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Abstract

This dissertation has two main parts.

1. After reviewing the Riemannian structure of the space of n × n positive definite ma-

trices, Pn, and the geometric mean in terms of geodesic, t-geometric mean, we present

some inequalities of Dinh, Ahsani, and Tam [15] involving t-geometric mean in the

context of Pn. Some very recent geometric inequalities of Lemos and Soares [24] are

also presented.

2. After reviewing some preliminary materials of Lie groups and Lie algebras, we obtain

extensions of the inequalities of Lemos and Soares in the context of semisimple Lie

groups.
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Chapter 1

Introduction

The main topics of this dissertation are matrix geometric means inequalities and their

extensions to semisimple Lie groups. The challenge is to define geometric mean for two

positive definite matrices and then in the context of Lie group. The Riemannian geometric

point of view gives us a good understanding of the geometric mean of two positive definite

matrices. Connection between geometric mean and differential geometry, for the first time,

was discussed by Moakher in 2005 in order to find an appropriate definition for the geomet-

ric mean for more than two matrices. Indeed, the geometric mean of two matrices is the

midpoint of the geodesic joining those matrices. In some areas, such as machine learning and

optimization, positive definite matrices are essential tools. The view of Pn as a subset of a

Euclidean space is not helpful, and it is more useful to consider it as a Riemannian manifold

with an appropriate metric [34]. Furthermore, this view provides natural extension to Lie

groups [25].

The following is the organization of this dissertation.

In Chapter 2, we review the Riemannian manifold structure of Pn. The point on γ(s)

at s = t is denoted by A#tB, where γ : [0, 1] → Pn is the geodesic joining A,B ∈ Pn and

A#tB is called the t-geometric mean of A and B.

In Chapter 3, we discuss the concept of log-majorization and related inequalities. Then

we provide some results for t-geometric mean in [15].

In Chapter 4, we approach the geometric mean from the operator theory and present

some very recent log-majorization inequalities of Lemos and Soares [24].

In Chapter 5, we provide some norm inequalities for the matrix geometric mean in Dinh,

Ahsani, and Tam [15]. Audenaert’s result [5] is the motivation of some of the results in [15].
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It also motivated us to ask some questions. In fact, some of these questions were stated as

a theorem in [15] and some of them were posted as a conjecture. At the end of this chapter

we present some affirmative solutions under some conditions. But the conjecture is still

unsolved.

In Chapter 6, we give a brief review of semisimple Lie groups and Lie algebras. We

discuss Cartan decomposition, Iwasawa decomposition, and Complete Multiplicative Jordan

Decomposition (CMJD). Then we introduce Kostant pre-order and an important character-

ization by Kostant.

In Chapter 7, we extend some log-majorization inequalities of Lemos and Soares [24] in

terms of Kostant pre-order for semisimple Lie groups.
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Chapter 2

Geometric mean from differential geometry point of view

Let R+ denote the set of positive real numbers. For a, b ∈ R+, the geometric mean is

√
ab.

Operator theorists and physicists were the first scientists considering geometric mean ex-

tension for matrices. A good platform for the extension is Pn, the set of all n × n positive

definite matrices. Pusz and Woronowicz [32] defined the geometric mean of A,B ∈ Pn as

A#B := A# 1
2
B = A1/2(A−1/2BA−1/2)1/2A1/2. (2.0.1)

It turns out that this is the mid point of the geodesic joining A and B when we view Pn as

a Riemannian manifold. We would like to provide some background information of Pn and

most of the material in this chapter can be found in Bhatia [7].

2.1 Pn as a Riemannian manifold

In this section we will show that Pn is a Riemannian manifold which is differentiable

manifold equipped with a Riemannian metric. Let M be a differentiable manifold. A

Rimannian metric on M is given by an inner product on each tangent space TAM which

depends smoothly on the original point A.

Let Cn×n be the set of all n× n complex matrices equipped the inner product 〈A,B〉 =

trA∗B which induces the Frobenius norm

||A||2 =
√

trA∗A.
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Note that Cn×n is an 2n2-dimensional vector space over R. The set of all n × n Hermitian

matrices, Hn, is an n2-dimensional real subspace of Cn×n.

The exponential of A ∈ GLn(C) is given by

expA := eA =
∞∑
k=0

1

k!
Ak. (2.1.1)

Let A ∈ GLn(C) be given such that ||A − In|| < 1 for some matrix norm || · ||. The

logarithm of A is defined by

logA =
∞∑
k=0

(−1)k+1 (A− In)k

k
. (2.1.2)

The exponential map expA : TAPn → Pn at A ∈ Pn maps h ∈ TAPn to B := expA h that

lies on the geodesic γ(t) : [0, 1]→ Pn with γ(0) = A, γ(1) = B and γ
′
(0) = h.

Figure 2.1: Geodesic γ(t) with the starting point γ(0) = A and the end point γ(1) = B

Identifying TAPn with Hn, the inner product in TAPn is given by

〈X, Y 〉A = tr (A−1/2XA−1Y A−1/2), (2.1.3)

where X, Y ∈ TAPn. Thus, the induced norm on the tangent space is

||X||A =
√

tr (A−1X)2 = ||A−1/2XA−1/2||2.
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The inner product (2.1.3) leads to a Riemannian metric on Pn. Let γ : [0, 1] → Pn be a

differentiable curve. At any point γ(t0) where, t0 ∈ [0, 1], there is a tangent vector γ̇(t0) in

the tangent space Tγ(t0)Pn and

‖γ̇(t0)‖ = ‖γ(t0)−1/2 ˙γ(t0)γ(t0)−1/2‖2,

in which ‖ · ‖ is the norm induced by the inner product on Tγ(t0)Pn. Therefore, the length of

the curve γ is

L(γ) =

∫ 1

0

‖γ̇(t)‖dt.

For a piecewise differentiable path γ : [a, b]→ Pn in Pn, the length of γ is defined as

L(γ) =

∫ b

a

ds dt,

where ds = ‖γ̇(t)‖. We define

δR(A,B) := inf{L(γ) : γ is a path from A to B}, (2.1.4)

which is a metric on Pn and we would like to work out the explicit form of δR(A,B).

2.2 Parametrization of geodesic joining two points in Pn

Definition 2.2.1. Let X ∈ GLn(C). A transformation ΓX : Pn → Pn defined as

ΓX(A) = X∗AX, X ∈ Pn,

is called a congruence transformation.

Some of the nice properties of ΓX are:

• ΓX(A) ≥ 0 whenever A ≥ 0.
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• ΓX(A+B) = ΓX(A) + ΓX(B).

• ΓU(AB) = ΓU(A)ΓU(B), where U is unitary.

• If A ≤ B, then ΓX(A) ≤ ΓX(B).

In fact, ΓX is a bijection of Pn to itself and is an isometry for the length L(γ) ([7, Lemma

6.1.1]). It is an isometry for the metric δR(A,B), i.e.,

L(ΓX ◦ γ) = γ

and

δR(ΓX(A),ΓX(B)) = δR(A,B).

For each A ∈ Pn, there exists a unique B ∈ Hn such that A = expB, or equivalently,

logA = B. Therefore, if γ(t) is a path joining A and B in Pn, then β(t) is a path joining

logA and logB in Hn.

Note that if A,B ∈ Pn commute, then the geodesic joining A,B ∈ Pn and the straight

line segment [logA, logB] ∈ H coincide and we have

Proposition 2.2.2. ([7, Proposition 6.5.1])

δR(A,B) = || logA− logB||2. (2.2.1)

We would like to have explicit expressions of the Riemannian distance betweenA,B ∈ Pn

and the parametrization of the geodesic joining A and B when AB 6= BA. Consider β(t),

the straight line segment joining logA and logB in Hn. The natural parametrization of β(t)

is

β(t) = (1− t) logA+ t logB.
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A natural way to parameterize geodesic γ(t) when A and B commute is

γ(t) = A(1−t)Bt.

Consider the matrices I and A−1/2BA−1/2. Since they commute, the parametrization of

geodesic [I, A−1/2BA−1/2] is γ0(t) = (A−1/2BA−1/2)t. Applying ΓA1/2 ,

γ(t) = ΓA1/2(γ0(t)) = A1/2(A−1/2BA−1/2)tA1/2 (2.2.2)

is the parametrization of the geodesic between ΓA1/2I = A and ΓA1/2(A−1/2BA−1/2) = B.

We call γ(t) the t-geometric mean of A and B and from now on we denote it by

A#tB := A1/2(A−1/2BA−1/2)tA1/2.

It can be seen that the matrix geometric mean

A#B := A# 1
2
B

is the unique midpoint between A and B and

A#B = B#A.
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Moreover, the Riemaniann distance between A and B in Pn is

δR(A,B) = δR(ΓA1/2I,ΓA1/2(A−1/2BA−1/2))

= δR(I, A−1/2BA−1/2)

= || log I − logA−1/2BA−1/2||2

= || logA−1/2BA−1/2||2

=
( n∑
i=1

log2 λi(A
−1B)

)1/2

.
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Chapter 3

Geodesic convexity of t-geometric means

In this chapter we will present several results by Dinh, Ahsani, and Tam [15] on the

geometric mean of two positive definite matrices.

Let A ∈ Cn×n. Denote by λ(A) = (λ1(A), . . . , λn(A)) the vector of eigenvalues of A and

usually we arrange its entries in non-increasing order with respect to their moduli, i.e.,

|λ1(A)| ≥ · · · ≥ |λn(A)|.

Both A∗A and AA∗ are positive semidefinite and have the same spectrum counting

multiplicities. The eigenvalues s1(A), . . . , sn(A) of
√
A∗A (or

√
AA∗) are called the singular

values of A. Denoted by s(A) = (s1(A), . . . , sn(A)) the vector of singular values and arrange

the singular values in non-increasing order, i.e.,

s1(A) ≥ · · · ≥ sn(A).

