewController.h" //Must add this to access the correct 
variables in the segue 
#import "AppDelegate.h" 
#import <opencv2/core.hpp> 
#import <opencv2/imgproc.hpp> 
#import <opencv2/highgui.hpp> 
#import <opencv2/imgcodecs/ios.h>  //UIImageToMat 
#import <iostream> //used for cout 
 
using namespace std; 
using namespace cv; 
 
@interface InitialViewController (){ 
     
Mat imgHSV; 
Mat imgThresholded; 
vector<Mat> channels; 
int hueLow; 
int hueHigh; 
int satLow; 
int satHigh; 
int redHueLow; 
int redHueHigh; 
int redSatLow; 
int redSatHigh; 
int greenHueLow; 
int greenHueHigh; 
int greenSatLow; 
int greenSatHigh; 
AppDelegate *appDelegate; 
} 
@property (weak, nonatomic) IBOutlet UIImageView *ImageView; 
@property (weak, nonatomic) IBOutlet UIImageView *initialImage; 
@property (weak, nonatomic) IBOutlet UIImageView 
*thresholdImage; 
@property (weak, nonatomic) IBOutlet UIButton *usePicButton; 
@property (weak, nonatomic) IBOutlet UIButton *takePicButton; 
@property (weak, nonatomic) IBOutlet UIButton *redButton; 
@property (weak, nonatomic) IBOutlet UIButton *greenButton; 
@property (weak, nonatomic) IBOutlet UIButton *startButton; 
@property NSString* filePath; 
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@end //end interface declarations 
 
 
@implementation InitialViewController 
 
- (IBAction)takePicButtonPressed:(id)sender { 
    AVCaptureConnection *theConnection = 
[appDelegate.theOutputSource 
connectionWithMediaType:AVMediaTypeVideo]; 
    theConnection.videoOrientation = 
AVCaptureVideoOrientationLandscapeRight; 
     
    NSString *fileName = @"0.jpg"; 
    NSArray *paths = 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, 
NSUserDomainMask, YES); 
    appDelegate.documentsPath = [paths objectAtIndex:0]; //Get 
the documents directory 
    self.filePath = [appDelegate.documentsPath 
stringByAppendingPathComponent:fileName]; //Add the file name 
     
    [appDelegate.theOutputSource 
captureStillImageAsynchronouslyFromConnection:theConnection 
completionHandler:^(CMSampleBufferRef imageDataSampleBuffer, 
NSError *error) { 
        NSData *imageData = [AVCaptureStillImageOutput 
jpegStillImageNSDataRepresentation:imageDataSampleBuffer]; 
        UIImage *theImage = [UIImage imageWithData:imageData]; 
        [imageData writeToFile:self.filePath atomically:YES]; 
//Write the file to application sandbox 
        self.initialImage.image = theImage; 
        UIImageWriteToSavedPhotosAlbum(theImage, self, nil, 
nil);  //Write the file to the camera roll 
    }];//end asynchronous call 
     
    self.usePicButton.enabled = YES; 
     
}//end takePicButtonPressed 
 
 
- (IBAction)usePic:(id)sender { 
    self.ImageView.hidden = YES; //Needed so the live camera 
preview is no longer shown 
    self.takePicButton.enabled = NO; 
    UIImage *initialImage = [UIImage imageNamed:self.filePath]; 
    UIImageToMat(initialImage, imgHSV); 
    cvtColor(imgHSV, imgHSV, COLOR_RGB2HSV); 
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    inRange(imgHSV, Scalar(hueLow, satLow, 0), Scalar(hueHigh, 
satHigh, 255), imgThresholded); //Threshold the image 
     
    //morphological opening (remove small objects from the 
foreground) 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
     
    //morphological closing (fill small holes in the foreground) 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
     
    self.thresholdImage.image = MatToUIImage(imgThresholded); 
    self.thresholdImage.hidden = NO; 
    self.usePicButton.enabled = NO; 
    self.redButton.enabled = YES; 
    self.satLowSlider.enabled = YES; 
    self.satHighSlider.enabled = YES; 
    self.hueLowSlider.enabled = YES; 
    self.hueHighSlider.enabled = YES; 
}// end usePic 
 
 
- (IBAction)redButtonPressed:(id)sender { 
    redHueLow = (int)self.hueLowSlider.value; 
    redHueHigh = (int)self.hueHighSlider.value; 
    redSatLow = (int)self.satLowSlider.value; 
    redSatHigh = (int)self.satHighSlider.value; 
    self.redButton.enabled = NO; 
    self.greenButton.enabled = YES; 
}// end redButtonPressed 
 