3.1 Majorization and log-majoration

Let x, y ∈ Rn. We denote by x↓ the vector that has the same component as x has, but

is sorted in a non-increasing order, i.e., x↓1 ≥ · · · ≥ x↓n. Let x, y ∈ Rn. We say that x is

majorized by y, denoted by x ≺ y, if

k∑
i=1

x↓i ≤
k∑
i=1

y↓i , k = 1, 2, . . . , n− 1, (3.1.1)

n∑
i=1

xi =
n∑
i=1

yi. (3.1.2)
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We say that x is weakly majorizied by y, denoted by x ≺w y if (3.1.1) holds. We say that x

is log-majorized by y, denoted by x ≺log y, if

k∏
i=1

x↓i ≤
k∏
i=1

y↓i , k = 1, 2, . . . , n− 1,

n∏
i=1

xi =
n∏
i=1

yi

We remark that if x, y ∈ Rn
+, then x ≺log y if and only if log x ≺ log y.

3.2 Compound matrices

We now provide a quick review of compound matrices which will be used later. Suppose

A ∈ Cn×n. For index sets α ⊂ {1, . . . , n} and β ⊂ {1, . . . , n}, we denote by A[α|β] the

submatrix of A whose entries lie in the rows of A indexed by α and the columns indexed by

β. For all 1 ≤ k ≤ n, the k-th compound of A is defined as the
(
n
k

)
×
(
n
k

)
complex matrix

Ck(A) whose elements are given by

Ck(A)α,β = detA[α|β], α, β ∈ Qk,n (3.2.1)

where

Qk,n = {ω = (ω(1), . . . , ω(k)) : 1 ≤ ω(1) < · · · < ω(k) ≤ n}

is the set of increasing sequences of length k chosen from {1, . . . , n}. In particular, C1(A) = A

and Cn(A) = detA.

Compound matrices have many nice properties which are listed below. See [27, 28, 30]

for proofs.

Theorem 3.2.1. Let A,B ∈ Cn×n. Let s(A) = (s1, . . . , sn) and λ(A) = (λ1, . . . , λn) denote

the vector of singular values of A in non-increasing order and the vector of eigenvalues
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of A whose absolute values are in non-increasing order, respectively. Then the following

statements are true.

(1) Ck(A
∗) = [Ck(A)]∗.

(2) If A = (aij) is upper triangular, then so is Ck(A) and its diagonal entries are

k∏
j=1

aω(j),ω(j)

for all ω ∈ Qk,n.

(3) The eigenvalues of Ck(A) are
k∏
j=1

λω(j)

for all ω ∈ Qk,n.

(4) The singular values of Ck(A) are
k∏
j=1

sω(j)

for all ω ∈ Qk,n.

(5) If A is unitary, then so is Ck(A).

(6) If A is positive semidefinite, then so is Ck(A).

(7) Ck(AB) = Ck(A)Ck(B), which is called the Binet-Cauchy Theorem. Thus the map

Ck : GLn(C)→ GL(n
k)

(C) is a group homomorphism.

Compound matrix can be used to prove the following theorem of Weyl, which states that

log-majorization is the relation between the eigenvalues and singular values of A ∈ Cn×n.

Theorem 3.2.2. (Weyl [6])

Let A ∈ Cn×n. Then |λ(A)| ≺log s(A).

11



Proof. Note that

s1(A) = max{|(Ax, y)| : x, y ∈ Cn, ‖x‖2 = ‖y‖2 = 1}.

Suppose Ax = λ1x for some unit vector x ∈ Cn. Then

|λ1| = |(Ax, x)| ≤ s1(A).

Apply this result to the k-th compound of A to conclude that for all k = 1, . . . , n− 1,

λ1(A) · · ·λk(A) = λ1(Ck(A)) ≤ s1(Ck(A)) ≤ s1(A) · · · sk(A).

The equality λ1(A) · · ·λn(A) = s1(A) · · · sn(A) follows by determinantal consideration.

3.3 Matrix geometric mean and log-majorization

The following interesting results can be found in Bhatia and Grover [8, p.730].

Theorem 3.3.1. (Bhatia and Grover [8, p.730])

Let A,B ∈ Pn. For any t ∈ [0, 1] and s > 0,

λ(A#tB) ≺log λ
(
e(1−t) logA+t logB

)
(3.3.1)

≺log λ
(
Bts/2A(1−t)sBts/2

)1/s

= λ
(
A(1−t)sBts

)1/s
.

The first inequality is a result of Ando and Hiai [2, Corollary 2.3] as the complementary

counterpart of the famous Golden-Thompson inequality for A,B ∈ Hn:

tr eA+B ≤ tr eAeB.
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The second inequality follows from a result of Araki [4].

Recall that a norm ‖| · ‖| on Cn×n is unitarily invariant if for all U, V ∈ U(n) and

A ∈ Cn×n

‖|UAV ‖| = ‖|A‖| ,

where U(n) is the unitary group. For example the spectral norm ‖ · ‖, i.e., ‖A‖ = s1(A),

A ∈ Cn×n, is unitarily invariant. Ky Fan k-norm, ‖|A‖| (k) = s1(A) + · · ·+ sk(A), A ∈ Cn×n,

is another example.

The following is the well-known Ky Fan Dominance Theorem.

Theorem 3.3.2. (Ky Fan Dominance Theorem [6, p. 93])

Given A,B ∈ Cn×n, s(A) ≺w s(B) if and only if ‖|A‖| ≤ ‖|B‖| for all unitarily invariant

norms ‖| · ‖| , where s(A) denotes the vector of singular values of A.

Proposition 3.3.3. (Dinh, Ahsani, Tam [15, Proposition 2.2])

Let A,B ∈ Pn and t ∈ [0, 1] and s > 0. For all unitarily invariant norms ‖| · ‖| on Cn×n,

‖|A#tB‖| ≤ ‖|
(
Bts/2A(1−t)sBts/2

)1/s ‖| ≤ ‖|
(
A(1−t)sBts

)1/s ‖| . (3.3.2)

In particular, with s = 1, t = 1/2,

‖|A2#B2‖| ≤ min{‖|A1/2BA1/2‖| , ‖|B1/2AB1/2‖| } ≤ min{‖|AB‖| , ‖|BA‖| }

and

‖| (A#B)2‖| ≤ min{‖|AB‖| , ‖|BA‖| }.

Proof. Since A#tB ∈ Pn for all t ∈ [0, 1],

s(A#tB) = λ(A#tB) ≺log λ
(
Bts/2A(1−t)sBts/2

)1/s

13



for all t ∈ [0, 1] and s > 0, by Theorem 3.3.1. By Theorem 3.2.2 we have

λ
(
Bts/2A(1−t)sBts/2

)1/s ≺log s
(
Bts/2A(1−t)sBts/2

)1/s
.

Then apply Theorem 3.3.2 to have

‖|A#tB‖| ≤ ‖|
(
Bts/2A(1−t)sBts/2

)1/s ‖| .

The second inequality follows from

s
(
Bts/2A(1−t)sBts/2

)1/s
= λ

(
Bts/2A(1−t)sBts/2

)1/s
= λ

(
A(1−t)sBts

)1/s ≺log s
(
A(1−t)sBts

)1/s

and Theorem 3.3.2. So, we have (3.3.2). The last inequality follows from Theorem 3.3.1.

Let S ⊆ Rn be a finite set. The convex hull of S, denoted by conv S, is the smallest

convex set containing S. Let Sn be the symmetric group of order n, let Snx := {σx : σ ∈ Sn}

be the orbit of x under the action of the symmetric group Sn. For any x, y ∈ Rn, it is known

[6, 20] that x ≺ y is equivalent to convSnx ⊂ convSny.

A subset S of Pn is called a geodesically convex set if for every A,B ∈ S, the geodesic

joining A and B is contained in S. Let X be a subset of Pn. The geodesic convex hull of X

is
⋂
{S ∈ Pn : S ⊇ X and geodesically convex set}, i.e., the smallest geodesically convex set

containing X.

Let us recall a result of Thompson, which motivates the study of Theorem 3.3.8.

Theorem 3.3.4. (Thompson [37, Theorem 12])

Let ω = (ω1, . . . , ωn) ∈ Rn. Let S be the set of Hermitian matrices with prescribed eigenvalues

ω1, . . . , ωn, i.e.,

S = {A ∈ Hn : λ(A) = ω}. (3.3.3)
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The convex hull of S is the set of all Hermitian matrices with spectrum consisting ρ =

(ρ1, . . . , ρn) satisfying ρ ≺ ω.

For any A ∈ Pn define,

M(A) = {B ∈ Pn : λ(B) ≺log λ(A)} ⊂ Pn. (3.3.4)

The map exp : Hn → Pn is a diffeomorphism and its inverse log : Pn → Hn is defined.

Therefore, the image of M(A) under the map log is

log(M(A)) = {H ∈ Hn : λ(H) ≺ λ(logA)}. (3.3.5)

This set is convex in Hn. By Theorem 3.3.4, it is the convex hull of the set

S = {X ∈ Hn : λ(X) = λ(log(A))}. (3.3.6)

In other words, it consists of all Hermitian matrices with spectrum coincided with λ(logA).

Noted that in general M(A) is not closed under the usual matrix addition and as a result

M(A) is not convex in Pn when it is viewed as a subset of the Euclidean space Cn×n.

Theorem 3.3.5. (Dinh, Ahsani, Tam [15, Theorem 2.3])

Given A ∈ Pn. M(A) is geodesically convex with respect to the Riemannian structure of Pn.

In other words, if B,C ∈M(A), then the geodesic joining B and C lies in M(A). So

M(A) = {A#tB : t ∈ [0, 1], B ∈ Pn, λ(B) ≺log λ(A)}. (3.3.7)

Proof. Let ‖·‖ denote the spectral norm on Cn×n, which is unitarily invariant. By Proposition

3.3.3, if t ∈ (0, 1), then

‖B#tC‖ ≤ ‖B1−tCt‖ = ‖(B
1−t
t )tCt‖ ≤ ‖B

1−t
t C‖t

15



Figure 3.1: M(A) is geodesically convex in Pn.

by [6, Theorem IX.2.1]. Now

‖B#tC‖ ≤ ‖B
1−t
t C‖t ≤ ‖B

1−t
t ‖t‖C‖t = ‖B‖1−t‖C‖t, (3.3.8)

which is no greater than ‖A‖ since λ(B), λ(C) ≺log λ(A). So

λ1(B#tC) = s1(B#tC) = ‖B#tC‖ ≤ ‖A‖ = s1(A) = λ1(A). (3.3.9)

Denote by Ck(X) the k-th compound of X ∈ Cn×n, k = 1, . . . , n. Note that for any

X, Y ∈ Pn,

Ck(X#tY ) = Ck(X
1/2(X−1/2Y X−1/2)tX1/2)

= Ck(X
1/2)Ck((X

−1/2Y X−1/2)t)Ck(X
1/2)

= C
1/2
k (X)(C

−1/2
k (X)Ck(Y )C

−1/2
k (X))tC

1/2
k (X)

= Ck(X)#tCk(Y ). (3.3.10)

16



In other words, Ck respects #t in Pn. By Theorem 3.2.1, the
(
n
k

)
eigenvalues of Ck(X), where

X ∈ Cn×n, are the
(
n
k

)
possible products of any k eigenvalues of X. So

λ1(Ck(B#tC)) =
k∏
i=1

λi(B#tC), k = 1, . . . , n− 1, (3.3.11)

and

det(B#tC) = (detB)1−t(detC)t = detA. (3.3.12)

Applying (3.3.8) on Ck(B) and Ck(C) that are both positive definite, we have

k∏
i=1

λi(B#tC) = λ1(Ck(B)#tCk(C)) by (3.3.11)

= ‖Ck(B)#tCk(C)‖

≤ ‖Ck(B)‖t‖Ck(C)‖1−t by (3.3.8)

= (
k∏
i=1

λi(B))t(
k∏
i=1

λi(C))1−t

≤
k∏
i=1

λi(A), i = 1, . . . , n− 1.

Together with (3.3.12), we conclude that λ(B#tC) ≺log λ(A).

Corollary 3.3.6. (Dinh, Ahsani, Tam [15, Corollary 2.4])

If A,B ∈ Pn such that B ≺log A, then for all t ∈ [0, 1], we have A#tB ≺log A, or equivalently,

‖|A#tB‖| ≤ ‖|A‖| for all unitarily invariant norms ‖| · ‖| on Cn×n.

We are going to show that M(A) has a nice geometric description and our proof requires

a lemma, which is of independent interest. Let α, β ∈ Rn. We say that β is a pinch of α [29,

p.17] if

β = (λI + (1− λ)Q)α,

where Q is the permutation matrix that interchanges two coordinates. It is well known that

if β ≺ α, then β can be obtained by applying at most n pinches consecutively, starting from

17



α. The converse is clearly true. Now let α, β ∈ Rn
+, where Rn

+ denotes the set of all positive

n-tuples. If β ≺log α, then β can be obtained by applying at most n pinches multiplicatively

in the following sense. We say that β is a geometric pinch of α if

diag (β1, . . . , βn) = (Q>diag (α1, . . . , αn)Q)#tdiag (α1, . . . , αn)

for some t ∈ [0, 1], and some transposition matrix Q.

Lemma 3.3.7. (Dinh, Ahsani, Tam [15, Lemma 2.5])

Let α, β ∈ Rn
+, where Rn

+ denotes the set of all positive n-tuples. If β ≺log α, then β can be

obtained by applying at most n geometric pinches consecutively, starting from α.

Proof. Since log β ≺ logα, log β can be obtained by at most n pinches from logα. Let log α̂

be a pinch of logα. Without loss of generality, we may assume that the pinch occurs on the

first two coordinates. So (α̂1, α̂2) ≺log (α1, α2) and thus α̂1 = αt1α
1−t
2 and α̂2 = αt2α

1−t
1 for

some t ∈ [0, 1]. Let P denote the matrix corresponding to the transposition switching the

first two coordinates. Then

(P>diag (α1, α2, α3, . . . , αn)P )#tdiag (α1, α2, α3, . . . , αn)

= diag (α2, α1, α3, . . . , αn)#tdiag (α1, α2, α3, . . . , αn)

= diag (αt1α
1−t
2 , αt2α

1−t
1 , α3, . . . αn)

= α̂.

Then repeat the process to conclude that there exist t1, . . . , tk ∈ [0, 1] and transposition

matrices P1, . . . , Pk such that

diagα(i+1) := (P>i (diagα(i))Pi)#tidiagα(i), i = 1, . . . , k,

where α(1) := α and α(k+1) := β.

18



The unitary similarity orbit of A ∈ Pn, denoted by O(A), is the set of all matrices in Pn

that are unitarily similar to A, i.e., O(A) = {U∗AU : U ∈ U(n)}, where U(n) is the unitary

group. By the Spectral Theorem of Hermitian matrices, one can see that O(A) is equal to

S = {B ∈ Pn : λ(B) = λ(A)}.

The set S is the collection of B ∈ Pn whose spectrum coincides with that of A. The following

result gives a nice geometric relation between M(A) and O(A).

Theorem 3.3.8. (Dinh, Ahsani, Tam [15, Theorem 2.6])

The set M(A) is the geodesic convex hull, denoted by G(A), of the orbit O(A).

Proof. By the Spectral Theorem of Hermitian matrices, it is easy to see that O(A) :=

{UAU∗ : U ∈ U(n)} is equal to

{B ∈ Pn : λ(B) = λ(A)} ⊂M(A).

So G(A) ⊂M(A) as M(A) is geodesically convex by Theorem 3.3.5. Thus it suffices to show

that M(A) ⊂ G(A). Let B ∈ M(A), that is, λ(B) ≺log λ(A). Since M(A), O(A) and thus

G(A) are invariant under unitarily similarity, we may assume that A = diag (α1, . . . , αn).

Let λ(B) = (β1, . . . , βn) and let U ∈ U(n) such that B = U∗diag (β1, . . . , βn)U . By Lemma

3.3.7, there exist t1, . . . , tk ∈ [0, 1] and transposition matrices P1, . . . , Pk such that

diagα(i+1) := (P>i (diagα(i))Pi)#tidiagα(i), i = 1, . . . , k,

where α(1) := α and α(k+1) := β. It is easy to see that

V ∗(C#tD)V = (V ∗CV )#t(V
∗DV )
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for all V ∈ U(n), C,D ∈ Pn. So

B = U∗diag (β1, . . . , βn)U

= U∗(P>k (diagα(k))Pk)#tkdiagα(k))U

= (U∗P>k (diagα(k))PkU)#tk(U∗diagα(k)U).

Then use induction on k to show that B ∈ G(A) as U∗P>k (diagα(k))PkU and U∗diagα(k)U ∈

G(A) since G(A) is invariant under unitarily similarity.
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Chapter 4

Geometric mean from operator theory point of view

The differential geometry view of the geometric mean of two positive definite matrices

gives a geometric insight of geometric mean in terms of geodesic when Pn is considered as a

Riemannian manifold. However, Loewner order ≤ on Pn or Hn plays an important role in

operator theory which is not present in the differential geometry approach. Recall the Loewer

order: given A,B ∈ Hn, B ≤ A means A−B ≥ 0, i.e, positive semidefinite. One important

property that we expect a geometric mean of two matrices in Pn to have is monotonicity

with respect to the Loewer order. There are also important inequalities and nice properties

of geometric mean in operator theory. Most of the material in this chapter can be found in

[7]. We start with the following definition of matrix mean.

4.1 Matrix mean

A matrix mean is a map M : Pn × Pn 7→ Pn that satisfies the following conditions:

1. A ≤ B implies A ≤M(A,B) ≤ B.

2. (transformation property) M(X∗AX,X∗BX) = X∗M(A,B)X, for A,B ∈ Pn and a

nonsingular matrix X.

3. (symmetry property) M(A,B) = M(B,A).

4. (monotonicity property) if A1 ≤ A2, then M(A1, B) ≤M(A2, B).

5. M(·, ·) is continuous in each argument.
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Recall that the geometric mean of A,B ∈ Pn is

A#B := A# 1
2
B = A1/2(A−1/2BA−1/2)1/2A1/2,

which Pusz and Woronowicz formulated it in [32] and characterized some important prop-

erties of (2.0.1). One can verify that the matrix geometric mean satisfies the above matrix

mean conditions. In addition, for basic properties of a geometric mean one can see Ando

[1]. The following theorem and the important properties of ΓX also enable us to extend the

definition of geometric mean from R+ to Pn.

Theorem 4.1.1. ([20, Corollary 7.6.5])

Let A,B ∈ Pn. There exists a nonsingular matrix X such that ΓX(A) = I, and ΓX(B) = DB,

where DB is a diagonal matrix.

Therefore, by Theorem 4.1.1, we have

A#B = (X∗)−1IX−1#(X∗)−1DBX
−1

= (X∗)−1IAX
−1#(X∗)−1DBX

−1

= (X∗)−1(I#DB)X−1

= (X∗)−1(I#DB)X−1

= (X∗)−1(DB)1/2X−1. (4.1.1)

Now, let X = A−1/2U . We have ΓX(B) = U∗(A−1/2BA−1/2)U = DA, ΓX(A) = I. By (4.1.1)

and the fact that D
1/2
A = U∗(B−1/2AB−1/2)1/2U, we have the geometric mean of two matrices

as

A#B = A1/2
(
A−1/2BA−1/2

)1/2
A1/2 = ΓA1/2

(
(ΓA−1/2(B))1/2

)
. (4.1.2)

There is a nonsingular matrix S that simultaneously diagonalizes A and B by congruence,

A = ΓS(DA), B = ΓS(DB).
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Therefore,

A#B = ΓS(DADB)1/2

and it is independent of the choice of S. Since computing (DADB)1/2 is easy, it enables us

to compute A#B. Some important properties of A#B are listed:

1. A#B = B#A.

2. A#B is the unique positive solution of the Riccati equation XA−1X = B.

3. A#B has an extremal property

A#B = max

X : X = X∗,

 A X

X∗ B

 ≥ 0

 . (4.1.3)

4. There exists a unitary matrix U such that A#B = A1/2UB1/2. Since U is unitary,

A1/2UB1/2 is positive definite and as a result A#B is positive definite.