 
- (IBAction)greenButtonPressed:(id)sender { 
    greenHueLow = (int)self.hueLowSlider.value; 
    greenHueHigh = (int)self.hueHighSlider.value; 
    greenSatLow = (int)self.satLowSlider.value; 
    greenSatHigh = (int)self.satHighSlider.value; 
    self.greenButton.enabled = NO; 
    self.startButton.enabled = YES; 
}// end greenButtonPressed 
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- (void)viewDidLoad { 
    [super viewDidLoad]; 
    hueLow = 0; 
    hueHigh = 179; 
    satLow = 150; 
    satHigh = 255; 
    
    self.takePicButton.enabled = YES; 
    self.usePicButton.enabled = NO; 
    self.redButton.enabled = NO; 
    self.greenButton.enabled = NO; 
    self.startButton.enabled = NO; 
    self.satLowSlider.enabled = NO; 
    self.satHighSlider.enabled = NO; 
    self.hueLowSlider.enabled = NO; 
    self.hueHighSlider.enabled = NO; 
    self.thresholdImage.hidden = YES; 
     
    appDelegate = (AppDelegate*)[[UIApplication 
sharedApplication] delegate]; 
 
    NSArray *allCameras = [AVCaptureDevice 
devicesWithMediaType:AVMediaTypeVideo]; 
    for (AVCaptureDevice *camera in allCameras) { 
        if ([camera position] == AVCaptureDevicePositionBack){ 
            appDelegate.theCamera = camera; 
            break; 
        } 
    } 
     
    appDelegate.session = [[AVCaptureSession alloc]init]; 
    appDelegate.theInputSource = [AVCaptureDeviceInput 
deviceInputWithDevice:appDelegate.theCamera error:nil]; 
     
    if ([appDelegate.session 
canAddInput:appDelegate.theInputSource]) { 
        [appDelegate.session 
addInput:appDelegate.theInputSource]; 
    } 
     
    appDelegate.session.sessionPreset = 
AVCaptureSessionPreset640x480; 
     
    NSError *error = nil; 
    if ( [appDelegate.theCamera lockForConfiguration:&error] ) { 
        appDelegate.theCamera.flashMode = AVCaptureFlashModeOff; 
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        [appDelegate.theCamera 
setWhiteBalanceModeLockedWithDeviceWhiteBalanceGains:AVCaptureWh
iteBalanceGainsCurrent completionHandler:nil]; 
    } 
     
    appDelegate.theOutputSource = [[AVCaptureStillImageOutput 
alloc]init]; 
    [appDelegate.session addOutput:appDelegate.theOutputSource]; 
     
    AVCaptureVideoPreviewLayer *previewLayer = 
[AVCaptureVideoPreviewLayer 
layerWithSession:appDelegate.session]; 
    previewLayer.connection.videoOrientation = 
AVCaptureVideoOrientationLandscapeRight; 
    UIView *aView = self.ImageView; 
    previewLayer.frame = aView.bounds; 
    [aView.layer addSublayer:previewLayer]; 
    [appDelegate.session startRunning]; 
}// end viewDidLoad 
 
- (void)didReceiveMemoryWarning { 
    [super didReceiveMemoryWarning]; 
    // Dispose of any resources that can be recreated. 
}//end didReceiveMemoryWarning 
 
//HUE SLIDERS 
- (IBAction)hueLowSliderValueChanged:(id)sender { 
    hueLow = (int)self.hueLowSlider.value; 
    self.hueLowLabel.text = [NSString stringWithFormat:@"%i", 
(int)self.hueLowSlider.value]; 
     
    inRange(imgHSV, Scalar(hueLow, satLow, 0), Scalar(hueHigh, 
satHigh, 255), imgThresholded); //Threshold the image 
     
    //morphological opening (remove small objects from the 
foreground) 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
     
    //morphological closing (fill small holes in the foreground) 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    self.thresholdImage.image = MatToUIImage(imgThresholded); 
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}// end hueLowSliderValueChanged 
 
- (IBAction)hueHighSliderValueChanged:(id)sender { 
    hueHigh = (int)self.hueHighSlider.value; 
    self.hueHighLabel.text = [NSString stringWithFormat:@"%i", 
(int)self.hueHighSlider.value]; 
    inRange(imgHSV, Scalar(hueLow, satLow, 0), Scalar(hueHigh, 
satHigh, 255), imgThresholded); //Threshold the image 
     
    //morphological opening (remove small objects from the 
foreground) 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
     
    //morphological closing (fill small holes in the foreground) 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    self.thresholdImage.image = MatToUIImage(imgThresholded); 
}//end hueHighSliderValueChanged 
 