5. A#B has the transformation property, i.e., ΓX(A)#ΓX(B) = ΓX(A#B).

6. A#B = A(A−1B)1/2 = (AB−1)1/2B.

7. When A,B ∈ C2×2, A#B = A+B√
det(A+B)

.

8. For any α ≥ 0, (αA)#B =
√
α(A#B).

9. For A1, A2, B1, B2 ∈ Pn, if A1 ≤ B1 and A2 ≤ B2, then A1#A2 ≤ B1#B2.

10. tr (A#B) ≤ tr (A1/2B1/2).

11. det(A#B) = det(A1/2B1/2).

12. A#B = (A−1#B−1)−1.
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A map Φ : Pn × · · · × Pn → Pn is called convex if

Φ(λA1 + (1− λ)B1, . . . , λAk + (1− λ)Bk) ≤ λΦ(A1, . . . , Ak) + (1− λ)Φ(B1, . . . , Bk).

Theorem 4.1.2. ([6, Theorem 1.3.3 ])

The block matrix M =

 A C

C∗ B

 , where A,B ∈ Pn, and C ∈ Cn×n, is positive semidefinite

if and only if B ≥ C∗A−1C.

Theorem 4.1.3. (Pusz and Woronowicz [32])

Let A,B ∈ Pn. The map (A,B)→ A#B is concave.

Proof. Let C =

 A A#B

A#B B

. Since

(A#B)A−1(A#B) = A1/2(A−1/2B1/2A−1/2)A1/2 = B, (4.1.4)

by Theorem 4.1.2, C is positive semidefinite. Let C1 =

 A1 A1#B1

A1#B1 B1

 and C2 =

 A2 A2#B2

A2#B2 B2

 , where A1, A2, B1 and B2 are positive semidefinite. We have

λC1 + (1− λ)C2 ≥ 0.

i.e.,  λA1 + (1− λ)A2 λ(A1#B1) + (1− λ)A2#B2)

λ(A1#B1) + (1− λ)(A2#B2) λB1 + (1− λ)B2

 .
Therefore, by (4.1.3), we have

(λA1 + (1− λ)A2)#(λB1 + (1− λ)B2) ≥ λ(A1#B1) + (1− λ)A2#B2).
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As a consequence, for Ai, Bi, i = 1, . . . , n, we have

n∑
i=1

Ai#Bi ≤
n∑
i=1

Ai#
n∑
i=1

Bi. (4.1.5)

4.2 Matrix geometric mean inequalities of Lemos and Soares

Very recently Lemos and Soares [24] obtained log-majorization relations that involve

matrix geometric mean.

Theorem 4.2.1. (Lemos and Soares [24, p. 26])

Let A,B ≥ 0. We have

λ(A(A#B)B(A#B)) ≺log λ(A2B2). (4.2.1)

Note that the matrices A(A#B)B(A#B) and A2B2 on both sides are not necessarily

positive semidefinite. Since the spectra of AB and BA coincide, we have

λ(A(A#B)B(A#B)) = λ(A1/2(A#B)B1/2B1/2(A#B)A1/2) (4.2.2)

= λ2(|A1/2(A#B)B1/2|), (4.2.3)

and

λ(A2B2) = λ((AB)(BA)) = λ2(|AB|).

As a result, we have the inequality

λ(|A1/2(A#B)B1/2|) ≺log λ(|AB|). (4.2.4)

They also asked if the following log-majorization holds:

Question:

λ(|At(A#tB)B1−t|) ≺log λ(|AB|). (4.2.5)
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Lemos and Soares also proved the following theorem.

Theorem 4.2.2. (Lemos and Soares [24, p. 25])

Let A,B,X ≥ 0 and t ∈ [0, 1]. We have

λ((A#tB)X(A#1−tB)X) ≺log λ(AXBX). (4.2.6)

For X = I and t = 1/2, we have

λ((A#B)2) ≺log λ(AB). (4.2.7)

Indeed, by using the transformation property of t-geometric mean we can obtain the following

log-majorization inequality from Theorem 4.2.2, but we would like to prove it by using their

techniques.

Theorem 4.2.3. Let A,B ≥ 0. For any X ∈ GLn(C) and t ∈ [0, 1] we have

λ1(ΓX(A#tB)ΓX(A#1−tB)) ≺log λ1(ΓX(A)ΓX(B)). (4.2.8)

Proof. Since the k-th compound matrix is multiplicative and respects complex conjugate

transpose, we have

Ck(X
∗(A#tB)XX∗(A#1−tB)X)

= Ck(X
∗)Ck(A#tB)Ck(X)Ck(X

∗)Ck(A#1−tB)Ck(X)

= ΓCk(X)(Ck(A)#tCk(B))ΓCk(X)(Ck(A)#1−tCk(B)),

and

Ck(X
∗AXX∗BX) = (Ck(X))∗Ck(A)(Ck(X))(Ck(X))∗Ck(B)Ck(X)

= ΓCk(X)Ck(A)ΓCk(X)Ck(B).
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Moreover, det ΓX(A#tB)ΓX(A#1−tB) = det ΓX(A)ΓX(B). Therefore, it suffices to show

that

λ1(ΓX(A#tB)(A#1−tB)X) ≤ λ1(ΓX(A)ΓX(B)). (4.2.9)

Let X = I. From λ1(AB) ≤ 1 we have AB ≤ I. As a result, A ≤ B−1 and B ≤ A−1. Thus,

by joint monotonicity of matrix geometric mean we have

A#tB ≤ B−1#tA
−1 = (A#1−tB)−1. (4.2.10)

Therefore, we have

λ1((A#tB)(A#1−tB)) ≤ λ1(AB). (4.2.11)

For any X ∈ Cn×n we have

X∗(A#tB)X ≤ X∗AX#tX
∗BX

and the equality holds when X is nonsingular. Now, Let X ∈ GLn(C). We have

λ1(X∗(A#tB)XX∗(A#1−tB)X)

= λ1((X∗AX#tX
∗BX)(X∗AX#1−tX

∗BX))

≤ λ1((X∗AX)(X∗BX)).

It can be seen that when X ≥ 0 by choosing X = C, we have C∗ = C and

λ(C2(A#tB)C2(A#1−tB)) ≺log λ(C2AC2B), (4.2.12)
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Furthermore, by choosing X = C1/2 we can see

λ(C(A#tB)C(A#1−tB)) ≺log λ(CACB), (4.2.13)

in which is the same as Theorem 4.2.2.

4.3 More inequalities for t-geometric mean

In the previous section, we saw the log-majorization

λ((A#tB)(A#1−tB)) ≺log λ(AB),

for A,B ∈ Pn. Geometrically, if we travel on the geodesic γ(t), joining A and B, from point

A towards B and in the meanwhile from B to A, then we will have two points at time

t, namely, A#tB and B#tA. The above log-majorization gives a relationship between the

product of these two points and product of the original two points A and B. Now, let us

Figure 4.1: We travel from A and B towards the midpoint A#B.

consider the endpoints A#tB and A#1−tB instead of endpoints A and B. Thus the midpoint

A#B remains the midpoint of A#tB and A#1−tB. Hence, we use the inequality for new

endpoints A#tB and A#1−tB and midpoint A#B. Therefore, for any two positive definite
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Figure 4.2: The midpoint of the geodesic joining A#tB and A#1−tB is still A#B.

matrices and any t ∈ [0, 1], we have the following log-majorization inequality

λ((A#B)2) ≺log λ((A#tB)(A#1−tB)). (4.3.1)

This shows the beauty of geometric perspective because proving the inequality (4.3.1)

is not easy. On the other hand, we have the following theorem of Ando and Hiai.

Theorem 4.3.1. (Ando and Hiai [2, Theorem 2.1])

For A,B ∈ Pn and t ∈ [0, 1], we have

λ(Ar#tB
r) ≺log λ((A#tB)r), r ≥ 1, (4.3.2)

λ((A#tB)r) ≺log λ(Ar#tB
r), 0 ≤ r ≤ 1. (4.3.3)

As a result, by (4.3.1) and (4.3.2) for r = 2 we have the following log-majorization

inequality:

λ(A2#B2) ≺log λ((A#tB)(A#1−tB)). (4.3.4)

Furthermore, by the above discussions and considering the endpoints A1/2 and B1/2 we have

λ(A#B) ≺log λ((A1/2#B1/2)2) ≺log λ(A1/4B1/2A1/4),
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which is another way to approach the inequality in ([8, Theorem 3]) for t = 1/2.

Theorem 4.3.2. (Order preserving inequality, Furuta’s inequality)

If X ≥ Y ≥ 0, then for each r ≥ 0 we have

(Y rXpY r)(1/q) ≥ Y (p+2r)/q, (4.3.5)

and

X(p+2r)/q ≥ (XrY pXr)1/q, (4.3.6)

for all p ≥ 0 and q ≥ 1 and (1 + 2r)q ≥ p+ 2r.

Theorem 4.3.3. [14, p. 324]

Let A,B ≥ 0 and t ∈ [0, 1]. We have

λ(A1/2(A#tB)A1/2) ≺log λ(A1−t/2BtA1−t/2). (4.3.7)

Proof. It can be seen that

Ck(A
1/2(A#tB)A1/2) = (Ck(A))1/2(Ck(A)#tCk(B))(Ck(A))1/2,

and

Ck(A
1−t/2BtA1−t/2) = (Ck(A))1−t/2)(Ck(B))t(Ck(A))1−t/2.

Moreover, det(A1/2(A#tB)A1/2) = det(A1−t/2BtA1−t/2). It sufices to show that

λ1(A1/2(A#tB)A1/2) ≤ λ1(A1−t/2BtA1−t/2). (4.3.8)

Thus we need to prove the following inequality

A1−t/2BtA1−t/2 ≤ I implies A1/2(A#tB)A1/2 ≤ I. (4.3.9)
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Let A1−t/2BtA1−t/2 ≤ I, or equivalently Bt ≤ At−2. By using the Furuta Inequality (4.3.6),

for X = At−2, Y = Bt, q = p = t−1 and r = 1/2(2− t), we have p+ 2r = 2
t(2−t) and

(
(At−2)1/(2(2−t))(Bt)t

−1

(At−2)1/(2(2−t))
) 1

t−1

≤ ((At−2)2/t(2−t))t, (4.3.10)

which implies A1/2(A#tB)A1/2 ≤ I.

Since the log-majorization implies weak majorization and for anyA ∈ Cn×n,
∑n

i=1 λi(A) =

trA, the above log-majorization inequalities and the property tr (AB) = tr (BA) imply the

following trace inequalities

tr (A(A#tB)) ≤ tr (A2−tBt), [10] (4.3.11)

tr (A2#B2) ≤ tr ((A#tB)(A#1−tB)), (4.3.12)

tr ((A#tB)(A#1−tB)) ≤ tr (AB). [10] (4.3.13)
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Chapter 5

On the norm inequality of t-geometric mean of matrices

In this chapter we will discuss motivations of the questions which lead us to the conjec-

ture in Dinh, Ahsani, Tam [15]. Furthermore, we will bring some extensions of the related

results in [13] and a solution for the conjecture under a special condition.

Theorem 5.0.1. (Araki [4], [6, Theorem IV.2.10])

Let A,B ∈ Pn. For all unitary invariant norms ‖| .‖| we have

‖|BtAtBt‖| ≤ ‖| (BAB)t‖| , 0 ≤ t ≤ 1 (5.0.1)

‖| (BAB)t‖| ≤ ‖|BtAtBt‖| , t ≥ 1. (5.0.2)

5.1 Motivation

In 1998, Bhatia and Kittaneh in [9] proved the following matrix subadditivity inequality

‖|Am +Bm‖| ≤ ‖| (A+B)m‖| ,

where A,B ≥ 0, and m is an integer. They also showed the analogus inequalities when m is

replaced by a positive real number r

‖|Ar + Br‖| ≤ ‖| (A+B)r‖| , 1 ≤ r ≤ ∞, (5.1.1)

‖|Ar +Br‖| ≥ ‖| (A+B)r‖| , 0 ≤ r ≤ 1. (5.1.2)

Later in 1999, Ando and Zhan proved a subadditivity inequality for operator concave func-

tions [3]. In 2007, Bourin and Uchiyama extended their work to all concave functions [12].
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Theorem 5.1.1. ([12, Theorem 1.1])

Let A and B be positive semidefinite matrices and let ‖| .‖| be any unitary invariant norm.

We have the following assertions

(I) For a concave function f : [0,∞)→ [0,∞) we have

‖| f(A+B)‖| ≤ ‖| f(A) + f(B)‖| , (5.1.3)

which can be stated for a family of positive definite matrices {Ai}mi=1 :

‖| f(A1 + · · ·+ Am)‖| ≤ ‖| f(A1) + · · ·+ f(Am)‖| . (5.1.4)

(II) For a convex function f : [0,∞)→ [0,∞) with g(0) = 0, we have

‖| f(A) + f(B)‖| ≤ ‖| f(A+B)‖| , (5.1.5)

‖| f(A1) + · · ·+ f(Am)‖| ≤ ‖| f(A1 + · · ·+ Am)‖| . (5.1.6)

These inequalities were starting points for matrices subadditivity inequalities and raised

some related questions by Bourin in 2009 [11]:

Question (I) (Bourin-2009):

Given A,B ≥ 0 and p, q ≥ 0, does the following inequality hold or not?

‖|Ap+q +Bp+q‖| ≤ ‖| (Ap +Bp)(Aq +Bq)‖| ? (5.1.7)

In addition, does the following inequality hold in general?

‖|Ap +Bq‖| ≤ ‖| (Ap1 +Bq1) . . . (APn +Bqn)‖| ?
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where p =
∑n

i=1 pi and q =
∑n

i=1 qi with pi, qi ≥ 0, i = 1, 2, . . . n.

Furthermore, he asked the following question for the case n = 2 and p1 = q1 = p and

p2 = q2 = q:

‖|Ap+q +Bp+q‖| ≤ ‖| (Ap +Bp)
1
2 (Aq +Bq)(Ap +Bp)

1
2‖| ?

Question (II) (Bourin-2009):

Given A,B ≥ 0 and p, q ≥ 0. Does the following inequality hold or not?

‖|ApBq +BpAq‖| ≤ ‖|Ap+q +Bp+q‖| .

In 2013 Hayanjeh and Kittaneh [18] gave an affirmative answer to this question for the

Frobenius norm and the trace norms and conjectured that the above inequalities are true

for all unitary invariant norms and for all commuting positive operators.

Conjecture 5.1.2. ([18], Hayanjeh and Kittaneh-2013)

Given Ai, Bi ≥ 0, i = 1, 2 and AiBi = BiAi. The following inequalities are true for all

unitary invariant norms.

‖|A1B1 + A2B2‖| ≤ ‖| (A1 + A2)(B1 +B2)‖| ,

‖|A1B1 + A2B2‖| ≤ ‖| (A1 + A2)
1
2 (B1 +B2)(A1 + A2)

1
2‖| .

Finally in 2015, Koenraad Audenaert in ([5, Theorem 1.3]) proved the general case for

positive semidefinite matrices Ai and Bi, i = 1, · · · ,m, such that, for each i, Ai commuting

with Bi.

‖|
m∑
i=1

AiBi‖| ≤ ‖| (
m∑
i=1

A
1/2
i B

1/2
i )2‖| ≤ ‖|

( m∑
i=1

Ai
)( m∑

i=1

Bi

)
‖| . (5.1.8)
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As a consequence, it can be seen that for any f, g : [0,∞)→ [0,∞) the inequality

‖|
m∑
i=1

f(Ai)g(Ai)‖| ≤ ‖|
( m∑
i=1

f(Ai)
)( m∑

i=1

g(Ai)
)
‖| ,

holds for all unitary invariant norms. By choosing f(x) = xp1 , g(x) = xp2 and m = 2,

Audenaert gave an affirmative answer to the question of Bourin (5.1.7). Recently, in 2017,

Hayajneh et al., [17] proved a sharper inequality than (5.1.8)

‖| (
m∑
i=1

A
1/2
i B

1/2
i )2‖| ≤

( m∑
i=1

Ai
)1/2( m∑

i=1

Bi

)( m∑
i=1

Ai
)1/2‖| , (5.1.9)

and as a result,

‖|
m∑
i=1

AiBi‖| ≤ ‖|
( m∑
i=1

Ai
)1/2( m∑

i=1

Bi

)( m∑
i=1

Ai
)1/2‖| . (5.1.10)

Now, regarding the inequality (5.1.8), we investigate that does a similar inequality hold in

the noncommuting case when matrix multiplication is replaced with the geometric mean?

Symmetric properties of geometric mean, A#B = B#A and A2#B2 = (A#B)2 = AB, for

commuting matrices A and B beside the properties (5.2.4) and (5.2.5) motivate our work.

In this regard, we have some questions in [15].

Question (I):

‖|
m∑
i=1

A2
i#B

2
i ‖| ≤ ‖|

m∑
i=1

AiBi‖| , (5.1.11)

and

‖|
m∑
i=1

(Ai#Bi)
2‖| ≤ ‖|

m∑
i=1

AiBi‖| , (5.1.12)

where Ai, Bi ∈ Pn, i = 1, . . . ,m. By creating counter examples we showed in [15] that these

inequalities are not true, while the computational results show the following inequalities are

true.
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Question (II):

‖|
m∑
i=1

(Ai#Bi)
2‖| ≤ ‖|

( m∑
i=1

Ai

)( m∑
i=1

Bi

)
‖| , (5.1.13)

‖|
m∑
i=1

A2
i#B

2
i ‖| ≤ ‖|

( m∑
i=1

Ai

)( m∑
i=1

Bi

)
‖| , (5.1.14)

where Ai, Bi ∈ Pn, i = 1, . . . ,m.

The inequality (5.1.13) was proved in [15] and was extended to the general case in [13] as

the following, but the inequality (5.1.14) was posted in [15] as a conjecture.

Theorem 5.1.3. [14, Theorem 2.2]

Let Ai, Bi ∈ Pn, i = 1, · · · ,m, p > 0 and r ≥ 1. We have

‖| (
m∑
i=1

(Ai#tBi)
r‖| ≤ ‖|

(( m∑
i=1

Ai

)rtp/2( m∑
i=1

Bi

)(1−t)pr( m∑
i=1

Ai

)rtp/2) 1
p‖| . (5.1.15)

For t = 1/2, r = 2 and p = 1 the above inequality becomes

‖| (
m∑
i=1

(Ai#Bi)
2‖| ≤ ‖|

( m∑
i=1

Ai

)1/2( m∑
i=1

Bi

)( m∑
i=1

Ai

)1/2

‖| , (5.1.16)

which is sharper than the Inequality (5.1.13) in Question(II).

Proof. For Ai, Bi ∈ Pn, i = 1, . . . , n, we have,

‖|
m∑
i=1

Ai#tBi‖| ≤ ‖|
m∑
i=1

Ai#t

m∑
i=1

Bi‖| , concavity of t-geometric mean

≤ ‖|
(( m∑

i=1

Bi

) tp
2
( m∑
i=1

Ai

)(1−t)p( m∑
i=1

Bi

) tp
2
) 1

p‖| , by (3.3.2)

≤ ‖|
(( m∑

i=1

Ai

)(1−t)p( m∑
i=1

Bi

)tp) 1
p‖| .
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As a consequence, it can be seen that for r ≥ 1, we have

‖|
m∑
i=1

(Ai#tBi)
r‖| ≤ ‖|

( m∑
i=1

Ai#tBi

)r
‖|

≤ ‖|
( m∑
i=1

Ai#t

m∑
i=1

Bi

)r
‖|

≤ ‖|
(( m∑

i=1

Bi

) tp
2
( m∑
i=1

Ai

)(1−t)p( m∑
i=1

Bi

) tp
2
) r

p‖|

≤ ‖|
(( m∑

i=1

Bi

) rtp
2
( m∑
i=1

Ai

)r(1−t)p( m∑
i=1

Bi

) rtp
2
) 1

p‖| . by (5.0.2)

Moreover, the left hand side of the inequalities (5.1.14) and (5.1.12) is not comparable

in general. See [15] for presented examples. In addition, numerical calculation supports the

following inequality.