 
//SATURATION SLIDERS 
- (IBAction)satLowSliderValueChanged:(id)sender { 
    satLow = (int)self.satLowSlider.value; 
    self.satLowLabel.text = [NSString stringWithFormat:@"%i", 
(int)self.satLowSlider.value]; 
    inRange(imgHSV, Scalar(hueLow, satLow, 0), Scalar(hueHigh, 
satHigh, 255), imgThresholded); //Threshold the image 
     
    //morphological opening (remove small objects from the 
foreground) 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
     
    //morphological closing (fill small holes in the foreground) 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    self.thresholdImage.image = MatToUIImage(imgThresholded); 
}// satLowSliderValueChanged 
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- (IBAction)satHighSliderValueChanged:(id)sender { 
    satHigh = (int)self.satHighSlider.value; 
    self.satHighLabel.text = [NSString stringWithFormat:@"%i", 
(int)self.satHighSlider.value]; 
    inRange(imgHSV, Scalar(hueLow, satLow, 0), Scalar(hueHigh, 
satHigh, 255), imgThresholded); //Threshold the image 
     
    //morphological opening (remove small objects from the 
foreground) 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(3, 3)) ); 
     
    //morphological closing (fill small holes in the foreground) 
    dilate( imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
    erode(imgThresholded, imgThresholded, 
getStructuringElement(MORPH_ELLIPSE, cv::Size(5, 5)) ); 
     
    self.thresholdImage.image = MatToUIImage(imgThresholded); 
}//end satHighSliderValueChanged 
 
 
- (void)prepareForSegue:(UIStoryboardSegue *)segue 
sender:(id)sender { 
    self.paths = 
NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,NSUserDo
mainMask, YES); 
    self.documentsDirectory = [self.paths objectAtIndex:0]; 
    self.documentTXTPath = [self.documentsDirectory 
stringByAppendingPathComponent:@"SliderValues.txt"]; 
 
    NSFileManager *fileManager = [NSFileManager defaultManager]; 
    if(![fileManager fileExistsAtPath:self.documentTXTPath]) 
    { 
        NSString *savedString = @"Slider 
Values\n*****START*****\n"; 
        [savedString writeToFile:self.documentTXTPath 
atomically:YES]; 
    } else{ 
        NSFileHandle *myHandle = [NSFileHandle 
fileHandleForWritingAtPath:self.documentTXTPath]; 
        [myHandle seekToEndOfFile]; 
        NSString *start = @"*****START*****\n"; 
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        [myHandle writeData:[start 
dataUsingEncoding:NSUTF8StringEncoding]]; 
    } 
  
    ViewController *vc = [segue destinationViewController]; 
 
    vc.redHueLow = redHueLow; 
    vc.redHueHigh = redHueHigh; 
    vc.greenHueLow = greenHueLow; 
    vc.greenHueHigh = greenHueHigh; 
    vc.redSatLow = redSatLow; 
    vc.redSatHigh = redSatHigh; 
    vc.greenSatLow = greenSatLow; 
    vc.greenSatHigh = greenSatHigh; 
     
    //The following section writes the slider values to the 
SliderValues.txt file 
    NSFileHandle *myHandle = [NSFileHandle 
fileHandleForWritingAtPath:self.documentTXTPath]; 
    [myHandle seekToEndOfFile]; 
    NSDate *now = [NSDate date]; 
    NSString *time = [NSString stringWithFormat:@"%@\n",now]; 
    [myHandle writeData:[time 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    //RED 
    [myHandle seekToEndOfFile]; 
    NSString *savedString = [NSString stringWithFormat:@"Red Hue 
Low: %i\n",redHueLow]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
 
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Red Hue High: 
%i\n",redHueHigh]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Red Sat Low: 
%i\n",redSatLow]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Red Sat High: 
%i\n",redSatHigh]; 
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    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    //GREEN 
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Green Hue Low: 
%i\n",greenHueLow]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Green Hue High: 
%i\n",greenHueHigh]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Green Sat Low: 
%i\n",greenSatLow]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
     
    [myHandle seekToEndOfFile]; 
    savedString = [NSString stringWithFormat:@"Green Sat High: 
%i\n\n",greenSatHigh]; 
    [myHandle writeData:[savedString 
dataUsingEncoding:NSUTF8StringEncoding]]; 
}// end prepareForSegue 
@end 
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APPENDIX B: SOFTWARE SCREEN LAYOUT 
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Figure B.1:  Initial View Controller Screen Layout 
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Figure B.2:  Main View Controller Screen Layout 
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APPENDIX C: INSTITUTIONAL REVIEW BOARD APPROVAL  
 

  



122 
 

 

 
 