Conjecture 5.1.4. Let Ai, Bi ∈ Pn, i = 1, 2, · · · ,m. We have

||
m∑
i=1

A2
i#B

2
i ||2 ≤ ||

m∑
i=1

(Ai#Bi)
2||2. (5.1.17)

Remark: Let Ai, Bi ∈ Pn, i = 1, · · · ,m. The inequality

‖|
m∑
i=1

A2
i#

m∑
i=1

B2
i ‖| ≤ ‖| (

m∑
i=1

Ai)
2#(

m∑
i=1

Bi)
2‖| (5.1.18)

is not true in general. While, numerical computation shows that the inequality holds for the

trace norm and the Frobenius norm.

Remark 5.1.5. Pn is a Riemannian manifold, but as a subset of GLn(C), it does not form

a subgroup. As we mentioned, the reason is that the product of two Hermitian matrices A

and B is Hermitian if and only if AB = BA. To be more precise, for A,B ∈ Pn, we have
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AB = B−1/2(B1/2AB1/2)B1/2, then

AB ∼ B1/2AB1/2.

Moreover, we have λ(B1/2AB1/2) = 〈B1/2AB1/2X,X〉 = 〈AB1/2X,B1/2X〉 ≥ 0, X 6= 0.

Therefore, B1/2AB1/2 has positive eigenvalues. Furthermore, (B1/2AB1/2)∗ = B1/2AB1/2,

and by [20, Theorem 2.5.6, p.135] is diagonalizable. As a result, AB is similar to B1/2AB1/2

which has positive eigenvalues and diagonalizable. Also, see [20, Corollary 7.6.2, p.486] for

more details. Hence, the eigenvalues of AB coincide with the singular values of a positive

definite matrix. In other words, the set

P2
n = {AB | A,B ∈ Pn}

consists of those matrices that are diagonalizable and have positive eigenvalues. As a conse-

quence, under the condition of commuting Ai and commuting Bi, we have

Proposition 5.1.6. Let Ai, Bi ∈ Pn, i = 1, · · · ,m, such that AiAj = AjAi for i, j =

1, · · · ,m and BiBj = BjBi for i, j = 1, · · · ,m. For any unitary invariant norm ‖| . ‖| on

Cn×n,

‖|
m∑
i=1

A2
i#

m∑
i=1

B2
i ‖| ≤ ‖| (

m∑
i=1

Ai)
2#(

m∑
i=1

Bi)
2‖| . (5.1.19)

Proof. Let AiAj = AjAi and BiBj = BjBi for i, j = 1, · · · ,m.

We have,

m∑
i=1

A2
i ≤ (

m∑
i=1

Ai)
2, (5.1.20)

m∑
i=1

B2
i ≤ (

m∑
i=1

Bi)
2. (5.1.21)
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The geometric mean of A and B, A#B, is a non-decreasing function of its arguments, i.e.,

if A1 ≤ A2, then A1#B ≤ A2#B, [16, Theorem 2.2]. Therefore, if A1 ≤ A2 and B1 ≤ B2,

then, A1#B1 ≤ A2#B2. Thus, (5.1.19) follows from this fact.

Theorem 5.1.7. Let Ai, Bi ∈ Pn, i = 1, · · · ,m, which AiAj = AjAi and BiBj = BjBi for

i, j = 1, · · · ,m. For any unitary invariant norm ‖| . ‖| on Cn×n the following inequalities

are true:

‖|
m∑
i=1

A2
i#B

2
i ‖| ≤ ‖| (

m∑
i=1

Ai)
1
2 (

m∑
i=1

Bi)(
m∑
i=1

Bi)
1
2‖| . (5.1.22)

Proof. The geometric mean of A and B, A#B is a concave function. Therefore,

‖|
m∑
i=1

A2
i#B

2
i ‖| ≤ ‖|

m∑
i=1

A2
i#

m∑
i=1

B2
i ‖|

≤ ‖| (
m∑
i=1

Ai)
2#(

m∑
i=1

Bi)
2‖|

≤ ‖| (
m∑
i=1

Ai)
1
2 (

m∑
i=1

Bi)(
m∑
i=1

Bi)
1
2‖| ,

where the second inequality is true due to the Proposition 5.1.6 and the third inequality is

due to [8, Inequality number (18)].

5.2 More norm inequalities of t-geometric mean of matrices

Recall that Bhatia and Grover ([8, Theorem 3]) showed that the inequality

‖|A#tB‖| ≤ ‖|B
t
2A1−tB

t
2‖| ≤ ‖|A1−tBt‖| , (5.2.1)

holds for A,B > 0 and all unitary invariant norms ‖| .‖| . Also, recall that from (3.3.3) we

have

‖|A#tB‖| ≤ ‖| (B
tp
2 A(1−t)pB

tp
2 )

1
p‖| ≤ ‖| (BtpA(1−t)p)

1
p‖| , (5.2.2)
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for the special cases t = 1/2 and p = 1, we have

‖|A#B‖| ≤ ‖| (B
1
4A

1
2B

1
4 )‖| ≤ ‖|A

1
2B

1
2‖| , (5.2.3)

As a result,

‖|A2#B2‖| ≤ ‖|B
1
2AB

1
2‖| ≤ ‖|AB‖| , (5.2.4)

and

‖| (A#B)2‖| ≤ ‖| (B
1
4A

1
2B

1
4 )2‖|

≤ ‖|B
1
2AB

1
2‖| ≤ ‖|AB‖| by Theorem 5.0.1 (5.2.5)

Another way to approach the last norm inequality is using the recent result of Lemos and

Soares (4.2.7). Since (A#B) ∈ Pn, we have

s((A#B)2) = λ((A#B)2)

≺log λ(AB)

≺log s(AB).

Thus, we have the inequality ‖| (A#B)2‖| ≤ ‖|AB‖| .

Similarly, by (4.3.3) and (4.3.1) and using the fact that A1/2(A#tB)A1/2, A2#B2 ∈ Pn, we

have

‖|A1/2(A#tB)A1/2‖| ≤ ‖|A2−tBt‖| . (5.2.6)

and

‖|A2#B2‖| ≤ ‖| (A#tB)(A#1−tB)‖| , (5.2.7)

and the following theorem
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Theorem 5.2.1. Let Ai, Bi ∈ Pn, i = 1, 2, . . . , n. We have

‖|
n∑
i=1

(Ai#Bi)
2‖| ≤ ‖| (

n∑
i=1

Ai#t

n∑
i=1

Bi)(
n∑
i=1

Bi#t

n∑
i=1

Ai)‖| . (5.2.8)

Proof. Since (Ai#Bi)
2 ∈ Pn, i = 1, 2, . . . , n, by using (4.3.1) and the above techniques for

each i = 1, 2, . . . , n, we have

‖| (Ai#Bi)
2‖| ≤ ‖| (Ai#tBi)(Ai#1−tBi)‖| . (5.2.9)

Now,

‖|
n∑
i=1

(Ai#Bi)
2‖| ≤ ‖|

( n∑
i=1

(Ai#Bi)
)2

‖| , apply (5.1.6) for the convex function t2

≤ ‖|
( n∑
i=1

Ai#
n∑
i=1

Bi

)2

‖| , concavity of t-geometric mean

≤ ‖| (
n∑
i=1

Ai#t

n∑
i=1

Bi)(
n∑
i=1

Bi#t

n∑
i=1

Ai)‖| , by (4.3.1).
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Chapter 6

Semisimple Lie groups and Lie algebras

6.1 Lie groups and Lie algebras

A Lie group G is both a differentiable manifold and a group such that the map

G×G → G

(g, h) 7→ gh−1,

is a smooth map. In other words, the group structure and manifold structure are compatible.

The Lie algebra g of a Lie group G can be viewed as the tangent space of G at the identity

with a bracket operation

g× g → g

(X, Y ) 7→ [X, Y ].

satisfying the following conditions

1. [X, Y ] is bilinear.

2. [X,X] = 0 for all X ∈ g.

3. The Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 holds for all X, Y, Z ∈ g.

The books of Helgason and Knapp [19, 22] are standard references for Lie groups and alge-

bras. The following are well-known examples of Lie groups.

Example 6.1.1. 1. The general linear group GLn(C) = {A ∈ Cn×n : detA 6= 0}.
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2. The special linear group SLn(C) = {A ∈ Cn×n : detA = 1}.

3. The orthogonal group O(n) = {A ∈ Rn×n : A>A = In} and the special orthogonal

group SO(n) = {A ∈ O(n) : detA = 1}.

4. The complex orthogonal group On(C) = {A ∈ GLn(C) : A>A = In}.

5. The unitary group U(n) = {A ∈ Cn×n : A∗A = In}.

6. The complex symplectic matrices Sp2n(C) = {A ∈ C2n×2n : A>JA = J}, where

J =

 On In

−In On

 .
Example 6.1.2. 1. The Lie algebra of GLn(C) is gln(C) = Cn×n with [A,B] = AB−BA,

A,B ∈ Cn×n.

2. The Lie algebra of SLn(C) is sln(C) = {A ∈ Cn×n : trA = 0}.

3. The Lie algebra of O(n) and SO(n) is so(n) = {A ∈ Rn×n : A> = −A}.

4. The Lie algebra of On(C) is son(C) = {A ∈ Cn×n : A> = −A}.

5. The Lie algebra of U(n) is u(n) = {A ∈ Cn×n : A∗ = −A}.

6. The Lie algebra of Sp2n(C) is sp2n(C) = {A ∈ C2n×2n : AJ + A>J = 0}.

Let g and h be Lie algebras over the same field. A Lie algebra homomorphism (or simply

homomorphsim) as a linear transformation φ : g→ h that respects the bracket, i.e., for any

X and Y ∈ g

φ([X, Y ]) = [φ(X), φ(Y )].

Note that a representation of the Lie algebra g is a Lie algebra homomorphism

ρ : g→ gl(V ),
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where V is a vector space over field F.

The adjoint representation of g is ad : g→ gl(g) defined by

adX(Y ) = [X, Y ], X, Y ∈ g.

It is a homomorphism because of the bilinearity of Lie bracket and Jacobi identity.

Let G be a Lie group with Lie algebra g. A one-parameter subgroup of G is a smooth

homomorphism from the additive group of real numbers to G. i.e.,

φ : R→ G

There is a one-to-one correspondence between one-parameter subgroup of G and TeG, [19,

p. 103]. Now, by using this fact, we can define an analogue of the matrix exponential for

Lie group G as

exp : g → G (6.1.1)

X 7→ φX(1), (6.1.2)

where X ∈ g and φX is the one-parameter subgroup corresponding to X. Therefore, for all

t ∈ R,

φX(t) = exp(tX).

Let G and H be Lie groups. If φ : G→ H be a smooth homomorphism, and dφ : g→ h

is its differential at the identity element, then

φ ◦ expg = exph ◦dφ. (6.1.3)
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Given g ∈ G, let Ig : G→ G be defined by

Ig(f) = g−1fg, f ∈ G

It can be seen that Ig is a smooth automorphism. Its differential (dIg)e at the identity e ∈ G

is denoted by Ad (g) : g → g. The adjoint representation of G is Ad : G → Aut (g). By

(6.1.3), we have

exp(Ad (g)(X)) = g(exp(X))g−1,where g ∈ G, X ∈ g.

In the special case G = GLn(C), we have Ad (g)(X) = g−1Xg, where g ∈ GLn(C).

Let g be the Lie algebra of the Lie group G. The bilinear form

B(X, Y ) = tr (adXadY )

on g × g is called the Killing form of g. The Lie algebra g (and the Lie group G) is called

semisimple if the Killing form B(·, ·) is nondegenerate.

6.2 Cartan decomposition

Let G be a connected semisimple Lie group. Let Θ be a nontrivial involution in Aut (G)

and let K be a compact subgroup of G such that K is the fixed point set of Θ. The derived

automorphism of Θ is an automorphism of the Lie algebra g, denoted by θ := (dΘ)e. Note

that θ2 = 1. As a result, eigenvalues of θ are ±1. The +1 eigenspace is the Lie algebra k of

K. Let p be the eigenspace corresponding to eigenvalue −1, i.e.,

k = {X ∈ g : θX = X},

p = {X ∈ g : θX = −X}.
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Thus, we have a direct sum decomposition of Lie algebra g:

g = k⊕ p. (6.2.1)

which is called a Cartan decomposition corresponding to the Cartan involution θ : g → g

with (X + Y ) 7→ X − Y , where X ∈ k and Y ∈ p. It is known that the Killing form B(·, ·)

is positive definite on p and negative definite on k. The Cartan decomposition can be lifted

to the group level

G = PK

known as the global Cartan decomposition, where

P := exp p = {exp(X) : X ∈ p}. (6.2.2)

The map

p×K → G

(X, k) 7→ exp(X) k.

is a diffeomorphism. Therefore, each g ∈ G can be written as g = pk, with k ∈ K and p ∈ P .

For example, we have

SLn(R) = SPn(R)SO(n)

where SPn(R) is the n×n real positive matrices of determinant one and SO(n) is the special

orthogonal group. This is the classical polar decomposition of SLn(R).

6.3 Iwasawa decomposition

In matrix theory the Gram-Schmidt orthogonalization process or QR decomposition

enables us to write any A ∈ GLn(C) as a product of a unitary matrix and an upper triangular
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matrix with positive diagonal entries. In 1949 Iwasawa extended the QR decomposition

to semisimple Lie groups. Let G be a noncompact connected semisimple Lie group with

associated Lie algebra g with fixed Cartan decomposition g = k ⊕ p and corresponding

Cartan involution θ. Let a be the maximal abelian subspace of p. For any H ∈ a consider

the self adjoint transformation of g, adH. For any real linear functional λ on a, let

gλ = {X ∈ g : adH(X) = λ(H)X for all H ∈ a}. (6.3.1)

If λ 6= 0 and gλ 6= 0, we will call λ the restricted root of g and gλ restricted root space

correspond to λ. We will denote Σ the set of all restricted roots of g. For λ = 0 we have

g0 = {X ∈ g : (adH)X = 0 for all H ∈ a}. (6.3.2)

Let Σ+ and Σ− be the set of positive roots and negative roots, respectively. We define

n =
⊕
λ∈Σ+

gλ, n− =
⊕
λ∈Σ−

gλ,

which are subalgebras of g. Note that if X ∈ n−, by writing it as X = (X + θ(X))− θ(X),

we see that it is an element of k+ n. Since [H, θX] = θ[θH,X] = −θ[H,X] = −λ(H)θX, we

have θgλ = g−λ. i.e., if λ ∈ Σ+, then −λ ∈ Σ−. Moreover, θg0 = g0. Therefore,

g0 = (g0 ∩ k)⊕ (g0 ∩ p).

Since a is the maximal abelian subspace of p, if X ∈ (g0 ∩ p), it implies that X ∈ p and

X ∈ g0. Since X ∈ g0, we have [X,H] = 0, for all H ∈ a. Thus, X ∈ a and g0∩ p = a. Also,

g is the orthogonal direct sum g = g0

⊕
λ∈Σ gλ, [22, Proposition 6.40 (a)].
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Theorem 6.3.1. (Iwasawa decomposition of Lie Algebra, [22, Proposition 6.43])

Each semisimple Lie algebra g admits the following direct sum

g = k⊕ a⊕ n.

It has a global counterpart for the Lie group G.

Theorem 6.3.2. (Iwasawa decomposition of Lie Group)

Let G be a noncompact semisimple Lie group and let K,A and N be analytic subgroups of G

with Lie algebras k, a and n, respectively. Then the following map is a diffeomorphism onto

G.

K × A×N → G

(k, a, n) 7→ kan.

Consequently, any element in G can be uniquely written as g = kan, with k ∈ K, a ∈ A

and n ∈ N .

Example 6.3.3. As we have mentioned, the Lie algebra of G = SLn(C) is sln(C). Let

sln(C) = su(n) + isu(n) be the corresponding Cartan decomposition with Cartan involution

θ, where k = su(n) is the Lie algebra of skew-Hermitian matrices of zero trace and p = isun(C)

is the set of Hermitian matrices of zero trace. We choose

a = {X ∈ p : X = diag (x1, . . . , xn), xi ∈ R and trX = 0 for i = 1, . . . , n}.

Let Eij be an n× n matrix with ij-th entry equals to 1 and elsewhere 0. For any H ∈ a, it

can be seen that

adH(Eij) = HEij − EijH = (ei(H)− ejH)Eij,
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where ei(H) returns the i-th diagonal entry of H. That is, ei− ej, i 6= j, are restricted roots

of sln(C) and

gei−ej = CEij.

As a result,

n =
⊕

j>i, i 6=j

gei−ej ,

the set of all n × n strictly upper triangular matrices. So N := exp n is the set of upper

triangular matrices with diagonal entries equal to 1. Now K = exp k = SU(n) and A =

exp a, the group of diagonal matrices with real and positive entries with determinant 1.

Therefore, SLn(C) = KAN in which K = SU(n) and AN ⊂ SLn(C) is the subgroup of

upper triangular with positive diagonal entries, i.e., the Iwasawa decomposition of SLn(C)

is the QR decomposition.

6.4 Complete Multiplicative Jordan Decomposition

Let G be a semisimple Lie group with Lie algebra g. An element X ∈ g is called

semisimple if the linear transformation adX ∈ End (g) is diagonalizable over R. Similarly,

X ∈ g is called nilpotent if adX ∈ End (g) is nilpotent, i.e., the eigenvalues of the linear

transformation adX are all zeros.

Definition 6.4.1. (Elliptic, hyperbolic and unipotent elements)

1. An element g ∈ G is called hyperbolic if it can be written as g = expX, where X ∈ g

is real semisimple.

2. An element g ∈ G is called unipotent if it can be written as g = expX, where X ∈ g

is nilpotent.

3. An element g ∈ G is called elliptic if Ad g is diagonalizable in C with eigenvalues of

modulus 1.
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We state the Complete Multiplicative Jordan Decomposition (CMJD) of a semisimple

Lie group G.

Theorem 6.4.2. (CMJD [23, p. 419])

Let G be a semisimple Lie group. Each element g ∈ G can be uniquely decomposed as

g = e(g)h(g)u(g), (6.4.1)

where e(g), h(g) and u(g) are elliptic, hyperbolic and unipotent element of G and three ele-

ments commute.

See [19, p.430-431] for the CMJDs of GLn(R) and GLn(C), which can be obtained by

the additive Jordan decomposition.

6.5 Kostant pre-order ≺G

Let G be a noncompact connected semisimple Lie group with Lie algebra g. Let

g = k⊕ a⊕ n

be the Iwasawa decomposition of g and

G = KAN

be the global Iwasawa decomposition of G [19, 22]. Since

K × A×N 3 (k, a, n) 7→ kan ∈ G

is a diffeomorphism between K × A × N and G, each g ∈ G can be uniquely written as

g = kan, where k ∈ K, a ∈ A, and n ∈ N .
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For any X ∈ g, the Weyl group orbit of X, denoted by w(X), is defined as

w(X) = AdG(X) ∩ a,

i.e., it is the set of elements in a that is conjugate to X via the adjoint representation of G.

It is known that ([23, Proposition 2.4]) w(X) is a single W -orbit in a.

Let convw(X) be the convex hull of the Weyl group orbit w(X). For any g ∈ G, define

A(g) := exp convw(log h(g)),

where h(g) is the hyperbolic component of g in its CMJD.

Kostant’s pre-order on G ([23, p.426]) is defined by setting f ≺G g if

A(f) ⊆ A(g).

Note that if f and g are two distinct element of G, we may not have f ≺G g or g ≺G f . This

pre-order induces a partial order on the conjugacy classes of G.

We have the following characterization of Kostant pre-order. In the following example

we will show that the Kostant pre-order coincide log-majorization in SLn(C).

Example 6.5.1. Let G = SLn(C). We will use notations of the example (6.3.3). Let

f, g ∈ SLn(C) with sets of eigenvalues |α| = {|α1|, . . . , |αn|}, with |α1| ≥ |α2| ≥, . . . ,≥ |αn|,

and |β| = {|β1|, . . . , |βn|}, with |β1| ≥ |β2| ≥, . . . ,≥ |βn|, respectively. The hyperbolic part

of f in CMJD decomposition is a diagonal matrix with diagonal entries |α1|, . . . , |αn|, [35,
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Figure 6.1: A(a) = exp(conv (w(log(a)))) with extreme points W.a.

Figure 6.2: f ≺G g if and only if A(f) ⊆ A(g)

p. 543]. Thus we have

A(f) = exp convw(log(diag (|α1|, . . . , |αn|)))

= exp conv {(diag (log |ασ(1)|, . . . , log |ασ(n)|), σ ∈ Sn},
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since the Weyl group W is the symmetric group Sn [22]. Therefore, by the fact that x ≺ y

if and only if x is in the convex hull of all vectors obtained by permuting the coordinates of

y. Thus, we have A(f) ⊆ A(g), if and only if log |α| ≺ log |β|, or equivalently, |α| ≺log |β|.

Though Kostant’s pre-order appears to depend on the choice of a, it is actually not, due

to the following nice characterization by Kostant.

Theorem 6.5.2. (Kostant, [23, Theorem 3.1])

Let f, g ∈ G. Then f ≺ g if and only if ρ(π(f)) ≤ ρ(π(g)) for any irreducible finite

dimensional representation π : G → GL(V ) of G, where ρ(π(g)) denotes the spectral radius

of the operator π(g).
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Chapter 7

Extensions of some results of Lemos and Soares to semisimple Lie groups

In this chapter, G is a noncompact connected semisimple Lie group. So G admits a

Cartan decomposition G = PK. It could be shown that P can be identified with G/K and

regarded as a symmetric space of noncompact type [36, p.112]. Also, G/K has a unique

analytic manifold structure with the property that G is a Lie transformation group on G/K

under the natural G-action on G/K, see [19, Chapter II, Theorem 4.2]. Let ∗ : G → G be

the diffeomorphism defined by

∗(g) = g∗ = Θ(g−1),

where Θ is the Cartan involution. Then k∗ = k−1 for k ∈ K and p∗ = p for p ∈ P . The

map G→ P , g 7→ gg∗, is onto. Because for any g ∈ G, it maps gK to a single point gg∗, it

follows that the map

ψ : G/K → P, gK 7→ gg∗, (7.0.1)

is a bijection. It is in fact a diffeomorphism by the Cartan decomposition G = PK. Via ψ,

P may be identified with G/K, and so may be regarded as a symmetric space of noncompact

type. Note that for p ∈ P , ψ−1(p) = p1/2K, and G acts on P by

(g, p) 7→ gpg∗.

Theorem 7.0.1. (Liao, Liu, Tam [25, Proposition 2.3])

Let p, q ∈ P . The unique geodesic α(t) joining p and q in P has the following parametrization

α(t) = p1/2(p−1/2qp−1/2)tp1/2, 0 ≤ t ≤ 1. (7.0.2)
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Proof. Using the identification of P and G/K via the map ψ defined in (7.0.1), the unique

geodesic in P from p (at t = 0) to q (at t = 1) is given by γ(t) = p1/2etY p1/2 for some Y ∈ p.

Because q = γ(1) = p1/2eY p1/2, γ(t) = p1/2(p−1/2qp−1/2)tp1/2.

By comparing with the definition of t-geometric mean (4.1.2) on Pn, we can see that

the parametrization (7.0.2) has the same form. Therefore, we define the t-geometric mean

of p, q ∈ P as

p#tq = p1/2(p−1/2qp−1/2)1/2p1/2. (7.0.3)

Because the G-action on G/K is isometric,

g(p#tq)g
∗ = (gpg∗)#t(gqg

∗), g ∈ G. (7.0.4)

The symmetric space P ⊆ G inherits the pre-order ≺G in G. We are going to extend

some geometric mean inequalities of Lemos and Soares to P . Recall Theorem 4.2.2 of Lemos

and Soares:

λ((A#tB)X(A#1−tB)X) ≺log λ(AXBX),

where A,B,X ≥ 0 and t ∈ [0, 1]. In particular,

ρ(A#tB)X(A#1−tB)X) ≤ ρ(AXBX). (7.0.5)

where ρ(·) denotes the spectral radius. Now, we extend Theorem 4.2.2 in terms of Kostant’s

pre-order.

Theorem 7.0.2. Let p, q, r ∈ P and t ∈ [0, 1]. We have

(p#tq)r(p#1−tq)r ≺G prqr. (7.0.6)

Proof. Let π : G → GL(V ) be any finite dimensional representation of G. By [23, p. 435],

there exists an inner product on V such that for any x ∈ P, π(x) is positive definite. Let
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dπ : g → gl(V ) be the differential of π at the identity element of G. By (6.1.3), for any

X ∈ g we have π(expg(X)) = expV (dπ(X)). For any p ∈ P := expg p there exists X ∈ p

such that p = expg(X). Therefore, for any r ∈ R, we have

π(pr) = πexpg(rX)

= expV (dπ(rX))

= expV (rdπ(X))

= (expV (dπ(X)))r

= (π(expg(X)))r

= (π(p))r.

Consequently, we have

π(p#tq) = π(p1/2(p−1/2qp−1/2)tp1/2

= π(p)1/2(π(p)−1/2π(p)π(p)−1/2)tπ(p)1/2

= π(p)#tπ(q),

i.e., π respects the t-geometric mean. Hence

ρ
(
π((p#tq)r(p#1−tq)r)

)
= ρ

(
π((p#tq))π(r)π((p#1−tq))π(r)

)
= ρ

(
(π(p)#tπ(q))π(r)(π(p)#1−tπ(q))π(r)

)
≤ ρ

(
π(p)π(r)π(q)π(r)

)
by (7.0.5)

= ρ
(
π(prqr)

)
.

As a result, by Theorem (6.5.2), we complete the proof.

Let G = PK be a Cartan decomposition of Lie group G. Therefore, we can write each

element g ∈ G in the form g = pk, where p ∈ P and k ∈ K. For any g ∈ G, in the Cartan
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decomposition, we will denote p-component by

|g| := p(g) = (gg∗)1/2

and the k-component by k(g). As indicated in the proof of Theorem (7.0.2), we have the

polar decomposition

π(g) = π(pk) = π(p)π(k), (7.0.7)

where π(p) and π(k) are the positive definite part and unitary part of π(g), respectively. It

can be seen that

π(g∗) = π(Θ(pk)−1) = π(Θ(k−1)Θ(p−1)) = π(k−1p) = π(k)−1π(p). (7.0.8)

On the other hand, we can take the conjugate transpose of π(g) as a matrix, i.e., (π(g))∗,

and

(π(g))∗ = (π(p)π(k))∗ = θ((π(p)π(k))−1)

= θ(π(k)−1π(p)−1))

= θ(π(k)−1)θ(π(p)−1)

= θ(π(k)−1)θ(π(p)−1)

= π(k)−1π(p).
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Therefore, (π(g))∗ = π(g∗). As a result, we have

|π(g)| = (π(g)(π(g))∗)1/2

= (π(p)π(k)π(k)−1π(p))1/2

= (π(p)2)1/2

= π(p)

= π(p(g)).

That means, |π(g)| is equal to positive definite component of the matrix π(g). Using similar

technique, we can extend Theorem 4.2.1, another result of Lemos and Soares in the following

result. Recall that Theorem 4.2.1 asserts that if A,B ≥ 0, then

λ(A(A#B)B(A#B)) ≺log λ(A2B2).

Let L denote the set of hyperbolic elements in G. It is known that ([23, Proposition 6.2])

L = P 2 := {pq : p, q ∈ P}.

Theorem 7.0.3. Let p, q ∈ P . We have

p1/2(p#q)q(p#q)p1/2 ≺G p2q2. (7.0.9)

Note that p2q2 ∈ L and p1/2(p#q)q(p#q)p1/2 ∈ P .

Corollary 7.0.4. Let p, q ∈ P . We have

|p1/2(p#q)q1/2| ≺G |pq|. (7.0.10)
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Proof. We have

π(|g|) = (π(gg∗))1/2 = (π(g)(π(g))∗)1/2 = |π(g)|.

Thus to prove (7.0.10), we need to show ρ(π(|g1/2(g#h)h1/2|)) ≤ ρ(π(|gh|)) for all represen-

tation π of G. Now

ρ(π(|p1/2(p#q)q1/2|)) = ρ(|π(p1/2(p#q)q1/2)|)

= ρ(|π(p)1/2(π(p)#π(q))π(q)1/2|)

≤ ρ(|π(p)π(q)|) by (4.2.4)

= ρ(|π(pq)|)

= ρ(π(|pq|)).

Thus, (7.0.10) is established.

We remark that the above proof technique was used in [26, 25, 33] to establish other

inequalities.
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Birkhäuser Verlag, Basel, 2010.

[36] T.Y. Tam, X. Liu, Matrix Inequalities and Their Extensions to Lie Groups, Monographs
and Research in Mathematics, CRC Press, Boca Raton, FL, 2018.

[37] R.C. Thompson, Singular values, diagonal elements, and convexity, SIAM J. App. Math,
32 (1977), 39–63.

62


	Abstract
	Acknowledgments
	List of Figures
	Introduction
	Geometric mean from differential geometry point of view
	Pn as a Riemannian manifold
	Parametrization of geodesic joining two points in Pn

	Geodesic convexity of t-geometric means
	Majorization and log-majoration
	Compound matrices
	Matrix geometric mean and log-majorization

	Geometric mean from operator theory point of view
	Matrix mean
	Matrix geometric mean inequalities of Lemos and Soares
	More inequalities for t-geometric mean

	On the norm inequality of t-geometric mean of matrices
	Motivation
	More norm inequalities of t-geometric mean of matrices 

	Semisimple Lie groups and Lie algebras
	Lie groups and Lie algebras
	Cartan decomposition
	Iwasawa decomposition
	Complete Multiplicative Jordan Decomposition
	Kostant pre-order G

	Extensions of some results of Lemos and Soares to semisimple Lie groups
	Bibliography

